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Abstract        64 

We report the diagnostic results of a comprehensive copy number variant (CNV) reanalysis 65 

of 9,171 exome sequencing (ES) datasets from 5,757 families, including 6,143 individuals 66 

affected by a rare disease (RD). The data analysed was extremely heterogeneous, having 67 

been generated using 28 different exome enrichment kits, and sequenced on multiple short-68 

read sequencing platforms, by 42 different research groups across Europe partnering in the 69 

Solve-RD project. Each of these research groups had previously undertaken their own 70 

analysis of the ES data but had failed to identify disease-causing variants. 71 

 72 

We applied three CNV calling algorithms to maximise sensitivity: ClinCNV, Conifer, and 73 

ExomeDepth. Rare CNVs overlapping genes of interest in custom lists provided by one of 74 

four partner European Reference Networks (ERN) were identified and taken forward for 75 

interpretation by clinical experts in RD. To facilitate interpretation, Integrative Genomics 76 

Viewer (IGV) screenshots incorporating a variety of custom-made tracks were generated for 77 

all prioritised CNVs. 78 

 79 

These analyses have resulted in a molecular diagnosis being provided for 51 families in this 80 

sample, with ClinCNV performing the best of the three algorithms in identifying disease-81 

causing CNVs. We also identified pathogenic CNVs that are partially explanatory of the 82 

proband’s phenotype in a further 34 individuals. This work illustrates the value of reanalysing 83 

ES cold cases for CNVs even where analyses had been undertaken previously. Crucially, 84 

identification of these previously undetected CNVs has resulted in the conclusion of the 85 

diagnostic odyssey for these RD families, some of which had endured decades. 86 
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Introduction 87 

Rare diseases (RD) are defined in Europe as conditions which affect less than 1 in 2,000 88 

individuals. Nevertheless, it is estimated that more than 30 million people across the 89 

European Union are affected by one of ~6000-8000 different RDs1,2. As 80% of RD are 90 

expected to have a genetic aetiology, massively parallel sequencing approaches, in 91 

particular exome sequencing (ES), have been widely applied over the last decade to identify 92 

variants in DNA that cause RD. However, despite many advances in technology during this 93 

period, more than half of all individuals affected by an RD remain without a molecular 94 

diagnosis following such analyses, thus extending their diagnostic odyssey. While the 95 

accurate detection of single nucleotide variants (SNV) and short (<50nt) insertions and 96 

deletions (InDels) from ES data has become relatively robust in recent years3, the reliable 97 

detection of larger variants, including copy number variants (CNVs), remains a challenge, 98 

and it is likely that undetected pathogenic CNVs account for a proportion of undiagnosed 99 

individuals. 100 

 101 

CNVs comprise losses, which may be heterozygous or homozygous in autosomes, or 102 

hemizygous in gonosomes, and gains of genetic material, which we refer to here as 103 

deletions and duplications, respectively. Identification of CNVs from short-read ES data (i.e. 104 

100-150nt paired-end reads) is complicated by several factors, the most important of which 105 

being that read length is usually shorter than variant length, and that the boundaries of the 106 

CNV, referred to as breakpoints, are unlikely to be captured directly by the enrichment 107 

targets, since they represent only ~1-2% of the genome. An exacerbating factor is marked 108 

variability in the enrichment process, in which targets for ~200,000 exons undergo DNA 109 

hybridisation and PCR amplification prior to sequencing, both between kits, and between 110 

experiments. Many methods have been developed for CNV detection from ES data, most of 111 

which use comparison of depth of coverage (DoC) between the observed number of reads 112 

covering a particular exon/target in a sample of interest and the normalised coverage for the 113 
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same exon/target in a large homogeneous reference batch of matched experimental 114 

samples4–9. For such methods to be successful, the sequencing data needs to be as 115 

homogenous as possible, particularly with respect to evenness of coverage10, which is the 116 

key factor in CNV detection since it directly affects the signal-to-noise ratio. 117 

 118 

As reviewed recently in Gordeeva et al.11, these methods differ from each other primarily in 119 

terms of the approach taken for read count normalisation, assumptions regarding read-depth 120 

distribution, and the segmentation process, i.e. identification of the boundaries of a variant. 121 

Despite application of sophisticated normalisation techniques, the correct separation of the 122 

signal of true CNVs from background noise remains challenging, particularly for short CNVs 123 

that only impact upon one or a few exons. This is illustrated by numerous cross-tool 124 

comparisons in which the intersection of CNVs detected by different methods is limited, 125 

ranging from ~1-20% concordance when three or more tools are compared across 126 

samples12–14. Indeed, a recent benchmarking initiative involving sixteen tools showed that 127 

the number of raw CNVs called on a single ES sample ranged from just two to over a 128 

thousand11, reflecting differing optimisation of algorithms for specificity or sensitivity. 129 

Therefore, following identification of a list of potential CNVs, subsequent filtering steps are 130 

required, including determining which CNVs are technically valid (i.e. bona fide biological 131 

events), and whether any of the valid CNVs are of clinical relevance with respect to the 132 

phenotype of the affected individual. Hence, both technical expertise and expert clinical 133 

knowledge are required if disease-causing CNVs are to be correctly identified. diagnoses. 134 

