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When making strategic decisions, we are often confronted with overwhelming information to 

process. The situation can be further complicated when some pieces of evidence are contradicted 

each other or paradoxical. The challenge then becomes how to determine which information is 

useful and which ones should be eliminated. This process is known as meta-decision. Likewise, 

when it comes to using Artificial Intelligence (AI) systems for strategic decision-making, placing 

trust in the AI itself becomes a meta-decision, given that many AI systems are viewed as opaque 

"black boxes" that process large amounts of data. Trusting an opaque system involves deciding on 

the level of Trustworthy AI (TAI). We propose a new approach to address this issue by 

introducing a novel taxonomy or framework of TAI, which encompasses three crucial domains: 

articulate, authentic, and basic for different levels of trust. To underpin these domains, we create 

ten dimensions to measure trust: explainability/transparency, fairness/diversity, generalizability, 

privacy, data governance, safety/robustness, accountability, reproducibility,  reliability, and 

sustainability. We aim to use this taxonomy to conduct a comprehensive survey and explore 

different TAI approaches from a strategic decision-making perspective. We adopt the Preferred 

Reporting Items for Systematic Review and Meta-Analysis (PRISMA) methodology to investigate 

different TAI schemes and tools. This method allows us to evaluate various TAI implementation 

models through three lenses of ethical theories: utility-based (utilitarianism), duty-based 

(deontology), and natural law-based. Moreover, we discuss some ethics, machine learning, and 

strategic decision-making paradoxes along the meta-decision process. By acknowledging these 

paradoxes, we can strive towards developing better TAI approaches that align with ethical 

standards and advance TAI. Finally, we provide insights into the future direction in the field of 

TAI research. 
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1. Introduction 

Determining how much trust to place in a result generated by Artificial Intelligence (AI) / Machine Learning (ML) algorithms can be 

an immensely daunting task, especially for a strategic decision. There are nine compelling reasons: 1.) The nature of learning logic is 

reversed [1], in which the machine learns rules or patterns derived from data rather than being explicitly programmed. 2.) While David 

Hume argues that we have no reason to expect the future resembles the past [2], we still intend to use historical data to make predictions 

about our future. 3.) Many ML models, such as deep neural networks, support vector machines, and ensemble methods, are considered 

to be black boxes. Due to their lack of transparency, many black box models could pose a significant risk to a firm’s strategy or high-

stakes decisions [72]. 4.) The underlying principle of ML is to identify correlations rather than causation. Pearl [4] argues that the 

traditional statistical approach, which focuses on identifying correlations between variables, is insufficient for understanding causality. 

5.) AI systems' security and privacy protections are critical, as cyber-attacks can result in severe consequences such as data theft, 

financial loss, and security breaches. These issues can significantly impact people's trust in AI systems [5]. 6.) The lack of meaningful 

human control over AI systems is a significant barrier to building trustworthy AI [6]. 7.) The subtlety of ethical issues raises another 

significant challenge to trustworthy AI because ethical values are cultural norms and belief-bounded [7]. 8.) Strategic decision-making 

means long-term consequences for an organization. These decisions are typically made based on assumptions about the future. As a 

result, it can be difficult to verify the consequences immediately.[8] 9.) Navigating the complexities of strategic decision-making can be 

further complicated by the paradoxical outcomes arising from different AI/ML techniques [9] and strategic objectives with competing 

demands. [10]   

To systematically solve these challenges, data quality is a good starting point because data is a pivotal point of a solution for ML. 

Traditionally, we have used a rule-based approach known as good old-fashioned artificial intelligence (GOFAI) systems. With GOFAI, 

we define a set of rules with a given dataset and let a machine work out a desirable outcome. With ML or deep neural nets, we reverse 

the learning logic, in which we specify what we want with a given dataset and let a machine find rules or patterns in the representation 

space on our behalf. Moreover, ML applications for strategic decision-making are prevalent. They can be found in many industries and 

domains, such as business analysis, managerial economics, organization planning, organization behaviour, financial investment, 

customer segments, assets management, supply chain management, product lifecycle, market analysis, and competitive analysis.[11] 

When working with a dataset that is free of corruption, bias, missing values, and inconsistency, we can have relative confidence in 

the accuracy of learning outcomes. Unfortunately, the data we access is often messy or incomplete, prohibiting our ability to make 

accurate predictions or assessments. The Data Warehousing Institute (TDWI) reported that poor data quality cost U.S. businesses $600 

billion annually in 2012[12]. Recently, IBM [13] indicated that the average cost of poor-quality data would reach an average of $15 

million per business or more than $3.1 trillion annually in 2022. Batini and Scannapieco [14] highlighted eight common concerns 

regarding data quality: 1.) accuracy, 2.) completeness, 3.) redundancy, 4.) readability, 5.) accessibility and availability, 6.) consistency, 

7.) usefulness, and 8.) trust. In addition, we may also encounter issues of missing attributes, implausible values, ambiguous meanings, 

and untraceable data. Altogether, we can categorize these issues into two large clusters: unavailable and unusable data (See figure 1). 

When data is unclean and biased, the results of ML algorithms become less reliable, making it challenging to trust the outcomes. 

 
Figure 1 Data Quality and Trustworthy AI 

To ensure that AI systems are trustworthy, Figure 1 illustrates four possible options in terms of data quality: 1.) Collect more data, 

2.) Cleaning the dataset, 3.) Redesign ML algorithms, and 4.) Change the datasets or recollect data. Options 1 and 4 are often very 

expansive and sometimes impossible. Even if we make many efforts to ensure that data (fuel) fits with the learning algorithms (engine), 

options 2 and 3 could still end up with "garbage in and garbage out". Although data quality is one of the critical issues for TAI, the real 

problem sometimes could be beyond data quality because the notion of trust and trustworthiness is often emotional, relational, 
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interactive, and dynamic[15]. Given the complexity of the TAI issue, we propose a TAI framework as a systemic or architectural 

solution. It can also be considered a TAI taxonomy. 

The proposed TAI hierarchy consists of three levels of data processing: objectives (goal), domains (knowledge), and dimensions 

(measurements) (See Figure 2). The origin of this framework is derived from Marr's "levels of analysis or explanation" [21]. Marr 

argues that the visual system can be understood as a series of computational processes, including object recognition, feature detection, 

and image processing. Similarly, we can use isomorphism to formulate a framework comprising objectives, three domains and ten 

dimensions for TAI. (More details are in Figures 5 and 8) 

 
Figure 2 The Proposed TAI Hierarchical Framework 

Placing the objectives at the top is justified by the fact that our moral values and ethics frequently shape our goals. The values are 

drawn from three main ethical theories: utilitarianism (utility-based), deontology (duty-based), and natural law (virtue-based). It creates 

an inverted pyramid as our guiding principles of objectives, domains and dimensions (more details in the later sections). Our TAI goal 

outlines the desired objectives for a particular application or a type of problem to be resolved.  

The next level below is the domain upheld by domain knowledge. These domains are divided into articulate, authentic, and basic 

trust. They serve the purpose of different trustworthy applications or objectives. Each application (e.g., business analysis, market 

forecasting, self-driving cars, healthcare, online shopping, and banking services) requires particular domain knowledge. The 

relationship between domains and dimensions is adaptable. We can select different sets of dimensions to form a particular domain. A 

dimension class is just a placeholder. Objectives, domains, and dimensions generate a pyramid shape of an abstract structure to illustrate 

different learning processes from data. The right side of Figure 2 illustrates that this hierarchical framework is driven by both top-down 

(ethics/values) and bottom-up (data/facts). The framework highlights that we can either fix the data if the issue is regarding data or 

justify our value proposition if our value or belief does not align with the reality or facts. 

 
Figure 3 An Example of Explaining Taxonomy’s Key Terms 
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To better understand these abstractive terminologies, let us look at a simple example. If Alice wants to buy a book (it can be a 

strategic decision, such as a hundred million dollar investment), she can search for information about the book or a seller by herself via 

a website or ask the AI machine for help. The TAI objective is the best choice. The domain is equivalent to domain knowledge or 

expertise in buying decisions. Alice might consult some domain experts with whom she has a certain level of trust, but she has her own 

value proposition about the book. The dimension measures the objective (e.g., the best price, the latest edition, free postage cost, 

shortest delivery time, etc.). We can also assume 1.) the machine uses the neural network (black box), 2.) the collecting data is messy. 

The question is how to trust the result generated by the machine (See Figure 3)  

In order to trust the AI result, we can establish a framework or taxonomy of a “levels of analysis (or trust)" structure to investigate 

different TAI techniques. The taxonomy enables us to: 

• Examine the pros and cons of various TAI techniques implemented by ML. 

• Analyze the impact of different ML factors on the decision-making process. 

• Evaluate how certain common ML paradoxes can potentially affect strategic decision-making. 

• Identify and analyze possible areas for improvement based on the survey results. 

• Highlight the future directions in this field of research. 

1.1. Survey Methodology 

The survey method combines Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), a list of 27 checking 

points classified into seven domains [16] with text-mining techniques [17][18][19] via R to screen out over 1000 literature and focus on 

more than about one hundred papers. Our survey method has four processing steps: 1.) The inductive process is to expand the l iterature 

pool based on TAI keywords, 2.) The text mining process is to identify the most relevant literature, 3.) The deductive process is to 

determine seminal papers according to the quality of the paper, 4.) The iterative process is to update and revise the latest publications 

during the survey process (See Figure 4).  

 
Figure 4 Survey Methodology 1 

The taxonomy method is mainly phenetic. The phenetic taxonomy compares the overall similarity between objects, and those with 

the highest degree of similarity are grouped together [20]. This method is based on the applications and characteristics of TAI 

techniques.  

——— 
1 Notice that we adopt the inductive process to select various types of literature from three different sources: 1.) Journal and conference papers, 
2.) Organization reports and whitepapers, 3.) Books and dissertations. Generally speaking, a typical conference paper has between 8 and 15 
pages, while a journal paper usually has between 12 and 35 pages. The regular size of a report is between 50 and 150 pages or less than 200 
pages. The average length of a book or PhD dissertation is more than 200 pages. We use this classification to run the initial text mining process, 
which can identify the most relevant literature in the collected literature pool. 
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1.2. Primary Contributions 

With the designated taxonomy and survey method, we choose literature from at least three sources (including conference and journal 

papers, books, technical reports, whitepapers, and PhD dissertations) and summarize selected papers regarding their research method, 

contributions, and future improvement for each TAI technique. Consequently, we made the following contributions: 

• We establish a compelling taxonomy encompassing objectives, three domains, ten dimensions, 33 implementation models, 

and 106 schemes. The dimensions serve as primary metrics for the TAI techniques evaluation. The implementation models are 

the solutions to various problems, while schemes are the tools of the ML toolbox.  

• We offer a comprehensive survey of the states of the arts for TAI techniques regarding their contributions to TAI. 

• The survey method combines PRISMA with the text-mining approach to select relevant literature.  

• The framework can be adapted and adopted as a TAI computational solution.  

• This study identifies various Ethics, ML, and strategic decision paradoxes and dilemmas due to the complexity of TAI. 

1.3. Scope of the Research 

The rest of the survey is organized as follows. Section 2 begins with clarifying essential concepts regarding trust and trustworthiness 

and their relationship. These concepts divide into three layers: objectives, domains, and dimensions based on David Marr's theory of the 

vision information process.[22] Section 3 presents the details of the novel taxonomy comprising 3 domains, 10 dimensions, 33 

implementation models, and 106 schemes. The core of the taxonomy is the trust domain, which is divided into three levels. Section 4 

provides a comprehensive survey regarding TAI. Section 5 briefly discusses human decisions on TAI derived from three ethical 

theories: 1.) utility-based, 2.) duty-based, and 3.) natural law-based theory, and then identifies some ethical AI, ML, TAI, and strategic 

decision paradoxes that may impact strategic decision-making. Section 6 summarizes and discusses TAI at different levels and provides 

conclusions and future research direction. 

