

PhD-FSTM-2023-073
The Faculty of Science, Technology and Medicine

DISSERTATION

Defense held on 15/09/2023 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Hichem BELGACEM
Born on 28 May 1992 in Monastir (Tunisia)

ML-BASED DATA-ENTRY AUTOMATION
AND DATA ANOMALY DETECTION TO
SUPPORT DATA QUALITY ASSURANCE

Dissertation defense committee
Dr DOMENICO BIANCULLI, dissertation supervisor
Associate Professor, Université du Luxembourg, Luxembourg

Dr LIONEL CLAUDE BRIAND, Chairman
Professor, Université du Luxembourg, Luxembourg

Dr SEUNG YEOB SHIN, Vice-Chairman
Research Scientist, Université du Luxembourg, Luxembourg

Dr LUCIANO BARESI,
Professor, Politecnico Di Milano, Italie

Dr ANDREY BOYTSOV,
BGL BNP Paribas, Luxembourg

Acknowledgments

I would like to acknowledge and give my warmest thanks to my supervisor
Dr. Domenico Bianculli, for his significant effort to make my research work
successful. His dedication, insightful advice, and scientific approach kept me
constantly engaged with my research.

I would like to express my special gratitude to Prof. Lionel C. Briand, for
his support and guidance to accomplish this thesis. I am honored to have
had the opportunity to learn from his knowledge and academic excellence.

I owe a deep gratitude to my co-supervisor, Dr. Xiaochen Li for sig-
nificantly enriching this thesis. His dynamism and unwavering generosity
helped me accomplish my tasks.

Special thanks go to BGL BNP Paribas, our industrial partner, and espe-
cially to Anne Goujon, Michael Stanisiere, Fernand Lepage, Clément Lefeb-
vre Renard, and Andrey Boytsov for their availability and for providing us
with different datasets.

Special thanks go to my family and friends for their continuous support
throughout my PhD.

Abstract

Data plays a central role in modern software systems, which are
very often powered by machine learning (ML) and used in critical do-
mains of our daily lives, such as finance, health, and transportation.
However, the effectiveness of ML-intensive software applications highly
depends on the quality of the data. Data quality is affected by data
anomalies; data entry errors are one of the main sources of anomalies.
The goal of this thesis is to develop approaches to ensure data quality
by preventing data entry errors during the form-filling process and by
checking the offline data saved in databases.

The main contributions of this thesis are:

1. LAFF, an approach to automatically suggest possible values of cat-
egorical fields in data entry forms.

2. LACQUER, an approach to automatically relax the completeness
requirement of data entry forms by deciding when a field should
be optional based on the filled fields and historical input instances.

3. LAFF-AD, an approach to automatically detect data anomalies in
categorical columns in offline datasets.

LAFF and LACQUER focus mainly on preventing data entry errors
during the form-filling process. Both approaches can be integrated into
data entry applications as efficient and effective strategies to assist the
user during the form-filling process. LAFF-AD can be used offline on
existing suspicious data to effectively detect anomalies in categorical
data.

In addition, we performed an extensive evaluation of the three ap-
proaches, assessing their effectiveness and efficiency, using real-world
datasets.

i

Contents

List of Figures iv

List of Tables vi

1 Introduction 1

1.1 Context . 1
1.2 Motivation . 3
1.3 Research Contributions . 5
1.4 Dissemination . 6
1.5 Organization of the Thesis . 7

2 Background 8

2.1 Bayesian Networks . 8
2.2 K-modes . 9
2.3 Synthetic Minority Oversampling Technique (SMOTE) 10

3 A Machine Learning Approach for Automated Filling of Categor-

ical Fields in Data Entry Forms 12

3.1 Overview . 12
3.2 Data Entry Form Filling . 14
3.3 Approach . 19
3.4 Evaluation . 29
3.5 Discussion . 52
3.6 Related Work . 59
3.7 Summary . 62

ii

Contents

4 Learning-Based Relaxation of Completeness Requirements for Data

Entry Forms 63

4.1 Overview . 63
4.2 Completeness Requirement Relaxation for Data Entry Forms . 65
4.3 Approach . 72
4.4 Evaluation . 82
4.5 Related work . 94
4.6 Discussion . 99
4.7 Summary . 102

5 LAFF-based Anomaly Detection for Categorical Data 103

5.1 Overview . 103
5.2 Data anomaly detection . 105
5.3 State of the art . 107
5.4 Approach . 110
5.5 Evaluation . 116
5.6 Discussion . 129
5.7 Summary . 130

6 Conclusions & Future Work 132

6.1 Conclusions . 132
6.2 Future Research Directions . 133

Bibliography 135

iii

List of Figures

2.1 An Example of BN and the Probability Functions of its Nodes . . 9
2.2 An Example of SMOTE Interpolation 11

3.1 The Automated Form Filling Problem 17
3.2 Main Steps of the LAFF Approach 19
3.3 Example of Model Building on Pre-processed Historical Input In-

stances . 20
3.4 Workflow for Form Filling Suggestion 28
3.5 Example of Dataset Preparation (Training and Testing Sets) 32
3.6 Effectiveness of LAFF with different number of filled fields on the

NCBI and PROP datasets . 47
3.7 Effectiveness of LAFF with different training set sizes on the NCBI

and PROP datasets . 50

4.1 The Automated Form Filling Relaxation Problem 70
4.2 Main Steps of the LACQUER Approach 72
4.3 Example of Pre-processed Historical Input Instances 73
4.4 Workflow of the Model Building Phase 76
4.5 Workflow for Form Relaxation Phase 78
4.6 Example of Filling Orders . 86
4.7 Use case to combine LACQUER and LAFF together during form

filling . 101

5.1 Running example for problem definition 107
5.2 Main Steps of LAFF-AD . 111
5.3 LAFF prediction phase . 112

iv

List of Figures

5.4 Examples of LAFF-AD’s prediction 115
5.5 Running example of error injection 118

v

List of Tables

3.1 Information about the Fields in the Datasets 30
3.2 Main metrics used in the recommender system area for evaluating

the effectiveness of building a list of suggestions 36
3.3 MRR and PCR of Form Filling Algorithms 39
3.4 Effectiveness of LAFF with Different Modules 44
3.5 Overview of related work . 61

4.1 Information about the Fields in the Datasets 83
4.2 Effectiveness for Form Filling Relaxation 89
4.3 Effectiveness of LACQUER with Different Modules 93
4.4 Main differences between LAFF and LACQUER 97

5.1 Information of the Datasets . 117
5.2 Main metrics used in the area of anomaly detection for categorical

fields . 121
5.3 Effectiveness for Anomaly detection 123
5.4 Maximum Carmér’s V for different datasets 125
5.5 Results on Probe variations . 126

vi

Chapter 1

Introduction

1.1 Context

Data plays a central role in modern software systems, which are very often
powered by machine learning (ML) and used in critical domains of our daily
lives, such as finance, health, and transportation [TLA+22]. However, the
effectiveness of ML-intensive software applications highly depends on the
quality of the data [SE03]. When data quality is poor, the output of these sys-
tems cannot be trusted. This makes data quality of utmost importance since
it impacts how trustworthy and reliable these applications are (e.g., decision
support systems).

Data quality is affected by data anomaly. An anomaly is defined as data
instances that deviate from other data instances [Haw80]. Data anomalies
can arise in many practical situations, such as wrong values entered by users
during the data entry process through form filling (e.g., typos) and errors
made during data management (e.g., faulty sources of data) or data integra-
tion [MBM15].

Specifically, data entry is important to collect users’ inputs through data
entry forms [JG09, SZ03]. Yet, the data entry process is time consuming and
error-prone. Users have to spend a lot of effort to make sure that the entered
values are the right ones for each field, which makes the data entry process
slow and frustrating [GC06]. This situation inevitably leads to a situation in
which wrong values are provided as input for a field. As a result, many data

1

1.1. Context

quality problems are introduced when users fill the data entry form. Existing
statistics reveal that data entry typically has an error rate of over 1% [FGJ08].
If such erroneous data is not detected and it is transferred into the software
system, this erroneous data may propagate and affects all the other connected
information. For example, erroneous input data in retailing systems alone
leads to a waste of $2.5 billion each year for consumers [FGJ08]. Further, data
entry errors in spreadsheets mislead business decisions, causing additional
costs in correcting the errors [SR12]. Even worse, data entry has been a top
cause of medication errors [Ame05], which resulted in at least 24 deaths in
the US in 2003 [MBM15].

Data entry errors can be in the form of wrong values or meaningless val-
ues. Wrong values occur when the user wrongly fill the value of a field in
the form. Wrong values can be filled in different type of fields in the form
(e.g., textual, numerical, etc.) and especially in categorical fields. Categorical
fields represent the fields that provide a list of candidate values (also called
“options”) from which the user has to choose (e.g., country). Such fields are
likely to generate data quality issues in critical domains such as medical and
financial domains. The reason is, in order to fill such fields, users need to
spend tremendous effort to go through the list of options and compare be-
tween them to choose the right value. For example, empirical studies have
shown that more than half (54.5%) of the data errors in a medical record sys-
tem were caused by the candidate value selection error [QMR+20]. Users
could wrongly select the job role, the modality of care, or the drugs uninten-
tionally [QMR+20, KJ10], causing potential medical negligence.

Meaningless values are caused by the evolving nature of data entry forms.
Data entry forms use completeness requirements to specify the fields that
are required or optional to fill in for collecting necessary information from
different types of users. However some required fields may not be appli-
cable for certain types of users anymore. Nevertheless, they may still be
incorrectly marked as required in the form; we call such fields obsolete re-
quired fields. Since obsolete, required fields usually have “not-null” vali-
dation checks before submitting the form, users have to enter meaningless
values in such fields in order to complete the form submission. These mean-
ingless values can be represented by random symbols/strings that pass the
validation checks (e.g, “@”, “99”) or by randomly selecting a value from a
categorical field. They threaten the quality of the filled data, and also affect
the trust of data engineers on the data saved in the database. Data engineers
may not be able to differentiate between meaningless and correct values.

All the aforementioned data entry errors are considered as data anomalies
when they are recorded into a database. Data anomalies must be detected;

2

1.2. Motivation

once detected, they have to be fixed or excluded from the data used in ML-
intensive applications. If the anomalies are not detected in a timely fashion,
they may propagate and cause more data quality issues, leading to serious
problems that affect decision-making [SE03]. For example, one study showed
that the financial loss because of fraud, a kind of data anomaly in the finan-
cial domain, has increased by almost 56.6% since 2009. The value of this loss
was estimated to be 5.1 trillion USD in 2018 [GB19]. Another study revealed
that the average cost of network downtime resulting from data anomalies is
100 000 USD per hour; this value can grow as more people are using or be-
come dependent on web applications [KLZ+19]. This explains the fact that
anomaly detection has been applied in several critical domains such as fraud
detection [POKB20], health care [CVM+21], and network intrusion identifi-
cation in computer science [JK21].

1.2 Motivation

Different works tried to improve the data quality by preventing data entry
errors (wrong values / meaningless values) during the form filling process
and by checking the presence of data anomalies on existing data that have
been filled before or merged from different sources of data.

1.2.1 Addressing the wrong value problem

To address the wrong value problem, different works have been proposed to
help users filling fields, especially for categorical fields. For example, some
form filling tools [Goo08, WZNN17] tried to recommend frequently selected
values in a field or values selected by a user in some similar fields from 3rd-
party software systems. However, the usage of these tools may violate en-
terprise security policies, since they rely on information from 3rd-party soft-
ware systems. Moreover, these tools provide limited support due to the low
accuracy of their suggestions [WGV+11].

Furthermore, existing automated form filling approaches exhibit some
limitations when dealing with (1) forms filled following an arbitrary order,
and (2) partially filled forms. The first situation arises because it is very com-
mon for data entry forms to have little or no restrictions on the order of fields
in which users can enter data. Users are free to choose any field as their next
target or even go back and edit fields they have already filled out. Some
automated form filling approaches [HS94] need a defined form filling order
before building a recommendation model; however, this assumption is un-
realistic from a practical standpoint. As for the second situation, at a certain

3

1.2. Motivation

time during the data entry session, a form is usually partially filled, meaning
that an approach for automated form filling can only use information in cur-
rently filled fields. However, when this is not sufficient to predict the target,
existing approaches [MROE+19, HS94] yield inaccurate suggestions. Based
on these two situations it is important to have a form filling tool that can
deal with different orders of filling with also taking into consideration of the
limited information available in the form in the case of partially filled forms.

1.2.2 Addressing the meaningless values problem

To prevent entering meaningless values during the form filling process, ex-
isting works proposed adaptive form tools [FS98, BBG11, SLDM18], which
give the opportunity to form designers to mark required fields as optional
when certain conditions are met. These tools first require a complete and final
set of completeness requirements representing the situations for which a field
should be required or optional. Then, they use intermediate representations
such as XML [BBG11] and dynamic condition response graphs [SLDM18] to
represent the completeness requirements rules and implement adaptive be-
haviors. In addition, there are commercial tools (e.g., Gravity Forms [Roc],
Google Forms [Goo]) that assist designers in designing adaptive forms, where
fields can be displayed or hidden based on the value of already filled fields
in the form. Similar to existing research approaches, these commercial tools
assume that designers already have a complete and final set of completeness re-
quirements describing the adaptive behaviour of the form during the design
phase.

However, due to the evolving nature of the software and the complexity
of the domain (with hundreds of fields), identifying a comprehensive set of
completeness requirements is not a practical solution. Moreover, even if they
could be identified, such completeness requirements could become quickly
obsolete, limiting the use of existing adaptive form tools. For these reason, it
is important to have a solution that does not need predefined completeness
requirements as input.

1.2.3 Detecting data anomalies

To detect data anomalies, many approaches have been proposed. However,
their focus has been mainly on numerical data. The main idea is to define a
proximity measure between data instances [IPM16], and use this measure to
detect data instances that deviate from the majority of the data. In contrast,
according to an existing study [TH19], only a fewer studies attempt to detect

4

1.3. Research Contributions

anomalies for categorical data. Since in practice data is often described by
categorical attributes [IPM16], we focus in this thesis on detecting anomalies
in categorical data.

There are two reasons to motivate this work. First, categorical data anomaly
is more challenging to detect [IPM16]. The fundamental issue is to define a
proximity measure over categorical values [RSMMA+19]; however, it is not
easy to devise a criterion to separate between anomalous and non-anomalous
categorical data [AFPS22]. Second, empirical studies show that more than
50% of anomalies in critical applications (e.g., medical records) are in cate-
gorical fields [QMR+20].

Although anomaly detection for categorical data has been investigated
in the literature (e.g., with frequency-based approaches [PCC16, PTAJ16],
clustering-based approaches [SMA12, SMA13], semi-supervised approaches [NBS12]),
our preliminary experiments show that the effectiveness of these approaches
is not stable across datasets. More specifically, especially since these ap-
proaches include different parameters to be tuned, one technique can per-
form greatly in terms of accuracy on one dataset but poorly on another.

1.3 Research Contributions

The overall goal of this dissertation is to propose approaches to ensure data
quality by preventing data entry errors during the form filling process and by
checking offline data saved in databases. Our goal is to develop approaches
that deal with the different challenges and limitations of the state of the art
discussed above. More specifically we identify the following research objec-
tives:

(1) Developing an efficient automated form filling suggestion tool for cate-
gorical fields to help users filling categorical fields.

(2) Developing an efficient form filling relaxation tool to prevent filling mean-
ingless values during the form filling process.

(3) Developing an efficient anomaly detection tool to detect inconsistent data
in offline datasets.

To achieve the first research goal, we propose LAFF, a learning-based au-
tomated approach for filling categorical fields in data entry forms. LAFF first
builds Bayesian Network models by learning field dependencies from a set
of historical input instances, representing the values of the fields that have

5

1.4. Dissemination

been filled in the past. To improve its learning ability, LAFF uses local mod-
eling to effectively mine the local dependencies of fields in a cluster of input
instances. During the form filling phase, LAFF uses such models to predict
possible values of a target field, based on the values in the already-filled fields
of the form and their dependencies; the predicted values (endorsed based on
field dependencies and prediction confidence) are then provided to the end-
user as a list of suggestions.

To achieve the second research goal, we propose LACQUER, a learning-
based automated approach for relaxing the completeness requirements of
data entry forms. LACQUER builds Bayesian Network models to automat-
ically learn conditions under which users had to fill meaningless values. To
improve its learning ability, LACQUER identifies the cases where a required
field is only applicable for a small group of users, and uses SMOTE, an over-
sampling technique, to generate more instances on such fields for effectively
mining dependencies on them. During the data entry session, LACQUER
predicts the completeness requirement of a target based on the already filled
fields and their conditional dependencies in the trained model.

To achieve the third research goal, driven by the high accuracy of ex-
isting form filling tools such as LAFF, we propose a LAFF-based Anomaly
Detection approach (“LAFF-AD” in short) to effectively detect categorical
data anomalies. The basic idea of LAFF-AD is to take advantage of the learn-
ing ability of LAFF to perform value inference on suspicious data. LAFF-
AD runs an adaptation of LAFF that handles offline prediction (i.e., not in
real-time during the data entry process) to predict the value of a suspicious
categorical field in the suspicious instance. LAFF-AD leverages the output
of LAFF to detect data anomaly with a heuristic-based anomaly detection
module.

1.4 Dissemination

The publications resulted from this theses are listed below.
Published papers

• Hichem Belgacem, Xiaochen Li, Domenico Bianculli, and Lionel Briand.
A machine learning approach for automated filling of categorical fields
in data entry forms. ACM Transactions on Software Engineering and
Methodology, 2023, vol. 32, no 2, p. 1–40.
This paper is the basis for Chapter 3; it presents our form filling ap-
proach for categorical fields.

6

1.5. Organization of the Thesis

• Hichem Belgacem, Xiaochen Li, Domenico Bianculli, and Lionel Briand.
Learning-Based Relaxation of Completeness Requirements for Data En-
try Forms. ACM Transactions on Software Engineering and Methodol-
ogy, Just accepted
This paper is is the basis for Chapter 4; it presents our completeness
requirement relaxation approach.

Unpublished reports

• Hichem Belgacem, Xiaochen Li, Domenico Bianculli, and Lionel Briand.
Automated anomaly detection for categorical data by repurposing form
filling recommender systems.
This paper is the basis for Chapter 5; it presents our anomaly detection
approach for categorical fields in offline data.

1.5 Organization of the Thesis

Chapter 2 provides some fundamental background on machine learning al-
gorithms we rely on, including Bayesian networks, K-modes, and Synthetic Mi-
nority Oversampling Techniques (SMOTE).

Chapter 3 presents LAFF, our approach for filling categorical fields in data
entry forms.

Chapter 4 presents LACQUER, our approach for relaxing the completeness
requirements of data entry forms.

Chapter 5 presents LAFF-AD, our approach for detecting data anomalies for
categorical columns in offline data.

Chapter 6 summarizes the thesis contributions and discusses perspectives on
future work.

7

Chapter 2

Background

Before illustrating our approaches, we briefly introduce basic machine learn-
ing algorithms we rely on.

2.1 Bayesian Networks

Bayesian networks (BNs) are probabilistic graphical models (PGM) in which
a set of random variables and their conditional dependencies are encoded as
a directed acyclic graph: nodes correspond to random variables and edges
correspond to conditional probabilities.

The use of BNs for supervised learning [FGG97] typically consists of two
phases: structure learning and variable inference.

During structure learning, the graphical structure of the BN is automati-
cally learned from a training set. First, the conditional probability between
any two random variables is computed. Based on these probabilities, optimization-
based search (e.g., hill climbing [GMP11]) is applied to search the graphical
structure. The search algorithm initializes a random structure, and then it-
eratively adds/deletes its nodes and edges to generate new structures. For
each new structure, the search algorithm calculates a fitness function (e.g.,
Bayesian information criterion, BIC [Raf95]) based on the nodes’ conditional
probabilities and on Bayes’ theorem [FGG97]. Structure learning stops when
it finds a graphical structure that minimizes the fitness function.

8

2.2. K-modes

A

BC

P (B | A)

A
B

b b̄

a 0.4 0.6
ā 0.1 0.9

P (C | A,B)

A B
C

c c̄

a b 0.9 0.1
a b̄ 0.4 0.6
ā b 0.4 0.6
ā b̄ 0.1 0.9

P (A)

a ā

0.2 0.8

Figure 2.1: An Example of BN and the Probability Functions of its Nodes

Figure 2.1 shows an example of the BN structure with three random vari-
ables: variable B depends on variable A; variable C depends on variables
A and B. In the PGM, each node is associated with a probability function
(in this case encoded as a table), which represents the conditional probability
between the node and its parent(s). For example, in Figure 2.1 each variable
has two values; the probability table for B reflects the conditional probability
P (B | A) between A and B on these values.

Variable inference infers unobserved variables from the observed variables
and the graphical structure of the BN using Bayes’ theorem [FGG97]. For
example, we can infer the probability of C = c when the value of A is a
(denoted as P (c | a)) as follows:

P (c | a) = P (a, c)

P (a)
=

P (a, b, c) + P (a, b, c)

P (a)

=
P (c | a, b)P (b | a)P (a) + P (c | a, b)P (b | a)P (a)

P (a)

=
0.9 ⇤ 0.4 ⇤ 0.2 + 0.4 ⇤ 0.6 ⇤ 0.2

0.2
= 0.6

BNs have been initially proposed for learning dependencies among dis-
crete random variables. They are also robust when dealing with missing
observed variables. More specifically, variable inference can be conducted
when some conditionally independent observed variables are missing [FGG97].

2.2 K-modes

K-modes is a clustering algorithm that extends the k-means one to enable
clustering of categorical data [Hua98]. The algorithm first randomly selects k
instances in the data set as the initial centroids. Each instance is represented
with a vector of categorical attributes. The algorithm clusters the instances in

9

2.3. Synthetic Minority Oversampling Technique (SMOTE)

the dataset by calculating the distances between the instances and each cen-
troid. The distance, also called dissimilarity measure, is defined as the total
mismatches of the corresponding categorical attributes of an instance and of
a centroid. Based on the clustering results, new centroids are selected, which
represent the modes of categorical attributes in each cluster. The algorithm
then re-clusters the instances according to the new centroids. This process
is repeated until the centroids remain unchanged or until it reaches a certain
number of iterations.

2.3 Synthetic Minority Oversampling Technique

(SMOTE)

A frequently encountered problem for training machine learning models us-
ing real-world data is that the number of instances per class can be imbal-
anced [SGS18, MK17a].

To address this problem, many imbalanced learning approaches have
been proposed in the literature. One of them is SMOTE [CBHK02]; it uses
an oversampling method to modify the class distribution in a dataset (i.e.,
the ratio between instances in different classes). It synthesizes new minority
class instances to improve the learning ability of machine learning algorithms
on the minority class. SMOTE conducts the instance synthesis by means of
interpolation between near neighbors. Initially, each instance in the dataset
is represented as a feature vector. SMOTE starts by randomly selecting a mi-
nority class instance i from the dataset. It determines the k nearest neighbors
of i from the remaining instances in the minority class by calculating their
distance (e.g., the Euler distance) based on their feature vectors. SMOTE
synthesizes new instances using n instances randomly selected from the k
neighbors. The selection is random to increase the diversity of the generated
new instances. For each selected instance, SMOTE computes a “difference
vector” that represents the difference of the feature vectors between the se-
lected instance and instance i. SMOTE synthesizes new instances by adding
an offset to the feature vector of instance i, where the offset is the product of
the difference vector with a random number between 0 and 1. SMOTE stops
generating new instances until a predefined condition is satisfied (e.g., the
ratio of instances in the majority and minority classes is the same).

Figure 2.2 illustrates an example of application of SMOTE to create new
minority class instances. As shown in the table on the right, instances i1,i2,
and i3 belong to the minority class “Optional” of our target field. As a pre-
liminary step, SMOTE computes the Euclidean distance between all the mi-

10

2.3. Synthetic Minority Oversampling Technique (SMOTE)

f2: Monthly
f3: Target

revenue

i1 39 Optional
i2 42 Optional
i3 25 Optional
i4 100 Required
i5 150 Required
i6 200 Required
i7 400 Required

f2: Monthly
f3: Target

revenue

i1 39 Optional
i2 42 Optional
i3 25 Optional
i4 100 Required
i5 150 Required
i6 200 Required
i7 400 Required
i8 40 Optional

SMOTE

Figure 2.2: An Example of SMOTE Interpolation

nority instances: d(i1, i2) =

q
(39� 42)

2
= 3, d(i1, i3) =

q
(39� 25)

2
= 14,

and d(i2, i3) =

q
(42� 25)

2
= 17. SMOTE starts by randomly picking one

instance from the minority class (e.g., i2). Assuming that the value of k is
equal to 1, SMOTE selects the nearest instance to i2, which in our exam-
ple is the instance i1. In order to create a new instance i8, SMOTE com-
putes the Di↵erence vector based on the feature vectors Monthly revenuei2

and Monthly revenuei1 , and multiplies it by a random value � between 0 and
1. The value of the “Monthly revenue” column in the synthetically created
instance i8 is equal to Monthly revenuei2+ Di↵erence vector . In our example,
assuming that the value of � is equal to 0.7, the new value of the “Monthly
revenue” field for i8 is equal to 42 + ((39� 42) ⇤ 0.7) = 40.

11

Chapter 3

A Machine Learning Approach

for Automated Filling of

Categorical Fields in Data Entry

Forms

3.1 Overview

In this chapter, we propose LAFF, a Learning-based Automated Form Filling
approach, for filling categorical fields. The basic idea of LAFF is to build
machine learning models based on input instances (i.e., fields and the cor-
responding values provided in input) obtained from data entry forms that
have been filled in the past (hereafter called historical input instances); such
models represent dependencies among fields in historical input instances.
Using these models, the already-filled fields in a data entry form can then be
used as features to predict the possible values of a given target field. LAFF
aims to be used by developers, who can integrate it into their data entry form
implementations.

To deal with forms filled in an arbitrary order (which would result in
a huge number of combinations of filled fields (features) and target fields to
handle), LAFF utilizes Bayesian Networks (BN) to mine the dependencies be-

12

3.1. Overview

tween any field combinations, without assuming, a priori, an order for form
filling. Moreover, to improve its learning ability, LAFF uses a local model-
ing strategy to cluster historical input instances; further, it builds additional
local BNs, which learn fine-grained field dependencies from the clusters of
historical input instances. These local models capture additional dependen-
cies that might not have been captured by the model trained on the entire
historical dataset. Once the trained models are available, LAFF uses them in
the form filling suggestion phase, which occurs during the data entry session:
given a target field, LAFF selects one of the available BNs and predicts the
possible values of the field based on the values in the already-filled fields.
To deal with partially filled forms (which might lead to inaccurate sugges-
tions), LAFF includes a heuristic-based endorser, which determines whether
the values predicted in the previous step are accurate enough to be returned
to the user, based on the analysis of the field dependencies and of the pre-
dicted probability distribution of the values for the target field.

We evaluated LAFF using form filling records from both a public dataset
and a proprietary dataset extracted from a production-grade enterprise infor-
mation system in the banking domain. The experimental results show LAFF
can yield a large number of accurate suggestions with a Mean Reciprocal Rank
(MRR) value above 0.73 and a prediction coverage rate ranging from 0.70 to
0.87, significantly outperforming a state-of-the-art approach based on associ-
ation rule mining by 11pp to 27pp (with pp = percentage points) in terms of
MRR on both datasets. Furthermore, LAFF is efficient; it takes at most 317ms

to provide suggestions for input instances of the proprietary dataset.
To summarize, the main contributions of this chapter are:

• The LAFF approach, which addresses the problem of automated form
filling for categorical fields, an important user interface challenge in
many software systems. To the best of our knowledge, LAFF is the
first work to combine BNs with local modeling and a heuristic-based
endorser to provide accurate form filling suggestions, even for arbitrary
filling orders and partially filled forms.

• An extensive evaluation assessing the effectiveness and efficiency of
LAFF and comparing it with the state of the art.

The rest of the chapter is organized as follows. Section 3.2 provides a mo-
tivating example and explains the basic definitions of automated form filling
and its challenges. Section 3.3 describes the different steps and the core al-
gorithms of LAFF. Section 3.4 reports on the evaluation of LAFF. Section 3.5

13

3.2. Data Entry Form Filling

discusses the usefulness, practical implications, and limitations of LAFF. Sec-
tion 3.6 surveys related work. Section 3.7 concludes the chapter.

3.2 Data Entry Form Filling

In this section, we introduce the concepts related to data entry forms, pro-
vide a motivating example, define the problem of automated form filling,
and discuss its challenges.

3.2.1 Types of Fields in Data Entry Forms

A data entry form is typically composed of many fields (also called input pa-
rameters [WZNN17] or elements [ABY16]), which can be of different types:
textual, categorical, numerical, and file. Textual and numerical fields collect
free text and numerical values respectively; users can freely input any value
that is compliant with the field input validation rules. Categorical fields pro-
vide a list of candidate values from which the user has to choose (e.g., coun-
try); the source of candidate values is defined statically [ADK07]. File fields
are used to upload files, such as images and videos. During software design,
these fields are associated with specific UI widgets, based on the correspond-
ing type. For example, developers can use a list box or combo box to collect
categorical data [W3C17].

3.2.2 Motivating Examples

Although software users frequently fill forms, such activity is time-consuming
and error-prone [RNDL+08]. In the following, we describe two examples il-
lustrating the main challenges faced while filling data entry forms with cate-
gorical fields.

Example 1: Users require focused attention to choose options from categorical
fields.

Alison is a student majoring in biology. She uses information manage-
ment platforms (such as NCBI [BCG+12] and SAIKS [Gaf20]) to record the
basic information of biological samples. Given a biological sample (e.g., the
genus Pratylenchus), she needs to fill fields “sex”, “tail shape”, and “species
name” of the sample in a data entry form from such a system. All three
fields are categorical with predefined values. After filling the first two fields,
Alison starts to select the species name. However, the genus Pratylenchus cur-
rently includes over 80 valid species [Gaf20]. She has to scroll down the list

14

3.2. Data Entry Form Filling

to check for the relevant species. Although she can search a species by in-
putting the first letter of the name, many similar species names are presented
(e.g., pratensisobrinus, pseudocoffeae, pseudofallax, and pseudopratensis). She still
requires focused attention to choose among these textually similar options
in a limited time. According to existing studies, about half of the data entry
errors are caused by selection error [QMR+20, WBL+13]

Example 2: Users require cognitive effort to match options with the actual value
they plan to fill in. The second example is inspired by a use case of our indus-
trial partner. The use case refers to the opening of a bank account for busi-
ness customers; a simplified data entry form for this activity is shown on the
left-hand side of Figure 3.1. We will use this data entry form as a running
example to explain the form filling problem and illustrate our solution. For
simplicity, let us assume that the data entry form contains only two fields:
“company type” (textual) and “(company) primary field of activity” (cate-
gorical). When a company called SmartLease requests to open a bank account,
the bank clerk Bill (who is the end-user interfacing with the data entry form)
asks the SmartLease representative about the company type and inputs “leas-
ing (company)” in the corresponding field; then, Bill selects “other financial
services” for the “primary field of activity” field. Several weeks after the ac-
count opening, the data quality division of the bank detects a potential data
quality issue regarding SmartLease, in the form of a mismatch between the
actual activity implied by the company’s type and operations, and the com-
pany activity recorded when the account was open. This issue can be quickly
solved by checking with SmartLease and amending the “primary field of ac-
tivity” field with the correct value: “leasing services”. Nevertheless, such
an issue can cause a business loss: for example, by knowing the actual “pri-
mary field of activity” of the company, the bank could have offered targeted
products to its customer since the beginning of the business relation. Further
investigation reveals that this issue occurred because, as a new employee in
the bank, Bill was not familiar with all the 75 options defined in the “pri-
mary field of activity” field. He browsed the list for a limited time, compared
the candidate values with the actual value he intended to fill in and finally
selected an inappropriate value.

The aforementioned problems cannot be solved satisfactorily by existing
solutions that support filling categorical fields, including those based on the
search-by-keyword functionality, web browser plugins for autofill, as well as
approaches that build field ontologies.

First, some solutions help users locate the candidate values in categorical
fields with the search-by-keyword functionality. This functionality cannot
solve the issues in the two examples, since users need to carefully compare

15

3.2. Data Entry Form Filling

textually similar values (as shown in Example 1) and have the burden to re-
member all the options to avoid searching an inappropriate value (as shown
in Example 2).

Second, web browser plugins such as Chrome Autofill Forms [Goo08]
provide automatic form filling, but they simply reuse the inputs provided in
past forms to automatically fill out fields in different forms with the same
information (for example “zip code”). They do not leverage the knowledge
provided by already filled fields to provide “intelligent” suggestions. More-
over, these tools are usually personalized for a single user, and cannot be
used in the context of enterprise software systems, in which the end-user fills
the same form with different information. As shown in Example 2, a bank
clerk works daily with several bank accounts of different customers and can-
not directly reuse the input instance of a customer to pre-fill an input form
for another customer.

Third, some approaches automatically build ontologies for form filling [AHS12,
WGV+11, AGLH10]. They map a ‘target’ field (e.g., “zip code”) in a form to
‘source’ fields (e.g., “postal code” or “postcode”) in other filled forms to sup-
port data exchange across software systems. However, for domain-specific
software systems (e.g., biology information management platforms), many
fields are domain-specific (such as “tail shape” and “species name” in Ex-
ample 1) and cannot be easily mapped to fields in other forms. In addition,
due to legal or security policies, software systems for governments and en-
terprises have constraints on sharing records across systems (as the banking
system in Example 2).

For all the above reasons, there is a need to design a semi-automated
method that developers can adopt to support and guide users during the
form filling activity.

3.2.3 Problem Definition

In this chapter, we deal with the automated form filling problem, which can
be informally defined as the problem of suggesting possible values for the
form fields a user is about to fill in, based on the values of the other fields
and on the values provided as input in previous data entry sessions. We
target categorical fields for automated filling since they require cognitive effort
and focused attention for users to choose among the (typically) large set of
options. The task of filling categorical fields may be slow and frustrating to
users [GC06], and may lead to data quality issues, as shown in the examples
above. We define the automated form filling problem as follows.

16

3.2. Data Entry Form Filling

Gibson
Name of con-

tact person

20Monthly
income k euro

PrivateLegal entity

LeasingCompany
type

?
Primary field

of activity

SubmitCancel

Data entry form F

Model M
F f

filled fields

predict

f1: name
f2: in-

f3: entity
f4: company f5: primary submission

come type activity time

Alice 20 Public Investment Financial Service 20180101194321

Bob 21 Public Investment Leasing Service 20180101194723

...

Frank 40 Public Leasing Financial Service 20180102132016
submission

Historical input
instances IF (t)

train

Figure 3.1: The Automated Form Filling Problem

Let F be a data entry form with n fields F = {f1, f2, . . . , fn}; each field fi
can take values from a domain Vi (which always includes a special element
? representing an empty field); let F c ✓ F be the set of categorical fields.

When a form F is being filled, at any time the fields can be partitioned in
two groups: fields that have been already filled (denoted by F f) and unfilled
fields (denoted by F u); we have that F f [F u

= F and F f \ F u
= ;.

When a filled form F is about to be submitted (e.g., to be stored in a
database), we define an input instance of F IF = {hf1, v1i, . . . , hfn, vni} with
fi 2 F and vi 2 Vi, as the set of pairs hfield , valuei from F ; we use the
subscript tj as in IFtj to denote that the input instance IF was submitted at
time tj . We use the notation IF (t) to represent the set of historical input in-
stances of form F that have been submitted up to a certain time instant t;
IF (t) = {IFti , I

F
tj
, . . . , IFtk}, where ti < tj < tk < t. Hereafter, we drop the

superscript F when it is clear from the context.
The automated form filling problem can be defined as follows. Given a

(partially filled) form F = F f [F u, a set of historical input instances IF (t),
and a target field fp 2 (F u \ F c

) to fill, we want to build a model M that at
time t can predict a value vp for fp based on F f and IF (t). Notice that in this
problem definition the filling order of the fields in F is unrestricted.

3.2.3.1 Application to the running example

Figure 3.1 shows an example explaining the automated form filling problem.
We have a data entry form F for a banking system with five fields: f1:“name
of contact person”, f2:“monthly income”, f3:“legal entity”, f4:“company type”,
and f5:“primary field of activity”. Among them, fields “legal entity” and

17

3.2. Data Entry Form Filling

“primary field of activity” are categorical (i.e., F c
= {f3, f5}). During the

data entry session, users provide values for these fields, which are stored in
a database upon submission of the form. The table on the right-hand side of
Figure 3.1 shows some historical input instances filled by the bank customers
through the data entry form; the submission timestamp t of these input in-
stances is automatically recorded. In the table, each row represents an input
instance (e.g., IF20180101194321 = {h“name”,Alicei, . . . , h“primary activity”, Financial Servicei});
the column names correspond to the field names in the data entry form1.
With these historical input instances, we can build a model M to learn the
relationships of values filled in fields f1 to f5 by different customers. Notice
the submission timestamp is not used for model building; it is only used for
distinguishing different input instances.

Continuing the example, let us assume that, at a certain point of the data
entry session, a customer has provided the values Gibson, 20, Private, and
Leasing for fields f1 to f4 respectively, as shown on the left-hand side of Fig-
ure 3.1; the unfilled field f5 (“primary field of activity”) is the next (categori-
cal) field to fill in. Our goal is to use the model M to predict the value of f5
based on the values of the filled fields f1 to f4.

3.2.4 Challenges of Automated Form Filling

Several automated form filling approaches have been proposed [MROE+19,
HS94, TBA17]; the basic idea is to mine dependencies among fields from the
values recorded in previous form filling sessions, to build recommendation
models. These models can then be used to suggest possible values on a target
field based on the filled fields in the current form. Nevertheless, state-of-the-
art approaches exhibit some limitations when dealing with (1) forms filled
following an arbitrary order, and (2) partially filled forms.

First, while filling in a data entry form, it is very frequent to have little or
no restriction on the order of user’ inputs. A user may select any field as the
next target or even go back and modify already filled fields. In other words,
the set of filled fields (F f) and the target field to suggest (fp 2 F u) keep
changing. This scenario is different from the one considered by many recom-
mender systems in the software engineering domain [MK17b, MBM+11], in
which models are trained on predefined features/attributes (e.g., code met-
rics) to predict a specific target (e.g., source code defects). Some automated

1In the case of this illustrative example, we assume that the mapping between field names
and column names can be retrieved in some way, for example by manually analyzing the ex-
isting software design documentation or software implementation. We provide more expla-
nations on identifying such a mapping in section 3.5.2.1.

18

3.3. Approach

Historical in-
put instances

Pre-processing

Model building

Pre-processing

Model selection Endorsing

Current input

Leasing Serv. 0.70
Financial Serv. 0.15
Accommoda- 0.05
tion Serv.
Other values

Model Build-

ing Phase

Form Filling

Sugges-

tion Phase

BNs

Probabilistic

distribution

Suggestions

Figure 3.2: Main Steps of the LAFF Approach

form filling approaches [HS94] require a fixed form filling order before build-
ing the recommendation models. However, this assumption is unrealistic
from a practical standpoint. Although some approaches [MROE+19, TBA17]
are insensitive to the form filling order (e.g., suggesting possible values of a
target field based on the frequency of values in historical inputs), they may
not provide accurate suggestions due to their limitations in accurately min-
ing dependencies among fields (as discussed in section 3.4.2). Hence, one
of the challenges in automated form filling is how to build recommendation
models (e.g., by mining dependencies among fields) without making any as-
sumption on the order in which fields are filled.