 135 

This complexity may explain why the detection of CNVs has often been omitted from 136 

diagnostic ES workflows, with array comparative genome hybridisation (aCGH) continuing to 137 

be the preferred method in the clinic over the last decade, despite limitations in its sensitivity 138 

and resolution, particularly with respect to short CNVs. However, recent studies have 139 

indicated that ES may be a suitable replacement as a first-tier diagnostic test15–17, with the 140 

added benefit that SNVs and InDels are detected simultaneously.  141 
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A key goal of the EU Horizon 2020 Solve-RD project is to raise the diagnostic rate of 142 

individuals with an RD for whom ES analysis and variant interpretation have previously been 143 

undertaken, but without a conclusive diagnosis having been reached. This is being achieved 144 

by undertaking massive pan-European data collation and complete reanalysis from raw data, 145 

followed by expert technical and clinical interpretation and validation of variants18. The CNV 146 

analysis conducted here, was an integral part of a larger re-analysis effort undertaken on the 147 

same dataset, covering most other variant types (Laurie et al. under review). Here we 148 

describe the workflow applied in a comprehensive reanalysis of this heterogeneous sample 149 

of ES data from 9,171 individuals pertaining to 5,757 families, including 6,143 individuals 150 

affected by an RD, to identify (likely) pathogenic CNVs. The ES data had been generated 151 

using 28 different enrichment kits in multiple sequencing centres. Hence, to maximise 152 

accuracy and sensitivity of CNV detection we applied three different algorithms, ClinCNV, 153 

Conifer, and ExomeDepth, and analysed experiments in 28 different batches, comprising 154 

data generated using the same enrichment kit. We filtered the raw call set, initially consisting 155 

of over two million CNV calls (average of ~300 per individual), to a manageable number of 0-156 

2 potentially pathogenic rare CNVs per affected individual requiring interpretation by the 157 

clinical experts who has submitted the cases to Solve-RD. This extensive endeavour has led 158 

to the closure of many diagnostic odysseys, some of which had been ongoing for decades, 159 

of which we provide some illustrative examples. 160 

 161 

Methods 162 

Data Collation 163 

The ES data reanalysed here comprises previously inconclusive ES experiments submitted 164 

for reanalysis as part of the Solve-RD project by 42 different research groups based in 165 

twelve countries across Europe, and Canada (range of 1-2,111 experiments submitted per 166 
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group). Each experiment was submitted via one of four European Reference Networks 167 

(ERN) partnering in Solve-RD, each focusing on a particular group of RD: EURO-NMD (rare 168 

neuromuscular diseases); GENTURIS (rare genetic tumour risk syndromes); ITHACA (rare 169 

malformation syndromes, intellectual and other neurodevelopmental disorders); RND (rare 170 

neurological diseases). 171 

 172 

A total of 9,351 ES experiments from 9,314 individuals (6,224 affected individuals and 3,090 173 

unaffected relatives) were initially submitted for reanalysis. After the removal of samples 174 

sequenced with enrichment kits for which the available control cohort was not large enough 175 

to allow accurate CNV identification, data from 9,171 individuals from 5,757 families was 176 

analysed (see Technical Results). While 1,320 of 1,788 (74%) families from ITHACA were 177 

composed of parent-child trios, facilitating identification of de novo mutations, only 239 of the 178 

remaining 3,969 (6%) probands from other ERNs were trios. ES had been performed using 179 

28 different enrichment kits (range of 4-2,078 experiments per kit), and each of the forty-two 180 

research groups had followed their own DNA library preparation, target enrichment, and 181 

short-read sequencing protocol in their local labs, or via external DNA sequencing providers. 182 

Furthermore, each group had previously undertaken their own historic analysis and 183 

interpretation of the resulting ES data to identify disease-causing variants, which has proven 184 

inconclusive. The date at which the initial ES analysis and interpretation had been 185 

undertaken ranged from six months to eight years prior to the experimental data being 186 

submitted to Solve-RD for reanalysis, however this information was not collected 187 

systematically for individual data sets. 188 

 189 

In addition to sequencing data, a phenotypic description for each affected individual was 190 

recorded in the PhenoStore module of the RD-Connect GPAP19, consisting of a minimum of 191 

five Human Phenotype Ontology terms (HPO20) wherever possible, and disease 192 

classification using Orphanet Rare Disease Ontology (ORDO) ORPHA codes 193 

(http://www.orphadata.org/cgi-bin/index.php), and/or OMIM identifiers21 194 
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(https://www.omim.org/) where appropriate, together with family pedigrees. A detailed 195 

description of this data set can be found in Laurie et al, 2023 (under review). 196 

CNV Identification 197 

Raw ES data was realigned to the hs37d5 reference genome22, using BWA-MEM23, as 198 

described in the Supplementary Materials. With the goal of maximising the probability of 199 

detecting potentially disease-causing CNVs, three different algorithms which identify CNVs 200 

based on DoC were applied. Two of these, Conifer4, and ExomeDepth6, have been widely 201 

applied to ES data with success previously, while the third, ClinCNV, was developed recently 202 

by a Solve-RD partner24. Each of these tools offers the practical advantage of separating the 203 