2. Related Terminologies of Trust 

The decision on TAI is very challenging, especially for an application of high-stake decision, because it involves many aspects of 

our subjective views, such as understanding AI, human beliefs, experiences, ethical values, emotions, justice, Fairness, equality, duty, 

right and wrong, and good and bad. [23] Many items are tough to be quantified. Deciding TAI is ultimately a question of deciding how 

to decide. As the famous legal maxim goes, 'hard cases make bad law,' so we start by delving into the simple TAI concepts before 

deciding how to decide. 

2.1. Objectives Terminologies Trust and Trustworthiness 

The TAI framework is designed to capture specific requirements and represent particular domain knowledge for some objectives. It 

is built on some essential concepts, such as trust, trustworthiness, AI, decision, ethics, value, and policy. Flores and Solomon[15] 

argued that 'trust' itself is a decision. It determines relationship bonds towards someone or something. Considering the societal 

perspective, trust is not only relational but also carries significant emotional weight. Like all emotional feelings, trust is dynamic. It 

never means a single instance of trust. Consequently, trust can be either created or restored or destroyed or broken. Similarly, 

trustworthiness carries the same meaning. 

We often use these two terms interchangeably. Sometimes, these two terms are confusing because they are closely related concepts. 

Lexically, trust means belief in reliability. Flores and Solomon argued [15] that trust is often the result of something being perceived as 

trustworthy. These two terms form an obvious complementary pair. Trust opens up the possibility of trustworthiness. Without trust, 

trustworthiness is impossible. 

2.2. Domain Terminologies 

In addition to this complementary relationship, Flores and Solomon further classified trust into five levels or degrees, namely simple 

trust, basic trust, blind trust, authentic trust, and articulate trust. Simple trust is a kind of naïve, unchallenged, unquestioned, and 

unarticulated belief, such as children trust their parents. This kind of trust is without distrust. "The absence of distrust is what makes it 

so simple." [15] Basic trust is a set of baseline norms that take for granted, such as a guarantee of personal safety and privacy in a 

peaceful society. Blind trust is a sort of stubborn mentality or self-deception mindset. Authentic trust holds trust and distrust in 

balance. People who have authentic trust understand its risks and vulnerabilities. Articulate trust is spelt out as a contract or agreement 

with enforcement mechanisms in place. 

From a measurement perspective, the articulate trust provides fairness, transparency, and generalizability, which can be associated 

with a justice class of dimensions. At the next level below, Authentic trust concerns risks and long-term accountability, which we can 

consider a security class. In other words, we require a TAI system to quantify threats and potential benefits and provide a balance 

option [25]. Basic trust is frequently ignored and left unspoken, known as unarticulate trust. For example, the result of a strategic 

decision produced by AI/ML can be at least reproducible without explicitly mentioning it. To some extent, "basic trust" can be loosely 

associated with the dependence class (Refer to Figure 2). Although there is a loose relation between a domain with a dimension class, 

each dimension can align with a different trust domain. It depends on the objectives. For example, if we want to make a strategic 

decision for a public investment project (e.g., public transport), Fairness (justice category), accountability (security category), and 

sustainability (dependence category) must be considered. This example gives rise to dimension concepts. 

2.3. Dimension Terminologies 
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Figure 2 shows ten-dimensional concepts. We can roughly classify them into three categories: justice, security, and dependence. 

Under justice, there is the concept of transparency and explainability dimension. The word transparency means a substance has the 

property that allows light to pass through it, and the objects behind it can be distinctly seen. It is opposite to opacity or a black box. 

From an AI perspective, transparency has become one of the mandatory norms required by the General Data Protection Regulation 

(GDPR) [26] because the decision-making process assisted by AI exceeds human expert capability [27]. Transparency can be 

implemented by algorithmic transparency[28]. Wortham argued [29] that transparency is often intertwined with ideas of accountability 

and responsibility at the objective level. However, the closest definition of transparency is explainable[30]. The definition of 

"explainable" is understandable and interpretable and has reasons for TAI. In other words, something or a story is justifiable and 

acceptable. It is the state of being fair.  

Fairness is an essential part of a justice class. Diversity and non-discrimination are complementary to fairness. Diversity is the 

condition of having or being composed of different elements. One of the advantages of diversity is "The Wisdom of Crowds." [31] With 

enough diversity of data, the machine can learn or formulate unbias rules. Puri et al.[32] adopted a considerable scale and diverse 

dataset to accelerate the algorithmic advancement, which they called AI for code. Diversity aims to formulate wisdom and mitigate our 

ignorance or discrimination. Non-discrimination means being on an equal footing. Veale and Binns [33] argued that algorithmic and 

learning models could produce biases if the machine learns from historical data, such as gender, ethnicity, sexuality or disability. Their 

study offers three potential models to mitigate possible discrimination. Similarly, Wachter et al. [34] addressed this issue from a legal 

perspective. They intend to bridge the gap between non-discrimination law and AI algorithms known as "contextual equality."  

The concept of non-discrimination brings another closely related concept, namely Generalizability. It means the degree to which we 

can apply our training results to a broader context. Paul et al. [35] proposed a novel method for AI fairness and generalization, known as 

the training and representation alteration (TARA) method. However, generalization often encounters the issue of preserved privacy.[36] 

We classify privacy as a part of security. It is the state of not being shared by others—privacy matters for many reasons, such as 

ensuring self-determination, safety, and trust. Privacy is vital when we use AI/ML for medical applications. Kassis et al.[37] proposed a 

next-generation method known as "secure, privacy-preserving and federated ML" that can "protect patient privacy and promote 

scientific research on large datasets that aims to improve patient care." This concept is closely related to data governance and 

ownership. 

Data governance guarantees that the collected data is the safety, quality, integrity, and usability for authorized users and 

stakeholders during the data's life cycle, which is until the data is destroyed or archived [38]. Kroll offered a set of best practices by 

using data in automated decision-making. When we encounter automated decision-making, the issue of safety becomes critical. "The 

IEEE is running several standard processes surrounding AI ethics and safety." [39]. AI safety is a system issue because "many new AI 

applications across various society domains and public infrastructures come with new hazards, which result in new forms of harm" [40]. 

The author argued that there is an accountability gap for AI-driven innovations because people often misinterpret that they could 

offload their accountability from humans to the AI agent due to automatic decision-making. 

Based on the OECD organization's AI principles [41], accountability "refers to the expectation that organizations or individuals will 

ensure the proper functioning, throughout their lifecycle, of the AI systems that they design, develop, operate or deploy, in accordance 

with their roles and applicable regulatory frameworks, and for demonstrating this through their actions and decision-making process." 

Loi and Spielkamp [42] further quantified accountability as a relational condition that includes at least three elements: responsibility, 

answerability, and sanctionability. These elements give rise to the class of dependency. 

One part of dependency is reproducible, replicable, and traceable. It implies that the experimental result should be reproducible. 

However, Halbe-Kains et al. [43] identified some issues of a lack of details in the methods and algorithm code in the application of 

breast cancer screening, which demands reducing false positive cases. The authors argued that computational reproducibility is 

indispensable for high-quality AI applications. High quality can sometimes be interpreted as reliability and robustness. Reliability 

implies that AI systems meet the expected standard of performance. In other words, the quality of AI systems is dependable, 

trustworthy, or performing consistently well. Robustness, on the other hand, refers to the ability of AI systems to operate without 

failure under a wide range of possible conditions, including unexpected or adverse circumstances. In computer science, robustness 

means AI systems can cope with errors when it executes AI codes. Bhagoji et al. [44] introduce data transformations, including 

dimension reduction, to enhance the robustness of ML. Li [45] argued that non-robust explanations could result in a moral hazard from 

the perspective of explaining the real patterns in the world. In short, reliability is concerned with consistent performance under known, 

standard conditions, while robustness involves maintaining a normal function under a broad range of possible scenarios, including 

unexpected conditions.  

3. Details of TAI Taxonomy 

The notions of TAI at the dimensional level are highly intertwined. It is very challenging to carve its nature at its joints precisely. 

These dimensional concepts are more like a web of the network rather than isolated objects. Despite many challenges, we can classify 

ten dimensions with 33 implementation models and 106 schemes/tools to formulate a TAI taxonomy in detail from a strategic decision-

making perspective (See Figure 5: Details of The TAI Taxonomy) 

The dotted mesh between domains and dimensions indicates we can select any dimensions, implementation models, and schemes to 

form a required domain. No restrictions prevent us from picking up a dimension for TAI objectives. For future computational purposes, 

we can use various dimensions to form three TAI domain vectors (TL=ar=(D1, D2, …Dn)). Each dimension class is just a placeholder 

for taxonomy. The taxonomy illustrates five levels of categories, but implementation models and schemes are the technical details, and 

we do not include all these details in the high-level framework presentation (Refer to Figure 2.), which has only the top three layers.  



Although dimensions, implementation models, and schemes can be freely chosen, it does not mean that we should treat these items 

as a big hodgepodge. It would be inconvenient for implementation. Consequently, we classify these items into three classes based on 

their characteristics: Justice, Security, and Dependence. According to these classes, we can proceed with the survey of TAI 

  
Figure 5 Details of TAI Taxonomy  

4. Survey on TAI 

Like the terminology of trust, the survey is also organised into three levels: objectives, domains, and dimensions. These levels 

provide a comprehensive view of how AI systems produce strategic decision-making outcomes. The survey represents the overall scope 

of trustworthy AI regarding different levels of trust under different circumstances and by different value propositions.  

4.1. TAI On Objectives 

Reaching the strategic goal or objectives is often through practical ways of constructing an effective framework. Floridi and Cowls 

[47] noticed that the sheer volume of proposed TAI principles is overwhelming and confusing. They warned that it could end up with 

the "market for principles", "where [business] stakeholders may be tempted to 'shop' for the most appealing ones." That is why Benkler 

[48] urged, "Do not let industry write the rules for AI." He believed that business is running a campaign to bend research and regulation 

for their benefit."  

Floridi and Cowls proposed a four-step process to analyze 47 Ethical AI principles. These steps are Step 1. To report the highest 

profile sets of ethical principles for AI, Step 2. To assess these principles, whether convergent or divergent, Step 3. To identify the 

overarching framework, Step 4. To explain how the framework creates subsequent laws, rules, regulations, technical standards, and the 

best practices for TAI. Their analysis results in the unified framework defined by five overarching principles of Ethical AI: 

Beneficence, non-maleficence, autonomy, justice, and explicability. Four ethical principles were drawn from the "Georgetown mantra" 

[49] for bioethics in 1978. The origin of the Georgetown mantra can be traced back to J.F. Kenndey's landmark address about the rights 

of consumers in 1962. Figure 6 shows the framework from a historical perspective.  

Compared to Floridi and Cowls's five principles framework (See Figure 7), the British government proposed a simpler data ethics 

framework with only three overarching principles published in 2018 [50]: Accountability, Fairness, and Transparency. Accountability 

stands for "the public, or its representatives are able to exercise effective oversight and control over the decisions and actions taken by 

the government and its officials, …." Fairness means eliminating unintended discriminatory effects on individuals and social groups. 

Transparency implies actions, processes and data are made open to inspection by publishing information about a decision model in a 

complete, open, understandable, easily accessible, and free format. 

With respect to fairness, Altman et al.[51] proposed a harm-reduction framework for algorithmic decision-making fairness. The 

authors claimed that "an algorithmic decision is unfair because the algorithmic decision rules trained by one dataset cannot 

automatically apply to some individuals who represent the dataset disproportionally. It can result in unintended and even unforeseen 

harmful effects and contribute to systematic inequality of opportunities." Subsequently, the authors suggested four elements of any 

algorithmic decision and formulated a fishbone framework. It is mainly applied to the judiciary software known as the Northpointe 
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Correctional Offender Management Profiling for Alternative Sanctions(COMPAS), which is a type of decision tree. The proposed 

framework adopts four different lenses of counterfactuals for decision algorithms2 for the potential outcomes at some critical decision 

points. The authors concluded that algorithmic fairness must consider the foreseeable effects on the individual's well-being during the 

algorithmic decision, implementation, and practice. 

