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A B S T R A C T

For mobile robots to operate in an autonomous and safe manner they must be able to adequately perceive
their environment despite challenging or unpredictable conditions in their sensory apparatus. Usually, this
is addressed through ad-hoc, not easily generalizable Fault Detection and Diagnosis (FDD) approaches. In
this work, we leverage Bayesian Networks (BNs) to propose a novel probabilistic inference architecture that
provides generality, rigorous inferences and real-time performance for the detection, diagnosis and recovery of
diverse and multiple sensory failures in robotic systems. Our proposal achieves all these goals by structuring
a BN in a multidimensional setting that up to our knowledge deals coherently and rigorously for the first time
with the following issues: modeling of complex interactions among the components of the system, including
sensors, anomaly detection and recovery; representation of sensory information and other kinds of knowledge
at different levels of cognitive abstraction; and management of the temporal evolution of sensory behavior.
Real-time performance is achieved through the compilation of these BNs into feedforward neural networks.
Our proposal has been implemented and tested for mobile robot navigation in environments with human
presence, a complex task that involves diverse sensor anomalies. The results obtained from both simulated
and real experiments prove that our architecture enhances the safety and robustness of robotic operation:
among others, the minimum distance to pedestrians, the tracking time and the navigation time all improve
statistically in the presence of anomalies, with a diversity of changes in medians ranging from ≃ 20% to ≃ 500%.
. Introduction

Mobile robots are increasingly present in a wide variety of contexts,
ncluding industrial (Galar et al., 2020), domestic (Luperto et al., 2019),
ealthcare (Kyrarini et al., 2021), commercial (Shakhatreh et al., 2019)
nd military (Kang et al., 2020), among many others. The majority
f tasks for which mobile robots are deployed require platforms that
perate with a certain degree of autonomy and safety; however, this is
ifficult to achieve in general due to the uncertain and complex scenar-
os where they operate. In this paper we are concerned with one of the
ost critical subsystems of a mobile robot in that sense: its sensory

pparatus; in particular, the ability of the robot for diagnosing and
vercoming sensory faults and misbehaviors, always taking uncertainty
nto account as well the real time requirements related to the particular
ask.

Faults can be classified according to the concrete aspect of the
ystem they affect. In the general context of robotics, this may refer
o problems related to either the robot hardware or software, or to
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other issues derived from the interaction of the robot with its environ-
ment (Khalastchi and Kalech, 2019a,c). This taxonomy of problematic
situations represents a variety of undesirable conditions at different
levels of abstraction. To illustrate this, consider, for instance, the
problem of human motion detection and tracking (Beck and Bader,
2019; Brunetti et al., 2018), closely related to navigation safety in
mobile robotics. From the perspective of the sensory apparatus, a faulty
situation could provoke issues either at the low-level behavior of phys-
ical sensors (e.g., false detections of free space in lidars due to intense
infrared lighting), at the level of more elaborate sensory information
such as human presence detection (e.g., occlusion produced by static
or dynamic obstacles) or at both. Abnormal situations like these should
be addressed concurrently by the robotic agent for a correct operation,
even though they are related to different ontologies and at the same
time subjected to uncertainty and real-time constraints.

During the last decade, the research field of Fault Detection and
Diagnosis (FDD) (Abid et al., 2021) has produced a broad variety of
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methodologies aimed at addressing abnormal situations in the context
of mobile robotics (Khalastchi and Kalech, 2019a,c). They can be clas-
sified either as model-based, data-driven or knowledge-based (Khalastchi
nd Kalech, 2019c; Cai et al., 2017a). Model-based approaches typically
ely on a mathematical model of the expected behavior of a certain
obotic component which is then compared to its actual, observed
ehavior in order to diagnose possible anomalies. Keliris et al. (2018),
or instance, uses an estimation method for sensor fault detection and
solation based on the theory of non-linear systems, which is then
ested in a simulated robotic manipulator. Data-driven methods, in
ontrast, do not employ models but instead use statistical information
f expected robotic behavior for diagnosis. In Teh et al. (2020) a
ystematic review of common errors in physical sensor data, and tech-
iques to detect and correct them can be found that deals particularly
ith principal component analysis (PCA) and artificial neural networks

ANN). Lastly, knowledge-based methodologies combine aspects of the
revious approaches, usually with the aim of encoding human expert
nowledge for the detection of abnormal conditions. This paradigm is
pplied, e.g., in Wang et al. (2021), by introducing novel fuzzy logic
odels to tackle sensory failures in the context of dynamical systems

ontrol.
Although the mentioned paradigms have demonstrated their utility

or the diagnosis of abnormal conditions affecting sensors, they do
ot provide either a simultaneous treatment of such anomalies at
ifferent levels of abstraction or a rigorous mathematical represen-
ation of uncertainty, which affects the scope of their application,
nd they are not always focused on achieving real time performance.
o solve the issue of dealing with uncertainty rigorously, there exist
nowledge-based methodologies (Khalastchi and Kalech, 2019c) that
ely on Bayesian networks (BNs) (Pearl, 1985). BN are grounded on
probabilistic framework that enables modeling complex systems and

easoning about them through the encoding of human expert knowl-
dge (Russell and Norvig, 2020; Darwiche, 2009; Koller and Friedman,
009). However, despite the successful application of Bayesian net-
orks for FDD problems in general (Cai et al., 2017a), their use in

he context of robotic sensory systems is scarce (Cai et al., 2020), and
urrent implementations such as Lin et al. (2020) and Liu et al. (2020)
o not leverage the possibility of dealing with very complex and general
ystems that BNs can provide, in part due to the lack of a suitable
tructure capable of integrating different ontologies of anomalies and
iverse sources of information while providing real-time performance.
n a previous work (Castellano-Quero et al., 2021) we contributed with
first proposal of a BN-based architecture aimed at the detection and

ecovery of a diversity of sensory anomalies, but it was restricted to
ow-level issues of physical devices, and the obtained performance was
ot suitable for real-time use in general.

In this paper we present an evolution of Castellano-Quero et al.
2021) aimed at overcoming the mentioned limitations and the ones of
ther existing works. In particular, we introduce a new architecture that
an capture homogeneously a more generic variety of sensory abnormal
onditions. This is based on a novel multidimensional paradigm that:
i) can encode causal relationships among the components of a robotic
ensory system, including sensory data sources, anomalies detectors
nd recovery processes; (ii) enables the modeling of temporal evolution
f sensory behavior, since it is grounded on dynamic Bayesian networks
DBNs) (Koller and Friedman, 2009), and (iii) provides a way of in-
orporating, in a systematic manner, knowledge related to different
evels of cognitive abstraction, i.e., belonging to diverse ontologies that
re, in principle, difficult to reconcile. Anomaly detection and recovery
ith our approach is possible thanks to the definition of a suitable

nference algorithm for the new architecture that fuses all information
n an efficient way by leveraging the multidimensional structure.

Last but not least, our architecture is complemented with a sys-
ematic procedure to compile the Bayesian network into feedforward
eural networks (Aggarwal, 2018) which also leverages the particular
opologies of the proposed BN-based model for training, thus our

olution is a holistic BN + NN approach.

2

In order to assess both qualitatively and quantitatively the utility
f our new proposal and its advantages in generality and performance,
e have implemented it for a complex sensory system in the context of
obile robot navigation in environments with human presence. This

epresents a use case in which the incorporation of the new features
f our proposal is essential (i.e., the concurrent handling of several
evels of cognitive abstraction, the representation of sensory dynamics
nd the real-time performance). Statistical results obtained from both
imulated and real experiments prove that our approach serves to
nhance the safety and robustness of robotic operation and enables
he design of robust and efficient FDD systems for complex tasks like
hat one. We have used well-known measures of safety to evaluate this;
mong others, the minimum distance to pedestrians, the tracking time
nd the navigation time get all better in the presence of anomalies,
howing improvements with respect to the baseline ranging from ≃
20% to ≃ 500% in medians. For this quantitative assessment, we have
performed ablation studies both concerning the ability of parts of our
system to deal with different anomalies and its real-time performance
(with or without NN compilation), and also carried out comparative
studies with variations of the proposal, using as baseline a modular,
very general and publicly available pedestrian detection and tracking
system for robots that also pursues robustness but is not based on
Bayesian Networks (Linder and Arras, 2016).

The remainder of the paper is as follows. Section 2 presents a
review on existing works devoted to fault diagnosis and recovery,
particularly in the context of robotic systems, taking also into account
related implementations of Bayesian networks. Section 3 provides a
formal definition of our new multidimensional architecture for sensory
diagnosis and recovery. Section 4 develops the theoretical aspects of the
methodology introduced in this work for performing real-time inference
in the previous model. Section 5 describes both the implementation of
our proposal for a particular sensory system and its validation through
a set of simulated and real experiments, including the quantitative
analysis of the statistical results. Finally, Section 6 summarizes the most
relevant contributions of this work, its current limitations, and possible
future research directions.

