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Conductance asymmetry in proximitized magnetic topological insulator junctions
with Majorana modes
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We theoretically discuss electronic transport via Majorana states in magnetic topological insulator-
superconductor junctions with an asymmetric split of the applied bias voltage. We study normal-superconductor-
normal (NSN) junctions made of narrow (wirelike) or wide (filmlike) magnetic topological insulator slabs with a
central proximitized superconducting sector. The occurrence of charge-nonconserving Andreev processes entails
a nonzero conductance related to an electric current flowing to ground from the proximitized sector of the NSN
junction. We show that topologically protected Majorana modes require an antisymmetry of this conductance
with respect to the point of equally split bias voltage across the junction.
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I. INTRODUCTION

Majorana modes in solid-state physics are zero-energy
quasiparticle excitations with the unusual property of be-
ing their own antiparticles [1,2], which emerge in one-
dimensional (1D) and two-dimensional (2D) topological
superconductors (TSCs) near boundaries and vortices [3].
These fascinating states can be distinguished into Majorana
chiral propagating states (MCPSs) in two-dimensional super-
conducting phases [4–6] and zero-energy Majorana bound
states (MBSs) in spinless p-wave superconducting wires
[7]. The former are dispersive modes analogous to quantum
anomalous Hall and quantum spin Hall edge states in su-
perconducting materials [5,6], while the latter are localized
in-gap modes emerging at the ends of gapped phases of
1D topological superconducting wires. Achieving topologi-
cal superconductivity is a crucial step toward the realization
of non-Abelian braiding statistics and fault-tolerant quan-
tum computing [8–10]. Magnetic topological insulators [11],
i.e., three-dimensional (3D) topological insulators (TIs) with
topological surface states and ferromagnetic ordering, are
promising candidates for the realization of such robust plat-
forms for quantum computation since in the presence of
proximity coupling to an ordinary s-wave superconductor they
are expected to realize different TSCs with either propagating
or localized Majorana modes [12–15].

Despite the growing interest in proximitized magnetic TIs
(MTIs) [16], the experimental detection of Majorana modes
is still inconclusive [17–21]. In this paper, we highlight a
characteristic feature of Majorana states that can be used in
their detection. Through theoretical analysis and numerical
simulations, we find that both types of Majorana states lead to

a peculiar transport signature in NSN junctions between nor-
mal (N) and proximitized (S) magnetic topological insulators
when the bias between the two N sections is split asymmet-
rically with respect to the central S lead. Without Majorana
modes or trivial Andreev bound states (ABSs), which may
be found in nontopological 1D superconductors [22,23], the
electric currents flowing through the N leads are equal and
opposite, independent of how the bias is split between left and
right leads. In the presence of Andreev processes, instead, the
currents in the two N leads can be different, depending on the
fraction of bias applied to each side of the junction. When
the electric currents in the N leads have different intensities,
charge conservation requires the existence of a third current
going to ground from the superconductor, defining a nonzero
differential conductance.

We show in this work that in the presence of nontrivial
MBSs or MCPSs, the NSN conductance of an MTI slab must
be antisymmetric with respect to the splitting of the bias.
This reflects the existence of identical scattering amplitudes
at the two interfaces of the junction. Observing how the total
conductance varies with the bias splitting provides a selective
criterion, although it is not absolutely conclusive, to rule out
electric signals coming from trivial ABSs in the proximi-
tized MTI slabs and constitutes an alternative approach for
transport measurements in NSN junctions. Monitoring the
conductance asymmetry with a continuous change in the bias
split is more selective than just observing zero-bias conduc-
tance peaks when the full bias drop is applied in turn to each
side of the junction. Furthermore, the proposed symmetry
analysis can be useful for discriminating between the two
different types of Majorana excitations which can be found
in MTIs and can provide an additional control parameter,
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i.e., the bias split, while maintaining the correlation between
the transport behavior on the two interfaces of the junction.
Similar criteria to detect MBSs on the ends of proximitized
semiconducting wires were discussed in recent works, with a
focus on multiterminal transport measurements [24–28] and
noise correlations [29,30]. Conductance matrix symmetries
of the particle-hole type were also investigated [31–33], and
the inversion of a common potential acting on all normal
leads attached to the superconducting sector was discussed.
By contrast, the symmetry discussed in our work corresponds
to the role of a bias between the two normal leads of our
three-terminal setup.

This paper is structured as follows. In Sec. II we discuss
the model Hamiltonian and the topological states in finite-size
MTI slabs. In Sec. III we compute the electric conductance in
the NSN junction and discuss its symmetry properties with
bias splitting. In Sec. IV we show some numerical results
supporting our conclusions. Section V concludes the paper.

II. MODEL HAMILTONIAN

To start, we consider the Hamiltonian of a 3D TI in
the presence of ferromagnetic ordering. In the basis φτ

kσ =
(c+

k↑, c−
k↑, c+

k↓, c−
k↓)T , where cτ

kσ ≡ cτ
kσ (y, z) annihilates an

electron with longitudinal wave number k ≡ kx, spin σ =↑,↓,
and orbital index τ = ±, the effective 3D Hamiltonian for
magnetic TIs takes the following form [34,35]:

H0(k) = ε(k) + M(k)τz + A(k)τx + �σz, (1)

where

ε(k) = μ − C⊥
(
k2

x + k̂2
y

) − Czk̂
2
z ,

M(k) = M0 − M⊥
(
k2

x + k̂2
y

) − Mzk̂
2
z ,

A(k) = A⊥(kxσx + σyk̂y) + Azσzk̂z. (2)