DoC calculation for each individual experiment from the CNV calling step, and thus CNVs 204 

were subsequently called in batches by enrichment kit. Furthermore, each algorithm 205 

provides an estimate of the likelihood that calls produced are biologically real, and the most 206 

likely false positive calls were excluded based upon these metrics. As primary filters, in the 207 

case of Conifer a value in excess of +/-1.75 SV-RPKM was required for a CNV call to be 208 

taken forward for biological interpretation, while for ExomeDepth a Bayes Factor (BF) 209 

greater than fifteen was required, and for ClinCNV a minimum log-likelihood estimation of 210 

twenty was applied (see Supplementary Methods for further detail). 211 

Call Filtering and Visualisation 212 

As the focus of Solve-RD is diagnosing RD cases, through the identification of rare variants 213 

that are potentially disease-causing, any apparent CNV call observed in a region where 214 

more than 1% of individuals in the whole sample had a similar type of call (i.e. a deletion or 215 

duplication) were discarded as being too common to be clinically relevant with respect to 216 

RD. Furthermore, CNVs returned for interpretation by clinical experts were restricted to 217 

those which overlapped with at least part of a gene in a predefined list of curated genes of 218 

interest provided by the respective ERN: EURO-NMD (n=615), GENTURIS (230), ITHACA 219 

(1,944), RND (1,820). The full list of ERN curated genes is provided in Supplementary 220 
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Table 1 and details as to how these lists were determined in Laurie et al, 2023 (under 221 

review). Potential CNVs of interest were subsequently categorised into six non-redundant 222 

classes to aid interpretation: Long CNVs (>500kb in length) ; Homozygous deletions; 223 

Heterozygous CNVs affecting genes known to cause disorders with an autosomal dominant 224 

mode of inheritance; Regions with apparent copy numbers of four or more; Gonosomal 225 

CNVs ; Potential compound-heterozygous double-hits in the form of a CNV affecting the 226 

second allele of a gene in which biallelic variants are known to be disease-causing, and in 227 

which a potentially pathogenic SNV has been previously identified in Solve-RD. 228 

 229 

To provide support for interpretation of the technical validity of CNV calls, images of regions 230 

containing CNV calls were generated automatically using the Integrative Genomics Viewer 231 

(IGV)25. A variety of custom tracks, including call tracks for each of the three algorithms, 232 

BAM DoC, and gene tracks for ERN genes of interest were incorporated, among others (see 233 

Supplementary Methods). 234 

Clinical Interpretation 235 

Further annotations to aid interpretation (Supplementary Table 2) were added to the results 236 

using AnnotSV26 (Version 3.0.7), and fully annotated CNV call sets generated for all tools 237 

together with accompanying customised IGV visualisations were distributed to clinical 238 

experts in each ERN for diagnostic interpretation. Each ERN prioritised calls for further 239 

investigation based on their expert knowledge of underlying disease mechanisms in their 240 

respective patients. Many CNV calls could be rapidly discarded based upon a lack of match 241 

between the gene potentially affected and the phenotype of the affected individual, and/or 242 

segregation patterns within the family. Others were rejected when visual inspection of the 243 

IGV tracks indicated that they were likely false-positive calls, and thus unlikely to be bona 244 

fide biological events. Where deemed necessary and when feasible, CNVs believed to be 245 

diagnostically relevant were validated at local centres using orthologous approaches. The 246 
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final decision as to whether a CNV was determined to be pathogenic or not was taken by the 247 

respective clinical experts from the ERN (see Supplementary Methods for further details). 248 

 249 

Results 250 

Technical Results 251 

Prior to the initiation of CNV calling, a minimal quality control was undertaken, which took the 252 

form of requiring that data from each submitted family included at least one affected 253 

individual with accompanying HPO terms. Furthermore, following alignment of sequencing 254 

reads, it was required that at least 70% of the target region of the enrichment kit had a DoC 255 

of ten reads. After removal of 143 experiments which did not meet these criteria, CNV calling 256 

was undertaken on data from a total of 9,171 individuals from 5,757 families, of whom 6,143 257 

had a rare condition. Initial investigations indicated the presence of a large variance in 258 

sequencing depth both within and between the twenty-eight enrichment kit batches, 259 

reflecting the heterogeneity of the sequencing data submitted to Solve-RD (Supplementary 260 

Figure 1). 261 

 262 

Following identification and removal of likely false positive calls based upon tool-specific QC 263 

metrics, the removal of commonly observed events, and restriction to events overlapping 264 

genes in the custom gene lists from the corresponding ERN, a total of 7,849 calls in 3,436 265 

affected individuals from 3,300 families remained for interpretation (Table1). The number of 266 

probands with at least one CNV call to be interpreted by clinical specialists from the ERN 267 

ranged from 113 for GENTURIS (33% of families), to 1,239 for ITHACA (69% of families) 268 

