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Abstract— This paper presents an integrated approach that
combines trajectory optimization and Artificial Potential Field
(APF) method for real-time optimal Unmanned Aerial Vehicle
(UAV) trajectory planning and dynamic collision avoidance. A
minimum-time trajectory optimization problem is formulated
with initial and final positions as boundary conditions and
collision avoidance as constraints. It is transcribed into a
nonlinear programming problem using Chebyshev pseudospec-
tral method. The state and control histories are approximated
by using Lagrange polynomials and the collocation points
are used to satisfy constraints. A novel sigmoid-type collision
avoidance constraint is proposed to overcome the drawbacks of
Lagrange polynomial approximation in pseudospectral methods
that only guarantees inequality constraint satisfaction only at
nodal points. Automatic differentiation of cost function and
constraints is used to quickly determine their gradient and
Jacobian, respectively. An APF method is used to update the
optimal control inputs for guaranteeing collision avoidance. The
trajectory optimization and APF method are implemented in a
closed-loop fashion continuously, but in parallel at moderate
and high frequencies, respectively. The initial guess for the
optimization is provided based on the previous solution. The
proposed approach is tested and validated through indoor
experiments.

Experiment video link: https://youtu.be/
swSspfvYjJs

Artificial Potential Field, Dynamic Collision Avoidance,
Pseudospectral Method, Trajectory Optimization, UAV.

I. INTRODUCTION

Trajectory planning is one of the most important features
for autonomous Unmanned Aerial Vehicle (UAV) in cluttered
environments, defined as a time-parameterized motion refer-
ence, i.e., geometric values of position, heading, derivatives
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associated with time law, passing through the waypoints,
considering geometrical feasibility, collision avoidance, kine-
matics and dynamics [1]. One of the main objectives of
the trajectory planner is collision avoidance with obstacles,
humans, and other robots. These, generally, can be titled as
static and dynamic obstacles [2]. So, the information on the
obstacles is to be implemented into the proposed solution.
Collision avoidance is considered as the geometrical feasi-
bility of the planning. Most of the planning approaches are
constructed as an on/offline optimization problem, obtaining
a trajectory with the optimized feature [3]. Mostly, the time
that the UAV takes between two given points is minimized,
aiming at the agile maneuver. More importantly, the real-time
implementation is more desirable for navigation in dynamic
environments [4], [5]. This implies the need for an algorithm
that converges to a feasible solution with a low computational
burden. In terms of technical development, the representation
of the optimization problem with the considered constraints
usually determines the reliability of the solution in practice.

Trajectory optimization has been widely investigated in
the last two decades [6]. Hard-constrained methods are
pioneered, in which piecewise polynomial trajectories are
generated through quadratic programming [7]. Free space can
be represented by a sequence of cubes [8], spheres [3] or
polyhedrons [9]. Improper time allocation of polynomials,
e.g., naive heuristics, leads to unsatisfying results. Fast
marching [10] and kinodynamic [11], [10] are used to find
a feasible initial guess, ensuring global optimality by the
convex formulation. However, distance to obstacles in the
free space is ignored, which often results in trajectories
being close to obstacles. Moreover, kinodynamic constraints
are conservative, making the trajectory’s speed deficient for
fast flight [12]. A feasible solution can only be obtained by
iteratively adding more constraints and solving the quadratic
programming problem, which is undesirable for real-time
applications.

Soft-constrained methods translate the problem to a non-
linear optimization problem with smoothness and safety [13].
Since the time parameterization is continuous, it avoids nu-
meric differentiation errors, with more accuracy to represent
motions. However, it suffers from a low success rate. As
a resolution, in [14] a feasible initial path is found using
an informed sampling-based path-searching method. In [15],
uniform B-spline is used for the trajectory parameterization,
as B-spline is continuous by nature, the continuity constraint
is avoided. Moreover, it is beneficial for local re-planning,
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due to its locality property. Soft-constrained methods might
stick in local minima and cannot guarantee of success rate
and kinodynamic feasibility.