Here, k = (kx, k̂y, k̂z ) and the transverse momentum operators
are given by k̂y = −ih̄∂y and k̂z = −ih̄∂z. The Pauli matrices
σi and τi (i ∈ {x, y, z}) act on the spin and orbital subspaces,
respectively; the magnetization along z is represented by the
Zeeman term �σz, and μ is the chemical potential. This
Hamiltonian is suitable for describing TIs such as Bi2Se3,
Bi2Te3, and Sb2Te3 through a proper choice of parameters
[34,35]. In our simulations, we used the values given in
Ref. [36] for a topological insulator in which the asymmetry
between the conduction and valence bands as well as the
anisotropy of the Dirac cones were neglected. When placed
in proximity to a superconductor, the system can be described
by the Bogoliubov–de Gennes (BdG) Hamiltonian [37],

HBdG(k) =
(H0(k) �	

� −σyH	
0(−k)σy

)
, (3)

expressed in the basis [38]


τ
kσ = (c+

k↑, c−
k↑, c+

k↓, c−
k↓,−c+†

−k↓,−c−†
−k↓, c+†

−k↑, c−†
−k↑)T , (4)

where we assumed a local s-wave pairing with amplitude
� ≡ �(y, z) induced by proximity. In the following, we fix
the thickness of the slab to d = 4 nm and consider a wirelike
geometry with width Ly = 20 nm and a filmlike one with
Ly = 160 nm. For d = 4 nm, the surface states on opposite

sides of the MTI slab are coupled [39,40], and a finite-size
gap opens up in the energy spectrum. The magnetization can
induce a gap inversion, yielding nontrivial topological states.
We will assume a constant pairing field along y and model the
proximity coupling on the upper surface of the magnetic TI by

�(y, z) = ��(z − d/2), (5)

where � is the Heaviside step function. An asymmetric pair-
ing on the top and bottom surfaces is, indeed, required to
achieve topological superconductivity in the MTI slab [13,15].

All the numerical results below are obtained with
� = 5 meV for the wire and � = 10 meV for the film ge-
ometry. These values are unrealistically large compared to
experiments, but they are convenient for numerical simula-
tions, and qualitatively similar results can be obtained for
smaller pairings and rescaled systems. Indeed, in a quasi-1D
superconducting wire, the decay length (along the longi-
tudinal direction x) of Majorana end states is inversely
proportional to the pairing potential ξ ∝ 1/|�|. This means
that, in order to guarantee well-separated MBSs, a smaller
pairing can be compensated by a greater length Lx, as long
as the ratio ξ/Lx is unchanged. Similarly, in the effective 2D
superconductor, the edge mode localization length lc (along
the transverse direction y) scales with the inverse of the pair-
ing amplitude: a smaller gap requires the thin film to be wider
to maintain a constant ratio łc/Ly and ensure decoupled edge
modes. Therefore, a larger pairing � allows us to reduce the
computational effort by using smaller systems and, at the same
time, gives us the opportunity to enhance the energy gap for
MBSs and increase the width of the region with MCPSs. A
similar scaling has already been proposed for graphene [41].

When confined along the z direction, the MTI Hamilto-
nian (1) can be used to describe the physical properties of
a 2D (thin film) or 1D (wire) geometry [13–15,42,43]. The
Hamiltonian for a 2D system with particle-hole symmetry be-
longs to the D symmetry class; therefore, an integer invariant
N characterizes the topological state of the two-dimensional
slab [44,45]. A chiral TSC with an odd Chern invariant and
unpaired Majorana modes can be realized in a 2D thin film
starting from the quantum anomalous Hall (QAH) phase,
which is routinely achieved in MTIs [42,46,47]. For μ = 0,
the proximity pairing induces a novel region between the
N = 0 trivial superconductor and the N = 2 QAH state [48].
In this intermediate region, the MTI thin film realizes an
N = 1 TSC with unpaired chiral Majorana modes on the
edges [12,13]. The occurrence of this chiral TSC region is
shown in Fig. 1(a), which displays the k = 0 low-energy
eigenvalues of Eq. (3) solved in the thin film geometry as
a function of the Zeeman field �. The black dashed line
represents the k = 0 bulk energy gap, showing the existence of
two distinct transition points where topological phase transi-
tions occur with the emergence of gapless edge modes within
the bulk gap. Figures 1(b) and 1(c) display the full band
structure of these phases: Fig. 1(b) shows a single crossing
of unpaired MCPSs which characterizes the N = 1 chiral
topological superconductor, and Fig. 1(c) corresponds to the
BdG quasiparticle spectrum of an N = 2 proximitized QAH
system.

While a large thin film can realize different 2D topolog-
ical superconducting states, a narrow MTI wire with μ �= 0
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FIG. 1. (a) Low-energy states at k = 0 and (b) and (c) energy
spectrum for an infinitely long, thin film with μ = 0. The black
dashed line in (a) stands for the k = 0 gap, while the band structures
are computed with (b) � = 15 meV and (c) � = 30 meV. (d) Energy
gap at k = 0 and (e) and (f) band structures for an infinite wire with
μ = 10 meV. The band structures are obtained with (e) � = 10 meV
and (f) � = 30 meV. Red and blue represent electron and hole
modes, respectively, and purple denotes a superposition.

can be used to achieve a quasi-one-dimensional TSC with
end-localized MBSs. Since the effective BdG Hamiltonian of
a QAH/SC heterostructure in a 1D geometry fits in the BDI
symmetry class [15], the topological properties of the system
are characterized by an integer invariant [44,45] which dis-
criminates between trivial NBDI = 0 and topological NBDI = 1
states with unpaired Majorana edge modes in finite-length
systems. In principle, even higher topological states can be
realized, with NBDI � 2 MBSs at the same end of the ribbon,
protected by chiral symmetry. However, the latter is broken
in the presence of disorder, and a pair of Majorana modes
localized at the same end of the wire will fuse into a triv-
ial fermion [7]. Therefore, only the (−1)NBDI = −1 phases
are topologically nontrivial in realistic samples, as a single
unpaired Majorana mode can be protected by particle-hole
symmetry alone [15].

