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Received 31 October 2023; Received in final form 20 June 2023; Accepted 21 June 2023;
Available online 10 July 2023

Abstract

Real time estimation of the relative position and velocity vectors between two satellites in a formation is an integral part of the formation control
loop. Relative positioning based on Global Navigation Satellite Systems (GNSS) has been a dominating technology for formation missions in LEO,
where extremely precise estimates could be obtained for formations with small inter-satellite distances (1 − 10 km). Larger baselines between the
satellites (> 10 km) are more challenging as they pose the problem of huge differences in the ionospheric delays experienced by the signals received
by each receiver. This problem could be mitigated by using precise ionospheric-free combinations that could only be obtained by dual-frequency
receivers, which is not a cost-efficient option for the modern low-cost miniature missions. In this paper, the problem of GNSS-based relative
navigation between two spacecraft with large inter-satellite distance which are equipped with single-frequency receivers is treated through adopting
the space-proven Extended Kalman Filter (EKF). Although using an EKF for relative navigation is a common practice, there are many variants
of the filter settings, which vary in terms of the state and measurement vectors to be adopted as well as the techniques to be used to handle the
ionospheric delay. In this research, optimal settings of the filter are sought for the problem of relative baseline vector estimation between two
spacecraft that have large separation and which are equipped with with single-frequency GNSS receivers.
© 2023 COSPAR. Published by Elsevier Ltd All rights reserved.
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1. Introduction

A reliable state estimation subsystem is essential to close the

control loop for any control system. Satellites in Low Earth

Orbits (LEO) have long relied on Global Navigation Satellite

System (GNSS) signals to estimate their position and velocity

vectors in real-time which enabled precise orbit maneuvers.

Two distinctive GNSS-based positioning schemes are extricated,
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absolute positioning and relative positioning.

Absolute positioning aims at estimating the position vector

of the receiver with respect to the center of the Earth, either

by solely relying on the measurements from that receiver

(standalone positioning) or by combining the measurements

from the main receiver and another nearby stationary base

receiver with a precisely known position. The latter leverages

Differential GNSS (DGNSS) techniques and is not suitable for

space applications since the existence of a base in space with a
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precisely known position and with a sustained communication

link to the main receiver is an elaborate task. Relative

positioning on the other hand is after estimating the baseline

vector of one receiver with respect to another, conceivably

using the GNSS signals collected by these receivers and also

sometimes, leveraging DGNSS techniques. The accuracy of the

absolute positioning schemes can vary from few centimeters

to tens of meters Correa-Muños & Cerón-Calderón (2018); Le

& Tiberius (2003) depending on many factors such as whether

DGNSS is incorporated, atmospheric conditions, receiver

quality and design features, and signal blockage. While absolute

positioning is a natural choice for one-satellite missions, relative

positioning can be essential for the multi-satellite ones.

Indeed, sensor sets other than GNSS receivers could be used

to carry out relative navigation tasks for different mission

scenarios. Schemes for relative navigation between two closely

flying objects, either cooperative or non-cooperative, have been

developed based on line of sight measurements Ardaens &

Gaias (2018, 2019), LiDAR Woods & Christian (2016), GNSS

receivers Montenbruck et al. (2002); Park et al. (2010, 2013),

and both, cameras as well as GNSS receivers Capuano et al.

(2022). However, GNSS sensors stand as the perfect choice for

cooperative spacecraft, especially when the baseline between

the flying satellites is large, where vision-based sensors could

no longer capture the features of the target spacecraft.

GNSS-based Extended Kalman Filters (EKF) have shown

to achieve superb estimates with millimeter-level accuracy of

the baseline vector for formations with small inter-satellite

distances (1 − 10 km) in Low Earth Orbits BUSSE et al. (2003);

Leung & Montenbruck (2005); D’Amico et al. (2009). Baseline

estimation has also been tackled for longer inter-satellite

distances Kroes et al. (2005); Tancredi et al. (2014) and

remarkable accuracies could be obtained using dual-frequency

receivers. Dual-frequency receivers in the case of long baselines

(10 − 500 km) are very important not only to mitigate the huge

difference in ionospheric delay between the two receivers, but

also to help fixing the double difference integer ambiguities.

Nevertheless, the construction of precise relative orbit determi-

nation algorithms using single-frequency receivers shall be an

enabling technology for low-cost satellites formations in LEO.

In Giralo & D’Amico (2021), a hybrid Extended/Unscented

Kalman Filter is proposed for baseline determination for widely

spaced formations equipped with single-frequency GNSS

receivers. The algorithm which performs double-difference

integer ambiguity resolution could achieve excellent estimations

of the baseline vector (2 cm RMS error) using GPS data that

was generated by a GNSS receiver emulator for two spacecraft

500 km apart. Although fairly precise for large baselines, this

algorithm suffers from slow convergence time (around 1 hour).

In this paper, relative navigation for satellite formations

equipped with single-frequency GNSS receivers and with large

inter-satellite distance (10 − 500 km) is investigated using an

Extended Kalman Filter (EKF). In this setting, ionospheric

delay is, in most cases, the largest bias that needs to be filtered

out. A bi-linear ionospheric model is used in conjunction with

ionospheric-free combinations to achieve relative state estimates

without the need to perform integer ambiguity resolution.

The relative position and velocity between two spacecraft are

to be estimated directly by the filter rather than estimating

the absolute states then subtracting them from each other to

obtain the baseline position and velocity, hence, nonlinear

relative dynamics between the target and the chaser spacecraft

are used. Single difference quantities are fed to the filter for

their advantage of cancelling out common biases such as the

instrumental delays of the commonly tracked satellites.