(Supplementary Table 3). No CNV of interest was detected in 2,707 affected individuals 269 

from the remaining 2,457 families. In addition, a further 393 pairs of potential CNV-SNV 270 

double-hit compound heterozygous variants in 226 affected individuals were returned to 271 

clinical experts for interpretation. Overall, a mean of 1.3 CNVs per proband were returned for 272 
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interpretation. However, as CNVs of potential interest were only identified in 55% of 273 

probands, this equated to 2.4 variants per proband that required interpretation. 274 

 275 

The total number of CNV calls in affected individuals returned for interpretation was highest 276 

for ExomeDepth (n=4,205), while ClinCNV called about two-thirds of this number (2,782), 277 

and Conifer approximately one-fifth (862), reflecting different predilections of the underlying 278 

algorithms with respect to sensitivity and specificity of CNV detection. While Conifer and 279 

ExomeDepth showed a significant bias towards calling duplications, the reverse pattern was 280 

observed for ClinCNV, which identified more deletions (p<0.00001 in all cases, Fisher exact 281 

test; Supplementary Table 4). We assessed the distribution of the length of CNVs returned 282 

for interpretation as identified by each too. Notably, the average length of CNVs detected by 283 

Conifer was approximately an order of magnitude larger than that of ExomeDepth, which in 284 

turn was longer than that of ClinCNV. This pattern held for both duplications and deletions, 285 

and again reflects differences in the way the tools identify and segment CNVs (Figure 1, 286 

Supplementary Table 5). 287 

Diagnostic Results 288 

Following expert interpretation, 105 potentially pathogenic CNVs of interest in 103 affected 289 

probands were identified, of which 52 have been confirmed as disease-causing in 51 290 

individuals (Table 2). The disease-causing CNVs included three “double-hit” instances 291 

where an SNV and CNV affecting different alleles of the same gene were identified, resulting 292 

in a compound heterozygous diagnosis, and one instance where two CNVs affecting 293 

different genes provided a dual genetic diagnosis for a complex phenotype. A further 25 294 

CNVs are regarded as pathogenic by the clinical experts, but not sufficient, to explain the full 295 

phenotype observed in the affected individual, including seven complete gonosomal 296 

aneuploidies (“Partially Explanatory” in Tables 2 and 3). A further 28 potentially pathogenic 297 

CNVs were identified for which further validation is not logistically possible due to lack of 298 

access to DNA and/or the patient (referred to as candidates below). While 81% (42 of 52) of 299 
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confirmed disease-causing CNVs are deletions, only 39% (7 of 18) of the partially 300 

explanatory pathogenic CNVs are deletions, even when disregarding the gonosomal 301 

duplications. Of the 28 candidate CNVs 57% (16) are deletions (Figure 2, Table 2). 302 

 303 

Of the 77 confirmed pathogenic CNVs, 40 (52%) were initially identified by all three callers 304 

(Figure 2, Table 2). However, in the case of ten of the 40, the Conifer call was subsequently 305 

discarded due to it being within the applied SV-RPKM threshold, and one of the ten was also 306 

discarded by the ExomeDepth workflow due to a low BF. Of the remaining 37 pathogenic 307 

CNVs, 36 (97%) were identified by ClinCNV, two of which subsequently failed ClinCNV 308 

quality control thresholds, while 25 (68%) were identified by ExomeDepth, five of which were 309 

subsequently discarded due to a low BF. Interestingly one of the 37, a duplication in PIEZO2 310 

was identified by Conifer alone. 311 

 312 

Examples of successful new diagnoses 313 

Below we provide an example of an RD case from each of the four ERN partners in Solve-314 

RD solved through the analysis of CNVs undertaken here. 315 

ERN EURO-NMD 316 

This male in his thirties first came to clinical attention in his adolescence, affected by poor 317 

balance, recurrent falls, and difficulty rising from the floor. Prior to this he had been able to 318 

run and play sports normally. His symptoms worsened slowly over time, and he is currently 319 

unable to walk or stand without assistance. He also has mild facial weakness and mildly 320 

elevated serum creatine kinase. His family history is negative, having several unaffected 321 

siblings. Muscle biopsy showed clear features of muscular dystrophy, and 322 

immunohistochemical analysis suggested reduced expression of dystrophin. Exome 323 

sequencing was initially undertaken in 2017, but no diagnosis was reached at that point. 324 
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As a result of reanalysis of the ES data undertaken here, a three-exon deletion affecting 325 

exons 45 through 47 of the DMD gene was detected by both ExomeDepth and ClinCNV, 326 

consistent with the suspected diagnosis of Becker Muscular Dystrophy. This hemizygous 327 

deletion was subsequently confirmed using Multiplex Ligation-dependent Probe Amplification 328 

(MLPA). Confirmation of the molecular diagnosis in this individual has enabled enhanced 329 

genetic counselling, as any future daughter he may have would be an obligate, and possibly 330 

manifesting, carrier of the CNV, thus requiring clinical management. 331 

ERN GENTURIS 332 

This family first came to clinical attention in 2003, meeting the criteria for hereditary diffuse 333 

gastric cancer (HDGC)27, as several family members had developed diffuse gastric cancers 334 

prior to 30 years of age. HDGC typically results from CDH1 loss of function28,29. However, 335 