The spectral gap at k = 0 for an infinitely long wire with
μ = 10 meV is shown in Fig. 1(d), where the closing and
reopening of the energy gap signal a phase transition between
trivial and topological states. The full band structures of the
two distinct phases are depicted in Figs. 1(e) and 1(f). It can
be noted in Fig. 1(f) that the normal order of the energy bands
around k = 0 is inverted, indicating a nontrivial topology of
the bulk and, as a consequence of the bulk-boundary corre-
spondence, the presence of topologically protected MBSs at
the ends of wires with finite length [49].

III. ANTISYMMETRIC CONDUCTANCE

Next, we analyze the electric transport through an NSN
junction consisting of an MTI slab with a central proximitized
sector, exploring the regime in which the bias voltage drops
asymmetrically over the left and right leads. The experimental
setup is schematically shown in Fig. 2(a). The electric current
Ii in the normal terminals i = 1, 2 of a double junction can be
computed as [50–52]

Ii =
∫ +∞

0
dE

∑
a

sa
[
Ja

i (E ) − Ka
i (E )

]
, (6)

where a ∈ {e, h} denotes electron and hole degrees of free-
dom, se,h = ±1, and

Ja
i (E ) = e

h
Na

i (E ) f a
i (E ), (7)

Ka
i (E ) = e

h

∑
jb

Pab
i j (E ) f b

j (E ) (8)

are the incoming and outgoing fluxes of quasiparticles, re-
spectively. The electric current is expressed in terms of the
number of propagating modes in each terminal Na

i and the
Fermi distribution functions f a

i . Moreover, Pab
i j denotes the

transmission probability of a quasiparticle of type b ∈ {e, h}
in lead j to a quasiparticle of type a in lead i, such that
both normal (a = b) and Andreev (a �= b) reflection (i = j)
and transmission (i �= j) are taken into account. We define the
differential conductance in the normal terminals of the double

FIG. 2. (a) Experimental setup proposed for the detection of topologically protected Majorana modes. The potential V0 = −eμ is set by
the back-gate electrode. (b) Sketches of the transmission processes at the interfaces of the junction for different superconducting phases in the
central sector. Red and blue stand for electron and hole currents.
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junction as

Gi = ∂Ii

∂V
, (9)

where V = V1 − V2 is the total bias across the junction and Vi

is the voltage difference between the ith lead and the central
sector. Here, we assume an asymmetric bias V1 = αV and
V2 = −βV , with 0 � α � 1 and α + β = 1, such that the total
bias between the left and right terminals is fixed. With this
assumption, we can derive the following expressions for the
conductance in the normal leads:

G1(V ) = α
e2

h

[
Ne

1 (αV ) − Pee
11 (αV ) + Phe

11 (αV )
]

+β
e2

h

[
Phh

12 (βV ) − Peh
12 (βV )

]
, (10)

G2(V ) = β
e2

h

[−Nh
2 (βV ) − Peh

22 (βV ) + Phh
22 (βV )

]
+α

e2

h

[
Phe

21 (αV ) − Pee
21 (αV )

]
. (11)

The different possible transport processes in the junction
are sketched in Fig. 2(b) and depend on the topological phase
of the proximitized sector. In the thin film configuration,
the scattering amplitudes can be merely inferred from the
connection between edge modes in different sectors of the
junction. If the normal leads are held in a QAH state, a
pair of zero-energy chiral modes runs along the edges of
the system due to the particle-hole degeneracy of the � = 0
BdG Hamiltonian. When N = 2, the superconducting sec-
tor is topologically equivalent to the QAH insulator in the
normal terminals [12]. The chiral states run uninterruptedly
through normal and proximitized leads, and the edge current
is perfectly transmitted [48,53]. Conversely, the N = 0 trivial
superconductor does not support edge modes within the gap,
and the boundary between the QAH phase and the proximi-
tized region requires the occurrence of a gapless chiral state
along the interface. This mode is responsible for the complete
backscattering of the edge current flowing toward the super-
conductor [48,53]. Finally, when N = 1, the proximitized
sector supports a single unpaired Majorana mode on each
edge. The injected modes from the QAH regions separate into
two MCPSs at the interfaces of the junction; one is perfectly
transmitted, while the other is totally reflected. Within the
Blonder-Tinkham-Klapwijk formalism for the electric con-
ductance in NSN junctions [50,51], this process corresponds
to equal probability of normal reflection, Andreev reflection,
normal transmission, and Andreev transmission [13,48].