2. Related works

The general aim of research in Fault Detection and Diagnosis (FDD)
is to conceive novel methodologies that serve to identify or predict
malfunctions as well as to tackle such problems (Abid et al., 2021). Suc-
cessful implementations of FDD can be found in a wide variety of tech-
nologies, including a diversity of physical systems, e.g., motors (Abid
et al., 2019; Cai et al., 2021, 2022), electric power devices (Vaish et al.,
2021), discrete electronic components (Guo et al., 2022) or even in
physical control systems (Kong et al., 2022, 2023) among many others.
Also, FDD methodologies have been applied to software, e.g., for the
detection of errors in run time (Zhou et al., 2018), for prediction of
defects (Shao et al., 2018), or even for development tasks (Hirakawa
et al., 2021). However, the application of FDD to robotics in general
is relatively recent (Khalastchi and Kalech, 2019a), and traditional
approaches have been found not to be always suitable for the particular
constraints imposed by robotic systems (Khalastchi and Kalech, 2019c).
In spite of that, research in this scope has been increasing in recent
years (Long et al., 2021; Graham Miller and Gandhi, 2021; Azzalini
et al., 2020; Das et al., 2021).

Research in FDD methods for dealing with hardware anomalies has
an important focus on sensory devices, both exteroceptive (Bader et al.,
2017) and proprioceptive (Liao et al., 2021). There also exist numerous
contributions devoted to tackle actuation faults (Yu and Dong, 2019;
Kadiyam et al., 2020) and even for addressing abnormal situations
related to both sensors and actuators concurrently (Doran et al., 2020).
From the point of view of robotic software, existing methodologies
enable for the detection of issues provoked by faulty algorithmic imple-

mentations (He et al., 2019) as well as for the treatment of execution
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errors (Katz et al., 2020). Also, there exist hybrid approaches that tackle
both hardware and software abnormal behavior (Medina et al., 2022).
Research in FDD related to interaction problems has also been intense
in the last decades, especially in the case of coordination of multiple
robotic agents (Rakesh and Shrivastava, 2022; Khalastchi and Kalech,
2019b). In contrast, FDD methods have not been traditionally applied
for human–robot interaction (Khalastchi and Kalech, 2019c; Honig and
Oron-Gilad, 2018), although research related to this topic has been
gaining relevance recently (Tolmeijer et al., 2020; Kontogiorgos et al.,
2020).

Mobile robotic platforms in particular are often used in highly
uncertain settings while facing a variety of potential abnormal and
challenging conditions (e.g, when deployed in industries, hospitals,
homes, etc. Bonci et al., 2021; Alatise and Hancke, 2020). Although the
proposed methods in this case have been proven to be effective, they
either lack a mathematical, rigorous treatment of uncertainty (Doran
et al., 2020; Tarapore et al., 2019) or they are restricted to only tackle
problems related to particular systems or kinds of robotic platforms (Za-
haf et al., 2022; Keipour et al., 2019). There exist recent techniques in
machine learning research that aim to compactly model heterogeneous
and complex sources of information from available data, e.g., learning
algorithms for graph neural networks (GNNs) (Jiang et al., 2022) and
novel deep learning models for robotic semantic perception (Singh
et al., 2023). Although relevant for modeling complex systems, these
approaches do not explicitly contemplate fault diagnosis.

To overcome these limitations, a number of works in the scope of
general FDD ground their methods on the use of Bayesian networks (Cai
et al., 2017a, 2020). Research in Bayesian network-based methods
for FDD has been intense in the last decade for a wide diversity
of applications (e.g., energy systems Mirnaghi and Haghighat, 2020,
critical infrastructures Hossain et al., 2020, manufacturing Zhang et al.,
2021, etc.); however, the restricted amount of current solutions for
robotics do not leverage all the possibilities offered by BNs, and most
of these proposals are still conceived to only address specific anomalies
in particular tasks (Zhi and Yangi-Shang, 2020; Li and Yang, 2022;
Matsuoka and Sawaragi, 2022).

In Castellano-Quero et al. (2021) we presented a Bayesian network-
based methodology aimed at the modeling of any kind of abnormal
condition affecting physical robotic sensors, which also enables for the
recovery of sensory information under problematic situations. Although
proven useful, this proposal still has some important limitations. First,
it does not allows for the representation of temporal evolution of
sensory information, i.e., sensory dynamics, and it can only handle
discrete random variables. In this work we present a new definition of
our modeling architecture based on the theories of dynamic Bayesian
etworks and hybrid Bayesian networks (Koller and Friedman, 2009),
hich enables the modeling with both continuous and discrete ran-
om variables. These probabilistic frameworks have been successfully
pplied in a diversity of other contexts related to FDD (Cai et al.,
017a). For instance, there exist applications of DBNs for the diagnosis
f large-scale (Zhao et al., 2020) and small-scale (Cai et al., 2017b)
hysical systems, including terrestrial (Gomes and Wolf, 2021) and
erial (Dezan et al., 2020) autonomous vehicles, in which the use of
ybrid BNs has also been explored (Gomes and Wolf, 2019).

Another relevant limitation of previous works is related to the mod-
ling of sensory anomalies at different levels of cognitive abstraction,
hat is, dealing with different ontologies of abnormal circumstances. In
he literature of general FDD, there exist some works that implement
bstraction in the form of hierarchical models that have also been
uccessfully applied for the diagnosis of a variety of physical systems (Li
t al., 2022; Mondal et al., 2021; Gomes and Wolf, 2019). However,
one of these works are conceived for the diagnosis of robotic sensory
ystems, which is our focus.

Finally, we also aim to perform anomaly detection and recovery in
eal time, which our model achieves through the hybridization with

eedforward neural networks (Aggarwal, 2018) in a systematic manner, t

3

as explained in Section 4.3. In artificial intelligence jargon, the process
of representing a probabilistic query as a function is called compilation
of Bayesian networks (Darwiche, 2009), which has also been addressed
by using arithmetic circuits (Darwiche, 2003). There exist a number of
works in the literature that solve this problem by employing neural
networks (Jia et al., 2017; Löwe et al., 2021), but they are mostly
conceived for discrete BNs. Also, they are all devised for monolithic
networks, and do not leverage the particular structure of the model for
increasing the efficiency of training, as we propose in this work.

As a summary of the main features provided in our solution and
their presence or absence in other works related to FDD in robots,
please see Table 1. Also, in the case of applying FDD to the particular
task of navigation in environments with human presence, Table 2 lists
the main anomalies dealt with in literature, including this work.

3. A multidimensional representation of robotic sensory systems

In this section we cover the definition of the basic element that
we need to represent the sensory system of a mobile robot, using for
that Bayesian networks with a restricted structure according to the
system constraints. This basic element and the most common queries
for the sensory system are presented in Section 3.1, while the complete
network architecture is described in Section 3.2. Here, we redefine the
models of Castellano-Quero et al. (2021) to allow the incorporation
of sensory dynamics, the concurrent treatment of different levels of
sensory abstraction and the handling of both discrete and continuous
random variables.

Formally, a Bayesian network (BN) for a set of 𝑛 random variables
is a pair (G, 𝛩) consisting of a directed acyclic graph G over variables

𝐙, called the network structure, and a set of Conditional Probability
Distributions (CPDs) 𝛩 for each variable in 𝐙, called the network
parametrization (Darwiche, 2009; Koller and Friedman, 2009). This
model represents the joint probability distribution over the variables
in 𝐙. However, in this work we also aim to represent sensory dynam-
ics. For that, we need to rely on an extended definition of Bayesian
network for discrete-time stochastic dynamic processes, called Dynamic
Bayesian Network (DBN). Defined on a set of state variables that evolve
over time, i.e. 𝐙(𝑡), a DBN is a pair (0, →), where 0 is a Bayesian
network defined only over the initial distribution of the state variables
𝐙(0), called initial network, and → is a fragment of Bayesian network
whose structure is defined over the union of state variables at adjacent
finite time intervals, 𝐙(𝑡−1) ∪ 𝐙(𝑡), and only parameterized for variables
𝐙(𝑡), called transition network (Koller and Friedman, 2009). In general,
Bayesian networks defined over both continuous and discrete random
variables are known as hybrid Bayesian networks (Koller and Friedman,
2009), which is the kind of model we will use in the present work.

As it will be detailed later on, the conditional probabilities that
complete the Bayesian network definition can come from expert knowl-
edge, environmental information, etc., or they can be learnt from
experimental data. In this work some of these distributions are deduced
automatically, e.g. in the case of virtual evidences, as will be described in
Section 5.3; others are provided through expert knowledge, as we also
explain in the experimental section. In general, automatic learning of
these data is out of the scope of this work.