Sanger sequencing of CDH1 performed proved negative, as did subsequent investigation in 336 

the form of MLPA, and ES, at which point no potentially explanatory SNVs, InDels, or CNVs 337 

were identified in CDH1, nor other candidate genes30. 338 

 339 

Following these negative findings, the ES data was submitted to Solve-RD for two affected, 340 

and four unaffected siblings. The comprehensive reanalysis of the ES data resulted in the 341 

identification of a ~116kb heterozygous deletion impacting half of the CDH1 gene (from 342 

intron 7 forwards) and the start of the downstream gene TANGO6 (as far as intron 14) 343 

(g:16:68846036-68964198del) in four of the six siblings (Supplementary Figure 2). The 344 

CNV was detected by both ClinCNV and ExomeDepth and further supported by split-reads 345 

and abnormally paired reads observed in data from one of the affected individuals. 346 

Visualisation in IGV, and subsequent MLPA, validated this large event. Of note, one of the 347 

unaffected siblings, a female carrier in her forties, has not developed gastric cancer to date, 348 

in accordance with previously reported incomplete penetrance among CDH1 mutation 349 

carriers31. Another of the unaffected siblings was a carrier but never developed gastric 350 

cancer as a result of having undergone prophylactic total gastrectomy due to the high 351 
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incidence of cancer in the family. The remaining unaffected siblings were found not to 352 

harbour the deletion, but unfortunately both have also already undergone prophylactic 353 

gastrectomy. Nevertheless, as a result of their inclusion in Solve-RD, the family has since 354 

been recontacted and enrolled in a clinical pathway of care, and their twenty-year diagnostic 355 

odyssey has now come to an end. Importantly, targeted genetic testing has now been made 356 

available to their offspring to avoid unnecessary prophylactic gastrectomy in subsequent 357 

generations. The functional analysis and clinical implications of this CNV are described in 358 

more detail in São José et al.32.  359 

ERN ITHACA 360 

This girl was first referred to paediatric neurology in her first year of life, presenting with 361 

generalised tonic-clonic seizures. During her infancy mild global developmental delay 362 

became evident, with delays in speech and language acquirement and in gross-motor skill 363 

acquisition Seizures were controlled with lamotrigine monotherapy, which could be 364 

discontinued during childhood following prolonged seizure-free periods. Apart from 365 

polyhydramnios, pregnancy and delivery were uncomplicated. Medical history comprised 366 

constipation and eczema, and family history was unremarkable. Physical examination 367 

revealed no additional phenotypic features i.e. no congenital anomalies, no facial 368 

dysmorphisms, and no growth abnormalities. Investigations, including cerebral MRI and 369 

general metabolic screening. Singleton ES was performed, followed by trio ES which 370 

revealed a heterozygous de novo SNV of uncertain significance (VUS) in STIP1 (STIP1; 371 

Chr11(GRCh37):g.63961718C>T; NM_001282652.1:c.418C>T; p.(Arg140*)). Within this 372 

diagnostic trajectory, no analysis dedicated to CNV detection was performed. 373 

 374 

The systematic reanalysis of ES data reported here led to the identification of a 375 

heterozygous 27kb deletion on chromosome 6p21 (chr6:31630124-31657924-DEL) in the 376 

proband. This deletion was detected by all three tools, and visual inspection of sequence 377 

alignment files in IGV clearly indicated the presence of the variant in the affected daughter, 378 
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and its absence in both parents, thus confirming that it is a de novo deletion. The deletion 379 

fully removes CSNK2B, LY6G5B and LY6G5C, and its breakpoints affect GPANK1 and 380 

ABHD16A. GPANK1, LY6G5B and LY6G5C currently have no disease association, and 381 

while ABHD16A is associated with autosomal recessive spastic paraplegia-86 382 

(MIM#619735), there is no apparent second hit in ABHD16A, and the phenotype of the 383 

proband does not comprise spastic paraplegia. CSNK2B, on the other hand, has recently 384 

been shown to be associated with autosomal dominant Poirier-Bienvenu 385 

neurodevelopmental syndrome (POBINDS; MIM#618732), in which truncating variants in 386 

CSNK2B result in haploinsufficiency, leading to early-onset seizures and highly variable 387 

impairments of intellectual functioning33–35. As the de novo deletion observed in this proband 388 

results in haploinsufficiency of CSNK2B, and her phenotypic descriptions fits within the 389 