The work in this paper is an extension to our preliminary study

Mahfouz et al. (2022) with a handful of modifications, the most

important of which is the adoption of a more precise ionospheric

model. Moreover, the state vector setup as well as the way

of choosing the measurement variance-covariance matrix are

modified.

This research comes as part of the AuFoSat project which

aims at developing a toolbox that features autonomous constella-
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tion and formation control solutions comprising state estimation

and control algorithms. The toolbox is going to be used by LuxS-

pace which is currently developing its next generation multi-

mission microsatellite ”Triton-X” to enable affordable satellite

applications in LEO. The consideration of a single-frequency

receiver is especially interesting for Triton-X as it uses a 12-

channel L1 receiver. Although Triton-X onboard GNSS receiver

leverages only GPS signals, the proposed navigation scheme can

be used with other GNSS receivers.

Triton-X being a multi-mission platform, the mission to which

this algorithm is to be applied is tentative and the estimation

and control requirements are not yet concrete, however, the esti-

mation scheme was developed with two main requirements in

mind,

1. The complexity of the algorithms has to be bearable by the

Triton-X onboard computer (OBC).

2. The algorithm is to be implemented for missions which do

not require stringent onboard estimation accuracy such as

inspection and gravimetry missions D’Errico (2012).

The first requirement constrains the tweaks that could be done

to the already existing algorithms in the literature. For instance,

double-difference integer ambiguity resolution routines are ex-

cluded from the proposed scheme since it would be a compu-

tational burden on the OBC, in spite of the fact that these tech-

niques are expected to improve the estimation accuracy while

compromising the convergence time.

To be more concrete about the second requirement, it is as-

sumed that an estimation error of less than 0.5 m (3D RMS)

is required, which is similar to the real-time orbit determina-

tion requirements of the PRISMA technology demonstration

mission De Florio & D’Amico (2010). Indeed, for large inter-

satellite distances with loose relative navigation requirements,

differencing the onboard available position solution is shown in

Tancredi et al. (2015) to be a good alternative to differencing the

GNSS observables, although with reference to dual frequency

receivers. Differencing the standalone onboard solutions for

the adopted single-frequency receiver is not an option since the

adopted receiver provides a position accuracy (1σ) of around 10

m Luxspace (2021), which shall provide estimates that are not

compliant with the aforementioned requirements if the onboard

position solutions are to be differenced. The exact make of the

adopted GNSS receiver is hidden for commercial reasons.

2. Estimation strategy

The relative state estimation is considered between two

spacecraft, a target and a chaser. The two spacecraft are sepa-

rated by a large distance and are equipped with single-frequency

GNSS receivers. An intersatellite link from the target to the

chaser is assumed to be constructed, which allows the transfer

of the necessary data to estimate the position and velocity of the

chaser with respect to the target. The treatment of latency and

synchronization is out of the scope of this paper, nevertheless,

interested reader is referred to Tancredi et al. (2014); Peng

et al. (2019, 2021). It is important to note that although only

two spacecraft are considered, the state estimation scheme

proposed by this paper is applicable to any two spacecraft in a

big formation. An Extended Kalman Filter (EKF) Jazwinski

(1970) is proposed to process the GNSS data in order to provide

relative position and velocity estimates that are inline with the

mission requirements discussed in Section 1. Indeed, using

and EKF for relative navigation is a common practice in the

literature, however, a consensus has not been reached on the

choice of the states to be estimated as well as the choice of

the measurements to process. Different settings of the filter

could lead to drastically different results even if the same data is

processed Mahfouz et al. (2022). In this paper, the setup of the

filter is sought to be optimized for the problem in hand.

2.1. Measurement choice

To achieve the relative navigation goal, the native GNSS

measurements (i.e. the pseudo-range and the carrier phase)

can be processed, while different advantages can arise from

processing different linear combinations of these measurements.

The use of the single, or double, difference of the native

measurements or their combinations could also be useful Leick
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et al. (2015).

For the problem in hand, a brief discussion of the possible

measurements and their combinations is given in our preliminary

study Mahfouz et al. (2022). It was concluded that the use

of the Single Difference Carrier Phase (SDCP) BUSSE et al.

(2003), the Single Difference GRoup And PHase Ionospheric

Correction (GRAPHIC) Yunck (1993) combination (SDGR),

as well as the Single Difference Geometry Free combination

(SDGF) De Bakker et al. (2009) have potential to overcome the

ionospheric effect, to the level that makes the resulting relative

position and velocity estimates inline with the constraints of our

problem. In the following discussion, the SDCP, the SDGR, and

the SDGF combinations are modeled, and a brief reasoning is

given as to why these specific combinations are chosen to be

processed.

The SDCP is modelled as follows,

ρsdcp B ρcp

∣∣∣
c− ρcp

∣∣∣
t = ∆ρ+c∆δt+λ f∆N−∆I+∆η+νsdcp, (1)

where ρcp is the carrier phase measurement, the subscripts (·)c

and (·)t signify chaser-related and target-related quantities re-

spectively with ∆ (·) = (·)c − (·)t, ρ is the geometric range, c is

the speed of light, δt is the receiver’s clock bias from the GNSS

time, λ f is the wavelength corresponding to frequency f , N is

the floating point ambiguity in cycles, I is the frequency de-

pendent ionospheric delay, η is the additional distance between

satellite and receiver antennas that the signal travels due to the

rotation of the earth, and νsdcp ∼ N
(
0, σ2

sdcp

)
is the SDCP noise,

with N(µ, σ2) being the normal distribution with a mean µ and

a variance σ2 and σsdcp ≈
√

2σcp where σcp is the standard

deviation of the carrier phase measurement noise.