 
Figure 6 A Brief History Perspective of Ethical AI 

 

 
Figure 7 Two Ethic Framework Comparison 

In contrast to a particular application, the Future of Life Institute (FLI) contributed ten comments and suggestions on the AI risk 

management framework (AI RMF) by responding to the National Institute of Standard and Technology (NIST) ' ten requests3. 

However, the AI RMF is less organized due to the randomness of commentaries and suggestions. 

Landers and Behrend [52] introduce a framework for evaluating fairness and bias in high-stakes AI predictive models for decision-

making from a psychological perspective. They formulated an evaluating framework with 12 crucial components classified into three 

categories: a.) AI model components include model design, development, features and processes, input data and output results, b.) 

algorithmic components, and c.) meta or goal-oriented components. These components raise some critical questions for strategic 

decision-making, such as who should audit the auditors.  

By comparison with a component-based TAI framework, Choudhury [53] proposed an ecologically valid framework. The proposed 

framework is built upon human factors models. The author intends to fill the gap in understanding the dynamic and complex interaction 

between clinicians and TAI for health care management and medical practitioners. The novelty of the conceptual framework is to 

consider TAI as a part of the ecological environment, including different interactions between a patient and a medical practitioner. The 

author argued that the factors shaping people's decisions on TAI could be divided into three levels: governance, organization, and 

individuals due to the complexity of healthcare systems. Although the proposal sounds quite promising, the model still needs some 

practical cases to support the abstract idea. 

 Instead of narrative principles, Machine Intelligence Garage's (MIG) Ethics Committee [54] launched a series of questions for the 

ethics framework because they argued that questions could illuminate a place where principles should be considered in practice rather 

——— 
2 i.e., what if: a.) not based on race, b.) not including privacy information, c.) not used algorithm at all, d.) using a better algorithm 

3  For example a.) how to manage a massive scale deployment with the aggregate risks from low probability and high consequence effects (e.g., 
earthquake impacts on a massive scale of the self-driving car deployment, a recommended algorithms that recommend extreme contents could 
lead to radical activities or social unrest), b.) how to proactively ensure the alignment of evermore powerful general AI systems 
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than impose some universal "correct" answers. The framework consists of seven concepts4 corresponding to 71 questions. Among them, 

two concepts' have over 50% (35) questions. Although MIG asked some excellent questions regarding TAI, the framework can be more 

beneficial if the framework is better organized. It is unclear whether these concepts and the associated questions are equally important 

in practice. To understand the importance of each principle at different levels, we should focus on TAI domains.  

4.2. TAI On Three Domains 

At the domain level, we have articulate, authentic, and basic domains for different levels of trust. The connotation of domain trust 

has the meaning of domain knowledge. Without domain knowledge, it would be impossible to articulate or authenticate any trust. We 

proceed with the survey based on domains and associated dimensional classes. 

 
4.2 .1 .  TAI On Ar t icu la te  Trus t    

Articulate trust is the trust that has been "spelt out" as a kind of belief. It is beyond simple trust and knows the risks and 

vulnerabilities well.[15] The articulate trust at least requires measurements of explanation, transparency, fairness, and non-

discrimination because it needs "spelling out". We can also add other dimensions or measurements to consolidate the articulate trust. It 

depends on the context of a particular AI system. People will not trust AI systems if we can not articulate how AI training algorithms or 

models make decisions transparently, fairly, and non-discriminately. Bennet and Keyes' work [55] provides two concrete cases (autistic 

and vision-impaired patients) to address the unfairness issue regarding AI training algorithms for disabled people because the 

algorithmic or statistical learning of unfairness is a disparity due to the collected dataset being biased. The authors suggest that AI ethics 

should move beyond simple or algorithmic fairness toward the notions of justice. The idea of justice [56] is considered a virtue of the 

social institution. It formulates the moral fabric of modern societies and civilizations. The paper concluded that simple algorithmic 

fairness is unfair. 

4.2 .1 .1 .  Expla inabi l i ty  and Transparency  

By contrast, Sharma et al.[57] adopt a counterfactual method to explain fairness, transparency and robustness. By principles, it 

depends on how many input values can be changed. If a person receives an undesired(i.e., positive) outcome, the method changes input 

values to achieve desirable(i.e. negative) output. Thus, it is known as the counterfactual method. The authors create a model called 

Counterfactual Explanations for the Robustness, Transparency, Interpretability and Fairness of AI (CERTFAI). The model is built upon 

Wachter et al.’s work [58]. Sharma et al. [57] add a genetic algorithm to select input values randomly plus Counterfactual Explanations 

Robustness (CER) score, which is a fitness value between feasible generated points and an input instance. The paper claims that 

Wachter's counterfactual model could not handle categorical data. Although counterfactuals have become a popular method for 

explainability, Byrne [59] asserted that "not all counterfactuals are equally helpful in assisting human comprehension." One reason is 

that many AI models involve complex algorithms that generate predictions based on large amount f data and patterns that are not 

readily apparent to humans. One should look beyond a simple counterfactual method to effectively attain explainable AI (XAI). 

During the last decade, numerous ways of XAI have been developed because understanding and interpreting AI can be derived from 

different perspectives. It depends on users[60], logic[61][62], biases[63], algorithms[64], responsibilities[65], methods/ processes, 

models [66] [67], systems [68], stage[69], costs, and reasons[70]. Some researchers suggested that we should explain from a social 

science perspective[71]. Others [72] argue that it is not necessary to explain but interpret it. Burns et al. [73] proposed interpreting AI 

through hypothesis testing. However, Gilpin et al. [74] disagreed and argued that the interpretation is insufficient. Whether we should 

explain or interpret it, we should look at how these various ways relate to each other and how we can apply it with a particular 

application to a particular case regarding trust level or TAI objectives. Subsequently, we summarize various types of XAI into five 

categories (See Figure 8): model-based, algorithm-based, full XAI, reason-based, and method/process-based XAI. 

The most compelling type of XAI appears to be the full XAI because it matches Marr's three levels of analysis or explanation 

architecture. Gilpin et al.[74] classify XAI into three categories: presentation, processing, and explanation. They intend to explain the 

questions of "why" and "why should" rather than interpreting AI/ML in comparison with Doshi-Velez and Kim's classification [75], 

which also has three layers. One of the potential issues of the "why" model is that one "why" could generate numerous subsequent 

"why"s. As Immanuel Kant indicated, "The principle of question propagation: 'every answer given on the principle of experience begets 

a fresh question.'" [76] The interpretation model is much more effective because some ethical values are beyond the reasons. 

Gilpin et al. [74] highlight three ethical dilemmas for the challenge of XAI: “interpretable and explainable”, “persuasive and fact-

based transparency”, and “manipulation and explanation”. If we consider “interpretable” as a kind of predictability, then the more 

effective interpretability, the less explainability. Conversely, the more explainability, the less interpretability. Similarly, Herman [77] 

also indicated that human evaluations create persuasive systems rather than transparency because “human evaluations imply a strong 

and specific bias towards simpler descriptions.” Herman presented the ethical dilemma between manipulation and explanation by 

asking questions about how to draw a line between unethical manipulation and ethical explanation or how to balance our own interests 

in transparency and ethics with our desire for interpretability. These dilemmas are very challenging. Consequently, we propose “what, 

what and how” instead of “why, why and why” to draw a line between interpretation and manipulation because we can clarify “What is 

a purpose?” at the objective layer, “What is a process?” at the domain layer, and “how can we implement the process?” at the dimension 

layer. (See Figure 9) These questions can provide a full explanation of AI (XAI) to underpin TAI. 

——— 
4 These concepts are 1.) Be clear about benefits (10 Q), 2.) Know and manage the risks (11Q), 3.) Use data responsibly (18Q), 4.) Be worthy of 
trust (17Q), 5.) Promote diversity, equality and inclusion (8Q), 6.) Be Open and understanding in communication (7Q), 7.) Consider the 
business model (8Q). 
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Figure 8: Taxonomy of XAI 

 

In addition, one of the recent developments is that OpenAI announced [78] a novel way for XAI, which uses AI (GPT-4) to explain 

AI (GPT-2) recently. We can consider using a black box to explain a black box. At a high level, the OpenAI XAI of AI is a three-step 

process: explain, simulate, and score. The principle of XAI of AI uses the subject model to hypothesize the model behaviour. Based on 

the hypothesis, the process applies a simulator model to make a prediction and then uses the score to evaluate the hypothesis prediction 

compared with the actual prediction value. However, not every neuron can be explained because some neurons may correspond to 

polysemantic concepts. XAI always consists of different dilemmas. 

 
Figure 9: Asking Different Questions for Full XAI 

4.2 .1 .2 .  Fairness  and Divers i ty  

Considering these dilemmas from a broader justice perspective, these issues are closely related to fairness and diversity. The concept 

of fairness and diversity can be broadly categorized into three main categories: a.) process-based fairness [79] [80], b.) Lossless De-

biasing fairness [81], and c.) fair learning [83], and procedural fairness [82] (Refer to Figure 5) 

According to [79], process-based fairness ensures that an automotive decision is less biased than human. However, extensive 

evidence shows that many AI biases are inevitable because human social biases are embedded in training datasets and could be 

amplified through the ML development process and complex feedback loops. The study proposes pipeline process algorithms, known as 

pre-processing algorithms, to mitigate these biases. One of the open-source tools is AI Fairness 360 (AIF360) [84] [84]. It offers four 

pre-processing algorithms: a.) Re-weighing pre-processing, b.) Optimized pre-processing, c.) learning fair representations, and d.) 

disparate-impact remover. The last two algorithms are ideal tools for processing transparency. AIF360 also provides three in-

processing algorithms to eliminate unwanted biases, including a.) Adversarial debiasing, b.) Prejudice remover, and c.) Meta fair 

classifier. Finally, if we can only access the output predictions, AIF360 provides three post-processing algorithms: a.) Equalized 

odds, b.) Calibrated equalized odds, and c.) Reject options classification. The advantage of AIF360 provides tangible schemes and 

tools to implement fairness at the practical level. However, it is not a silver bullet. The metrics of AIF 360 can be considered 
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distributive justice. It will not capture every aspect of fairness in any circumstance. Sometimes, the removed or equalized odds criteria 

might trigger valuable information loss and decrease the accuracy of the prediction. 

Zhou et al. [81] present an information lossless solution that can maintain fairness or de-biasing. The basic idea of their solution is to 

eliminate the oversampling problem for favourable representation while undersampling for a minority group. In other words, they 

oversample the underrepresented population to balance the majority and minority of the demographic population. Although this solution 

preserves the content in the original dataset, the predicted accuracy is sacrificed by oversampling the underrepresented population. The 

most famous case is the US presidential poll by The Literary Digest in 1936 [85] [86], which is the failure of oversampling. 

Another fairness proposition is ideal fairness, which is basically driven by the decision outcome or distributive fairness (ends). 

Grgic-Hlaca et al. [82] propose procedural fairness or fair learning (means) to consider the input features and moral judgments. The 

solution introduces three new scalar measurements of procedural fairness: feature apriori, feature accuracy, and feature disparity by 

considering feature volitionality (i.e. “done by personal choice”), feature reliability, and feature privacy. Subsequently, this approach 

avoids a situation of binary discrimination. The authors argue that they can achieve procedural fairness with little cost compared to 

other fairness algorithms. However, some loss of accuracy is inevitable. Furthermore, the solution does not hold in generalizability.  