Gradient-based method is the mainstream approach [4],
[5], as a non-linear optimization, taking into account smooth-
ness, feasibility, and safety using various parameterization
methods, including polynomial and B-spline. The compu-
tation time can be reduced by compact environment rep-
resentation [16]. Furthermore, it is effective for local re-
planning, which is useful for high-speed flight in unknown
environments. However, the local minima are still an issue.
The stochastic sampling strategy partially overcomes this
issue with the cost of computationally intensive [17]. The
quality of the initial guess can improve the success rate [14].
[18] used an iterative post-process to improve the success rate
of [19].

Topological path planning method utilises the idea of
topologically distinct paths for planning, in which paths be-
longing to different homotopy are used to escape local min-
ima. Trajectory planning is presented in [20] in distinctive
topologies using Voronoi and sampling-based front-ends and
Timed-Elastic-Bands local planner [21] as back-ends. Based
on [22], in [4] a real-time topological planning is proposed
by efficient topology equivalence checking. In most of the
similar works, collision avoidance in dynamic environments
is considered, considering the velocity of obstacles [23],
decentralized Nonlinear Model Predictive Control (NMPC)
[24] and sequential NMPC [25]. Uncertainties can be handled
by enlarging bounding volumes [26], which might lead to
conservative or infeasible solutions. Moreover, the chance-
constrained approaches are computationally intensive and
thus not eligible for real-time collision avoidance [27].

Motivated by the above-mentioned considerations, in this
paper we design an integrated solution for trajectory opti-
mization with the Artificial Potential Field (APF), satisfy-
ing real-time minimum-time UAV trajectory planning and
dynamic collision avoidance. The problem is transcribed
into a nonlinear programming problem using Chebyshev
pseudospectral methods. The state and control histories are
approximated by using Lagrange polynomials and colloca-
tion is used to satisfy the dynamics constraints. The obstacle
avoidance constraint is modelled by a novel sigmoid function
to overcome the drawbacks of Lagrange polynomial ap-
proximation in pseudospectral methods that only guarantees
inequality constraint satisfaction only at nodal points. It also
guarantees the feasibility of the optimization problem. Fur-
thermore, to reduce the computational complexity, automatic
differentiation is used to obtain the gradient of cost function
and Jacobian of constraints. An APF method is used to
update the optimal control inputs for guaranteeing collision
avoidance. The proposed framework structure can overcome
convergence issues, by having the components run in parallel
but at moderate and high frequencies.

The rest of the paper is organized as follows. The UAV
dynamics model, optimization formulation, and NLP tran-

scription are covered in Sec. II. Sec. III comprises the
novel constraint formulation for collision avoidance, the APF
method for guaranteed collision avoidance, and computa-
tional implementation. The proposed architecture is also
presented. Indoor lab setup, and experimental results are
presented in IV. Finally, the paper ends with conclusions
in Sec. V.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Dynamics Model

Consider an approximate dynamics model for the UAV as
a first-order dynamics system in terms of the position vector
x(t) = [x(t),y(t),z(t)]T ∈R3 and commanded position vector
ucmd(t) = [xcmd(t),ycmd(t),zcmd(t)]T ∈ R3, both presented in
the inertial frame of reference, as

ẋ(t) = diag(Kx,Ky,Kz)(ucmd(t)− x(t)) , (1)

where Kx, Ky, and Kz are constant dynamics gains.
The model (1) assumes that the position of the UAV

converges to the commanded position asymptotically [1].
The low-level controller in the autopilot rejects any unknown
disturbances, like wind, and computes the required motor
inputs based on the error between current and commanded
positions, with desirable performance.

