PHYSICAL REVIEW RESEARCH 8§, 043072 (2023)

Modeling noncovalent interatomic interactions on a photonic quantum computer
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Noncovalent interactions are a key ingredient to determine the structure, stability, and dynamics of materials,
molecules, and biological complexes. However, accurately capturing these interactions is a complex quantum
many-body problem, with no efficient solution available on classical computers. A widely used model to
accurately and efficiently model noncovalent interactions is the Coulomb-coupled quantum Drude oscillator
(cQDO) many-body Hamiltonian, for which no exact solution is known. We show that the cQDO model lends
itself naturally to simulation on a photonic quantum computer, and we calculate the binding energy curve of
diatomic systems by leveraging Xanadu’s STRAWBERRY FIELDS photonics library. Our study substantially extends
the applicability of quantum computing to atomistic modeling by showing a proof-of-concept application to non-
covalent interactions, beyond the standard electronic-structure problem of small molecules. Remarkably, we find
that two coupled bosonic QDOs exhibit a stable bond. In addition, our study suggests efficient functional forms
for cQDO wave functions that can be optimized on classical computers, and capture the bonded-to-noncovalent

transition for increasing interatomic distances.

DOI: 10.1103/PhysRevResearch.5.043072

I. INTRODUCTION

Materials and chemical modeling are considered to be
among the most important applications of quantum comput-
ing. So far, most quantum computing algorithms have been
applied to study short-range chemical bonds, primarily in
small molecules, cf. [1] for a review on the topic. However,
long-range noncovalent interactions are key to understand
many properties of molecules and materials [2,3], motivating
the development of efficient and accurate models capturing
these effects. Long-range forces originate from the electro-
magnetic interaction between electrically neutral atoms or
molecules [4-7] and arise from the coupling of matter to the
background quantum electrodynamic gauge field [8—17], and
are at the core of the description of the properties of materials
and macromolecules such as their structure [18], stability
[19,20], dynamics [21-23] and coupling to a background
gauge field [24-26]. The inclusion of dispersion interactions
can be done in an economical way by means of many-body
methods [27-40], in particular through the so-called many-
body dispersion (MBD) framework, whose accuracy was
proven in the literature [39,41]. In the MBD framework, draw-
ing inspiration from the Drude atomic model, the response of
valence electrons in atoms is assumed to be linear and this can
be implemented through the introduction of quantum Drude
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oscillators (QDO), for which a harmonic potential is assumed
between an effective electron (called drudon in this context)
and an oppositely-charged nucleus, as illustrated in Fig. 1.
QDOs define a compact coarse-grained quantum-mechanical
model for dispersion forces, in which molecules are then
defined as a collection of QDOs interacting through dipole-
dipole interaction [42]. Though simple, this system was shown
to capture long-range phenomena even in large biomolecular
systems [43]. By construction, the MBD framework relies on
the dipole-dipole approximation to the Coulomb interaction,
and therefore comes with the usual limitations of multipolar-
type expansions, leaving aside any contribution coming from
higher-order couplings. These limitations can be addressed
via multipolar generalizations of the pairwise second-order
perturbative approaches [35,36,40,44]. We propose here, in
the spirit of the full configuration interaction (FCI) approach
of Ref. [45], to study the MBD model with full Coulomb in-
teraction between its constituents. Going beyond the quadratic
dipolar QDO Hamiltonian of course comes at the cost of
loosing integrability of the model, and this is where numerical
methods, and in particular quantum computing approaches
become relevant.

Here, we show that quantum computing can be applied
to efficiently and accurately model noncovalent interactions.
Our study substantially extends the applications of quantum
computing to atomistic modeling by probing the use of noisy
intermediate scale quantum (NISQ) algorithms to the study
of concrete quantum chemistry models, beyond the standard
electronic-structure problem of small molecules [46—48].