Letting ωe ≈
[
0 0 ωe

]⊺
be the rotational velocity vector

of the Earth in the Earth-Centered-Earth-Fixed (ECEF) frame,

rrr =
[
x y z

]⊺
be the position vector of the receiver of inter-

est at the time of receiving the signal in the ECEF frame, and

rrri =
[
xi yi zi

]⊺
be the position vector the GNSS satellite i at

the time of transmitting the signal, also represented in the ECEF

frame, the correction distance η can be written as follows Leick

et al. (2015),

η =
ωe

c

(
xiy − xyi

)
. (2)

Similar to the SDCP, the SDGR as well as the SDGF are

modeled as,

ρsdgr B
1
2

(
ρpr + ρcp

)
c
−

1
2

(
ρpr + ρcp

)
t
=

∆ρ + c∆δt +
1
2
λ f∆N + ∆η + νsdgr, (3)

ρsdg f B
(
ρpr − ρcp

)
c
−

(
ρpr − ρcp

)
t
= 2∆I − λ f∆N + νsdg f , (4)

where ρpr is the pseudorange measurement, and

νsdgr ∼ N
(
0, σ2

sdgr

)
and νsdg f ∼ N

(
0, σ2

sdg f

)
are the

noises corresponding to the SDGR and the SDGF respectively,

with σsdgr ≈ σpr/
√

2 and σsdgr ≈
√

2σpr, where σpr is the

standard deviation of the pseudorange measurement noise.

A general signal that travels from a GNSS satellite to a

receiver experiences a non-dispersive tropospheric delay, a

dispersive multipath delay, as well as satellite and receiver

instrumental delays. The tropospheric and the multipath effects

are omitted as the receivers in the context of this paper fly above

the troposphere and are far away from any reflecting surface.

The receiver’s instrumental delays are assimilated to the clock

bias of the reciever, while the satellite’s instrumental delays are

nullified in the single difference quantities (i.g. SDCP, SDGR,

and SDGF).

Having chosen the observables to be processed by the EKF,

the measurement vector zzz of the EKF is constructed as,

zzz B


ρsdcp
ρsdgr
ρsdg f

 . (5)

It is to be noted that ρsdcp, ρsdgr, and ρsdg f are not scalar values

that correspond to one GNSS satellite, but rather vectors that

comprise the measured combinations from all the commonly

tracked satellites. In this setting, the length of the measurement

vector is 3n, where n is the number of channels of the GNSS

receiver (12 channels for the Triton-X onboard receiver).
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The choice for the measurements to be staged for processing

in our context is justified in the following points,

1. The relative position and velocity of one spacecraft with

respect to another are estimated directly by the filter, instead

of estimating the absolute states of the two spacecraft then

subtract the state vector of one spacecraft from that of the

other. In this setting, differential measurements have to be

used, hence the single difference combinations are chosen.

Moreover, another advantage of differential measurements

is that they allow some of the common biases (i.e. satellite’s

clock bias and instrumental delays) to cancel out.

2. As the ionospheric delay is the most significant bias to be

accounted for, the use of ionospheric-free combinations

comes as no surprise. That is why the SDGR is used, as

GRAPHIC is the only known single-frequency ionospheric-

free combination.

3. Although the SDGR is an ionospheric-free combination, it

is still a noisy measurement, that is why more precise com-

binations, like the SDCP, need to be included to augment

the overall accuracy of the filter. It has to be noted that the

inclusion of the SDCP comes with its own challenges, like

having to estimate the ionospheric effect as well as the float

ambiguities.

4. It is believed that the inclusion of the ionospheric geometry-

free combination, the SDGF, shall assist in estimating the

ionospheric delay as well as the ambiguities however being

coarse. This hypothesis was shown to be true in Mahfouz

et al. (2022).

5. Despite the availability of range measurements directly

from the intersatellite link, it is a coarse imprecise measure-

ment Crisan et al. (2020), which is not expected to improve

the overall estimation precision.

2.2. Ionospheric model

The ionospheric delay (I) which appears in the measurement

models (1) and (4) is modeled as the integral of the linear elec-

tron density along the ray path between the satellite and receiver

Klobuchar (1987) as follows,

I = α ( f ) S , (6)

where α ( f ) is the frequency dependant mapping function be-

tween the Slant Total Electron Content (STEC) and the signal

delay and S is the STEC.

The mapping function α ( f ) is modeled by the following formula

Rao (2008),

α ( f ) =
40.3 · 1016

f 2 m/TECU, (7)

where f is the carrier frequency in Hz, which for GPS L1 is equal

to 1575.42 MHz, and TECU is the Total Electrol Content Unit

(TECU = 1016 e−/m2). Furthermore, The slant total electron

content (STEC) is itself modeled by the Linear Thin Shell (LTS)

model Renga et al. (2018) as,

S = MtsV,

Mts =
R⊕ + hts

ru

√(
R⊕+hts

ru

)2
− cos2

(
Ei

u

) ,
V =

[
1 δϕipp δλipp

]
· qqq

(8)

where Mts is the thin shell mapping function from the Vertical

Total Electron Content (VTEC) to the Slant Total Electron Con-

tent (STEC) through the path of the ray, R⊕ is the mean radius

of the Earth, hts is the altitude of the thin shell, ru is the norm

of user u (i.e. receiver u) position vector in an Earth centered

reference frame, Ei
r is the elevation angle of the GNSS satellite i

with respect to the user u measured up from the local horizon,

and V is the Vertical Total Electron Content (VTEC). The bi-

linear approximation of the VTEC Komjathy & Langley (1996)

is dependant on the coefficient vector qqq =
[
q0 q1 q2

]⊺
which

is to be estimated by the filter, as well as δϕipp and δλipp which

are defined as follows,

δϕipp B ϕipp − ϕu,

δλipp B λipp − λu,
(9)

where ϕipp and λipp are the latitude and longitude respectively

of the Ionospheric Pierce Point (IPP) Centre National d’Études

Spatiales et al. (2011), while ϕu and λu are those of the receiver.