CSNK2B-associated phenotypic spectrum, this 27kb deletion on chromosome 6p21 is 390 

regarded as explanatory for her rare condition, thus ending a seven-year diagnostic odyssey 391 

for this family. 392 

ERN RND 393 

This teenage female was first evaluated in paediatric neurology as a child, presenting with 394 

global developmental delay, and behavioural and learning problems. Retrospectively, the 395 

first symptoms had become apparent in her infancy, consisting of mild delayed development 396 

of fine and gross motor skills. Additionally, she had delays in language and speech 397 

development, and was diagnosed with attention deficit disorder, for which she is being 398 

treated with methylphenidate and responding well. No obvious dysmorphic features were 399 

observed upon physical examination, but mild hypertonia of the triceps surae, hyperreflexia, 400 

kinetic tremor, mirror hand movement, and a tiptoeing gait were observed. Subsequent 401 

cerebral MRI showed ventriculomegaly, corpus callosum hypoplasia, prominent cerebellar 402 

folia, and thin middle cerebellar peduncles. Genetic testing, consisting of aCGH (median 403 

resolution 180kb), targeted testing for Fragile X syndrome, and ES did not pinpoint a 404 

molecular cause. 405 
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 406 

Systematic reanalysis of the ES data undertaken here led to the identification of a 407 

heterozygous deletion of ~200kb at chromosome 4q31.1: Chr4(GRCh37):g.140187686-408 

140394334del, encompassing part of the MGARP gene (not known to be associated with 409 

disease), and the entire NAA15 gene, which encodes the catalytic subunit in the N-terminal 410 

acetyltransferase A complex (MIM: 608000). The deletion was identified by all three tools, 411 

and subsequently validated using high resolution aCGH (median resolution 60kb). Following 412 

review of the prior results, the absence of recall of the variant in the initial aCGH analysis 413 

was attributed to its limited resolution. The patient's mother, who had had similar learning 414 

problems and has mild cognitive disability, was subsequently also found to be positive for 415 

the deletion. No further family testing was possible. Echocardiography was normal in both 416 

cases. Loss-of-function variants in NAA15 and heterozygous deletion of this gene and 417 

nearby genes are associated with ‘Intellectual developmental disorder, autosomal dominant 418 

50, with behavioural abnormalities’ (MIM: 617787)36,37. This disorder has the features of a 419 

wide spectrum of neurodevelopmental severity and variable association of congenital 420 

anomalies, thus confirming that the observed CNV was causative in this case and ending 421 

this family’s seven-year diagnostic odyssey. 422 

Discussion       423 

Rigorous detection of CNVs from ES requires sequencing data that has been generated as 424 

uniformly as possible, in order that the test experiment can be compared against a similarly 425 

generated batch of matched control samples. However, the ES data submitted to Solve-RD 426 

had been generated using twenty-eight different enrichment kits and sequenced with 427 

different short-read technologies to different depths of coverage, in multiple sequencing 428 

centres across Europe. Hence the primary challenge encountered during this analysis was 429 

data heterogeneity. Similarly, from the perspective of diagnosis, it is essential to have a clear 430 

clinical description of the affected individual to be able to determine in which genes, variants, 431 

if encountered, may explain the observed phenotype. This was achieved here firstly through 432 
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use of the HPO ontology to capture a deep phenotypic description of affected individuals 433 

from the referring clinicians, and secondly using the curated set of genes of interest provided 434 

by each ERN. Together these significantly reduced the search space for potentially disease-435 

causing CNVs. 436 

 437 

The interpretation of raw CNV calls is challenging due to the initial high number of calls most 438 

tools report. We applied a robust filtering strategy to remove calls that were clearly unlikely 439 

to be of relevance for RD and benefited from the curated lists of genes of interest provided 440 

by each ERN. Nevertheless, visual inspection of the affected region using IGV was key for 441 

assessing the technical validity of remaining calls, prior to, or in parallel with, their biological 442 

interpretation. It is likely that this is an aspect where an AI-based tool for automated IGV-443 

image analysis would be of significant benefit, potentially saving many hours of human 444 

expert-review time. The clinical researchers representing each ERN applied their own 445 

prioritisation strategy when interpreting CNV calls, according to the specific pathologic and 446 

phenotypic characteristics of their patients.  447 

 448 

When used as a first-tier analysis, CNV detection from ES has been reported to result in 449 

diagnostic yields as high as 7-19%38–40, whereas yield The overall rate of novel diagnoses 450 

reached was 0.9%, ranging from 0.6% for RND and 0.9% for ITHACA to 1.2% for 451 

GENTURIS and EURO-NMD. Notably nine of the sixteen CNVs established as being 452 

disease-causing in  ITHACA cases could be confirmed as de novo mutations due to ES data 453 

being available from the proband’s parents. While our values are lower than those of prior 454 

reports, where yield from reanalyses efforts, have resulted in increases in diagnostic yield 455 

with respect to CNVs in the range of 1.6-2.0%41–43, in those studies the prior CNV analyses 456 

had largely consisted of only chromosomal microarray (CMA) analyses, which lack 457 

sensitivity for short CNV events which were hence identified in the subsequent ES-based 458 

CNV analyses. Our results reflect several factors: the likelihood that detailed CNV analysis 459 
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of the ES had been undertaken prior to submission to Solve-RD; the role that CNVs are 460 

likely to have in the respective class of disease; the time passed since the initial analysis, 461 

which would affect the number of genes known to be associated with a particular class of 462 

disease. Interestingly, the number of genes of interest in each of the custom ERN gene lists 463 

does not appear to be a factor given that GENTURIS had by far the shortest list, and RND 464 

and ITHACA the longest. 465 

 466 

There was a clear bias towards deletions vis-à-vis duplications being identified as 467 

pathogenic with 49 of 77 (64%) confirmed pathogenic CNVs being deletions, and 42 of 52 468 