Once a Bayesian network is completely defined, it is possible to
use it to obtain new information from available one, i.e., to perform
inference, in particular in its forms of induction —generalizing the
knowledge present in the net for coping with the input data— and
abduction —hypothesizing the causes of those data, e.g., identifying
anomalies—. In general, this process consists in obtaining the condi-
tional distribution P(𝐐|𝐄), where 𝐐 is the set of query variables (the
ones of interest) and 𝐄 the set of observed variables (also known as
evidence, which represents the existing knowledge). In our context,
𝐙 = 𝐐 ∪ 𝐄 and 𝐐 ∩ 𝐄 = ∞. The notion of evidence mentioned here is
usually called certain or hard evidence, since it is normally assumed that

he knowledge it represents is obtained with no uncertainty. However,
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Table 1
Relevant features offered by current state-of-the-art paradigms for FDD in robotics. Columns are: Appli.: Applicability to different platforms
and tasks, Heter.: Integration of heterogeneous sources of information, Dynam.: Dealing with dynamic sensory behavior, Ontol.: Integration of
different ontologies of sensory information, RT: Real-time performance.
Method Feature

Appli. Heter. Dynam. Ontol. RT

Azzalini et al. (2020) – – ✓ – –
Das et al. (2021) ✓ ✓ – – –
Doran et al. (2020) ✓ ✓ ✓ – –
Keipour et al. (2019) – – ✓ – ✓

Li et al. (2022) – ✓ – – –
Long et al. (2021) – – – – ✓

Matsuoka and Sawaragi (2022) – ✓ ✓ – –
Tarapore et al. (2019) – ✓ – – –
Zahaf et al. (2022) – – ✓ – –
This paper ✓ ✓ ✓ ✓ ✓
Table 2
Common anomalies addressed by current state-of-the-art methods for FDD in human motion detection and tracking. Columns are: Sh.Oc.:
Short-term occlusions, Ln.Oc.: Long-term occlusions, F.P.Det.: False positive detections, Mult.Id.: Multiple identification issues.
Method Anomaly

Sh.Oc. Ln.Oc. F.P.Det. Mult.Id.

Abebe-Assefa et al. (2022) ✓ – ✓ –
Dimitrievski et al. (2019) ✓ – ✓ ✓

Lei et al. (2022) ✓ – ✓ ✓

Sumi and Santha (2019) ✓ – ✓ ✓

Yang et al. (2023) ✓ ✓ ✓ –
Zou et al. (2020) ✓ – ✓ –
This paper ✓ ✓ ✓ ✓
if the available information is not completely certain, the evidence is
said to be soft, and it can be emulated by employing a method known
s virtual evidence (Darwiche, 2009). For a more in-depth treatment
f Bayesian networks and inference, please refer to Darwiche (2009)
nd Koller and Friedman (2009).

.1. The Bayesian sensor

The basic unit of the proposed architecture is a so-called Bayesian
sensor, which represents a single aspect of the robotic sensory system
under study. Such aspect may be one of the quantities measured by the
on-board sensors (e.g., distance, speed, temperature), or more elabo-
rated sensory information built upon low-level data (e.g., the presence
or category of a detected obstacle). In general, a Bayesian sensor is
conceived to capture any sensory information about the state of the
robot or its environment, regardless of the complexity or the level of
abstraction.

Formally, a Bayesian sensor  can be defined either as a static or
a dynamic Bayesian network over a set of variables 𝐁𝐳, depending on

hether it is necessary to encode the temporal dynamics. In the static
ase,  = (𝐵𝑔 , 𝐵𝜃), with 𝐵𝑔 the graph and 𝐵𝜃 the set of CPDs, while,
n the dynamic one,  = (0,→), with 0 the initial network and →

he transition network, each one with its corresponding structure and
arametrization. Recall that a Bayesian sensor can be defined over both
iscrete and continuous random variables, i.e., it can be represented
y a hybrid Bayesian network. In the context of this work, hybrid
etworks will always be Conditional Linear-Gaussian (CLG) Bayesian
etworks (Koller and Friedman, 2009). The general structure of this
asic element is depicted in its two possible forms in Fig. 1; this
etwork is organized as follows:

• Ideal sensor node (𝐼): it encodes the true state of the sensory
aspect being represented, i.e., in the absence of abnormal condi-
tions. This variable will usually correspond to the query set in an
inference task (𝐐 = 𝐼) made to recover from faulty or unreliable
sensory information. The ideal node is also structurally employed
for defining the relationships among the existing Bayesian sensors
in the system, by using it as parent of other ideal nodes, and
also for encoding the dynamics of the sensory information it
4

represents, i.e., for encoding distributions of the form P(𝐼 (𝑡)|𝐼 (𝑡−1)),
if necessary. All of this is shown in Fig. 1.

• Real sensor nodes (𝐑): this is a set of variables representing
the values actually measured —observed— by the related sen-
sory sources available on-board the mobile robot (e.g., physical
sensors, algorithms producing sensory knowledge, etc.). Here,
|𝐑| = 𝑛𝑠, where 𝑛𝑠 is the number of such sources. This set has
the role of evidence in an inference task (𝐑 ⊆ 𝐄), as long as
the measured, available information is absolutely certain, i.e., if
it represents hard evidence. If the available information is un-
certain, the set 𝐑 is replaced by the set of child nodes 𝐑′ (see
Fig. 1) in order to allow the incorporation of virtual evidence. For
that, the observed values are imposed as hard evidence on these
nodes, and the uncertainty associated with them is encoded in
their corresponding CPDs, which are of the form P(𝑅′

𝑖|𝑅𝑖), with
𝑅′
𝑖 ⊂ 𝐑′ (see Section 4.1 for more details).

• Anomalies subnetwork (): this is a Bayesian network, defined
over variables 𝐀𝐳, that serves to reason about the existence of
abnormal conditions affecting a particular Bayesian sensor. For
that, this network may incorporate information from external
sources as well as from any other sensor in the system. Regardless
of its particular form, it must contain a subset of discrete binary
random variables 𝐀 ⊆ 𝐀𝐳, called anomalies nodes, each one
representing the existence of a particular adverse situation. Any
of these variables may be part of the query set (𝐐 = 𝐴𝑖 ⊆ 𝐀) in
order to identify the causes for abnormal sensory behavior.

• Virtual subnetwork (): this is also a Bayesian network, de-
fined over variables 𝐕𝐳, that is aimed at inferring supplementary
information related to the sensory aspect being represented by
the ideal node. Such knowledge would be essential to allow the
recovery of the correct state of the sensor in case of abnormal
situations. This subnetwork may also integrate knowledge from
external sources or other sensors, and it must contain a variable
𝑉 ⊂ 𝐕𝐳, called virtual node, encoding such result.

The Bayesian sensor is defined over variables 𝐁𝐳 = 𝐼∪𝐑∪𝐑′∪𝐀𝐳∪𝐕𝐳.
Note that the same set forms the definition of the dynamic version of
the sensor, i.e., 𝐁(𝑡)

𝐳 , although, in that case, only the ideal variable 𝐼

evolves over time (see Fig. 1).
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Fig. 1. Transition part → of the dynamic Bayesian network representing the Bayesian sensor defined in this work. Both the initial network 0 of the dynamic Bayesian network
and the static version of the sensor can be obtained by removing the node and the arcs highlighted in purple color. Squared nodes represent discrete random variables while the
round ones may be either discrete or continuous.
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To complete its definition, the network must also be parameterized
by filling the corresponding CPDs. For that, we could use, for instance,
expert knowledge, environmental information, etc., or we could even
learn the parameters from experimental data (Koller and Friedman,
2009). The conditional probabilities assigned in the CPDs of the nodes
(in our case, particularly the ‘‘Ideal nodes’’) allow the Bayesian network
to do sensor fusion, since they take into account the probabilistic
relations existing from other nodes (particularly, other sensors); when a
query is solved, those conditional probabilities fuse information coming
from different sources in a rigorous and coherent way thanks to its
common probabilistic foundation.

All the existing Bayesian sensors in a sensory system and their rela-
tionships can be represented in a unique, monolithic Bayesian network
that could be used either to recover from abnormal conditions or to
identify the causes of those anomalies. These two tasks can be formally
defined as queries over ideal and anomalies variables, respectively, and
may be formulated in general for dynamic Bayesian networks as well.
However, as we will explain later on, it is not always possible to get
exact answers for such monolithic model.