A common arbitrary choice for ground-based receivers is setting
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hts as the altitude of the F2 peak, nonetheless, in this paper, it is

set to a free variable that is estimated by the EKF.

Indeed, the ionospheric effect is the largest bias in the avail-

able measurements that needs to be accounted for, that is why

the LTS model is chosen, as it is preferred to the other empirical

ionospheric models such as the commonly used Lear mapping

Lear (1988). It provides better estimates of the ionospheric delay

with slightly higher computational demands Renga et al. (2018).

2.3. State variables choice

This section is dedicated to introducing the state variables to

be estimated by the EKF. Clearly, the main variables that need

to be estimated are the baseline vector and the relative velocity

between two spacecraft, however, some auxiliary variables (e.g.

receiver’s clock bias, carrier phase float ambiguities,...) need to

be estimated in order to increase the precision of the filter. In

fact, if an EKF filter is run without considering these auxiliary

variables, especially the receiver’s clock bias, it is susceptible to

generate unusable estimates.

As discussed in Section 2.1, a unique set of state variables does

not exist, and the choice of the state vector is customary. In

fact, the choice of the state variables to be estimated is heavily

dependant on the choice of the measurements combinations to

be fed to the filter, which itself is customary to choose. In this

paper, the advantages of the SDCP, the SDGR, and the SDGF

combinations, defined in equations (1), (3), and (4) respectively,

are leveraged

The state vector X is constructed based on the chosen measure-

ments. The choice of the state variables is presented below.

X B
[
∆xxx⊺ c∆δt c∆̇δt hts qqq⊺ ∆NNN⊺

]⊺
, (10)

where xxx B
[
rrr⊺ vvv⊺

]⊺
is the vector that contains the position and

velocity coordinates of a receiver in the Earth-Centred, Earth-

Fixed (ECEF) frame, ∆δt is the differential receiver’s clock bias

with ∆̇δt being its rate of change, hts and qqq (a 3-element vector)

are the parameters related to the ionospheric model, and NNN is

the carrier phase float ambiguity vector for all the commonly

tracked satellites. The length of the state vector in this setting is

12 + n, where n is the number of channels of the GNSS receiver

(12 channels for Triton-X onboard receiver).

3. Mathematical models

In this section, the nonlinear dynamical models of the state

variables together with the Jacobian matrices necessary for the

operation of the EKF are presented.

The dynamics of the state vector are separated into the orbital

dynamics, concerning the ∆xxx vector, and the dynamics of the

auxiliary variables which concern the rest of the state variables

in (10).

3.1. Orbital dynamics

The motion of a satellite that moves under the gravity field of

the Earth can be formulated as a Perturbed Two-Body Problem

(PTBP) in the ECEF frame by applying Transport theorem Rao

(2006) on the PTBP equations of motion in an inertial frame as

follows,

r̈rr = −
µ⊕

r3 rrr − ωe × vvv − ωe × ωe × rrr + aaactrl + aaaJ2 +wwwvvv, (11)

where rrr is the position vector of the satellite, r is the magnitude

of that position vector, µ⊕ is the Earth’s standard gravitational

parameter, aaactrl is the known input control vector, aaaJ2 is the J2

perturbing acceleration vector modeled by (A.4) in Appendix

A, and wwwvvv collates all the unmodeled disturbance accelerations.

It is important to note that all the vectors in (11) are expressed

in the ECEF frame, and that (11) is derived by approximating

the rotation of the ECEF frame to be only around the z-axis of

the ECI frame.

Equation (11) can be easily transformed to,

ẋxx B
[
ṙrr
v̇vv

]
=

[
vvv

−
µ⊕
r3 rrr − 2ωe × vvv − ωe × ωe × rrr + aaactrl + aaaJ2 +wwwvvv

]
.

(12)

Using (12), the relative orbital dynamics between the chaser

and the target spacecraft in the ECEF frame can be expressed as:

∆ẋxx B
[
∆ṙrr
∆v̇vv

]
=

 ∆vvv
µ⊕
r3

t

(
rrrt −

r3
t (rrrt+∆rrr)

(r2
t +2rrrt ·∆rrr+∆r2)3/2

)
+ ∆aaaJ2

−2ωe × ∆vvv − ωe × ωe × ∆rrr + ∆aaactrl +www∆vvv

]
,

(13)
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where rrrt is the position vector of the target satellite with a magni-

tude of rt, ∆rrr = rrrc − rrrt and ∆vvv = vvvc − vvvt are the relative position

and velocity vectors respectively from the target to the chaser

spacecraft with magnitudes of ∆r and ∆v, all expressed in the

ECEF frame. Moreover, ∆aaaJ2 is the differential J2 perturbation

vector and www∆vvv ∼ N (0,Q∆vvv∆vvv∆vvv) collates all the relative acceleration

noises.

Only the J2 perturbation is modeled in this research as it is ex-

pected to have the greatest influence on the relative dynamics

between the two largely separated spacecraft. Furthermore, Q∆vvv∆vvv∆vvv

is defined as,

Q∆vvv∆vvv∆vvv = diag
(
σ2
∆vx

σ2
∆vy

σ2
∆vz

)
. (14)

In the prediction phase of the EKF, equation (13) is

numerically integrated after omitting the disturbance, to obtain

a prediction of the relative position and velocity states at each

time step. It is important to note that an estimate of the absolute

position and velocity vectors of the target spacecraft is essential

for the numerical integration of (13) and for a proper operation

of the EKF. These are directly acquired from the receiver’s noisy

onboard solution at each prediction step. The same approach

was used in Tancredi et al. (2014).