B. Optimization Problem Formulation

The trajectory planning problem is to determine the control
inputs required to transfer the UAV from the given initial
to final positions in minimum time. The trajectory planning
problem is formulated to determine optimal position vector
xopt(t) = [xopt(t),yopt(t),zopt(t)]T ∈ R3 and corresponding
commanded position vector ucmd(t), such that to steer x(t)
towards xopt(t), in minimum time, starting from the ini-
tial position x(t0) = x0 ∈ R3 to the final position x(t f ) =
x f ∈ R3, where t f is the unknown terminal time. Also, it
is aimed to avoid no moving obstacles with the position
vector xobs,k(t) = [xobs,k(t),yobs,k(t),zobs,k(t)]T ∈ R3, for k ∈
{1, ...,no}, by keeping the UAV outside of safety spheres,
considered around the obstacles. Furthermore, there are nw
waypoints that UAV is supposed to pass through before
reaching x f . This optimization problem is mathematically
formulated as

[xopt(t),ucmd(t)] = argmin
ucmd(t)

J
(
x(t),ucmd(t),x0,x f

)
, (2)

where
J(·) = t f

(
x(t),ucmd(t),x f

)
− t0, (3)

subject to dynamics (1) and boundary conditions

x(t0) = x0, (4a)
x(t f ) = x f , (4b)

x(t j) = w j, (4c)
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bound constraints on position and speed

xL ≤ x(t)≤ xU (5a)
uL ≤ ucmd(t)≤ uU (5b)

ẋL ≤ ẋ(t)≤ ẋU (5c)

and obstacle avoidance constraints

Rk ≤
∥∥x(t)− xobs,k(t)

∥∥, (6)

for j ∈ {1, ...,nw} and k ∈ {1, ...,no}, where, t0 ≤ t j ≤ t f , are
increasing time sequence, and w j = [x j(t),y j(t),z j(t)]T ∈R3

is the position of the jth waypoint. XL and XU denote the
element-wise lower and upper bound vectors on the variable
vector X(t). Finally, Rk for k ∈ {1, ...,no}, represents safety
radius of kth obstacle. In fact, Rk ≤

∥∥x(t)− xobs,k(t)
∥∥ imposes

the constraint to keep the position of the UAV outside of the
safety sphere around the obstacle.

C. NLP Transcription:

The continuous-time trajectory optimization problem (2)
is transcribed into a nonlinear programming (NLP) problem
using Chebyshev pseudospectral method [28]. In this method,
the state and control histories between the initial and final
waypoints are approximated by Lagrange polynomials in
non-dimensionalized time, as illustrated in Figure 1

x(τ)≈
n

∑
i=1

xiφi(τ), (7a)

ucmd(τ)≈
n

∑
i=1

uiφi(τ), (7b)

where τ ∈ [0,1] is the non-dimensionalized time; n is the
order of the polynomial; xi and ui are state and control
approximation vectors at nodes; i denotes node number; and
φi(τ) is the basis function given by

φi(τ) =
n

∏
j=1, j ̸=i

τ− τ j

τi− τ j
, (8)

where τi and τ j are roots of shifted Chebyshev polynomials
obtained by

τi =
1+ τ̃i

2
. (9)

The roots of the Chebyshev polynomial are determined as

τ̃i = cos(πk/n) , k = 0,1, ...,n (10)

Let ∆t be the maneuver time. The actual and non-
dimensionalized times are related as

τ =
t

∆t
, (11)

dτ =
dt
∆t

. (12)

The Lagrange polynomials are collocated at the interpolation
points to result in a set of algebraic equations

xiφ̇i(τ) = ẋ(τ). (13)

This can be rewritten as
n

∑
i=1

xiφ̇i(τ) = ∆t f (xi,ui). (14)

Then, the cost function J, in (2) reduces to

J = ∆t. (15)

0 0.2 0.4 0.6 0.8 1

x
(

)

Chebyshev nodes
Lagrange polynomial

Fig. 1. Illustration of trajectory approximation using Chebyshev pseu-
dospectral method.