Second, at a certain time during the data entry session, a form is usu-
ally partially filled: this means that a recommender system for automated
form filling can only use the knowledge in currently filled fields (F f). How-
ever, when the filled fields do not provide enough knowledge to predict the
target—based on our preliminary experiments—existing approaches [MROE+19,
HS94] yield inaccurate suggestions. The challenge, when dealing with par-
tially filled forms, is how to discard low-confidence suggestions, in order to
make suggestions only when a high degree of confidence is achieved.

3.3 Approach

In this section, we present our machine-learning based approach for form
filling, named LAFF (Learning-based Automated Form Filling).

LAFF includes two phases: model building and form filling suggestion, whose
main steps are shown in Figure 3.2. In the former, LAFF analyzes historical
input instances of a data entry form and uses dependency analysis to build
BNs that represent the fields in the form and their conditional dependencies.

19

3.3. Approach

f1: name f2: income f3: entity f4: company type f5: primary activity

(Textual) (Num.) (Categ.) (Textual) (Categ.)

///////Alice 20![20,22) Public Investment Financial Service

////Bob 21![20,22) Public Investment Leasing Service

//////Carl 39![39,41) Private Investment Leasing Service

////////David 39![39,41) Private Leasing Leasing Service

//////Eliot 40![39,41) Private Leasing Leasing Service

///////Frank 40![39,41) Public Leasing Financial Service

f3

f4

f2 f5

B

Pre-processed histor-
ical input instances

Cluster

A

C cid2: [39,41), Private

cid1: [20,22), Public

....

cidk: [39,41), Public

M1

M2

Mk

M0

Figure 3.3: Example of Model Building on Pre-processed Historical Input
Instances

This phase occurs offline, before deploying LAFF as an assistive technology
for data entry. The form filling suggestion phase occurs during the data en-
try session: given a target field, LAFF selects a BN among those built in the
model building phase and predicts possible values based on the values in the
already-filled fields and their conditional dependencies; the predicted values
and the corresponding predicted probability (endorsed based on field de-
pendencies and prediction confidence) are then provided to the end-user as
suggestions.

3.3.1 Pre-processing

Both phases of LAFF include a pre-processing step to improve the quality of
the form filling data; this step is based on best practices for predictive data
mining [AKV19].

Typically, historical input instances have many missing values due to the
presence of optional fields in input forms. Fields that have a high number of
missing values do not provide representative information for model build-
ing; hence, they can be removed. We remove fields for which T v

p% or more

20

3.3. Approach

of the values are missing, where T v
p is a user-configurable threshold (with

default value equal to 90).
We also remove file and textual fields that have a high number of unique

values, since they typically correspond to form fields for which users fre-
quently provide new string values (e.g., the textual field “name”). To identify
such fields, we compute the ratio of unique values of a field in the historical
input instances; if the ratio is larger than a user-configurable threshold T u

p

(with default value equal to 0.9), the corresponding field is removed.
Furthermore, we delete a historical input instance if more than Tm

p % of its
field values are missing, where Tm

p is a user-configurable threshold (with de-
fault value equal to 50). After deletion, we perform data imputation [JQWX16]
on the remaining data that exhibit missing values. Numerical fields are im-
puted using the mean value of this field; categorical and textual fields are
imputed using a default label “UNKNOWN”.

We also apply data discretization to numerical fields to reduce the num-
ber of unique values. Numerical values are transformed into discrete inter-
vals based on information gain analysis, a widely used discretization method
first proposed in decision trees [BFSO84].

During the data entry session, we ignore values in the fields that were
removed in historical input instances, and map numbers onto intervals.

3.3.1.1 Application to the running example

The table at the top of Figure 3.3 shows an example of historical input in-
stances filled through the data entry form in Figure 3.1. Each row is a histori-
cal input instance filled by a user. During pre-processing, LAFF removes the
field “name” since all its values are unique (we crossed out the text of these
values with a hatch pattern to represent the removal). Also, the values of
field “income” are discretized into intervals. During the data entry session,
as shown in Figure 3.1, a user fills the fields “name” with Gibson, “income”
with 20, “legal entity” with Private, and “company type” with “Leasing”;
“primary activity” is the next field to be filled. Through the application of
the pre-processing steps, LAFF ignores the value for field “name” and maps
the value 20 of field “income” to the interval [20, 22).

3.3.2 Model building

The goal of the model building phase is to mine dependencies from historical
input instances of a data entry form.

21

3.3. Approach

Algorithm 1: Model Building
Input: Pre-processed historical input instances IF (t)0

Output: List of probabilistic graphical models M
Historical input instance clusters C

1 M empty list;
2 M0 trainBayesianNetwork(IF (t)0);
3 M.append(M0);
4 independent field set F I ;;
5 foreach field fi 2M0 do

6 if getParents(M0, fi) = ; then

7 F I {fi} [F I ;
8 end

9 end

10 number of cluster k elbowMethod(IF (t)0, F I);
11 C = {IF (t)01, . . . , IF (t)0k} kModes(IF (t)0, F I , k);
12 for i 1 to k do

13 Mi trainBayesianNetwork(IF (t)0i);
14 M.append(Mi);
15 end

16 return M, C;

Due to the arbitrary order for filling the form, the filled fields and the
target field keep changing. When we take the filled fields as features to pre-
dict the target field, the arbitrary form filling order results into a large set of
feature-target combinations. For example, let us consider a data entry form
with n fields, with t n of them being categorical and thus representing the
possible targets. When we take one of the categorical fields as the target, as-
suming that a random order is used for form filling, in principle users may
fill any subset of the remaining n�1 fields, resulting in a total of 2n�1�1 pos-
sible combinations of filled fields (i.e., features). The total number of feature-
target combinations is equal to t ⇤ (2n�1 � 1). Normally, a model would need
to be trained on each target-features combination to ensure the assumption of
identical features and target [DSX10] in the model building and form filling
suggestion phases. As we will show through our evaluation in section 3.4,
adopting such an approach would require to train more than 220 000 models
on one of our datasets. The total time required to train this large number of
models would be impractical for a production-grade system.

To solve this problem, we capture dependencies with BNs, in which vari-
ables correspond to form fields. By using BNs, we can analyze the depen-
dency between filled fields and target fields without training models on spe-
cific combinations of features (i.e., filled fields) and target field. In addition,

22

3.3. Approach

as mentioned in section 2.1, BNs are robust when dealing with missing val-
ues. This means that even when a data entry form is partially filled, BNs can
still infer the probability distribution of target fields using only the informa-
tion in the filled fields and the underlying PGM.

In this work, we learn the structure of BN from the pre-processed histor-
ical input instances. Following the workflow of BN presented in section 2.1,
we represent each field in the historical input instances as a random vari-
able. BN computes the conditional probability between any two fields and
uses a search-based optimizer to automatically optimize the structure of BN
based on the conditional probability of fields and the fitness function. In
this study, we use hill climbing as the optimizer, because it shows a good
trade-off between computational demands and the quality of the models
learned [GMP11]. We define the fitness function in terms of BIC [Raf95],
which aims at best fitting the data, while avoiding over-fitting by complex
structures. The element denoted with B in Figure 3.3 shows an example of
the BN structure learned from the data in block A (where the different black
shapes correspond to the various rows in the table at the top of Figure 3.3).

Algorithm 1 illustrates the main steps of this phase. LAFF takes as in-
put the pre-processed historical input instances IF (t)0 as the training data to
mine field dependencies. Initially, we learn the BN over the entire training
data (line 2). This global model, denoted as M0, represents the general depen-
dencies among fields. However, historical input instances may form different
groups that share similar characteristics. For example, in the historical input
instances of Figure 3.3, users having the same value for fields “income” and
“legal entity” may share specific values for fields “company type” and “pri-
mary activity”. The global model M0 may not learn the fine-grained field
dependencies for specific values of “income” and “legal entity” due to the
influence of input instances with other values for those fields. For example,
using the entire dataset in Figure 3.3, one could determine that the condi-
tional probability of having “primary activity” equal to Leasing Service when
“Company type” is Leasing is 66.7%. However, this conditional probability
increases to 100%, if we only consider the input instances where “income” is
in the range [39, 41) and “legal entity” is equal to Private. Hence, LAFF trains
local models on subsets of IF (t)0 to learn fine-grained dependencies.

More specifically, LAFF first selects a set of fields F I that are independent
from other fields in the probabilistic graph of M0 (lines 4–8). For example, in
block B of Figure 3.3, fields f2 and f3 are selected as they do not depend on
other parent nodes (fields). We use the fields in F I as the main fields to form
partitions of IF (t)0 having similar characteristics for two reasons. First, these

23

3.3. Approach

fields are not intercorrelated since they do not directly and strongly depend
on each other. Second, these fields are root nodes and influence the values
of other fields in the BN; when the values on these fields are similar, we are
likely to obtain a similar probability distribution for the other fields.

LAFF produces (lines 10–11) a set C of clusters of IF (t)0 based on the
fields in F I . We assume that the clustering process reduces the data variation
of IF (t)0: models trained on these data, which show less statistical variation,
may provide more accurate suggestions even when the size of each cluster is
smaller than that of IF (t)0. This process is called local modeling; it has been
already applied in software engineering, e.g., to cluster software projects and
mine project-specific relationships of software metrics [MBM+11].

To extract clusters from IF (t)0, LAFF represents each historical input in-
stance as a tuple of the form hvalues in F I , input instancei. It clusters these
tuples based on the values in F I using the k-modes algorithm. The optimal
number of clusters k is automatically determined with the elbow method.
LAFF runs k-modes within a range of k values (e.g., from 1 to 100) and deter-
mines the value of k that minimizes the average within-cluster distance with
the cluster centroids (denoted with “cid” in block C of Figure 3.3). After
clustering, LAFF trains a local BN model Mi (lines 12–15) based on the input
instances in each cluster. These local models, denoted M1, . . . ,Mk, capture
specialized field dependencies on partitions of IF (t)0.

The algorithm ends by producing a list M of BNs, where M = [M0,M1, . . .Mk],
and the set C of clusters of the historical input instances.

3.3.2.1 Application to the running example

Initially, LAFF trains a global model M0 with the historical input instances
in block A in Figure 3.3. Block B of Figure 3.3 shows an example of the
learned field dependencies. Based on M0, LAFF selects fields f2:“income”
and f3:“legal entity” as the main fields for local modeling since they do not
depend on other parent nodes (fields). LAFF clusters the historical input
instances according to fields “income” and “legal entity” (block C of Fig-
ure 3.3). Three clusters are automatically identified with centroids “[20, 22),
Public’’, “[39, 41), Private”, and “[39, 41), Public” (k=3). We use circular, rect-
angular, and triangular icons to represent the historical input instances be-
longing to different clusters. LAFF trains three local models M1, M2, and M3,
based on these clusters; these three models are three distinct BNs capturing
specialized field dependencies (as shown on the right of Figure 3.3). After
the model building phase, LAFF outputs four models: a global BN model

24

3.3. Approach

Algorithm 2: Form Filling Suggestion
Input: Models M = [M0,M1, . . . ,Mk]

Clusters C = {IF (t)01, IF (t)02, . . . , IF (t)0k}
Filled fields F f = {hff

1 , v
f

1 i, . . . , hff

m, vfmi}
Target field fp
Number of suggested values nr

Threshold ✓
Output: List of predicted values Vp for fp

1 F f
0
 getPreprocessedData(F f) ;

2 D = {d1, . . . , dk} calcClusterDistance(C,F f
0
);

3 Model Mcur M.get(M0);
4 if getNumOfMinDistance(D) = 1 then

5 i getMinDistanceID(D);
6 Mcur M.get(Mi);
7 end

8 List of Pairs hvp, pri of candidate values and probability distribution
Candidates = predictCandidates(Mcur , F

f
0
, fp);

9 Candidates
R getTopRanked(Candidates, nr);

10 Bool checkDep isMember(getParents(Mcur, fp), F
f);

11 Bool checkProb (getSumProb(CandidatesR) > ✓);
12 if checkProb _ checkDep then

13 foreach vpi s. t. hvpi , pr ii 2 Candidates
R

do

14 Vp.append(vpi);
15 end

16 end

17 return Vp;

M0 and the three local BN models M1, M2, and M3.

3.3.3 Form Filling Suggestion

The form filling suggestion phase occurs during the data entry session and as-
sumes that the models in M, built in the model building phase, are available.
Given a target field fp, LAFF selects a BN model M 2 M and predicts pos-
sible values of fp based on the already-filled fields F f and their conditional
dependencies captured in M . The main steps of the form filling suggestion
phase are shown in Algorithm 2.

The algorithm takes as input a list of models M, a set of clusters C, a
set F f of already-filled fields with their values, a target field fp, and some
auxiliary parameters representing the number of expected suggestions for
fp and an endorsing threshold. After pre-processing the filled fields in F f

using the techniques discussed in § 3.3.1 and obtaining the new set F f
0 , LAFF

25

3.3. Approach

computes the distance between the filled fields F f
0 and each cluster in C

(line 2). The distance is defined as the dissimilarity measure adopted in the
k-modes clustering algorithm used in the model building phase; it is the total
number of mismatches between F f

0 and the centroid of each cluster on the
corresponding fields.

LAFF attempts to select a local model from M1, . . .Mk, corresponding
to the cluster with minimal distance, to predict the target field, since this
model may capture the fine-grained characteristics of F f

0 . In our example,
this could be a model trained on the instances that have the same values for
the fields “legal entity” and “income” in F f

0 . However, a unique and opti-
mal local model cannot always be found: given a partially filled data entry
form, there could be cases for which the distance of the filled fields to differ-
ent centroids is equal. For example, in Figure 3.3, local models M2 and Mk

are specialized for different values of the field “legal entity” (i.e., “Private”
and “Public”) but assume the same value for the field “income” ([39, 41)).
Let us consider the case in which the set F f contains only the field “income”
(with a value equal to “40”) and the target field is “primary activity”. In
this case, we cannot reliably select between the two models M2 and Mk for
prediction, since we have insufficient information to decide which model
is “more local” (i.e., specialized) for this input (i.e., the distance to the two
centroids is the same). One possible solution for this problem is ensemble
learning, which considers the predictions of both models jointly (e.g., bag-
ging) [Zho21]. However, this solution could significantly increase prediction
time. Specifically, depending on the deployment configuration, in the worst
case, the ensemble prediction time would be the sum of the prediction time of
all k local models (i.e., all the local models are not specialized for the current
input), which may exceed the acceptable response time for a practical appli-
cation, as presented in section 3.4.3 and further discussed in section 3.5.2.1.
Given the interactive nature of data-entry applications, having a short pre-
diction time is important. Hence, when LAFF finds more than one minimal
distance and no single cluster is particularly suited for the current input, it
selects M0 for prediction, since it is trained with the entire set of historical
input instances (lines 3–7).

After selecting the most appropriate model for prediction, LAFF predicts
the candidate values for the target field (line 8) and ranks the topmost nr

values, according to their probability distribution (line 9).

26

3.3. Approach

3.3.3.1 Endorsing

During the data entry session, the filled fields in the current input instance
do not always provide enough information to predict values for the target
field, leading to inaccurate suggestions. Such a situation can occur because
of two reasons. One reason is that the filled fields may not have explicit de-
pendencies with the target field, according to the probabilistic graph. For
example, in Figure 3.3, f2 is independent from f3; LAFF will not accurately
infer f3 merely with the knowledge of f2. Another reason is that there may
not be enough historical input instances to learn the conditional probability
between two fields for specific values. For example, in the example in Fig-
ure 3.3, we have no historical input instance with values of field “income”
greater than 41; such value provides limited information to infer other fields.

In the context of automated form filling, users might be reluctant to use
an automated form filling tool, if the tool provides many inaccurate sugges-
tions which users can hardly find the correct value they intend to fill in. To
avoid such a situation, LAFF includes a heuristic-based endorser, which de-
cides whether the suggestions determined in the previous step are accurate
enough to be returned to the user.

To deal with the first cause of inaccurate suggestions, LAFF analyzes the
dependency between the filled fields and the target field (line 10), to check
whether the target field directly depends on one of the filled fields in the BN.
More precisely, function getParent computes a list of parent fields the target
field directly depends on; function isMember checks whether any of the filled
fields is in the parent field list. The result of this check is saved in the Boolean
flag checkDep, which is true when the target field directly depends on one
of the filled fields. A direct dependency indicates that the filled fields can
reliably determine the value of the target field.

To deal with the second cause of inaccurate suggestions, LAFF analyzes
the predicted probability distribution of the values for the target field. For
a probability model like BN, the probability of each value is inferred based
on the information from the filled fields. LAFF computes the sum of the
top-nr probability values in the distribution through function getSumProb. If
this value is larger than a user-defined threshold ✓, it means LAFF may have
enough information for variable inference; the result of this check is saved in
the Boolean flag checkProb (line 11). From a practical standpoint, threshold
✓ reflects how much uncertainty users are willing to accept regarding the
suggestions provided by LAFF.

If one of the flags checkProb and checkDep evaluates to true, LAFF popu-
lates the list of suggested values to be returned to the user based on the top-

27

3.3. Approach

Filled fields

f2:income
=[20, 22]

f3:legal entity
=Private

f4:company
type =Leasing

Target

f5:primary
activity = ?

Pre-processed
current input

cid1: [20,22),
Public

Cluster1: DIS=1

cid2: [39,41),
Private

Cluster2: DIS=1
....

cidk: [39,41),
Public

Clusterk: DIS=2

f4

f3

f2 f5=?

No unique
local model;

M0 is
selected

A Model selection

Value Prob.

Leasing
Serv.

0.70

Financial
Serv.

0.15

Accommon-
dation Serv.

0.05

... ...

Probability
distribution

Air transport
Catering
...

Leasing Serv. 0.70
Financial Serv. 0.15
Accommo- 0.05
dation Serv.

Suggestion

f4:company type
is filled

checkDep=true
or

0.70+0.15+0.05
>✓=0.70

checkProb=true

B Endorsing

Figure 3.4: Workflow for Form Filling Suggestion

ranked candidate values; otherwise, LAFF returns an empty list (lines 12–15).
For example, assuming ✓ = 0.70, nr = 3, and the probability for the top-3 can-
didate values as shown in the top right corner of Figure 3.2, the sum of the
top-3 probability values (returned by getSumProb) is 0.70+0.15+0.05 = 0.90;
checkProb corresponds to the evaluation of 0.90 > 0.70, which is true; hence,
LAFF decides to yield the list of suggestions to the user.

3.3.3.2 Application to the running example

Given the new input instance shown on the left side of Figure 3.4 (i.e., the in-
stance “income”=[20, 22), “legal entity”=Private, and “company type”=Leasing,
as obtained after pre-processing), LAFF suggests the possible values of “pri-
mary activity”. As shown in block A of Figure 3.4, LAFF first attempts
to select a unique local model by calculating the distance between the cur-
rent input instance and the centroids of the three clusters generated in block
C of Figure 3.3; however, such a local model cannot be found because the

distances with “cid1” and “cid2” are both 1. Hence, LAFF uses M0 for pre-
diction. According to the variable inference method in BN (explained in sec-
tion 2.1), LAFF outputs the probability distribution of the candidate values
for the field “primary activity”. Let us assume, as an example, that the prob-
ability distribution is “Leasing Service=0.70, Financial Service=0.15, Accommo-
dation Service=0.05, . . . ”. By means of the endorser module (block B of Fig-
ure 3.4), LAFF uses this probability distribution to decide whether to present
the suggestions to the user. For example, let us further assume the data qual-

28

3.4. Evaluation

ity engineers in the bank set ✓ to 0.70 and configures LAFF to suggest three
values. On the one hand, LAFF finds that the target field f5:“primary activ-
ity” directly depends on f4:“company type”, which was already filled by the
user; the checkDep flag is true. On the other hand, the sum of the top-3 proba-
bility values is 0.90, which is higher than ✓; the checkProb flag is true. Since the
endorser module endorses a suggestion when one of these two flags evalu-
ates to true, LAFF provides a suggestion to the user: the three values above
are put to the top of the list while the other candidate values are presented in
their original order (e.g., alphabetically).

3.4 Evaluation

In this section, we report on the evaluation of our approach (LAFF) for auto-
mated form filling. First, we assess the overall accuracy of LAFF in suggest-
ing appropriate values to automatically fill in the fields of data entry forms,
and compare it with state-of-the-art form filling algorithms. We also assess
the performance of LAFF, in terms of training time and prediction time, for
practical applications. Then, we evaluate how the use of local modeling (in
the model building phase) and heuristic-based endorser (in the form filling sug-
gestion phase) affect the accuracy of LAFF. Last, we assess the impact of the
number of filled fields and the size of the training set on the effectiveness of
LAFF.

More specifically, we evaluated LAFF by answering the following re-
search questions:
RQ1 Can LAFF provide accurate suggestions for automated form filling, and how

does it compare with state-of-the-art algorithms?
RQ2 Is the performance of LAFF (in terms of training time and prediction time)

suitable for practical application in data-entry scenarios?
RQ3 What is the impact of using local modeling and heuristic-based endorser on the

effectiveness of LAFF?
RQ4 What is the impact of the number of filled fields on the effectiveness of LAFF?
RQ5 What is the impact of the size of the training set on the effectiveness of LAFF?

3.4.1 Dataset and Settings

3.4.1.1 Datasets

We evaluated LAFF using a public dataset in the biomedical domain (dubbed
NCBI) and a proprietary dataset, extracted from a production-grade enter-
prise information system, provided by our industrial partner (dubbed PROP).

29

3.4. Evaluation

Table 3.1: Information about the Fields in the Datasets

Dataset # of # of Name of categorical fields Value frequency
fields instances (# of candidate values) top-1 top-5%

NCBI 26 74105 sex(3), tissue(68), cell-line(50), cell-type(63), 40.8% 59.4%disease(84), ethnicity(40)

PROP 33 174446

title(18), sex(3), legal capacity(7), country(208),

48.4% 65.6%
first nationality(206), civil status(8),

matrimonial regime(6), activity(13), status(15),
function(41), contract(8), field of activity(75),
primary activity(3), country of activity(198)

The NCBI dataset contains the metadata for diverse types of biological
samples from multiple species [BCG+12]. We selected this dataset because
it has been used in a previous study on metadata suggestion for biomedi-
cal datasets [MROE+19], which provided also the design of the correspond-
ing data entry form in the CEDAR workbench [GOMR+17]. More specif-
ically, following the evaluation methodology described in [MROE+19], we
considered the subset of the NCBI dataset related to the species “Homo sapi-
ens” and the corresponding data entry form based on the specification of the
BioSample Human package v1.02. We downloaded the dataset from the of-
ficial NCBI website3. In the dataset, the data is organized as a table. Each
row is an input instance filled by a user. Retrieving the mapping between
column names and field names was trivial since the column names in the
dataset are the same as the field names. As shown in Table 3.1, the NCBI
dataset has 26 fields, six of which are categorical. These categorical fields
have between 3 and 84 candidate values to be selected by users. We calcu-
lated the frequency by which users select different values during form fill-
ing: the most frequent (i.e., top-1) and the top-5% most frequent values are
selected, on average, respectively in 40.8% and 59.4% of the instances for dif-
ferent categorical fields. Given the sparseness of the dataset (caused by the
optional fields), as suggested in [MROE+19], we identified the empty val-
ues (e.g., “n/a”, “null”), and only retained records with at least three fields
(out of six) with non-empty values; in total, the NCBI dataset contains 74 105
input instances.

The PROP dataset contains customer data that are provided through a
web-based data entry form, which is filled out upon creation of a new cus-
tomer account. We extracted the dataset from the distributed database of

2 https://submit.ncbi.nlm.nih.gov/biosample/template/?package=Hu
man.1.0&action=definition

3 https://ftp.ncbi.nlm.nih.gov/biosample/

30

https://submit.ncbi.nlm.nih.gov/biosample/template/?package=Human.1.0&action=definition
https://submit.ncbi.nlm.nih.gov/biosample/template/?package=Human.1.0&action=definition
https://ftp.ncbi.nlm.nih.gov/biosample/

3.4. Evaluation

our industrial partner, where all the input instances of a certain form are or-
ganized as a database table. Each row in the table is an input instance and
each column represent a form field. We identified the mapping between the
column names in the table and the field names in the data entry form by
consulting the available software documentation. As shown in Table 3.1, the
PROP dataset has 33 fields, 14 of which are categorical (with the number of
candidates values ranging from 3 to 206). In terms of frequency according to
which users select different candidate values, the top-1 and the top-5% most
frequent values are selected, on average, respectively in 48.4% and 65.6% of
the instances. According to the form design, eight of the categorical fields are
mandatory to be filled; hence, we do not remove spare records as done for
the other dataset; in total, the PROP dataset contains 174 446 input instances.

We remark that both datasets represent the input instances from real-
world data entry forms (i.e., the NCBI platform and a production-grade en-
terprise information system). The number of fields in these systems is com-
parable with or larger than the data entry forms used in the related work.
For example, we calculated the average number of fields of data entry forms
in the TEL-8 dataset, a manually collected dataset with 447 web forms (with
no input instances), which is used in the literature on form filling [AGLH10,
Jou19]. In this dataset, each form has 6.39 fields on average. The data entry
forms in our study are more complex, ranging from 26 to 33 fields of different
types.

3.4.1.2 Dataset Preparation

For the two datasets, as discussed in section 3.2.3, all the categorical fields are
the targets for automated form filling. However, we excluded the fields with
less than 10 candidate values (e.g., “sex”, which has only three values in both
datasets) as users may easily browse all the values in these fields, without
the need for form-filling automation. The threshold for excluding fields was
determined together with the data quality engineers and some data entry
operators of our partner. We find the majority of categorical fields we evalu-
ated are related to certain domains or business processes; they include fields
“tissue”, “cell-line”, “cell-type”, “disease” and “ethnicity” for the biological
domain, and fields “activity”, “status”, “function”, “field of activity”, and
“country of activity” for the financial domain. These fields are more difficult
to fill than basic user information (e.g., name, sex, and age), since users need
to understand the meaning of candidate values.

Since both datasets automatically recorded the submission time of each
input instance. we split the dataset into two subsets containing 80% and

31

3.4. Evaluation

f1: name
f2: in- ... f5: primary submission

come activity time

1 Alice 20 ... Financial Serv. 20180101194321

2 Bob 21 ... Leasing Serv. 20180101194723

3 Carl 39 ... Leasing Serv. 20180101204720

4 David 39 ... Leasing Serv. 20180102072318

5 Eliot 40 ... Leasing Serv. 20180102082418

6 Frank 40 ... Financial Serv. 20180102132016

7 Gibson 20 ... Leasing Serv. 20180102132533

Dataset
Training

input
instances

#1-#6

Testing input
instance #7

LAFF

Sequential: f1 ! f2 ! f3 ! f4 ! f5
>>ST1: f1=Gibson, f2=20, f3=?
>>ST2: f1=Gibson, f2=20, f3=Private, f4=Leasing, f5=?

Random: f1 ! f2 ! f4 ! f5 ! f3
>>RT1: f1=Gibson, f2=20, f4=Leasing, f5=?
>>RT2: f1=Gibson, f2=20, f4=Leasing, f5=Leasing Serv.,
f3=?

Leasing Serv. 0.70
Financial Serv. 0.15
Accommo- 0.05
dation Serv.

Suggestion for ST2

Figure 3.5: Example of Dataset Preparation (Training and Testing Sets)

20% of input instances based on their submission time, used respectively for
training and testing. The input instances (excluding the information of the
submission time) in the training set are used to train LAFF. As for the test-
ing input instances, since there is no information on the actual filling order
used to input the data, we considered two form filling orders to simulate the
data entry session. More specifically, we simulated two types of filling sce-
narios: “sequential filling” and “random filling”. The former corresponds
to filling data entry forms in the default order, as determined by the form
tab sequence, e.g., the navigation order determined by the HTML attribute
tabindex in web UI designs [FS04]. It simulates the logical order many
users follow to fill out forms, especially when they use a keyboard to navi-
gate form fields [Mic13]. The latter represents the scenario when users may
select any field as the next target, and even go back to modify already filled
fields. These two form filling orders represent two opposite extremes4 of
user behavior during a real data-entry session. We simulated random fill-
ing by randomly generating an order for each testing input instance. In both
form filling scenarios, the filled fields considered by LAFF are the fields that
precede each target. For each target field, we consider the actual value filled
by the user as the ground truth.

4For some large data entry forms, UI designers can semantically partition related fields
into sections. Users can then move between sections in sequential order, while using the
random order to fill fields within a section. This is a “middle-ground filling” order, which sits
between “sequential filling” and “random filling”. We have not evaluated this scenario since
it requires additional knowledge about the partitioned sections, which was not available for
the two datasets we have considered.

32

3.4. Evaluation

3.4.1.3 Dataset Preparation - Example of Application

Figure 3.5 shows an example of application of our dataset preparation method
for the training and testing sets. Let us consider a dataset containing seven
input instances submitted through a data entry form, shown on the left-hand
side of Figure 3.5. Following the running example introduced in section 3.2.3,
the form has five fields, two of which are categorical (e.g., f3: “legal entity”
and f5:“primary activity”). We split the dataset into the training and testing
sets according to the submission time: we take 80% of input instances (i.e., #1-
#6) to train LAFF; the testing set contains the remaining 20% of the instances,
in this case input instance #7. The testing set is further processed to simulate
the two types of filling scenarios. When using the sequential filling order,
users fill the data entry form following the tabindex of fields in the form
(e.g., from f1 to f5 sequentially): starting from the input instance #7, we gen-
erate test instances ST1 and ST2 for categorical fields f3 and f5, respectively.
For each categorical field (i.e., the target), the actual value filled by the user
is the ground truth (e.g., the ground truth for the field f5 is ‘Leasing Serv.’).
When using the random filling order, we randomly generate a field order for
each input instance (e.g., f1 ! f2 ! f4 ! f5 ! f3 for the input instance #7);
based on this order, we then generate test instances RT1 and RT2.

3.4.1.4 Implementation and Settings

We implemented LAFF as a Python program; we used the open-source li-
brary pgmpy [AP15] for working with Bayesian networks.

We configured LAFF (through parameter nr in Algorithm 2) to suggest
the top 5%, most likely values for each target field. Based on the num-
ber of candidate values for each field in the datasets (indicated in paren-
theses in the rightmost column of Table 3.1), suggesting the top 5% val-
ues means showing between one (for field “activity” in the PROP dataset)
and ten (for field “country” in the PROP dataset) suggested values to users.
This is in accordance with other recommender systems in software engi-
neering, in which only a list of few candidates is suggested for considera-
tion [YLX+16, PCJ+17]. We set the threshold ✓ to 0.7 based on the feedback
received by data entry operators and data quality engineers of our partner.

We performed the experiments on the NCBI dataset with a computer run-
ning macOS 10.15.5 with a 2.30GHz Intel Core i9 processor with 32GB mem-
ory. As for the experiments on the PROP dataset5, we performed them on a

5Due to the data protection policy of our partner, we were obliged to run the experiments
on the PROP dataset using an on-premise, dedicated server that, however, could not be used

33

3.4. Evaluation

server running CentOS 7.8 on a 2.60GHz Intel Xeon E5-2690 processor with
125GB memory.

3.4.2 Effectiveness (RQ1)

To answer RQ1, we assessed the effectiveness of LAFF to suggest appropriate
values for each of the target fields in the dataset. We compared LAFF with
MFM (most frequent model), ARM (association rule mining) [MROE+19],
Naı̈veDT (naı̈ve application of decision trees), and FLS (first letter search),
which are able to provide suggestions under different form filling orders:

1. MFM is a widely-used form filling algorithm, which suggests possible
values of a target field based on their frequency in historical input in-
stances.

2. ARM is a state-of-the-art algorithm for form filling. ARM uses histor-
ical input instances to mine association rules with a minimal level of
support and confidence; it matches the filled fields with mined associa-
tion rules, and suggests the consequents of the matched rules to users.

3. Naı̈veDT is a naı̈ve application of decision trees for form filling. We use
decision trees because this type of model has been already used in the
form filling literature [HS94]. Given a target field, this approach takes
a subset of the remaining fields as filled fields (i.e., features); it then
trains a decision tree for each feature-target combination. During form
filling, based on the filled fields and the target field, Naı̈veDT selects the
decision tree trained on the same feature-target combination in order to
predict the target field. We considered this naı̈ve application of decision
trees because previous work [HS94] has shown that the effectiveness
of a single decision tree trained for each target field is poor (see also
section 3.6); our preliminary evaluation has also confirmed this.

4. FLS simulates form filling in categorical fields through a “typing” func-
tion. This function allows users to type the first letter of the candidate
value they intend to fill (i.e., the first letter of the ground truth in this
study). FLS filters the list of candidate values based on this letter and
presents the refined candidate values as suggestions.

We did not consider other approaches for automated form filling, since
they rely on additional information beyond the input values provided in the

to store external data (like the NCBI dataset).

34

3.4. Evaluation

past for the same form. For example, they reuse the values filled in other
software systems [AGLH10], extract information from text files (e.g., a CV
file to fill job search sites) [TCdSdM10], or refactor forms for effective form
filling [CCC+11]. An empirical comparison with these techniques is not fea-
sible, since such additional knowledge is not always available during form
filling; moreover, LAFF does not assume the existence of such knowledge.
We discuss the differences between LAFF and these related approaches in
section 3.6.

3.4.2.1 Choosing effectiveness metrics

We reviewed the main metrics used for evaluating the effectiveness of build-
ing a suggestion list. More specifically, we investigated the metrics used
in the recommender systems area because, similar to automated form fill-
ing, many software applications use recommender systems to support soft-
ware stakeholders in their decision-making while interacting with large in-
formation spaces [RWZ09] (e.g., locating faulty code snippets in software
projects [YBL14]). Table 3.2 shows, for each metric we reviewed, its dimen-
sion, description, and rationale.

Metrics for evaluating recommender systems span over four dimensions,
including diversity [KP17], novelty [CVW11, KB16], accuracy [HKTR04], and
coverage [GDBJ10, HKTR04]. As shown in Table 3.2, diversity and novelty
focus on the dissimilarity among the suggested items: the former by look-
ing at pairwise dissimilarity, and the latter by determining the difference be-
tween the currently and previously suggested items. Both metrics can be
applied in contexts where more than one relevant item can be suggested.
As for assessing accuracy, precision and recall are the most common met-
rics [HKTR04]; they measure the ratio of correctly suggested items. However,
precision and recall ignore the exact ranking of items as only the correct or
incorrect classification is measured [STL11]. Other common accuracy metrics
include MRR and MAP [STL11, KJJ18, HKTR04], which are designed to eval-
uate a list of suggested items. MRR calculates the rank of the first relevant
item, and MAP measures the average precision of relevant items at different
positions. Regarding coverage, two definitions have been proposed in the
literature [GDBJ10]: catalog coverage and prediction coverage. Catalog cov-
erage measures the length of a list of suggested items relative to its maximum
length; prediction coverage calculates the ratio of targets for which an algo-
rithm provides suggestions over the total number of targets requiring sug-
gestions. Finally, in the literature, some metrics are also proposed to combine
different metrics from the same dimension to evaluate the trade-off between

35

3.4. Evaluation

Table 3.2: Main metrics used in the recommender system area for evaluating
the effectiveness of building a list of suggestions

Dimension Description Intuition

Diversity Diversity metrics generally measure the aver-
age dissimilarity between all pairs of items in
the suggestion list [KP17].

The suggested items can cover a broad area of
the information space to increase the chance
of satisfying the user’s information need. For
example, with a movie recommender system,
users may hope to get relevant items from dif-
ferent genres (e.g., “comedy”, “romance”)

Novelty The novelty of an item is typically estimated by
the inverse of its popularity (e.g., measured by
the number of ratings it has received); novelty
metrics measure the ratio of the suggested rel-
evant items that have low popularity [KB16].

A tool has the ability to suggest relevant items
that are unknown to users. For example, a
movie recommender system should have the
ability to recommend “new” movies that users
did not watch or know before.

Accuracy

Precision measures the fraction of suggested
relevant items among all the suggested
items [HKTR04].

The suggestion list only contains relevant
items.

Recall measures the fraction of suggested
relevant items among all the relevant
items [HKTR04].

The suggestion list contains all the relevant
items regarding a target.

MAP (Mean Average Precision) measures the
mean of the average precision at the rank of
each relevant item [HKTR04].

All the relevant items can be ranked at the top
of a suggestion list.

MRR (Mean Reciprocal Rank) measures the
mean of the reciprocal rank at which
the first relevant item was suggested in a
list [MROE+19].

The relevant item can be ranked at the top of a
suggestion list.

Coverage Catalog coverage measures the ratio of the items
suggested to users over the total number of
candidate items of a given target [GDBJ10].

A tool can avoid suggesting a long list of items
to users (e.g., only the top 5% suggested items
are presented to the users)

Prediction coverage measures the ratio of sug-
gestions provided by a tool over the total num-
ber of targets requiring suggestions [GDBJ10].

A tool can avoid making “useless” sugges-
tions to users. Low-confidence suggestions
with many unrelated items should be filtered
out to fit the user’s interests.

Combined F1-score is the harmonic mean of the precision
and recall [APGG14].

A tool can suggest (recall) and only suggest
(precision) all the relevant items to users.

Quality of suggested items is the product be-
tween their similarity to the user’s query and
the diversity of the items [APGG14].

The items suggested in the suggestion list are
relevant to the user’s query (similarity) and at
the same time different from each other (diver-
sity).

them. For example, metrics like F1-score and the quality metric [APGG14]
have been proposed to balance the weight of precision and recall (accuracy
dimension) or similarity and diversity (diversity dimension), respectively.

According to a previous study [RWZ09], an effective recommender sys-

36

3.4. Evaluation

tem in software engineering (e.g., a form filling system) is expected to avoid
“helpless” suggestions that may be ignored by users, but provide users a
large number of “helpful” suggestions. Considering the dimensions in Ta-
ble 3.2, metrics for diversity and novelty are not applicable for form filling, as
most categorical fields only contain a single correct value for a user to select.
The accuracy metrics can be used to assess the “helpfulness” of suggestions.
Since LAFF suggests a list of values for users to select the correct one, MRR
is the most appropriate metric in our context, since it evaluates if the correct
value is ranked at the top of a suggestion list. Regarding coverage, we select
the prediction coverage to evaluate the extent to which the endorser mod-
ule of LAFF can avoid “helpless” suggestions; it calculates the frequency of
suggestions made by LAFF when required to make one. Since MRR and pre-
diction coverage belong to different dimensions, we separately evaluate the
two metrics instead of combining their results with a single score.

In the following, we provide the definition of MRR and prediction cover-
age.