3.2. Dynamics of the auxiliary variables

The state variables c∆̇δt and qqq are modeled as Gaussian ran-

dom walk processes while the rest of the auxiliary variables are

modeled as constants,

c∆̈δt = wc∆̇δt,

ḣts = 0,

q̇qq = wwwqqq,

˙∆NNNCP = 000,

(15)

where wc∆̇δt ∼ N
(
0, σ2

c∆̇δt

)
and wwwqqq ∼ N

(
0,Qqqq

)
. The noise in

the c∆̈δt signal is set to account for the sudden clock jumps that

manufacturers embed into their receivers in order to control the

magnitude of the clock biases Guo & Zhang (2012). Moreover,

Qqqq is defined as,

Qqqq = diag
(
σ2

q0
σ2

q1
σ2

q2

)
. (16)

3.3. State transition matrix

With the definition of the state variables (10) in mind, together

with their models (13) and (15), the State Transition Matrix

(STM) which is essential for the operation of the EKF can be

divided into several sub-matrices as,

F B
∂XXXk

∂XXXk−1
=



F∆xxx 000 000 000 0 0

000⊺ 1 tk − tk−1 0 000⊺ 000⊺

000⊺ 0 Fc∆̇δt 0 000⊺ 000⊺

000⊺ 0 0 Fhts 000⊺ 000⊺

0 000 000 000 Fqqq 0

0 000 000 000 0 F∆NNN


, (17)

where F∆xxx, Fc∆̇δt, Fhts , Fqqq, and F∆NNN are the state transition

matrices for ∆xxx, c∆̇δt, hts, qqq, and ∆NNN respectively, while tk

and tk−1 are two consecutive time instants to which the STMs

correspond. Furthermore, 000 represents a vector of zeros and 0 is

a matrix of zeros.

Various linearization techniques can be adopted in order to

obtain the STM F∆xxx Carter (1998), nonetheless, it is not used to

propagate the states, but rather to propagate the estimated states

variance-covariance matrix (refer to the prediction phase of the

EKF Jazwinski (1970)), hence the constraint of having a very

precise STM becomes much looser. The simple STM obtained

from the closed form solution to the Clohessy–Wiltshire (CW)

equations Clohessy & Wiltshire (1960) can also be used, how-

ever, one needs to keep an eye on the fact that CW equations

provide the solution in Hill’s frame of the target spacecraft, and

the obtained STM has to be rotated to the ECEF. In this paper,

an even simpler approach is adopted by linearizing the equations

of motion (13) taking the target’s orbit as a reference for the

linearization. In this case, the STM of the relative states F∆xxx

is only dependent on the target’s states as suggested by (B.3).

Appendix B includes the details of why this assumption is plau-

sible. Approximating the Jacobian of the relative states by the
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Jacobian of the target’s states yields,

J∆xxx B
∂∆ẋxx
∂∆xxx

≈
∂ẋxx
∂xxx

∣∣∣∣∣
xxx=xxxt

F∆xxx B
∂∆xxxk

∂∆xxxk−1
≈ exp

(
(tk − tk−1) J∆xxx| xxxt |k−1

)
,

(18)

where J∆xxx is the state-dependant Jacobian matrix that can be

calculated by partial differentiation of (12), while J∆xxx| xxxt |k−1
is

the same matrix evaluated at the target’s state at time tk−1.

The state transition matrices of the auxiliary variables can be

directly derived from the linear system of equations (15) after

omitting the noise as follows,

Fc∆̇δt = 1,

Fhts = 1,

Fqqq = I3.

F∆NNN |i, j =

{
1, Pi ∈ Pk−1 & i = Ci|k & j = Ci|k−1
0, Otherwise ,

(19)

where I(·) is an identity matrix of size (·), F∆NNN |i, j is the entry

(i, j) of the F∆NNN matrix, Pi is the PseudoRandom Noise (PRN)

code of the ith commonly tracked satellite (at time tk), Pk−1

is the set of PRNs of the commonly visible satellites at time

instant tk−1, and Ci|k and Ci|k−1 are indices to the target’s receiver

channels that captured the measurement from the ith commonly

visible satellite at times tk and tk−1 respectively. Indeed, the

differential ambiguity for the newly tracked satellites are set

to zero, however, the process noise variance-covariance matrix

has to be adapted to reflect the uncertainty of this initial guess.

Equation (19) can not only be used to construct the full STM

(17), but also to propagate the auxiliary states in the prediction

phase of the EKF.

3.4. Measurement model

Although the measurement vector in (5) is modeled by equa-

tions (1), (3), and (4), the Jacobian matrix H of these nonlinear

functions needs to be constructed as a requirement for the update

phase of the EKF. Concretely, the nonlinear measurement model

is presented once again as follows,

hhh =

∆ρ + c∆δt + λ f∆NNN − α ( f )∆SSS + ∆η
∆ρ + c∆δt + 1

2λ f∆NNN + ∆η
2α ( f )∆SSS − λ f∆NNN

 . (20)

where the differential STEC vector ∆SSS is obtained from the

VTEC vector according to the mapping (8).

The state dependant Jacobian matrix H can then be obtained,

H B
∂hhh
∂XXX
=


H∆rrr 0 111 000 −HHHhts −Hqqq λ fH∆NNN

H∆rrr 0 111 000 000 0
λ f

2 H∆NNN

0 0 000 000 2HHHhts 2Hqqq −λ fH∆NNN

 , (21)

where H∆rrr, HHHhts , Hqqq, and H∆NNN are partial derivative matrices

that have the dimensions of m × 3, m × 1, m × 3, and m × n

respectively, with m being the number of the commonly visible

satellites and n is the number of channels of the receiver.