The problem (2) with cost function (15) with boundary
conditions (4), bound constraints (5), and obstacle avoidance
constraints (6), constitute the NLP problem. This NLP prob-
lem is solved using interior point algorithm [29] implemented
in IPOPT solver [30] interfaced with Matlab. Moreover,
CasADi [31] is used for the automatic differentiation to
determine the gradient and Jacobian of cost function and
constraints, respectively, for speeding up the computation of
the solution, which is vital for real-time implementation.

III. COLLISION AVOIDANCE

In this section the modifications applied to the optimiza-
tion problem (15), are addressed that guarantee the feasibility
of the problem and the fast convergence of the solver, aiming
at the real-time re-optimization. The overall computational
architecture is presented in Figure 2.

A. Constraints Formulation

To apply the obstacle avoidance constraint (6) to the
collocation points, the common condition to be checked is
the distance of the points from ith obstacle to be greater
than the safety radius Ri for i ∈ {1, ...,no}. However, this
might lead to the safety violation as illustrated in Figure 3.
Evidently, the collocation points C j,1 and C j,2 are outside of
the safety sphere, i.e., ri, j,1 > Ri and ri, j,2 > Ri. However,
the line segment C j,1C j,2 is still passing through the safety
sphere. The trivial solution is to increase the number of col-
location points and apply the distance constraint. However,
this increases the computational burden. More importantly,
it is still not geometrically guaranteed that connecting lines
are moved outside.
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Fig. 2. Computational architecture.

Fig. 3. Violation of safety region for the case the waypoints and collocation
points are still outside.

A resolution is to consider the perpendicular distance
for each line segment from the obstacle, i.e., di, j,k, for
k = 0, . . . ,N, where N represents the number of collocation
points, C j,0 = w j and C j,N+1 = w j+1, as illustrated in Figure
4, where, di, j,k, for k = 0, . . . ,4, are all same for all the
segments, as they are on the same straight line. Considering
only perpendicular distance as the constraint di, j,k > Ri leads
to a very conservative approach, as it moves all points C j,1
and C j,4 to satisfy the constraint, as shown in Figure 5. This
takes a lot of workspace and might lead to an infeasible
optimization problem after applying the other constraints.
Therefore, we only need the constraint to be applied to C j,2
and C j,3 in Figure 5, as they lie within the safety sphere. The
solution we propose is to first check if the projection of ith

obstacle position on the line segment C j,kC j,k+1 lies on the
segment or its extension. To do so, we compute

ti, j,k =

(
xobs,i−C j,k

)
.
(
C j,k+1−C j,k

)(
C j,k+1−C j,k

)
.
(
C j,k+1−C j,k

) , (16)

where · represents the inner product. If 0 < ti, j,k < 1, then the
projection point is on the line segment C j,kC j,k+1. Otherwise,
it is on its extension. Accordingly, the collision avoidance
constraint, illustrated in Figure 7, is as follows.

if 0 < ti, j,k < 1 & di, j,k < Ri then

Move the C j,k , for k = 1, . . . ,N, such that C j,lC j,l+1,
for l = 0, . . . ,N is outside of the safety sphere.
end if

Fig. 4. Perpendicular distance check.

Fig. 5. Applying the perpendicular distance check to all the points. The
points with superscript (′) represent the new position of the points in grey.

Fig. 6. Applying the projection point check.