4.2 .1 .3 .  General izabi l i t y   

Generalizability is closely associated with the notion of reproducibility. McDermott et al. [87] propose a taxonomy of reproducibility 

(more details in section 4.2.3.1), including technical, statistical and conceptual components. However, Azad et al. [88] highlight some 

common errors that lead to poor reproducibility. The paper suggests that it is necessary to ensure generalizable models' performance 

before such models are deployed on a large scale, especially for medical applications. The authors propose cross-validation, overfitting, 

and external validation techniques to increase generalizability in corresponding to technical, statistical, and conceptual components. 

Arjovsky et al. [89] propose invariant risk minimization (IRM) algorithm to extract share features from multiple training environments 

and to enable out-of-distribution (OOD) generalization. If we consider IRM as an objective function at the algorithmic level for the goal 

of Invariance Across Environment (IAE), then Kartik et al. [90] provide the IRM-game to optimize a specific IRM at an implementation 

level.   

The advantage of the IRM is that it does not have to know the causal model, which is often very challenging to be specified. It also 

does not have to know every bias. Instead, IRM selects an appreciated environment and partitions the data into disjoint environments. 

However, Kamath et al.[91] argued that IRM can fail to capture “natural” invariances, at least when we apply it to the linear form. 

Consequently, it can lead to a model of poor generalizability in new environments. Furthermore, even if IRM can capture the “right” 

invariances, the paper shows that IRM only learns a sub-optimal predictor due to the loss function not being invariant across 

environments.  

In a nutshell, generalizability allows you to replace data values (training dataset) with less precise values (new environment) 

regarding various learning techniques but still capture various actual patterns or realities. However, on the other hand, if the data values 

can still preserve certain information, it might trigger the re-identification of individuals or reveal private information unintentionally 

and make TAI insecure. This issue leads to the topic of authentic trust corresponding to the security class. 

4.2 .2 .  TAI On Authent ic  Trust  

Authentic trust implies what is exactly claimed according to fact. Unlike simple trust, authentic trust does not deny distrust but 

accepts it, transcends it, absorbs it, and overcomes it, just like security issues, such as hacking, ransomware, password attacks, and 

malware. Authentic trust aims to solve the “distrust” due to cybersecurity issues. Under the security class, we have four dimensions 

(See Figure 5): privacy, data governance, safety, and accountability. Privacy and data governance can be considered as one coin of two 

sides. However, we separate privacy and data governance because of measurements. 

Montenegro et al.[92] propose a solution known as a privacy-preserving general adversarial network(GAN) for case-based reasoning 

(CBR) for medical image analysis applications. The authors argued that many current privacy-preserving methods have three 

drawbacks regarding realism, privacy, and explanation power. Realism drawbacks imply issues for the traditional CBR method, such as 

the K-Nearest Neighbour (K-NN) algorithm. The primary difference between CBR and other rule-based reasoning is that CBR retrieves 

the most relevant cases from memory and adapts them to fit new situations [93]. Privacy and explanation drawbacks refer to a dilemma 

of either failure to preserve relevant semantic features or failure to ensure privacy. Therefore, the paper develops a privacy-preserving 

GAN model to privatize CBR in a clinical setting. Moreover, the study adds counterfactual explanations to enhance the model's 

explanatory power. However, it does not matter how sophisticated it is. The model only remains as a CBR. The critical issue of CBR is 

inadequate for large and highly structured case bases.[94] 

4.2 .2 .1 .  Privacy  

Yu et al. [95] propose privacy-preserving support vector machines (PP-SVM) by leveraging nonlinear kernels for the problem of 

distributed privacy-preserving data. The solution is to establish the global SVM classification model from decentralized data in multiple 

locations without compromising the data’s privacy. However, if there is an intermediator between stored data and the global SVM 

solution would not work. Moreover, they assume that data is partitioned horizontally and that the same features are collected for 

different objects. In contrast, Karr et al.[96] proposed a solution that can execute secure regressions on vertically partitioned data, which 

means the datasets can have identical records with different sets of features. They claim their solution can manipulate a secure matrix 

“by pairs of owners to compute off-diagonal blocks for the full data covariance matrix.”. The advantages of vertically partitioned data 

are 1.) It can separate relatively slow-moving features stored in cache memory, 2.) It can provide extra flexibility for different levels of 

privacy (e.g. passwords or personal information), 3.) It can reduce the amount of concurrent access. 4.) It works well with column-

oriented databases like HBase or Cassandra. The disadvantages are 1.) It is relatively challenging to join various datasets, 2.) It requires 

more joins to retrieve data. 
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The Gradient Boosting Decision Tree (GBDT) [97] is another valuable learning technique for privacy to optimize the predictive 

value (to minimize the loss function) through an iterative learning process, especially for classification and regression tasks. Li et al. 

[98] propose a privacy-preserving algorithm for the new GBDT training algorithm known as DPBoost. The basic idea is to split the 

value (or threshold level) of privacy budgets (the maximum tolerance is allowed to each user for revealing information) into serial and 

parallel. However, the DPBoost algorithm is too complicated and costly. Compared with the baseline GBDT, the training time for a 

meaningful result is significantly high, up to 3.62 times (average 2.33). Furthermore, the paper does not show the trade-off or 

comparison between the privacy budgets and the model’s performance. It is challenging to compare the privacy budget with the 

proposed algorithm's performance (accuracy of the prediction rate). 

Another traditional approach for privacy is “k-anonymity” [99], which is to generalize or suppress a dataset's attributes (columns) 

until each row is at least the same as k-1 other rows. The basic idea of k-anonymity is “hiding a person in a crowd” to reduce the risk of 

the person being re-identified by indirect identifiers. The method is often applied to the healthcare and banking industries. However, 

Aggarwal [100] showed that it is unsuitable for high-dimensional datasets. 

Alternatively, researchers leverage federated learning (FL) or collaborative learning to preserve personal privacy and data security 

locally. The lexical meaning of federation refers to a type of organization relationship in which each joined member maintains a certain 

degree of independence or autonomy for the local affairs. FL trains decision rules (or algorithms) across multiple local servers that keep 

their local datasets instead of sharing with others or uploading them to a central server. According to Mothukuri et al. [101], FL is one 

of the favourable methods where security and privacy become primary concerns because FL can minimize the risk of privacy leakage. 

The authors highlight five major state-of-the-art algorithms to mitigate identified threats and enhance general privacy-preserving 

features: a.) Secure Multi-part Communication (SMC), b.) Differential Privacy (DP), c.) VerifyNet, d.) Hybrid, and e.) Adversarial 

training. (See Figure 5)  

SMC is an FL framework in which multi-participants contribute their inputs for a joint training model. The main advantage of SMC 

is that it only needs to encrypt parameters rather than the entire input dataset. However, the cost of the SMC solution is its performance 

because it often needs more time to train a model. The challenge is how to design a lightweight SMC solution for FL clients. DP 

solution is similar to k-anonymity, which adds noise to personal attributes. The advantage of DP is to solve the dilemma between 

predicting accuracy and concealing private information. Researchers proposed many solutions for the dilemma, such as adaptive DP 

[102], Fairness lens [103], Efficient Private Empirical (EPR) minimization for high-dimensional learning [104], and adaptive clipping 

[105]. Overall, there are three strategies: 1.)adding output perturbation[106], 2.)differentially private stochastic gradient descent [107], 

and 3.)optimizing the privacy budget [98] [107].   

The primary issue of DP is that the statistical data quality is degraded. Within a training FL environment, we only add the noise to 

each client’s upload parameters. Although DP-FL offers a good solution for privacy protection, it also adds uncertainty to upload 

parameters. This issue could cause the overall poor performance of a training model. 

VerifyNet [108] is another FL framework that proposes a double-masking protocol to verify results between clients to a central 

server. Although the idea of the double-masking protocol seems to be a pursuable solution, the only issue is the scalability because the 

central server has to verify each client. It could overload the central server if there are many clients. In terms of scalability, Truex et al. 

[109] propose a hybrid model for FL. The paper presents an alternative approach to address the vulnerability for inference and DP’s 

poor performance. The solution is to combine both DP and SMC for FL. Therefore, they call it a hybrid. Similarly, Teng and Du [110] 

also presented a hybrid model for vertical partition data mining. The advantage of the hybrid model is that it can balance privacy and 

prediction accuracy (training model performance). However, Trues et al.’s [109] experiment results are only based on eight features or 

dimensions. The question is whether this approach will still maintain its performance for the high-dimensional dataset is unclear.   

Adversarial Training (AT) or Ensemble AT(EAT) [111] is another strategy to improve privacy for FL. The idea of AT is 

straightforward: injecting noise or perturbations into the dataset to increase the robustness of the training model. EAT is an 

enhancement version of AT. The EAT model reduces the vulnerability but stops short of increasing the model's accuracy when facing 

elaborate black-box attacks.  

4.2 .2 .2 .  Data Governance  

On the other side of the coin, Data Governance is a function or process of data management to ensure the data quality, integrity, 

security, and usability of data collected by any organization [112]. It is an ongoing process from the starting point of data being 

collected to the end point of data being destroyed. During this lifecycle, data governance must guarantee 1.) data’s accessibility to 

permitted users, 2.) auditable, and 3.) compliance with regulations. Due to the prevalence of AI/ML, Gritsenko and Wood [113] 

highlighted that there is “a shift towards a special form of design-based governance with power exercised ex-ante via choice 

architectures defined through protocols, requiring lower levels of commitment from governing actors.” Kooiman [114] defined three 

data governance approaches, self-governance, co-governance, and hierarchical governance. Self-governance means “taking care of 

themselves”. The advantage of self-governance is to respond to the regulatory vacuum. Co-governance implies “where social parties 

join hands with a common purpose in mind.” It requires sharing power, responsibility, and information. The co-governance is a type of 

meta-governance.[115] This approach might include co-operation, co-management, and collaboration. The main advantages of co-

governance are flexibility and scalability. Hierarchical governance refers to that governing is superimposed upon those governed. 

Those governing people adopt a “top-down” method and ask people to be governed to comply with the rules and laws governing people 

created. The key advantage of hierarchical governance is operational efficiency. The disadvantage is that information can be distorted at 

each hierarchy level. In addition to design-based governance, we can also have evidence-based governance. De Bruijn and Janssen 

[116] argued that cybersecurity is “a global phenomenon representing a complex social-technological challenge for the government.” 

They present evidence-based framing strategies to deal with the challenges. This approach has also been widely applied to AI 

explanation and transparency. 



 If a governance approach focuses on a broad scope, then a governance model emphasizes detailed implementation. Micheli et 

al.[117] shed light on four different models of data governance known as data sharing pools (DSPs), data cooperatives (DCs), public 

data trusts (PDTs) and personal data sovereignty (PDS). Each model has its goal, application, value and principles (Refer to Appendix 

Table 1)  

4.2 .2 .3 .  Safety  

AI safety is one of the components of the security class. It is also a priority issue [118] for TAI because many accidents caused by 

unintended and harmful behaviour of AI/ML systems emerge from poor, unconscious and imperfect designs. Leike et al. [119] classify 

these problems into robustness and specification problems from a reinforcement learning perspective. However, based on the phenetic 

taxonomy method, we classify robustness as one of the dependent dimensions from a basic trust perspective.  

The safety dimension consists of four issues with four designing questions: 1.) safe interruptibility, 2.) avoiding side effects, 3.) 

absent supervisor, and 4.) reward gaming (See Figure 5). “safe interruptibility” implies that humans can interrupt a machine or robot’s 

actions at any time. The question is how to design an AI agent that neither pursues nor avoids human interruptions. “avoiding side 

effects” means the AI agent has some unexpected and negative side effects that are not intentionally designed. The question is how to 

minimize these negative effects, especially those irreversible or difficult to reverse. “Absent supervisor” is that the AI agents 

constantly act with and without human supervision. Our question is how to design an AI system with constant behaviour when 

supervision is absent. “Reward gaming” concerns that an AI agent exploits the system errors in the reward function to get more 

rewards. Our issue is how to design an AI system to break this ill reward loop. If we consider each above question from a responsibility 

perspective, it leads to accountability. 