MRR (Mean Reciprocal Rank) is defined as:

MRR =
1

|S|

SX

i=1

1

ki
, (3.1)

where |S| is the number of target fields that the algorithm provides sugges-
tions, and ki is the position of the first correct value in the i-th suggestion.

Prediction coverage rate is defined as:

PCR =
|S|
|Sall |

, (3.2)

where |S| is again the number of target fields that the algorithm provides
suggestions, and |Sall | is the total number of target fields in all the testing
input instances [HKTR04, GDBJ10].

3.4.2.2 Methodology

To assess the effectiveness of the various form filling algorithms, we com-
puted MRR and the prediction coverage rate PCR.

We remind the reader that LAFF uses the filled fields (i.e., features) of
each test instance to predict the value of a target field. In our datasets, all the
target categorical fields only have a single correct value (e.g., in Figure 3.5,
Leasing Serv. is the ground truth for the field f5 of the input instance #7).

37

3.4. Evaluation

For each test instance, we checked the position of the correctly suggested
value (i.e., the value that corresponds to the ground truth) in each suggestion
list and computed the reciprocal rank of the correct value. If no correct value
was found, we set the reciprocal rank to zero. For example, in Figure 3.5,
LAFF suggested three values; the reciprocal rank of the suggestion for ST2 is
1 since the user can find the correct value to fill in first position (i.e., ki = 1).
The MRR value was computed as the mean of the reciprocal ranks for all the
suggestion lists. Given a test set, we calculated the average MRR value for
different targets. Concerning PCR, we counted the number of target fields
for which an algorithm provided suggestions (i.e., a list of suggested values)
and the number of target fields for which no suggestion was provided. PCR
was computed as the percentage of target fields receiving suggestions over
the total number of target fields.

As there is no publicly available implementation of the baselines (ARM,
MFM, Naı̈veDT, and FLS) for form filling, we implemented them from scratch.

In the case of ARM, we set the minimum acceptable support and confi-
dence to 5 and 0.3, respectively, consistent with previous work [MROE+19].

We implemented Naı̈veDT using the open-source library scikit-learn [PVG+11a].
For the NCBI dataset, after the preprocessing step (see section 3.3.1) we ob-
tained six fields; all of them are categorical. According to the discussion in
section 3.3.2, we have n = 6 and t = 6, resulting in 6⇤(26�1�1) = 186 feature-
target combinations (i.e., decision trees to train). For the PROP dataset, after
the preprocessing step, we obtained 15 fields, among which 14 are categori-
cal (i.e., n = 15 and t = 14). This leads to 14 ⇤ (215�1 � 1) = 229 362 decision
trees to train.

Regarding FLS, we ranked the candidate values for a given target field
alphabetically and refined these values by the first letter the user intends to
fill. We assume that the first letter of the value of the ground truth is what
the user intends to fill. Based on this assumption, FLS suggests the candidate
values that start with the same letter as the ground truth.

We set a timeout of 24 hours to train each algorithm. This timeout value
reflects the realistic situation in which the algorithm gets daily updates of its
models, empowered with the information derived from new input instances
collected throughout the day.

3.4.2.3 Results

Table 3.3 shows the effectiveness of the various algorithms for the two form
filling scenarios. We remark that Naı̈veDT timed out during the training

38

3.4. Evaluation

Table 3.3: MRR and PCR of Form Filling Algorithms (t/o: timeout; N/A: not
applicable) .

Alg.
Sequential Random Train Predict (ms)

MRR PCR MRR PCR (s) avg min–max

MFM 0.42 1.00 0.42 1.00 0.03 0 0
ARM 0.47 1.00 0.53 0.99 1.26 120 8–409

NCBI Naı̈veDT 0.52 1.00 0.53 1.00 23 1 1–1
FLS 0.55 1.00 0.54 1.00 N/A 0 0

LAFF 0.74 0.70 0.73 0.70 546 15 5–44

MFM 0.64 1.00 0.64 1.00 0.15 0 0
ARM 0.67 0.95 0.65 0.96 15 878 6–3074

PROP Naı̈veDT t/o t/o t/o t/o t/o t/o t/o
FLS 0.53 1.00 0.58 1.00 N/A 0 0

LAFF 0.78 0.86 0.81 0.87 3652 138 9–317

phase on the PROP dataset6

In terms of coverage rate (columns PCR), MFM, ARM, Naı̈veDT, and FLS
provide suggestions on almost all the target fields (PCR ⇡ 1), while LAFF
achieves a PCR value ranging from 0.70 to 0.87 on the two datasets. The
lower PCR value of LAFF is ascribable to its endorsing module, which dis-
cards low-confidence suggestions.

As to the accuracy of these suggestions, MFM, ARM, and Naı̈veDT achieve
MRR values ranging from 0.42 to 0.53 on the NCBI dataset; MFM and ARM
achieve MRR values ranging from 0.64 to 0.67 on the PROP dataset. LAFF
substantially outperforms MFM, ARM, and Naı̈veDT, achieving a MRR value
above 0.73 in both datasets. The improvement in MRR value obtained by
LAFF over Naı̈veDT is +22pp on the NCBI dataset; the one over ARM is
+11pp on the PROP dataset for the sequential filling scenario. For the ran-
dom filling scenario, the improvement over Naı̈veDT and ARM is +20pp
on the NCBI dataset; the improvement over ARM is +16pp on the PROP
dataset. According to Table 3.3, LAFF also outperforms the interaction-based
approach FLS by +19pp to +25pp on the two datasets for different filling
scenarios. The reason is that, after refining the candidate values by typing
letters, users could still have dozens of candidate values with the same ini-
tial letter to check. For example, when users type “L” to find the country
“Luxembourg”, the form returns 9 results (e.g., “Laos”, “Latvia”, “Lebanon”)

6For completeness, based on our preliminary evaluation, we note that using a single deci-
sion tree trained for each target field (as done in previous work [HS94]) would have avoided
the time-out on the PROP dataset but would have yielded worse effectiveness results than the
lowest values reported in Table 3.3, confirming the trend already reported by Hermens and
Shlimmer [HS94] (see also section 3.6).

39

3.4. Evaluation

where “Luxembourg” is the last one in the refined list; in contrast, LAFF
can rank “Luxembourg” as the first country for users to choose, leading
to much higher MRR values. Compared with FLS, LAFF has two advan-
tages. First, many users lack a detailed conceptual model of the software
system [HKOP03] defined by the requirements analysts and domain experts.
They may not remember all the candidate values predefined in a categorical
field, leading to a potential lengthy search process [HKOP03]. In this case,
LAFF can directly provide the most-likely suggestions for users to choose
based on the filled fields. Second, LAFF is compatible with FLS. Based on
the highly accurate suggestions made by LAFF, users can continue refin-
ing the suggested list with FLS when needed to further accelerate their form
filling process. For example, when users type “L” after LAFF’s suggestion,
only country names starting with “L” can be retained (e.g., “Luxembourg”,
“Laos”, “Latvia”, “Lebanon”).

We use the Mann-Whitney U test to assess the statistical significance of
the difference between the MRR values of LAFF and the baselines, with a
level of significance ↵ = 0.05. The results show that LAFF always achieves
a statistically higher MRR value than the baselines for the two form filling
scenarios on both the NCBI and PROP datasets (p-value < 0.01).

These results have to be interpreted with the usage scenarios of a rec-
ommender system. Previous studies show that, for a recommender system,
inaccurate suggestions increase users’ decision time and the risk of making
wrong decisions [OEDK18]. The MRR and PCR values achieved by LAFF
show that the suggestions provided by LAFF allow users to find the correct
value among the top-ranked suggested values.

3.4.2.4 Error analysis

We further analyzed the suggestions made by LAFF, to identify the cases in
which it does not perform well. We recall that in our experiments, LAFF
suggested the top 5% most likely values for each target field. On the NCBI
dataset, LAFF captures the correct value in the top 5% suggested values for
79.0% of the suggestions when using sequential filling and for 79.9% of the
suggestions when using random filling. On the PROP dataset, the correct
value is in the top 5% suggested values for 89.5% (sequential filling) and
90.1% (random filling) of the suggestions. Overall, 79.0% to 90.1% of the
suggestions made by LAFF allow users to find the correct value among the
5% top-ranked suggested values. For the remaining incorrect suggestions
(around 21% on the NCBI dataset and 9.9% on the PROP dataset), in which

40

3.4. Evaluation

the correct value is not in the top 5% suggested values, we identified the
following main reasons.

First, LAFF tends to provide incorrect suggestions when the number of
filled fields used for prediction is small. Specifically, on the NCBI dataset,
33.1% of the incorrect suggestions when using sequential filling and 53.1% of
the incorrect suggestions when using random filling were made when there
was only one filled field; on the PROP dataset, the ratio is 17.4% and 23.5%,
respectively. With few filled fields, LAFF may not get enough knowledge
(i.e., the information of dependent field values) for prediction. This affects
both the variable inference step within BNs and the behavior of the endorser
module. In this case, LAFF tends to use the most frequent value in the target
field for prediction, since this value has a higher prior probability. One possi-
ble way to mitigate this issue, to be investigated as part of future work, could
be to define form refactoring techniques that allow users to first fill fields that
provide additional knowledge used to predict the values of other fields. We
analyze the impact of the number of filled fields on the effectiveness of LAFF
as part of RQ4 (§ 3.4.5).

Second, incorrect suggestions are caused by the number of training input
instances. Due to optional fields, users may not provide values for all the
fields. For example, for the field “ethnicity” in the NCBI dataset, only 15.6%
of input instances contain a non-empty value. The sparseness of the filled
values for a field leads to a small number of training input instances to learn
the corresponding dependency. Continuing the example, the MRR values for
the field “ethnicity” are 0.608 and 0.553 for the sequential filling and random
filling scenarios, respectively, thus leading to many incorrect suggestions. To
mitigate this problem, as part of future work, instead of using a single thresh-
old for endorsing suggestions, we could modify the endorser used in LAFF
to support field-specific thresholds. We analyze the impact of the size of the
training set on the effectiveness of LAFF as part of RQ5 (§ 3.4.6).

Third, the number of options (i.e., candidate values) for a field may affect
the effectiveness of LAFF. To investigate this, we computed the correlation
between the number of options and the MRR value for a field, considering
the MRR values achieved in the random filling scenario7. The resulting Pear-
son correlation coefficient is -0.09 on the NCBI dataset (p-value=0.722) and
-0.477 on the PROP dataset (p-value=0.001), thus showing no correlation for
NCBI and a moderate but significant correlation for PROP [Ema99]. The dif-

7We did not consider the sequential filling scenario, since it could introduce some bias
in our analysis: The number of filled fields to predict for each target field is different, as it
depends on the tabindex order of the field.

41

3.4. Evaluation

ference in results between datasets can be easily explained by the fact that the
variance in number of options is very low for NCBI (228.8), while it is much
larger for PROP 6713.25. These results therefore suggest that, when a field
has more options, LAFF tends to provide more incorrect suggestions.

To conclude, the answer to RQ1 is that LAFF can yield a large number (with a
PCR value ranging from 0.70 to 0.87) of accurate suggestions, with a MRR value
above 0.73, significantly outperforming state-of-the-art approaches.

3.4.3 Performance (RQ2)

To answer RQ2, we measured the execution time required to perform the
model building phase of LAFF (i.e., training time), as well as the time to
predict a target field (i.e., prediction time). The training time indicates the
feasibility of using LAFF in contexts where the training set (i.e., the set of his-
torical input instances) is updated often as new input instances are recorded
in the system. The prediction time indicates how fast LAFF can provide form
filling suggestions during a data entry session.

3.4.3.1 Methodology

We used the same settings (i.e., form filling scenarios) as in RQ1. We com-
puted the training time as the time to build all BN models over the historical
input instances. The prediction time is the average time (over the various
target fields) taken to provide a suggestion for one input instance using lo-
cally deployed models. We also compared LAFF with the MFM, ARM, and
Naı̈veDT algorithms. Notice that FLS does not require any training and the
prediction can be considered instantaneous.

3.4.3.2 Results

The results are shown in the last two columns in Table 3.3, in term of train-
ing time (column Train) and the prediction time (column Predict, with sub-
columns indicating the average, minimum, and maximum values, when ap-
plicable) for the two datasets.

The training time of LAFF is much higher than the one of MFM, ARM,
FLS (and Naı̈veDT on the NCBI dataset); LAFF takes 546 s and 3652 s to train
models on the NCBI and PROP datasets, respectively. This can be easily ex-
plained since LAFF trains several models, as explained in section 3.3.2. Al-
though Naı̈veDT took only 23 s to train all the decision trees on the NCBI
dataset, it timed out on the PROP dataset. As for prediction time, that of
LAFF is higher than that of MFM, Naı̈veDT, and FLS. MFM and FLS directly

42

3.4. Evaluation

suggest the frequency-based (for MFM) or matching-based (for FLS) value
list to users. For Naı̈veDT, the prediction time includes the time to select
the appropriate model (based on the feature-target combination) among the
trained models. However, the prediction time of LAFF is, on average, faster
than the one of ARM by 105ms (15ms vs 120ms) over the NCBI dataset and
by 740ms (138ms vs 878ms), over the PROP dataset. The Mann-Whitney U
test also confirms that the differences in prediction time between LAFF and
the baselines are statistically significant (p-value < 0.01 for the two datasets).

These results have to be interpreted taking into account the usage scenar-
ios of our approach. The training time has to be considered when training the
models with new data, i.e., the new input instances recorded in the system
since the last execution of the model building phase. This task is performed
offline and periodically (e.g., once a day), so a training time of the order of one
hour is acceptable from a practical standpoint.

Given the interactive nature of data-entry applications, having a short
prediction time is much more important for an automated form filling ap-
proach. According to human-computer interaction principles [Hee00], users
feel a system reacts instantaneously when its response time is within 100ms

and feel they are seamlessly interacting with the software system when the
response time is within 1 s. In our context, the prediction time of LAFF de-
pends on the computational power at our disposal and the complexity of
the trained BN models (i.e., the number of nodes and the size of probabil-
ity tables). The experiments using the proprietary dataset (extracted from a
production-grade system) show that LAFF is fast enough (requiring at most
317ms) to provide real-time suggestions during data entry sessions.

The answer to RQ2 is that the performance of LAFF, with a training time of about
one hour (or less) and a prediction time of at most 317ms, is suitable for practical
application in data-entry scenarios.

3.4.4 Impact of Local Modeling and Endorser (RQ3)

LAFF has two important modules: the local modeling module, which builds
local models based on local field dependencies of partitions of historical in-
put instances (section 3.3.2); the endorsing module, which uses heuristic
rules to remove possibly inaccurate suggestions (section 3.3.3). To answer
RQ3, we assessed the impact of these two modules on the effectiveness of
LAFF.

43

3.4. Evaluation

Table 3.4: Effectiveness of LAFF with Different Modules

ID
Module

NCBI PROP

Sequential Random Sequential Random

L E MRR PCR MRR PCR MRR PCR MRR PCR

LAFF-LE 7 7 0.54 1.00 0.56 1.00 0.74 1.00 0.77 1.00
LAFF-E 3 7 0.60 1.00 0.60 1.00 0.76 1.00 0.79 1.00
LAFF-L 7 3 0.55 0.83 0.61 0.77 0.78 0.86 0.79 0.87
LAFF 3 3 0.74 0.70 0.73 0.70 0.78 0.86 0.81 0.87

3.4.4.1 Methodology

As shown in Table 3.4, in the two sub-columns of column Module, we con-
sidered four variants of LAFF, to reflect possible configurations with the two
modules. In the table, L refers to the local modeling module and E refers to
the endorsing module; symbols ‘3’ and ‘7’ indicate whether the variant of
LAFF includes or not a certain module, respectively. When the local model-
ing module is disabled (denoted by LAFF-L), it means LAFF only uses the
global model for prediction; when the endorsing module is disabled (de-
noted by LAFF-E), it means we do not scrutinize (and possibly discard) the
suggestions provided by LAFF. If both modules are disabled (denoted by
LAFF-LE), LAFF becomes a plain BN model trained on the entire set of his-
torical input instances. We ran the vanilla version of LAFF (i.e., the one pre-
sented in section 3.3) and the additional variants using the same settings as
in RQ1, and measured effectiveness in terms of MRR and PCR.

3.4.4.2 Results

As shown in Table 3.4, each module impacts the effectiveness of LAFF. The
local modeling module improves the ability of BNs in ranking the correct
values ahead of the incorrect ones, leading to a higher MRR value (while
the PCR value remains equal to 1). The endorsing module mainly reduces
the quantity of inaccurate suggestions made by different BN models (and
therefore reduces the PCR value).

When we compare LAFF (with both modules enabled) with a plain BN
(i.e., LAFF-LE) on the NCBI dataset, LAFF improves the MRR value by +20pp
(0.74 vs 0.54) for the sequential filling scenario and by +17pp (0.73 vs 0.56)
for the random filling scenario; on the PROP dataset the improvement is
smaller (+4pp for both scenarios). Hence, the integration of the local model-
ing and endorsing modules positively affect the effectiveness of LAFF. When
we apply the endorsing module on a plain BN, we get an MRR improvement

44

3.4. Evaluation

ranging from +1pp to +5pp on the two datasets (see LAFF-LE vs LAFF-L).
Even though the local modeling module alone does not affect the number of
suggestions, the integration of the local modeling in LAFF-L leads to a fur-
ther reduction of the number of inaccurate suggestions (with PCR dropping
by 0 pp to 13 pp); it improves the MRR value by 0 pp to +19pp on the two
datasets (see LAFF-L vs LAFF).

These results can be explained as follows. As mentioned in section 3.3.3,
the endorsing module endorses suggestions based on two heuristics: checkDep

(which checks if the filled fields are parents of the target field) and sumProb

(which checks whether the sum of probabilities for the top-nr suggested val-
ues is higher than a threshold). When the local modeling module is enabled,
the local models can learn fine-grained dependencies for a field and exclude
some useless dependencies that are present in a plain BN. As a result of the
absence of the dependencies between filled fields and the target field, the
checkDep heuristic may endorse more suggestions (i.e., the PCR value de-
creases from LAFF-L to LAFF), in order to retain high-confidence suggestions
(i.e., the MRR value increases). On the PROP dataset, the improvement is not
obvious because of the high quality of its input instances. As a proprietary
dataset from the banking domain, the data quality division usually double-
checks the data entry to minimize the effect of data errors and data conflicts
on financial software systems. Compared to a public dataset, BNs trained
on the PROP dataset can find more meaningful field dependencies and also
achieve high sumProb values for most suggestions; hence the differences in
both MRR and PCR values are relatively small when different modules are
enabled.

The answer to RQ3 is that the local modeling module and the endorsing module
improve the effectiveness of LAFF.

3.4.5 Impact of the Number of Filled Fields (RQ4)

LAFF takes as input a set of already-filled fields with their values to suggest
the value of the target field. To answer RQ4, we assessed the impact of the
number of filled fields on the effectiveness of LAFF as well as of the ARM
and MFM baselines. We did not compare to the Naı̈veDT and FLS baselines.
Naı̈veDT is impractical to be used in a production-grade system due to the
timeout issue during the training phase. FLS does not use the information
contained in the already-filled fields.

45

3.4. Evaluation

3.4.5.1 Methodology

We generated new test sets by varying the number of filled fields on the test-
ing input instances obtained as described in section 3.4.1. To generate a test
set with i filled fields for a target t, for each testing input instance, we set
the field t as the target and randomly selected i non-empty fields as filled
fields. The unselected fields were considered as unfilled and their values re-
placed with a dummy value representing empty fields. Given a data entry
form with t targets for automated form filling, we can generate t new test
sets with i filled fields, each of which has a different target. We ran LAFF on
these new test sets and computed the MRR and PCR values for predicting
different targets. The results indicate the effectiveness of LAFF when i fields
are filled.

Following this strategy, we assessed the effectiveness of LAFF and the
baselines on the NCBI dataset with one, two, and three filled fields. We dis-
carded the configuration with four filled fields, since we could only generate
505 new testing input instances due to the optional fields; this number is sig-
nificantly smaller than the number of testing input instances we obtained for
the configurations with one/two/three filled fields (which have more than
17 000 new testing input instances) and might have introduced bias.

For the PROP dataset, we generated 16 test sets representing the configu-
rations with one to 16 filled fields; each of them has more than 300 000 testing
input instances. However, running the experiment for all testing input in-
stances would be infeasible on the dedicated server provided by our indus-
trial partner, which caps the duration of any job to 168 hours. The issue of the
execution time was mainly introduced when evaluating ARM. As mentioned
in section 3.4.3, ARM may take more than 3 s to provide a suggestion. This
means ARM could take, in the worst case, ⇡ 300 000⇥ 16⇥ 3 s ⇡ 166 days to
execute on the testing input instances for all the 16 generated test sets in the
PROP dataset. Hence, to assess the impact of the number of filled fields on all
the algorithms when using the PROP dataset, we randomly sampled 12 600

testing input instances from each of the 16 newly generated test sets. We
chose this number because, in the worst case, the experiments for all the al-
gorithms could be finished within the 168 hours limit (e.g., 12 600⇥16⇥3 s =

168 hours for ARM).

3.4.5.2 Results

Figure 3.6 shows the results of running the form filling algorithms on the
NCBI and PROP datasets with different numbers of filled fields. The x-axis

46

3.4. Evaluation

1 2 3
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Number of filled fields

M
R

R

MFM
ARM
LAFF

(a) MRR on the NCBI test sets

1 2 3
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Number of filled fields

PC
R

MFM
ARM
LAFF

(b) PCR on the NCBI test sets

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Number of filled fields

M
R

R

MFM
ARM
LAFF

(c) MRR on the sampled PROP test sets

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Number of filled fields

PC
R

MFM
ARM
LAFF

(d) PCR on the sampled PROP test sets

Figure 3.6: Effectiveness of LAFF with different number of filled fields on the
NCBI and PROP datasets

47

3.4. Evaluation

of the figures represents the number of filled fields and the y-axis shows the
MRR or PCR value of each form filling algorithm.

In terms of accuracy (in Figure 3.6a and Figure 3.6c), the MRR values of
LAFF and ARM increase when more fields are filled. For example, the av-
erage MRR value of LAFF increases from 0.599±0.227 to 0.730±0.350 on the
NCBI dataset and from 0.774±0.160 to 0.804±0.190 on the PROP dataset as
the number of filled fields increases from one to three and from one to 16, re-
spectively. In contrast, MFM shows a different trend. In theory, MFM is not
affected by the number of filled fields, as it always provides the same sugges-
tion for a target field, based on the most frequent values filled in the target
field in the past. However, our experiments show a variation in MRR as the
number of fields increases. More specifically, since the testing input instances
generated for each number of filled fields are different, the MRR value of
MFM decreases when the correct values for a target in the generated testing
input instances are not the most frequent historical values. Overall, accord-
ing to the boxplots, when varying the number of filled fields, the MRR val-
ues of LAFF for predicting different targets remain higher than those of MFM
and ARM. Given a partially filled form with only one filled field, LAFF out-
performs MFM and ARM by +12pp and +11pp, respectively, on the NCBI
dataset; it also outperforms both MFM and ARM by +14pp on the PROP
dataset.

As for coverage, the PCR value of the baselines is 1 for the majority of
the numbers of filled fields (as shown in Figure 3.6b and Figure 3.6d). For
LAFF, the PCR value increases as more fields are filled. However, we find
that the PCR values of LAFF for different target fields vary significantly, es-
pecially with a small number of filled fields. For example, with one filled
field, the PCR values of LAFF are 0.482±0.22 and 0.630±0.41 respectively on
the NCBI and PROP datasets. This is because, when the number of filled
fields is small, the filled fields may not always provide enough knowledge
(i.e., the information of dependent field values) for LAFF to predict all the
target fields. For some targets, the endorsing module of LAFF may filter out
many suggestions. When the number of filled fields increases, LAFF gets
more information from the input instances to provide suggestions that can
be endorsed. For example, the PCR value of LAFF increases to 0.975±0.04
on the PROP dataset with 16 filled fields. Overall, The PCR values show
that LAFF could correctly endorse the suggestions when the form is partially
filled, which helps LAFF achieve higher MRR values than those of the base-
lines.

The answer to RQ4 is that the effectiveness (in terms of MRR and PCR) of
LAFF increases as more fields are filled. Further, LAFF can better handle partially

48

3.4. Evaluation

filled forms than state-of-the-art algorithms.

3.4.6 Impact of the Size of the Training Set (RQ5)

LAFF is a learning-based approach that requires a training set (i.e., historical
input instances) to train machine learning models. To answer RQ5, we as-
sessed the impact of the size of the training set on the effectiveness of LAFF.

3.4.6.1 Methodology

We evaluated LAFF by varying the size of the training set from 10% to 100%

of the historical input instances included in the training set, with a step of
10%. For the NCBI dataset, the size of the sampled training set ranged from
5928 to 59 284 historical input instances (where 59 284 is 80% of the 74 105

input instances in the dataset). For the PROP dataset, the size of the sampled
training set ranged from 13 955 to 139 557 historical input instances (where
139 557 is 80% of the 174 446 input instances in the dataset).

For a given percentage value p, we randomly sampled p% of the historical
input instances in the training set to form a smaller training set. We trained
LAFF on the sampled training set and used the trained model to conduct
automated form filling on the testing input instances obtained as described
in section 3.4.1.

As for RQ1, we measured the effectiveness of LAFF in terms of MRR and
PCR.

3.4.6.2 Results

Figure 3.7 shows the results of LAFF on the NCBI and PROP datasets with
different training set sizes. The x-axis of the figure represents the number
of historical input instances; the y-axis shows the MRR and PCR values of
LAFF under different filling scenarios.

As shown in the figure, the value of MRR increases and gradually be-
comes stable on the two datasets when the size of the training set increases.
For the NCBI dataset, the value of MRR is low and fluctuates significantly
with a training set of less than 30 000 historical input instances; the major-
ity of MRR values are lower than 0.40 for the two form filling scenarios.
When we have more historical input instances (between 30 000 and 60 000),
the value of MRR increases and becomes more stable, ranging from 0.650 to
0.740 for the sequential filling scenario and from 0.530 to 0.740 for the ran-
dom filling scenario. The value of MRR has a similar trend on the PROP

49

3.4. Evaluation

0k 6k 12k 18k 24k 30k 36k 42k 48k 54k 60k
0

0.2

0.4

0.6

0.8

1

Number of historical input instances

M
R

R
an

d
PC

R
MRR
PCR

(a) Sequential filling scenario on NCBI
dataset

0k 6k 12k 18k 24k 30k 36k 42k 48k 54k 60k
0

0.2

0.4

0.6

0.8

1

Number of historical input instances

M
R

R
an

d
PC

R

MRR
PCR

(b) Random filling scenario on NCBI
dataset

0k 14k 28k 42k 56k 70k 84k 98k112k126k140k
0.5

0.6

0.7

0.8

0.9

1

Number of historical input instances

M
R

R
an

d
PC

R

MRR
PCR

(c) Sequential filling scenario on PROP
dataset

0k 14k 28k 42k 56k 70k 84k 98k112k126k140k
0.5

0.6

0.7

0.8

0.9

1

Number of historical input instances

M
R

R
an

d
PC

R

MRR
PCR

(d) Random filling scenario on PROP
dataset

Figure 3.7: Effectiveness of LAFF with different training set sizes on the NCBI
and PROP datasets

dataset; it gradually increases and then becomes stable (between 0.764 and
0.807) when the number of historical input instances is higher than 56 000.

In terms of PCR, the endorser module of LAFF works poorly with a small
training set. LAFF either keeps the majority of suggestions (for the sequen-
tial filling scenario) or wrongly removes many suggestions (for the random
filling scenario), leading to low MRR values. As the size of the training set
increases to more than 30 000 (for the NCBI dataset) and 56 000 (for the PROP
dataset), LAFF is able to remove more inaccurate suggestions, achieving a
PCR value between 0.690 and 0.750 and between 0.849 and 0.918, respec-
tively on the two datasets.

50

3.4. Evaluation

When comparing the results of LAFF across the two datasets, we observe
a more significant fluctuation of MRR values on the NCBI dataset than that
on the PROP dataset as the size of the training set increases. This is caused
by the data quality of the NCBI dataset. In contrast to the proprietary dataset
PROP, there is no field constraint or additional check on the values filled in
the NCBI data entry form. This means that, when more historical input in-
stances are added to the training set, one may also introduce many conflict-
ing or erroneous field values, which increase the uncertainty of LAFF when
predicting on the NCBI dataset.

The answer to RQ5 is that the size of the training set affects the effectiveness
of LAFF. MRR values increase on both datasets when the size of the training set
increases; more suggestions are also correctly endorsed. With more than 56 000 his-
torical input instances, LAFF achieves accurate suggestions on both datasets

3.4.7 Threats to Validity

The size of the pool of historical input instances can affect the effectiveness of
LAFF, a common issue among learning algorithms. Nevertheless, we do not
expect this to be a strong limitation since it targets data entry functionalities
in enterprise software, in which one can expect thousands of input instances
per day, as it is the case for the system used by our industrial partner.

Another threat to the validity is the choice of the value of the endorser
threshold ✓. With a higher threshold, LAFF will filter out more suggestions
(resulting in a lower PCR value), only keeping the ones with a high pre-
dicted probability (resulting in higher MRR value). Hence, this threshold
reflects the degree of uncertainty users are willing to accept regarding the
suggestions provided by LAFF. To mitigate this threat, we selected a thresh-
old value based on the feedback received by data entry operators and data
quality engineers of our partner.

The choice of the deployment method for LAFF can impact its perfor-
mance in terms of prediction time. In our experiments, we deployed LAFF
locally; using a different deployment (e.g., cloud-based) could lead to differ-
ent results, since the prediction time would be affected by many other factors,
such as the DNS lookup time, the connection time, and the data transmission
time [CCY00]. Since the prediction time of LAFF is less than 317ms, an appli-
cation using a non-local deployment would have enough leeway to optimize
these factors and provide seamless interactions for users, complying with
human-computer interaction principles [Hee00] (i.e., with a response time
less than 1 s). As part of future work, we plan to assess the performance of
LAFF under different deployment configurations.

51

3.5. Discussion

To increase the external validity of our results, LAFF should be further
studied on other datasets, possibly from other domains. To partially mitigate
this threat, we use two different types of datasets to evaluate LAFF, includ-
ing both a public and a proprietary dataset, and the corresponding data en-
try forms. Meanwhile, we simulated two form filling scenarios (sequential
and random filling) that are plausible during a real data-entry session. As
part of future work, we plan to conduct a user study using different datasets
and data entry forms, to analyze the effect of LAFF on reducing form fill-
ing time and input errors. Another external threat is our implementation of
the four algorithms (MFM, ARM, Naı̈veDT, and FLS) to which we compared,
which may be different from the original definitions; to mitigate this threat,
we cross-reviewed the implementations, taking into account the relevant lit-
erature (when available).

3.4.8 Data Availability

The implementation of LAFF, the NCBI dataset, and the scripts used for the
evaluation are available at https://figshare.com/s/b191fcb5ee7f
3ad634bf; LAFF is distributed under the MIT license. The PROP dataset
cannot be distributed due to an NDA.

3.5 Discussion

3.5.1 Usefulness

The fundamental question we seek to answer is whether LAFF can help users
fill forms. To answer this question, we evaluated LAFF with two real-world
form filling datasets, one from the biomedical domain and another from the
banking domain. The results show that LAFF outperforms state-of-the-art
form filling algorithms in providing a larger number (with a PCR value over
0.70) of accurate suggestions (with a MRR value over 0.73). The MRR value
reflects the ability of LAFF in avoiding inaccurate suggestions. For example,
considering a list with three suggested values, if the correct value is in the
top-1, top-2, and top-3 of the list, the corresponding MRR value is 1, 0.5,
and 0.33, respectively; when all the values are incorrect, the MRR value is
0. In the context of our experiments, an MRR value of at least 0.73 indicates
that, for more than 73% of suggestions, LAFF can help users find the correct
value from the top-ranked ones. The PCR value indicates the number of
suggestions made by LAFF. A PCR value over 0.70 indicates that LAFF can
confidently make suggestions for more than 70% of target fields, where the

52

https://figshare.com/s/b191fcb5ee7f3ad634bf
https://figshare.com/s/b191fcb5ee7f3ad634bf

3.5. Discussion

correct values are usually ranked before the incorrect ones. According to a
previous study [CCC+11], as users are presented with more candidate values
for selection, they tend to make more mistakes, which makes form filling a
frustrating activity. Hence, we speculate LAFF reduces the mental load of
users in filling forms by helping them go through fewer candidate values
(top-k%) before finding the correct one; further user studies are required to
corroborate this hypothesis.

We can interpret the above results from a point of view of usefulness as
follows. On the one hand, as shown in RQ1, with an MRR value over 0.73,
79.0% to 90.1% of the suggestions made by LAFF allow users to find the cor-
rect value among the 5% top-ranked suggested values on the two datasets.
This means that when LAFF makes suggestions, in 79.0% to 90.1% of the
cases, it leads to at least 95% effort saving when browsing possible values,
since users need only to check the top 5% most likely items recommended
by LAFF. For example, on our datasets, users need to check between one
(for field “activity” having 13 candidate values) and ten (for field “country”
having 206 candidate values) values before finding the correct one. On the
other hand, according to our analysis in RQ1, a frequency-based method like
MFM achieves MRR values ranging from 0.42 to 0.64 on the NCBI and PROP
datasets. Hence, when comparing LAFF with the widely-used data entry so-
lution MFM, an MRR improvement of +14pp to +32pp suggests that LAFF
can better help users select candidate values in data entry forms.

3.5.2 Practical Implications

This subsection discusses the practical implications of LAFF for its different
stakeholders: software developers, end users, system administrators, and
researchers.

3.5.2.1 Software Developers

Automated form filling is a common requirement for software systems. Some
popular languages and APIs (e.g., HTML [W3C21] and Android APIs [And21])
also provide pre-fill or auto-completion frameworks, for which customized
form filling strategies can be implemented. In its current version, LAFF is
a stand-alone tool that developers can integrate into their data entry form
implementations as an effective and efficient strategy for filling categorical
fields (e.g., Listboxes and Dropdown Lists). Since LAFF shows a higher ac-
curacy than state-of-the-art approaches, it can be used in data-reliant enter-

53

3.5. Discussion

prise systems across different domains, especially when there are constraints
on sharing or accessing data of other software systems.

As for adopting LAFF in production, in terms of execution time, a train-
ing time of about one hour allows LAFF to compute daily updates for its
models, empowered with the information derived from new input instances.
Moreover, considering the interactive nature of data-entry applications, we
use a model selection strategy to select the suitable local or global model
for prediction from multiple models. Compared with many learning strate-
gies that consider the predictions of multiple models jointly (e.g., ensemble
learning), our strategy could significantly reduce prediction time in specific
deployment configurations. For example, the worst-case prediction time of
ensemble learning is, when using a single-thread configuration, the sum of
the prediction time of all local models. This could be reduced to the maxi-
mum of the prediction time of all local models by using multiple threads in
parallel. This strategy is viable when the trained models are deployed on a
powerful server, and the prediction is performed server-side. However, some
enterprises (as it is the case for our industrial partner) might prefer to inte-
grate a form filling approach like LAFF locally, on the machines used by data
entry operators, to avoid network latency during data entry sessions. In such
a deployment configuration, using multiple threads could significantly slow
down the data entry session, especially on machines with a limited comput-
ing power. For these reasons, we designed LAFF with a lightweight model
selection strategy, instead of using alternatives like ensemble learning.

Integrating LAFF into a data entry form requires providing a mapping
between the field names and the column names in the dataset. This mapping
needs to be identified only once and therefore does not have much impact
on the practical application of LAFF. We remark that, in modern applications
built using the MVC pattern for the UI and an Object-Relational Mapping
(ORM) framework for data persistence [CSY+16], the mapping can be re-
trieved from the ORM framework configuration. Other sources for the map-
ping can be software design documentation, such as the database schema
and the description of the UI widgets in the data entry forms.

3.5.2.2 End Users

Form filling is time-consuming and error-prone for end users, which can
cause more than half of data errors [QMR+20]. These errors seriously af-
fect data-reliant software systems and even cause loss of human life [Ame05,
QMR+20, KJ10, Ban03]. In this study, we have proposed LAFF to improve
the accuracy and efficiency of the data entry process executed by end users,

54

3.5. Discussion

when filling categorical fields. First, LAFF uses an endorser module to alle-
viate the cognitive load on users caused by wrong suggestions; this module
significantly improves the accuracy of suggestions. Second, LAFF helps users
focus on the most-likely candidate values in a list of values. It decreases the
number of candidate values users need to browse. We follow the practice of de-
signing an effective recommender system (e.g., a form filling system) in software
engineering, which is to avoid “helpless” suggestions to be ignored by users,
but provide them with a large number of “helpful” suggestions [RWZ09].

Furthermore, in the experiments, LAFF can provide suggestions within at
most 317ms for each target field, which enables end users to conduct seam-
less interaction with the data entry form.

3.5.2.3 System Administrators

The deployment of LAFF in production requires system administrators to
configure its parameters. This can be achieved with the help of domain ex-
perts, based on their domain knowledge. A group of configurable parame-
ters is set in the pre-processing step. We implement this step based on best
practices for predictive data mining [AKV19]. A threshold that can affect
auto-filling effectiveness is ✓, for the endorser module. This threshold re-
flects how much uncertainty domain experts are willing to accept regarding
the suggestions provided by LAFF. Such configuration allows domain ex-
perts to use LAFF according to their requirements and application scenarios.

Overall, the configuration parameters represent the only domain-specific
aspect of LAFF. Everything else about it is domain-agnostic. Deploying LAFF
for a new form only requires to collect the input instances of the form for a
certain period of time and use these instances to train the form filling models.

3.5.2.4 Researchers

In this chapter, we use a local modeling module to effectively learn the fine-
grained dependencies on historical input instances. Since existing approaches
in software engineering perform local modeling on numerical data instances
(e.g., software metrics [MBM+11]), we propose a novel solution to solve the
problem of using local modeling on categorical data instances. We speculate
that our proposed solution can inspire the adoption of local modeling for
different data types in many software engineering tasks. In addition, we use
an endorser module to decide if suggestions are accurate enough to be pro-
vided to end users. Such a module is important for algorithms where 100%
accuracy cannot be achieved in practice. For example, during form filling,

55

3.5. Discussion

predicting all the other fields based on only one filled field may lead to inac-
curate suggestions. In this case, it is more practical to automatically remove
inaccurate suggestions using an endorser module. We believe the endorser-
based architecture discussed in section 3.3.3 can be adopted by other recom-
mender systems.

Furthermore, the error analysis for RQ1 described in section 3.4.2 sug-
gests possible research directions, such as learning from users’ corrections
and using multi-objective optimization for form refactoring (with a new or-
der of fields) for improving form filling suggestions.