Matrix H∆rrr is a Jacobian matrix that can be obtained by

partial differentiation of the
(
∆ρ + ∆η

)
part of the measurement

model (20) using the states of the target,

H∆rrr B
∂

∂∆rrr
(
∆ρ + ∆η

)
≈

∂

∂rrr
(
ρ + η

)∣∣∣∣∣
t
=[

eee1
t eee2

t . . . eeem
t 000 . . . 000

]⊺
, (22)

where the zero vectors at the end account for the target’s receiver

channels that did not track any satellite or that tracked a satellite

that is not visible by the chaser, eeei
t comprises the unit baseline

vector from the ith commonly tracked satellite to the target in

the ECEF frame in addition to a correction term for the Earth’s

rotation,

eeei
t =

rrrt − rrri∥∥∥rrrt − rrri
∥∥∥ + ωe

c

[
−yi xi 0

]⊺
. (23)

Using (6), (7), and (8), the ith entry in the HHHhts vector, which

corresponds to the measurement from the ith commonly visible

satellite by both the chaser and the target, can be written as,

Hhts

∣∣∣
i =

40.3 · 1016

f 2

(∂Mts

∂hts
V
)i

c
−

(
∂Mts

∂hts
V
)i

t

 ,
∂Mts

∂hts
= −

cos2
(
Ei

u

)
ru

√[(
R⊕+hts

ru

)2
− cos2

(
Ei

u

)]3
,

(24)

while the ith row in the Hqqq can be written as,

Hqqq

∣∣∣
i =

40.3 · 1016

f 2

(Mts
∂V
∂qqq

)i

c
−

(
Mts

∂V
∂qqq

)i

t

 ,
∂V
∂qqq
=

[
1 δϕipp δλipp

]
.

(25)
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Matrix H∆NNN is, in fact, a boolean rearrangement matrix with

entries,

H∆NNN |i, j =

{
1, Pi ∈ Pk−1 & j = Ci

0, Otherwise . (26)

4. EKF initialization and operation

In order for the EKF to operate properly, it needs an initial

guess for the state vector (XXX) as well as the estimated states

variance-covariance matrix (P). Indeed, many ways such as

the available onboard solution of each satellite or weighted

least-square schemes can be incorporated to calculate a fairly

close initial relative position and velocity vectors, yet, in order

to demonstrate that the proposed filter converges even for

uncertain initial conditions, the state variables are initiated

with randomly selected values within the true range of each

variable. The estimation covariance matrix, on the other hand,

is inaugurated as a diagonal matrix with large variances to

reflect the uncertainties of the initial guess of the state vector.

During operation, it is of a huge importance to re-initiate

the values of ∆NNN to account for newly tracked satellites (see

equation (19)). Once a value is initialized, the corresponding

process noise variance needs to be set to a large value in the

process noise variance-covariance matrix Q. Moreover, a proper

rearrangement of the estimated state variance-covariance matrix

(P) needs to be carried out in order to account for the satellites

that went out of sight.

Besides the initialization of the state vector and the estimated

states variance-covariance matrix, two other variance-covariance

matrices need to be defined for the EKF to operate efficiently, the

process noise variance-covariance matrix Q and the observation

variance-covariance matrix R.

The process noise variance-covariance matrix Q is set to the

following semi-definite time-varying matrix,

Q = diag
(
0, Q∆vvv, 0, σ2

c∆̇δt
, 0, Qqqq, Q∆NNN

)
, (27)

where Q∆NNN is generally a matrix of zeros, except when a newly

tracked satellite is introduced, then the corresponding diagonal

entry is set to a large value to reflect the unreliability of the

corresponding initiated ∆N value. The state variables’ noises

are assumed uncorrelated, thus all the covariance elements of

the Q matrix are zero. Furthermore, the process noise variance-

covariance matrix is in general a time-varying matrix, as Q∆NNN

need constant rearrangement as new satellites are being tracked.

The diagonal entries for Q∆NNN are defined as,

Q∆NNN |i,i B

{
102, Ci tracks a new satellite
0, Otherwise , (28)

Although the multipath effect was not incorporated in the

measurements model (20), it is not entirely true that a receiver in

a low Earth orbit will not experience any multipath interference.

It has been shown in Ceva & Parkinson (1993) that the Earth’s

surface reflections could indeed disturb the GNSS signals espe-

cially those which have to travel from a low elevation satellite

with respect to the receiver. Nonetheless, this type of interfer-

ence lasts only for short periods and can be avoided by choosing

a suitable cut-off elevation angle, beyond which the signal is

simply discarded. Instead of hard coding a cut-off elevation

angle, which also means that parts of the observations have to be

discarded, the measurement variance-covariance matrix is set to

vary with the elevation angle of the transmitting satellite. In this

setting, the lower the elevation angle, the higher the variance of

the observation noise is set.

Assuming uncorrelated measurement noises, the observation

noise variance-covariance matrix is set to the following time-

varying matrix,

R =

Rsdcp 0 0

0 Rsdgr 0

0 0 Rsdg f

 , (29)

where Rsdcp, Rsdgr, and Rsdg f are the noise variance-covariance

matrices corresponding to the SDCP, SDGR, SDGF measure-

ments respectively. The off-diagonal elements of the Rsdcp,

Rsdgr, and Rsdg f matrices are all zeros, while the diagonal ele-

ments are defined as,

R(·)
∣∣∣
i,i B

σ2
(·)

sin2
(
Ei

min

)
+ ϵ

, (30)

where σ(·) is a predefined constant standard deviation for

the observation (either the SDCP, the SDGR, or the SDGF),
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Ei
min B min

(∣∣∣Ei
c

∣∣∣ , ∣∣∣Ei
t

∣∣∣) is the minimum magnitude elevation

angle between either the chaser or the target when both track

the GNSS satellite (i), and ϵ is a small constant that acts as a

safeguard from dividing by zero. Clearly, the size of each of the

observation noise variance-covariance matrices is time-varying

as it depends on the number of commonly tracked satellites.