We remark that the authors of Ref. [49] implemented
a variational quantum eigensolver for the simulation of an
effective one-dimensional QDO model. There, the quantum
harmonic oscillator Hilbert space, built as a Fock space, was
truncated at some fixed level A, and mapped to the Hilbert
space of a system of [log, A] qubits. The Hamiltonian was
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then mapped to a linear combination of Pauli strings. They
studied there in great detail the case of a linear coupling be-
tween the QDOs, and explored the case of a quartic potential;
However, it is known on the one hand that the quadratic model
has a known analytical solution, and we argued on the other
hand that it is beneficial to explore QDO models beyond the
multipolar expansion. Moreover the drudons were allowed to
move either longitudinally or transversally with respect to the
axis connecting the QDOs. However, as we will show, both of
these models/configurations do not capture the most critical
properties of the full-fledged three-dimensional cQDO model,
namely existence of a bound state, and smoothness of the
binding curve [45,50]. The present work addresses both limi-
tations. On the other hand, our work also differs from a choice
of hardware point of view. Indeed, in our case we choose
the photonic-based continuous-variable quantum computing
paradigm [51-58], guided by the intrinsic bosonic nature of
QDOs, therefore effectively mapping a bosonic problem onto
a bosonic hardware. The Fock space of a single harmonic os-
cillator is directly identified with the Fock space of one mode
(one photon channel, in quantum optics language) of the quan-
tum electrodynamic gauge field. In particular, the position and
momentum of the drudon particle are directly identified with
the position and momentum quadratures of the electromag-
netic field, and a collection of N QDOs is then represented
by a collection of 3N photon channels in an optical circuit.
Similar ideas were successfully used to simulate bosonic
Euclidean quantum fields [59,60] on a lattice. Concerning
the quantum simulation of interacting harmonic oscillators
in a first quantized framework, let us mention Ref. [61],
where the authors encode simple supersymmetric quantum
mechanical systems into a system of qubits, using again a
hard cutoff for the bosonic degrees of freedom. In our case,
and following Refs. [46,62—65], an optical circuit composed
of parameterized linear gates such as beam splitters, phase
shifters, but also Gaussian gates implementing displacement
and squeezing, and quartic gates (Kerr gates) is optimized
through a variational quantum eigensolver (VQE)-type algo-
rithm in order to accurately prepare the ground-state wave
function of the cQDO model. For the implementation, we
leverage on Xanadu’s STRAWBERRY FIELDS quantum machine
learning framework for continuous-variable hybrid quantum-
classical optimization [62-64,66]. Following Ref. [64] for
state preparation, we probe our approach using STRAWBERRY
FIELDS simulator API. We successfully derive the binding
energy curve for a pair of QDOs and study various properties
of the corresponding ground-state wave function. We note in
particular the existence of a bound state, as already showed in
Refs. [45,50], and we observe an interesting behavior of the
quantum mutual information as a function of the interatomic
distance, in correlation with the formation of the bound state
as the two QDOs approach each other.

I1. DEFINITION OF THE MODEL

The Hamiltonian describing a system of N quantum Drude
oscillators in three dimensions is given by:

N 2
D; 1
H = I:z—ml + zmiw,-zxiz:| + ZVCoul(xiaxj)a (1)

i=1 i<j
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FIG. 1. Tllustration of a system composed of a pair of QDOs. The
nuclei are considered to be infinitely massive. The drudons interact
with their nucleus through a harmonic potential, but with the other
QDO through Coulomb interaction. x; denote the relative position
of the drudon with respect to its nucleus in QDO;. ry, denotes the
position of QDO, with respect to QDO,.

with the Coulomb interaction containing contributions from
interacting drudon-drudon and drudon-nucleus pairs:

Veou(xi, x;) 1 1 1
qiq; _;'j_ i + x| B i — x|
;’ )
|rij —x; +x;il

and where x; denotes the relative position of drudon i with
respect to its nucleus, and r;; = r; — r; denotes the position of
nucleus; with respect to nucleus;. The usual approach consists
of solving the theory in the multipolar expansion framework,
in which the potential can be expressed as a power series in
the inverse distance separating the two nuclei:

Veou (i, X)) = Y Valxi, X)), 3)

n=0

with the following scaling behavior V,(x;, x;) ri;”_3. The
potential Vj corresponds then to the dipole-dipole interaction,
and is at the core of the many-body dispersion (MBD) model.
V1 corresponds to the dipole-quadrupole interaction, and V; to
the quadrupole-quadrupole and dipole-octupole interaction.

One obvious limitation of the multipolar expansion, which
assumes a large distance between the nuclei with respect to
the typical separation between the drudons and their nucleus,
is the lower bound it imposes on the interatomic distance. One
can easily see that within the MBD (dipole-dipole) model by
direct diagonalization of the quadratic Hamiltonian in terms
of normal modes. In that case, one of the normal modes
(the center-of-mass mode) develops a purely imaginary fre-
quency at short range. Higher-order physical effects are also
neglected in the MBD model, motivating the study of the
QDO model with full Coulomb interaction potential between
its constituents.