4.2 .2 .4 .  Accountabi l i ty  

Nissenbaum [120] proposed four accountability erosions or barriers: 1.) the problem of many hands, 2.) the problem of bugs, 3.) 

blaming the computer, and 4.) software ownership without liability due to the ubiquitous delegation in a computerized society. Cooper 

et al. [121] revisited these barriers and uncovered new challenges under data-driven algorithmic systems. They intend to create a 

relational accountability framework that can be applied in practice and gradually overcome these barriers. 

 Building a large and complex AI system could involve many phases: conceptualization, design, development, deployment, and 

operation. If the system becomes malfunctions and causes harm, it is not easy to pin down a particular component at its source and 

accountable person. For an ML pipeline process, the many-hands barrier becomes very evident because the ML pipeline is a dynamic 

process that involves many sub-processes and different groups of people collaborating, such as product designers, software engineers, 

managers, researchers and data scientists. 

The second barrier is “Bugs”, which consist of various errors: “modelling, design, and coding errors.” Bugs could be both 

predictable and unpredictable. Unexpected bugs become a barrier to accountability because they are expected and treated as acceptable 

cases. 

The third barrier is “the computer as a scapegoat.” No physical machine has its own intentionality because it does not have thoughts, 

beliefs, desires, and hopes. “If people place responsibility on technology, not its developer, owners, and operators, it reduces 

accountability to piecemeal.”[121] This issue becomes even more complicated for AI/ML because of the black-box nature of the neural 

net and the limited power of explainability. 

The last barrier that Nissenbaum [120] presented is “ownership without liability,” The computer industry is evolving towards 

consolidating property rights while avoiding liability. This phenomenon reinforces the barrier to being accountable. The simple reason 

is that the liability costs, but the property right brings fortunes. Cooper et al. [121] suggest putting the conditions necessary for a moral 

and relational accountability framework in place to enforce processes of explanation,  transparency, auditing, and robustness. They 

argue that accountability is moral and relational decisions. 

Awad et al. [122] created the moral machine (i.e. an auto-driving car faces a moral decision) experiment to investigate how machines 

will make moral decisions. Their primary challenge is quantifying social expectations about the ethical principles to regulate the 

machine’s decision behaviour. The experiment generated 40 million decisions in ten languages from millions of people in 233 countries 

and regions. Their results show that moral preferences are social, economic, and cultural bound. By setting nine scenarios for moral 

preferences, Awad et al. [122] identify three cultural clusters with different moral choices, although three moral preferences are 

universal. Moreover, the authors also raise the moral dilemma: if we give a strong preference to children and pregnant women’s lives 

when an accident occurs, how can we explain the rationality of such a decision? These issues give rise to how we can depend on 

machines to make fundamental decisions. In other words, what is the basic trust of TAI?   

4.2 .3 .  TAI On Bas ic  Trust  

Basic trust is a kind of baseline ingredient without saying. It is a natural understanding of trust. We discuss three dimensions or 

measurements of basic trust: 1.) reproducibility and replicability, 2.) reliability and robustness, and 3.) Sustainability (See Figure 5). 

The first dimension consists of full reproducibility and “method data experiment”. The reliability concerns decision-based adversarial 

and on-the-fly active learning. The sustainability dimension consists of the environmental, economic, and social models. 

4.2 .3 .1 .  Reproducibi l i t y  and Repl icabi l i ty  

McDermott et al. [123] identify reproducibility issues in three elements from a healthcare perspective: Technical Replicability (TR) 

means that readers can fully replicate the result claimed by research regarding releasing code and dataset. Statistical Replicability (ST) 

refers to a paper’s result that can be replicated under statistically identical conditions. In other words, the result could be different if the 

reader takes a different set of random seeds or training and test set splits. Conceptual Replicability (CR) implies that a paper’s result 
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can only be replicated under a conceptually identical condition. CR is closely associated with “external validity,” in which a paper’s 

result can be extended to other situations, people, settings and measurements. The authors explained that these components are the 

replicability criteria because, without TR, the claimed result can not be demonstrated; without ST, the experiment result is impossible to 

be reproduced if we increase the sample size. We can not deploy the trained result or algorithms in practice without CR. 

Gundersen et al. [124] [125] introduced AI reproducibility with six metrics based on boolean combinations of three essential 

reproducible factors 1.) experiment, 2.) data, and 3.) method (Refer to Figure. 10). R1 is the most restrictive (equivalent to full 

reproducible), while R3 is the most relaxed (equivalent to Statistical reproducible) regarding requirements. Furthermore, the study 

develops sets of tangible variables as indicators to measure reproducibility. The table of Figure.10 5 shows the details of collected 

survey papers from two top conferences (IJCAI and AAAI) in three different years, respectively. 

 
Figure 10: The AI Reproducibility Survey Results for Top AI Journals 

Based on the above criteria of measurements, Gundersen et al. showed that no single paper is documented well. The survey 

concludes with the alarming result that no single paper can be fully reproducible. Although there is a statistical improvement in R1D 

(“1” means a factor of pseudocode), the rest of the categories (RXD) have no improvement in 2016 in comparison with 2013 and 2014. 

Based on the above criteria of measurements, Gundersen et al. showed that no single paper is documented well. The survey 

concludes with the alarming result that no single paper can be fully reproducible. Although there is a statistical improvement in R1D 

(“1” means a factor of pseudocode), the rest of the categories (RXD) have no improvement in 2016 in comparison with 2013 and 2014.  

4.2 .3 .2 .  Reliabi l i ty  and Robustness  

Saria and Subbaswamy [126] noticed that although ML-driven decision-making systems are increasingly prevalent in some critical 

safety applications, such as auto-driving, autopilot, or medical diagnosis, we still do not have a framework for reasoning about failures 

and potentially catastrophic effects. 

Brendel et al.[127] address the reliability issue from the perspective of imperceptible and adversarial perturbation inputs for learning 

algorithms. Adversarial perturbations imply that the slightly perturbed inputs will cause the ML algorithms trained under unperturbed 

conditions to deliver wrong results. Even worse, this “adversarial perturbation” is ubiquitous and imperceptible to humans. For 

example, if an auto-driving car (ML algorithms) recognises a degraded stop sign as a 120-kilometre zone, it will cause a catastrophe. 

Algorithms that intend to increase their ability to counterattack such adversarial perturbations are called “adversarial attacks”. The study 

[127] classifies adversarial attacks into three categories: gradient-based, score-based, and transfer-based attacks. “Gradient-based 

adversarial attacks” simply mean the gradient of loss regarding the inputs. One of the common ways to counterattack gradient-based 

attacks is to mask the gradients. “Score-based attacks” refer to using the model’s output or predicted scores to craft adversarial 

perturbation within dozens of queries. The simple counter measurement increases stochastic elements like dropout into the model, 

preventing the numerical gradient estimation. “Transfer-based attacks” leverage both model information and training data, which 

adversarial perturbations can be synthesized. Therefore, the attacks are transferrable between models. The defence mechanism is to 

increase the number of adversarial examples from an ensemble of substitute models. From the above three adversarial attacks, Brendel 

et al.[127] derived a new category: “Decision-based attacks” solely depend on the model's final decision. They claimed three reasons 

for creating such a category. 1.) Decision-based attacks are highly relevant to many real-world ML systems because the internal 

decision-making process is unobservable. 2.) The attacks are not dependent on substitute models trained by similar data, 3.) The attacks 

are much more robust than the other types of attacks. They concluded that “Decision-based attacks” can enhance the robustness of ML 

models. The issue is how to generate adversarial perturbation to meet the reliable and robust criteria under “Decision-based attacks”. 

This issue gives rise to robustness. 

——— 
5 The method (M) includes five variables (or X in a factor): 1.) pseudocode, 2.) question, 3.) method, 4.) objective/goal, and 5.) research 
problem to be solved. The data(D) has four variables: 1.) results, 2.) test, 3.) validation, and 4.) training. Experiment (E) consists of seven 
variables: 1.) experiment code, 2.) set-up, 3.) software dependencies, 4.) hardware specification, 5.) method code, 6.) prediction, and 7.) 
hypothesis. With these variables, the authors create three additional metrics, R1D, R2D, and R3D, in which the Results are Dependent (or 
RXD) on the weighted sum of the truth values of variables. 
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The robustness consists of four schemes according to [119]: 1.) self-modification, 2.) Distributional shift, 3.) Robustness to 

adversaries, and 4.) safe exploration. “Self-modification” indicates that the AI system can modify itself to cope with a new 

environment. The human designer’s task is how to build such an AI system that allows it to complete self-modification. 

“Distributional shift” is also known as “domain shift”, which refers to the AI system that will adapt well to the deployed environment, 

not just the training dataset. The question is how to ensure the AI agent behaves robust enough when the deployed environment differs 

from the training. “Robustness to adversaries” signifies that the AI agent can survive adversarial attacks. The job is to ensure that the 

AI agent can differentiate between friendly and adversarial intentions in a complex environment. The function of “Safe exploration” is 

to enable the AI agent’s safety constraints under both normal and initial learning environments.  

On the other hand, Moustapha et al. [128] propose a generalized framework for reliability issues with various combinations of four 

components from an active learning perspective: 1.) a surrogate model, 2.) a reliability estimation algorithm, 3.) a learning function, and 

4.) a stopping criterion. The paper claims that the proposed solution supports 39 on-the-fly active learning strategies for 20 reliability 

benchmark problems. The results of this extensive benchmark can be applied to 12000 reliability problems. The primary idea of active 

learning is to reduce the cost of the simulation algorithm. By introducing the surrogate model, active learning can replace the expensive 

evaluation of limit-state function with inexpensive approximation. It saves training costs and energy. The topic of energy saving elicits 

the board context of sustainability.  

4.2 .3 .3 .  Susta inabi l i ty  

The issue of sustainability is one of the most profound problems for strategic decision-making by enabling AI-based technologies, 

especially business operations.[129]. Vinuesa et al. [130] address sustainability from a sustainable development goals (SDG) 

perspective. They classify SDG into three categories, also known as pillars: environment, economy, and society, using a consensus-

based expert elicitation process. The authors concluded that the fast pace development of AI technologies needs regulation insight and 

oversight. Otherwise, AI systems will result in gaps in transparency, safety and ethical issues.   

Regarding environmental sustainability, Venues et al. highlighted AI technologies by leveraging large-scale interconnected 

databases to develop simulation models for strategic decisions on climate actions. “Transactions on Large-Scale Data and Knowledge-

Centered Systems” (books series) has published 53 volumes of techniques since 2009. [131] The latest lecture notes [132] provide many 

recent machine learning techniques to handle large-scale data, including integrated model-based management of time series, neural 

graph networks, a fairness-aware approach for protected features and imbalanced data, causal consistency in a distributed database, 

actor model, and elastic horizontal scalability. 

These techniques provide different apparatuses for decision-makers to ensure that humans can co-exist on Earth over generations. 

One of the apparatuses is the carbon footprint measurement. Lacoste et al. [133] propose an approximate way [134] to calculate ML 

carbon footprints. The calculation includes four inputs: 1.) hardware or server type, 2.) Usage time in an hour, 3.) Cloud Service 

Provider (e.g. AWS or Azure), and 4.) Region of Computer (a physical location of servers). The output of the calculation is the carbon 

equivalents (or CO2-eq). The aim of CO2-eq measurement, instead of CO2 directly, is that other gases, such as methane (CH4), nitrous 

oxide (or N2O) or even water vapour, also impact the greenhouse effect. The unit of the ML emission is in grams of CO2-eq per kilowatt 

hour, which is equivalent to the measurement of a people’s transportation(i.e. aeroplane) emission in CO2-eq per person-km. As the 

authors indicated, the calculation is just a starting point.  