A similar framework can also be obtained for the wire
geometry. When the width of the slab is smaller than the
localization length of the edge modes, the QAH edge states
are coupled into a single conducting channel resembling a
spinless metallic phase. Since the proximitized sector realizes
an effective 1D p-wave superconductor [15], the interfaces
between normal and superconducting MTIs reproduce the
physics of a NS junction between a normal metal and a p-wave
superconductor [54]. In the NBDI = 1 topological state with
end-localized MBSs, perfect Andreev reflection occurs for
a bias lower than the energy gap [55]. Conversely, in the
NBDI = 0 trivial phase, the electric conductance is expected

TABLE I. Low-bias conductances G1, G2, and Gt = G1 + G2

computed with Eqs. (10) and (11). The first column summarizes all
the possible phases in the central S lead of the junction. Here, we
considered a trivial ABS with perfect Andreev reflection on the left
side of the junction. The conductances are given for β = 1 − α.

S phase G1 G2 Gt

N = 0 0 0 0
N = 1 αe2/h (α − 1)e2/h (2α − 1)e2/h
N = 2 e2/h −e2/h 0
NBDI = 0 0 0 0
NBDI = 1 2αe2/h 2(α − 1)e2/h 2(2α − 1)e2/h
ABS 2αe2/h 0 2αe2/h

to vanish in the low-bias limit [54], meaning that the scatter-
ing processes are dominated by normal reflection. Choosing
appropriate values for the transmission probabilities Pab

i j in
order to recover the scenarios above, the conductance on the
two terminals of the junction can easily be computed from
Eqs. (10) and (11). Their values are summarized in Table I
for the different phases in the proximitized MTI and for a
trivial ABS perfectly coupled to the left side of the junction
in a wire geometry. It can be noted that the total conductance
Gt = G1 + G2 �= 0 only in the presence of Majorana modes or
ABSs, meaning that the currents in the N leads are different,
being proportional to the fraction α, β of the total bias applied
on the two sides of the junction.

We claim that the analysis of the total conductance Gt as
a function of bias splitting α can provide a useful criterion to
rule out transport signatures from trivial Andreev processes.
While not being conclusive proof, an antisymmetric Gt (α)
around α = 0.5 would point toward Majorana modes because
trivial Andreev levels are typically not constrained to such
an antisymmetric profile. The gapped superconductor and the
proximitized QAH state exhibit a constant Gt = 0, but more
generally, the emergence of trivial Andreev levels allows other
Gt (α) trends, depending on how the ABS couples with the
two interfaces of the junction. For instance, in the afore-
mentioned case of a trivial ABS perfectly coupled to only
the left lead, the total conductance is antisymmetric around
α = 0 (completely unbalanced bias splitting). Quite remark-
ably, topological states with Majorana modes require Gt (α)
to be antisymmetric around α = 0.5 (equal bias splitting) be-
cause identical scattering amplitudes are expected at the two
interfaces of the junction. In spite of having the same sym-
metry, a different ratio, Gt/G0, where G0 = e2/h is the con-
ductance quantum, characterizes different types of Majorana
modes in the superconductor: in the case of a MCPS, Gt/G0 =
(2α − 1) because all the scattering probabilities in Eqs. (10)
and (11) are 0.25, while in the presence of a MBS, Gt/G0 =
2(2α − 1) indicates perfect Andreev reflection at the extrem-
ities of the proximitized sector. Similar signals could be, in
principle, obtained due to trivial ABSs, but the antisymmetry
around α = 0.5 would, in this case, require fine-tuned equal
conditions on the two interfaces of the junction.

The total conductance Gt �= 0 is related to the existence of
an electric current going to ground from the superconductor,
which ensures charge conservation when G1 �= G2 and the
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current injected in the left lead is different from the one flow-
ing out of the right one. This current can be easily detected
through electric measurements, providing a measure of the
electric conductance in the two normal leads while maintain-
ing the correlation between transport on the two interfaces of
the junction. We point out that, within our simplified model,
the only current flowing through the s-wave superconductor
is due to Cooper pairs originating in the proximitized MTI.
Indeed, for bias lower than the bulk gap, no quasiparticle
modes can be excited, preventing unintended transmissions
between the terminals of the junction. We also neglected scat-
tering processes occurring between the normal leads and the
s-wave superconductor since the presence of a physical inter-
face between the two distinct materials would suppress them
compared to the scattering events which take place within the
MTI slab.

Conductance matrix

The antisymmetric relation involving the total conductance
Gt can be expressed in the equivalent language of the conduc-
tance matrix, where the current-voltage relation reads(

I1

I2

)
=

(
g11 g12

g21 g22

)(
V1

V2

)
. (12)

By considering two-terminal transport between the N leads
of our three-terminal device (see Fig. 2), we can extract in-
formation about the Andreev processes taking place at the
proximitized section of the MTI slab [32,33]. The conduc-
tance matrix elements are defined as gi j = ∂Ii/∂Vj and can
be distinguished into local (i = j) and nonlocal (i �= j) com-
ponents. The conductance Gi for the current in the i = 1, 2
terminal takes the form

G1 = α g11 + (α − 1) g12,

G2 = α g21 + (α − 1) g22, (13)

and the total conductance can be written as

Gt = −(g12 + g22) + α(g11 + g12 + g21 + g22). (14)

Therefore, in terms of local and nonlocal matrix elements
the antisymmetric condition around α = 0.5 can be written
explicitly as

g11 − g12 = g22 − g21, (15)

meaning that the difference between local and nonlocal con-
ductances must be the same in both terminals.