Inference queries in the context of DBNs may adopt different forms.
One of them is known as filtering (Murphy, 2002) and it is the one
that will be used here. If the time slice representing the present in the
DBN is denoted as 𝑡, the filtering query has the form P(𝐐(𝑡)

|𝐄(0∶𝑡)). This
notation aims to highlight the fact that the evidence variables range
from the initial to the present time slice, i.e., 𝐄(0∶𝑡) = ∪𝑡

𝜏=0𝐄
(𝜏). Here,

we will only consider query sets with one variable, i.e., |𝐐| = 1, since
it is not necessary to compute the joint state of several sensors; instead,
each one will be deduced sequentially, as explained in Section 4. Thus,
a query variable 𝐐(𝑡) could be either the ideal node of some Bayesian
sensor 𝐼 (𝑡) or one of its anomaly nodes 𝐴(𝑡)

𝑖 ⊂ 𝐀(𝑡). Then, the evidence
set for a given time slice 𝑡 would be defined as:

𝐄(𝑡) =
𝑛
⋃

𝑖=1
𝐑(𝑡)
𝑖 (1)

where each 𝐑(𝑡)
𝑖 represents the set of real sensor variables 𝐑 for the

th Bayesian sensor 𝑖 at time 𝑡 in a sensory system with 𝑛 sensors.
ecall that the set 𝐑 can be replaced by 𝐑′ for some sensors in Eq. (1)
epending on whether soft evidence is to be emulated or not, as
xplained before. In the particular case that all the Bayesian sensors in a
ystem were static, queries must be re-formulated without considering

he evolution of time, as described in Castellano-Quero et al. (2021).

5

.2. A multidimensional Bayesian architecture for robotic sensory systems

The complete representation of the sensory apparatus of a mobile
obot could be formalized as a monolithic Bayesian network containing
ll Bayesian sensors required in the system, with an arbitrarily complex
tructure, as explained in Section 3.1. Unfortunately, using that model
or inference tasks poses several important drawbacks, starting with the
omputational cost of inference in a monolithic network (exponential
n its width and linear in the number of nodes).

We address these issues in the following subsections. With the
notions introduced there, it is possible to define a complete Bayesian
sensory architecture for the representation of very complex robotic
sensory systems, but take into account that this architecture is actually
an approximate representation of the monolithic network of the whole
sensory system, since it is based on different kinds of partitions of that
model.

More concretely, the proposed sensory architecture is grounded
on the propagation and fusion of information in three different ways
(i.e., layered, cognitive and dynamic). Thus, the architecture could
be described as a three-dimensional model whose axes are (as an
illustration of this structure, please see Fig. 3):

• Layered axis: it represents an ordering of sensors according to
their mutual dependencies, and thus, to their behavior in the
system.

• Temporal axis: it describes the evolution of the information
represented by a particular sensor over discrete time intervals.

• Cognitive axis: it represents different levels of cognitive abstrac-
tion (i.e., ontologies).

One of the core contributions of this paper is the demonstration that
this multidimensional architecture not only preserves the natural sensor
fusion capabilities of Bayesian networks (with some approximation er-
ror), but also enables the representation of very diverse, heterogeneous
knowledge, that is, more complex networks can be devised within a
rigorous and coherent framework.

3.2.1. Breaking exponential complexity: the layered axis
This was already addressed in Castellano-Quero et al. (2021), in

which we introduced an approximate approach, based on a so-called
layered network, that strategically splits the monolithic model in order

to improve the efficiency of inference. In this work we re-use that
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proposal to deal with different levels of cognitive abstraction and also
adapt it to the incorporation of sensory dynamics through the use of
Dynamic Bayesian Networks instead of the more conventional BNs.

The modeling of any sensory system with our architecture begins
with the definition of the set of all the dependencies existing among
its components. A dependency arises whenever the behavior of some
sensory source can be explained or affected by that one of another.
Unfortunately, we showed in Castellano-Quero et al. (2021) that it is
also possible to get cyclic dependencies between pairs of sensors, i.e., to
find that their behaviors mutually influence each other. For instance,
this may happen for the case of two different sensors that capture
similar physical magnitudes (e.g., a wheel encoder and a gyroscope).
Cyclic Bayesian network models prevent inference in general. In that
previous work, we solved this issue with an approximate approach that
breaks each pair of cyclic dependencies into two non-cyclic ones in a
systematic manner and that then compiles all those dependencies in
a graph. This model, called dependency graph 𝐷𝐺, is annotated in this
work to allow the incorporation of information about sensory dynamics
and levels of abstraction. Please refer to Appendix A for its definition
and a procedure for its construction.

In a nutshell, each layer is identified in 𝐷𝐺 by a number 𝛼 ∈ N,
stablishing a hierarchical ordering of sensors in which the lower ones
xplain or affect the behavior of the higher ones. Thus, a layer 𝐋𝛼 is
set of Bayesian sensors 𝐋𝛼 = {𝑎,𝑏,𝑐 ,…} each one verifying that

he length of the longest directed path ending at the considered sensor
n graph 𝐷𝐺 is 𝛼.

In order to adapt this layered structure to different levels of ab-
traction as well as the temporal dynamics associated with the existing
ensors, the complete sensory system of a mobile robot is represented
s a pair  = (𝐷𝐺 ,), where 𝐷𝐺 is the annotated dependency graph,
hich includes the information about sensory dynamics and levels of
bstraction, and  = {𝐋0,𝐋1,… ,𝐋𝑛} is a set of all the existing layers
n the sensory system, which contains the definition of all the Bayesian
ensors in it. In the proposed model, each layer or level  is an isolated
ayesian network. For this reason, ideal nodes are to be instantiated
i.e., replicated) for every Bayesian sensor that needs them. These
eplicated nodes serve as an interface to propagate information through
he existing levels in the model, for the purposes of inference. The
onnection this interface represents is not always of the same nature,
nd it can be implemented in two different ways, as explained below.

.2.2. Enabling dynamics: the temporal axis
The incorporation of sensory dynamics is simply done by using

eplicated ideal nodes representing ideal variables in the immediately
revious time interval (e.g, 𝑡−1) as parents of the ones referring to the
urrent interval 𝑡 (see Fig. 1). More formal details have already been
rovided at the beginning of Section 3.

.2.3. Improving generality and ordering complexity: the cognitive axis
Another one of the important issues mentioned above comes from

he necessity of modeling sensory systems with heterogeneous compo-
ents that produce information related to different ontologies or levels of
ognitive abstraction at the same time (e.g., a sensory system simultane-
usly estimating the pose and the identity of a detected pedestrian); they
re difficult to reconcile since they are subjected to different operations
nd relations, and this hinders the production of good network designs;
ore concretely, having sensors at different levels of abstraction in

he same network might introduce, in general, undesired dependencies
mong them, potentially leading to inaccurate or unreliable inference
esults and increasing structural complexity and therefore the cost of
nference.

The novel solution we propose in this work is to treat such sensors
n separate networks, each one with a layered structure as explained
efore and based on DBNs. This has already been contemplated in the
efinition of the Bayesian sensor in Section 3.1, since it counts with a
echanism that allows decoupling from other sensors based on virtual
6

evidence: in the case that a sensor needs to be connected to another one
belonging to a higher level of cognitive abstraction, it would suffice to
replace such connection by asserting the conclusions produced by the
former sensor as virtual evidence in the latter.

The graph 𝐷𝐺 encodes a dependency relationship between two
ensors by representing one of them as a parent of the other. When
he two sensors belong to the same level of cognitive abstraction, the
ependency is said to be purely layered, since each sensor would be

assigned to a different layer of the ones in . On the other hand, when
the two sensors do not belong to the same level of abstraction, the
dependency is said to be cognitive, since they are assigned to different
layers and also to different levels of cognitive abstraction at the same
time. In the first case, the connection is implemented by just replicating
the ideal node corresponding to the parent sensor in the layer assigned
to the child one. However, in the second case, two real nodes 𝑅 and
𝑅′ must be added as descendants of the replicated ideal one (see
Fig. 1). This means that the connection between sensors belonging to
different levels of cognitive abstraction is implemented by asserting
virtual evidence in an auxiliary Bayesian sensor created in the higher
level (see Section 4.1).

3.2.4. Discrete nodes with continuous parents
There is an extra constraint that has to be considered for the

construction of our sensory architecture. The inference algorithm devel-
oped in this work, which will be introduced in Section 4, is conceived
to only handle CLG Bayesian networks, i.e., hybrid networks in which
discrete nodes are not allowed to have continuous parents (Koller and
Friedman, 2009). For this reason, the architecture construction proce-
dure is affected every time a sensor defined over continuous variables
needs to convey information to another one based on discrete variables.
If this happens, the connection between sensors is implemented as in
the case of cognitive dependencies (i.e., through virtual evidence) with
the exception that the support of the replicated ideal variable would
also be discretized.