Let us define the following dimensionless position and
momentum operators associated to QDO i:

m;w; V4
Xi=/—/xi, P=——xw, )
h hmia),-
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in terms of which the Hamiltonian reads

H= Z fon x4 p2)

i=1

+§ VCoul ‘/ . u”mw
i<j Lt J%i

One can define the 3N creation and annihilation operators
X; +iP; v X —iP;
a=——-— a =——,
V2 V2

in terms of which the Hamiltonian reads

H= Zhw,(a -a; + 3)

h a,—}—a h aj+a;
- (D
i< m;wi m;wj V2

(6)

+ Z VCoul

Let us from now on restrict the problem to a pair of QDOs
(N = 2) for concreteness, though, the following developments
carry to systems of N coupled QDOs. We denote by d the
interatomic distance.

In order to reduce the complexity of the problem, let us
define one-dimensional (1D) instances of the QDO model as
follows: we restrict the movement of the two drudons to be
along a common axis (directed by a unit vector &y), which
form an angle 6 € [0, 7 /2] with respect to the vector ry;
connecting the two nuclei. We therefore have a family of
one-dimensional models, which can be obtained from the full-
fledged 3D model simply by setting to zero the contribution
from the oscillator modes belonging to the plane perpendicu-
lar to &g. Let us denote by (X;, P,);c1,2) the remaining position
and momentum degree of freedoms. As limiting cases, we
obtain models in which the drudons are constrained to move
either in the direction parallel to the axis separating the two
nuclei (6 = 0), or perpendicular to the latter (¢ = 7 /2). Those
two models were studied in Ref. [49] in the dipole-dipole
approximation. As mentioned in Sec. I, in that paper the
authors encode the states in the truncated Fock space of the
system into the state of a set of qubits, and run VQE-type
algorithms on IBQ quantum processors. However, as we will
see, the angle 6 captures the competition between existence
of binding (for small #) and smoothness (for large 6), and
interesting one-dimensional models actually sit at values of
6 in the open segment (0, 7 /2).

In the case of a generic angle 6 and interatomic distance d,
the one-dimensional Coulomb potential reads:

Vo (15 %2) 1 !
14 d \/dz + 2d(cos 0)x; + x>
1
\/d2 — 2d(cos0)x, +x3
1
+ .
\/d2 —2d(cos0)(xp —x1) + (x2 — x1)?
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FIG. 2. One layer in the optical quantum circuit. The various
gates, namely the beam splitters, rotation, squeezing, displacement
and Kerr gates are collectively parameterized by w.

We therefore have a family of Hamiltonians parameterized by
0,d) €0, /2] x R.y:

hw
+X7)+ —

sl x) o

Alternatively, in terms of creation and annihilation operators,
one has

1 1
Hy = hw; <a a; + > +ha)2<a2a2 + 2)

| h a + al ar +al
V9 d 1 2 . 10
Coul mo) M \/z ( )

For the numerical simulations, we set i = 4mwey = 1 as well
as m; = q; = w; = 1 for both QDOs.

Hyq = o (P2 (P2 +X5)

III. PHOTONIC CIRCUIT AND VARIATIONAL
ALGORITHM

From a molecular physics and long-range intermolecular
perspective, we are mainly interested in knowing the ground
state of the system (9). Among the various approaches, the
hybrid quantum-classical variational algorithms were shown
to be particularly efficient at capturing the properties of po-
tentially complicated quantum states. Following Refs. [63,64],
we apply a continuous-variable version of the VQE algorithm
to extract the ground state of the QDO system. The ground
state is obtained by optimizing the parameters of a parame-
terized optical circuit composed of linear multimodes gates
(two-mode beam splitters and rotation gates), Gaussian gates
(single-mode squeezing and displacement gates), as well as
non-Gaussian gates (Kerr gates) implementing nonlinearity.
A generic multimode Gaussian state can be decomposed into
a sequence of two-mode beam splitters and single-mode rota-
tions, squeezing and displacement. Inserting a non-Gaussian
operation (nonlinearities in the classical machine learning
language) in between each Gaussian transformation allows
us to evade the strictly Gaussian realm, and provide enough
flexibility to capture arbitrarily complicated wave functions
by statcking multiple layers, increasing the expressivity of
the ansatz space. As discussed later, one can justify a pos-
teriori this specific choice of nonlinearity by observing that
our ground state is well captured by catlike states, whose
preparation is known to require the use of Kerr interactions.
Within a layer, the number of parameters in the model scales
quadratically in the number of photon channels (due to the
beam splitters). We refer the reader to Fig. 2 for an illustration
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Algorithm 1. Extract distribution of position quadratures.