The difference in our approach compared with previous
works is that we focus on the symmetry of Gt around the limit
α = 0.5 for equally split bias voltage. For instance, in the case
of a superconducting wire with end-localized MBSs, the local
conductances g11 and g22 are usually measured separately to
look for correlations of 2e2/h zero-bias peaks on the two sides
of the nanowire. In our framework of asymmetrically split
bias, these measurements are equivalent to α = 1 and α = 0,
respectively. Our work shows that measuring Gt continuously
as a function of α can provide a more robust transport sig-
nature. Similarly, in a proximitized MTI thin film, a single
transport measurement of Gt in a junction with equal bias
split α = 0.5 was already proved to be incapable of detecting

Majorana chiral propagating states [17,19]. Determining Gt

with different bias configurations can provide more informa-
tion about the phase of the proximitized sector.

IV. NUMERICAL RESULTS

We simulated an NSN junction between proximitized and
normal MTI slabs using a complex band structure approach.
This numerical technique allows us to describe not only
propagating modes with k ∈ R but also evanescent states
(like end-localized MBSs) originating in the superconduc-
tor, which are related to complex longitudinal wave numbers
k ∈ C. Within this framework, the electron wave function in
a homogeneous sector of the junction can be chosen as a
superposition of transverse wave functions �k (y, z; η) with
a proper wave number k. The full wave function takes the
generic form

�(x, y, z; η) =
∑

k

ck �k (y, z; η) eikx, (16)

where ck are complex numbers and η = {σ, τ, δ} represents
the set of the spin σ , orbital index τ , and particle-hole type
δ. Notably, the wave function for a finite-length sector of the
junction can be constructed from the set of bulk wave num-
bers and coefficients {k, ck} obtained in a full translationally
invariant system. Furthermore, while a grid discretization is
required for the confined dimensions y and z, the dependence
of �(x, y, z; η) along the longitudinal axis x is parametric and
allows us to describe a junction of any length Lx. Further
details about the technique are given in Appendix A.

We numerically computed the conductances G1 and G2 and
the sum Gt = G1 + G2 in the NSN junction with a magnetic
TI in the wire and thin film configurations, reproducing the
properties of 1D and 2D topological superconductors, respec-
tively. Figure 3(a) displays Gt versus the magnetization of the
MTI for an asymmetric bias α = 0.25. In the thin film geome-
try, a region with Gt �= 0 distinguishes the N = 1 chiral TSC
from the N = 0 trivial superconductor and the N = 2 QAH
phase, where Gt = 0 denotes that the electric currents in the
two terminals are equal and opposite independent of the bias
split. For the chosen α, the conductance for N = 1 was ex-
pected to be quantized at Gt = −e2/2h, which is roughly the
value reached in the nontrivial region with MCPSs. Similarly,
in the wire geometry the plateau Gt = −e2/h characterizes the
NBDI = 1 nontrivial phase, while the NBDI = 0 gapped super-
conductor exhibits Gt = 0. Figure 3(b) shows Gt as a function
of the split parameter α for all the nontrivial phases realized
by the proximitized MTI. A trivial ABS is also simulated in
the wire geometry as an NBDI = 1 superconductor with an
insulating barrier on the right side of the junction. Here, the
values of the conductance are in perfect agreement with our
prediction in Table I. We emphasize here that a symmetrically
distributed bias α = 0.5 is insufficient to discriminate a TSC
from the trivial state and the proximitized QAH phase since
this particular configuration always implies Gt = 0.

Figures 3(c) and 3(d) display the amplitudes Pab
i j for

all the scattering processes occurring on the left inter-
face of the junction, i.e., normal reflection RN , Andreev
reflection RA, normal transmission TN , and Andreev trans-
mission TA. The plots correspond to an NBDI = 1 topological
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FIG. 3. Conductance Gt computed in the NSN junction as a
function of (a) magnetization and (b) bias split. In (a) α = 0.25, and
the blue (green) line shows the wire (thin film) geometry. The ABS is
modeled by adding a barrier on the right side of the junction with the
proximitized sector in the NBDI = 1 phase. (c) and (d) Transmission
amplitudes Pab

i j for the left terminal of the junction as a function of
the length Lx of the central proximitized sector. The probabilities
are computed for (c) an NBDI = 1 superconductor with MBSs and
(d) an N = 1 superconductor with MCPSs. In all the pictures, the
total bias V = 0.1 meV is chosen within the bulk gap. The values of
� in (b)–(d) are chosen according to Fig. 1 to reproduce the different
TSCs.

superconducting wire with unpaired MBSs in Fig. 3(c) and an
N = 1 TSC thin film with MCPSs in Fig. 3(d). The former
shows that, when the junction is sufficiently large to prevent
transmission by evanescent modes, the injected electron un-
dergoes perfect Andreev reflection RA = 1 in the presence
of MBSs. The latter indicates that due to MCPSs, normal
and Andreev transmission and reflection occur with equal
probability, RN = RA = TN = TA = 0.25. Oscillations around
the expected plateaus are due to the interference between
backscattered chiral modes from the two interfaces of the
double junction, resulting in an interferometric behavior [56].
For all the above results, the total bias across the junction is
V = 0.1 meV, which is always lower than the bulk energy gap.
Such low bias ensures that no bulk modes are activated in the
proximitized sector and that the injected electrons and holes
interact in the condensate only with topologically protected
Majorana boundary states. Indeed, the proposed framework
does not hold for higher bias, which implies interaction with
multiple active modes in the superconductor.