(81%) disease-causing CNVs. This reflects the facts that duplications are more challenging 469 

to detect, and even when detected by ES, it is invariably unclear as to whether they are 470 

tandem duplications, possibly inverted, or inserted elsewhere in the genome, each of these 471 

scenarios being likely to result in a different biological consequence, making interpretation 472 

challenging. Furthermore, long duplications appear to be under less evolutionary constraint 473 

than similarly sized deletions44, suggesting that they are less likely to results in disease. 474 

Accordingly, the ACMG guidelines for the interpretation of constitutional CNVs45, require 475 

more supporting evidence for a duplication to be confirmed as pathogenic than is required 476 

for a deletion. 477 

 478 

It is noteworthy that, in comparison with the other two tools, Conifer called very few CNVs 479 

under 20kb in length, and indeed failed to successfully identify 18 of 20 deletions <20kb that 480 

were determined to be disease-causing, and the remaining two fell below the calling 481 

threshold. Notably, Conifer also failed to identify duplications over 1Mb in length, including 482 

seven sex-chromosome aneuploidies. It is this failure at the two extremes of CNV length that 483 

largely contribute to the inferior performance of Conifer. It should also be highlighted that we 484 

required a Z-score in excess of +/-1.75 for a CNV called by Conifer to be returned for 485 
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interpretation, whereas had we used +/-1.5, Conifer would have successfully identified a 486 

further eight events of the disease-causing CNVs, all but two of which were over 20kb in 487 

length. ClinCNV performed best of the three callers with this highly heterogeneous dataset, 488 

which is likely due to its more adaptive DoC calculation whereby it subsegments target 489 

regions into 120bp tiles, significantly improving resolution, particularly for short CNVs, most 490 

of which were also detected by ExomeDepth but some fell below the minimal calling 491 

threshold. 492 

 493 

In addition to cases of de novo dominant inheritance resolved by an individual CNV, we also 494 

identified eight cases where an SNV and CNV were affecting different alleles of the same 495 

gene potentially forming a disease-causing compound heterozygote. Two of these have 496 

been confirmed as being explanatory for the individuals’ conditions, with the remaining six 497 

requiring further validation. These findings underline the importance of having all data 498 

relevant to the interpretation of an affected individual’s condition readily at hand, as had the 499 

SNV and CNV analyses been undertaken independently, these individuals would have been 500 

unlikely to have received a diagnosis. Furthermore, in one affected individual, we identified 501 

two pathogenic CNVs affecting different genes, each of which explain unique features of the 502 

individual's complex phenotype, i.e. a dual diagnosis46. We are confident that many of the 503 

CNVs that we currently classify as candidates are likely pathogenic in the affected 504 

individuals, but complete follow-up has not yet been possible. The complete expert-curated 505 

dataset of deletions and duplications, together with the detailed phenotypes and pedigrees, 506 

and the aligned sequence files (CRAMs) are available to the entire RD community via the 507 

European Genome-Phenome Archive (EGA)47, allowing for new discoveries. 508 

 509 

There are many reasons why a pathogenic CNV identified here may not have been found in 510 

prior analysis of the ES data. Firstly, there may have been no attempt to identify CNVs by 511 
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the respective clinical research team, due to a lack of resources or expertise. However, we 512 

know that some form of prior CNV analysis had been undertaken for the majority of affected 513 

individuals analysed here. Secondly, the tool(s) applied previously for CNV detection may 514 

not have identified the relevant CNV, or though identified, it may have been discarded due to 515 

local quality control parameters applied e.g. approximately 10% of all the experiments 516 

submitted to Solve-RD were of sufficiently poor quality such that one of the centres involved 517 

in the reanalysis undertaken here would have routinely QC-failed the sample in their 518 

diagnostic workflow and thus not attempted to identify CNVs. Thirdly, while the CNV may 519 

have been identified, there may not have been any known association between the affected 520 

gene(s) and the clinical presentation of the patient at the time of the initial analysis, resulting 521 

in, at best, classification of the CNV as a variant of uncertain significance (VUS), and the 522 

individual remaining undiagnosed. 523 

 524 

We would emphasise that any observations of potential tendencies in the results presented 525 

here must be interpreted prudently since this was an extremely heterogeneous dataset both 526 

in terms of the breadth and the quality of the data, and in terms of the time and expertise that 527 

had been applied to the interpretation of the ES data in analyses undertaken prior to 528 

submission to Solve-RD. As we gather more information about the role of CNVs in RD 529 

through projects that share data widely such as Solve-RD, hopefully the accuracy of CNV 530 

detection will improve, and the entire process of identification and interpretation of this 531 

important class of variants, from sequencing data to identification of pathogenic variants can 532 

be automated, resulting in families affected by RD receiving a diagnosis sooner rather than 533 

later. 534 

 535 

Limitations of this work 536 
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The work presented here has several clear limitations vis-a-vis reaching a diagnosis for 537 

individuals affected by an RD. Firstly, given that the data was from ES, and that we only 538 

considered events affecting one of between 230 and 1,944 genes of interest identified by 539 