During the operation of the EKF, a measurement vector at

any time step is said to have at least one outlier in case the col-

lective squared Mahalanobis distance Izenman (2008) is found

to be greater than the inverse of the χ2 cumulative distribution

function of a significance level of 5% and with the length of the

measurement vector as the degrees of freedom. Once a batch

of measurements is detected to have outliers, those are detected

and rejected using the individual squared Mahalanobis distance

test Lopez (2017).

5. Results and discussion

In order to validate the algorithm, data from the SWARM

mission European Space Agency (2022) are collected and

simulated in a real-time setting. SWARM is an Earth observation

mission that consists of three identical satellites, Alpha, Bravo,

and Charlie; which were launched in November 2013.

The algorithm was tested on two different full days worth

of the SWARM mission GNSS data, namely on 16-Jul-2014

and on 08-Dec-2020. These two days are chosen keeping

in mind that the algorithm needs to be tested in best and the

worst ionospheric conditions. The year 2020 witnessed the

lowest solar activity of the SC24 solar cycle, hence, the best

ionospheric conditions for GNSS navigation are expected. On

the other hand, the peak of the SC24 solar cycle happened in

2014 and the worst ionospheric conditions are present around

this time. Indeed, SC24 is not the most intense cycle in terms

of the solar radiation, and consequently in the total electron

content of the ionosphere. However, the authors did not manage

to get access to other GNSS data that were recorded during a

stronger solar cycle, for two receivers flying in low earth orbit

with a large intersatellite distance.

The relative navigation is performed between Alpha (chaser)

and Charlie (target) spacecraft which share the same orbit ( 150

km apart in 2014 and 100 km apart in 2020 on the dates of

estimation).

In order for the EKF to operate efficiently, precise statistics

of the process noises as well as the measurement noises need to

be provided. A particular issue that needs to be addressed here

is that, although the SDCP is usually considered a smooth signal

with a noise level of order of millimeters, it cannot be considered

very smooth in the context of largly separated receivers since

the differential ionospheric delay is not negligible, and also as

the ionospheric model is not accurate to the millimeters level.

The statistics that were adopted in the simulations are presented

in the Table 1. It is to be noted that the standard deviations of

the noises of SDCP, SDGR, and SDGF can be deduced from

the standard deviations of the carrier phase and the pseudorange

noises (refer to the discussion in Section 2.1). Moreover, the

standard deviation of the carrier phase noise for the 2014 data is

set to a higher value than that of the 2020 data since the quality

of the latter is better than that of the former.

Quantity Value Quantity Value

σ∆vx ≡ σ∆vy ≡ σ∆vz 0.01 m/s2 σpr 1.5 m

σc∆̇δt 1 m/s σcp

∣∣∣
2014 0.2 m

σq0 ≡ σq1 ≡ σq2 1/
√

2 TECU/s σcp

∣∣∣
2020 0.1 m

Table 1: Assumed constant statistics used in the simulations

After processing the 2014 data, estimates for the relative

position and velocity vectors became available. Fig. 1 depicts

the relative position errors, while Fig. 2 shows the relative

velocity errors between the two spacecraft for the 2014 data. It

is important to note that the relative position and velocity vectors

are both estimated in the ECEF frame, then the error vectors as

well as the estimation variance-covariance matrix are rotated to

the Hill’s frame of the target, by making use of the knowledge of

the receiver’s onboard solution for the target absolute position.

In order to obtain the error signals, the output of the
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Fig. 1: Relative position error for 1 day of the SWARM mission data during the
peak of SC24

Fig. 2: Relative velocity error for 1 day of the SWARM mission data during the
peak of SC24

post-processing Precise Orbit Determination (POD) algorithms

is used as the ground truth. The POD output is accurate to the

level of ±1 cm and is provided as part of the SWARM mission

data.

For the 2014 data, 3D Root Mean Square (RMS) errors of

26 cm and 4 cm/s could be obtained for relative distance and

relative speed respectively, while the filter converged after only

1 iteration. The convergence point in this setting is defined as

the first occurrence of three consecutive filter estimation errors

that are less than or equal to twice the RMS. Results in Figures 1

and 2 show that more than 99.7% of the errors lie below the 3σ

threshold, with σ being the standard deviation of the estimation

error, which suggests that our assumptions for the model and

measurement statistics (see Table 1) are conservative.

Results with such convergence rate and accuracy, especially

without implementing integer ambiguity resolution and fixing

techniques, could only be obtained thanks to the incorporation of

the presented measurement setting as well as the incorporation

of a precise ionospheric model. This claim is supported by the

preliminary trials to run the filter with different measurement

and ionospheric model settings Mahfouz et al. (2022).

The number of the commonly tracked satellites as well as the

Relative Position Dilution Of Precision (RP-DOP) for the 2014

data are depicted in Fig. 3, where the RP-DOP is defined as,

RP-DOP =
√
σ2
∆x + σ

2
∆y + σ

2
∆z, (31)

with σ2
∆x, σ2

∆y, and σ2
∆z being the estimation variances of the rela-

tive position components, extracted from the estimated variance-

covariance matrix.