All the numerical simulations are obtained without taking
into account the effect of disorder in the system. Even though
this may seem like a crude approximation, in the 2D thin
film the electric current is transported through the junction
by topologically protected chiral fermionic or Majorana edge
modes. These electronic states are known to be insensitive
to weak disorder because no energy modes are available for
backscattering [49]. Conversely, in the regime of a narrow
ribbon opposite edge states are strongly coupled, and it is
difficult to maintain the ballistic nature of the chiral channels.
Despite the fragility of the QAH edge states, the MBSs arising

in the quasi-1D topological phase are expected to be robust
against weak disorder, maintaining well-quantized zero-bias
peaks in tunneling spectroscopy [57]. Therefore, with asym-
metric bias splitting, we expect the low-bias conductance to
keep its antisymmetric behavior in the presence of weak dis-
order.

V. CONCLUSION

In summary, an asymmetric bias voltage drop applied
across an NSN junction provides a useful, but not conclusive,
criterion to rule out conductance signals produced by trivial
Andreev levels in MTI slabs with a central proximitized sec-
tion. We showed that the antisymmetry of the conductance
Gt with respect to the point of equal bias splitting (α = 0.5)
is a necessary condition for topologically protected Majorana
modes in normal-superconductor junctions. Detailed model
calculations for a narrow (wirelike) slab and a wide (filmlike)
slab, hosting MBSs and MCPSs, respectively, were shown
to support our conclusions. Our results will be useful for
experimental detection of the elusive Majorana quasiparticles,
contributing to the progress toward a solid platform for quan-
tum computing.
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APPENDIX A: NUMERICAL METHOD

Our numerical results are obtained using a grid discretiza-
tion of the continuum Hamiltonian (3). States with real k,
i.e., propagating modes like those in Fig. 1, can be directly
obtained by matrix diagonalization of the corresponding BdG
energy eigenvalue problem

HBdG(k) � = E �. (A1)

However, transport in non-translation-invariant systems like
the NSN junction requires more general (evanescent) states
described by a complex wave number k. We modeled this case
by adapting the complex band structure approach discussed in
Refs. [58,59].

We first rewrite the Hamiltonian by explicitly separat-
ing the k-dependent terms as HBdG = A + Bk + Ck2. Then,
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TABLE II. Transmission amplitudes and number of hole modes
required to compute the conductance G2 through Eq. (B8). The
values are given for all the possible topological phases which can
be found in the central superconducting sector of the NSN junction.
The conductances are given taking into account that β = α − 1.

S phase Ne
1 Pee

11 Phe
11 Phh

12 Peh
12 G1

NBDI = 0 1 1 0 0 0 0
NBDI = 1 (MBS) 1 0 1 0 0 2αe2/h
N = 0 1 1 0 0 0 0
N = 1 (MCPS) 1 0.25 0.25 0.25 0.25 αe2/h
N = 2 (QAH) 1 0 0 1 0 e2/h

defining an enlarged wave function (�1, �2)T = (�, k�)T , it
is possible to reformulate the energy eigenvalue problem in
Eq. (A1) into a k-eigenvalue problem. After some straightfor-
ward algebra, this reads(

0 1
−C−1(A − E ) −C−1B

)(
�1

�2

)
= k

(
�1

�2

)
. (A2)

In terms of the original parameters of the MTI Hamiltonian
[Eq. (3)] it is

A =C0 − C⊥k2
y − Czk

2
z + (

M0 − M⊥k2
y − Mzk

2
z

)
τz

+ (A⊥kyσy + Azkzσz )τx, (A3)

B = A⊥σxτx, (A4)

C = − (C⊥ + Mzτz ). (A5)

Note that the eigenvalue problem (A2) requires non-Hermitian
matrix solvers to include the possibility of complex wave
numbers k.

In the modeling of the NSN double junction, we first
solve the matrix version of Eq. (A2) for a large set of modes
{k(a), �

(a)
k } in each sector, where a = L,C, R, refers to left,

center, and right, respectively. The wave function is then rep-
resented by a collection of input (output) amplitudes a(a)

k (b(a)
k )

TABLE III. Transmission amplitudes and number of hole modes
required to compute the conductance G2 with Eq. (B8). The values
are given for all the possible topological phases which can be found
in the central superconducting sector of the NSN junction. The con-
ductances are given making explicit β = α − 1.

S phase Nh
2 Peh

22 Phh
22 Phe

21 Pee
21 G2

NBDI = 0 1 0 1 0 0 0
NBDI = 1 (MBS) 1 1 0 0 0 2(α − 1)e2/h
N = 0 1 0 1 0 0 0
N = 1 (MCPS) 1 0.25 0.25 0.25 0.25 (α − 1)e2/h
N = 2 (QAH) 1 0 0 0 1 −e2/h

in each part as

� (a)(x, y, z; η) =
∑

k

a(a)
k �

(a)
k (y, z; η) eik(a) (x−x(a)

k )

+
∑

k

b(a)
k �

(a)
k (y, z; η) eik(a) (x−x(a)

k ), (A6)

where η = {σ, τ, δ} represent the set of the spin σ , orbital in-
dex τ , and particle-hole type δ and the input/output character
of each mode �k is determined according to the sign of its
probability flux,

Ik = 〈�k|∂H/∂kx|�k〉. (A7)

The eik(a)x(a)
k factors in Eq. (A6) are a gauge choice that helps

avoid numerical instabilities [59].
Due to truncation, the total number of unknowns

{b(L)
k , b(C)

k , b(R)
k } is finite, and their values must be fixed by

imposing continuity of the wave function and its x derivative
at the two interfaces x = x1 and x = x2. In practice, those
equations are projected onto the total discrete set of complex
modes by means of the overlap matrices

M(ab)
k′k =

∑
στδ

∫
dydz �a∗

k′ (y, z; η) �b
k (y, z; η). (A8)