3.5.3 Limitations

3.5.3.1 Type of Fields

In this work, we have focused on predicting the values of categorical fields,
based on the historical information available from the same software system;
LAFF does not work with other types of fields. Due to the unique charac-
teristics of each type of field, distinct solutions have been proposed in the
literature (e.g., text auto-completion for textual fields, data testing for numer-
ical fields). However, these solutions cannot help users fill categorical fields,
which is a critical task during form filling. We acknowledge that other types
of fields may contain critical data that could cause major problems. However,
empirical studies show that selection errors lead to more than half (54.5%) of
the data errors in a software system [QMR+20]. For example, the selection
of wrong drugs [KJ10] or the wrong modality of care [QMR+20] in medical
record systems can even cause loss of human life. In addition, as shown in
the NCBI and PROP datasets (in section 3.4.1), the majority of categorical
fields we evaluated (with the number of candidate values ranging from 13

to 208) are related to certain domains or business processes. These fields are
more difficult to fill than fields such as “sex” and “age”, since users need to
understand the meaning of candidate values. Errors in these fields can cause
significant business problems. For example, the selection of a wrong “field of
activity” when opening a bank account may cause business loss between the
company and the bank. By knowing the actual “field of activity” of the com-
pany, the bank could have offered targeted products to its customer since
the beginning of the business relation. Hence, there is a need for a semi-
automated method that supports and guides users when filling categorical
fields.

56

3.5. Discussion

3.5.3.2 Cognitive Load on Users

The suggestions made by automated form filling tools like LAFF can increase
the cognitive load on users, when the tool provides a long list of suggested
values/options for users to check or when the suggestions do not include
the correct value. To reduce the cognitive load in the first case, we configured
LAFF to suggest the top 5% most likely candidate values for each target field,
rather than reordering all the candidate values based on their probability.
Although LAFF does not directly reduce the number of candidate values in
a field, it highlights the top 5% values, on which users can focus. As for the
second case of cognitive load (suggestions not including the correct value),
LAFF includes an endorser module to decide whether the suggestions are
accurate enough to be returned to users. As shown in Table 3.4 and as part
of the answer to RQ3, the endorser module significantly reduces the number
of possibly inaccurate suggestions while increasing the MRR values. As a
result, our experiments show that 79.0% to 90.1% of the LAFF suggestions
allow users to find the correct value among the top 5% suggested values.

3.5.3.3 Fields with Semantic Overlap

Candidate values in categorical fields could have semantic overlaps. For ex-
ample, let us consider the case of field “field of activity” with two possible
values, “banking service” and “financial services”. From a semantic point of
view, the former is a specific case of the latter. This form of semantic over-
lap affects LAFF as follows. During the model building phase, LAFF could
be trained with inconsistent historical input instances (e.g., two historical in-
stances that have same values in all fields but “field of activity”, with one
instance having “banking service” and the other “financial services”). In this
case, LAFF cannot build, with enough confidence, dependencies between the
values in the field affected by a semantic overlap (e.g., “field of activity”) and
the other fields. During the form filling suggestion phase, when LAFF identi-
fies both values as candidate values to suggest (e.g., with similar probability),
due to the endorser module, LAFF may not provide any suggestions or sug-
gest both values to users (depending on the number of suggested values nr

and the threshold ✓). In both cases, users need to decide which value to select
by themselves. However, defining candidate values with semantic overlaps
is not a good practice for form design, since it increases the mental load on
users to decide which value is more appropriate (e.g., the more specialized
“banking service” or the more generic “financial service”). We suggest to ad-
dress this issue by refining the candidate values during the design phase of

57

3.5. Discussion

the system.

3.5.3.4 Cases of Limited Accuracy

As discussed in the “Error analysis” part of the answer to RQ1 (page 40),
there are 9.9% to 21% of suggestions made by LAFF for which the correct
value is not in the top 5% suggested values. We have identified two main
reasons leading to low accuracy: LAFF tends to provide incorrect sugges-
tions, when (1) the number of filled fields used for prediction is small, and
(2) the size of the training input instances for a target field is small. We plan
to address these limitations as part of future work, along the lines mentioned
on page 40.

3.5.3.5 Learning from Corrections

Automated form filling is an interactive process between users and the auto-
mated tool. In the current version, LAFF does not offer the possibility, during
a data entry session, for a user to correct LAFF’s suggestions by selecting a
candidate value that is not presented in the top 5% suggested values. If a
user makes many corrections to suggestions during a data entry session, it
means that the learned probability table (BN) may not reflect the relations of
values in the current input instance. The ability to learn from these users’ cor-
rections could further improve the accuracy of LAFF. One intuitive solution
is to assign a higher weight on such input instances when re-training LAFF
for learning new relations. For example, input instances with many inaccu-
rate suggestions can be oversampled to increase their proportion in the entire
historical of input instances.

3.5.3.6 Cold Start

LAFF depends on the dataset associated with an input form; it always has to
be trained for a new system. The size of the pool of historical input instances
can affect the accuracy of LAFF, a common issue among learning algorithms.
When there are no or only a few historical input instances (i.e., the cold start
problem [LIJ+19]), the accuracy of LAFF is limited. As presented in RQ5 (in
section 3.4.6), MRR values of LAFF increase when the size of the training set
increases; LAFF achieves accurate suggestions with 30 000 and 56 000 histor-
ical input instances on the NCBI and PROP datasets, respectively. Neverthe-
less, we do not expect the size of the training set to be a strong limitation on
the feasibility of applying LAFF. First, LAFF targets data entry functionalities
in enterprise software, in which one can expect thousands of input instances

58

3.6. Related Work

per day. For example, nowadays the NCBI platform gets about 9600 input
instances per month for a single species (i.e., “Homo sapiens”). It is also the
case for the system used by our industrial partner. Second, LAFF does not
require additional effort to label training data; it uses the actual values filled
by users as the ground truth to train the model. With an adequate training
set size, LAFF can directly provide accurate suggestions for users.

3.6 Related Work

The approach proposed in this chapter is mainly related to works on au-
tomated form filling based on the information from the same software sys-
tem, which focuses on filling free-text fields and categorical fields. Regard-
ing the former, the main proposals use language models (e.g., n-gram and
sequence-to-sequence learning) to learn relationships between characters or
words from historical textual inputs [VDBB08, SAM18]; these relationships
are then used to provide word auto-completion based on the letters typed
in a field [ZZW19]. As for dealing with categorical fields, most of the ap-
proaches suggest possible values from a list of candidate values. Martı́nez-
Romero et al. [MROE+19] use association rule mining (ARM) to uncover the
hidden associations of fields for real-time form filling; however, as shown
in our experiments, ARM does not provide accurate suggestions when com-
pared with LAFF. Hermens and Shlimmer [HS94] applied decision tree and
hierarchical clustering for filling forms in an electronic leave report system:
the study reports that these algorithms performed worse than the simple
most-frequent method when the forms were filled out in a random order.
Troiano et al. [TBA17] trained a Bayesian network model on the historical
inputs from a user for an online payment system. The trained model could
auto-fill the payment form for the same user by reusing his historical pay-
ment records. The plain Bayesian network model is also trained by Ali and
Meek [AM09] for auto-filling the bug submission form of a bug tracking sys-
tem. Compared to existing approaches, LAFF performs automated form fill-
ing by mining field dependencies on input instances from different users. We
proposed local modeling and a heuristic-based endorser to further improve
the accuracy of form filling suggestions.

Automated form filling has also been investigated in the context of devel-
oping “smart” personal information management systems, to support infor-
mation exchange across software systems [FGG+12, WGV+11, AGLH10, CFM02].
In this context, the main challenge is the semantic mapping of fields across
software systems, e.g., how to map the “postal code” and “zip code” fields

59

3.6. Related Work

(from two different software systems) to the same concept. To address this
challenge, Chusho et al. [CFM02] manually construct rules to merge simi-
lar concepts of commonly used field names. Other works use string-based
matching [HCH04], WordNet [AGLH10], and Wikipedia [HM09] as addi-
tional resources to calculate the similarity among fields. Wang et al. [WZK+14]
calculate field similarity based on the field names, form topics, and names of
neighbor fields. They recently propose to use learning-to-rank algorithms
to further improve form filling effectiveness [WZNN17]. However, to learn
mapping rules, these algorithms require access to the users’ personal records
from different software systems. In contrast, we only use input instances
from the targeted software system; thus, our approach can be used when
there are legal or security constraints on sharing records across systems [WGV+11].
Moreover, the above approaches perform well only on common fields like
“age” and “address”, and cannot cope with fields that are domain-specific
and used only in few software systems.

The filling order of fields influences the ability of form filling algorithms [HS94].
Several works refactor data entry forms to provide effective supports for
form filling, for example using fields dependencies [CCC+11, TBA17] or user
roles [ABY16]. All these approaches identify the fields that a target field di-
rectly depends on and change their (field) order so that they can be filled
before the target field, to increase the accuracy of predicting the latter. Form
refactoring can be regarded as a preliminary step to our proposed approach.

Form filling can be considered as a task to auto-complete data entry for
software systems, which in the literature is a popular research topic in many
domains; however, most of the existing approaches propose auto-completion
for different purposes or with different inputs than what we considered in
this chapter. In software engineering, several techniques have been proposed
to provide suggestions for certain fields of software systems (e.g., priority of
bug reports in bug tracking systems [ULI19] and elements of a domain model
when using domain-model designing systems [BCL+21]). Suggestions are
provided by analyzing the textual data (e.g., bug reports, requirement doc-
uments) with natural language processing techniques; instead, in our work
we analyze the dependencies of categorical fields. In the field of information
retrieval, crawlers automatically fill and submit web forms to crawl the data
returned from databases [HRR19, KMH15]; in the context of data crawling,
automated form filling aims to automatically generate input values that can
pass the field validation and retrieve more data, instead of helping users find
the correct value they intend to fill. In the field of data mining, several ap-
proaches [TCdSdM10, KCVM04, DOP13] fill data entry forms with the meta-
data extracted from data-rich text files. For example, these approaches can

60

3.6. Related Work

Table 3.5: Overview of related work

Scenario Reference Task/Example Difference with LAFF

Form filling
under the
same soft-
ware system

Salama et al. [SAM18]
Van Den Bosch and Bogers [VDBB08]
Zhang et al. [ZZW19]

[Task] Predict or auto-
complete the next character
or word for textual inputs.
[Example] They suggest
Angeles when users type
the word Los.

They build language mod-
els on the values in textual
fields instead of categorical
fields; the user’s initial in-
put is required.

Martı́nez-Romero et al. [MROE+19]
Hermens and Shlimmer [HS94]
Troiano et al. [TBA17]
Ali and Meek [AM09]

[Task] Suggest the correct
value from a list of can-
didate values in categorical
fields. [Example] They sug-
gest Leasing Service from a
list of options in the field
“primary field of activity”.

We compared LAFF with
algorithms MFM [HS94],
ARM [MROE+19], and
Naı̈veDT [HS94] as part
of RQ1; we compared to a
plain BN (equivalent to the
one proposed in [TBA17]
and [AM09]) as part of
RQ3.

Form filling
across soft-
ware systems

Araujo et al. [AGLH10]
Chusho et al. [CFM02]
Firmenich et al. [FGG+12]
Winckler et al. [WGV+11]
He et al. [HCH04]
Hartmann and Muhlhauser [HM09]
Wang et al. [WZK+14]
Wang et al. [WZNN17]

[Task] Prefill form fields by
reusing the values filled in
other web forms; they build
the mapping or ontology
of field names across web
forms. [Example] They use
the value filled in “postal
code” in one web form to
help the same user fill “zip
code” in another web form.

These approaches cannot
be applied to fields that are
domain-specific and used
only in few software sys-
tems (e.g., medical sys-
tems); enterprise informa-
tion system may have con-
straints on visiting or shar-
ing records across systems.
LAFF is designed to work
in these scenarios.

Form refac-
toring

Chen et al. [CCC+11]
Troiano et al. [TBA17]
Akiki et al. [ABY16]

[Task] Re-order fields to
support effective form fill-
ing. [Example] They refac-
tor the field “role” as the
first field, if they find “role”
is informative to predict
values of other fields.

It is a preliminary step,
complementary to auto-
mated form filling

Software
artifacts
informa-
tion auto-
completion

Umer et al. [ULI19]
Burgueño et al. [BCL+21]

[Task] Predict values of cer-
tain fields in software sys-
tems. [Example] They pre-
dict “bug priority” based
on the description of bug
reports.

It relies on textual data (e.g.,
bug reports and require-
ment documents) for sug-
gestions. LAFF does not
rely on such information.

Data crawl-
ing

Hernández et al. [HRR19]
Kantorski et al. [KMH15]

[Task] Crawl data from
databases by form filling.
[Example] They generate
value combinations for
fields in a job search site to
crawl all the job informa-
tion hidden in the database.

They aim to generate valid
input values for data crawl-
ing, instead of helping
users find the correct can-
didate value.

Data mining Diaz et al. [DOP13]
Kristjansson et al. [KCVM04]
Toda et al.[TCdSdM10]

[Task] Extract data values
from data-rich text to fill
forms. [Example] They use
a resume text file to fill sev-
eral fields of forms in job
search sites.

They rely on the extrac-
tion of information in data-
rich files (e.g., text files and
spreadsheets). LAFF does
not rely on such informa-
tion.

61

3.7. Summary

automatically use the metadata taken from a resume text file to fill several
fields of forms in different job search sites [TCdSdM10]. However, in this
study we do not rely on data-rich text files to infer field values.

Table 3.5 presents an overview of related work and their differences with
LAFF.

3.7 Summary

In this chapter, we proposed LAFF, an approach to automatically suggest
possible values of categorical fields in data entry forms, which are common
user interface features in many software systems. Our approach utilizes
Bayesian Networks to learn field dependencies from historical input instances.
Moreover, LAFF relies on a clustering-based local modeling strategy to mine
local field dependencies from partitions of historical input instances, to im-
prove its learning ability. Furthermore, LAFF uses a heuristic-based endorser
to ensure minimal accuracy for suggested values.

We evaluated LAFF by assessing its effectiveness and efficiency in form
filling on two datasets, one of them proprietary from the banking domain.
Evaluation results show that LAFF can provide a large number of accurate
form filling suggestions, significantly outperforming state-of-the-art approaches
in terms of Mean Reciprocal Rank (MRR). Further, LAFF takes at most 317ms

to provide a suggestion and is therefore applicable in practical data-entry sce-
narios.

62

Chapter 4

Learning-Based Relaxation of

Completeness Requirements for

Data Entry Forms

4.1 Overview

In this chapter , we propose LACQUER, a Learning-bAsed Completeness
reQUirEments Relaxation approach, to automatically relax completeness re-
quirements (i.e., relaxing a required field to be optional). The basic idea of
LACQUER is to build machine learning models to learn the conditions un-
der which users had to fill meaningless values based on the data provided
as input in past data entry sessions (hereafter called historical input instances).
Using these models, the already-filled fields in a data entry form can then
be used as features to predict whether a required field should become op-
tional for certain users. LACQUER can be used during the form filling pro-
cess to refactor data entry forms by dynamically removing obsolete required
fields at run time, helping designers identify completeness requirements that
should be relaxed.

LACQUER includes three phases: model building, form filling relaxation,
and threshold determination. Given a set of historical input instances, the model
building phase identifies the meaningless values filled by users and builds
Bayesian network (BN) models to represent the completeness requirement

63

4.1. Overview

dependencies among form fields (i.e., the conditions upon which users fill
meaningless values). To improve its learning ability, LACQUER identifies
also the cases where a required field is only applicable for a small group of
users; it uses the synthetic minority oversampling technique SMOTE to gen-
erate more instances on such fields for effectively mining dependencies on
them. Once the trained models are available, during the data entry session,
the form filling relaxation phase predicts the completeness requirement of a
target field based on the values of the already-filled fields and their condi-
tional dependencies in the trained models. The predicted completeness re-
quirement of a field and the corresponding predicted probability (endorsed
based on a “threshold” automatically determined) are then used to imple-
ment adaptive behaviors of data entry forms.

The overall architecture of LACQUER has been inspired by LAFF [BLBB22],
our previous work on automated form filling of data entry forms. The main
similarities between these approaches derive from their shared challenges as-
sociated with the application domain (form filling). These challenges include
(1) the arbitrary filling order and (2) partially filled forms. To address the
first challenge, similar to LAFF, we use BNs in order to mine the relation-
ships between filled fields and the target field to avoid training a separate
model for each filling order. As for the second challenge, once again similar
to LAFF, we use an endorser module to avoid providing inaccurate sugges-
tions to the user when the form does not contain enough information for
the model. More details about the similarities and differences between LAC-
QUER and LAFF are provided in section 4.5.

We evaluated LACQUER using form filling records from both a public
dataset and a proprietary dataset extracted from a production-grade enter-
prise information system in the financial domain. The experimental results
show that LACQUER can accurately relax the completeness requirements of
required fields in data entry forms with a precision value between 0.76 and
0.90 when predicting the truly required fields. In a sequential filling sce-
nario, i.e., when users fill data entry forms in the default order determined by
the form tab sequence, LACQUER can prevent users from providing mean-
ingless values in 20% to 64% of the cases, with a negative predictive value
(representing the ability of LACQUER to correctly predict a field as “op-
tional”) between 0.72 and 0.91, significantly outperforming state-of-the-art
rule-based approaches by 12pp to 70pp (with pp = percentage points) on the
two datasets. Furthermore, LACQUER is efficient; it takes at most 839ms to
determine the completeness requirement of an input instance of the propri-
etary dataset.

To summarize, the main contributions of this chapter are:

64

4.2. Completeness Requirement Relaxation for Data Entry Forms

• The LACQUER approach, which addresses the problem of automated
completeness requirements relaxation — an important challenge in de-
signing data entry forms. To the best of our knowledge, LACQUER is
the first work to combine BNs with oversampling and a probability-
based endorser to provide accurate completeness requirement sugges-
tions.

• An extensive evaluation assessing the effectiveness and efficiency of
LACQUER and comparing it with state-of-the-art baselines.

The rest of the chapter is organized as follows. Section 4.2 provides a
motivating example and explains the basic definitions of automated com-
pleteness requirements relaxation and its challenges. Section 4.3 describes
the different steps and the core algorithms of LACQUER. Section 4.4 reports
on the evaluation of LACQUER. Section 4.5 surveys related work. Section 4.6
discusses the usefulness and practical implication of LACQUER. Section 4.7
concludes the chapter.

4.2 Completeness Requirement Relaxation for Data

Entry Forms

In this section, we introduce the concepts related to data entry forms, provide
a motivating example, precisely define the problem of automated complete-
ness requirement relaxation for data entry forms, and discuss its challenges.

4.2.1 Data Entry Forms

Data entry forms are composed of fields of different types, such as textual,
numerical, and categorical. Textual and numerical fields collect free text and
numerical values, respectively (e.g., the name and the age of a private cus-
tomer of an energy provider); categorical fields provide a list of options from
which users have to choose (e.g., nationality). Form developers can mark
form fields either as required or optional, depending on the importance of the
information to be collected. In this study, a field can only have one complete-
ness requirement; in other words, a field cannot be optional and required
at the same time. This decision is made during the design phase of the form
based on the application completeness requirements. Such requirements cap-
ture the input data that shall be collected for certain types of users; they
are fulfilled by setting the required/optional property of the corresponding
fields in a data entry form. In other words, the required fields (also called

65

4.2. Completeness Requirement Relaxation for Data Entry Forms

mandatory fields [SHBA+14]) of a form collect input information considered
as important to the stakeholders who plan to use the collected information;
the absence of this information could affect the application usage. On the
contrary, optional fields collect information that is nice to have but whose ab-
sence is acceptable. For example, an energy provider cannot open a customer
account when the customer name is missing; hence, the corresponding input
field in a data entry form should be marked as “required”. At the same time,
an energy provider does not need to know the education level of a new pri-
vate customer (though it could be useful for profiling), so the corresponding
input field can be marked as “optional”.

Some required fields can be further classified conditionally required, i.e.,
they are required only if certain conditions hold. For example, the field
“marriage date” is required only if the value of the categorical field “civil
status” is set to “married”. Data entry forms that support “conditionally re-
quired fields” are generally called adaptive forms [BBG11] or context-sensitive
forms [AW12], since they exhibit adaptive behaviors based on the values
filled by users. More specifically, these types of forms are programmed so
that a field can be set from “required” to “optional” during the form-filling
session, based on the input data; a change of this property also toggles the
visibility of the field itself in the form. Such adaptive behaviours make the
data entry form easier to use [AW12], since users can focus on the right fields
they need to fill in.

Before submitting a data entry form, the form usually conducts a client-
side validation check [VLL+03] — using some scripting language or built-in
features of the environment where the form is visualized, like HTML at-
tributes — to ensure that all the required fields have been filled in.

In this work, we consider a simple representation of an input form, with
basic input fields that can have only a unique value that can be selected or
entered, such as a text box (e.g., <input type="text"> or <textarea> in
HTML), a drop-down menu (e.g, <select> with single selection), or a radio
button (e.g., <input type="radio" in HTML). This allows us to assume
that a field can only have one completeness requirement; in other words, a
field cannot be optional and required at the same time.

We do not support forms with more sophisticated controls or fields that
can handle multiple selections (e.g., a checkbox group for multiple-choice
answers or a drop-down menu with multiple selection), as often found in
surveys and questionnaires. Note that in this case a field can be both optional
and required at the same time, depending on the number of selected values

66

4.2. Completeness Requirement Relaxation for Data Entry Forms

in the group1. We plan to support this kind of complex controls as part of
future work.

4.2.2 Motivating Example

Data entry forms are difficult to design [FGG+12] and subject to frequent
changes [YSY+20]. These two aspects of data entry form design and devel-
opment negatively impact the way developers deal with application com-
pleteness requirements in data entry forms.

For example, let us consider a data entry form in an energy provider in-
formation system, used for opening an account for business customers. For
simplicity, we assume the form has only three required fields: “Company
type” (categorical), “Field of activity” (categorical), and “Tax ID” (textual).
Sometime after the deployment of the initial version of the system, the en-
ergy provider decides to support also the opening of customer accounts for
no-profit organizations (NPOs). The developers update the form by adding
(a) a new option “NPO” to the field “Company type”, and (b) additional fields
denoting information required for NPOs. After the deployment of the new
form, a data entry operator of the energy provider (i.e., the end-user interfac-
ing with the data entry form) notices a blocking situation when filling in the
form for an NPO. Specifically, the form flags the field “Tax ID” as required;
however, the company representative cannot provide one since the company
is exempted from paying taxes. The clerk is then obliged to fill the required
field with a meaningless value (e.g., “@”) to pass the validation check and
be able to submit the form. Several weeks later, after noticing some issues in
the generation of customers’ reports, the data quality division of the energy
provider reviews the data collected through the data entry form, detecting
the presence of meaningless values. A subsequent meeting with IT analysts
and developers reveals that those values have been introduced because the
data entry form design has not been updated to take into account the new
business requirements (i.e., opening accounts for NPOs) and the correspond-
ing completeness requirements (i.e., some NPOs in certain fields of activity
do not have a tax ID). For example, the current (but obsolete) form design
always flags “tax ID” as a required field; however, when the “Company type”
field is set to “NPO” and the “Field of activity” field is either “charity” or
“education”, the field “tax ID” should be optional.

1An example of complex input control is the case where users need to select at least three
options from a multiple choice answer field (e.g., a checkbox group). Any option chosen
before reaching the minimum number of selected values would be considered “required”;
however, the same option chosen after the first three would be considered “optional”.

67

4.2. Completeness Requirement Relaxation for Data Entry Forms

These meaningless values filled during form filling negatively affect data
quality [AW12], since they are considered as data entry errors and may lead
to error propagation:

• Data entry errors: Users fill obsolete required fields with incorrect data
(meaningless values) in order to proceed quickly in the workflow of the
data-entry form [AW12].

• Error propagation: Meaningless value errors can propagate and create
more errors [MBM15], especially when these values are used in ML-
based tools.

Meaningless value errors are difficult to identify because such values can
pass all validation checks of the data entry form. A business may establish
the practice of using specific values (e.g., “@” and “-1”) when users do not
need to fill some fields, as in the aforementioned example. However, even
in this case the data quality team needs to carefully check the filled fields to
ensure that all the data entry operators follow this convention, which is a
time-consuming process.

Currently, there are some simple but rather impractical solutions to ad-
dress the issue of filling meaningless values, including rule-based solution
and dictionary-based solution:

• Rule-based solution: This solution defines for each field some rules
capturing the conditions for which a required field can become op-
tional, based on the values of the other form fields.

• Dictionary-based solution: This solution sets all fields containing mean-
ingless values as optional. More specifically, the data quality division
could first create a dictionary of meaningless values (e.g., “@”, “$”).
Users can then use such values when a field is not applicable in a cer-
tain form-filling scenario. Finally, the data quality division could an-
alyze the historical input instances and mark a field as optional when
users assign a value to it from the meaningless values dictionary. Such
information could then be used to refactor the data entry form, setting
the corresponding input field as optional.

However, the two solutions are not practical. Given the evolving na-
ture of software [WKL04, Ghe17], the rule-based solution is not scalable and

68

4.2. Completeness Requirement Relaxation for Data Entry Forms

maintainable, especially when the number of fields (and their possible val-
ues, for categorical fields) increases. Moreover, as is the case for our indus-
trial partner, it is difficult also for domain experts to formulate the complete-
ness requirement of new fields, since they have to decide the exact impact
of different field combinations on the new fields. Regarding the dictionary-
based solution, the completeness requirement of a field usually depends on
the values of other filled fields [AW12] (such as the aforementioned example
of Tax ID), and cannot be detected only by looking at special/meaningless
characters. This simple solution cannot help domain experts identify these
useful conditions.

Therefore, we contend it is necessary to develop automated methods to
learn such conditions directly from the data provided as input in past data
entry sessions, so that completeness requirements of form fields can be au-
tomatically relaxed during new data entry sessions. Moreover, the learned
conditions could also help designers identify completeness requirements that
should be relaxed.

4.2.3 Problem Definition

In this chapter, we deal with the problem of completeness requirement relax-
ation for data entry forms. The problem can be informally defined as decid-
ing whether a required field in a form can be considered optional based on
the values of the other fields and the values provided as input in previous
data entry sessions for the same form. We formally define this problem as
follows.

Let us assume we have a data entry form with n fields F = {f1, f2, . . . , fn}.
Taking into account the required/optional attribute of each field, the set of
fields can be partitioned into two groups: required fields (denoted by R) and
optional fields (denoted by R̄), where R̄ [R = F and R̄ \ R = ;. Let VD
represent a value domain that excludes empty values. Each field fi in F can
take a value from a domain Vi, where Vi = VD i if the field is required and
Vi = VD i [? if the field is optional (? is a special element representing an
empty value).

Let Rc ✓ R be the set of conditionally required fields, which are required
only when a certain condition Cond is satisfied. For a field fk 2 Rc, we define
the condition Condk as the conjunction of predicates over the value of some
other fields; more formally, Condk =

V
1in,i 6=k

h(fi, vci), where fi 2 F, vc
i
2

Vi, and h is a predicate over the field fi with respect to the value vc
i
.

During form filling, at any time t the fields can be partitioned into two
groups: fields that have been filled completely (denoted by Ct) and unfilled

69

4.2. Completeness Requirement Relaxation for Data Entry Forms

WishCompany Name

20Monthly revenue k euro

NPOCompany type

educationField of activity

Tax ID

SubmitCancel

Data entry form F

Model M
Ct

filled fields

predict

f1: Company f2: Monthly
f3: Company type

f4: Field of
f5: Tax ID

SubmissionName revenue activity

(Textual) (Numerical) (Categorical) (Categorical) (Textual)

UCI 20 Large enterprise Real estate T190 20180101194321

KDL 21 Large enterprise Manufacturing T201 20180101194723

...

UNI 39 NPO Education n/a 20180102132016

submission

Historical input instances IF (t)

train

Figure 4.1: The Automated Form Filling Relaxation Problem

fields (denoted by C̄t); let G be the operation that extracts a field from a form
during form filling G(F) = f , such that (f 2 Ct) _ (f 2 C̄t) and Ct \ C̄t = ;.
By taking into account also the required/optional attribute, we have: filled
required fields (Ct\R), filled optional fields (Ct\ R̄), unfilled required fields
(C̄t \R), and unfilled optional fields (C̄t \ R̄).

When a form is about to be submitted (e.g., to be stored in a database),
we define an input instance of the form to be IF = {hf1, v1i, . . . , hfn, vni} with
fi 2 F and vi 2 Vi; we use the subscript tj as in IFtj to denote that the input
instance IF was submitted at time tj . We use the notation IF (t) to represent
the set of historical input instances of the form that have been submitted up
to a certain time instant t; IF (t) = {IFti , I

F
tj
, . . . , IFtk}, where ti < tj < tk < t.

Hereafter, we drop the superscript F when it is clear from the context.
The completeness requirement relaxation problem can be defined as fol-

lows. Given a partially filled form F = {f1, f2, . . . , fn} for which, at time t,
we know C̄t 6= ;, Ct, and Rc, a set of historical input instances IF (t), and a
target field fp 2 (Rc \ C̄t) to fill, with p 2 1 . . . n, we want to build a model
M predicting whether, at time t, fp should become optional based on Ct and
IF (t).

4.2.3.1 Framing the problem definition scope

In this problem definition, our goal is to relax the completeness requirements of a
form by determining which obsolete required fields should become optional
to avoid filling meaningless values. We do not consider the case in which
optional fields could become required; we leave extending LACQUER to au-
tomatically decide the completeness requirement of all fields as part of future
work.

70

4.2. Completeness Requirement Relaxation for Data Entry Forms

Moreover, as mentioned in the motivating example, in this definition, we
mainly focus on the case of filling data entry forms from scratch. We do not
consider the case in which an existing instance in the database is updated
(including an update of the timestamp); for example, following our moti-
vating example, if a company changes its “Field of activity” to “charity”,
then some fields like “tax ID” may become optional and do not need to be
filled. LACQUER can be adapted to support this scenario and check if the
completeness requirement of some fields need to be changed; we also leave
this adaption as part of future work.

4.2.3.2 Application to the running example

Figure 4.1 is an example of a data entry form used to fill information needed
to open an account for business customers with an energy provider The form
F is composed of five fields, including f1:“Company Name”, f2:“Monthly
revenue”, f3:“Company type”, f4:“Field of activity”, and f5:“Tax ID”. All
the fields are initially required (i.e., F r

= {f1, f2, f3, f4, f5}). Values filled
in these fields are then stored in a database. An example of the database is
shown on the right side of Figure 4.1. These values are collected during the
data entry session with an automatically recorded timestamp indicating the
submission time. Each row in the database represents an input instance (e.g.,
IF20180101194321 = {h“Company Name”,UCIi, . . . , h“Tax ID”,T190i}), where the
column name corresponds to the field name in the form. The mapping can
be obtained from the existing software design documentation or software im-
plementation [BLBB22]. Using the data collected from different users, we can
build a model M to learn possible relationships of completeness requirement
between different fields. Let us assume a scenario where during the creation
of a customer account using F , the energy provider clerk has entered Wish,
20, NPO, and education for fields f1 to f4, respectively. The field f5 (“Tax ID”)
is the next field to be filled. Our goal is to automatically decide if field f5 is
required or not based on the values filled in fields f1 to f4.

4.2.4 Towards adaptive forms: challenges

Several tools for adaptive forms have been proposed [FS98, BBG11, SLDM18].
These approaches use intermediate representations such as XML [BBG11]
and dynamic condition response graphs [SLDM18] to represent the com-
pleteness requirements rules and implement adaptive behaviours. Existing
tools for adaptive forms usually assume that form designers already have,
during the design phase, a complete and final set of completeness require-

71

4.3. Approach

Historical in-
put instances

Pre-processing

Model building

Pre-processing

Prediction Endorsing

Current input Rquired 0.70
Optional 0.30

Threshold determination

BNs
Probabilistic
distribution

SuggestionsA B

C

A Model Building Phase, B Form Filling Relaxation Phase, and

C Threshold Determination Phase

Figure 4.2: Main Steps of the LACQUER Approach

ments, capturing the conditions for which a field should be required or op-
tional.

However, this assumption is not valid in real-world applications. On one
hand, data entry forms are not easy to design [FGG+12]. Data entry forms
need to reflect the data that need to be filled in an application domain. Due
to time pressure and the complexity of the domain (e.g., the number of fields
needed to be filled and their interrelation), it is difficult to identify all the
completeness requirements when designing the data entry form [DVDSB+19,
AZ17]. On the other hand, data entry forms are subject to change: a recent
study [YSY+20] has shown that 49% of web applications will modify their
data constraints in a future version. The frequent changes in data constraints
may also make the existing completeness requirements obsolete.

Hence the main challenge is how to create adaptive forms when the set
of completeness requirements representing the adaptive behaviour of a form
is incomplete and evolving.

4.3 Approach

In this section, we present our machine learning approach for data entry form
relaxation named LACQUER (Learning-bAsed Completeness reQUirEments
Relaxation).

72

4.3. Approach

f1: Company f2: Monthly
f3: Company type

f4: Field of
f5: Tax ID

name revenue activity

(Textual) (Numerical) (Categorical) (Categorical) (Textual)

UCI! Required 20![20,22) Large enterprise Real estate T190

KDL ! Required 21![20,22) Large enterprise Manufacturing T201

EoP! Required @!Optional Large enterprise Manufacturing T200

UNI! Required 39![39,41) NPO Education n/a!Optional

Figure 4.3: Example of Pre-processed Historical Input Instances

As shown in Figure 4.2, LACQUER includes three phases: model building,
form filling relaxation, and threshold determination. LACQUER preprocesses
the historical input instances related to a data entry form and identifies the
meaningless values in them. The historical input instances are divided in two
parts: historical input instances for training (training input instances) and
historical input instances for tuning (tuning input instances) used for thresh-
old determination. In the first phase, LACQUER builds BN models on the
preprocessed training input instances to represent the completeness require-
ment dependencies between form fields. This phase occurs offline before
deploying LACQUER as a completeness requirement relaxation tool for data
entry. The form filling relaxation phase occurs during the data entry session
and assumes that all the models have been built. During this phase, given a
target field, LACQUER selects the BN model related to the target from all the
BN models and predicts the completeness requirement of the target, taking
into account the values of the filled fields captured during the form filling
process. To improve prediction accuracy, LACQUER includes an endorser
module that seeks to only provide users with predictions whose confidence
level is higher than a minimum threshold. The value of the threshold is au-
tomatically determined in the threshold determination phase.

LACQUER is inspired by our previous work on automated form fill-
ing [BLBB22]; the main differences between the two approaches are discussed
in section 4.5.

4.3.1 Pre-processing

The first two phases of LACQUER include a preprocessing step to improve
the quality of the data in historical input instances as well as the current input
instance. As mentioned in section 4.2.1, data entry forms can contain fields
that are not applicable to certain users; this is the main cause of the presence
of missing values and meaningless values in historical input instances. Missing

73

4.3. Approach

values occur when users skip filling an (optional) field during form filling. A
meaningless value is defined as any value filled into a form field that can be
accepted during the validation check but does not conform with the seman-
tics of the field. For example, given a data entry form with a textual field
“Tax ID”, if a user fills “n/a” in this field, the value can be accepted during
the submission of the instance2; however, it should be deemed meaningless
since “n/a” does not represent an actual “Tax ID”.

For missing values, we replace them with a dummy value “Optional” in
the corresponding field. As for the meaningless values, we first create a dic-
tionary containing possible meaningless values based on domain knowledge.
This dictionary is used to match possible meaningless values in historical in-
put instances; we replace the matched values with “Optional”. The rationale
for this strategy is that it is common practice, within an enterprise, to suggest
data entry operators some specific keywords when a field is not applicable
for them. For example, our industrial partner recommends users to fill such
fields with special characters such as “@” and “$”. The overarching intuition
behind replacing missing values and meaningless values with “Optional” is
that, when data entry operators skip filling a field (resulting in a missing
value in the form) or put a meaningless value, it usually means that this field
is not applicable in the current context.

After detecting missing values and meaningless values, we preprocess
other filled values. For textual fields, we replace all valid values with a
dummy value “Required”, reflecting the fact that data entry operators deemed
these fields to be applicable. After preprocessing, all values in textual fields
are therefore either “Required” and “Optional” to help the model learn the
completeness requirement based on this abstract presentation. Numerical
fields can be important to decide the completeness requirement of other fields.
For example, companies reaching a certain monthly revenue can have some
specific required fields. For this reason, we apply data discretization to nu-
merical fields to reduce the number of unique numeric values. Each numeric
value is represented as an interval, which is determined using the widely
used discretization method based on information gain analysis [BFSO84].
We do not preprocess categorical fields since they have a finite number of
candidate values. We keep the original values of categorical fields since
users who select the same category value may share common required in-
formation. At last, we delete all the fields that are consistently marked as
“Required” or “Optional”, because such fields do not provide any discrimi-

2We assume the validation check does not check for the well-formedness of the string
corresponding to the Tax ID.

74

4.3. Approach

native knowledge to the model.
During the data entry session, similar preprocessing steps are applied.

We skip values filled in fields that were removed in historical input instances.
We replace values in textual fields with “Required” and “Optional”, as de-
scribed above. We also map numerical values onto intervals and keep values
in categorical fields.

The historical input instances are then divided in two parts that will be
used separately for training (training input instances) and for the threshold
determination (tuning input instances).

4.3.1.1 Application to the running example

Figure 4.3 shows an example of historical input instances collected from the
data entry form presented in Figure 4.1. During the preprocessing phase,
LACQUER identifies meaningless values in different fields (e.g., “n/a” and
“@”) and replaces them by the dummy value Optional. For the remaining
“meaningful” values, LACQUER replaces values in the textual field “Com-
pany name” to the dummy value Required; values in the field “Monthly rev-
enue” are discretized into intervals. In addition to historical input instances,
LACQUER also preprocesses the input instance filled during the data entry
session. For example, as shown in Figure 4.1, a user fills values Wish, 20,
NPO, and Education in fields “Company name”, “Monthly revenue”, “Com-
pany type”, and “Field of activity”, respectively. LACQUER will replace the
value filled in the field “Company name” to “Required”, since it is a mean-
ingful value. LACQUER also maps the value in the field “Monthly revenue”
into the interval [20, 22).

4.3.2 Model Building

The model building phase aims to learn the completeness requirement depen-
dencies between different fields from training input instances related to a
data entry form.

During the data entry session, we consider the filled fields as features to
predict the completeness requirement of the target field (i.e., optional or re-
quired). However, in our previous work [BLBB22] we have shown that in
an extreme scenario, users could follow any arbitrary order to fill the form,
resulting in a large set of feature-target combinations. For example, given a
data entry form with n fields, when we consider one of the fields as the target,
we can get a total number of up to 2

n�1 � 1 feature (i.e., filled fields) combi-
nations. Based on the assumption of identical features and targets [DSX10]

75

4.3. Approach

f2: Monthly
f3: Company type

f4: Field of
f5: Tax ID

revenue activity

(Numerical) (Categorical) (Categorical) (Textual)

[20, 22) Large enterprise Real estate T190

[20, 22) Large enterprise Manufacturing T201

Optional Large enterprise Manufacturing T200

[39, 41) NPO Education Optional

Preprocessed historical input instances

f2: Monthly
f3: Company type

f4: Field of
f5: Tax ID

revenue activity

(Numerical) (Categorical) (Categorical) (Textual)

[20, 22) Large enterprise Real estate Required

[20, 22) Large enterprise Manufacturing Required

Optional Large enterprise Manufacturing Required

[39, 41) NPO Education Optional

Temporary training set for target “Tax ID”

f2: Monthly
f3: Company type

f4: Field of
f5: Tax ID

revenue activity

(Numerical) (Categorical) (Categorical) (Textual)

[20, 22) Large enterprise Real estate Required

[20, 22) Large enterprise Manufacturing Required

Optional Large enterprise Manufacturing Required

[39, 41) NPO Education Optional

[39, 41) NPO Education Optional

[39, 41) NPO Education Optional

Oversampled training set

f3

f4

f2 f5

The BN model for “Tax ID”

A

B

C

D

Figure 4.4: Workflow of the Model Building Phase

to train and test a machine learning model, a model needs to be trained on
each feature-target combination, which would lead to training an impractical
large number of models.