3.2.5. A simple example

A model of the complete sensory system can be obtained by imple-
menting Algorithm 1. This is a contruction procedure for the sensory
architecture given an updated list of Bayesian sensors and an annotated
dependency graph for them (both obtained from the application of
Algorithm A.1).

The construction procedure is illustrated more clearly with an ex-
ample. Consider, for instance, a sensory system with three Bayesian
sensors 𝑎, 𝑏 and 𝑐 (for simplicity, they will be referred to as 𝑎, 𝑏 and
). In this example, sensors 𝑏 and 𝑐 are defined over continuous random
ariables, and sensor 𝑎 over discrete ones. Concerning cognitive levels,
he ontologies related to sensor 𝑐 belong to a low level of cognitive

abstraction, while the ones related to sensors 𝑎 and 𝑏 belong to a higher
level. Regarding temporal dynamics, only sensor 𝑐 represents informa-
tion that evolves over time. Also, there is a cyclic dependency between
sensors 𝑎 and 𝑏, while sensor 𝑐 influences sensor 𝑎 (see Fig. 2(a)).

The lists representing all the previous constraints (see Appendix A)
are as follows: 𝐁𝐢𝐝 = {𝑎, 𝑏, 𝑐}, 𝐂𝐢𝐝 = {1, 1, 0}, 𝐓𝐢𝐝 = {𝑑, 𝑑, 𝑑}, 𝐃𝐧𝐜 =
{(𝑐, 𝑎)} and 𝐃𝐜 = {(𝑎, 𝑏), (𝑏, 𝑎)}. By applying Algorithm A.1, the set of
dependencies is updated so that 𝐃𝐧𝐜 = {(𝑐, 𝑎), (𝑎, 𝑏), (𝑏, 𝑑), (𝑎, 𝑑)} (in this
case, a new instance of sensor 𝑎 named 𝑑 is created). The resulting
annotated dependency graph is shown in Fig. 2(b); the monolithic
model of the sensory system is depicted in Fig. 3(a) and the resulting
architecture is shown in Fig. 3(b).

This theoretical example aims to show all the capabilities of the
proposed architecture at once. Please refer to Section 5.3 for an im-
plementation in a real robotic context.
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Fig. 2. Dependencies among Bayesian sensors for the example in the text. (a). Cyclic directed graph form. (b) Annotated dependency graph form. Recall that the sensor labeled
as 𝑑 is a new instance of sensor 𝑎.
Fig. 3. Bayesian network representing the sensory system for the example in the text. Colors indicate the kind of node according to the definition of Bayesian sensor (see Fig. 1).
Here, replicated ideal nodes and auxiliary Bayesian sensors are in white. Squared nodes represent discrete random variables and round ones represent continuous random variables.
The nodes that are not marked with any time interval actually correspond to the current one 𝑡. (a) Transition network corresponding to the monolithic form of the sensory system.
(b) Three-dimensional approximate model of the system obtained from Algorithm 1.
4. Real-time approximate reasoning in robotic sensory systems

This section presents the foundations of the algorithm we propose
in this work for performing inference in our architecture. Such method,
described in Section 4.1, is an extension of the one we developed
in Castellano-Quero et al. (2021) that now handles multidimensional
representations of sensory systems and allows for the treatment of both
discrete and continuous random variables. In Section 4.2 we discuss
the reasons why our inference method is approximate and its compu-
tational cost. After that, in Section 4.3, we introduce a methodology
that leverages the proposed algorithm to compile probabilistic queries
as feedforward neural networks, and that is aimed at enabling inference
in real time.

4.1. Inference in multidimensional sensory systems

We propose a methodology conceived to perform efficient inference
by leveraging the particular structure of the multidimensional model
introduced in this work, which is an approximate, partitioned repre-
sentation of the monolithic model of a sensory system, as explained
in Section 3.2. Thus, the obtained results from the application of this
method will also be approximate.
7

The proposed algorithm mainly consists in asserting posterior distri-
butions related to ideal nodes of Bayesian sensors (see Section 3.1) as
either prior or virtual evidences of their corresponding instances placed
in other parts of the model, i.e., either in some higher layered level or in
the next time slice. Our method begins by processing the layered axis,
from the lowest level to the one containing the desired query variable,
in sequential order. In the case that there is any dynamic sensor in the
architecture, this whole process involves every time interval 𝑡 until the
desired one 𝑡∗ is reached, taking into account that all the layers in the
architecture must be processed for 𝑡 < 𝑡∗. In this case, the obtained
posterior distributions for dynamic sensors are stored for their use in
future time intervals. Inference in a given layer is done by applying
an adapted version of the exact jointree algorithm for CLG Bayesian
networks (Koller and Friedman, 2009; Murphy, 2002).

As explained in Section 3.2, the propagation of information (rep-
resented in this case by posterior distributions) can be performed in
three different ways, and this is done within each layer of the model as
follows. To begin with, a posterior distribution corresponding to some
ideal node is obtained by performing inference on its corresponding
layer. Then, the distribution can be used in a different layer in one out
of three different ways depending on the kind of connection existing
between the sensors involved. First, if the posterior is obtained in a
previous time interval 𝑡−1, the distribution is encoded as a prior of the
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Algorithm 1 Construction of the multidimensional Bayesian architec-
ture

input:
𝐁𝐢𝐝: updated list of identifiers of Bayesian sensors (algorithm A.1)
𝐷𝐺: annotated dependency graph (algorithm A.1)

output:
: sensory system

subroutines:
𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝐺, 𝑛):
𝑃 ← subset of vertices in graph 𝐺 that are parents of node 𝑛
return 𝑃

𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝐷𝐺 , 𝑖, 𝑗):
𝐶 ← boolean value indicating whether nodes 𝑖 and 𝑗 in 𝐷𝐺 belong to a
different cognitive level
return 𝐶

𝑐𝑑𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑖, 𝑗):
𝐶 ← boolean value indicating whether Bayesian sensors 𝑖 and 𝑗 are
based on discrete and continuous variables respectively
return 𝐶

𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝑃 𝑎𝑡ℎ(𝐺, 𝑛):
𝛼 ← length of the longest directed path in graph 𝐺 ending at node 𝑛 (see
Cormen et al., 2022; Ahammad et al., 2020)
return 𝛼

main:
1:  ← ∞ (empty set of layers)
2: for each identifier 𝑖 ∈ 𝐁𝐢𝐝 do
3: 𝑃 ← parents(𝐷𝐺 , 𝑖)
4: 𝑖 ← design a complete Bayesian sensor (see Fig. 1) including new

instances of the ideal nodes from the Bayesian sensors identified by 𝑃
5: for each node 𝑗 ∈ 𝑃 do
6: 𝐶𝐶 ← 𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝐷𝐺 , 𝑖, 𝑗)
7: 𝐶𝐷 ← 𝑐𝑑𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑖, 𝑗)
8: if (𝐶𝐶 ∨ 𝐶𝐷) is true then
9: add auxiliary Bayesian sensor for virtual evidence in node 𝑗 of

𝑖
10: if 𝐶𝐷 is true then
11: discretize the support of variable associated with node 𝑗 of

𝑖
12: end if
13: end if
14: end for
15: 𝛼 ← longestPath(𝐷𝐺 , 𝑖)
16: if ∄𝐋𝛼 ∈  then
17: 𝐋𝛼 ← ∞ (empty set of Bayesian sensors)
18: 𝐋𝛼 ← 𝐋𝛼 ∪ 𝑖
19:  ←  ∪ 𝐋𝛼
20: else
21: 𝐋𝛼 ← 𝐋𝛼 ∪ 𝑖
22: replace old layer 𝐋𝛼 ∈  with the current one
23: end if
24: end for
25:  = (𝐷𝐺 ,)
26: return 

corresponding ideal instance in the desired layer 𝐿 for the current time
interval 𝑡, i.e:

P(𝐼 (𝑡)𝐿 ) = P(𝐼 (𝑡−1)𝐿 |𝐄(0∶𝑡−1)), (2)

where 𝐼 (𝑡)𝐿 refers to some ideal node variable belonging to layer 𝐿.
Second, if the dependency is purely layered, the posterior is encoded
as a prior distribution of the corresponding replicated ideal node:

P(𝐼 (𝑡)) = P(𝐼 (𝑡)|𝐄(0∶𝑡)), (3)
𝐿𝑟 𝐿

8

where 𝐿𝑟 denotes a higher layer containing the corresponding repli-
cated instance of ideal node variable 𝐼 (𝑡)𝐿 . Lastly, if the dependency
is cognitive, the posterior is encoded as an uncertain observation (i.e,
as virtual evidence) of the auxiliary Bayesian sensor created in the
target layer (see Algorithm 1). In this work, we implement virtual
evidence as follows. Let 𝑅 be one of the real sensor nodes in a certain
Bayesian sensor and 𝑅′ its auxiliary child (see Fig. 1). If 𝑅 represents a
ontinuous random variable, soft evidence consists in the observation
f a certain value 𝝁 ∈ R𝑛, with 𝑛 the cardinality of 𝑅, along with an

uncertainty defined by a positive semi-definite 𝑛 × 𝑛 covariance matrix
2. Then, virtual evidence is implemented by asserting hard evidence
′ = 𝝁 and by parameterizing:

𝑝(𝑅′
|𝑅) =  (𝑅;𝛴2), (4)

where 𝑝 denotes a density and  represents a normal distribution
whose mean is the same as the value of parent variable 𝑅 and its vari-
ance, the observed uncertainty 𝛴2. On the other hand, if 𝑅 represents
a discrete random variable, soft evidence consists in the observation of
a mass distribution for variable 𝑅 itself, given by a vector of real pa-
rameters 𝜣 =

(

𝜃1, 𝜃2,… , 𝜃𝑛
)

with ∑𝑛
𝑖=1 𝜃𝑖 = 1. If we denote the possible

values for variable 𝑅 as 𝑟1,… , 𝑟𝑛, virtual evidence is implemented by
asserting hard evidence 𝑅′ = 𝑟1 and by parameterizing:

P(𝑅′ = 𝑟𝑖|𝑅 = 𝑟𝑖) = 𝜃1, ∀𝑖 (5)

P(𝑅′ = 𝑟1|𝑅 = 𝑟𝑖) = 𝜃𝑖, ∀𝑖 (6)

and

P(𝑅′ = 𝑟𝑖|𝑅 = 𝑟𝑗 ) = 𝜃𝑖, ∀ (𝑖 > 1) ∧ (𝑖 ≠ 𝑗). (7)

The proposed inference methodology, which uses the subroutine
described in algorithm 2, is presented more formally in algorithm 3
in its dynamic form, since that is the most general case. This proposal
works by performing inference with the exact jointree on each one of the
multiple CLG Bayesian networks in the multidimensional architecture,
in the order indicated in the algorithms. The jointree inference method
transforms an input Bayesian network into a secondary model, called
the jointree  , which is an undirected graph that is annotated with
subsets of the joint distribution of the problem, called factors,  =
{𝐅1,𝐅2,…}. The target query can always be obtained from at least one
of this factors by marginalizing it. Please refer to Koller and Friedman
(2009) for more details.

4.2. Approximate inference and computational complexity

In summary, the inference method proposed in this work is approx-
imate due to two reasons. One the one hand, the defined multidimen-
sional architecture is itself an approximate, partitioned representation
of the whole monolithic model of a sensory system, as explained before.
On the other hand, our proposal is also approximate because it might
not take into account all the available pieces of evidence, due to the
way the layered axis is defined, as we explain below.

For a given time slice, our algorithm propagates posterior distribu-
tions from layer zero to the desired one, regardless of the following
higher layers. For this reason, it will not consider the evidences asso-
ciated with those sensors from which there is no directed path to the
sensor of interest. This leads to a more reduced set of evidences than the
actual one, from the point of view of the layered axis. However, such
axis is not the only one affected, since the format of query used here for
temporal dynamics is the one of filtering, which accumulates evidences
from the initial time interval to the present one. This also implies
that, for a filtering query in a particular variable, the reduced set of
evidences would lack the same subset of variables for all the considered
time intervals. Our proposal provides an approximation given by:

P(𝐐(𝑡)
|𝐄(0∶𝑡)) ≈ P (𝐐(𝑡)

|𝐄(0∶𝑡)), (8)
𝑎 𝐫
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Algorithm 2 processLayer(𝐋𝑖, 𝐞, 𝑡,  (𝑡−1),  (𝑡))
input:
𝐋𝑖: 𝑖-th layer from  in sensory system 
𝐞: set of evidences from sensory data
𝑡: current time interval (if necessary)
 (𝑡−1): set of former posterior distributions for ideal nodes in dynamic
sensors (if necessary)
 (𝑡): equivalent set of posteriors for the current time interval (if necessary)

output:
 : set of posterior distributions of ideal and anomaly nodes of layer 𝐋𝑖
 (𝑡): updated set of current dynamic posteriors

subroutines:
𝑗𝑜𝑖𝑛𝑇 𝑟𝑒𝑒( , 𝐞):

 ← ∞
( , ) ← apply the CLG version of the exact jointree algorithm (Koller

and Friedman, 2009) to network  with evidences 𝐞
for each ideal node 𝐼𝑗 and anomaly node 𝐴𝑘 in network  do

𝐏 ← get distribution P(𝐼𝑗 |𝐞) from an appropriate 𝐅𝑖 ∈ 
 ←  ∪ (𝐏, 𝐼𝑗 )
𝐏 ← get distribution P(𝐴𝑘|𝐞) from an appropriate 𝐅𝑖 ∈ 
 ←  ∪ (𝐏, 𝐴𝑘)

end for
return 

𝑢𝑝𝑑𝑎𝑡𝑒𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠(𝐋𝑖,):
𝐋𝑖 ← update priors of all the ideal nodes of dynamic sensors in layer

𝐋𝑖 using posteriors from 
return 𝐋𝑖

𝑠𝑡𝑜𝑟𝑒𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠( (𝑡),):
 ← set of pairs (𝐏,𝐼 (𝑡)

𝑖 ) representing posteriors of dynamic ideal
variables from 

 (𝑡) ←  (𝑡) ∪
return  (𝑡)

main:
1: 𝐞𝑖 ← subset of evidences for layer 𝐋𝑖 (𝐞𝐢 ⊂ 𝐞)
2: if 𝑡 > 0 then
3: 𝐋𝑖 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠(𝐋𝑖,  (𝑡−1))
4: end if
5:  ← 𝑗𝑜𝑖𝑛𝑇 𝑟𝑒𝑒(𝐋𝑖, 𝐞𝑖)
6:  (𝑡) ← 𝑠𝑡𝑜𝑟𝑒𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠( (𝑡),)
7: return ( ,  (𝑡))

where P𝑎 denotes distributions over our approximate model and 𝐄(0∶𝑡)
𝐫 =

∪𝑡
𝜏=0𝐄

(𝜏)
𝐫 represents a reduced set of evidences (i.e., 𝐄(0∶𝑡)

𝐫 ⊆ 𝐄(0∶𝑡)). For
a particular time slice 𝑡:

𝐄(𝑡)
𝐫 = {𝐸|𝐸 ∈ 𝐄(𝑡) ∧ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑡ℎ(𝐐(𝑡), 𝐸) ∶ 𝐸,𝐐(𝑡) ∈ 𝑆𝑔}, (9)

where 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑡ℎ is true if there is at least one directed path from
the variable in 𝐐(𝑡) towards variable 𝐸 in the graph of the monolithic
DBN representing the sensory system, 𝑆𝑔 .

There is also another issue that needs to be considered regarding
he approximation in Eq. (8). In general, it is not always possible to
ompare such approximate inference to an exact distribution defined
ver a complete monolithic model, for two different reasons. One of
hem is that the monolithic model of a sensory system is not conceived
o be a CLG Bayesian network in general, since it may contain dis-
rete variables with continuous parents (this happens in the model of
ig. 3(a)). Exact inference is not possible in such a model, and the
xisting alternatives address the inference problem by using approx-
mate numerical integration and particle-based methods (Koller and
riedman, 2009). The other reason refers to the treatment of different
ognitive levels in the same network (this also happens in the model
f Fig. 3(a)), which we avoid by splitting the model into separate parts

hrough the mechanism of virtual evidence. For both situations, such
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Algorithm 3 Approximate inference in a Bayesian sensory architecture
input:
: sensory system (see algorithm 1)
𝐞: set of evidences from sensory data
𝑄: query variable (ideal or anomaly node)
𝐿: layer associated with variable Q
𝑡: current time interval (if necessary)
 (𝑡−1): set of former posterior distributions for ideal nodes in dynamic
sensors (if necessary)

output:
P(𝑄(𝑡)

|𝐄𝐫
(0∶𝑡) = 𝐞𝐫 (0∶𝑡)): filtered distribution for variable Q at time 𝑡 given

the reduced evidence (see text)
 (𝑡): set of current posterior distributions for ideal nodes in dynamic
sensors (if necessary)

subroutines:
𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(, 𝑁):
return 𝐏 as the probability distribution in  associated with node 𝑁

main:
1:  (𝑡) ← ∞ (empty set of posteriors)
2:  ← initialize all the priors corresponding to replicated ideal nodes with

uniform distributions
3: ( ,  (𝑡)) ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐿𝑎𝑦𝑒𝑟(𝐋0, 𝐞, 𝑡,  (𝑡−1),  (𝑡))
4: for 𝑖 = 1 to 𝐿 do
5: for each Bayesian sensor 𝑗 ∈ 𝐋𝑖 do
6: 𝐂 ← set of replicated ideal nodes in 𝑗
7: for each node 𝑐𝑘 ∈ 𝐂 do
8: 𝐏𝑘 ← 𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛( , 𝑐𝑘)
9: if 𝑐𝑘 is part of an auxiliary Bayesian sensor (see algorithm 1)
then