In detail, the linear system reads

∑
k(L)

M(aL)
k′k b(L)

k −
∑
k(C)

M(aC)
k′k eik(C) (x1−x(C)

k ) b(C)
k = −

∑
k(L)

M(aL)
k′k a(L)

k if

{
a = L,

x(a)
k′ = x1,∑

k(L)

M(aL)
k′k k(L)b(L)

k −
∑
k(C)

M(aC)
k′k eik(C) (x1−x(C)

k ) k(C)b(C)
k = −

∑
k(L)

M(aL)
k′k k(L)a(L)

k if

{
a = C,

x(a)
k′ = x1,∑

k(R)

M(aR)
k′k k(R)b(R)

k −
∑
k(C)

M(aC)
k′k eik(C) (x2−x(C)

k ) k(C)b(C)
k = −

∑
k(R)

M(aR)
k′k k(R)a(R)

k if

{
a = C,

x(a)
k′ = x2,∑

k(R)

M(aR)
k′k b(R)

k −
∑
k(C)

M(aC)
k′k eik(C) (x2−x(C)

k ) b(C)
k = −

∑
k(R)

M(aR)
k′k a(R)

k if

{
a = R,

x(a)
k′ = x2.

(A9)

By solving Eq. (A9) with a(a)
k = 1 for a particular input propagating mode, with all other inputs vanishing, we obtain a

particular input/output transmission probability pa′a
k′k = |ba′

k′ |2. The sum of all these individual probabilities discriminating their
electron/hole character in the normal leads finally yields the total probabilities defined in Sec. III:

Phe
ji =

∑
khke

pji
khke

. (A10)

Good control of the model truncations, regarding the grid size and number of complex modes, is given by the flux conservation,
which we typically require to be better than 1%.
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Derivation of the Differential Conductances

We derive here the equations for the conductances G1 and G2 given in Eqs. (10) and (11). In our approach [51], the bias
dependence is contained in Fermi energy distribution functions for electrons and holes injected from far-distant reservoirs into
the N leads,

f a
i (E ) =

{
1

1+e(E−eVi )/kBT if a = e,
1

1+e(E+eVi )/kBT if a = h,
(B1)

with Vi being the voltage difference between the ith reservoir and the MTI slab. By making the sum over the quasiparticle types
of Eq. (6) explicit and using Eqs. (7) and (8), the electric current can be rewritten as

Ii = e

h

∫ +∞

0
dE

[
Je

i − Ke
i − Jh

i + Kh
i

] = e

h

∫ +∞

0
dE

⎡
⎣Ne

i f e
i −

∑
jb

Peb
i j f b

j − Nh
i f h

i +
∑

jb

Phb
i j f b

j

⎤
⎦

= e

h

∫ +∞

0
dE

⎡
⎣Ne

i f e
i −

∑
j

(
Pee

i j f e
j + Peh

i j f h
j

) − Nh
i f h

i +
∑

j

(
Phe

i j f e
j + Phh

i j f h
j

)⎤⎦,

(B2)

where for simplicity we omitted the energy dependence. Ex-
panding the sum over the terminals j = 1, 2, we can write the
electric current into the two leads of the junction as

I1 = e

h

∫ +∞

0
dE

{[
Ne

1 − Pee
11 + Phe

11

]
f e
1

+ [−Nh
1 − Peh

11 + Phh
11

]
f h
1 + [

Phe
12 − Pee

12

]
f e
2

+ [
Phh

12 − Peh
12

]
f h
2

}
,

I2 = e

h

∫ +∞

0
dE

{[
Ne

2 − Pee
22 + Phe

22

]
f e
2

+ [−Nh
2 − Peh

22 + Phh
22

]
f h
2 + [

Phe
21 − Pee

21

]
f e
1

+ [
Phh

21 − Peh
21

]
f h
1

}
. (B3)

We assume that the bias is asymmetrically distributed as V1 =
αV and V2 = −βV , with 0 � α � 1 and β = 1 − α, such that
the total voltage drop across the NSN junction is fixed to V1 −
V2 = V . In the zero-temperature limit the Fermi functions take
the form of step functions

f e,h
1 = 1

1 + e(E∓eαV )/kBT
−−→
T →0

�(E ∓ αeV ) (B4)

for the left terminal of the junction, with similar notation for
the right junction. The expressions of the currents in the two
terminals can thus be simplified as

I1 = e

h

∫ αeV

0
dE

[
Ne

1 − Pee
11+Phe

11

] + e

h

∫ βeV

0
dE

[
Phh

12 − Peh
12

]
,

(B5)

I2 = e

h

∫ βeV

0
dE

[−Nh
2 − Peh

22 + Phh
22

]

+ e

h

∫ αeV

0
dE

[
Phe

21 − Pee
21

]
, (B6)

and the differential conductance can be computed as the
derivative of Eqs. (B5) and (B6) with respect to the total bias

V across the junction, leading to

G1(V ) = ∂I1

∂V
= α

e2

h

[
Ne

1 (αV ) − Pee
11 (αV ) + Phe

11 (αV )
]

+ β
e2

h

[
Phh

12 (βV ) − Peh
12 (βV )

]
, (B7)

G2(V ) = ∂I2

∂V
= β

e2

h

[−Nh
2 (βV ) − Peh

22 (βV ) + Phh
22 (βV )

]
+ α

e2

h

[
Phe

21 (αV ) − Pee
21 (αV )

]
. (B8)

The left-terminal conductance (B7) is given by the number
of injected electrons Ne