Schwartz et al. [135] argued that the CO2-eq measurement is “hardware dependent and, as a result, does not allow for a fair 

comparison between different models developed on different machines.”. They argue that the measurement of running time in an hour 

is highly influenced by other factors, including the underlying hardware, other adjacent jobs running on the same machine, and the 

number of cores used. Therefore, they suggest measuring floating-point operation (FPO) because FPO has several appealing properties, 

including 1.) directly computes the amount of work done by the running machine, 2.)FPO is agnostic to the hardware on which the 

model is run, 3.)FPO is correlated with the running time of the model. However, as the authors indicate, FPO measurement has its 

limitations because the training model is not only determined by the amount of workload but also by communication between the 

different components, which the FPO can not measure it. Nonetheless, FPO does demonstrate a comparison between different training 

models. The study advocates the improvement of state-of-the-art and the model’s efficiency, known as “Green AI”. Green AI contrasts 

with Red AI, where researchers only seek to improve accuracy or model performance. 

Economic sustainability implies supporting long-term economic growth and minimizing negative impacts on the community's social, 

environmental and cultural aspects. Making a strategic decision for economic sustainability faces similar challenges of the environment 

because it requires resource planning, predictive analysis, economics modelling, strategic leadership, and economic competencies. [137] 

It requires an interdisciplinary [138] and intertemporal approach [136] to query across multiple large-scale databases. The question is 

how to empower strategic decision-makers using all possible information to make the right and sustainable choice at the right time. 

Grover [139] proposed the Bayesian Belief Networks (BBN) solution because it can transfer probability science from the objective to 

the subjective school of thought. The essence of BBN is using inductive reasoning to learn the truth from combining past outcomes with 

observable events. As we should see, economic and social sustainability are hand in hand. They form a reciprocal relationship. 

Lastly, the meaning of social sustainability is “putting people first.” It answers the question of fairness and justice in economic 

environments.[140]. There are some common issues of social sustainability, such as social equality, community resilience, health and 

well-being, social justice, and human rights. According to “A Theory of Justice”[141], Rawls argued that two principles would be 

chosen to govern society: the principle of equal basic liberties for all individuals and the principles of distributive justice, which 

requires that social and economic inequalities be arranged to benefit the least advantaged members of society. Researchers have adopted 

nearly all possible ML techniques for social science, including social networks, agent-based models, exploring analysis, random forests, 

neural network and deep learning, text mining, classification and regression trees. It depends on the particular social problem or 

decisions and datasets, for example, banking decisions regarding financial loans, insurance decisions regarding eligibility, and 

university decisions regarding student admittance. These social sustainability decisions are sometimes very challenging to determine 
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because we could encounter many paradoxes in achieving the balance between justice and ethics, such as the paradox of tolerance, 

equality, individualism, and meritocracy. Table 2 in Appendix summarises each TAI scheme of the main contribution, adopted method, 

and possible areas to be improved. 

Overall, in pursuit of a sustainable future encompassing long-term environmental, social, and economic well-being, we may face 

many paradoxes, including those related to efficiency, growth, choice, and scale. From a strategic decision-making perspective, solving 

these paradoxes requires a holistic and systemic approach by considering the intertwining of economic, social and environmental 

systems, balancing operational, tactical, and strategic goals, recognizing trade-offs and unintended consequences, and engaging 

stakeholders in collaborative decision-making processes. To fully understand a holistic approach, we should clarify concepts of three 

ethical theories and paradoxes from the overall TAI and multidisciplinary perspective.   

5. Three Ethic Theories and Paradoxes of TAI 

TAI is ultimately a meta-decision underpinned by multi-disciplinaries in a relationship between the trustors (AI users) and trustees 

(AI Creators) who produce the AI systems based on collected datasets and selected algorithms. Castelfranchi and Falcone [142] suggest 

that TAI should include computer science, philosophy, social science, economics, psychology, cognition, and behaviour science. If we 

initially include all the disciplines, the research problem could quickly become convoluted. Consequently, we started with a relatively 

simple case.  

Figure 11 highlights the multidisciplinary landscape of TAI. We have investigated different levels of TAI in detail because we want 

to know how to implement TAI in practice rather than a narrative description. Computer science or logical algorithms can help us 

extract all facts and meaningful patterns from our collected datasets. The question is which fact is more important than others. 

Computer science will not tell us that. Only axiology (theory of value) will unveil the difference. Therefore, reflecting on TAI based on 

various ethical theories is essential to prioritizing objectives for strategic decision-making when various paradoxical situations occur. 

 
Figure 11: Multidisciplinary Landscape of Creating Trustworthy Artificial Intelligence (TAI) 

5.1. Three Ethic Theories For TAI 

There have been many ethical theories in the history of ethics6, such as egoism, consequentialism, hedonism, utilitarianism, 

Kantianism (deontology), and naturalism [143]. Practically, we could encounter three fundamental ethical theories (utility-based, duty-

based, and natural law-based) to identify good or bad, right or wrong, and moral or immoral in our decision-making processes. 

5.1 .1 .  Moral  Uti l i ty  Theory  

Utilitarian ethics is one of the most common theories widely practised today. It was originated by Jeremy Bentham [144] (“the 

greatest good for the greatest number”), elaborated by John Stuart Mill [145] (“It is better to be Socrates dissatisfied than a fool 

satisfied.”), and advanced by G.E. Moore [146] (“All moral laws are merely statements that certain kinds of actions will have good 

effects.”). It is very effective when we want to quantify the economic values of a decision regarding costs and benefits, such as in 

——— 
6 We use ethics and morals interchangeably. They are codes of conduct in the workplace and professionals. However, the subtle differences are 
that moral refers to a person’s the best intentions while ethics mean “way of living” in a particular society, which consists of a set of specific 
rules and behaviours.  
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healthcare or medical ethics applications, a priority of government funding or wealth redistribution, finance, marketing, risk 

management, and logistics. However, the theory does not absolutely respect the intrinsic value of anything, such as human life, a 

person’s esteem, and human dignity. Anything can be put on a scale to be weighted for its utility values. If Betham’s utility  theory is to 

argue between the good and bad of our decisions, Kantian ethics or deontology is considered to be about right and wrong. 

5.1 .2 .  Deontology  Theory (Moral  and Duty)  

Kant’s central notion of ethics is known as the “categorical imperative” [147], which implies the ultimate commandment of reason 

unambiguously from one’s duties and obligations. The Kantian golden ethics rule is “Do unto others as you would have them do unto 

you.” It emphasizes that when we, as the free-human agent, need to make our choices, we should make them responsibly by asking 

ourselves: “What do we like to be treated in the same way as we treat someone else?” What we treat other people is how we expect to 

be treated.  

This version of ethics is much more powerful than Bentham’s utilitarianism because it argues that certain things are so critical, such 

as human life or dignity, that we must take care of them. On the other hand, certain things are such inferiors, which we must never do 

because we never want to be done to us. Unfortunately, the categorical imperative does not give us a clear standard or rule on how to 

decide which is the right description. For example, someone can build a drone to stop criminals, but the same drone might also be 

thought of as harming a human being. It is identified as “an agent ought to do A and ought to do B and cannot do both”. [148] Although 

there is a counterargument known as “ought implies can” (OIC) in ethics, we could investigate this ethical dilemma from a natural law 

perspective. 

5.1 .3 .  Natural  Law Theory o f  Eth ics   

This type of ethical theory is to study how to profoundly enrich human nature by relying upon anthropology. It is about human 

characteristics. This ethical theory studies how to fulfil the person, bring the person to be excellent, and nourish human life. It is ethics 

associated with nature and natural law tradition. This tradition has its root in ancient Greek philosophy found by Socrates, Plato, and 

Aristotle. Socrates approached ethics by questioning people about what virtues are. Plato followed Socrates’ path through his 

Dialogues. Aristotle pursued the same goal by looking at human nature through an anthropological lens. In contrast to Bentham’s 

utilitarianism and Kantian deontology (duty study), Aristotle offered ethical principles originating in human nature and the virtues 

(moral excellence) that constitute excellence in human life. To this extent, the natural-law theory of ethics is very close to the virtue-

based theory.  

Aristotle’s Nicomachean Ethics [149] exhibits a moral theory that primarily depends on eudaimonia (happiness), a combination of 

well-being, happiness and flourishing. Aristotle argued that the general strategy for human life is to pursue what they think will make 

them happy. However, people often disagree about what is formulated as happiness. Aristotelian ethics seek common patterns of moral 

excellence regardless of cultural backgrounds and social history. Aristotle’s ethics studies how to make humans being prosperous. Thus, 

it is the natural law theory of ethics. Lobban [150] argued that ethics is anthropology when academic researchers seek approval for their 

research proposals from institute review boards. The critical problem of anthropological ethics is that it cannot solve some immediate 

issues. Perhaps, the most effective approach to deal with the issues of TAI ethics is to combine all three ethical theories when new AI 

technologies challenge some of our fundamental notions of ethics for strategic decision-making.  

Practically, when we intend to apply three ethical theories for TAI, we often find many ethical terms (e.g., right, wrong, good, bad, 

fair, unfair, just, unjust, and trustworthy) and AI concepts (e.g., smart, advanced, and intelligent do not provide specific and measurable 

definitions) are vague and evolving. Consequently, these terms cultivate different paradoxes. The paradox arises because 1.) a set of 

inconsistent factual statements, 2.) seemingly reasonable assumptions with acceptable reasoning but an obviously false conclusion, and 

3.) an unacceptable conclusion derived from seemingly good premises and reasoning.[151] 

5.2. Paradoxes of the Ethics AI 

Powers and Ganascia [152] asked a similar question: how to approach ethical AI, which they call “the ethics of the ethics of AI,” or 

meta-ethics that studies the nature, foundations and scope of ethical principles and values for the ethics of AI. They examine this topic 

from five perspectives: 1.) conceptual ambiguities, 2.) the estimation of risks, 3.) implementing machine ethics, 4.) epistemic issue of 

scientific explanation and prediction, and 5.) oppositional versus systemic ethics approaches. All these challenges have not had practical 

resolutions yet because “when we turn to the epistemology of the ethics of AI, we find that the ethics of AI will depend on the very 

science that AI produce.” Logically, the meta-ethics idea is a self-reference. It is similar to a barber paradox derived from Russell’s 

paradox.[153] 

Using “conceptual ambiguities” as an example, suppose we want to address the ethics of AI. We want to understand and clarify 

critical terms first, such as agency, responsibility, intention, autonomy, fairness, moral status, and interest, because AI challenges these 

ethical concepts. However, the concept of AI itself is under rapid development. For example, rule-based systems, chatbots, and expert 

systems represented AI from the 1970s to the 2000s. Now, the AI agent becomes facial recognition and machine learning. This 

phenomenon is also known as the AI effect paradox or “Turing Test” threshold. The fundamental issue is “What AI is the real AI 

and what is not?” The answer is “not so straightforward.” [154] When we discuss the meta-ethics of AI, we mean principles of “moral 

principles for AI.” The issue is that AI is an emerging technology. It is always ahead of ethical principles. The question is how to decide 

the moral principles of AI that emerge in the first place by later the moral principles. It is an AI Ethical paradox. In short, the real 

challenge of ethics AI is how to solve a meta-paradox problem. (Refer to Figure 12) 

Addressing these paradoxes may require a multi-stakeholder approach that involves AI systems’ developers, users, government 

regulators, and social organizations. This approach should be grounded in ethical principles and guided by ongoing dialogue and 

collaboration between these stakeholders. It also requires ongoing monitoring and evaluation of AI systems to ensure that they behave 

in ways consistent with the meta-decisions or our principles. 
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In addition to the meta-paradox of AI Effect and Ethics, we also face the decision-making paradox [155], also known as the rational 

paradox. We intend to use the multi-criteria and rational analysis of available information to make the best decision. However, our 

decision is often influenced by emotions, beliefs, perceptions, and even biases. It results in a self-defeating astray 

 
Figure 12: Meta-paradox of Ethics AI for TAI  

5.3. Machine Learning Paradoxes 

In addition to the AI effect paradox, one of the well-known ML paradoxes is Simpson’s paradox(or mix effects), which often 

happens at different levels of data aggregation. The phenomenon of the Simpson paradox shows that the direction of a statistical result 

is inverse in the whole dataset compared to sub-datasets. Identifying whether Simpson’s paradox imbeds in a dataset for decision-

making is crucial, especially for federated learning. Shmueli and Yahav  [159] introduce the structure of classification and regression 

trees to detect potential Simpson paradoxes in a dataset automatically. However, Armstrong and Wattenberg [160], “there is no silver 

bullet to account for the Simpson paradox.” We can only be aware of this paradox when we apply FL for privacy.  