This approach theoretically solves the mentioned prob-
lem, however, it imposes a practical implementation issue.
This stems from the presence of the if condition in the
construction of constraints which is a common approach
for obstacle avoidance constraints [5]. Using if condition
changes the structure and size of the constraints at every
iteration. This is due to the fact that by moving collocation
points, the constraint might be satisfied and it is removed
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from the constraints matrix. More importantly, if condition
is not a smooth condition which might make a problem with
the convergence of the solver. To resolve this problem, we
propose a smooth constraint avoiding the use of if condition,
as

fi, j,k :=
1
2

Γi, j,k
(
Ri−di, j,k

)
≤ 0, (17)

where Γi, j,k = tanh
(

ti, j,k
δ

)
− tanh

(
ti, j,k−1

δ

)
and δ > 0 is a

small scalar. It is readily shown that for 0 < ti, j,k < 1, Γi, j,k ≈
1. Therefore, fi, j,k = Ri−di, j. Then the constraint fi, j,k ≤ 0 is
equivalent to Ri−di, j,k ≤ 0. On the other hand, for ti, j,k ≤ 0 or
1≤ ti, j,k, the term Γi, j,k = 0 and, hence, fi, j,k = 0. Moreover,
the condition 0≤ 0 is already satisfied in numerical solvers
and it does not apply the distance constraint on the points
C j,k and C j,k+1. So, the constraint (17) encapsulates both
conditions for the line segment on which the projection
point lies, without using if condition. More importantly, this
constraint is smooth at points ti, j,k = 0 and ti, j,k = 1. fi, j,k is
illustrated in Figure for δ = 0.05 and Ri = 1.5.

Fig. 7. Smooth obstacle avoidance constraint.

Another improvement to guarantee real-time feasibility
with fast convergence is to make sure, the initial guess
does not go through the safety sphere. To address this, we
first radially move the collocation points of the initial guess
out of the sphere. For each point, we check if it is inside
of the sphere, if so, that point is moved in the direction
of the carrying radius, i.e., connecting the centre to the
point. However, this does not necessarily guarantee that the
connecting line does not pass through the sphere. Therefore,
we can consider the perpendicular distance of the centre to
each line. However, just moving all the points according to
the perpendicular distance might make lead to a conservative
initial guess which is away from the optimal solution. So,
we only move the lines, on which the projection point lies,
not on their extension, in the perpendicular direction. This
improvement might make the initial guess non-smooth and
longer than the direct connecting line. So, finally, we shorten
the guess, i.e., we check if the direct line between the
collocation points pas through the sphere. if not, the direct
line is replaced.

B. Artificial Potential Field

An APF method using sigmoid function [32] is used to
make minor corrections to the optimal control inputs to
improve safety and guarantee collision avoidance in case
of any unexpected delays in the computation of the opti-
mization solution. In the case of any unexpected delay in
communication or convergence issue, this ensures obstacle
avoidance and safety. APF method, as illustrated in Figure 8,
creates a virtual field around the obstacle that increases
or decreases in strength as the distance to it decreases or
increases, respectively. In this paper, the sigmoid function is
used to design the APF, as

Fk(t) =
1
2
(1+ tanh(αRk−∥rk(t)∥))−η (18)

for k∈ {1, ...,no}, where Fk(t) is the repelling force, α and η

are tuning parameters, and rk(t) = x(t)− xobs,k(t). By solving
the optimization problem (2) with cost function (15) with
boundary conditions (4), bound constraints (5), and obstacle
avoidance constraints (17), the optimal control inputs, i.e.
uopt(t), is obtained. Then ucmd(t) is obtained by modifying
uopt(t) with the repelling force from APF, as

ucmd(t) = uopt(t)+
no

∑
k=1

Fk(t)
rk(t)
∥rk(t)∥

. (19)

Fig. 8. Illustration of APF for α = 1.875 and η = 0.029.

C. Parallelization

APF (18) can be implemented at a very high frequency due
to its simplicity. However, solving the optimization problem
(2) is numerically expensive. It should be noted that it is
not always required to solve the optimization problem at a
high rate, and the trajectory can be slightly modified by APF.
Therefore, we propose to implement these two components
to run simultaneously in parallel, with different frequencies.
In fact, the higher frequency of APF always guarntees the
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obstacle avoidance and, hence, the safety of the solution. The
proposed parallelization is shown in a pseudocode in Table I.