0: assert virtual evidence in that sensor by using 𝐏𝑘
1: else
2: replace current CPD for node 𝑐𝑘 by 𝐏𝑘
3: end if
4: end for
5: end for
6: ( ,  (𝑡)) ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐿𝑎𝑦𝑒𝑟(𝐋𝑖, 𝐞, 𝑡,  (𝑡−1),  (𝑡))
7: end for
8: P(𝑄(𝑡)

|𝐄𝐫
(0∶𝑡) = 𝐞𝐫 (0∶𝑡)) ← 𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛( , 𝑄)

9: return (P(𝑄(𝑡)
|𝐄𝐫

(0∶𝑡) = 𝐞𝐫 (0∶𝑡)),  (𝑡))

an split monolithic model will be the one considered for the definition
of the exact distributions referred to in Eq. (8).

The computational complexity of the inference method proposed in
this work depends on the cost of the jointree algorithm, which can be
expressed as 𝑂(𝑛 exp(𝑤)), with 𝑛 the number of nodes in the jointree
structure and 𝑤 its width (please refer to Darwiche (2009) for further
details). Note that this exponential character of the cost is mostly given
by the presence of discrete random variables in the problem (Koller
and Friedman, 2009). Since our inference algorithm applies this exact
method once for each layer in the architecture, the complexity for one
time interval can be expressed as:

𝑂(𝑛1exp(𝑤1) + 𝑛2exp(𝑤2) +⋯ + 𝑛𝑖exp(𝑤𝑖) +⋯ + 𝑛𝐿exp(𝑤𝐿)), (10)

where 𝐿 is the number of layers in the architecture. This expression
should be multiplied by the total number of time intervals (from the
initial to the present one), however, this is not necessary in our case, for
the following reason. Many inference methods for DBNs perform online
filtering by considering the complete set of evidences on every slice.
The proposed algorithm, which can also be used for online inference,
only incorporates evidences related to a particular time interval, thanks
to the storage of certain posterior distributions across different slices.
This makes unnecessary to accumulate all the existing evidences, as in
the mentioned algorithms.
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Fig. 4. Shapes of the activation functions used for the definition of the neural network models employed in this work. (a) Purely linear. (b) Logistic sigmoid. (c) Softmax (output
corresponding to a four-dimensional input vector). (d) Hyperbolic tangent.
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4.3. Enabling real-time inference with feedforward neural networks

The approximate inference algorithm introduced in Section 4.1 en-
ables to reduce the computational cost w.r.t inference over monolithic
models under certain conditions. Regarding Eq. (10), we can affirm that
𝑤𝑖 ≤ 𝑤𝑚, being 𝑤𝑚 the treewidth of the complete monolithic network.
This holds because our architecture is defined by deleting arcs among
different layers, which also implies the elimination of any existing
undirected loop in the original model, generally leading to a more
reduced treewidth (Darwiche, 2009). However, this algorithm does
not guarantee real-time performance in general, since the treewidth
of each layer is not bounded and the computation time would still be
exponential.

Fortunately, it is possible to overcome this efficiency limitation of
our algorithm by leveraging certain aspects of its implementation. For
that, it is important to note that a Bayesian network can be seen as
a family of functions, each one corresponding to a particular query
P(𝐐|𝐄); thus, a BN defined over variables 𝐙 represents a single function
𝑓 for each possible partition of this set into 𝐐 and 𝐄 such that 𝐙 = 𝐐∪𝐄
and 𝐐 ∩ 𝐄 = ∞. Each function 𝑓 would then map an instantiation of
the evidence to a set of parameters representing the target probability
distribution. Formally, for the case of hybrid Bayesian networks:

𝑓 ∶ N𝑑 × R𝑐 → R𝑝, (11)

where 𝑑 is the cardinality of the subset of the evidence defined over
discrete random variables 𝐄𝑑 , 𝑐 the cardinality of the subset of the
evidence defined over continuous random variables 𝐄𝑐 and 𝑝 the di-

ension of the space of parameters defining distribution P(𝐐|𝐄). Note,
lso, that 𝐄 = 𝐄𝑑 ∪ 𝐄𝑐 .

The process of representing probability queries as functions is usu-
lly referred to as compilation of Bayesian networks (Darwiche, 2009).
he proposal presented in this work relies on the use of feedforward
eural networks (Aggarwal, 2018) for that. Our strategy consists in the
esign and training of a different neural network for approximating
ach possible query related to the sensory system. This would signif-
cantly reduce the on-line computational cost, since virtually all of the
ork performed by our algorithm would be transferred to the off-line

raining process and only function evaluation effort would be needed
or on-line inference. This generally leads to real-time performance, as
e show in our validation experiments in Section 5.6.

The training process could also be performed by using a mono-
ithic model of the system. Unfortunately, inference in potentially
arge monolithic networks can be extremely inefficient in general, and
ossibly impractical, which would hinder or prevent the obtention of
he necessary training data. The other problem, related to the training
rocess itself, relies on the fact that the cardinality of the evidence set
ay be arbitrarily high. Such a large set would lead to a neural network
ith a large amount of inputs, which could be, in turn, really difficult

o train.
The approach for neural network design and training we propose
n this work is based on our Bayesian architecture and its inference
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lgorithm, which allow to alleviate the mentioned computational re-
uirements. In our case, a query is always related to only one layer
f the architecture, thus, it is not necessary to perform inference in
he whole monolithic network. In order to obtain a training dataset,
he subset of evidences corresponding to the layer of interest would be
onsidered as input data, although this is not enough, since each layer
ncludes an interface formed by a set of replicated ideal nodes 𝐈𝑟 whose
PDs for priors P(𝐼𝑟 ⊂ 𝐈𝑟) have to be included as well. Note, however,
hat this incorporation makes inference in lower layers unnecessary,
hich represents an advantage w.r.t the monolithic approach. On

he other hand, output data will correspond to parameters of queries
(𝐐|𝐄). The training datasets for each neural network are obtained by
ampling the space of possible values for the inputs and then calculating
he corresponding outputs. This process represents a simulation of the
ifferent Bayesian networks defined in the architecture. If the number
f inputs is high enough, sampled data should only contain values
epresenting common situations. The rest will be generalized by the
eural network itself.

One aspect that has to be considered before training is the definition
f each neural network in terms of number of hidden layers and neu-
ons as well as the shape of the activation functions employed. There
re no strict rules to choose an appropriate number of neurons for each
idden layer or the number of them, however, the output activation
unction must fit the shape of the output data, which represent pa-
ameters of some pdf or pmf, as mentioned before. Here, purely linear
ctivation functions are used for outputs referring to queries involving
ontinuous variables; in the discrete case, a logistic sigmoid function
s employed if the query variable has a discrete binary support (since
ts image is defined between zero and one) and a softmax function is
sed if the support is non-binary (since its shape is the one that best fits
he form of a pmf). Regarding hidden layers, the chosen functions are
lways hyperbolic tangents. Fig. 4 shows the shapes of the mentioned
ctivation functions, and the neural network design is formalized in
lgorithm 4.

The last aspect to be taken into account for the training process
s the choice of an appropriate learning algorithm and a hardware
latform to run it (here, this refers either to a CPU or to a GPU).
gain, there is no general rule for such a decision, thus, it can be
ade based on the experience acquired throughout different trials. The
ost suitable algorithms for this case are the well-known Levenberg–

Marquardt (LM) (Marquardt, 1963) and the Scaled Conjugate Gradient
(SCG) (Møller, 1993). The method proposed in this work for obtaining
a set of neural networks representing all possible queries in a sensory
system is formalized in algorithm 5, which also relies on algorithm 4.