To deal with this problem, we select BNs as the machine learning models
to capture the completeness requirement dependencies between filled fields
and the target field, without training models on specific combinations of
fields. As already discussed in our previous work [BLBB22], the reason is
that BNs can infer the value of a target field using only information in the
filled fields and the related PGM (see section 2.1); BNs automatically deal
with the missing conditionally independent variables (i.e., unfilled fields).

In this work, LACQUER learns the BN structure representing the com-
pleteness requirement dependencies from training input instances. Each field
in the data entry form represents a node (random variable) in the BN struc-
ture; the edges between different nodes are the dependencies between differ-
ent fields. In order to construct the optimal network structure, BN performs a
search-based optimization based on the conditional probabilities of the fields
and a fitness function. As in our previous work [BLBB22], we use hill climb-
ing as the optimizer to learn the BN structure with a fitness function based
on BIC [Raf95].

Algorithm 3 illustrates the main steps of this phase. LACQUER takes as
input a set of preprocessed historical input instances IF (t)0train for training
and learning the completeness requirement dependencies (e.g., the input in-
stances in block A of Figure 4.4). Initially, for each field fi in the list of

76

4.3. Approach

Algorithm 3: Model Building
Input: Set of preprocessed historical input instances IF (t)0train for training
Output: Dictionary of probabilistic graphical models M

1 M empty dictionary;
2 List of fields fields getFields(IF (t)0train);
3 foreach field fi 2 fields do

4 Temporary training set trainfi getDataSetForField(IF (t)0train , fi);
5 Oversampled Training set trainoversample

fi
 SMOTE(trainfi , fi);

6 Model Mi trainBayesianNetwork(trainoversample
fi

);
7 M[fi] Mi

8 end

9 return M;

fields extracted from IF (t)0train (line 2), we create a temporary training set
where we consider the field fi as the target (line 4). Since we aim to predict
whether the target field is required or optional during form filling, in the tem-
porary training set, we keep the value “Optional” in the target field fi and
label other values as “Required” (block B in Figure 4.4). These two values
are the classes according to which to predict fi.

However, we may not train effective classification models directly on this
temporary training set. This is caused by the imbalanced nature of input
instances for different classes. Users commonly enter correct and meaning-
ful values during form filling. They only fill meaningless values in certain
cases. As a result, the number of input instances having meaningless val-
ues (i.e., in the “Optional” class) is usually smaller than the number of input
instances in the “Required” class. This can make the learning process inaccu-
rate [JK19], since machine learning models may consider the minority class
as noise [RA20]. The trained models could also over-classify the majority
class due to its increased prior probability [JK19]. For example in block B
of Figure 4.4, considering that the column “f5: Tax ID” is the current target,
the number of instances in class “Required” is three, which is higher than the
single instance in class “Optional”. If we train a model on such imbalanced
dataset, it might be difficult to learn the conditions (or dependencies) to relax
this field as optional due to the small number of “Optional” instances.

To solve this problem, we apply SMOTE (line 5) on the temporary training
set trainfi

to generate an oversampled training set trainoversample
fi

(as shown
in block C in Figure 4.4). After oversampling, both classes have the same
number of input instances. We train a BN model Mi based on the oversam-
pled training set for the target field fi (line 6). For example, block D in

77

4.3. Approach

Filled fields

f2:Monthly
rev-

enue=[20, 22]
f3:Company
type =NPO
f4:Field

of activity
=Education

Target

f5:Tax ID= ?

Pre-processed
current input

Model
for target
“Tax ID”

....

Model
for target

“Company
type”

f4

f3

f2 f5=?

Model for
“Tax ID”

is selected

A Model selection

Class Prob.

Optional 0.80
Required 0.20

Probability distribution

Suggestion of
“Tax ID” is Optional

Prob.=0.8 > ✓p=0.70
checkProb=true

B Endorsing

Figure 4.5: Workflow for Form Relaxation Phase

Figure 4.4 represents the model built for the target field “Tax ID”. Follow-
ing this step, we can obtain a BN model for each field. We save all the BN
models in the dictionary M (line 7), where the key represents the name of
the field and the value is the corresponding trained BN model. The output of
Algorithm 3 is the dictionary M.

4.3.2.1 Application to the running example

Given the preprocessed training input instances shown in block A in Fig-
ure 4.4, LACQUER creates a temporary training set for each target (e.g., the
field “Tax ID”), where LACQUER replaces the meaningful and meaningless
values of the target field to Required and Optional, respectively (in block B).
The temporary training set is oversampled using SMOTE to create a balanced
training set where the number of instances of both Required and Optional
classes is the same (block C of Figure 4.4). This oversampled training set
is used to train a BN model for the target field “Tax ID”. An example of the
trained BN model is presented in block D in Figure 4.4. After the model
building phase, LACQUER outputs a model for each target. For the exam-
ple of training input instances related to Figure 4.1, LACQUER returns five
distinct models where each model captures the completeness requirement
dependencies for a given target.

78

4.3. Approach

Algorithm 4: Form Filling Relaxation
Input: Dictionary of Models M = {f1 : M1, . . . , fk : Mk}

Set of Filled fields F f = {hff

1 , v
f

1 i, . . . , hff

m, vfmi}
Target field fp
Threshold ✓p

Output: A Boolean checkOPp, representing the decision to set field fp to optional
1 Set F f

0
 getPreprocessedData(F f) ;

2 Model Mp M[fp];
3 List of pairs of completeness requirements and probability distribution
hcr , prilist = predictCR(Mp , F

f
0
, fp);

4 Top-ranked pair hcrtop , prtopi = getTopRanked(hcr , prilist);
5 Boolean checkOPp isOptional(crtop);
6 if checkOPp then

7 Boolean checkProb (prtop < ✓p);
8 if checkProb then

9 checkOPp “false”;
10 end

11 end

12 return checkOPp;

4.3.3 Form Filling Relaxation

The form filling relaxation phase is an online phase that occurs during the
data entry session. In this phase, LACQUER selects the model Mp 2 M
corresponding to the target field fp. This model is then used to predict the
completeness requirement of the target fp based on the filled fields F f . The
main steps are shown in Algorithm 4.

The inputs of the algorithm are the dictionary of trained models M, the
set F f representing the filled fields during the entry session and their values,
the target field fp, and the endorsing threshold ✓p for fp. The algorithm starts
by applying the preprocessing techniques outlined in § 4.3.1 to the set of the
filled fields in F f in order to obtain a new set of preprocessed filled fields
F f

0 (line 1). LACQUER then selects the model Mp from M (line 2), since
this model is trained for the target field fp based on the oversampled data
with a balanced number of instances for each class of fp. With the selected
model, LACQUER predicts the completeness requirement for fp (line 3) and
gets the top-ranked completeness requirement based on the prediction prob-
ability (line 4).

79

4.3. Approach

4.3.3.1 Endorsing

During the data entry session, values in filled fields do not always provide
enough knowledge for the model to accurately predict the completeness re-
quirement of a given target field. This happens because when training BN
models, there may not be enough information in the training input instances
to learn the dependencies among some fields with specific values.

However, in the context of form filling relaxation, it is important to pro-
vide accurate completeness requirement suggestions. On the one hand, wrongly
predicting optional fields as required adds more constraints to the data en-
try form; users will be obliged to fill fields with meaningless values. On
the other hand, wrongly predicting a required field as optional can result in
missing information. In order to prevent this situation, LACQUER includes a
heuristic-based endorser module that decides if the predicted completeness
requirement is correct or not. Since our main goal is to relax the complete-
ness requirement by predicting when a required field should be optional, we
mainly use the endorser to endorse the prediction where the target field is
predicted as “Optional”. If the prediction is endorsed, we set the field to
“Optional”; otherwise, we use its previous setting (“Required”).

Specifically, LACQUER checks if the top-ranked completeness require-
ment is equal to “Optional”; it saves the result in the Boolean flag checkOPp

(line 5). If the value of checkOPp evaluates to true, LACQUER analyses the
probability distribution of the predicted completeness requirement of the tar-
get field since it reflects whether LACQUER has enough “confidence” in the
prediction based on current information. We check if the probability for the
field to be “Optional” is lower than a threshold ✓p for target fp (line 7), saving
the result in the Boolean flag checkProb. If the value of checkProb evaluates to
true, we change the value of the Boolean flag checkOPp to false (line 9) since it
implies the model does not have enough “confidence” for variable inference
and prediction; otherwise, LACQUER keeps the prediction as “Optional”.
The threshold ✓ is automatically determined; its value differs for different
targets (as discussed in § 4.3.4). We use different threshold values because
the prediction is done by models trained on different data and the variance
of the data can have a significant effect on prediction accuracy [WC21].

4.3.3.2 Application to the running example

Figure 4.5 shows the process of predicting the completeness requirement of
the field “Tax ID” based on the input values in Figure 4.1. LACQUER first
selects the model related to the current target for prediction (block A in

80

4.3. Approach

Algorithm 5: Endorser Threshold Determination
Input: Set of pre-processed historical input instances IF (t)0tune for tuning

Dictionary of Models M = {f0 : M0, f1 : M1, . . . , fk : Mk}
Output: Dictionary of thresholds ✓

1 ✓ empty dict;
2 List of fields fields getFields(IF (t)0tune);
3 foreach field fi 2 fields do

4 tempth empty dictionary;
5 IF (t)0tunei = getDataSetForField(IF (t)0tune , fi);
6 Model Mi M[fi];
7 for n= 0 to 1 (step 0.05) do

8 predictedCRAll = predictCRAllInstances(Mi , I
F (t)0tunei , n);

9 score = evaluate(IF (t)0tunei , predictedCRAll);
10 tempth [n] = score ;
11 end

12 ✓[i] = getBestScore(tempth);
13 end

14 return ✓;

Figure 4.5). Let us assume that, based on the BN variable inference, LAC-
QUER predicts that field “Tax ID” has a probability of 0.80 to be Optional.
Since the top predicted value is Optional, LACQUER activates the endorser
module (block B in Figure 4.5) to decide whether the level of confidence is
acceptable. For example, let us assume the automatically decided threshold
value for field “Tax ID” is 0.70 (i.e., ✓taxID=0.70). Since the probability value
of the “Optional” class (0.80) is higher than this threshold, the Boolean flag
checkOPTaxID remains true. LACQUER decides to set the field “Tax ID” to
Optional.

4.3.4 Endorser Threshold Determination

We automatically determine the value of the threshold in the endorser mod-
ule for each target. This step occurs offline and assumes that the models in
M built during the model building phase are available. The threshold ✓i for
the target field i is determined with the set of preprocessed tuning input in-
stances. The basic idea is that for each historical input instance in this subset,
we consider all fields except field i to be filled and use the model trained
for field i to predict its completeness requirement with different values of ✓i.
We determine the value of ✓i based on the value that achieves the highest
prediction accuracy on tuning input instances.

The main steps are shown in Algorithm 5. The algorithm takes as in-

81

4.4. Evaluation

put the set of preprocessed historical input instances for tuning IF (t)0tune and
the trained models M. For each field fi in the list of fields extracted from
IF (t)0tune (line 2), we generate a temporary dataset IF (t)0tunei where the value
of field fi is transformed into “Optional” and “Required” using the method
presented in Figure 4.4(B) (line 5). We select the model corresponding to fi
from M (line 6) and use the selected model to predict the completeness re-
quirement of field fi based on the values of other fields in IF (t)0tunei (line 8).
While predicting, we try different thresholds, varying from 0 to 1 with a step
equal to 0.05. For each threshold value, we compare the predicted complete-
ness requirement with the actual completeness requirement of field fi in each
input instance of IF (t)0tunei to calculate the prediction accuracy (line 9). LAC-
QUER selects the value of ✓i that achieves the highest prediction accuracy
value in IF (t)0tunei as the threshold for fi (line 12). The algorithm ends by
returning a dictionary containing the thresholds of all fields.

4.4 Evaluation

In this section, we report on the evaluation of our approach for automated
completeness requirement relaxation. First, we assess the overall accuracy of
LACQUER when predicting the completeness requirement of fields in data
entry forms, and compare it with state-of-the-art baselines. We then assess
the performance of LACQUER, in terms of training time and prediction time,
for practical applications. Last, we perform an ablation study to evaluate
how the use of SMOTE (in the model building phase) and the heuristic-based
endorser (in the form filling relaxation phase) affects the accuracy of LAC-
QUER.

More specifically, we evaluated LACQUER by answering the following
research questions (RQs):
RQ1 Can LACQUER provide accurate predictions for completeness requirement

relaxation, and how does it compare with baseline algorithms?
RQ2 Is the performance of LACQUER, in terms of training and prediction time,

suitable for practical applications?
RQ3 What is the impact of using SMOTE and the heuristic-based endorser on the

effectiveness of LACQUER?

82

4.4. Evaluation

Table 4.1: Information about the Fields in the Datasets

Dataset # of # of # of Name of required fields
fields instances required fields (% of missing and meaningless values)

NCBI 26 235538 6 sample-name(0), tissue(0.130), isolate(0.351), sex(0.351)
biomaterial-provider(0.1), age(0.543)

PEIS 33 73082 19

legal name(0), contact name(0), first name(0.113),
place of birth(0.127), native country(0.127), status(0),

year of study(0.94), function(0), employer name(0.35),
name of school/university(0.84), type of contract(0),

contract start date(0.668), date of end of contract(0.974),
field of activity (0), code NACE(0.123), primary activity(0),

country of activity(0),percentage of activity(0)

4.4.1 Dataset and Settings

4.4.1.1 Datasets

We selected the datasets used for the evaluation of LACQUER according to
the following criteria:

(1) data should be collected from a real data entry form; (2) the form
fields should have different completeness requirements (i.e., required and
optional); and (3) the data entry form should have obsolete required fields,
where users could use meaningless values to pass the validation checks.

We identified two datasets meeting these criteria: one publicly available
in the biomedical domain (dubbed NCBI) and another proprietary dataset,
extracted from a production-grade enterprise information system, provided
by our industrial partner (dubbed PEIS). Each dataset consists of data col-
lected from one real-world data entry form.

Other datasets used in related work on adaptive data entry forms (see
also section 3.6) were either not mentioned [FS98, TB96], unavailable [BBG11],
or confidential [SLDM18]. In addition, we also analyzed datasets from sur-
veys conducted in countries with transparency policies (e.g., the USA “Na-
tional Survey on Drug Use and Health” [MK19]). However, these surveys do
not contain a detailed specification defining the completeness requirement
of each field and thus the corresponding dataset does not meet our selection
criterion #2.

Both datasets are represented by a data table where each row corresponds
to an input instance filled by a user and each column represents a specific
field in the data entry form; an input instance represents all the field values
as submitted by a user.

The NCBI dataset is composed of metadata for diverse types of biologi-
cal samples from multiple species [BCG+12]. We choose this dataset because
it has been used in previous work on automated form filling [MROE+19,

83

4.4. Evaluation

BLBB22]. Moreover, this dataset provides the design of the corresponding
data entry form in the CEDAR workbench [GOMR+17] with the list of com-
pleteness requirements for the different fields. Following the evaluation method-
ology described in previous work [MROE+19], we considered a specific sub-
set from the NCBI dataset related to the species “Homo sapiens” for eval-
uation. We downloaded the dataset from the official NCBI website3. The
dataset is represented by a data table where each row corresponds to an in-
put instance filled by a user and each column represents a specific field in the
data entry form; an input instance represents all the values of the form fields
as submitted by a user.

As shown in Table 4.1, the NCBI dataset contains 235 538 instances4 and
has 26 fields, six of which are required. These six fields are always required
and are not subject to any additional conditions. We identify the meaning-
less values in the required fields using the strategy presented in section 4.3.1,
i.e., mapping the actual value in the data with the dictionary of meaningless
values obtained from the domain knowledge. In Table 4.1, next to each field
we indicate the ratio of instances having missing or meaningless values. The
ratio of meaningless values5 varies from 0.1 (for biomaterial-provider) to 0.543
(for age). The case when the ratio of meaningless values is equal to 0 (i.e.,
sample-name) represents the situation where the field was correctly filled for
all the instances in the dataset.

Based on the ratio of meaningless values in Table 4.1, we find that the
number of instances for meaningless and valid values is imbalanced for most
of the fields. For example, the ratio of meaningless values for tissue is 0.130.
The field age has more meaningless values with a ratio of 0.543. The rea-
son for this relatively high ratio could be that the completeness requirement
(i.e., “Required”) of this field does not conform with the actual need in the
real world; that is, the field age is not required when the actual concept of
“age” does not apply to a certain type of biomaterial (e.g., for protein TM-
1 [SZZZ17]).

The PEIS dataset contains the data filled through the web-based data en-
try form during the process of creating a new customer account. The dataset
was extracted from the database of our industrial partner. Similar to the

3 https://ftp.ncbi.nlm.nih.gov/biosample/
4The number of instances is different from that indicated in our previous work [BLBB22]

since the preprocessing step in that work retained only instances with at least three fields be-
ing filled. In contrast, in this work we keep fields with missing values to analyze completeness
requirements.

5Required fields in the NCBI dataset have no missing values since they are always re-
quired.

84

https://ftp.ncbi.nlm.nih.gov/biosample/

4.4. Evaluation

NCBI dataset, each row in the table represents an instance and each column
represents a form field. We identified the mapping between column names in
the table and field names in the data entry form using the available software
documentation.

As shown in Table 4.1, the PEIS dataset has 33 fields, 19 of which are re-
quired (including conditionally required). In this dataset, nine of the required
fields do not have missing/meaningless values (i.e., the ratio of meaningless
values is 0). For the rest of the fields, the ratio of instances with missing or
meaningless values ranges from 0.113 to 0.974. The reason behind having a
high ratio of meaningless values in some fields, is that those fields are con-
ditionally required. They are rarely to be required in real scenarios, which
leads to many missing values.

4.4.1.2 Dataset Preparation

For the two datasets, we consider all the required fields as targets since we
aim to learn the conditions to relax them as optional (for avoiding meaning-
less values and improving the overall data quality). However, we do not
consider fields where the ratio of missing and meaningless values is 0, as
they have no relaxation conditions to learn. We split the dataset into three
subsets containing 80%, 10%, and 10% of input instances based on their sub-
mission time, used respectively for training, tuning, and testing. The input
instances (excluding submission time) in the training set are used to train
LACQUER. The validation set is used to decide the endorser threshold for
each field following the strategy explained in section 4.3.4.

As for the testing input instances, since there is no information on the
actual form filling order, we simulated two form filling orders for data entry,
including “sequential filling” and “partial random filling”.

The former corresponds to filling data entry forms in the default order,
as determined by the form tab sequence, e.g., the navigation order determined
by the HTML attribute tabindex in web UI designs [FS04]. It simulates
the logical order many users follow to fill out forms, especially when they
use a keyboard to navigate form fields [Mic13]. The latter represents the
case when designers group some semantics-related fields together and add
controls to force users filling a group of fields sequentially [CCC+11]; outside
these groups, users can fill fields randomly.

We simulated partial random filling by randomly generating a field order
for each testing input instance while respecting the sequential order of the
fields in the same group. In the case where there is no grouping or controls
in the form, the partial random filling scenario turns into to a (complete)

85

4.4. Evaluation

f : Company f : Monthly
f : Company type

f : Field of
f : Tax ID

Submissionname revenue activity

(Textual) (Numerical) (Categorical) (Categorical) (Textual)

UCI 20 Large enterprise Real estate T190 20180101194321

KDL 21 Large enterprise Manufacturing T201 20180101194723

...

JBL 21 NPO Charity t211 20180101194837

LBC 21 Large enterprise Manufacturing T221 20180101204725

MBC 39 NPO Education t200 20180102132016

Dataset

Testing input
instance

Sequential: f1 ! f2 ! f3 ! f4 ! f5
>>S1: f1=MBC, f2=Required?;
>>S2: f1=MBC, f2=39, f3=NPO,
f4=Education, f5=Required?

Partial random: f1 ! (f3 ! f4) ! f2 ! f5
>>PR1: f1=MBC, f3=NPO, f4=Education,
f2=Required?
>>PR2: f1=MBC, f3=NPO, f4=Education,
f2=39,f5=Required?

Figure 4.6: Example of Filling Orders

random filling scenario. The reason to simulate the partial random filling
scenario is that by capturing the fields’ grouping information, this scenario is
more realistic compared to a (complete) random filling scenario.

In both form filling scenarios, the filled fields considered by LACQUER
are the fields that precede each target. For each target field, we labeled as
“Optional” the instances in which the target field contains missing or mean-
ingless values; otherwise they are labeled as “Required”. “Optional” and
“Required” are the two classes that we consider as ground truth.

4.4.1.3 Dataset Preparation - Application Example

Figure 4.6 illustrates an example of application of our dataset preparation
method. The table on the left-hand side of the picture represents the infor-
mation submitted during the data entry session through the data entry form
introduced in our motivating example in section 4.2.3. We split this dataset
into a training set (80% of instances), a tuning set (10% of instances), and a
testing set (10% of instances); let us assume the last row in the table is an in-
stance in the testing set. The testing set is then processed to simulate the two
form filling scenarios. The sequential filling scenario uses the filling order
following the tabindex value of the form fields. Assuming the tabindex
order for the example is f1 ! f2 ! f3 ! f4 ! f5, we can generate two test
instances S1 and S2 (shown in the top right box of Figure 4.6) to predict the
completeness requirement of f2 and f5, respectively. As for the partial ran-
dom filling scenario, this scenario takes into account the controls or grouping
of fields specified by the designer. For example, let us assume that “f3 : com-
pany type ” and “f4: field of activity” belong to the same group of fields
named “Business activities”: this means that f3 and f4 should be filled se-
quentially. A possible filling order, randomly generated taking into account
this constraint is then f1 ! (f3 ! f4) ! f2 ! f5. The bottom right box in
the figure shows the corresponding generated test instances PR1 and PR2.

86

4.4. Evaluation

4.4.1.4 Implementation and Settings

We implemented LACQUER as a Python program. We performed the exper-
iments on the NCBI dataset with a computer running macOS 10.15.5 with a
2.30GHz Intel Core i9 processor with 32GB memory. As for the experiments
on the PEIS dataset6, we performed them on a server running CentOS 7.8 on
a 2.60GHz Intel Xeon E5-2690 processor with 125GB memory.

4.4.2 Effectiveness (RQ1)

To answer RQ1, we assessed the accuracy of LACQUER in predicting the
correct completeness requirement for each target field in the dataset. To
the best of our knowledge, there are no implementations of techniques for
automatically relaxing completeness requirements; therefore, we selected as
baselines two rule-based algorithms that can be used to solve the form fill-
ing completeness requirements relaxation problem: association rule mining
(ARM) [MROE+19] and repeated incremental pruning to produce error reduction
(Ripper); these rule-based algorithms can provide form filling relaxation sug-
gestions under different filling orders. ARM mines association rules having
the format “if antecedent then consequent” with a minimal level of support and
confidence, where the antecedent includes the values of certain fields and the
consequent shows the completeness requirement of a target field for a given
antecedent. ARM matches the filled fields with the antecedents of mined as-
sociation rules, and suggests the consequent of the matched rules. Ripper is a
propositional rule-based classification algorithm [Coh95]; it creates a rule set
by progressively adding rules to an empty set until all the positive instances
are covered [LVMPG14]. Ripper includes also a pruning phase to remove
rules leading to bad classification performance. Ripper has been used in a
variety of classification tasks in software engineering [SGS18, GMH15]. Sim-
ilar to ARM, Ripper suggests the consequent of the matched rule to users.

4.4.2.1 Methodology

We used Precision (Prec), Recall (Rec), Negative Predictive Value (NPV), and
Specificity (Spec) to assess the accuracy of different algorithms. These metrics
can be computed from a confusion matrix that classifies the prediction re-
sults into true positive (TP), false positive (FP), true negative (TN), and false
negative (FN). In our context, TP means that a field is correctly predicted as

6Due to the data protection policy of our partner, we were obliged to run the experiments
on the PEIS dataset using an on-premise, dedicated server that, however, could not be used
to store external data (like the NCBI dataset).

87

4.4. Evaluation

required, FP means that a field is misclassified as required, TN means that a
field is correctly predicted as optional, and FN means that a field is misclas-
sified as optional. Based on the confusion matrix, we have Prec =

TP
TP+FP ,

Rec =
TP

TP+FN , NPV =
TN

TN+FN , and Spec =
TN

TN+FP . Precision is the ratio
of correctly predicted required fields over all the fields predicted as required.
Recall is the ratio of correctly predicted required fields over the number of ac-
tual required fields. NPV represents the ratio of correctly predicted optional
fields over all the fields predicted as optional. Finally, specificity represents
the ratio of correctly predicted optional fields over the number of actual op-
tional fields.

We chose these metrics because they can evaluate the ability of an algo-
rithm in predicting both required fields (using precision and recall) and op-
tional fields (using NPV and specificity). A high value of precision and recall
means that an algorithm can correctly predict most of required fields (i.e.,
the positive class); hence, we can avoid business loss caused by missing in-
formation. A high value of NPV and specificity means that an algorithm can
correctly predict most of the optional fields (i.e., the negative class); users will
have fewer unnecessary constraints during form filling. In other words, we
can avoid users filling meaningless values which may affect the data quality.

In our application scenario, we aim to successfully relax a set of obsolete
required fields to “optional”, while keeping the real required fields. There-
fore, LACQUER needs to get high precision and recall values, which can pre-
serve most of real required fields to avoid business loss. Meanwhile, the NPV
value should be high, which means LACQUER can correctly avoid users fill-
ing meaningless values by relaxing the completeness requirements. Concern-
ing the specificity, a relatively low value is still useful. For instances, a speci-
ficity value of 50% means LACQUER can reduce by half the data quality
issues caused by meaningless values.

In the case of ARM, we set the minimum acceptable support and confi-
dence to 5 and 0.3, respectively, as done in previous work [MROE+19, BLBB22]
in which it was applied in the context of form filling.

4.4.2.2 Results

Table 4.2 shows the accuracy of the various algorithms for the two form fill-
ing scenarios. LACQUER substantially outperforms Ripper in terms of pre-
cision and recall scores (i.e., columns Prec and Rec) for both sequential filling
and partial random filling scenarios in both datasets (ranging from +13pp
to +32pp in terms of precision score and from +15pp to +35pp in terms of
recall score). When we compare LACQUER with ARM, they have similar

88

4.4. Evaluation

Table 4.2: Effectiveness for Form Filling Relaxation

Alg.
Sequential Partial Random Train Predict (ms)

Prec Rec NPV Spec Prec Rec NPV Spec (s) avg min–max

Ripper 0.63 0.79 0.17 0.20 0.69 0.83 0.25 0.16 349.29 0.18 0.18–0.19
NCBI ARM 0.75 0.98 0.81 0.16 0.82 0.86 0.39 0.28 11.98 5.06 3–12

LACQUER 0.76 0.98 0.91 0.20 0.84 0.98 0.76 0.37 145.98 75.83 33–144

Ripper 0.66 0.73 0.60 0.29 0.58 0.62 0.84 0.56 240.37 0.24 0.15–0.54
PEIS ARM 0.72 0.80 0.24 0.24 0.72 0.80 0.25 0.25 153.78 1.59 2–20

LACQUER 0.88 0.98 0.72 0.62 0.90 0.97 0.75 0.64 1210.70 307 179–839

results in terms of precision and recall scores on the NCBI dataset; however,
LACQUER performs much better than ARM on the PEIS dataset (by at least
+16pp in terms of precision score and +17pp in terms of recall score).

When looking at the NPV and specificity scores, on the NCBI dataset
LACQUER and Ripper have the same specificity value for sequential filling;
however, LACQUER can provide more accurate suggestions since it outper-
forms Ripper in terms of NPV score with an improvement of +74pp. Con-
cerning the partial random filling scenario on the NCBI dataset, LACQUER
outperforms Ripper by +51pp and +21pp in terms of NPV and specificity
scores, respectively. On the same dataset, when comparing LACQUER with
ARM, the results shows that LACQUER always outperforms ARM for both
form filling scenarios from +10pp to +37pp in terms of NPV score and from
+4pp to +9pp in terms of specificity score. As for the PEIS dataset, for se-
quential filling LACQUER substantially outperforms the two baselines from
+12pp to 48pp in terms of NPV score and from +33pp to +38pp in terms
of specificity score. For partial random filling, Ripper achieves the highest
NPV score, outperforming LACQUER by +9pp; however, LACQUER out-
performs both baselines in terms of specificity score by +8pp to +39pp.

Looking at the specificity score when applying LACQUER on PEIS and
NCBI datasets, we can notice a difference ranging from +27pp to +42pp.
This difference means that LACQUER can find more optional values in the
PEIS dataset than in the NCBI dataset. We believe the main reason behind
this difference is the quality of the training set. We recall PEIS is a proprietary
dataset from the banking domain. Data entry operators in the bank follow
corporate guidelines for recommended values to be used when a field is not
applicable, e.g., special characters like ‘@’ or ‘$’ (see section 4.3.1), resulting
in higher quality data than the NCBI dataset. The latter, in fact, is a public
dataset where anyone can submit data using the corresponding data entry
form. Users do not follow any rule to insert special values when a field is not
applicable. For this reason, the endorser module of LACQUER tends to re-

89

4.4. Evaluation

move more likely inaccurate suggestions, predicting only optional fields with
high confidence. This explains the high value of NPV in the NCBI dataset,
which is +19pp higher than that in the PEIS dataset for the sequential filling
scenario and +1pp higher for the random filling scenario.

We applied a Fisher’s exact test with a level of significance ↵ = 0.05 to
assess the statistical significance of differences between LACQUER and the
baselines. The null hypothesis is that there is no significant difference be-
tween the prediction results of LACQUER and a baseline algorithm on the
test instances. Given the output of each algorithm on the test instances we
used during our evaluation, we created contingency tables summarising the
decisions of LACQUER vs ARM and LACQUER vs Ripper for each form-
filling scenario. Each contingency table represents the relationship between
LACQUER and the other baseline in terms of frequency counts of the possi-
ble outputs (0: “Optional” and 1: “Required”). In other words, the contin-
gency table counts the number of times both algorithms provide the same
prediction (i.e., both predict a test instance as 0 or 1), and the number of
times they have different prediction outputs (i.e., one algorithm predicts as 1
but the other predicts 0, and vice versa). These contingency tables are then
used by Fisher’s exact test to compute the p-value in order to reject or ac-
cept the null hypothesis. The result of the statistical test shows that LAFF
always achieves a significantly higher number of correct predictions than the
baselines for the two form-filling scenarios on both datasets (p-value < 0.05).

These results have to be interpreted with respect to the usage scenario of
a form filling relaxation tool. Incorrect suggestions can affect the use of data
entry forms and the quality of input data. The NPV and specificity values
achieved by LACQUER show that its suggestions can help users accurately
relax the completeness requirement by 20% to 64% of the fields in data entry
forms. Meanwhile, LACQUER can correctly preserve most (� 97%) of the re-
quired fields required to be filled to avoid missing information (as indicated
by the high precision and recall scores).

The answer to RQ1 is that LACQUER performs significantly better than the
baseline algorithms. LACQUER can correctly relax at least 20% of required fields
(with an NPV value above 0.72), while preserving the completeness constraints on
most of the truly required fields (with a recall value over 0.98 and precision over
0.76).

4.4.3 Performance (RQ2)

To answer RQ2, we measured the time needed to perform the training and
predict the completeness requirement of target fields. The training time eval-

90

4.4. Evaluation

uates the ability of LACQUER to efficiently update its models when new in-
put instances are added daily to the set of historical input instances. The pre-
diction time evaluates the ability of LACQUER to timely suggests the com-
pleteness requirement during the data entry phase.

4.4.3.1 Methodology

We used the same baselines and form-filling scenarios used for RQ1. The
training time represents the time needed to build BN models (for LACQUER)
or learn association rules (for ARM and Ripper). The prediction time is the
average time needed to provide suggestions for target fields. We deployed
LACQUER and baselines locally to avoid the impact of the data transmission
time when assessing the prediction time.

4.4.3.2 Results

The results are presented in columns Train and Predict in Table 4.2. Column
Train represents the training time in seconds. Column Predict contains two
sub-columns representing the average time and the minimum/maximum
time (in milliseconds) needed to make a prediction on one test instance.

As shown in Table 4.2, Ripper has the highest training time for the NCBI
dataset with 349.29 s. The training time of LACQUER (145.98 s) is between
that of Ripper (349.29 s) and ARM (11.98 s) on the NCBI dataset. For the
PEIS dataset, the training time of Ripper and ARM is equal to 240.37 s and
153.78 s, respectively; the training time of LACQUER is the highest: 1210.70 s
(less than 20 minutes).

In terms of prediction time, LACQUER takes longer than ARM and Rip-
per to predict the completeness requirement of a field. On average, LAC-
QUER takes 75.83ms and 307ms on the NCBI and PEIS datasets, respectively.
The prediction time of ARM and Ripper depends on the number of rules used
for matching the filled fields: the smaller the number of rules the shorter the
prediction time. For LACQUER, the prediction time depends mostly on the
complexity of BNs used when predicting. Such complexity can be defined in
terms of the number of nodes and the number of dependencies among the
different nodes in the BNs.

Taking into account the usage of our approach, the results can be inter-
preted as follows. Since the training phase occurs offline and periodically to
train different BN models, the training time of 1210.70 s is acceptable from
a practical standpoint; it allows for the daily (or even hourly) training of
LACQUER in contexts (like enterprise software) with thousands of entries

91

4.4. Evaluation

every day. Since LACQUER needs to be used during data entry, a short pre-
diction time is important to preserve the interactive nature of a form-filling
relaxation tool. The prediction time of LACQUER is acceptable according to
human-computer interaction principles [Hee00], which prescribe a response
time lower than 1 s for tools that provide users with a seamless interaction.
In addition, this prediction time is also comparable to the one achieved by
our previous work on automated form filling [BLBB22]. Hence, LACQUER
can be suitable for deploying in real enterprise systems.

The answer to RQ2 is that the performance of LACQUER, with a training time
per form below than 20 minutes and a prediction time of at most 839ms per target
field, is suitable for practical application in data-entry scenarios.

4.4.4 Impact of SMOTE and Endorser (RQ3)

LACQUER is based on two main modules: (1) SMOTE oversampling mod-
ule, which tries to solve the class imbalance problem by synthetically creat-
ing new minor class instances in the training set (section 4.3.2), and (2) the
endorsing module, which implements a heuristic that aims to keep only the
optional predicted instances with a certain level of confidence. To answer
this RQ we assessed the impact of these two modules on the effectiveness of
LACQUER.

4.4.4.1 Methodology

We compared the effectiveness of LACQUER with three variants represent-
ing all the possible configurations of LACQUER: LACQUER-S, LACQUER-
E, and LACQUER-SE. LACQUER-S represents the configuration where the
SMOTE oversampling module is disabled and LACQUER provides predic-
tions based on the imbalanced training set. LACQUER-E denotes the con-
figuration where the endorser module is disabled and LACQUER directly
returns the predictions to the user without checking whether the predictions
have the required confidence in predicting fields as optional. LACQUER-
SE is the configuration where both modules are disabled; this variant corre-
sponds to the case where we use a plain BN. The different configurations are
shown in Table 4.3 under column Module, where the two sub-columns S and
E refer to the two modules “Smote” and “Endorser”. We used symbols ‘3’
and ‘7’ to specify whether a variant includes or not a certain module. LAC-
QUER was run in its vanilla version as well as the additional variants using
the same settings and evaluation metrics as in RQ1.

92

4.4. Evaluation

Table 4.3: Effectiveness of LACQUER with Different Modules

ID
Module

NCBI PEIS

Sequential Partial Random Sequential Partial Random

S E Prec Recall NPV Spec Prec Recall NPV Spec Prec Recall NPV Spec Prec Recall NPV Spec

LAFF-SE 7 7 0.78 0.88 0.36 0.32 0.84 0.89 0.44 0.33 0.90 0.92 0.70 0.67 0.96 0.96 0.75 0.58
LAFF-E 3 7 0.78 0.82 0.56 0.32 0.85 0.77 0.39 0.65 0.89 0.94 0.67 0.76 0.92 0.88 0.57 0.85
LAFF-S 7 3 0.76 0.98 0.51 0.19 0.83 0.98 0.66 0.22 0.88 0.99 0.70 0.55 0.91 0.99 0.77 0.52
LAFF 3 3 0.76 0.98 0.91 0.20 0.84 0.98 0.76 0.37 0.89 0.99 0.74 0.64 0.90 0.97 0.75 0.64

4.4.4.2 Results

As shown in Table 4.3, both modules have an impact on the effectiveness of
LACQUER. The SMOTE oversampling module improves the ability of BNs
to identify more optional fields; it improves the specificity score of a plain
BN by at least +9pp on the two datasets (LACQUER-E vs LACQUER-SE),
except for the sequential filling scenario in the NCBI dataset where the speci-
ficity score stays the same. The endorser module mainly removes inaccurate
optional predictions and keeps them as required to prevent missing infor-
mation. This module leads to an increase in the recall value compared to
the plain BN (LACQUER-SE vs LACQUER-S); it increases by at least +9pp
for the NCBI dataset in both scenarios. The improvement is smaller for the
PEIS dataset where the recall increases by +7pp and +3pp for sequential
and random filling scenarios, respectively. The endorser module affects also
specificity, which decreases by at most 13pp for both datasets when the en-
dorser is used. The reason behind such decrease is that the endorser module
removes possibly inaccurate predictions.

Comparing the results of LACQUER (with both modules enabled) with a
plain BN (i.e, LACQUER-SE) on the NCBI dataset, the former improves NPV
by +55pp (0.91 vs 0.36) for the sequential filling scenario and by +32pp (0.76
vs 0.44) for the random filling scenario. Since the endorser module considers
the non-endorsed instances as required, it also increases recall by+10pp and
+9pp for sequential and random filling scenarios, respectively. For the PEIS
dataset, we find a slight increase in NPV of +4pp and an increase of +6pp
for recall with sequential filling. For the partial random filling scenario, we
notice that both LACQUER and LACQUER-SE have similar results, except
for a higher specificity value +6pp and a lower precision value of �6pp
for LACQUER. This loss in precision is expected since LACQUER keeps the
default completeness requirement (i.e., required) for an instance for which
the prediction confidence is low (i.e., the probability is lower than a threshold
in endorser). These instances may include some truly optional cases with low
confidence in the prediction; hence considering them as optional may slightly
reduce the precision value.