Algorithm 2. Training of the parameterized photonic circuit.

Parameters: State vector |v), finite subset G € R,
shots M € N
Result: Probability distribution of (X;, X;) in state
[) discretized over the grid Gy x Gx

form = 1to |G| do
Initialize N,, < 0;

for j =1toM do
Measure the state |/) in the discretized position
quadratures basis, obtain the eigenvalue X,,, set
N, < N, +1

form = 1to |G| do
Normalize N,, <— N,,/M;

return {N, ",

of a single layer composing the architecture of the quantum
neural network. In the procedure, the relative coordinate of
the drudons with respect to their nucleus is directly identified
with the position quadrature of the quantized electromagnetic
field along the two channels of the optical quantum circuit.

Overall, denoting by w the set of all parameters, the circuit
implements a unitary transformation U (@) acting on an input
reference state that we simply take to be the Fock vacuum state
|0) ® |0). The state prepared by the circuit is therefore given
by |V (w)) = U(w)|0) ® |0). Once the ansatz state | (w)) has
been produced, one extracts the value of the energy in that
state, given by (V¥ (w)|H | (w)). Let us denote expectations in
the state | (w)) by angular brackets (-). To be specific, let us
take our model (9), and let us denote by angular brackets the
expectation in state |/ (w)). One has

(H) = liw; ((a’an + 1) + han((dédz) + ;)

<V§Oﬁ1 |—X, | X, > n
miwiq now»y

by linearity of the expectation. On the second line one has to
compute an expression of the form (f (X, X»)). One therefore
needs to extract the joint statistics of the position quadratures
by preparation and measurements of the state |{(w)) in the
quadrature basis, as summarized in algorithm 1. Once the joint
probability density p of (X, X;) in the state | ()) is known,
one can compute

(f(X1, X)) = /Rsf(X1,x2)p(x1,X2)dxldX2, 12)

where the integral above should be understood as a finite
sum over a sufficiently refined grid Gy x Gy in the position
quadratures plane. For the numerical simulation we take a
linear grid Gy composed of 500 points in the interval [—6, 6].
Let us note that alternatively, and following Ref. [64],
the simulator of STRAWBERRY FIELDS actually provides direct
access to the output state vector expressed in the Fock basis:

oo

Y tum(@)m) @ |na). (13)

ny,np=0

[V (w)) =

Parameters: Model (0, d), Nyeps € N, initial circuit
parameters wy € R¥, learning rate n € R
Result: Optimized hyperparameters w € R¥

Initialize hyperparameters w <— wy

for i = 1 t0 Nycps do
Compute the loss C according to Eq. (16);
Compute the gradient V,,C with the shift rule;
Update the parameters w < o — nV,,C
end for

return w.

The Fock space is actually truncated at a some fixed energy
level, we choose that cutoff level to be 5. This choice of cutoff
is not a real limitation and a larger value could be chosen
instead, but 5 is sufficient, as was observed in particular using
a FCI approach [45]. The amplitude of a specific pair of the
quadratures (X, X») is then given by:

o0

Z w (w)l—[ _7Iin,(X) (14)
he [\ 20mp,1

in terms of the Hermite polynomials. The joint law of the
quadratures in the state | (®)) is then given by

o(X1, X2) = (X1, Xa| ¥ (). (15)

After extracting as well the mean photon numbers (aIa 1) and
(azaz), one obtains (H).
We then define the cost function

C(@) == (Y () H|Y (w)), (16)

and update the parameters w of the optical circuit in order to
minimize that cost. This is summarized in algorithm 2. As a
side remark, let us note that given the form of the Hamilto-
nian in terms of creation and annihilation operators (10), an
alternative to the measurement of the position quadratures and
photon number operators could be to perform a measurement
in the coherent basis through heterodyne measurements.