Besides Simpson's paradox, there is Braess’s paradox, which means that if we add more resources to a system, we expect to see 

increasing AI systems’ efficiency. Counterintuitively, the Braess paradox shows the opposite result for some systems, such as  adding 

alternative routes in a traffic network system. Tumer and Wolpert [161] provided the solution of collective intelligence for autonomous 

driving cars. This paradox often occurs when we adopt reinforcement learning. 

When we train a prediction model via a dataset, our intuitive goal is that we want the model to be as accurate as possible. However, 

accuracy is not the only good indicator for pattern recognition, information retrieval, object detection, and classification problems 

because we must balance precision 7 and recall (sensitivity) [162] in a training dataset. If a training model gives us nearly 100% of 

prediction accuracy, it could mean the selection of the training dataset is imbalanced. It is harmful.[163] The near-perfect accuracy 

could be misleading because the correct metric for prediction power is equal to the precision. For a medical diagnosis, both sensitivity 8 

and specificity9 are essential. In other words, the accuracy paradox exhibits that perfect accuracy is not always desirable. A good 

training model needs to include false instances to train itself to differentiate between true and false. 

The learnability of a learning model is undetermined [164] because Godel’s incomplete theorems showed that not everything is 

provable by logic alone. Machine Learning has the same fate because the foundation of ML is logic. The study [164] demonstrated that 

“estimating the maximum” (EXM) learnability cannot be proved or disproved. That is to say that AI/ML could not solve some 

problems. The paradox is that ML is unlearnable, known as the learnability paradox. 

The last well-known paradox is the so-called Moravec’s paradox [156], originated by Hans Moravec, Rodney Brooks, and Marvin 

Minsky. It states that machines can easily accomplish tasks (complex logic reasoning) that humans find very difficult to do. Conversely, 

some common sense activities (such as tieing up shoelaces) that are effortless for human is highly challenging for machines, such as 

strategic intuition or gut feeling, creativity and imagination, moral reasoning, emotional intelligence, consciousness, common sense, and 

——— 
7 positive predictive value or PPV = true positives/(true positives + true negatives) 
8 Recall = Sensitivity = true positives /( true positives + false negatives) 
9 Specificity = true Negatives/(true negatives + false positives) 
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practical wisdom. Even if a machine can do some human activities, it takes much computational power. Perhaps, common sense ethics 

is complex for machines to grasp. Overall, we highlight eight ML paradoxes.  

5.4. TAI Paradoxes 

 Likewise, TAI can also involve several paradoxes that must be addressed to build trust and confidence for many AI systems’ users. 

We have already mentioned some dilemmas in the above survey (See Figure 9). Here, we want to highlight some typical examples of 

TAI paradoxes: 1.) The Paradox of Autonomy is the relationship between fully autonomous AI systems and machines’ understanding 

of reality. Currently, machines are very challenging to understand and control in reality, especially if we want AI systems to behave 

ethically, empathically, consciously, and fairly as humans do. 2.) The Transparency Paradox is another TAI challenge because the 

more transparent AI systems are, the more likely they are to be susceptible to hacking or misuse. The issue is how we can make a 

balance or trade-off between security and transparency or an explanation. 3.) The Bias Paradox is often the primary issue for TAI. We 

hope that ML algorithms or AI systems can be trained by unbiased data, but collected datasets are often biased in ways that reflect 

existing social prejudice and cultural influence, which can perpetuate discrimination and inequality. 4.) The Paradox of Human 

Control implies that while humans desire to control AI systems, too much control or regulations could stifle AI innovation and prevent 

AI systems from reaching their full potential. 5.) AI explanation (XAI) paradox is perhaps the most challenging issue for TAI. It is 

closely related to the transparency problem. However, The paradox of explainability also refers to the fact that when AI systems 

become more complex, their decision-making processes become less transparent and more difficult to explain. 6.) The Paradox of 

Accountability is similar to the AI Ethic paradox, in which TAI should be accountable for its decisions and actions, but the lack of 

clear legal frameworks and standards for AI makes it difficult to establish responsibility. 7.) The Paradox of Scale shows that when we 

build AI systems, we want the systems to be scalable to process ever-increasing large data volume. However, the larger the scale of the 

AI system, the more difficult it becomes to ensure that it operates in a trustworthy manner.  

5.5. Paradoxes of Strategic Decision-Making 

This study mainly focuses on TAI but is oriented toward strategic decision-making. Consequently, we want to highlight some 

paradoxes of strategic decision-making that could intertwine with both ML and TAI paradoxes. There are at least 20 different 

paradoxes when we make strategic decisions. Here, we only list seven paradoxes closely associated with TAI and ML. 1.) The 

exploration-Exploitation paradox can also be interpreted as the K-armed or multi-armed bandit problem[157] that is closely tied to 

reinforcement learning. It answers the question of how to deploy ML algorithms. From a strategic decision-making perspective, this 

paradox involves the tension between exploring new options and exploiting known ones. The paradox arises because investing too 

much in exploration may lead to high costs and low returns, while investing too much in exploitation may lead to missed opportunities. 

2.) The Short-Term and Long-Term Paradox concerns reconciling between short-term (or tactic) gains and long-term (or strategic) 

goals (objectives). As we should see, focusing on short-term gains can provide immediate benefits, but focusing on long-term goals can 

lead to sustained success. The paradox arises because emphasizing too much on tactic gains may result in sacrificing strategic 

objectives, while concentrating too much on long-term goals may lead to abandoning short-term gains. This paradox is closely related 

to the dimension of sustainability of TAI under the long-term prosperity model. 3.) The Strategy and Execution Paradox involves the 

stress between formulating a strategy and executing it effectively. It is also related to the sustainability dimension of TAI under resource 

management models. From a strategic planning perspective, formulating a strategy can provide the right direction and focus. However, 

devoting too much effort to planning can lead to neglecting the strategy of execution. Conversely, dedicating too much energy to 

strategic planning could fail to commit enough resources to strategy execution 4.) The Rationality and Intuition Paradox indicates 

tension arises due to whether using rational analysis and logic or intuition and emotional intelligence to make strategic decisions. A 

rational approach can lead to logical and data-driven decision-making, but employing intuition can lead to creativity, innovation, and 

empathy. The paradox is triggered by too much rationality may result in a lack of creativity and imagination, while too much reliance 

on intuition may create unrealistic fantasy. This paradox is related to the XAI of the reason-based implementation model. 5.) The 

Stability and Flexibility Paradox express a clash between maintaining stability and adapting to change. Maintaining stability can 

ensure predictability and security while adapting to change can provide growth and competitive advantage opportunities. The paradox 

emerges because too much stability may cause stagnation and missed opportunities, while too much flexibility may produce instability 

and a lack of direction. The paradox is highly related to the TAI of the robustness of dimension.  6.) The Competition and 

Collaboration Paradox addresses the conflict between competition and collaboration. We know that competition will generate 

innovation and differentiation. However, collaboration will yield the benefits of knowledge-sharing and joint problem-solving. The 

paradox occurs that too much competition could create a hostile environment, while too much collaboration may result in complacency 

and lack of creativity. This paradox is related to the sustainability dimension of TAI. 7.) The Openness and Secrecy Paradox refers to 

the competing interest between being open and transparent or being secretive and protecting confidential information. Being open and 

transparent can build trust and foster collaboration. However, being secretive can protect intellectual property and sensitive information. 

The paradox stirs up if being too open may reveal confidential information and vulnerability, while being too secretive may lead to a 

lack of transparency and trust. This paradox is across the safety and transparency dimensions of TAI. 

6. Summary, Conclusion and Future Direction 

The research question is, what has been done regarding TAI in the last two decades? We need to understand how we can trust the 

result of machines or how to make meta-decisions, especially for strategic decision-making, because we often face an overwhelming 

amount of information, and many pieces of evidence are contradicted or paradoxical. 

Researchers have studied the topic from different perspectives for years. It allows us to collect over a thousand papers, books, 

dissertations, AI proposals, and industrial reports. In order to review the enormous amount of literature within a limited timeframe, we 

formulate the TAI framework that consists of three domains and ten dimensions, which aligns with Marr’s computational theory of 

vision. We then generate the selection criteria for the collected literature. 1.)The topic of selected research papers must be within the 

scope of three domains and ten dimensions, 2.)The study should include specific implementable algorithms and processing principles. 
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3.)The selected literature should provide empirical results and highlight limitations to compare them with the current state of the art. 4.) 

The study must also present a research method that can be validated.  

6.1. Objectives Level 

We developed the novel TAI taxonomy or framework with three domains and ten dimensions to achieve the computational 

objectives for this survey. The objectives are the strategic goal of a decision-maker. A specific business goal may include revenue 

growth, market penetration rate, cost of production, risk management, and long-term sustainability. To compute these objectives, such 

as 10% revenue growth with a 7% cost reduction in the next five years, we identify different domains (trust levels) to understand how 

much we can trust the result produced by ML because revenue growth and cost reduction often contradict each other. Sometimes, the 

strategic objectives are paradoxical. This issue leads to deciding what to decide or a meta-decision of strategic decisions or TAI. 

6.2. Domains Level 

Based on the newly created taxonomy or framework of TAI, we defined three domains of trust: articulate, authentic, and basic (See 

Figures 2 and 5). These domains reflect domain knowledge and different levels of trust. Articulate trust is trust that has been clearly 

defined without any ambiguities, which is beyond simple trust (or the “noncognitive” nature of trust [158]). This level of TAI knows the 

risks and vulnerabilities well when we see the outputs produced by AI/ML. The next level of trust is Authentic trust. It does not deny 

distrust but accepts, transcends, absorbs, and overcomes it. A typical example of this level of trust is the security or safety AI, such as 

hacking, ransomware, password attacks, and malware. Basic trust is a baseline belief without saying. We often take it for granted. It is a 

natural level of trust. From the TAI perspective, basic trust is like setting basic or default parameters for a strategic objective. One of the 

typical dimensions to underpin the objectives of TAI is that we assume the results produced by AI systems or ML can be reproducible, 

reliable, and robust. Although each level of trust may correspond to three different dimensional classes, each class is just a placeholder. 

We can select different dimensions to form different levels of trust. It is dependent on TAI objectives. 

6.3. Dimensions, Implementation Models and Schemes Level 

According to Figures 2 and 5, we create ten dimensions, 33 implementation models and 106 schemes/tools (60 plus 46 schemes, See 

Figures 5 and 8) to deliver any specified TAI outcomes. If the ethics theories are driven from top to bottom, then the implementation 

models, schemes/tools are driven from bottom to top. It is data-oriented (Refer to Figure 2). We can deploy different models for the 

same goal. Consequently, we could encounter many dilemmas, such as “interpretation and explanation”, “persuasion and fact-based 

transparency”, and “manipulation and evidence-based explanation” (See Figure 9). Moreover, AI/ML is dynamically evolving over 

time. There are many levels of paradoxes regarding AI, Ethics AI (As shown in Figure 12), and strategic decision-making. The notions 

of trust and trustworthiness are also a dilemma because there will be no trustworthiness without initial trust. TAI is a multidisciplinary 

topic associated with computer science, cognition science, economics, psychology, social science, and philosophy. (See Figure 11). 