1 , the normal (Pee
11) and Andreev (Phe

11 )
reflection amplitudes for electrons injected in lead 1, and
the normal (Phh

12 ) and Andreev (Peh
12 ) transmission amplitudes

for holes injected in lead 2. Similarly, the right-terminal
conductance (B8) is given by the number of injected holes
Nh

2 , normal (Phh
22 ) and Andreev (Peh

22 ) reflection amplitudes
for holes injected in lead 2, and normal (Pee

21) and Andreev
(Phe

21 ) transmission amplitudes for electrons injected in lead
1. The number of injected quasiparticles Na

i and the values
of the transmission amplitudes Pab

i j in the low-bias scenario
described in the main text are given in Tables II and III for all
the topological phases of the superconducting sector. Table IV

TABLE IV. Conductances G1 and G2 and their sum Gt = G1 +
G2 computed with Eqs. (B7) and (B8) using the transmission proba-
bilities given in Tables II and III. The sum of the conductance in the
two terminals is nonzero only in the presence of topologically pro-
tected Majorana modes. Furthermore, the value of Gt discriminates
between end-localized MBSs and dispersive MCPSs.

S phase G1 G2 Gt

NBDI = 0 0 0 0
NBDI = 1 (MBS) 2αe2/h 2(α − 1)e2/h 2(2α − 1)e2/h
N = 0 0 0 0
N = 1 (MCPS) αe2/h (α − 1)e2/h (2α − 1)e2/h
N = 2 (QAH) e2/h −e2/h 0
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TABLE V. Transmission amplitudes for the scattering processes on the left interface and conductances G1, G2, and Gt assuming an
insulating barrier on the right side of the system. The values are given for all the topologically nontrivial cases.

S phase Ne
1 Pee

11 Phe
11 Phh

12 Peh
12 G1 G2 Gt

NBDI = 1 (MBS) 1 0 1 0 0 2αe2/h 0 2αe2/h
N = 1 (MCPS) 1 0.5 0.5 0 0 αe2/h 0 αe2/h
N = 2 (QAH) 1 1 0 0 0 0 0 0

summarizes the corresponding values of the conductances G1

and G2 and their sum Gt = G1 + G2.

APPENDIX C: ROLE OF AN INTERFACE BARRIER

We consider in this Appendix the role of an interface bar-
rier between the central proximitized (S) sector and the right
(N) lead, that is, an NSN′N structure, where N′ represents
a slab of a normal MTI material without any propagating
modes. The presence of N′ breaks the left-right symmetry
with respect to the central sector, and depending on the barrier
transparency, it will affect the electric connection to the right
side. A small barrier length mimics interface disorder, while
a large barrier length corresponds to the complete electric
insulation.

We show here that the presence of a barrier does not change
our conclusions about the relevance of Gt . Indeed, despite
the fact that the values of the conductances G1 and G2 may
change, the total conductance retains its meaning, with Gt �= 0
as long as Andreev processes take place in the junction. The
different cases can be clearly understood when a completely
insulating barrier is introduced, for instance, on the right side
of the system: as the right lead is electrically disconnected
from the proximitized MTI, G2 = 0 regardless of the topolog-
ical phase realized in the proximitized sector. In an NBDI = 1
superconducting wire, perfect Andreev reflection occurs on
the left interface of the junction due to interaction with MBS.
In an N = 1 TSC film, the electron is completely reflected
since the transmission to the right side is prevented by the
barrier. Normal and Andreev processes take place with the
same probability. In an analogous way, in an N = 2 TSC, the
electrons are perfectly reflected from the barrier, and no An-
dreev processes take place in the junction. The conductances
G1 and G2 can be easily computed with Eqs. (10) and (11).
Their values, together with the transmission amplitudes for
the left interface of the junction, are summarized in Table V.

A numerical simulation of the conductance in the NSN′N
junction with α = 0.25 is shown in Figs. 4(a) and 4(b) for a
wire geometry with a proximitized sector in the NBDI = 1 state
and a film geometry with an N = 1 TSC in the central sector,
respectively. We focus on the dependence on Lx, the length
of the intermediate barrier N′. For a completely transparent
barrier (Lx ≈ 0) the total conductance for α = 0.25 is Gt =
−e2/h in the presence of MBSs and Gt = −e2/2h in the pres-
ence of MCPSs. An increasingly opaque barrier (Lx → ∞)
changes these values, keeping Gt �= 0 as long as Andreev pro-
cesses occur in the proximitized MTI. For the case of MBSs, a
barrier with Lx � 50 nm is long enough to prevent the electric
transmission on the right side, leading to Gt = e2/2h. Re-
markably, Fig. 4(b) shows a very different decay length along
x for MCPSs. Indeed, a larger barrier Lx � 5 µm is required
to prevent completely the electric transmission in the presence
of MCPSs, changing the total conductance to Gt = e2/4h.
Both limiting values are in agreement with Table V for the
selected bias split parameter α = 0.25. Focusing on the short
barrier limit, which may represent interface disorder effects,
Fig. 4 suggests that, for the chosen set of parameters, the
antisymmetry of Gt (α) is robust for barriers with Lx � 5 nm
for the MBS and Lx � 0.5 µm for the MCPS since Gt is almost
unaffected by the barrier in these cases.

FIG. 4. Total conductance Gt for an NSN′N junction with a prox-
imitized sector in (a) the NBDI = 1 phase and (b) N = 1 TSC with an
insulating barrier on the right side of the system. The conductance is
computed as a function of the length Lx of the barrier. The plots are
obtained with α = 0.25.
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