X1, XY () =

ny,np=0

IV. BINDING ENERGY CURVE

We gather here the results of the simulations. We focus on
the case of 2 QDOs. In particular we study the profile of the
binding energy as a function of the distance between the two
nuclei, and make a few observations about the behavior of the
entanglement entropy of the system.

We fix a grid Gy x G4 C [0,7/2] x (0,3.5], with
card(Gy) = 20 and card(G,) = 200. For each pair (0,d)
in the grid we perform the continuous-variables VQE
algorithm to extract properties of the ground state of the
Hamiltonian (9). Let us denote by [y 4) the corresponding
converged ground state. The binding energy is defined as the
difference between the ground-state energy of the system of
interacting QDOs and the ground state energy of a system of
uninteracting QDOs Hy, i.e., with electric charge turned off:

EJ(d) = (Wo.alHo.alVe.a) — (YolHol Vo) a7
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FIG. 3. Top: Binding energy curve for the model at angle 6 =
0.58, together with its Morse fit. Middle: Binding energy curve for
three different values of the angle 6 illustrating the tension between
models close to & =0 and models close to 6 = m /2. For small
angle (blue curve), the strong curvature prevents a good Morse fit,
while for large angle (green curve), the transverse configuration of
the drudons prevents formation of a bound state. The orange curve
corresponds an intermediate angle exhibiting both binding and an
excellent Morse fit. Bottom: Blue curve: Quality of the Morse fit as
a function of the angle 6, defined as the £? norm of the difference
between the simulation and the Morse fit. Yellow line: Minimal angle
above which the models are considered smooth. Red line: Maximal
angle above which the models do not exhibit binding anymore.

In Fig. 3 we report the binding energy curve, namely the value
of the binding energy as a function of the interatomic distance
d, for a fixed value of the angle 8. We choose 6 = 0.58 to
illustrate most of the results.

On Fig. 3 (top) we observe a perfect agreement with a fit
of Morse type [67-71]:

d—dj,

Fld)=Ey(e?=" =275, (18)

The location of the bound state is given by dj, >~ 0.54, with
energy —Ej, >~ 0.46. The length scale s is given by s ~ 2.75.
The quality of the Morse fit actually increases monotonically
with the angle, cf. Fig. 3 (bottom), the quality being defined
by the ¢? distance between the numerical result and the fit.

By varying the value of the angle 6, we observe two
different regimes. For small values of the angle, the curve
deviates more and more from a Morse curve, and in the
extreme longitudinal case & = 0, becomes highly nonsmooth
at short interatomic distances. This small-angle regime is also
characterized by the existence of a negative global minimum
of the binding energy, hence by the existence of a bound state.
On the other hand, as the angle increases, the £2 quality of the
fit becomes better. However, past some value of the angle, the
global minimum disappears together with the corresponding
bound state. This competition between smoothness and exis-
tence of a bound state is illustrated in Fig. 3 (middle), and of
course signals the presence of a phase transition in the model
where 6 plays the role of control parameter. Below a critical
value 6, of the order parameter, the system is characterized
by the existence of a bound state, which disappear above the
critical value of 6,.

Both regimes can be understood physically as follows: for
very small angle 6 < 6,, and in particular for the longitudinal
model 6 = 0, as the two QDOs are getting closer and closer to
each other, unstable configurations in which the two drudons
are getting arbitrarily close to each other start appearing.
Indeed, space being one-dimensional and the two drudons
moving along a common axis, as the two drudons get close
to one another, the associated Coulomb repulsion component
of the ground-state energy diverges. On the other hand, for
large angle 6 > 6,, and a fortiori for the transverse model
6 = m /2, two main configurations of the drudons may occur
(thinking classically) depending on the relative position of the
drudons with respect to the axis connecting the two nuclei.
In the first configuration, the drudons are sitting on opposite
sides. In that case, the dominant contribution to the energy
between the two QDOs is the Coulomb repulsion between
the nuclei. In the second configuration, the drudons are on the
same side. In that case, in addition to the repulsive force be-
tween the two nuclei, one can also add up the repulsion force
between the two drudons, leading to an even more repulsive
scenario. Summing up, no binding can occur at § = /2, and
by smoothness of the binding energy as a function of 6, this
should also be the case in an open neighborhood of 6 = 7 /2.