This survey primarily focuses on computer science by shedding light on the philosophical morals and ethics of AI. We intend to provide 

a comprehensive survey of TAI for a meta-decision problem.   

6.4. Future Direction 

In future research, we will consolidate this TAI framework from a strategic decision perspective and implement the various TAI 

algorithms with defined domain vectors on a cloud or HPC platform. The critical research problem is transforming some ML, ethics AI, 

and strategic decision-making paradoxes or dilemmas into solvable problems for desired TAI objectives.  
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Appendix  

 

Table 1: Summary of data governance models[117] 

Model Applications Goals Value Principles 

Data Sharing Pools 

(DPs) 

Business entities 

Public bodies 

Fill knowledge gaps through data 

sharing 

Innovate and develop new services 

Private Profit 

Economic Growth 

Principle of ‘data as a commodity 

Partnerships 

Contracts (e.g. repeatable frameworks) 

Data cooperatives 

(DCs) 

Civic organizations 

Data subjects 

Rebalance power unbalances 

of the current data economy 

Address societal challenges 

Foster social justice and fairer 

conditions for value production 

Public interest 

Scientific research 

Empowered data 

subjects 

Principles from the cooperative movement 

Data commons 

‘Bottom-up’ data trusts 

GDPR Right to data portability 

Public data trusts 

(PDTs) 
Public bodies 

Inform policy-making 

Address societal challenges 

Innovate 

Adopt a responsible 

approach to data 

Public interest 

More efficient public 

service delivery 

Principle of ‘data as a public 

infrastructure’ 

Trust building initiatives 

Trusted intermediaries 

Enabling legal framework 

Personal data 

sovereignty (PDS) 

Business entities 

• Data subjects 

Data subjects self-determination 

Rebalance power unbalances of 

the current data economy 

Develop new digital services 

centred on users' need 

Empowered data 

subjects 

Economic growth 

Private profit 

Knowledge 

Principle of ‘technological sovereignty.’ 

Communities and movements 

(e.g. MyData) 

Intermediary digital services (personal 

data spaces) 

GDPR Right to data portability 

 
    

Table 2: Comparison of TAI Schemes/Tools 
Dimension 

type 
Authors Ref Year Main Contributions Methods To be Improved 

Explainabilit
y and 
Transparenc
y  

Sharma et 
al. 

[57] 2019 

a new unified model: CERTIFAI, for a 
counterfactual explanation. The first time 
proposed method to how to measure a 
black-box model 

counterfactual 
method and 
customized GA  

Speed up the GA process 

 
Wachter et 
al. 

[58] 2017 
a lightweight form of unconditional 
counterfactual explanations 

Neural Net, SVM, 
Regression 

How to quantify a sufficient and relevant set of 
counterfactuals 

 Byrne [59] 2019 
Demonstrate that not all counterfactuals 
are helpful 

neural network XAI to combine with psychological experiments 

 Rudlin [70] 2019 
Identify reasons why XAI for strategic 
decision is a bad practice 

Accurate, 
interpretable 
models 

Constructing optimal logical models, optimal sparse 
scoring systems, defining interpretability 

 Burns et al. [73] 2020 
Reframe the black box as a multiple-
hypothesis testing problem to discover 
important features 

Interpretability 
Randomization Test 
and One-Shot 
Feature Test 

how to choose which subsets of features to test 

 Gilpin [74] 2019 
Identify insufficiencies of current 
approaches for XAI 

Exploring approach How to adopt a systematic approach 

 Herman [77] 2017 
Proposed descriptive and persuasive 
explanations. 

Exploring approach how to avoid just relying on a narrative approach 

 Bills et al. [78] 2023 AI to explain AI Three steps model 

assumption of the black box can explain black box 
need further consolidation, using Non-negative 
matrix factorization (NMF) and Singular Value 
Decomposition (SVD) or dictionary learning 
approaches to work around polysemantic 

       



C. Wu et al.                                                      

Fairness 
and 
Diversity 

Mahoney et 
al. 

[79] 2020 
AI Fairness 360 toolkit how to measure 
bias and remove it 

21 mathematical 
definitions of 
fairness 

how to tackle fairness from multiple stakeholders 
and perspectives 

 
Madaio et 
al. 

[80] 2022 
Identify impacts on fairness work due to 
lack of domain experts, engagement with 
direct stakeholders 

Inquiry methods Limited sample size and representation 

 Zhou et al. [81] 2021 information-lossless de-biasing technique 
generate synthetic 
data 

how to avoid prediction accuracy sacrifice 

 
Grgic-Hlaca 
et al. 

[82] 2018 
Proposed a procedure fairness 
measurement 

Three new scalar 
measurements of 
fairness 

The experiment results do not hold in general 

 
Mozannar 
et al. 

[83] 2020 
learning fair predictions in a setting where 
protected attributes are only available 

Two steps learning 
The solution can not learn predictors in the absence 
of any demographic data 

 
Bellamy et 
al. 

83 2019 
Introduction of open source Python toolkit 
for algorithm fairness 

The architecture of 
the package 

how to extend the variety of types of explanations 

       

Generalizab
ility 

McDermott [87] 2019 
Provide metrics for reproducibility in ML 
for humans regarding three lenses 
technical, statistical and conceptual 

Analytic approach how to test the framework 

 Azad [88] 2021 
Highlight common errors that lead to poor 
reproducibility and generalizability 

leveraging proposed 
taxonomy 

how to implement and measure techniques to 
increase generalizability 

 Arjovsky [89] 2019 Propose invariant Risk Minimization (IRM) 
thresholding 
statistical hypothesis 
tests 

limited application, high computational cost, 
difficulty in selecting the appropriate penalty 
functions, sensitivity to the choice of 
hyperparameters, difficulty in interpreting the 
learned models 

 Ahuja [90] 2020 
Propose invariant Risk Minimization (IRM) 
based on game theory 

game theory 
how to apply the proposed solution for invariance in 
causal inference 

 Kamath [91] 2021 Demonstrate that IRM can be brittle Analytic method what is an alternative solution? 

       

Privacy Yu [95] 2006 Privacy-Preserving SVM classification 
Global SVM 
classification 

data must be horizontally partitioned 

 Karr [96] 2009 
A protocol can estimate coefficients and 
standard errors of linear regression for 
vertically partitioned data 

 how to share nonlinear analysis securely 

 Li [98] 2020 
A novel boosting framework to allocate 
the privacy budget (Differential Privacy 
Boost or DPBoost) 

Gradient Boosting 
Decision Tree 
(GBDT) and light 
gradient boosting 
machine 

issues of interpretability, scalability, and overfitting 

 Sweeney [99] 2002 K-anonymity 
Preferred Minimal 
Generalization 
Algorithm 

risk of re-identification attack, computational 
complexity, and difficulty in handling data updates 

 Aggarwal [100] 2005 
The effect of dimensionality on k-
anonymity for high dimensionality cases 

k-anonymity 
Difficulty in achieving high levels of anonymity and 
handling sparsity, computational complexity, and 
limited effectiveness against re-identification attacks 

 
Kasiviswana
than et al. 

[104] 2016 
Efficient Private Empirical Risk 
Minimization  for high-dimensional 
learning 

empirical risk 
minimization, 
perturbation 
techniques 

overfitting, difficulty in feature selection, sensitivity 
to hyperparameters 

 
Andrew et 
al. 

[105] 2021 
Differentially Private (DP) learning with 
adaptive clipping 

DP federated 
averaging with 
Federated learning 

increasing computational complexity, difficulty in 
achieving good accuracy, difficult in selecting the 
appropriate clipping norm, limited protection against 
membership inference attacks 

 
Chaudhuri 
et al. 

[106] 2011 
Differentially Private (DP) Empirical Risk 
Minimization 

Empirical Risk 
minimization 

increasing computational complexity, difficulty in 
achieving good accuracy, sensitivity to 
hyperparameters, difficulty in scaling to large 
datasets 

 Abadi et al. [107] 2016 
Differential private stochastic gradient 
descent (PD-SGD) 

Stochastic Gradient 
Descent 

increasing computational complexity, difficulty in 
achieving good accuracy, sensitivity to 
hyperparameters, difficulty in scaling to large 
datasets 

 Xu et al. [108] 2019 
VerifyNet for secure and verifiable 
Federated learning 

Double masking 
protocol 

Limited support for non-iid data, increasing 
communication overhead of the entire protocol 

 Truex et al. [109] 2019 
A hybrid approach of Differential Privacy 
(DP) and Secure Multiparty Computation 

DP and SMC 
high computational cost, sensitivity to the choice of 
privacy parameters, difficulty in tuning 



(SMC) in Federated Learning hyperparameters 

 Teng & Du [110] 2019  hybrid multi-group 

random and secure 
multi-party 
computation, ID3 
Decision Tree 

Fixed window size for decision tree building, limited 
ability to capture complex relationships, sensitivity to 
the choice of window size, limited adaptability 

 
Tramer et 
al. 

[111] 2017 
Identify the vulnerability of adversarial 
training and proposed ensemble 
adversarial training scheme 

adversarial training elaborate black box attacks 

       

Data 
Governance 

Eryurek [112] 2021 

A practical guide on how to implement 
and scale data governance incorporates 
the ways people, processes and 
technology work together to ensure data 
is trustworthy 

monitoring, agility, 
and planning 

of some content need to be further consolidated.  
Different data governance approaches should be 
presented, not only contributed by Google 

 Gritsenko [113] 2022 Propose a design-based governance mode 
algorithms in 
governance 

bias issue because algorithms are only as good as the 
data they are trained on, lack of transparency, 
limited scope, ethical issues 

 Kooiman [114] 2009 
Present meta-government as an integral 
part of governance 

Analytic complexity, limited impact, and accountability 

 
de Bruijn 
and Janssen 

[116] 2017 
Highlight a few challenges in cybersecurity 
and offer high-level strategies 

Narrative discussion practical solution 

 
Micheli et 
al. 

[117] 2020 

Highlight four models of data governance: 
data sharing pool, data cooperatives, 
public data trusts, and personal data 
sovereignty 

Analytic practical solution 

       

Safety 
Amodei et 
al. 

[118] 2016 
Highlight five accident safety issues due to 
poor design of real-world AI systems 

analytic in 
reinforcement 
learning 

how to gauge the risk of larger accidents 

 Leike et al. [119] 2017 
Present a set of reinforcement learning 
environments for various safety 
properties 

study cases interpretability and formal verification 

       

Reliability & 
Robustness 

Saria [126] 2019 

Provide an overview of machine learning 
reliability issue and draw connections to 
other trust AI concepts and highlight novel 
approaches for measuring reliability 

Analytic How to solve ML reliability issues in practice 

 Brendel [127] 2018 

Highlight the most neglected sub-category 
of adversarial attacks: a decision-based 
attack that triggers ML reliability & 
robustness issue for deployment  

boundary Attack 
with a random walk 

on improving memory for its previous steps, fixed 
size steps. The human decision is not purely random 

 
Moustapha 
et al. 

[128] 2022 

Propose a generalized modular framework 
to build on-the-fly efficient active learning 
strategies for 20 reliability benchmark 
problems 

active learning  

How to understand the effect of the threshold in the 
stopping criterion, more advanced learning function: 
reinforcement, semi-supervised, transfer, 
unsupervised, deep, and Bayesian learning 

       

Sustainabili
ty 

Al-Surmi [129] 2022 
Propose a novel three-phase decision-
making framework via AI processes for 
operational efficiency 

Survey More details of AI  for the decision-making process 

 
Vinuesa et 
al. 

[130] 2020 

Provide a high-level summary of 
sustainable development goals 
(environment, economy, and Society) and 
169 targets influenced by AI 

the consensus-based 
expert elicitation 
process 

the presented analysis represents the perspective of 
the authors 

 
Lacoste et 
al. 

[133] 2019 Machine Learning Emissions Calculator 
Web-based 
calculation 

transparency of calculation 

 