each of the ERNs, we will obviously miss any non-exonic events, or CNVs affecting genes 540 

not in the list of genes of interest. However, undertaking this work without using gene lists 541 

would result in a currently insurmountable load of data for interpretation, and novel gene 542 

discovery was not the goal of the work undertaken here. However, such discoveries are 543 

enabled by the sharing of data with the wider RD community vie the EGA, which we hope 544 

will enable more cases to be solved.  Different approaches in interpretation undertaken by 545 

the ERN experts may have resulted in some biologically relevant events being discarded as 546 

uninteresting, which may be particularly true for duplications, for which evidence of biological 547 

relevance in RD is currently relatively scarce. It is also possible that application of other tools 548 

designed to find CNVs affecting only single exons, such as VarGenius-HZD48, may have 549 

allowed the identification of shorter events missed by the tools applied. With the future 550 

adoption of long-read genome sequencing technologies such as those provided by Oxford 551 

Nanopore Technologies and Pacific Biosciences, it is likely that the accuracy of CNV 552 

detection, and hence ease of interpretation, will improve markedly. 553 

 554 

Despite these limitations, we have successfully provided diagnoses to at least 51 families 555 

who had previously undergone extensive genetic testing and in many cases multiple hospital 556 

visits over many years, some even decades, without having been provided with a diagnosis. 557 

Within the larger Solve-RD reanalysis of all variant types, these 51 CNVs were the second 558 

most common type of disease-causing variant identified, after SNVs/InDels, contributing to 559 

~9% of the successful diagnoses Laurie et al. 2023 (under review). The ending of a 560 

diagnostic odyssey has many benefits to patients and their families, beyond changes in 561 

medical management and genetic counselling of relatives. It also allows better 562 

understanding of disease progression, access to disease-specific online communities, and 563 
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psychological closure, amongst other benefits49. The work undertaken here indicates the 564 

value of comprehensive (re)-analysis of copy number variants in undiagnosed RD cases, 565 

even from historic ES data, and has resulted in patients and their families being given an 566 

accurate diagnosis, finally ending their diagnostic odysseys. 567 

Recommendations 568 

Based upon our findings, we suggest the following recommendations for future (re)-analyses 569 

of ES data with respect to identification of disease-causing CNVs. 570 

 571 

1) Know your enrichment kit. Investigate how well, and how evenly, does it capture your 572 

genes of interest.  573 

2) Choose your tools wisely. While Conifer has been shown to work with homogenous 574 

datasets e.g. thousands of ES datasets generated using the same kit, in the same 575 

sequencing centre, it does not perform with the heterogeneous dataset analysed 576 

here. Furthermore, it identified very few CNVs <20kb in length, missing many 577 

disease-causing variants. 578 

3) Identifying regions that are commonly copy-number variant. In this way any CNVs 579 

observed in such regions can be excluded from being potentially disease-causing. 580 

4) Use an in silico candidate gene list when possible. This will greatly accelerate the 581 

process of interpretation. If the list is very short, then any signal of a CNV in a gene 582 

of interest should be examined further, since the sensitivity of tools remains low, and 583 

the prior probability of the gene being variant is high. However, as lists grow longer, 584 

this probability reduces, and calls will have to be filtered by quality thresholds. 585 

5) Visualisation of CNV calls using a tool such as IGV is essential to assure that they 586 

are likely to be real biological events, prior to expending time and effort on further 587 

interpretation, investigation, and/or confirmation using orthologous techniques. 588 
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Figures 589 

1.A Deletions 590 

 591 

1.B Duplications 592 

 593 
Figure 1. Distribution of lengths of 7,849 CNV calls detected in 3,436 affected individuals, separated into 594 

deletions (Panel A) and duplications (Panel B). The x-axis represents the length of calls identified (log10 scale), 595 

and the y-axis the number of events observed. ClinCNV is represented in red. Note that the y-axis scale is 596 

different in 1.A from 1.B  597 
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2.A Disease-causing CNVs 598 

2.B Partially explanatory CNVs 599 

 600 

2.C Candidate pathogenic CNVs 601 

Figure 2. Heat maps illustrating the length of confirmed disease-causing CNVs (Panel A), partially 602 

explanatory disease-causing CNVs (Panel B) and candidate disease-causing CNVs (Panel C) 603 

identified in this study. Duplications are shown in blue, and deletions in red. Cyan and pink, 604 

represent duplication and deletion calls, respectively, which were not reported back for 605 

interpretation due to being QC filtered in the workflow for the respective tool. The approximate 606 

length of the event is indicated in the top layer using a log10 scale. The affected gene is indicated 607 
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along the bottom. Where more than one gene was unaffected, it is shown as multiple, with the 608 

affected chromosome indicated. 609 

Data availability and Ethics Statement 610 

Data will be deposited at EGA. Accession numbers to be provided. The family (FAM) and 611 

participant (P) identifiers used in this manuscript are pseudonymised and known only to the 612 

researchers involved In Solve-RD. The Ethics committee of the Eberhard Karl University of 613 

Tubingen gave ethical approval for this work. 614 
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