The above observation suggests the following recipe. The
longitudinal model predicts the existence of negative minima
of the binding energy curve. It is, however, unstable due to
the configurations of superposed drudons, as explained above.
One can then regularize this 1D model by allowing for a
nonzero angle 6, and slightly increase it until reaching a
certain level of smoothness, which we have chosen here to
be quantified by the quality of a Morse fit. The angle should,
however, not be too large, smaller than the transition point
beyond which the bound state disappears. This procedure
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FIG. 4. Top to bottom: d = 3.16: QDOs are far apart, d = 1.36: QDOs start feeling each other, d = 0.82: entanglement entropy is maximal,
d = 0.54: deep in the bound state. Left to right: Wigner distribution of the left QDO, Wigner distribution of the right QDO, joint position

quadrature distribution of the two drudons.

defines a small range of models characterized by an angle
0 € [6min, Omax], as illustrated on Fig. 3 (bottom). Finally,
the QDO parameters usually represent the properties of real
atoms, such as their polarizability and dispersion coefficients.
Following for instance the paper of Jones et al. [72], the
parameters could be fixed by fitting the dispersion coefficients
predicted by the cQDO model to the reference (computed ab
initio or measured experimentally) dispersion coefficients of
the underlying atomic species. In addition, recently an op-
timized QDO parametrization has been proposed using only
well-known dipolar properties of gas-phase atoms [73].

V. PHASE SPACE REPRESENTATION

In order to have a better intuition about the nature of the
ground state of the system, let us turn to its representation in
the quadratures phase space. In Fig. 4, we provide two repre-
sentations of the system at different values of the interatomic
distance (for the model at angle 6 = 0.58). On the left side,
from top to bottom, we represent the marginal Wigner func-
tion of each of the two QDOs for closer and closer distances.
At large distance d = 3.16, the two QDOs are far apart and
do not feel each other. This can be seen by the fact that the
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marginal Wigner functions are characteristic of purely Gaus-
sian states. At distance d = 1.36, the two QDOs start feeling
each other’s presence. This is illustrated by the two marginal
Wigner functions starting to be elongated, mostly along the
position quadrature axis. Distance d = 0.82 corresponds to
the distance of maximal entanglement entropy, as discussed
a bit later in the paper. We observe in that case that the
marginal Wigner functions are characterized by a significant
spread in both position and momentum quadrature directions.
Finally, at the bound-state distance d = 0.54, the marginal
Wigner functions appear to be mostly elongated along the
momentum quadrature axis. This is clear since even though
the configuration of the system has reached stability, charac-
terized by the fact that the Wigner functions suggest a fairly
neat localization of the drudons in space, the drudons being
close to each other lead to an increase in the spread of the
momentum density. Observe also the appearance of regions
of negativity of the partial Wigner functions, signature of the
nonclassicality of the state of the system [74], and witness
of the entanglement in bipartite states [75]. The right column
of Fig. 4 instead illustrates the joint probability distribution
of the position quadratures. We observe again a Gaussian
behavior at large distances, as it should for two independent
harmonic oscillators, a maximal elongation at the maximal
entanglement entropy point, and a more localized appearance
at the bound state distance. Let us mention that a refined
analysis around the distance of maximal position quadrature
density spread shows that the unimodal joint position quadra-
ture probability distribution develops a bimodal profile, with
maximum of the original mode located around the origin (both
drudons being in expectation centered at the locus of their
respective nucleus), and maximum of the newly appeared
mode shifted away from the origin. This bimodal feature of
the joint position quadrature density, a signature of tunneling,
is very easily observable for a smaller angle theta, as can be
seen on Fig. 5, which is consistent with the large curvature of
the binding curve for such small angles, at the corresponding
range of interatomic distances. After tunneling, the mode ini-
tially centered at the origin disappears, and remains only the
shifted mode describing a stable bound-state configuration in
which each of the QDOs has developed a nonzero expected
dipole moment, oriented in opposite directions.