93

4.5. Related work

The answer to RQ3 is that the SMOTE oversampling module and the endorser
module improve the effectiveness of LACQUER.

4.4.5 Threats to Validity

To increase the generalizability of our results, LACQUER should be further
evaluated on different datasets from different domains. To partially miti-
gate this threat, we evaluated LACQUER on two datasets with different data
quality: the PEIS dataset, which is proprietary and is of high quality, and the
NCBI dataset, which is a public and was obtained from an environment with
looser data quality controls.

The size of the pool of training sets is a common threat to all AI-based
approaches. We do not expect this problem to be a strong limitation of LAC-
QUER since it targets mainly enterprise software systems that can have thou-
sands of entries per day.

Since LACQUER needs to be run online during the data entry session,
it is important to ensure seamless interaction with users. In our experiments
(section 4.4.3), LACQUER was deployed locally. The response time of its pre-
diction complies with human-computer interaction standards. However, the
prediction time depends on the deployment method (e.g., local deployment
or cloud-based). This is not necessarily a problem since different engineering
methods can help reduce prediction time such as parallel computing and a
cache for storing previous predictions.

4.5 Related work

In this section, we discuss the work related to our approach. First, we review
the existing approaches dealing with adaptive forms. Next, we provide a de-
tailed comparison between LACQUER and LAFF. We conclude the section by
presenting some tangential works that use BN to solve software engineering
problems.

4.5.1 Adaptive Forms

The approach proposed in this chapter is mainly related to approaches that
implement adaptive forms for producing context-sensitive form-based in-
terfaces. These approaches progressively add (remove) fields to (from) the
forms depending on the values that the user enters. They use form specifi-
cation languages [FS98] or form definition languages [BBG11] to allow form de-
signers to describe the dynamically changing behaviour of form fields. Such

94

4.5. Related work

a behavior is then implemented through dedicated graphical user interface
programming languages (such as Tcl/Tk) [TB96] or through server-side vali-
dation [BBG11]. The dynamic behaviour of a form has also been modeled us-
ing a declarative, business process-like notation (DCR - Dynamic Condition
Response graph [SLDM18]), where nodes in the graph represent fields and
edges show the dynamic relations among fields (e.g., guarded transitions);
the process declarative description is then executed by a process execution
engine that displays the form. However, all these works assume that design-
ers already have a complete and final set of completeness requirements describ-
ing the adaptive behaviour of the form during the design phase, which can
be expressed through (adaptive) form specification/definition languages or
tools. In contrast, LACQUER can automatically learn the different complete-
ness requirements from the historical input instances filled by users, without
requiring any knowledge from the form designers.

Although some approaches [ER04, AR10] try to automatically generate
data entry forms based on the schema of the database tables linked to a form
(e.g., using column name and primary keys), they can only generate some
“static” rules for fields. For example, if a column is “not null” in the schema,
they can set the corresponding field in the form as (always) required. In con-
trast, LACQUER aims to learn conditions from the data so that completeness
requirements of form fields can be automatically and dynamically relaxed dur-
ing new data entry sessions.

4.5.2 Comparing LACQUER with LAFF

The overall architecture (including the use of the endorser module) of LAC-
QUER has been inspired by the one of LAFF, a recent approach for automated
form filling of data entry forms [BLBB22]. In this subsection, we explain the
similarities and differences between the two approaches.

4.5.2.1 Similarities between LAFF and LACQUER

Both LAFF and LACQUER are approaches that can be used during the form
filling process. The main similarities between these approaches derive from
the main challenges of form filling, i.e., dealing with (1) an arbitrary order of
filling and (2) with partially filled forms.

The first challenge arises from the fact that users can fill a data entry form
following an arbitrary order. Therefore, the filled fields (i.e., the features in
our ML models) and the target field keep changing, leading to a large number
of feature-target combinations. To avoid training a separate machine learning

95

4.5. Related work

model on each feature-target combination, in this work, we are inspired by
LAFF and use BNs to mine the relationships between filled fields and the
target field.

As for the second challenge, LAFF addresses it using an endorser mod-
ule. The main idea of the endorser module is to avoid providing inaccurate
suggestions to the user when the form does not contain enough information
to be used by the model. Avoiding inaccurate suggestions is important for
both approaches to gain the trust of users; for example, wrongly determining
to relax a required field by making it optional may lead to missing informa-
tion, thus hindering data completeness. For this reason, the second similarity
between LAFF and LACQUER is the use of an endorser module.

4.5.2.2 Differences between LAFF and LACQUER

Table 4.4 shows the main differences between LACQUER and LAFF in terms
of goal, challenges, preprocessing, model building, and prediction.

The main goal of LACQUER is to determine the completeness require-
ments of form fields. In contrast, LAFF provides form-filling suggestions for
the values to be filled in categorical fields.

Concerning the challenges, in addition to the shared ones discussed above,
the relaxing completeness requirement problem has its own challenge when
the dataset is highly imbalanced. We addressed this challenge in LACQUER
by applying SMOTE.

The preprocessing step of the two approaches is completely different. Specif-
ically, LAFF removes all textual fields from the data. In contrast, LACQUER
transforms the values in textual fields into binary values. After the prepro-
cessing in LACQUER, textual fields have only two values, i.e., “Required”
and “Optional”. Moreover, the preprocessing step of LACQUER identifies
meaningless values and replaces the matched values in the data with the
value “Optional” (see section 4.3.1).

As for the model building phase, LAFF and LACQUER create a different
number of BN models. LAFF creates k + 1 models, including a global model
and k local models. The global model represents the BN created on the whole
training data; the k local models are the BNs created based on the clusters
of training data that share similar characteristics. The optimal number of
clusters k is automatically determined with the elbow method. LACQUER
creates n models where n represents the number of fields (targets) in the data
entry form.

Finally, the differences in terms of the prediction phase can be viewed from
two perspectives: the type of targets and the endorser module. Concerning

96

4.5. Related work

Table 4.4: Main differences between LAFF and LACQUER

LAFF LACQUER

Goal • Providing form-filling sugges-
tions for the values to be filled
in categorical fields

• Determining the completeness
requirements of form fields

Challenge
• Arbitrary filling order

• Partial filling

• Arbitrary filling order

• Partial filling

• Highly imbalanced dataset

Preprocessing
• Textual fields are removed • Values in textual fields are

transformed into binary
values (“Required” or “Op-
tional”)

• Meaningless values are iden-
tified and replaced with the
value “Optional”

Model building
• Creates k + 1 models includ-

ing a global model and k lo-
cal models (one model for each
cluster of data)

• Creates n models, one model
for each field (target)

Prediction

Target
• Categorical field

• LAFF can predict the value
for both optional and required
fields

• All textual, numerical, and cat-
egorical fields can be targets

• Required field

Endorser
• Use two heuristics based on

prediction confidence and
dependencies between filled
fields and the target

• The value of the threshold is
manually decided based on
domain expertise

• The endorser is based only on
the prediction confidence

• The value of the threshold
is automatically determined
during the threshold determi-
nation

the target, LAFF only predicts possible values for categorical fields, no matter
whether this field is optional or required. In contrast, LACQUER targets all
types of required fields (e.g., textual, numerical, and categorical fields) to
relax their completeness requirements. The endorser modules of LAFF and
LACQUER differ as follows:

• The endorser module of LAFF endorses predictions based on two heuris-
tics: the prediction confidence and the dependencies between the filled
fields and the target. In contrast, the endorser of LACQUER is based

97

4.5. Related work

only on the prediction confidence.

• LAFF uses a threshold to be determined manually, based on domain
expertise to endorse the prediction; LACQUER includes a threshold
determination phase to automatically decide the threshold for each tar-
get.

4.5.3 Using Bayesian Networks in Software Engineering Problems

Besides LAFF, BNs have been applied to different software engineering prob-
lems spanning over a wide range of software development phases, such as
project management (e.g., to estimate the overall contribution that each new
software feature to be implemented would bring to the company [MPFN18]),
requirement engineering (e.g., to predict the requirement complexity in order
to assess the effort needed to develop and test a requirement [SAF22]), im-
plementation (for code auto-completion [PLM15]), quality assurance (e.g., for
defect prediction [JBM11, DVB12]), and software maintenance [RJMFSC23].

The main reason to use BN in software engineering (SE) problems is the
ability of BN to address the challenges of dealing with “large volume datasets”
and “incomplete data entries”. First, software systems usually generate large
amounts of data [RJMFSC23]. For instance, to improve software mainte-
nance, companies need to analyze large amounts of software execution data
(e.g., traces and logs) to identify unexpected behaviors such as performance
degradation. To address this challenge, Rey Juárez et al. [RJMFSC23] used
BN to build an analysis model on the data, since BN can deal with large
datasets and high-dimensional data while keeping the model size small and
the training time low. Second, incomplete data is a common problem in
SE [DÁDS16, OY14]. For example, in defect prediction, some metrics of de-
fect prediction datasets might be missing for some software modules. To
solve this challenge, Del Águila and Del Sagrado [DÁDS16] and Okutan and
Yıldız [OY14] used BN to train prediction models, because of its ability to per-
form inference with incomplete data entries. These two challenges confirm
our choice of using BN to solve the relaxing completeness problem. Specif-
ically, these two challenges are aligned with the challenges of form filling.
During data entry sessions, a form is usually partially filled and LACQUER
needs to provide decisions on incomplete data. Besides, in our context, we
need to deal with large datasets since we mainly target enterprise software
systems that can receive a huge amount of entries every day.

98

4.6. Discussion

4.6 Discussion

4.6.1 Usefulness

The main goal of LACQUER is to prevent the entering of meaningless values
by relaxing the data entry form completeness requirements. In order to assess
the capability of LACQUER, we evaluated it with two real-world datasets,
including a public dataset from the biomedical domain and a proprietary
dataset from the banking domain. These two datasets are related to existing
data entry forms.

Experiment results show that LACQUER outperforms baselines in deter-
mining completeness requirements with a specificity score of at least 0.20 and
a NPV score higher than 0.72. In the context of completeness requirement re-
laxation, these results mean that LACQUER can correctly (i.e., NPV � 0.72)
prevent the filling at least 20% meaningless values. In addition, LACQUER
can correctly determine (with precision above 0.76) when a field should be
required with a recall value of at least 0.97. This recall value means that
LACQUER can almost determine all the required fields. The high precision
value shows that LACQUER rarely incorrectly predicts optional fields as re-
quired. In other words, LACQUER will not add much extra burden to users
by adding more restrictions during the form filling process.

As discussed in section 4.4.2, LACQUER can determine more optional
fields (i.e., a higher specificity) in the PEIS dataset than in the NCBI dataset
due to the higher data quality of the former. Since we target data entry func-
tionalities in enterprise software, we expect to find similar conditions in other
contexts in which data entry operators follow corporate guidelines for select-
ing appropriate values that should be filled when a field is not applicable.
In such contexts, LACQUER is expected to provide results that are similar to
those achieved on the PEIS dataset.

4.6.2 Practical Implications

This subsection discusses the practical implications of LACQUER for differ-
ent stakeholders: software developers, end-users, and researchers.

4.6.2.1 Software Developers

LACQUER can help developers refactor data entry forms, which typically
have many historical input instances and obsolete completeness requirements.
LACQUER does not require developers to define a complete set of rules re-
garding the completeness requirement of form fields. Developers can inte-

99

4.6. Discussion

grate LACQUER into a given data entry form as an independent tool. De-
ploying LACQUER into a data entry form requires providing a mapping be-
tween a data entry form, and field names and column names in the dataset.
The mapping needs only to be provided once and can be easily identified
from Object Relational Mapping (ORM) and software design documentation.
In addition to the mapping, deploying LACQUER requires a dictionary of
meaningless values, i.e., the values that should be used during the data entry
process when a field is not applicable. We expect this dictionary to be found
in the user manual of the data entry software or in corporate guidelines, as it
was the case for the PEIS dataset.

4.6.2.2 End Users

During the form filling process, obsolete required fields in the data entry
form can affect the data accuracy since users have to enter meaningless val-
ues to skip filling these obsolete fields. LACQUER can automatically decide
when a field should be required or not based on the filled fields and historical
input instances. Our experiments show that LACQUER can correctly deter-
mine between 20% and 64% of optional fields, which reduces the user effort
and the time taken during the form filling process.

4.6.2.3 Researchers

In order to avoid predicting required field as optional, LACQUER includes
an endorser module to decide if the prediction is accurate enough to be pro-
vided to the user. We propose a novel strategy to automatically determine
the threshold used in the endorser module. Hence, our endorser module
does not require any configuration from the domain expert. We believe that
such an endorser module can be adopted by other researchers in other rec-
ommender systems.

4.6.3 Combining LACQUER with LAFF

Despite the differences explained in section 4.5, LACQUER and LAFF are
complementary in practice. Both approaches can be combined as an AI-based
assistant for form filling to help users fill forms and ensure better data quality.

Figure 4.7 shows a possible scenario that uses both approaches together
during a form-filling session. In this example, we assume that the user fol-
lows the sequential filling order. First, after filling in the company name
field, LAFF can already check whether the “monthly income” field is re-
quired or not. Since “monthly income” is a numerical field, LAFF cannot

100

4.6. Discussion

WishCompany Name

Monthly revenue k euro

Company type

Field of activity

Tax ID

SubmitCancel

LACQUER: Required

Data entry form F

WishCompany Name

20Monthly revenue k euro

Company type

Field of activity

Tax ID

SubmitCancel

LACQUER: Required

LAFF: NPO

Data entry form F

WishCompany Name

20Monthly revenue k euro

NPOCompany type

Field of activity

Tax ID

SubmitCancel

LACQUER: Required

LAFF: Education

Data entry form F

WishCompany Name

20Monthly revenue k euro

NPOCompany type

EducationField of activity

Tax ID

SubmitCancel

LACQUER: N/A

LAFF: N/A

Data entry form F

1 2

3 4

Figure 4.7: Use case to combine LACQUER and LAFF together during form
filling

perform a prediction (LAFF only supports categorial fields). In this example,
LACQUER determines that the field is required, hence the user should fill it
out. The “Company type” and “Field of activity” fields are both categorical.
For these two fields, based on the filled fields, first LACQUER determines
the completeness requirement for each field. Once the user clicks on a field,
LAFF is enabled to provide a ranked list of possible values that can be used
for this field. If the decision of LACQUER on a field is optional, LAFF can
still be activated to provide suggestions as long as the user wants to fill in
the field. Finally, let us assume that the “Tax ID” field (a numerical one) is
optional by design. In this case, both LAFF and LACQUER are not enabled,
there is no need for LACQUER to relax a completeness requirement and the
field is numerical and thus not compatible with LAFF.

101

4.7. Summary

4.7 Summary

In this chapter we proposed LACQUER, an approach to automatically relax
the completeness requirement of data entry forms by deciding when a field
should be optional based on the filled fields and historical input instances.
LACQUER applies Bayesian Networks on an oversampled data set (using
SMOTE) to learn the completeness requirement dependencies between fields.
Moreover, LACQUER uses a heuristic-based endorser module to ensure that
it only provides accurate suggestions.

We evaluated LACQUER on two datasets, one proprietary dataset from
the banking domain and one public dataset from the biomedical domain.
Our results show that LACQUER can correctly determine 20% to 64% of op-
tional fields and determine almost all the required fields (with a recall value
of 0.97). LACQUER takes at most 839ms to provide a suggestion, which
complies with human-computer interaction principles to ensure a seamless
interaction with users.

102

Chapter 5

LAFF-based Anomaly Detection

for Categorical Data

5.1 Overview

In this chapter we propose a LAFF-based Anomaly Detection approach (“LAFF-
AD” in short) to effectively detect categorical data anomalies. The basic idea
of LAFF-AD is to take advantage of the learning ability of LAFF to perform
value inference on suspicious data. The output of such inference is used by
LAFF-AD to determine the presence of anomalies in data.

LAFF-AD includes three main phases: LAFF offline prediction, anomaly
detection, and threshold determination. Similar to LAFF, LAFF-AD starts
by learning Bayesian network models on a clean set of data. Given a set of
suspicious data, LAFF-AD runs a variant of LAFF that handles offline pre-
diction (i.e., in contrast to real-time during the data entry process) to predict
the value of a categorical field in a suspicious instance. This variant returns
a ranked list of possibly correct values for the suspicious instance, the prob-
ability of each value in the ranked list, and a flag indicating whether the pre-
diction comes with high confidence. In the next phase, LAFF-AD leverages
the output of LAFF to detect data anomaly with a heuristic-based strategy.
LAFF-AD analyzes the outputs of LAFF by checking three heuristics. The
first one checks if LAFF has enough confidence to make a prediction (i.e.,
the prediction is endorsed). The second one checks if the suspicious value is

103

5.1. Overview

ranked to the top in the list predicted by LAFF. The third heuristic checks if
the anomaly score of the suspicious value is higher than a certain anomaly
score threshold. The anomaly score is computed based on the probability of
the suspicious value in the ranked list predicted by LAFF. According to the
three heuristic rules, LAFF-AD determines the presence of a data anomaly. In
the threshold determination phase, the value of the anomaly score threshold
used in the anomaly detection phase is automatically determined for each
dataset to minimize the influence of selecting appropriate parameters.

We evaluated LAFF-AD using six datasets with different characteristics.
Five of them are labeled datasets widely used to evaluate anomaly detec-
tion approaches for categorical data. The last dataset represents a real-world
dataset from the biomedical domain, already used to evaluate LAFF [BLBB22].
This dataset is used to further confirm the generalisability of our evaluation
since it contains different kinds of anomalies that are synthetically created.
The experimental results show that LAFF-AD can accurately detect a high
range of data anomalies, with recall values between 0.6 and 1) and a pre-
cision value of at least 0.808. The results also show that LAFF-AD is fast
enough to be applied to detect data anomalies in practice: LAFF-AD takes at
most 7000 s and 735ms to perform training and prediction, respectively.

To summarize, the main contributions of this chapter are:

• The LAFF-AD approach, which addresses the problem of anomaly de-
tection for categorical data. To the best of our knowledge, LAFF-AD is
the first work to repurpose a form filling recommender system to detect
data anomalies. LAFF-AD provides effective data anomaly detection
results without the need for manual tuning.

• An extensive evaluation assessing the effectiveness and efficiency of
LAFF, including a comparison with SOTA approaches. Our evaluation
shows that LAFF-AD yields stable results outperforming SOTA algo-
rithms for most datasets.

The rest of the chapter is organized as follows. Section 5.2 provides a mo-
tivating example and presents the concept of data anomaly detection. Sec-
tion 5.3 reviews the state of the art and its limitations. Section 5.4 describes
the core phrases of LAFF-AD. Section 5.5 reports on the evaluation of LAFF-
AD. Section 5.6 discusses the usefulness of LAFF-AD, taking into account the
practical implications of the experimental results. Section 5.7 concludes the
chapter.

104

5.2. Data anomaly detection

5.2 Data anomaly detection

5.2.1 Motivating example

Real-world data contains data anomalies that affect data quality. These anoma-
lous data can have severe consequences, especially in critical domains such
as finance and health care. Let us assume a dataset for an energy provider
contains the following columns “Tariff plan”, “Customer segment”, “Fixed
fees”, and “Consumption average” (as shown on the right of Figure 5.1).
“Tariff plan” and “Customer segment” are two categorical columns with the
following values (“Standard”, “Time of use”, “Renewable energy”)
and (“Residential”, “Commercial”, “Non-profit organization”, “Industrial”),
respectively. The remaining columns “Consumption average” and “Fixed
fees” are numerical columns. Based on this information, the energy provider
relies on an ML-based bill calculator to decide the “Rate per kWh” accord-
ing to the needs and the tariff plan of different customers. After a certain
period of time, some customers with a standard tariff plan started complain-
ing about extra charges even though their consumption of energy had not
increase.

The energy provider team decided to investigate the reason behind this
problem. The investigations showed that the main reason for the extra charges
is that the bill calculator relied on bad quality data containing some anoma-
lies. The decisions were based on anomalous instances having “Tariff plan”
equal to “Standard”, “Customer segment” equal to “Industrial”, “Av-
erage consumption” equal to “400”, and “Fixed Fees” equal to “20”. These
instances deviate from the normal data instances since “Tariff plan” equal to
“Standard” is usually associated with “Customer segment” equal to “Residential”
and “Average consumption” equal to “100”. These anomalous instances
misled the bill calculator, which used a high “Rate per kWh” equal to “0.5”
instead of “0.1” for residential customers. Indeed, residential customers
pay fewer taxes for energy since they use it for personal reasons; on the op-
posite, industrial customers need to pay more. These anomalies in the data
can be introduced in different ways such as during data entry (e.g., typos),
data management (e.g., faulty data source), and data integration (when as-
sembling data from different sources) [MBM15].

To solve this problem, the energy provider decides to do an audit on the
dataset to check the data quality of different data instances, and to apply
anomaly detection in order to detect anomalous instances that affect the data
and decision quality.

105

5.2. Data anomaly detection

5.2.2 Problem Definition

In this chapter, we deal with the problem of anomaly detection for categor-
ical data in relational databases. This problem can be informally defined as
the problem of deciding whether the value of a target column in a given sus-
picious instance is anomalous or not.

In this work, we target categorical columns since in practice data is often
described with categorical attributes [IPM16]. This type of column is sub-
ject to anomalous values since, for example, the filling process of categorical
attributes is error-prone and time-consuming [BLBB22]. Another reason is
that identifying anomalies in such kinds of columns is difficult since it is not
easy to devise criteria to separate between anomalous and non-anomalous
data [AFPS22].

We define the anomaly detection problem as follows. Let D be a dataset
composed of a set of n columns C = {c1, c2, . . . , cn}. Let Cc ✓ C be the set of
categorical columns. Each column ci can take a value from a certain domain
Vi. D can be partitioned into datasets CD and SD , representing respectively
clean data and suspicious data possibly containing data anomalies; we have
CD [SD = D and CD \ SD = ;. During the anomaly detection process,
the columns are partitioned in two groups, i.e., a set of features Cf and one
target column Ct 2 Cc; we have that Cf [Ct

= C and Cf \ Ct
= ;. Let

vcot 2 Vt be the correct value that the target column Ct should have for a
given instance, and vot 2 Vt be the observed value. In other words, vot is the
observed value of the column Ct in the suspicious instance. In our definition,
we define an anomaly when the observed value is different from the correct
value, i.e., when vcot 6= vot .

The anomaly detection problem can be defined as follows. Given a clean
subset of the data CD , a set of features Cf , and a target column Ct, we want
to build a model M that can decide if the observed value of the target is
anomalous or not (i.e., vcot 6= vot) based on Cf and CD .

5.2.2.1 Application to the running example

Figure 5.1 shows an example illustrating the anomaly detection problem. We
have a dataset of an energy provider with four columns, c1: “Tariff plan”,
c2: “Fixed Fees”, c3: “Average consumption”, and c4: “Customer Segment”.
Among the columns, “Tariff plan” and “Customer Segment” are categori-
cal columns Cc

= {c1, c4}. The table on the right-hand side of the figure
represents the clean data CD and the small table in the left represents the
suspicious data SD . Using the clean data, we want to build a model M to

106

5.3. State of the art

Tariff Fixed Average Customer

Plan Fees Consumption Segment

Standard 20 400 Industrial

Suspicious data

Model M

Tariff Fixed Average Customer

Plan Fees Consumption Segment

Standard 20 400 Residential

Standard 20 150 Residential

Renewable 50 850 IndustrialEnergy

Time of 30 650 CommercialUse

Features Anomaly: Yes / No

Clean data

Figure 5.1: Running example for problem definition

learn relationships between columns c1 to c4 in the clean data. This model
is then used to check any instance on the suspicious data. Going back to the
example, let us assume that we want to check if the value of the “Customer
Segment” column in the suspicious test instance is an anomaly or not (i.e., Ct

= “Customer Segment”). In this case, as shown in the figure, the rest of the
columns are considered as features, i.e., Cf

= {c1, c2, c3}. Our goal is to use
the model M to predict whether the observed value of “Customer Segment”
(i.e., vo

i
= “Industrial”) represents an anomaly or not based on the values of

Cf
= {c1, c2, c3} and the clean data CD .

5.3 State of the art

The approach proposed in this chapter is related to anomaly detection for
categorical data. Many research works tried to tackle this problem. The
proposed approaches can be classified based on different aspects. In this
section we followed the classification proposed by Taha and Hadi [TH19]:
frequency-based, Bayesian/conditional frequency-based, density-based, clustering-
based, distance-based, information-theoretic, and unsupervised/semi-supervised.

Frequency-based approaches [PCC16, PTAJ16] rely on the frequency of cat-
egories to detect data anomalies. Less frequent categories are more likely to
be anomalies. A typical frequency-based method is CBRW [PCC16], which
relies on two kinds of distributions (i.e., “intra-feature” and “inter-feature”
distributions) to detect anomalies. The first one computes the frequency of
categories on the target column, while the second one analyzes the distribu-
tions of categories in different columns. Based on these two distributions,
CBRW computes an outlier score, and returns M instances with the highest
outlier score as anomalies.

Bayesian/conditional frequency-based approaches [DS07, RHH11, NK08] fol-

107

5.3. State of the art

low another definition of anomalies: no matter whether the categories are
frequent or not, an infrequent combination of categories is considered as an
anomalous instance. These approaches compute a rareness score between
categorical values in an instance. Instances with a rareness value less than a
certain threshold are considered anomalous.

Density based approaches detect anomalies in subgroups of data (referred
as “local area”) that share similar characteristics. A typical density-based
method is WATCH [LZPQ18]. WATCH detects anomalies in two phases,
feature grouping and anomaly detection. First, it regroups related columns
(i.e., features) having the same meaning or correlated to each other in the
same group. Then, in the second phase, it detects anomalies in these groups
by computing an anomaly score for each instance in each feature group.
A higher anomaly score indicates a higher probability that an instance is
anomalous regarding a feature group. WATCH declares the M instances with
the highest anomaly score in each group as anomalies. The algorithm takes
the union of anomalies sets in all feature groups to determine the anomalous
instances. WATCH determines at most M ⇥ g instances as outliers, where g
represents the number of features groups .

Clustering-based approaches [SMA12, SMA13] define anomalous instances
as the ones located in a sparse region from other clusters. For example,
ROAD [SMA12] determines k clusters on the data using the k-mode algo-
rithm. Then it defines a set of big clusters having a number of instances
higher than a certain threshold. To detect anomalies, ROAD computes the
distance between the test instance and different clusters. A test instance has
a higher chance to be an anomalous instance, if it has a larger distance with
the nearest big cluster. ROAD finishes by providing M instances with the
highest distances.

Distance-based approaches regard data instances far from the majority of
instances as anomalies. For example, ORCA [BS03] defines anomalous in-
stances as the M instances with the highest anomaly score, which is com-
puted as the average Hamming distance between an instance and its k near-
est neighbors.

Information theoretic approaches transform the problem of anomaly detec-
tion into an optimization problem [HDXH06, HDX05]. These approaches use
information entropy to detect anomalous instances. One instance is consid-
ered to be an anomaly if the entropy of the dataset exhibits a large decrease
after removing the instance. Specifically, these approaches first compute the
entropy of the original dataset. Then, for each instance, they remove it in the
dataset, compute a new entropy value of the dataset, and finally determine
the difference between the original entropy value and the one obtained after

108

5.3. State of the art

removing the instance. The k instances with the highest difference in entropy
value are selected, and returned as anomalous instances.

Unsupervised/semi-supervised approaches work as follows. Unsupervised
anomaly detection approaches are used when there is no information about
the anomaly labels (i.e., anomalous or non-anomalous) of data instances. The
baselines iForest, LOF, and EMAC are traditional unsupervised anomaly de-
tection approaches. iForest [LTZ12] relies on an ensemble of decision trees to
detect data anomalies where it decides instances with shorter average paths
as anomalous. LOF [BKNS00] compares the density of one instance with its
k nearest neighbors. Then it classifies the instances with lower density val-
ues when compared to neighbors as anomalies. EMAC-SCAN [XWWW19]
is another unsupervised method, that takes advantage of embedding-based
approaches to capture the relationship between categorical features and use
them for anomaly detection.

Semi-supervised approaches take advantage of existing non-anomalous
instances. In the training phase, they create a novelty model over data in-
stances. Any test instance that deviates from normal data is considered anoma-
lous. Our baseline OCSVM [CSFS02] uses the training data to find a hyper-
plane separating between anomalous and normal data; this hyperplane is
used during the anomaly detection phase where all instances with a high
distance to the hyperplane are considered as anomalous. Frac [NBS12] uses
non-anomalous instances to build an ensemble of classification models; dur-
ing the test phase, Frac uses the predictions of previously trained models to
determine anomalies. A test instance is considered as anomalous if there is
a disagreement among the outputs of the different models. However, Frac is
not designed for categorical data. To detect categorical anomalies with Frac,
it should rely on any algorithm that can deal with categorical variables.

5.3.0.1 Limitations

Our preliminary experiments on commonly-used anomaly detection datasets
show that the effectiveness of the SOTA approaches is unstable. For example,
the precision of both iForest [LTZ12] and OCSVM [CSFS02] can vary between
0.03 and 0.9 depending on the datasets. Moreover, existing approaches are
highly sensitive to the configuration parameters [YS20]. These algorithms
include different parameters (e.g., OCSVM has two parameters) which need
to be carefully chosen. In this work, we address these challenges and im-
prove the anomaly detection precision. To detect data anomalies effectively,
an intuitive solution is to infer the correct value in a categorical column; then,
data anomaly can be detected by comparing the inferred correct value with

109

5.4. Approach

the observed one. Another advantage is that, using such inferred value, a
data anomaly can also be easily fixed.

5.3.0.2 Data Anomaly and Form Filling

Since one of the main sources of data anomaly is the wrong values entered
by users during form filling [SZ03], in the literature many form filling ap-
proaches [BLBB22, MROE+19] have been proposed to accurately predict the
correct value to be filled in a data entry form. In this work, we repurpose
an automated form-filling approach to detect data anomalies. To do so, we
need first to adapt these approaches to perform predictions offline instead of
online (during the form-filling process). Moreover, form-filling approaches
typically return to the user a ranked list of items. In order to detect anoma-
lies, we need to fully take advantage of all this information. The main chal-
lenge is how to fully leverage the characteristics and outputs of form-filling
approaches to effectively perform data anomaly detection.

5.4 Approach

In this section, we show how to repurpose an automated form filling ap-
proach LAFF for performing anomaly detection of categorical data; we call
the resulting approach LAFF-AD (LAFF-based Anomaly Detection).

As shown in Figure 5.2, LAFF-AD includes three phases: LAFF offline
prediction, anomaly detection, and threshold determination. LAFF-AD starts
by running a variant of LAFF on historical instances to train BN models.
Then LAFF is used to predict the values of the target on suspicious data.
In the second phase, based on LAFF’s prediction, LAFF-AD uses a heuristic
anomaly detection strategy to decide if there is an anomaly or not for a given
test instance. LAFF-AD uses a threshold determination phase to automati-
cally decide the values of its parameters.

5.4.1 LAFF offline prediction

LAFF is mainly designed to predict a ranked list of values for a categorical
field during the form-filling process. LAFF-AD repurposes LAFF and takes
advantage of it to detect data anomalies in categorical columns. The main
reason behind repurposing LAFF to detect data anomalies is the high ability
it has shown to correctly provide suggestions during form filling [BLBB22].

In the context of anomaly detection, LAFF needs to perform predictions
offline on suspicious data that may contain anomalies. This means that LAFF-

110

5.4. Approach

Historical
instances Features

LAFF model
building

phase

LAFF
prediction

phase

Anomaly
detection
module

Target

Prediction :
Anomaly

(Yes or No)
Anomaly score

Threshold de-
termination

BNs LAFF suggestions

A B

C

A LAFF Prediction Phase, B Anomaly Detection Phase, and C Threshold Determina-
tion Phase

Figure 5.2: Main Steps of LAFF-AD

AD runs an variant of LAFF that handles offline prediction. This variant rep-
resents a special case during the form filling process where all fields are filled
except the target field. The model building phase is the same as in the origi-
nal definition of LAFF. LAFF starts by preprocessing the historical instances
and then creates different BN models (global and local models).

During the prediction phase, LAFF considers each instance in the suspi-
cious data as data entered by a user. Since we aim to detect anomalies for a
given categorical column (i.e., the target column) based on the values of other
columns (i.e., the features), we consider the features as filled fields and use
LAFF to predict the value of the target column on each suspicious instance.
As we mentioned before, LAFF first tries to select one model to predict. This
model is selected based on the feature values of the suspicious data. LAFF
then makes predictions and returns a ranked list of values based on their
probability distribution. Thanks to its endorser module, LAFF has the ability
to avoid inaccurate suggestions: it can label a suggestion as not endorsed if
it has no sufficient confidence in the suggestion.

Since LAFF-AD repurposes LAFF to detect data anomalies, the output of
LAFF needs to be adapted to our context. Our variant of LAFF transforms the
output of LAFF into a table representing a summary of the prediction result.
This table contains the following information: “Observed value” represent-
ing the original value in the suspicious data, “Ranked list” representing the
candidate values in the order suggested by LAFF, “Probability list” contain-
ing the probability of each value in the ranked list, and a Boolean column
“Endorsed” that records whether the prediction of the current test instance is
endorsed.

111

5.4. Approach

Tariff Fixed Average Customer

Plan Fees Consumption Segment

Standard 20 400 Industrial

Filled fields

f1:Tariff plan = Standard
f2:Fixed fees= 20

f3:Avg. consumption = 400
Target

f4:Customer segment = ?

Model
selection

and
prediction

Value Prob.

Residential. 0.75
Industrial. 0.15
Commercial. 0.05
... ...

Endorser Endorsed:
True or False

Probability table Endorser’s
output

Preprocessed input
(Ideal filling scenario)

Observed Ranked Probability
Endorsed

value list list

Industrial [Residential, Industrial, [0.75,0.15,0.05,...] TrueCommercial]

Input: Suspicious data Output: Extended LAFF output

Figure 5.3: LAFF prediction phase

5.4.1.1 Application to the running example

Let us consider a suspicious test instance identified by domain experts. As
shown on the left-hand side of Figure 5.3, this table contains the following
values: “Tariff plan”= “Standard”, “Fixed fees” = 20, “Average consump-
tion”= 400, and “Customer segment” = “Industrial”. This instance is con-
sidered to be anomalous because it deviates from the normal data instances,
in which the value “Standard” for “Tariff plan” is usually associated with
the value “Residential” for “Customer segment” and the value 100 for “Aver-
age consumption” (see Section 5.2.1). Let us assume that we want to check
whether the “Customer segment” value is correct. In this case, the “Cus-
tomer segment” column is the target and the remaining columns are features.
LAFF preprocesses these values and uses them as input for model selection
and prediction. Let us assume that LAFF predicts the following values “Resi-
dential”, “Industrial”, “Commercial” with the probability values 0.75, 0.15, 0.05,
respectively; the predicted list is checked by the endorser module of LAFF.
Let us assume that the endorser threshold is equal to 0.8; in this case, the pre-
diction should be endorsed since the sum of the top n values (0.75+0.15+0.05
= 0.95) is higher than the endorser threshold. The detailed output of this
variant of LAFF is shown in the top-right part of the figure, in the form of
a table. The original value in the suspicious data (“Industrial”) is shown in
column “Observed value”; the candidate values (in the order suggested by
LAFF) and the corresponding probability values are shown in the second and
third columns; the last column indicates the output of the endorser module
(“True”).

112

5.4. Approach

Algorithm 6: Anomaly detection
Input: Triple of ranked values, probability list, endorser decision hrv , pl , endorsedi

Target column Ct

The value of Ct in the suspicious data: vot
Threshold ✓t

Output: A flag checkERRt, representing the decision to label the suscpicious value
vot as an anomaly

1 Boolean checkEndorsed t isEndorsed(endorsed);
2 topRankedValues hrv top , pl topi getTopNpRanked(rv , pl);
3 Boolean checkNotTop

t
 isNotInTopNp(rvtop , v

o
t);

4 Float anomalyScore 1� getProb(vo
t , pl);

5 Boolean checkProbt (anomalyScore > ✓t);
6 checkERRt False ;
7 if checkEndorsed t then

8 if checkNotTopt and checkProbt then

9 checkERRt True

10 end

11 else

12 checkERRt Not Conclusive

13 end

14 return checkERRt;

5.4.2 Anomaly detection phase

This phase is the main phase to detect data anomalies. It assumes that LAFF
made a prediction over an instance from the suspicious data. LAFF-AD takes
the output of LAFF as determined in the previous phase and uses it to detect
anomalies based on a heuristic. The main steps of the anomaly detection
algorithm are shown in Algorithm 6. The inputs of the algorithm are the
output of LAFF (consisting of the ranked values, the probability list, and the
endorser decision), the target column Ct, its original value in the suspicious
data vot , and the anomaly detection threshold ✓t. This threshold is used to
decide about the existence of data anomalies and its value is automatically
determined (see Section 5.4.3).

Based on the output of LAFF, LAFF-AD collects three Boolean flags needed
for anomaly detection: checkEndorsed t, checkNotTopt, and checkProbt. First,
LAFF-AD checks if the LAFF prediction was endorsed, and saves the value
to the Boolean flag checkEndorsed t (line 1). In order to assign a value to the
checkNotTopt flag, LAFF-AD collects the list of the top-n ranked values by
LAFF (line 2). Then, it checks if the original value in the suspicious data vot
is not present in the top-ranked list (line 3). If so, the value of checkNotTopt
is set to True. After that, LAFF-AD computes an anomaly score based on the

113

5.4. Approach

probability of the observed value in the suspicious data vot in LAFF’s pre-
diction (line 4) and saves the value in the variable anomalyScore. LAFF-AD
checks if the value of the anomalyScore is higher than the anomaly detection
threshold ✓t, and saves the value in the Boolean flag checkProbt (line 5).

After obtaining these three Boolean flags, LAFF-AD determines the ex-
istence of an anomaly based on the following three conditions. The first
condition checks if LAFF’s prediction is endorsed or not. The second con-
dition checks whether the observed value of the target in the suspicious data
is in the “top-n” values predicted by LAFF. The third condition checks if the
anomaly score (i.e., 1� getProb(v

o
t , pl)) is higher than the anomaly detection

threshold, where getProb(v
o
t , pl) represents the probability of the observed

value of the target in the ranked list. If the first condition is satisfied, it
means that LAFF has enough confidence to predict and thus LAFF-AD can
confidently detect anomalies. Regarding the second condition, any observed
target value in the suspicious data that does not exist in the ranked list pre-
dicted by LAFF represents a potential anomaly, since LAFF usually predicts
correct values at the top of the ranked list. As for the third condition, if the
anomaly score (1 � getProb(v

o
t , pl)) is higher than the anomaly score thresh-

old, this means that the observed value of the target represents a potential
anomaly, since the probability of the observed value to be the correct one is
very low.