Fig. 3: Precision indicators

It is clear from Fig. 3 that the RP-DOP is likely to have

spikes when the number of the commonly tracked satellites is

low (e.g. 3 satellites). It is believed that these spikes appear not

only due to the low number of the commonly visible satellites,

but also due to the geometry of these tracked satellites as well as

the elevation angles of the satellites with respect to the receivers

(see for example the spike around 16:00 in Fig. 3 which appear

when the number of commonly tracked satellite is fairly large, 5

satellites).
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The 2020 data were as well processed and the relative posi-

tion and velocity are estimated. Figures 4 and 5 illustrate the

relative position and velocity estimation errors respectively for

the 2020 data. An RMS error of 24 cm could be obtained

Fig. 4: Relative position error for 1 day of the SWARM mission data during the
nadir of SC24

Fig. 5: Relative velocity error for 1 day of the SWARM mission data during the
nadir of SC24

for the relative distance and of 4 cm/s for the relative speed.

Indeed, the estimates of the 2020 data are of better quality than

those of the 2014 data since the ionospheric conditions are better,

however, the obtained estimation errors from both data are not

substantially different. It is believed that thanks to the adoption

of a fairly precise ionospheric model, almost indistinguishable

performances of the filter could be obtained, even for different

GNSS data streams with different ionospheric conditions.

6. Conclusion

In this paper, the problem of GNSS-based relative naviga-

tion between two spacecraft with large inter-satellite distance

and with single-frequency receivers is treated through adopting

the classical Extended Kalman Filter (EKF). Although using an

EKF for relative navigation is a common practice in the literature,

there exists endless variants of filter settings. The contribution

of this research is the optimization of the filter setting for the

specific problem in hand, by fixing the measurements to be fed

to the filter, the handling of the ionospheric delay, the choice

of the auxiliary state variables, and the definition of the process

and measurement noises variance-covariance matrices.

A measurement setting comprising the Single Difference Carrier

Phase (SDCP), the Single Difference GRAPHIC (SDGR), and

the Single Difference Geometry Free (SDGF) combination is

proposed. While the incorporation of the SDCP and the SDGR

comes as no surprise, augmenting the measurement vector with

the SDGF combination could help estimating the differential

ionospheric delay as well as the differential floating point ambi-

guities, improving the overall estimation accuracy as well as the

convergence time.

The fairly precise, however simple, thin shell ionospheric model

was adopted as it provides superior estimates of the ionospheric

delay than those of the commonly used empirical models.

As the quality of the GNSS signal improves proportionally with

the elevation angle of the tracked satellite, the measurement

noise variance-covariance matrix was made dependent on this

elevation angle, which improved the reliability of the statistics

of the measurement noises.

In order to test the sensitivity of the proposed filter setting to the

change in ionospheric conditions, the algorithm was tested on a

simulated real-time setting using two different data streams that

were collected by the SWARM mission during the peak and the

nadir of the SC24 solar cycle. Thanks to the adopted ionospheric

model, the filter could produce almost indistinguishable relative

position and velocity estimates for both cases. For the extreme

ionospheric conditions during the peak of the solar cycle (in

2014), the filter could achieve 26 cm and 4 cm/s RMS errors in
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the estimated relative distance and relative speed respectively,

while it could achieve 24 cm and 4 cm/s RMS errors during the

relaxed ionospheric conditions (in 2020).

It is important to emphasise that the obtained results could be

achieved without implementing integer ambiguity resolution,

which was excluded to relax the computational demand from

the satellites onboard computer. Indeed, excluding the integer

ambiguity resolution together with the adoption of an adequate

ionospheric model contributed to the very fast convergence of

the filter which typically converges after one iteration.
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Appendix A. J2 perturbation in the ECEF frame

The perturbing acceleration vector in the ECI frame resulting

from the effect of the J2 zonal harmonic can be modelled for a

satellite with a position vector rrri =
[
xi yi zi

]⊺
(in the ECI) as,

aaai
J2
= −

3µ⊕J2R2
⊕

2r7︸     ︷︷     ︸
ψ

r
2 − 5z2 0 0

0 r2 − 5z2 0
0 0 3r2 − 5z2

︸                                    ︷︷                                    ︸
M

xi

yi

zi

 , (A.1)

where J2 the coefficient of the second zonal harmonic, R⊕ is the

equatorial radius of the Earth, r =
∥∥∥rrri

∥∥∥, and z = zi ≈ ze, with

rrre =
[
xe ye ze

]⊺
being the position vector of the satellite in

the ECEF frame.

Ignoring the Earth’s axial procession, vectors expressed in the

ECI frame can be rotated to the ECEF frame as follows,

(···)e ≈

 cos (θ) sin (θ) 0
− sin (θ) cos (θ) 0

0 0 1

︸                       ︷︷                       ︸
A

(···)i , (A.2)

where θ is the Earth Rotation Angle (ERA).

Using (A.1) in conjunction with (A.2), the perturbing accel-

eration vector in the ECEF frame can be written as,

aaae
J2
≈ −ψAMA⊺rrre. (A.3)

Due to the structure of A and M, the term AMA⊺ reduces to

M, which results in,

aaae
J2
≈ −ψMrrre. (A.4)

Appendix B. Linearization of a general difference function

Consider the general vector valued function fff (xxx) and the

following difference function,

∆ fff = fff (xxx) − fff (xxx0) . (B.1)

The differential vector valued function ∆ fff can be approxi-

mated by Taylor expansion around xxx0. Taking into account that

∆xxx = xxx − xxx0, and ignoring the higher order terms, the Taylor

approximation of ∆ fff around xxx0 can be written as,

∆ fff ≈
(
fff (xxx0) +

∂ fff
∂xxx

∣∣∣∣∣
xxx=xxx0

∆xxx
)
− fff (xxx0) =

∂ fff
∂xxx

∣∣∣∣∣
xxx=xxx0

∆xxx, (B.2)

which suggests that,

∂∆ fff
∂∆xxx

≈
∂ fff
∂xxx

∣∣∣∣∣
xxx=xxx0

. (B.3)

This approximation is valid as long as ∥∆xxx∥ is small in com-

parison to ∥xxx0∥.
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