At first, the optimization problem is solved once by defin-
ing the initial guess and boundary conditions based on the
initial and final UAV positions and obstacle location. Then,
parallel implementation of the two methods begins in a while
loop. If no optimization code is running, the control inputs
at initial time (t = 0) are obtained from the solution and are
treated as inputs to be commanded. The optimization solution
along with the co-state multipliers are used to make a new
initial guess. The initial boundary condition is updated based
on the new UAV position and the optimization solver begins
running in the background until a new solution is computed.
The APF method is used to determine the necessary repulsive
corrections to the initial control inputs, obtained from the
optimization solution, and it is commanded to the UAV. The
process is repeated until the UAV reaches its desired position.

TABLE I
PESUDOCODE FOR OPTIMIZATION AND APF PARALLELIZATION.

Initialization
1. x(0)← x0 Initial condition
2. x(t f )← x f Final condition
3. Solve an initial NLP
4. d(t)←

∥∥x f − x(t)
∥∥

Start parallelization
5. while d(t)> T hreshold, do
6. if NLP solved
7. uopt ← u(0)
8. x(0)← xuav
9. x(t f )← x f
10. Solve NLP in background
11. end
12. Compute (19)
13. Command ucmd(t) to UAV dynamics (1)
14. d(t)←

∥∥x f − x(t)
∥∥

15. end

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup

The setup of the UAV used for the experiments in this
paper, onboard components, indoor positioning system, and
communication network is illustrated in Figure 9. The UAV
is a quadrotor vehicle, equipped with Pixhwak CUAV V5
Nano autopilot running the PX4 operating system. It also
has a small onboard computer, Raspberry Pi Model B,
running an Ubuntu server. The obstacle is a small DJI Tello
drone. Positioning of the UAV and obstacle is carried out by
the Optitrack system, which comprises 12 infrared cameras
fixed to the ceiling at a height of around 5 m and a high-
performance desktop computer running Motive software. The
Optitrack system is calibrated to detect the circular reflective
markers fixed on the UAV and obstacle asymmetrically and
determines their position and orientation with respect to a
predefined FLU inertial coordinate system at a frequency of
120 Hz. The UAV’s onboard computer runs roscore and acts

as an interface for communication between the Optitrack
system, autopilot, and the ground control station (GCS).
It receives the position and orientation from the Motive
software over WiFi and relays it to mavros node. The mavros
node further sends it to the autopilot, which internally fuses it
with the IMU’s high-frequency acceleration, and angular-rate
measurements and receives the PX4-estimated position, and
orientation in the inertial frame to make it available to GCS.
The GCS initiates ROS in Matlab and has access to all the
ROS topics, including obstacle’s pose, UAV’s pose, and IMU
data published by mavros. The trajectory optimization code
runs in Matlab to determine the control inputs. The computed
control inputs are commanded to the UAV by publishing
them to relevant topics in mavros, which relays them to
the autopilot. The Tello drone is controlled by a separate
computer interfaced with both Tello and Optitrack system
simultaneously by Tello’s WiFi and ethernet connections,
respectively. A custom ROS node is developed to interface
with the Tello driver and gain access to its control.

Fig. 9. Illustration of the UAV positioning and control network architecture
in the lab.

B. Experimental Results

A single Tello drone is used as a dynamic obstacle and
controlled to fly in a circular trajectory at an angular speed of
1.0 rad/s. The radius, height, and yaw angle were maintained
to be constant at 0.5 m, 0.75 m, and zero deg, respectively.
Two points (−1.5,−1.5,0.75) and (1.5,1.5,0.75) in the FLU
frame of reference are chosen as the boundary points. The
values of α and η in (18) are chosen as 1.875 and 0.029,
respectively.