In Algorithm 6, LAFF-AD first checks if the LAFF prediction is endorsed
(line 7). If the value of this flag is True, LAFF-AD checks the values of flags
checkProbt and checkNotTopt. If both checkProbt and checkNotTopt evaluate
to True, LAFF-AD decides that there is an anomaly and sets the flag checkERR

to True (line 10). If the LAFF prediction is not endorsed, this means that we
do not have enough information to make a prediction. We assign the value
“Not conclusive” to the decision flag checkERR (line 12). The algorithm ends
with returning the value of the checkERR flag.

5.4.2.1 Application to the running example

Figure 5.4 shows three instances that need to be checked by LAFF-AD. For
each instance, we have the output from the LAFF offline prediction step (see
section 5.4.1), which is the input for anomaly detection.

For the first suspicious instance in Figure 5.4, LAFF provides an endorsed
prediction (checkEndorsedt= True). In this case, LAFF-AD therefore has enough
confidence to make a decision on the existence of an anomaly. LAFF pre-
dicts Residential, Industrial, and Commercial with the following probability list
0.5, 0.2, and 0.05, respectively. If we assume that the value of the anomaly

114

5.4. Approach

Commercial 0.25
...

Top n:

Residential 0.30
Industrial 0.25

Commercial 0.05
...

Top n:

Residential 0.5
Industrial 0.2

Commercial 0.05
...

Top n:

Residential 0.75
Industrial. 0.15

checkEndorsed t: True
checkProbt: True
checkNotTopt: True

Anomaly: Yes

checkEndorsed t: False
checkProbt: False
checkNotTopt: False

Anomaly: Not
conclusive

checkEndorsed t: True
checkProbt: False
checkNotTopt: False

Anomaly: No

ID
Observed Ranked Probability

Endorsed
value list list

2 Industrial [Residential, Industrial, [0.30,0.25,0.25,...] FalseCommercial]

ID
Observed Ranked Probability

Endorsed
value list list

1 Commercial [Residential, Industrial, [0.75,0.15,0.05,...] TrueCommercial]

ID
Observed Ranked Probability

Endorsed
value list list

3 Residential [Residential, Industrial, [0.75,0.15,0.05,...] TrueCommercial]

Figure 5.4: Examples of LAFF-AD’s prediction

threshold for the “Customer segment” column is equal to 0.9, LAFF-AD then
predicts the existence of an anomaly since the checkProbt flag is evaluated
to True ((1-0.05)� 0.9) and the observed value Commercial is not in the top-n
values predicted by LAFF (i.e., checkNotTopp= True).

The second case illustrates the scenario when LAFF-AD does not have
the confidence to determine the existence of an anomaly. Specifically, even
though the observed value in the suspicious instance is predicted in the top-n
(checkNotTopt=False) and the anomaly score is less than the threshold (checkProbt=
False), LAFF-AD decides to set the value of the checkERR to Not conclusive
since the prediction of LAFF is not endorsed.

The last case shows the scenario when a suspicious instance should not
be treated as an anomaly. In fact, as shown in the figure, the prediction is en-
dorsed by LAFF (checkEndorsedt= True) and the observed value of the target
is predicted at the top of the ranked list (i.e., checkNotTopt=False). Concern-
ing the flag checkProbt, as shown in the figure, the probability of the observed
value is very high (equal to 0.75) which leads to a low anomaly score (i.e.,
checkProbt=False). Since both of the flags evaluate to False, LAFF-AD can
confidently decide that this instance is normal.

5.4.3 Threshold tuning phase

In this phase, we aim to automatically determine the value of the anomaly
score threshold for each target, in each dataset. This value is used in the
anomaly detection algorithm and plays a determinant role. This step as-
sumes that LAFF was run on a set of historical instances for tuning and that
the LAFF predictions are available.

The basic idea is that, for a given dataset and target column, we try to de-
tect anomalies in each instance of the tuning data set by varying the anomaly

115

5.5. Evaluation

Algorithm 7: Threshold determination
Input: Set of pre-processed historical instances IH(t)tune for tuning

LAFF’s predictions on historical instance for tuning: list of triples of ranked
values, pl , endorser decision hrv , pl , endorseditune

Output: Dictionary of thresholds ✓
1 ✓ empty dict;
2 List of targets targets getTargets(IH(t)tune);
3 foreach target ti 2 targets do

4 tempth empty dictionary;
5 for n= 0 to 1 (step 0.05) do

6 predictedAnomalyAll =

predictAnomalyAllInstances(IH(t)tunei , hrv , pl , endorseditune , n);
7 score = evaluate(IH(t)tunei , predictAnomalyAll);
8 tempth [n] = score ;
9 end

10 ✓[i] = getBestScore(tempth);
11 end

12 return ✓;

detection threshold ✓i. Then, for each threshold, we measure the predic-
tion accuracy on the tuning set instances. The threshold on which LAFF-AD
yields the highest accuracy is set as the target threshold.

The main steps of our threshold determination phase are shown in Algo-
rithm 7. First, as inputs, the algorithm takes the set of preprocessed historical
instances for tuning IH(t)tune and LAFF predictions on these historical in-
stances hrv , pl , endorseditune .

For each target ti in the list of targets extracted from IH(t)tune (line 2),
based on LAFF predictions, we check the different tuning instances and ana-
lyze the existence of anomalies using the approach explained in section 5.4.2
(line 6). For the purpose of anomaly detection, we try different thresholds,
ranging from 0 to 1 with steps equal to 0.05. For each threshold value, we
compare predicted anomalies with actual anomalies of the target ti in each
input instance of IH(t)tunei to calculate prediction accuracy (line 7). LAFF-
AD selects the value of ✓i that leads to the highest prediction accuracy value
for a target ti in IH(t)tunei as the value of its threshold (line 10). The algorithm
ends by returning a dictionary containing the thresholds of all targets.

5.5 Evaluation

In this section, we report on the evaluation of our anomaly detection ap-
proach. We focus on two aspects, effectiveness and efficiency, which we

116

5.5. Evaluation

Table 5.1: Information of the Datasets

Dataset # of # of # of Range of
columns instances categorical columns candidate values

NCBI-E 25 74105 5 3–84
U2R 7 60821 7 2–23

Probe 7 64759 7 2–47
CelebA 40 202599 40 2

Covertype 45 581012 45 2
Census 34 299285 34 2–47

compare with state-of-the-art approaches. Efficiency is defined in terms of
training and prediction time, to understand the suitability of an approach for
practical applications. More specifically, we evaluated LAFF-AD by answer-
ing the following research questions (RQs):
RQ1 Can LAFF-AD accurately detect data anomalies on categorical columns and

how does it compare with existing anomaly detection approaches?
RQ2 Is the performance of LAFF-AD, in terms of training and prediction time,

suitable for practical applications and how does it compare with existing ap-
proaches?

5.5.1 Dataset and Settings

5.5.1.1 Datasets

Table 5.1 shows an overview of the datasets used in our evaluation, including
the total number of columns (# of columns), the number of instances (# of
instances), the number of categorical columns (# of categorical columns), and
the range of the number of possible values across these columns (Range of
candidate values).

The first dataset is NCBI-E, which is a variation of the public dataset NCBI
from the biomedical domain. The original NCBI dataset contains data for dif-
ferent types of biological samples from multiple species [BCG+12]. The main
reason to use this dataset is that it was used to evaluate LAFF [BLBB22]. Sim-
ilar to LAFF, we considered a sub-sample of the data related to the species
“Homo Sapiens”. In our evaluation, we created NCBI-E by removing the col-
umn ethnicity from the NCBI dataset, since as shown in the existing study [BLBB22]
only 15.6% of instances are non-empty in this column, which leads to incor-
rect suggestions from LAFF.

The remaining 12 datasets are from the publicly-available benchmark that
is commonly used to evaluate anomaly detection approaches for categorical
columns [PCC21]. Based on guidelines provided by Belgacem et al. [BLBB22],

117

5.5. Evaluation

Tariff Fixed Average Customer

Plan Fees Consumption Segment

Standard 20 400 Residential

Standard 20 150 Residential

Renewable 50 850 IndustrialEnergy

Time of 30 650 CommercialUse

Tariff Fixed Average Customer

Plan Fees Consumption Segment

Standard 20 400 Commercial

Forbidden values:
“Commercial”: Original
value in test set
“Residential”: clean
value in training set

Values that can be injected:

Candidate values � Forbidden values =
{ Industrial, Non-profit organisation }

Tariff Fixed Average Customer
Anomaly

plan fees consumption segment

Standard 20 400 Commerical ! Industrial yes

Randomly inject one value

Test instance with injected errorsTest instance

Training instances

Figure 5.5: Running example of error injection

only the datasets with more than 56 000 instances available for training were
selected for our evaluation, since LAFF achieves accurate suggestions only
for these datasets: U2R, Prob, CelebA, Covertype, and Census. We therefore
excluded the remaining datasets: Bank (41188), AID (4279), W7A (49749),
CMC (1473), APAS (12695), Chess (28056), AD (3279), Solar (1066), and R10
(12897).

As shown in Table 5.1, the number of instances in these datasets varies
from 60 821 (U2R) to 581 012 (Covertype). These datasets feature at least
7 columns, with more than 5 being categorical. The number of candidate
values for these categorical columns varies significantly. For example, in
the NCBI-E dataset, categorical columns feature between 3 and 84 candi-
date values, whereas the Covertype dataset contains only binary categorical
columns.

5.5.1.2 Dataset preparation

For the NCBI-E dataset, we considered all the categorical columns as possible
targets. It is not mainly designed to evaluate anomaly detection algorithms
since anomalous values are not labeled.

To solve this issue, we adopted an anomaly injection strategy which has
been used to evaluate anomaly detection algorithms [AA17].

Following the methodology used by Das and Schneider [DS07], we in-
jected synthetic anomalies in the NCBI-E dataset by randomly flipping the
values of a target column. Specifically, we partitioned the NCBI-E dataset
into three subsets of 80%, 10%, and 10% of instances, used for training, test-
ing, and tuning, respectively. For each target, we created a separate test set
where we kept the values in the feature columns the same and injected errors

118

5.5. Evaluation

in the target column. We randomly selected a value that is different from the
original value in the target column from candidate values. We then replaced
the original value with the selected value to inject anomalies, and labeled the
instance as anomalous.

For the other datasets, as mentioned by Pang et al. [PCC21], each dataset
has one target column that contains an anomalous value. Similar to NCBI-
E, we split the datasets into three subsets containing 80%, 10%, and 10% of
instances used respectively for training, testing, and tuning.

As suggested in different studies [IPM16, PCC16, SMA13], there is usu-
ally a small ratio of anomalous instances in real-world data. For example, the
ratio of anomalous instances used by Suri et al. [SMA13] ranged from 10% to
16%. We followed the methodology used by Ienco et al. [IPM16], for all these
datasets, the ratio of anomalous instances is set to 10% of instances the data.
The anomalous instances are either randomly selected (for the benchmark
datasets) or injected (for the NCBI-E dataset).

5.5.1.3 Dataset preparation Example of Application

Figure 5.5 show an example of our error injection process. Let us consider the
two tables on the left of the figure as the training (top left) and testing (bottom
left) sets. Following our running example, the columns “Tariff plan”, “Fixed
fees”, and “Average consumption” represent the features and the column
“Customer segment” represents the target (where we want to inject errors).

Given the training and test instances, we need first to determine the set
of forbidden values that should not be injected in the target column of the
current test instance. This set should obviously contain the values Commer-
cial, representing the original value of the test instance. But since we assume
that the training set is clean, if there is any training instance with the same
feature column values, the value of the target column in this instance must
also be part of the forbidden values. For example, based on Figure 5.5, the
value Residential should also not be injected to avoid having instances that are
considered clean during training but anomalous during testing. After deter-
mining forbidden values, the remaining candidate values for the target (i.e.,
“Industrial” and “Non-profit organisation” in our example) can be injected
into the test instance. In our example, we randomly select the value “Indus-
trial” to be injected. After injection, this instance is considered “Anomalous”
and we label it as such (i.e., filling ‘yes’ in the column Anomaly in the table
on the right).

119

5.5. Evaluation

5.5.1.4 Implementation and Setting

LAFF-AD is implemented as a Python program. In order to run LAFF on
different datasets, we used its default configurations mentioned in [BLBB22].
We performed experiments with a computer running macOS 10.15.5 with a
2.30GHz Intel Core i9 processor with 32GB memory.

5.5.2 Effectiveness (RQ1)

To answer RQ1, we analyzed anomaly detection with LAFF-AD for each
of the targets in different datasets. We compared LAFF-AD with iForest
(Isolation Forest) [LTZ12], LOF (Local Outlier Factor) [BKNS00], OCSVM
(One Class SVM) [CSFS02], and EMAC-SCAN (Embedding-based coMplex
vAlue Coupling learning framework) [XWWW19]. These approaches are
commonly used as baselines to evaluate categorical data anomaly detection
approaches [IPM16, PTAJ16]. Moreover, there are publicly available replica-
tion packages including their implementations.

LOF uses the distance between instances to detect data anomalies. Given
a data instance, LOF compares the distance between the instance and
its nearest neighbors to assess density, which measures how closely
packed the data instances among those neighbors. A data instance is
considered an anomaly if it has a lower density value compared to its
neighbors. In other words, anomalous data instances are relatively far
from local groups.

OCSVM uses the training instances to iteratively find a hyperplane that sep-
arates normal instances from anomalies. In order to detect anomalous
instances, OCSVM computes the distance between new instances and
the hyperplane. Instances with high distances are marked as anoma-
lous.

iForest builds an ensemble of decision trees over a given dataset. These deci-
sion trees are used to detect anomalous instances based on the number
of splits needed to separate data instances. The intuition behind this al-
gorithm is that anomalous data instances can be easily separated from
normal instances. Based on this intuition, iForest classifies instances
with a smaller average number of splits as anomalous.

EMAC-SCAN starts by embedding values of categorical features into con-
tinuous vectors by employing a skip-gram architecture (i.e., node2vec).
These vectors represents the relationships between different categorical

120

5.5. Evaluation

Table 5.2: Main metrics used in the area of anomaly detection for categorical
fields

Metric Description Cited
papers

Precision The fraction of correctly detected anomalies among all the predicted
anomalies [RHH11].

5

Recall The fraction of correctly detected anomalies among all the anomalous
instances [RHH11].

7

Accuracy The fraction of correctly predicted anomalies among the total number of
predictions. [RHH11]

3

Number of de-
tected anoma-
lies

The number of correctly detected anomalies. 2

F1-score The harmonic mean of precision and recall [APGG14]. 1

ROC curve ROC plots the true positive rate and false positive rate of a classification
model [HCT17].

4

AUC The ability of a binary classifier to distinguish between classes; it is used
as a summary of the ROC curve [Bra97].

9

values. Then, the algorithm learns a coupling function that assigns an
anomaly score to each vector. The algorithm considers instances with
an error score higher than a certain threshold as anomalies.

5.5.2.1 Choosing effectiveness metrics

In order to select the evaluation metric, we checked around 25 papers in-
cluded in a recent survey [TH19] on anomaly detection algorithms for cate-
gorical data. We also checked other recent papers citing these papers.

Table 5.2 presents a summary of our literature review. This table contains
three columns, showing the metrics, their description, and the number of pa-
pers using each metric. As shown in the table, seven metrics have been com-
monly used. Precision, Recall, AUC (Area under Curve), and ROC (Receiver
Operator Characteristic) curve are the most used ones. AUC is based on the
ROC curve, which is usually used to evaluate the performance of a classi-
fication model under different thresholds. We do not select AUC and ROC
since LAFF-AD automatically decides the error threshold during the tuning
phase. In order to evaluate our approach, we then simply rely on precision
and recall.

121

5.5. Evaluation

5.5.2.2 Methodology

We assessed the accuracy of different algorithms using Precision (Prec) and
Recall (Rec), which are computed from the confusion matrix summarizing
the classification outputs. The confusion matrix includes True Positive (TP),
False Positive (FP), True Negative (TN), and False Negative (FN). In our
context, TP are correctly classified as an anomaly, FP are wrongly classi-
fied as an anomaly, TN are correctly predicted as not anomalous, and FN
are misclassified as not anomalous. Based on the confusion matrix, we have
Prec =

TP
TP+FP and Rec =

TP
TP+FN .

Precision is the ratio of correctly detected anomalies over all the values
classified as anomalies. Recall is the ratio of correctly predicted anoma-
lies over all actual anomalies. High values of precision and recall imply
that an algorithm can correctly detect most anomalies. In the scenario of
anomaly detection, the main goal is to successfully detect all the anomalies
in a dataset, while avoiding predicting non-anomalous values as anomalies.
In other words, our approach needs to have both high precision and recall
values.

Regarding the four baselines, OCSVM, LOF and iForest are used to detect
anomalies in numerical data [PTAJ16]. To be able to run these algorithms on
our categorical data, it is necessary to convert categorical columns into nu-
merical ones. One common conversion method used in categorical anomaly
detection is 1-of-l [HFH+09]. This method converts a categorical column with
l candidate values to l binary columns representing each categorical value.
Such a column can take the values “1” or “0”, representing respectively if the
categorical value associated with the column is selected or not. Further, these
algorithms have different parameters to set, which may affect their effective-
ness. Since the values of these parameters may vary from one dataset to
another, in order to ensure a fair comparison, we explored the settings used
for these parameters in related works [XWC+18, LTZ12, CSFS02]. For each
algorithm, if there is only one parameter value used in different papers, we
consider it as default value for this parameter. If a parameter was set with dif-
ferent values in related works, we tune this parameter using grid search. The
tuning follows this strategy: for each parameter we explore a tuning range
from the minimum to the maximum values reported in the literature in steps
of 10 or 0.1; for each algorithm we then use the parameter values with the
highest accuracy for a given dataset.

122

5.5. Evaluation

Table 5.3: Effectiveness for Anomaly detection

Alg.
Accuracy Train Predict (ms)

Prec Rec (s) avg min–max

OCSVM 0.202 0.707 21 3 3–3
LOF 0.164 0.925 61177 33 27–57

NCBI-E iForest 0 0 264 36 30–64
EMAC-SCAN 0.213 0.828 0 1 0.767–2

LAFF-AD 0.808 0.970 1522 14.81 6–37

OCSVM 0.016 1 10585 5 4–9
LOF 0.384 0.333 24813 0.6 8–13

U2R iForest 0.169 0.733 43 23 23-23
EMAC-SCAN 0.562 0.600 0 0.74 0.71–0.75

LAFF-AD 1 1 535 6 5–15

OCSVM 0.183 1 2136 3 3–3
LOF 0.770 0.241 14330 7 7–7

Probe iForest 0.940 0.892 52 27 23–48
EMAC-SCAN 0.864 0.851 0 0.864 0.860–0.868

LAFF-AD 0.981 0.266 984 8 5–37

OCSVM 0.052 0.535 709 2 2–2
LOF 0.005 0.005 10359 10 9–14

CelebA iForest 0.134 0.153 204 18 17–22
EMAC-SCAN 0.112 0.295 0 21 18-25

LAFF-AD 1 1 6187 479 443–712

OCSVM 0.003 1 3085 2 2–2
LOF 0.107 0.085 9630 12 11–16

Covertype iForest 0.124 0.554 643 21.172 20–25
EMAC-SCAN 0.036 0.973 0 95 93– 97

LAFF-AD 1 0.570 4450 476 425–735

OCSVM 0.062 0.211 10916 5 5–5
LOF 0.008 0.002 18208 74 63–105

Census iForest 0.047 0.015 1504 30 24–38
EMAC-SCAN 0.054 0.649 0 74 74 – 80

LAFF-AD 0.970 0.928 6710 186 27-330

5.5.2.3 Results

Table 5.3 shows the results of the various algorithms on the different datasets
used in our evaluation. Column Alg indicates the algorithm, while columns
Prec and Rec indicate the precision and recall values, respectively.

Starting with the results on the NCBI-E dataset where anomalies are ran-
domly injected, LAFF-AD significantly outperforms baselines in terms of
Prec and Rec, ranging from +59pp to +64pp for Prec and +4.5pp to +26.3pp
for Rec. When we compare the recall value of LAFF-AD and LOF, both ap-
proaches have similar recall value but LAFF-AD performs much better in
terms of Prec (0.808 vs 0.164).

123

5.5. Evaluation

Looking at the results on the benchmark datasets, LAFF-AD substan-
tially outperforms the baselines for the U2R, CelebA, Census, and Covertype
datasets where the value of both Prec and Rec are almost equal to 1. More
in detail, LAFF-AD outperforms all the baselines on these datasets in terms
of precision by at least 43.8pp; in terms of recall, LAFF-AD outperforms the
other baselines by at least 26pp, except for the Covertype dataset where the
recall of EMAC-SCAN is higher than LAFF-AD by around 40pp. In this last
case, we remark that, even though the recall value of EMAC-SCAN is very
high compared to LAFF-AD, the precision value is very low (Prec=0.036).
This means EMAC-SCAN always predicts instances as anomalous. On the
contrary, LAFF-AD can accurately detect almost 60% of the anomalous in-
stances with a precision equal to 1.

Looking at the results of the Probe dataset, we can notice that both base-
lines iForest and EMAC-SCAN outperform LAFF-AD in terms of Rec by al-
most 60pp. Also, these baselines provide accurate suggestions with Prec
equal to 0.940 and 0.864 for iForest and EMAC-SCAN, respectively. We an-
alyze the reasons of the weak results of LAFF-AD on the Probe dataset in
§ 5.5.2.4 below.

Comparing the results of the baselines between (Probe, U2R) and (Cen-
sus, Covertype and CelebA), we notice that the results of the baselines are
very low for Census, Covertype and CelebA, especially in terms of Prec. One
possible reason can be the values of the parameters used in these baselines;
however, we have tried to use tuning to solve this problem. Besides, we be-
lieve that the high number of columns in the dataset (34 and 45 columns) may
be the reason of the low precision [KSZ08]. High-dimensional datasets (i.e.,
with high number of columns) are challenging ML algorithms [AHWM20].
High dimensionality can make it difficult for machine learning algorithms to
learn information from observed data, a problem referred to as the curse of
dimensionality [Rus10]. For example, the Census dataset is composed of 34
categorical columns where the range of number of candidate values varies
from 2 to 47. As we mentioned before, we need to transform these columns
to binary columns in order to run our baselines. The number of columns in
the transformed Census dataset is equal to the sum of the number of candi-
date values of each categorical column in the dataset; this value may affect
the ability of our baselines.

The results in terms of Precision and Recall values achieved by LAFF-AD
show that it can help correctly (prec � 0.808) detecting a high ratio of data
anomalies in different datasets with a recall ranging from 0.570 to 1.

124

5.5. Evaluation

Table 5.4: Maximum Carmér’s V for different datasets

Dataset Max Carmér’s V Column

U2R 0.664 Service
Probe 0.848 Flag, Service

CelebA 0.223 Att13
Covertype 0.275 Dim-17

Census 0.438 Att4

5.5.2.4 Error analysis

As presented in Table 5.3, the recall value of LAFF-AD for the Probe dataset
is low compared to the results of LAFF-AD on other benchmark datasets. In
order to understand the reason, we checked the prediction details of LAFF-
AD in Probe and found that all the missed anomalies predicted by LAFF-AD
have an anomaly score (as defined in § 5.4.2) of 0. This means that the form
filling tool LAFF predicts the anomalous values in the top first position of the
ranked list with a prediction confidence of 100%. Here the anomalous values
represent values or dependencies that seldom occur in the data. LAFF-AD
cannot detect the anomaly because the anomalous values are predicted in
the top of the ranked list (leading to checkNotTop = False when executing
Algorithm 6) and with low anomaly score (leading to checkProb = False).

We further analyze the reason behind the high confidence of the pre-
diction of the anomalous values. To do so, we performed the Chi-square
test [Fie79] and use Carmér’s V [KT17] to compute the association between
all the features and the target class for each dataset. Carmér’s V is a typical
measurement to compute the association of two categorical columns.

The results of this test are presented in Table 5.4 where we show the max-
imum Carmér’s V value and the name of columns having this value for each
dataset. As shown in the table, the Probe dataset contains two strongly de-
pendent features (“flag” and “service”) with the target class where both of
them have a Carmér’s V equal to 0.844. However, for other datasets, there
are no fields with such strong dependencies to the target class. A strong asso-
ciation between two categorical columns means that the value of one column
depends on the value of another column [JC]. Since we have strong associa-
tion between the “service” or “flag” column and the target class, the value of
the latter is related to the value of the former. LAFF is a form filling recom-
mender system completely agnostic to anomaly detection; it learns the de-
pendencies between the columns and use them to perform prediction of the
target class. In the Probe dataset, LAFF uses the dependencies between “flag”,
“service”, and the target class to perform prediction. Since these dependen-

125

5.5. Evaluation

Table 5.5: Results on Probe variations

Prec Rec

Probe 0.981 0.266
Probe-S 0.935 0.295
Probe-F 0.857 0.215

Probe-SF 1 1

cies are strong (due to the strong association), LAFF always returns a high
confidence value for each prediction. This occurs even if the predicted value
turns out to be anomalous. Hence, during the anomaly detection phase, the
anomaly score is low, and the flag checkProbt in Algorithm 6 evaluates to
false. As a result, LAFF-AD is not able to detect these anomalies.

In order to check if the strong dependency between “service” and “flag”
features and the target class is the reason behind the inability of LAFF-AD
to detect data anomalies (resulting in a low recall value), we ran LAFF-AD
on four variations of the Probe dataset. We created the following datasets
“Probe-S”, “Probe-F”, and “Probe-SF” representing the Probe dataset after
removing the “service” column, the “flag column”, and both of them from
the dataset, respectively. The results of this experiment are presented in Ta-
ble 5.5, where we computed the precision and recall of LAFF-AD on the four
variations.

As shown in the table, removing only one of the columns “service” and
“flag” does not affect the results of LAFF-AD. In fact, the results of LAFF-AD
on Probe-s and Probe-F are quite similar to those obtained on the original
Probe dataset. For the third variation, when we remove both columns, we
can see that LAFF-AD can accurately detect all the anomalous instances (i.e.,
achieving a recall value of 1) with a precision value equal to 1. These results
confirm our hypothesis that the strong association (dependency) with the
“flag” and “service” columns leads LAFF to learn rare behaviors and pre-
dict the anomalous class with high confidence. This problem can be easily
addressed during preprocessing, by removing columns that have degree of
association higher than a certain threshold [MBGD14].

The answer to RQ1 is that LAFF-AD performs better than SOTA baselines on
five datasets out of six used in our evaluation by at least 43.8pp and 26pp in terms
of precision and recall, respectively. LAFF-AD can detect at least 26% of data anoma-
lies with a precision above 0.8.

126

5.5. Evaluation

5.5.3 Performance (RQ2)

To answer RQ2, we measured the time needed to perform model training
(considered as training time) and the time needed to decide anomalies (pre-
diction time). Training time reflects the feasibility of using LAFF-AD in con-
texts where the training set is regularly updated with new instances. Pre-
diction time indicates the ability of LAFF-AD to detect anomalies in a short
period of time, for example as new data is acquired.

5.5.3.1 Methodology

In this RQ, we followed the same settings as RQ1, where we compared the
time needed by LAFF-AD to train and predict with the same baselines that
we used in RQ1. Training time measures the time to learn from the train-
ing data in order to detect data anomalies. Prediction time represents the
average time needed by an algorithm to perform prediction for one suspi-
cious instance. LAFF-AD’s prediction time is measured as the sum of the
prediction time taken by LAFF and the time taken by our anomaly detection
algorithm.

5.5.3.2 Results

The results of this RQ are presented in the last two columns, Train and Predict,
in Table 5.3. The Train column reports the training time in seconds whereas
the Predict column contains two subcolumns indicating the average predic-
tion time and the minimum/maximum time (in milliseconds).

As expected, training time for an algorithm varies from one dataset to
another. LOF has the highest training time across datasets with a minimum
of 9630 s. EMAC-SCAN and iForest are the fastest algorithms: EMAC-SCAN
does not require training while for iForest the training time is at most 1504 s.
As for LAFF-AD the training time is less than 7000 s.

In terms of prediction time, LAFF-AD has the highest prediction time
when compared to all the baselines. As we mentioned before, LAFF-AD’s
prediction time is the sum of the prediction time taken by LAFF and the time
taken by our anomaly detection algorithm. As shown in Table 5.3, LAFF-AD
takes on average at least 6ms to perform prediction and at most 479ms. The
reason behind the high prediction time for Covertype and CelebA is that the
prediction relies on complex BNs. The complexity of the BN is defined in
terms of the number of nodes (one node corresponds to one column) and the
number of dependencies between different columns. As shown in Table 5.1,
Covertype and CelebA have the highest number of columns among datasets.

127

5.5. Evaluation

These results need to be interpreted in our context. The training for the
anomaly detection process is done offline and periodically. A training time
of at most 7000 s is acceptable from a practical standpoint. This training time
allows LAFF-AD to be trained daily if needed, especially when the training
data is updated daily with thousands of instances.

Since anomaly detection is an offline process, a prediction time of at most
735ms is fast enough. It can even enable online anomaly detection during the
form filling process. Indeed, human-computer interaction standards [Hee00]
indicate that a seamless interaction between a user and a data entry form
can be ensured with a prediction time below 1 s. Since the prediction time
proposed by LAFF-AD is comparable with the results of LAFF [BLBB22], this
further confirms the possibility of using LAFF-AD to perform online data
anomaly detection.

The answer to RQ2 is that the performance of LAFF-AD, with a training time
below 7000 s (less than 2 hours) and a prediction time of at most 735ms, is suitable
for practical applications. The training time of LAFF-AD usually lies between that
of EMAC-SCAN and LOF. Concerning prediction time, LAFF-AD has a higher time
compared to baselines but the difference has no practical implications since anomaly
detection is an offline process.

5.5.4 Threats to Validity

The size of the training sets is a common threat to all machine learning-based
approaches. LAFF-AD is mainly designed to be used on datasets related to
enterprise software systems, these datasets usually contain enough data for
training LAFF-AD. In addition, these systems are often updated daily with
thousands of new instances, which makes this limitation not particularly rel-
evant.

To increase the generality of our results, LAFF-AD needs to be evaluated
on different datasets from different domains. To deal with this issue, we eval-
uated LAFF-AD using benchmark datasets that have been previously used
to evaluate anomaly detection approaches for categorical fields. Moreover,
we selected datasets from different domains (e.g., biomedical, security, and
finance). As shown in Table 5.1, these datasets also have different character-
istics with respect to the number of rows, columns, and the range of categor-
ical data. Also, we tried to evaluate LAFF-AD on different kinds of datasets,
including datasets with synthetically-injected anomalies through our error
injection strategy (i.e., the NCBI-E dataset) and benchmark datasets with real
anomalies.

128

5.6. Discussion

The implementation of the baselines can be considered an external threat.
To minimize this threat, we used the official implementation of LOF and iFor-
est in the sklearn library [PVG+11b]. As for EMAC-SCAN, we used the
available implementation provided by Xu et al. [XWWW19]. All the scripts
used to get the results were double-checked.

Another threat is the choice of parameter values of the baselines (i.e., iFor-
est, OCSVM, and LOF). The value of the parameters depends mainly on the
dataset because some values can work with one dataset but yield poor results
on another dataset. In order to mitigate this threat, we checked the literature
to identify possible ranges of values for each parameter in these baselines.
We performed parameter tuning using grid search to select optimal parame-
ter values for each baseline on each dataset.

5.6 Discussion

5.6.1 Usefulness

The main goal of LAFF-AD is to detect data anomalies in a suspicious data
set. In order to evaluate the anomaly detection ability of LAFF-AD, we ap-
plied it on 6 datasets from different domains with varying characteristics,
such as the number of rows and columns. Five out of six of these datasets are
commonly used to evaluate existing anomaly detection methods and one of
them (i.e., “NCBI-E”) was used to evaluate LAFF, on which we build here.

Our results show that LAFF-AD outperforms different baselines on nearly
all datasets (except Probe, see section 5.5.2) with a recall value of at least
0.570 and a precision higher than 0.808. In the context of anomaly detection,
these results indicate that LAFF-AD can accurately detect at least 57% of the
anomalous instances in the data, which is of practical significance. The high
precision (Prec � 0.808) also suggests a low number of false alarms). For some
datasets (NCBI-E, Census, U2R, and CelebA), very high Recall imply that
LAFF-AD can detect almost all the anomalies.

Regarding performance, LAFF-AD performs training in less than 6710 s

(less than 2 hours) and has a prediction time of at most 735ms. These results
suggests we can deploy LAFF-AD during the form-filling process as an ad-
ditional step for data quality check. In other words, LAFF-AD can be useful
to check if the data filled by the user is correct in real time. Further, applying
LAFF-AD during the form-filling process can reduce the cost of fixing the de-
tected anomalies [MBM15] because it can provide a list of suggested values
directly to the user. Also, anomaly detection during form filling can prevent

129

5.7. Summary

error propagation, since if errors may affect subsequent decisions if they are
not quickly fixed [SE03].

5.6.2 Practical Implications

This subsection discusses the practical implications of LAFF-AD for different
stakeholders: Data quality engineers, researchers, and software developers.

5.6.2.1 Data quality engineers

LAFF-AD is a data anomaly detection approach that can be easily used by
data quality engineers. To be able to run LAFF-AD, data engineers need
one training set and one dataset with suspicious instances that need to be
checked. LAFF-AD does not require data engineers to tune any parameter.

5.6.2.2 Researchers

In this chapter, we repurpose a form-filling recommender system to detect
data anomalies in categorical fields. To the best of our knowledge, our ap-
proach is the first approach that uses the output and characteristics of an au-
tomated form-filling tool like LAFF for anomaly detection. We speculate that
our proposed solution can inspire researchers to use other recommender sys-
tems to extend our approach, or to repurpose similar automated form-filling
tools for similar tasks such as anomaly detection for numerical fields.

5.6.2.3 Software Developers

Thanks to its short prediction time, LAFF-AD can be used as a data quality
check step during the data entry process. After filling the fields in a form
or a page, the user can run LAFF-AD to check the filled value before sub-
mission. Since LAFF-AD is based on a form-filling recommender system,
LAFF-AD can be integrated as a stand-alone tool to perform online anomaly
detection. Similar to LAFF, deploying LAFF-AD needs only a mapping be-
tween columns in the dataset and the data entry form fields. This mapping
can be found in software documentation such as the database schema and
the description of the UI widgets in the data entry forms [BLBB22].

5.7 Summary

In this chapter we proposed LAFF-AD, an approach to automatically detect
data anomalies in categorical columns in offline datasets. LAFF-AD runs

130

5.7. Summary

an adaptation of LAFF that handles offline prediction (i.e., not in real-time
during the data entry process) to predict the value of a suspicious categorical
field in the suspicious instance. LAFF-AD leverages the output of LAFF to
detect data anomaly with a heuristic-based anomaly detection module.

We evaluated LAFF-AD using six datasets with different characteristics.
Five of them are labeled datasets widely used to evaluate anomaly detection
approaches for categorical data; the last dataset contains synthetic anomalies.
The experimental results show that LAFF-AD can accurately detect a high
range of data anomalies, with recall values between 0.6 and 1 and a precision
value of at least 0.808. The results also show that LAFF-AD is fast enough
to be applied to detect data anomalies in practice: LAFF-AD takes at most
7000 s and 735ms to perform training and prediction respectively.

131

Chapter 6

Conclusions & Future Work

6.1 Conclusions

Data plays a fundamental role in modern systems such as software appli-
cations powered by machine learning. The effectiveness of such systems is
affected by the quality of data used to make decisions. However, an impor-
tant cause of low-quality data is data anomaly, which represents instances
that deviate from the majority of data. These anomalies are mainly resulted
from data entry errors (e.g., typographical errors and meaningless values).
The goal of this thesis is to develop approaches to ensure data quality by pre-
venting data entry errors during the form-filling process and by checking the
offline data saved in databases.

In this thesis we have made the following contributions to achieve these
goals:

1. LAFF: A learning-based automated approach for filling categorical fields
in data entry forms. The approach utilizes Bayesian Networks to learn
field dependencies from historical input instances. Moreover, LAFF re-
lies on a clustering-based local modeling strategy to mine local field
dependencies from partitions of historical input instances, to improve
its learning ability. Furthermore, LAFF uses a heuristic-based endorser
to ensure minimal accuracy for suggested values.

132

6.2. Future Research Directions

LAFF can provide a large number of accurate form filling suggestions,
significantly outperforming state-of-the-art approaches in terms of Mean
Reciprocal Rank (MRR). Further, LAFF takes at most 317 ms to provide
a suggestion and is therefore applicable in practical data-entry scenar-
ios.

2. LACQUER: An efficient learning-based automated approach for relax-
ing the completeness requirements of data entry forms. LACQUER ap-
plies Bayesian Networks on an oversampled data set (using SMOTE)
to learn the completeness requirement dependencies between fields.
Moreover, LACQUER uses a heuristic-based endorser module to en-
sure that it only provides accurate suggestions.

LACQUER can correctly determine 20% to 64% of optional fields and
determine almost all the required fields (with a recall value of 0.97).
LACQUER takes at most 839ms to provide a suggestion, which com-
plies with human-computer interaction principles to ensure a seamless
interaction with users.

3. LAFF-AD: An efficient anomaly detection tool to detect categorical data
anomalies in offline datasets. LAFF-AD runs an adaptation of LAFF
that handles offline prediction (i.e., not in real-time during the data en-
try process) to predict the value of a suspicious categorical field in the
suspicious instance. LAFF-AD leverages the output of LAFF to detect
data anomaly with a heuristic-based anomaly detection module.

LAFF-AD can accurately detect a high range of data anomalies, with
recall values between 0.6 and 1 and a precision value of at least 0.808.
The results also show that LAFF-AD is fast enough to be applied to
detect data anomalies in practice: LAFF-AD takes at most 7000 s and
735ms to perform training and prediction respectively.

Contributions (1) and (2) focus mainly on preventing data entry errors
during form-filling. Both approaches can be integrated into data entry forms
as efficient and effective strategies to help the user during the form-filling
process. Contribution (3) can be used offline on existing suspicious data to
effectively detect categorical data anomalies.

6.2 Future Research Directions

This dissertation sets the basis to follow different research directions in the
future:

133

6.2. Future Research Directions

Extension of LAFF. We plan to investigate methods to reduce the number
of incorrect suggestions provided by LAFF when the number of filled fields
used for prediction or the size of the training set is small.

Extension of LACQUER. We plan to add an automated module that can
detect meaningless values entered by the users during form filling when such
values have not been specified by the form designer.

Furthermore, we plan to integrate LACQUER into platforms for the de-
sign of data entry forms [Roc, Mom, Goo] to help designers perform form
refactoring. These platforms currently rely on rules defined by designers
to specify completeness requirements during the design phase. LACQUER
can be used to relieve designers from the task of defining such rules, since
it only requires to indicate the required fields; during form filling, LAC-
QUER will automatically suggest the completeness requirement of the re-
quired fields. LACQUER can also be extended to support sophisticated input
fields that can handle multiple selections such us Drop-down Menu (Multi-
select), Checkbox Group, etc.

Finally, we plan to extend LACQUER to support updates of existing data
entries as well as to determine whether fields previously marked as optional
should become required.

Extension of LAFF-AD. We plan to study the possibility of deploying LAFF-
AD during the form filling process as an online anomaly detection technique
for categorical fields.