VI. GROUND-STATE WAVE FUNCTION AND
ENTANGLEMENT ENTROPY

In order to gain more intuition about the information pos-
sessed by one part of our bipartite system concerning the other
part, let us introduce the partial density matrix associated to
QDO;,. The total state of the system, we recall, is expressed in
the Fock basis as the pure state:

W)= D umln) ® |na). (19)

ny,np=0

This state is directly accessible in STRAWBERRY FIELDS when
using the simulator, and could be obtained on a genuine hard-
ware by state tomography techniques [76]. Note that the full
knowledge of the state is not necessary for the optimization
of the VQE parameters. We use this knowledge here solely to

analyze the physics of the obtained ground state. Given the
pure state describing the full system, the density matrix of the
system is simply given by:

p= O mi| ® Imo)(ma].  (20)

ny,ny
my,my

The partial trace associated to QDO is therefore given by:

pr=D ot ) (ml. @1

n,m,l

Since the state of the total system is pure, QDO, can be
interpreted as purifying the system composed solely of QDO;.
The two QDOs therefore have identical von Neumann entropy
S(p1), the entanglement entropy. The quantum mutual infor-
mation of the system is therefore given by

I(1:2) =8(p1) + S(p2) = S(p) =28(p1),  (22)
with the von Neumann entropy being defined as

S(p) = —Tr[plog p]. (23)
The profile of the entanglement entropy for different values
of the angle 6 as a function of the interatomic distance is
provided in Fig. 6 (top).

In this figure we can see how for small values of 6 the
entanglement entropy presents a sharp peak, which gradually
turns into a plateaulike behavior as 6 increases (6 = 0.58 is
the highest angle for which a peak is found).

As a comment, we observe fluctuations in the entanglement
entropy, mostly for & = 0.33. One can check that the distance
between the density matrices in the sense of the Frobenius
norm between subsequent values of the interatomic distance
shows fluctuations in the same windows as those observed in
the entanglement entropy. The fluctuations are still relatively
small, but suggest that there exists a small neighbourhood of
acceptable ground states in the ansatz space. This in turn sug-
gests that these fluctuations could be mitigated by imposing
a stronger convergence criterium in the VQE training loop. A
kernel fit of the entanglement entropy for angle 8 = 0.58 is
provided in Fig. 6 (middle).

This finding, together with the behavior of the joint proba-
bility reported in Fig. 4, gives us an intuition of what happens
to the ground state of the system along the binding process,
allowing us to open the VQE black box. For d — oo the two
QDOs will not interact and hence the natural state for them
will be the vacuum state |0)|0) (ground state of independent
harmonic oscillators). On the other hand when d ~ dyonding
we see that the system is shifted towards an antisymmet-
ric configuration where (X;) = —(X;) and (P;) = (P,) =0,
which can be approximated by the bipartite coherent state
la)| — ) with @ = (X;). In the transition region instead the
system will pass through a strongly entangled state (hence
the peak in von Neumann entropy), which is reflected in the
position joint probability by the transition from a single mode
to a bimodal distribution, as we discussed previously. This is
naturally represented as a superposition of the form

1
N
where A is a normalization factor, which can be viewed
as a displaced Schrodinger cat state. For each value of the

(10) ®10) + |a) ® | — a}), (24)
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p(X1, X2)

X2

X2

X2

X1

V(Xlr X2)

diagonal section

X1 X

FIG. 5. Top to bottom: d = 3.16: QDOs are far apart, d = 1.75: Maximal interaction between the QDOs, d = 0.51: deep in the bound
state. Left to right: joint position quadrature distribution of the two drudons, classical potential energy V (X, X2) = Veou(X1, X2) + (X2 +
X?)/2, diagonal section of the joint distribution and of the potential. Tunneling between the quadratic and Coulomb wells is maximal at the
intermediate interatomic distance as can be seen from the bimodal joint distribution, and the neat appearance of two local vacua in the classical

potential. This figure corresponds to the small angle 6 = 0.17.

interatomic distance, one obtains the closest cat state to the
ground state by optimizing the displaced cat-state parameters
through maximization of the state fidelity (overlap) between
the two states.

Although there is a slight deterioration in the fit for
decreasing values of 6, this minimal ansatz can indeed ap-
proximate the ground state of the system up to a good degree
for all the considered 0s: it manages to capture the bonding
mechanism (states for which there is an entropy peak) with
F ~0.96. A comparison at the level of Wigner functions
between the original and fitted states for those bonding points
is reported in Fig. 7. Let us mention that the production of
cat states typically involves the use of Kerr and squeezing
gates [77,78], both of which being present in our quantum
neural network architecture, Kerr gates being the source of

non-Gaussianity and entanglement of the ansatz. A more de-
tailed study concerning cat states in the context of long-range
interactions will appear in future work.