The UAV is commanded to take off and reach the first
boundary point. Once it reached, the trajectory optimization
and APF method run in parallel iteratively. In the first
iteration, an optimal trajectory is computed with boundary
conditions and constraints defined appropriately. To prevent
abrupt accelerations to UAV, the initial velocity is constrained
not to have large values. The initial control input obtained
from the optimization solution was corrected using APF
method and commanded to the UAV. In the second iteration,
a new optimization problem is created with the new UAV
and obstacle positions. By using the warmstart feature of
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a) b)

Fig. 10. Evolution of UAV trajectories with respect to moving obstacle: a) t ∈ [0.3,9.33] and b) t ∈ [96.03,103.86].

IPOPT, the optimization solution and corresponding co-
state multipliers of constraints from the first iteration are
specified as the initial guess. The optimization problem runs
in the background using the parfeval function in Matlab. The
initial control input from the first iteration is still used to
make corrections using APF method and commanded. In the
subsequent iterations, it was checked if the optimization code
running in the background is solved or not. If so, the routine
in the second iteration is repeated. Otherwise, only the APF
method is implemented. Process is repeated until the UAV
reached its final point.

To ensure that the proposed approach is robust and works
for different obstacle positions and approaching scenarios,
the UAV is continued to fly even after reaching the final
point. However, the boundary points were switched. Based
on the experimental analysis, the optimization solver is so
robust in computing the solution. Every time the boundary
points are switched, the solution from the previous iteration
is an incorrect initial guess. However, the solver is able to
compute a new solution without any noticeable delays.

The experiment was carried out for 150 seconds. Through-
out the experiment, the UAV was able to fly back and
forth between the two boundary points without having any
collision with the moving obstacle. UAV trajectories and
optimal trajectories computed from 135 s to the end were
recorded in a video1. It should be noted that y and x axes in
the figure correspond to F and −L axes in the FLU frame
of reference. This was done to have consistency between
the UAV motion in the video and the plotting axes. During
the experiment, the optimization solver was able to run at
a frequency of around 10 Hz. The APF method was run
at around 60 Hz. Despite the differences in the frequencies
of their runtime, it appears that the trajectories are getting

1https://youtu.be/swSspfvYjJs

updated in real-time without any noticeable delays. The APF
method can run at a much higher frequency, but most of the
time was consumed reading messages from ROS topics and
publishing the control commands.

The paths and trajectories of the UAV and the obstacle
from 0.3 to 9.33 s and 96.03 to 103.86 s are presented
in Figure 10. It can be seen that the UAV and obstacle
trajectories (shown as circular disks) never intersected with
each other. At the beginning of the maneuver in both
cases, the obstacle was not on the line segment joining
the two boundary points. Therefore, the computed optimal
trajectory was a straight line. During the course of the
maneuver, the obstacle started approaching the UAV and
intersecting its path. The optimization solver was able to
quickly compute new trajectories avoiding the obstacle. As
soon as the obstacle started moving away from the UAV,
the computed trajectories became almost straight again. The
UAV continued reaching its final point along this straight
line. Occasionally, slightly curved trajectories are computed
due to the effects of the sub-optimal previous solution chosen
as the initial guess. Overall, the proposed approach and the
computational framework developed were shown to work
effectively for real-time optimal UAV trajectory planning and
dynamic collision avoidance.

V. CONCLUSIONS

In this paper, we presented an approach for real-time
optimal UAV trajectory planning in the presence of dy-
namic obstacles, combining trajectory optimization with APF
method. The optimization problem minimized the flying
time between the initial and final positions. We transcribed
the problem into a nonlinear programming problem using
Chebyshev pseudospectral method. The state and control
histories are approximated by using Lagrange polynomials
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and Chebyshev nodes. More importantly, we presented a
novel sigmoid-type collision avoidance constraint. Automatic
differentiation of cost function and constraints were used
for fast convergence. The APF method was for guaranteeing
collision avoidance. We also presented a parallel architecture
running at moderate and high frequencies. Indoor experi-
ments were conducted which confirmed the effectiveness of
the proposed approach.
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