User studies. We plan to conduct several empirical studies from the point
of view of both users and developers to analyze the effect of LAFF, LAC-
QUER, and LAFF-AD on reducing form filling time, input errors, and the
cost of developing data entry forms.

134

Bibliography

[AA17] Charu C Aggarwal and Charu C Aggarwal. An introduction to
outlier analysis. Springer, 2017.

[ABY16] Pierre A Akiki, Arosha K Bandara, and Yijun Yu. Engineering
adaptive model-driven user interfaces. IEEE Transaction on
Software Engineering, 42(12):1118–1147, 2016.

[ADK07] RB Aggarwal, Amit Dhawan, and Jay Shankar Kumar.
Database-centric development of menus and graphic user in-
terfaces. Defence Science Journal, 57(1):133, 2007.

[AFPS22] Fabrizio Angiulli, Fabio Fassetti, Luigi Palopoli, and Cristina
Serrao. A density estimation approach for detecting and ex-
plaining exceptional values in categorical data. Applied Intel-
ligence, pages 1–23, 2022.

[AGLH10] Samur Araujo, Qi Gao, Erwin Leonardi, and Geert-Jan
Houben. Carbon: domain-independent automatic web form
filling. In Proc. ICWE’10, volume 6189 of LNCS, pages 292–
306, Berlin, Heidelberg, Germany, 2010. Springer, Springer
Berlin Heidelberg.

[AHS12] Yuan An, Xiaohua Hu, and Il-Yeol Song. Learning to discover
complex mappings from web forms to ontologies. In Proceed-
ings of the 21st ACM international conference on Information and
knowledge management, pages 1253–1262, New York, NY, USA,
2012. ACM.

135

Bibliography

[AHWM20] Oluseun Omotola Aremu, David Hyland-Wood, and Pe-
ter Ross McAree. A machine learning approach to circum-
venting the curse of dimensionality in discontinuous time
series machine data. Reliability Engineering & System Safety,
195:106706, 2020.

[AKV19] Stamatios-Aggelos N. Alexandropoulos, Sotiris B. Kotsiantis,
and Michael N. Vrahatis. Data preprocessing in predictive
data mining. Knowledge Engineering Review, 34:e1, 2019.

[AM09] Alnur Ali and Chris Meek. Predictive models of
form filling. Technical Report MSR-TR-2009-1, Mi-
crosoft Research, January 2009. URL: https:
//www.microsoft.com/en-us/research/publica
tion/predictive-models-of-form-filling/.

[Ame05] American Medical News. Data entry is a top cause of
medication errors. https://amednews.com/article
/20050124/profession/301249959/4/, 2005.

[And21] Android API Reference. Android view autofill.
https://developer.android.com/reference/ko
tlin/android/view/autofill/package-summary,
2021.

[AP15] Ankur Ankan and Abinash Panda. Pgmpy: probabilistic
graphical models using python. In Proc. SCIPY’15, pages 6–
11, Austin, Texas, USA, 2015. SCIPY.

[APGG14] Iman Avazpour, Teerat Pitakrat, Lars Grunske, and John
Grundy. Dimensions and metrics for evaluating recommen-
dation systems. In Recommendation Systems in Software En-
gineering, pages 245–273. Springer, Berlin, Heidelberg, Ger-
many, 2014.

[AR10] Atia M Albhbah and Mick J Ridley. Using ruleml and
database metadata for automatic generation of web forms. In
2010 10th International Conference on Intelligent Systems Design
and Applications, pages 790–794. IEEE, 2010.

[AW12] Alexander Avidan and Charles Weissman. Record com-
pleteness and data concordance in an anesthesia informa-
tion management system using context-sensitive mandatory

136

https://www.microsoft.com/en-us/research/publication/predictive-models-of-form-filling/
https://www.microsoft.com/en-us/research/publication/predictive-models-of-form-filling/
https://www.microsoft.com/en-us/research/publication/predictive-models-of-form-filling/
https://amednews.com/article/20050124/profession/301249959/4/
https://amednews.com/article/20050124/profession/301249959/4/
https://developer.android.com/reference/kotlin/android/view/autofill/package-summary
https://developer.android.com/reference/kotlin/android/view/autofill/package-summary
https://developer.android.com/reference/kotlin/android/view/autofill/package-summary

Bibliography

data-entry fields. International Journal of Medical Informatics,
81(3):173–181, 2012.

[AZ17] Maysoon Aldekhail and Djamal Ziani. Intelligent method
for software requirement conflicts identification and removal:
proposed framework and analysis. International Journal of
Computer Science and Network Security, 17(12):91–95, 2017.

[Ban03] Bank for International Settlements. General guide to account
opening and customer identification. https://www.bis.
org/publ/bcbs85annex.htm, 2003.

[BBG11] Morten Bohøj, Niels Olof Bouvin, and Henrik Gammelmark.
Adapforms: A framework for creating and validating adap-
tive forms. In International Conference on Web Engineering,
pages 105–120. Springer, 2011.

[BCG+12] Tanya Barrett, Karen Clark, Robert Gevorgyan, Vyacheslav
Gorelenkov, Eugene Gribov, Ilene Karsch-Mizrachi, Michael
Kimelman, Kim D Pruitt, Sergei Resenchuk, Tatiana Tatusova,
et al. Bioproject and biosample databases at NCBI: facilitating
capture and organization of metadata. Nucleic acids research,
40(D1):D57–D63, 2012.

[BCL+21] Loli Burgueño, Robert Clarisó, Shuai Li, Sébastien Gérard,
and Jordi Cabot. A nlp-based architecture for the autocom-
pletion of partial domain models. In Proc. CAiSE’21, LNCS,
Berlin, Heidelberg, Germany, 2021. Springer.

[BFSO84] Leo Breiman, Jerome Friedman, Charles J Stone, and
Richard A Olshen. Classification and regression trees. CRC press,
Boca Raton, Florida, USA, 1984.

[BKNS00] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and
Jörg Sander. Lof: identifying density-based local outliers. In
Proceedings of the 2000 ACM SIGMOD international conference
on Management of data, pages 93–104, 2000.

[BLBB22] Hichem Belgacem, Xiaochen Li, Domenico Bianculli, and Li-
onel Briand. A machine learning approach for automated fill-
ing of categorical fields in data entry forms. ACM Trans. Softw.
Eng. Methodol., apr 2022. Just Accepted. doi:10.1145/
3533021.

137

https://www.bis.org/publ/bcbs85annex.htm
https://www.bis.org/publ/bcbs85annex.htm
https://doi.org/10.1145/3533021
https://doi.org/10.1145/3533021

Bibliography

[Bra97] Andrew P Bradley. The use of the area under the roc curve in
the evaluation of machine learning algorithms. Pattern recog-
nition, 30(7):1145–1159, 1997.

[BS03] Stephen D Bay and Mark Schwabacher. Mining distance-
based outliers in near linear time with randomization and a
simple pruning rule. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 29–38, 2003.

[CBHK02] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and
W Philip Kegelmeyer. Smote: synthetic minority over-
sampling technique. Journal of artificial intelligence research,
16:321–357, 2002.

[CCC+11] Kuang Chen, Harr Chen, Neil Conway, Joseph M Hellerstein,
and Tapan S Parikh. Usher: Improving data quality with dy-
namic forms. IEEE Transaction on Knowledge and Data Engi-
neering, 23(8):1138–1153, 2011.

[CCY00] Valeria Cardellini, Michele Colajanni, and Philip S Yu. Geo-
graphic load balancing for scalable distributed web systems.
In Proc. MASCOTS’00, pages 20–27, San Francisco, CA, USA,
2000. IEEE.

[CFM02] Takeshi Chusho, Katsuya Fujiwara, and Keiji Minamitani.
Automatic filling in a form by an agent for web applications.
In Proc. APSEC’02, pages 239–247, Berlin, Heidelberg, Ger-
many, 2002. IEEE.

[Coh95] William W Cohen. Fast effective rule induction. In Machine
learning proceedings 1995, pages 115–123. Elsevier, 1995.

[CSFS02] Barbara Caputo, K Sim, Fredrik Furesjo, and Alex Smola.
Appearance-based object recognition using svms: which ker-
nel should i use? In Proc of NIPS workshop on Statistical methods
for computational experiments in visual processing and computer
vision, Whistler, volume 2002, 2002.

[CSY+16] Tse-Hsun Chen, Weiyi Shang, Jinqiu Yang, Ahmed E Hassan,
Michael W Godfrey, Mohamed Nasser, and Parminder Flora.

138

Bibliography

An empirical study on the practice of maintaining object-
relational mapping code in Java systems. In Proc. MSR’16,
pages 165–176, New York, NY, USA, 2016. ACM.

[CVM+21] Vendula Churová, Roman Vyškovskỳ, Kateřina Maršálová,
David Kudláček, Daniel Schwarz, et al. Anomaly detection al-
gorithm for real-world data and evidence in clinical research:
implementation, evaluation, and validation study. JMIR Med-
ical Informatics, 9(5):e27172, 2021.

[CVW11] Pablo Castells, Saúl Vargas, and Jun Wang. Nov-
elty and diversity metrics for recommender systems:
choice, discovery and relevance. In Proc. DDR’11
- International Workshop on Diversity in Document Re-
trieval, pages 29–36, http://www.dcs.gla.ac.uk/work
shops/ddr2011/ddr2011.proceedings.pdf, 2011. self-
published.

[DÁDS16] Isabel M Del Águila and José Del Sagrado. Bayesian networks
for enhancement of requirements engineering: a literature re-
view. Requirements engineering, 21:461–480, 2016.

[DOP13] Oscar Diaz, Itziar Otaduy, and Gorka Puente. User-driven au-
tomation of web form filling. In Proc. ICWE’13, volume 7977
of LNCS, pages 171–185, Berlin, Heidelberg, Germany, 2013.
Springer.

[DS07] Kaustav Das and Jeff Schneider. Detecting anomalous records
in categorical datasets. In Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 220–229, 2007.

[DSX10] Ofer Dekel, Ohad Shamir, and Lin Xiao. Learning to clas-
sify with missing and corrupted features. Machine learning,
81(2):149–178, 2010.

[DVB12] Karel Dejaeger, Thomas Verbraken, and Bart Baesens. To-
ward comprehensible software fault prediction models using
bayesian network classifiers. IEEE Transactions on Software En-
gineering, 39(2):237–257, 2012.

139

http://www.dcs.gla.ac.uk/workshops/ddr2011/ddr2011.proceedings.pdf
http://www.dcs.gla.ac.uk/workshops/ddr2011/ddr2011.proceedings.pdf

Bibliography

[DVDSB+19] Fabiano Dalpiaz, Ivor Van Der Schalk, Sjaak Brinkkemper,
Fatma Başak Aydemir, and Garm Lucassen. Detecting ter-
minological ambiguity in user stories: Tool and experimenta-
tion. Information and Software Technology, 110:3–16, 2019.

[Ema99] Khaled El Emam. Benchmarking kappa: Interrater agreement
in software process assessments. Empirical Software Engineer-
ing, 4(2):113–133, 1999.

[ER04] A Elbibas and MJ Ridley. Developing web entry forms based
on metadata. In International Workshop on Web Quality in con-
junction with ICWE. Citeseer, 2004.

[FGG97] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian
network classifiers. Machine learning, 29(2-3):131–163, 1997.

[FGG+12] Sergio Firmenich, Vincent Gaits, Silvia Gordillo, Gustavo
Rossi, and Marco Winckler. Supporting users tasks with per-
sonal information management and web forms augmenta-
tion. In Proc. ICWE2012, volume 7387 of LNCS, pages 268–282,
Berlin, Heidelberg, Germany, 2012. Springer, Oxford Univer-
sity Press.

[FGJ08] Wenfei Fan, Floris Geerts, and Xibei Jia. A revival of in-
tegrity constraints for data cleaning. Proc. VLDB Endow-
ment’08, 1(2):1522–1523, 2008.

[Fie79] Stephen E Fienberg. The use of chi-squared statistics for cat-
egorical data problems. Journal of the Royal Statistical Society:
Series B (Methodological), 41(1):54–64, 1979.

[FS98] Martin R Frank and Pedro Szekely. Adaptive forms: an in-
teraction technique for entering structured data. Knowledge-
Based Systems, 11(1):37–45, 1998.

[FS04] Susan Fowler and Victor Stanwick. Web application design
handbook: Best practices for web-based software. Morgan Kauf-
mann, Amsterdam, Boston, USA, 2004.

[Gaf20] Abdul Gafur. Updated tabular key and improved browser-
based interactive key to species of pratylenchus filipjev (ne-
matoda: Pratylenchidae). Biodiversitas Journal of Biological Di-
versity, 21(8):3780–3785, 2020.

140

Bibliography

[GB19] Jim Gee and Mark Button. The financial cost of fraud 2019:
The latest data from around the world. 2019.

[GC06] Carl Gutwin and Andy Cockburn. Improving list revisitation
with ListMaps. In Proc. AVI’06, pages 396–403, New York, NY,
USA, 2006. ACM.

[GDBJ10] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach.
Beyond accuracy: evaluating recommender systems by cov-
erage and serendipity. In Proc. RecSys’10, pages 257–260, New
York, NY, USA, 2010. ACM.

[Ghe17] C. Ghezzi. Of software and change. Journal of Soft-
ware: Evolution and Process, 29(9):e1888, 2017. e1888
smr.1888. URL: https://onlinelibrary.wiley.com/
doi/abs/10.1002/smr.1888, arXiv:https://onli
nelibrary.wiley.com/doi/pdf/10.1002/smr.1888,
doi:https://doi.org/10.1002/smr.1888.

[GMH15] Baljinder Ghotra, Shane McIntosh, and Ahmed E Hassan. Re-
visiting the impact of classification techniques on the per-
formance of defect prediction models. In 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol-
ume 1, pages 789–800. IEEE, 2015.

[GMP11] José A Gámez, Juan L Mateo, and José M Puerta. Learning
bayesian networks by hill climbing: efficient methods based
on progressive restriction of the neighborhood. Data Mining
and Knowledge Discovery, 22(1-2):106–148, 2011.

[GOMR+17] Rafael S. Gonçalves, Martin J. O’Connor, Marcos Martı́nez-
Romero, Attila L. Egyedi, Debra Willrett, John Graybeal, and
Mark A. Musen. The CEDAR workbench: an ontology-
assisted environment for authoring metadata that describe
scientific experiments. In Proc. ISWC’17, volume 10588 of
LNCS, pages 103–110, Cham, 2017. Springer International
Publishing.

[Goo] Google LLC . Google Forms. https://docs.google.co
m/forms/. Accessed: 2021-12-09.

[Goo08] Google. Chrome autofill forms. https://support.goog
le.com/chrome, 2008. Accessed Feb 18, 2020.

141

https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1888
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1888
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1888
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1888
https://doi.org/https://doi.org/10.1002/smr.1888
https://doi.org/https://doi.org/10.1002/smr.1888
https://docs.google.com/forms/
https://docs.google.com/forms/
https://support.google.com/chrome
https://support.google.com/chrome

Bibliography

[Haw80] Douglas M Hawkins. Identification of outliers, volume 11.
Springer, 1980.

[HCH04] Bin He, Kevin Chen-Chuan Chang, and Jiawei Han. Discov-
ering complex matchings across web query interfaces: a cor-
relation mining approach. In Proc. KDD’04, pages 148–157,
New York, NY, USA, 2004. ACM.

[HCT17] Zhe Hui Hoo, Jane Candlish, and Dawn Teare. What is an roc
curve?, 2017.

[HDX05] Zengyou He, Shengchun Deng, and Xiaofei Xu. An optimiza-
tion model for outlier detection in categorical data. In Ad-
vances in Intelligent Computing: International Conference on In-
telligent Computing, ICIC 2005, Hefei, China, August 23-26, 2005,
Proceedings, Part I 1, pages 400–409. Springer, 2005.

[HDXH06] Zengyou He, Shengchun Deng, Xiaofei Xu, and
Joshua Zhexue Huang. A fast greedy algorithm for out-
lier mining. In Advances in Knowledge Discovery and Data
Mining: 10th Pacific-Asia Conference, PAKDD 2006, Singapore,
April 9-12, 2006. Proceedings 10, pages 567–576. Springer, 2006.

[Hee00] Carrie Heeter. Interactivity in the context of designed experi-
ences. J. of Interactive Advertising, 1(1):3–14, 2000.

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H Witten. The
weka data mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009.

[HKOP03] Jan Horsky, David R Kaufman, Michael I Oppenheim, and
Vimla L Patel. A framework for analyzing the cognitive
complexity of computer-assisted clinical ordering. Journal of
Biomedical Informatics, 36(1-2):4–22, 2003.

[HKTR04] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen,
and John T Riedl. Evaluating collaborative filtering recom-
mender systems. ACM Transaction on Information Systems,
22(1):5–53, 2004.

[HM09] Melanie Hartmann and Max Muhlhauser. Context-aware
form filling for web applications. In Proc. ICSC’09, pages 221–
228, Berkeley, CA, USA, 2009. IEEE.

142

Bibliography

[HRR19] Inma Hernández, Carlos R Rivero, and David Ruiz. Deep web
crawling: a survey. World Wide Web, 22(4):1577–1610, 2019.

[HS94] L. A. Hermens and J. C. Shlimmer. A machine-learning ap-
prentice for the completion of repetitive forms. IEEE Expert,
9(1):28–33, 1994.

[Hua98] Zhexue Huang. Extensions to the k-means algorithm for clus-
tering large data sets with categorical values. Data Mining and
Knowledge Discovery, 2(3):283–304, 1998.

[IPM16] Dino Ienco, Ruggero G Pensa, and Rosa Meo. A semisuper-
vised approach to the detection and characterization of out-
liers in categorical data. IEEE transactions on neural networks
and learning systems, 28(5):1017–1029, 2016.

[JBM11] Kawal Jeet, Nitin Bhatia, and Rajinder Singh Minhas. A
bayesian network based approach for software defects pre-
diction. ACM SIGSOFT Software Engineering Notes, 36(4):1–5,
2011.

[JC] LOX JELLY and Cream Cheese. Association between two cat-
egorical variables: Contingency analysis with chi square.

[JG09] Caroline Jarrett and Gerry Gaffney. Forms that work: Design-
ing Web forms for usability. Morgan Kaufmann, Amsterdam,
Boston, USA, 2009.

[JK19] Justin M Johnson and Taghi M Khoshgoftaar. Survey on deep
learning with class imbalance. Journal of Big Data, 6(1):1–54,
2019.

[JK21] Faisal Jamil and Dohyeun Kim. An ensemble of prediction
and learning mechanism for improving accuracy of anomaly
detection in network intrusion environments. Sustainability,
13(18):10057, 2021.

[Jou19] Chichang Jou. Schema extraction for deep web query in-
terfaces using heuristics rules. Information Systems Frontiers,
21(1):163–174, 2019.

143

Bibliography

[JQWX16] Xiao-Yuan Jing, Fumin Qi, Fei Wu, and Baowen Xu. Miss-
ing data imputation based on low-rank recovery and semi-
supervised regression for software effort estimation. In Proc.
ICSE’16, pages 607–618, Austin, TX, USA, 2016. IEEE.

[KB16] Marius Kaminskas and Derek Bridge. Diversity, serendip-
ity, novelty, and coverage: a survey and empirical analysis of
beyond-accuracy objectives in recommender systems. ACM
Transactions on Interactive Intelligent Systems, 7(1):1–42, 2016.

[KCVM04] Trausti Kristjansson, Aron Culotta, Paul Viola, and Andrew
McCallum. Interactive information extraction with con-
strained conditional random fields. In Proc. AAAI’04, vol-
ume 4, pages 412–418, New York, NY, USA, 2004. ACM.

[KJ10] Reza Khajouei and MWM Jaspers. The impact of cpoe
medication systems’ design aspects on usability, workflow
and medication orders. Methods of Information in Medicine,
49(01):03–19, 2010.

[KJJ18] Mozhgan Karimi, Dietmar Jannach, and Michael Jugovac.
News recommender systems–survey and roads ahead. Infor-
mation Processing & Management, 54(6):1203–1227, 2018.

[KLZ+19] Peter Kromkowski, Shaoran Li, Wenxi Zhao, Brendan Abra-
ham, Austin Osborne, and Donald E Brown. Evaluating sta-
tistical models for network traffic anomaly detection. In 2019
systems and information engineering design symposium (SIEDS),
pages 1–6. IEEE, 2019.

[KMH15] Gustavo Zanini Kantorski, Viviane Pereira Moreira, and Car-
los Alberto Heuser. Automatic filling of hidden web forms: a
survey. ACM SIGMOD Record, 44(1):24–35, 2015.

[KP17] Matevž Kunaver and Tomaž Požrl. Diversity in recommender
systems–a survey. Knowledge-based Systems, 123:154–162, 2017.

[KSZ08] Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek.
Angle-based outlier detection in high-dimensional data. In
Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 444–452, 2008.

144

Bibliography

[KT17] Jalayer Khalilzadeh and Asli DA Tasci. Large sample size,
significance level, and the effect size: Solutions to perils of
using big data for academic research. Tourism Management,
62:89–96, 2017.

[LIJ+19] Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and
Sehee Chung. Melu: Meta-learned user preference estimator
for cold-start recommendation. In Proc. SIGKDD’19, pages
1073–1082, New York, NY, USA, 2019. ACM.

[LTZ12] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-
based anomaly detection. ACM Transactions on Knowledge Dis-
covery from Data (TKDD), 6(1):1–39, 2012.

[LVMPG14] Mario Linares-Vásquez, Collin McMillan, Denys Poshy-
vanyk, and Mark Grechanik. On using machine learning to
automatically classify software applications into domain cat-
egories. Empirical Software Engineering, 19(3):582–618, 2014.

[LZPQ18] Junli Li, Jifu Zhang, Ning Pang, and Xiao Qin. Weighted out-
lier detection of high-dimensional categorical data using fea-
ture grouping. IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, 50(11):4295–4308, 2018.

[MBGD14] Caitlin Mills, Nigel Bosch, Art Graesser, and Sidney D’Mello.
To quit or not to quit: predicting future behavioral disengage-
ment from reading patterns. In Intelligent Tutoring Systems:
12th International Conference, ITS 2014, Honolulu, HI, USA, June
5-9, 2014. Proceedings 12, pages 19–28. Springer, 2014.

[MBM+11] Tim Menzies, Andrew Butcher, Andrian Marcus, Thomas
Zimmermann, and David Cok. Local vs. global models for
effort estimation and defect prediction. In Proc. ASE’11, pages
343–351, Lawrence, KS, USA, 2011. IEEE.

[MBM15] Kıvanç Muşlu, Yuriy Brun, and Alexandra Meliou. Prevent-
ing data errors with continuous testing. In Proc. ISSTA’15,
pages 373–384, New York, NY, USA, 2015. ACM.

[Mic13] Microsoft. Change the default tab order for controls on a
form. https://support.microsoft.com/en-us/
office/change-the-default-tab-order-for-con

145

https://support.microsoft.com/en-us/office/change-the-default-tab-order-for-controls-on-a-form-03d1599a-debf-4b66-a95b-e3e744210afe
https://support.microsoft.com/en-us/office/change-the-default-tab-order-for-controls-on-a-form-03d1599a-debf-4b66-a95b-e3e744210afe
https://support.microsoft.com/en-us/office/change-the-default-tab-order-for-controls-on-a-form-03d1599a-debf-4b66-a95b-e3e744210afe

Bibliography

trols-on-a-form-03d1599a-debf-4b66-a95b-e3e
744210afe, 2013.

[MK17a] Ruchika Malhotra and Megha Khanna. An empirical study
for software change prediction using imbalanced data. Em-
pirical Software Engineering, 22(6):2806–2851, 2017.

[MK17b] S. McIntosh and Y. Kamei. Are fix-inducing changes a moving
target? a longitudinal case study of just-in-time defect predic-
tion. IEEE Transaction on Software Engineering, 44(5):412–428,
2017.

[MK19] Elinore F McCance-Katz. The national survey on drug use
and health: 2017. Substance abuse and mental health services ad-
ministration, page 7, 2019.

[Mom] Momentive Inc. Survey Monkey. https://www.survey
monkey.com/. Accessed: 2021-12-09.

[MPFN18] Emilia Mendes, Mirko Perkusich, Vitor Freitas, and João
Nunes. Using bayesian network to estimate the value of deci-
sions within the context of value-based software engineering.
In Proceedings of the 22nd international conference on evaluation
and assessment in software engineering 2018, pages 90–100, 2018.

[MROE+19] Marcos Martı́nez-Romero, Martin J O’Connor, Attila L
Egyedi, Debra Willrett, Josef Hardi, John Graybeal, and
Mark A Musen. Using association rule mining and ontolo-
gies to generate metadata recommendations from multiple
biomedical databases. Database J. Biol. Databases Curation,
2019, 2019.

[NBS12] Keith Noto, Carla Brodley, and Donna Slonim. Frac: a
feature-modeling approach for semi-supervised and unsu-
pervised anomaly detection. Data mining and knowledge dis-
covery, 25:109–133, 2012.

[NK08] Kazuyo Narita and Hiroyuki Kitagawa. Detecting outliers in
categorical record databases based on attribute associations.
Lecture Notes in Computer Science, 4976:111–123, 2008.

[OEDK18] John-Paul Ore, Sebastian Elbaum, Carrick Detweiler, and
Lambros Karkazis. Assessing the type annotation burden. In
Proc. ASE’18, pages 190–201, New York, NY, USA, 2018. ACM.

146

https://support.microsoft.com/en-us/office/change-the-default-tab-order-for-controls-on-a-form-03d1599a-debf-4b66-a95b-e3e744210afe
https://support.microsoft.com/en-us/office/change-the-default-tab-order-for-controls-on-a-form-03d1599a-debf-4b66-a95b-e3e744210afe
https://support.microsoft.com/en-us/office/change-the-default-tab-order-for-controls-on-a-form-03d1599a-debf-4b66-a95b-e3e744210afe
https://support.microsoft.com/en-us/office/change-the-default-tab-order-for-controls-on-a-form-03d1599a-debf-4b66-a95b-e3e744210afe
https://www.surveymonkey.com/
https://www.surveymonkey.com/

Bibliography

[OY14] Ahmet Okutan and Olcay Taner Yıldız. Software defect pre-
diction using bayesian networks. Empirical Software Engineer-
ing, 19:154–181, 2014.

[PCC16] Guansong Pang, Longbing Cao, and Ling Chen. Outlier de-
tection in complex categorical data by modeling the feature
value couplings. 2016.

[PCC21] Guansong Pang, Longbing Cao, and Ling Chen. Homophily
outlier detection in non-iid categorical data. Data Mining and
Knowledge Discovery, pages 1–62, 2021.

[PCJ+17] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui
Abreu, Michael D Ernst, Deric Pang, and Benjamin Keller.
Evaluating and improving fault localization. In Proc. ICSE’17,
pages 609–620, Buenos Aires, Argentina, 2017. IEEE.

[PLM15] Sebastian Proksch, Johannes Lerch, and Mira Mezini. In-
telligent code completion with bayesian networks. ACM
Transactions on Software Engineering and Methodology (TOSEM),
25(1):1–31, 2015.

[POKB20] Tahereh Pourhabibi, Kok-Leong Ong, Booi H Kam, and
Yee Ling Boo. Fraud detection: A systematic literature re-
view of graph-based anomaly detection approaches. Decision
Support Systems, 133:113303, 2020.

[PTAJ16] Guansong Pang, Kai Ming Ting, David Albrecht, and
Huidong Jin. Zero++: Harnessing the power of zero appear-
ances to detect anomalies in large-scale data sets. Journal of
Artificial Intelligence Research, 57:593–620, 2016.

[PVG+11a] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[PVG+11b] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vin-
cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blon-
del, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.

147

Bibliography

Scikit-learn: Machine learning in python. the Journal of ma-
chine Learning research, 12:2825–2830, 2011.

[QMR+20] Siyu Qian, Esther Munyisia, David Reid, David Hailey, Jade
Pados, and Ping Yu. Trend in data errors after the implemen-
tation of an electronic medical record system: A longitudinal
study in an australian regional drug and alcohol service. In-
ternational Journal of Medical Informatics, 144:104292, 2020.

[RA20] Seyed Ehsan Roshan and Shahrokh Asadi. Improvement of
bagging performance for classification of imbalanced datasets
using evolutionary multi-objective optimization. Engineering
Applications of Artificial Intelligence, 87:103319, 2020.

[Raf95] Adrian E Raftery. Bayesian model selection in social research.
Sociological Methodology, 25:111–163, 1995.

[RHH11] Lida Rashidi, Sattar Hashemi, and Ali Hamzeh. Anomaly de-
tection in categorical datasets using bayesian networks. In
Artificial Intelligence and Computational Intelligence: Third Inter-
national Conference, AICI 2011, Taiyuan, China, September 24-25,
2011, Proceedings, Part II 3, pages 610–619. Springer Berlin Hei-
delberg, 2011.

[RJMFSC23] Santiago del Rey Juárez, Silverio Juan Martı́nez Fernández,
and Antonio Salmerón Cerdán. Bayesian network analysis
of software logs for data-driven software maintenance. IET
Software, pages 1–19, 2023.

[RNDL+08] Enrico Rukzio, Chie Noda, Alexander De Luca, John Hamard,
and Fatih Coskun. Automatic form filling on mobile devices.
Pervasive and Mobile Computing, 4(2):161–181, 2008.

[Roc] Rocketgenius Inc. Graviy Forms. https://www.gravit
yforms.com/. Accessed: 2021-12-09.

[RSMMA+19] NNR Ranga Suri, Narasimha Murty M, G Athithan, NNR
Ranga Suri, Narasimha Murty M, and G Athithan. Outlier
detection in categorical data. Outlier Detection: Techniques and
Applications: A Data Mining Perspective, pages 69–93, 2019.

[Rus10] Stuart J Russell. Artificial intelligence a modern approach. Pear-
son Education, Inc., 2010.

148

https://www.gravityforms.com/
https://www.gravityforms.com/

Bibliography

[RWZ09] Martin Robillard, Robert Walker, and Thomas Zimmermann.
Recommendation systems for software engineering. IEEE
Software, 27(4):80–86, 2009.

[SAF22] Halima Sadia, Syed Qamar Abbas, and Mohammad Faisal.
A bayesian network-based software requirement complexity
prediction model. In Computational Methods and Data Engi-
neering: Proceedings of ICCMDE 2021, pages 197–213. Springer,
2022.

[SAM18] Amr Rekaby Salama, Ozge Alaçam, and Wolfgang Men-
zel. Text completion using a context-integrating dependency
parser. In Proc. RepL4NLP’18, pages 41–49, Melbourne, Aus-
tralia, 2018. ACL.

[SE03] David Saff and Michael D Ernst. Reducing wasted develop-
ment time via continuous testing. In 14th International Sym-
posium on Software Reliability Engineering, 2003. ISSRE 2003.,
pages 281–292. IEEE, 2003.

[SGS18] Qinbao Song, Yuchen Guo, and Martin Shepperd. A compre-
hensive investigation of the role of imbalanced learning for
software defect prediction. IEEE Transactions on Software En-
gineering, 45(12):1253–1269, 2018.

[SHBA+14] Mirjam Seckler, Silvia Heinz, Javier A Bargas-Avila, Klaus
Opwis, and Alexandre N Tuch. Designing usable web forms:
empirical evaluation of web form improvement guidelines. In
Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, pages 1275–1284, 2014.

[SLDM18] Rasmus Strømsted, Hugo A López, Søren Debois, and Morten
Marquard. Dynamic evaluation forms using declarative mod-
eling. BPM (Dissertation/Demos/Industry), 2196:172–179, 2018.

[SMA12] NNR Ranga Suri, M Narasimha Murty, and Gopalasamy
Athithan. An algorithm for mining outliers in categorical data
through ranking. In 2012 12th International Conference on Hy-
brid Intelligent Systems (HIS), pages 247–252. IEEE, 2012.

[SMA13] NNR Ranga Suri, Musti Narasimha Murty, and Gopalasamy
Athithan. A rough clustering algorithm for mining outliers

149

Bibliography

in categorical data. In Pattern Recognition and Machine Intelli-
gence: 5th International Conference, PReMI 2013, Kolkata, India,
December 10-14, 2013. Proceedings 5, pages 170–175. Springer,
2013.

[SR12] Marton Sakal and Lazar Rakovic. Errors in building and us-
ing electronic tables: Financial consequences and minimisa-
tion techniques. Strategic Management, 17(3):29–35, 2012.

[STL11] Gunnar Schröder, Maik Thiele, and Wolfgang Lehner. Setting
goals and choosing metrics for recommender system evalua-
tions. In UCERSTI2 workshop at the 5th ACM conference on rec-
ommender systems, volume 23, page 53, New York, NY, USA,
2011. ACM.

[SZ03] Andrew Sears and Ying Zha. Data entry for mobile de-
vices using soft keyboards: Understanding the effects of key-
board size and user tasks. J. of Human-Computer Interaction,
16(2):163–184, 2003.

[SZZZ17] Jiuling Song, Yonghe Zhou, Juren Zhang, and Kewei Zhang.
Structural, expression and evolutionary analysis of the non-
specific phospholipase c gene family in gossypium hirsutum.
BMC genomics, 18(1):1–15, 2017.

[TB96] Paul Thistlewaite and Steve Ball. Active forms. Computer Net-
works and ISDN Systems, 28(7-11):1355–1364, 1996.

[TBA17] Luigi Troiano, Cosimo Birtolo, and Roberto Armenise. Model-
ing and predicting the user next input by bayesian reasoning.
Soft Computing, 21(6):1583–1600, 2017.

[TCdSdM10] Guilherme A Toda, Eli Cortez, Altigran S da Silva, and Edleno
de Moura. A probabilistic approach for automatically fill-
ing form-based web interfaces. Proc. of the VLDB Endowment,
4(3):151–160, 2010.

[TH19] Ayman Taha and Ali S Hadi. Anomaly detection methods for
categorical data: A review. ACM Computing Surveys (CSUR),
52(2):1–35, 2019.

[TLA+22] Florian Tambon, Gabriel Laberge, Le An, Amin Nikanjam,
Paulina Stevia Nouwou Mindom, Yann Pequignot, Foutse

150

Bibliography

Khomh, Giulio Antoniol, Ettore Merlo, and François Lavio-
lette. How to certify machine learning based safety-critical
systems? a systematic literature review. Automated Software
Engineering, 29(2):38, 2022.

[ULI19] Qasim Umer, Hui Liu, and Inam Illahi. Cnn-based automatic
prioritization of bug reports. IEEE Transaction on Reliability,
69(4):1341–1354, 2019.

[VDBB08] Antal Van Den Bosch and Toine Bogers. Efficient context-
sensitive word completion for mobile devices. In Proc. Mo-
bileHCI’08, pages 465–470, New York, NY, USA, 2008. ACM.

[VLL+03] Costas Vassilakis, Giorgos Laskaridis, Giorgos Lepouras,
Stathis Rouvas, and Panagiotis Georgiadis. A framework
for managing the lifecycle of transactional e-government ser-
vices. Telematics and Informatics, 20(4):315–329, 2003.

[W3C17] W3CSchools. HTML dom input text object. https://www.
w3schools.com/jsref/dom_obj_text.asp, 2017.

[W3C21] W3C School. Html ¡input¿ autocomplete attribute.
https://www.w3schools.com/tags/att_input_auto
complete.asp, 2021.

[WBL+13] Johanna I Westbrook, Melissa T Baysari, Ling Li, Rosemary
Burke, Katrina L Richardson, and Richard O Day. The safety
of electronic prescribing: manifestations, mechanisms, and
rates of system-related errors associated with two commercial
systems in hospitals. Journal of the American Medical Informatics
Association, 20(6):1159–1167, 2013.

[WC21] Zeqing Wu and Weishen Chu. Sampling strategy analysis of
machine learning models for energy consumption prediction.
In 2021 IEEE 9th International Conference on Smart Energy Grid
Engineering (SEGE), pages 77–81. IEEE, 2021.

[WGV+11] Marco Winckler, Vicent Gaits, Dong-Bach Vo, Firmenich Ser-
gio, and Gustavo Rossi. An approach and tool support for as-
sisting users to fill-in web forms with personal information. In
Proc. SIGDOC’11, pages 195–202, New York, NY, USA, 2011.
ACM.

151

https://www.w3schools.com/jsref/dom_obj_text.asp
https://www.w3schools.com/jsref/dom_obj_text.asp
https://www.w3schools.com/tags/att_input_autocomplete.asp
https://www.w3schools.com/tags/att_input_autocomplete.asp
https://www.w3schools.com/tags/att_input_autocomplete.asp

Bibliography

[WKL04] Wan MN Wan-Kadir and Pericles Loucopoulos. Relating
evolving business rules to software design. Journal of Systems
Architecture, 50(7):367–382, 2004.

[WZK+14] Shaohua Wang, Ying Zou, Iman Keivanloo, Bipin Upadhyaya,
Joanna Ng, and Tinny Ng. Automatic reuse of user inputs to
services among end-users in service composition. IEEE Trans-
action on Services Computing, 8(3):343–355, 2014.

[WZNN17] Shaohua Wang, Ying Zou, Joanna Ng, and Tinny Ng. Context-
aware service input ranking by learning from historical infor-
mation. IEEE Transaction on Services Computing, 14(1):97–110,
2017.

[XWC+18] Hongzuo Xu, Yongjun Wang, Li Cheng, Yijie Wang, and
Xingkong Ma. Exploring a high-quality outlying feature
value set for noise-resilient outlier detection in categorical
data. In Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, pages 17–26, 2018.

[XWWW19] Hongzuo Xu, Yongjun Wang, Zhiyue Wu, and Yijie Wang.
Embedding-based complex feature value coupling learning
for detecting outliers in non-iid categorical data. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 5541–5548, 2019.

[YBL14] Xin Ye, Razvan Bunescu, and Chang Liu. Learning to rank
relevant files for bug reports using domain knowledge. In
Proc. FSE’14, pages 689–699, New York, NY, USA, 2014. ACM.

[YLX+16] Xinli Yang, David Lo, Xin Xia, Lingfeng Bao, and Jianling
Sun. Combining word embedding with information retrieval
to recommend similar bug reports. In Proc. ISSRE’16, pages
127–137, Ottawa, ON, Canada, 2016. IEEE.

[YS20] Li Yang and Abdallah Shami. On hyperparameter optimiza-
tion of machine learning algorithms: Theory and practice.
Neurocomputing, 415:295–316, 2020.

[YSY+20] Junwen Yang, Utsav Sethi, Cong Yan, Alvin Cheung, and
Shan Lu. Managing data constraints in database-backed web
applications. In 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE), pages 1098–1109. IEEE, 2020.

152

Bibliography

[Zho21] Zhi-Hua Zhou. Ensemble learning. In Machine Learning,
pages 181–210. Springer, Singapore, 2021.

[ZZW19] Mingrui Ray Zhang, Shumin Zhai, and Jacob O. Wobbrock.
Text entry throughput: towards unifying speed and accuracy
in a single performance metric. In Proc. CHI’19, pages 1–13,
New York, NY, USA, 2019. ACM.

153