Given the joint position quadrature density, another inter-
esting quantity to consider is the quantum correlation between
the position quadrature of the two QDOs, which appears to be
highly correlated to the behavior of the entanglement entropy,
cf. Fig. 6 (middle and bottom). Denoting again by angular
brackets the expectation of an observable in the ground state,
we define the correlation coefficient C(Xj, X;) by:

CX,. X) = (X1Xp) — (X1)(X2) . 25)

Vi) = 02 ixd) - 2
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FIG. 6. Top: Entanglement entropy as a function of the distance
d between QDOs for multiple values of 8. Middle: Smoothing of
the entanglement entropy vs. interatomic distance at angle 6 = 0.58.
Bottom: Position quadratures correlation coefficient vs. interatomic
distance at angle 6 = 0.58.

Even though we do not have a neat theoretical understand-
ing of it, we note that the maximum of the entanglement
entropy, as well as the minimum of the correlation coefficient,
converges towards the inflexion point of the binding energy
curve as the value of 6 increasing. A zeroth-order line of argu-
ment could be the following: the binding energy is composed
of a Coulomb repulsion and an attractive correlation energy
contribution:

E(d) = ERep(d) + Ecor(d) (26)

The inflexion point d,, which in terms of the Morse fit (18) is
located at d, = dj, + log(2)s, can be interpreted as the transi-
tion between a large distance regime in which it is beneficial
for the system to increase correlation in order to lower its
ground-state energy, and a short-range regime in which the
Coulomb repulsion becomes dominant. Further understand-
ing of this phenomenon in the language of quantum phase
transitions would be very interesting, but is left for a more
theoretical investigation. Let us mention that the use of cat
states as discussed above, for which the expression of the

6=0.17

6=0.33 6=0.58

FIG. 7. Comparison between the states of the system on the en-
tropy peaks (top) and the fitted ansatz in the same point (bottom). We
plot the Wigner function sliced along the plane (X =X, = — Xz, P =
P = —P).

quantum mutual information turns out to be particularly sim-
ple, could also provide an approximate understanding for the
presence of the peak. This will be discussed further in future
work.

VII. CONCLUSION

In this work, we showed that continuous variables photon-
ics quantum computing is particularly adapted to the study of
the full-Coulomb cQDO model, the fundamental degrees of
freedom of the latter being bosonic in nature. Beyond standing
as a proof-of-concept that NISQ algorithms can be success-
fully applied to quantum chemistry problems beyond the usual
approach using the second quantized formulation of the elec-
tronic structure problem for small molecules, we observed
that the cQDO model for many-body dispersion interaction
can be further simplified by reducing it to a single effective
spatial dimension, while still capturing the existence of bind-
ing. The obtained ground-state wave function suggests that
Schrodinger cat states can provide an economical ansatz space
for systems exhibiting bondinglike behavior. This observation
happens to also hold for the fully fledged 3D cQDO model.
Finally, note that Morse-type binding curves are usually char-
acteristic of covalent bonding in molecules and materials,
suggesting that the cQDO model can potentially be used (up
to a reparameterization of its defining parameters) to capture
effects beyond those motivating its introduction, namely dis-
persion interactions. In particular the exponential repulsion
behavior is reminiscent of exchange effects, which are a priori
not built in the initial definition of the model. The extension
of our study to many-body cQDO Hamiltonians are also rela-
tively straightforward.

The quantum neural network architecture used in our study
is quite general, and one could wonder whether a more
specific architecture tailored to the cQDO model could be
engineered. However, the many-body nature of the model
makes it difficult to guess any a priori correlations between
the various photon channels. A possible approach to get a pri-
ori intuition about a possible entanglement graph among the
various modes could be, drawing inspiration from the MBD
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model [39], to first work in the dipole-dipole approximation.
In this case the Hamiltonian is quadratic, hence quasifree, and
we can diagonalize it first to get the MBD normal modes.
These normal modes do not constitute, of course, the eigen-
modes of the full Coulomb model, but could provide a first
coarse intuition about a possible circuit architecture tailored
to the model. It would constitute an interesting direction, and
we postpone that to possible later exploration.

Finally, concerning the possibility of scaling up to very
large systems, one is obviously confronted to the fact that
the bigger the system, the higher dimensional the position
quadrature grid. Drawing inspiration from the classical re-
inforcement learning literature, in which a similar Monte
Carlo average of a random variable has to be obtained during
the training loop, it could be interesting to see whether a
very coarse estimate made out of very few samples could be

enough for the VQE training loop to converge to a sensible
result.
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