Finally, note that our hybridization of BNs with NNs should be
considered as a whole system where both parts cannot be separated
while maintaining the same performance: on the one hand, compilation
leverages the structure of the Bayesian architecture in order to be feasi-
ble (compilation of an equivalent monolithic BN would not be practical
for the cost of the inferences). On the other hand, NNs cannot be trained
for the same problem alone while preserving the rigorous probabilistic

foundations of Bayesian inference: NNs, per se, perform induction,
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Algorithm 4 designNeuralNetwork(𝑛in, 𝑛out , 𝑄)
input:
𝑛in: number of inputs
𝑛out : number of outputs
𝑄: query variable

output:
𝙽: untrained neural network for performing queries over variable 𝑄

main:
1: 𝙽 ← empty neural network with 𝑛in inputs and 𝑛out outputs
2: if 𝑄 is discrete and binary then
3: 𝙽 ← add a logistic sigmoid function as output activation for 𝙽

4: else if 𝑄 is discrete and non-binary then
5: 𝜆 ← |𝑄| − 1 (cardinality of the support of 𝑄 minus one)
6: 𝙽 ← add a 𝜆-dimensional softmax function as output activation for 𝙽

7: else if 𝑄 is continuous then
8: 𝙽 ← add a purely linear function as output activation for 𝙽

9: end if
10: 𝙽 ← add an appropriate number of hidden layers and neurons for 𝙽

11: (always use hyperbolic tangent functions for that)
12: return 𝙽

while BNs also do other kinds of inference, e.g., abduction (when,
for instance, they estimate the most likely hypothesis that explains
certain anomalies/evidences), which is not easy to be provided by NNs
without the underlying support of the BN formalism. Also considering
the explainability capabilities of BNs and the faster responsiveness
of NNs to anomalies in real-time, the complete architecture (BNs +
NNs) can be more powerful, safe and robust than addressing the same
problem with NNs or BNs only.

5. Implementation and validation for robot navigation in environ-
ments with human presence

In this section we implement and validate our Bayesian sensory
architecture and the corresponding real-time inference methodology for
the problem of mobile robot navigation in environments with human
presence. Section 5.1 provides a description of the key aspects of
that problem regarding sensory anomaly detection and recovery. Then,
Section 5.2 describes the experimental setup we have used for all our
tests. Section 5.3 covers the instantiation of our architecture for this
particular case and Section 5.4 its evaluation in simulated experiments.
After that, Section 5.5 describes the experimental validation tests we
have carried out in a real environment with a mobile robot. Finally,
Section 5.6 covers the analysis of the performance of the proposed
methodology, in terms of error and computation time.

5.1. Problem overview

Navigation in environments with dynamic obstacles constitutes a
key part of countless applications related to service robotics, such as
industrial, medical and domestic, among many others (IFR, 2022).
Safety represents a major concern in these applications, since it is
crucial to preserve the integrity of the agents (humans and robots)
involved The challenges that represent a safe robotic operation have
been extensively addressed from the perspective of navigation (Ferrera
et al., 2017; Fan et al., 2020), however, the presence of human agents,
usually referred to as pedestrians in this scope, poses some problems
related to their detection and tracking that must be solved prior to the
integration of mobile service robots in the mentioned applications.

One of the most common concerns is the problem of occlusion
(Brunetti et al., 2018), which prevents or hinders pedestrian detection
in presence of static and/or dynamic obstacles. This has been thor-
oughly studied for a wide variety of situations, e.g., for both indoor

and outdoor settings, known and unknown scenarios, etc. The problem
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Algorithm 5 Sensory architecture compilation into feedforward neural
networks

input:
: sensory system (see algorithm 1)

output:
I𝐿𝑆 : set of neural networks for ideal node queries, indexed by layer and
sensor
A𝐿𝑆𝑁 : set of neural networks for anomaly node queries, indexed by layer,
sensor and node

subroutines:
𝑔𝑒𝑡𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑠𝑒𝑡(,𝐑, 𝐈𝑟):

𝑁 ← choose sample size
DIN ← ∞, DOUT ← ∞
DIN ← generate 𝑁 samples from the space of possible instantiations of

the set 𝐑 ∪ 𝐈𝑟
for each instantiation 𝛿 ∈ DIN do

(, 𝐞) ← re-parameterize sensor  and generate evidence 𝐞 by using
data from 𝛿

 ← 𝑗𝑜𝑖𝑛𝑇 𝑟𝑒𝑒(, 𝐞) (see algorithm 2)
DOUT ← DOUT ∪ 

end for
return DIN and DOUT

𝑡𝑟𝑎𝑖𝑛𝑁𝑒𝑢𝑟𝑎𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝙽,DIN,DOUT, 𝑄):
DOUT ← filter DOUT so that it only contains posteriors involving variable

𝑄
𝙰 ← choose a training algorithm, either LM or SCG (see text)
𝙿 ← choose hardware platform for training, either CPU or GPU (see

text)
𝙽 ← train neural network 𝙽 with algorithm 𝙰 on platform 𝙿

using DIN as input data and DOUT as output data
return 𝙽

main:
1: I𝐿𝑆 ← ∞ , A𝐿𝑆𝑁 ← ∞
2: for each layer 𝐋𝑖 in sensory system  do
3: for each Bayesian sensor 𝑗 ∈ 𝐋𝑖 do
4: 𝑟 ← |𝐑| (cardinality of the set of real sensor variables)
5: 𝑐 ← number of CPD parameters for the set of replicated ideal nodes

𝐈𝑟
6: 𝑝 ← number of CPD parameters for the ideal node variable 𝐼
7: (DIN, DOUT) ← 𝑔𝑒𝑡𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑠𝑒𝑡(𝑗 , 𝐑, 𝐈𝑟)
8: I𝐿𝑆 (𝑖, 𝑗) ← 𝑑𝑒𝑠𝑖𝑔𝑛𝑁𝑒𝑢𝑟𝑎𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑟 + 𝑐, 𝑝, 𝐼)
9: I𝐿𝑆 (𝑖, 𝑗) ← 𝑡𝑟𝑎𝑖𝑛𝑁𝑒𝑢𝑟𝑎𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘(I𝐿𝑆 (𝑖, 𝑗), DIN, DOUT, 𝐼)

10: for each anomaly node 𝐴𝑘 in Bayesian sensor 𝑗 do
11: 𝑞 ← number of CPD parameters for the anomaly node variable

𝐴𝑘
12: A𝐿𝑆𝑁 (𝑖, 𝑗, 𝑘) ← 𝑑𝑒𝑠𝑖𝑔𝑛𝑁𝑒𝑢𝑟𝑎𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑟 + 𝑐, 𝑞, 𝐴𝑘)
13: A𝐿𝑆𝑁 (𝑖, 𝑗, 𝑘) ← 𝑡𝑟𝑎𝑖𝑛𝑁𝑒𝑢𝑟𝑎𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘(A𝐿𝑆𝑁 (𝑖, 𝑗, 𝑘), DIN, DOUT,

𝐴𝑘)
14: end for
15: end for
16: end for
17: return I𝐿𝑆 and A𝐿𝑆𝑁

of occlusion is even more difficult to address when it persists over time,
i.e., when it becomes a long-term occlusion problem (Zhang et al., 2020;
Islam et al., 2018). Fortunately, the multidimensional Bayesian sensory
architecture proposed in this work can be used to tackle this as well as
other issues related to the identity of the pedestrians being tracked.
For that, it can rely on fusing the sensory information obtained from
a state-of-the-art pedestrian detection and tracking system with other
sources of knowledge, as we will explain later on. Recall that all the
features of the architecture need to be exploited in this case, since the
mentioned sensory information is related to different levels of cognitive
abstraction and also evolves over time.
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Fig. 5. The CRUMB mobile robot, used in this work, with its sensory apparatus. (a) Rear view. (b) Front view.
5.2. Experimental setup

All the validation tasks and experiments described in this work
have been conceived for a concrete mobile platform, called CRUMB
(Fernández-Madrigal and Cruz-Martín, 2020). This robot is based on
a version of the Turtlebot-2 that uses a two-wheeled Kobuki plat-
form (Open Source Robotics Foundation, 2020), which is equipped with
a bunch of basic sensors such as bumpers, encoders, cliff and wheel
drop detectors and a tree-axis gyroscope. This sensory apparatus has
been complemented with range sensors relying on infrared radiation,
namely, a Hokuyo URG-04-LX 2-D laser (Hokuyo, 2020) and a Kinect V1
RGB-D camera (Rodríguez, 2021; Adhikary et al., 2019). The robot is
controlled via an on-board netbook PC with an Intel Celeron N2840 at
2.16 GHz and 2 GB DDR3 that runs Ubuntu 14.04 with ROS (Newman,
2017). The robot is shown in Fig. 5.

Concerning the use of this platform for the problem of navigation in
human environments, the sensory system considered is more abstract.
Instead of using low-level information directly, it is pre-processed in
this case for people detection and tracking. More specifically, range
data is employed by an external software, which is based on a ROS
package publicly available, developed in the context of the EU FP7
research project known as Spencer (SPENCER, 2016) (from now on,
this software will be referred to as the Spencer system). This package
includes, among other features, a re-implementation of Arras et al.
(2007) based on an Ada-Boost for people tracking with 2D laser range
data and a Nearest-Neighbor Standard Filter (NNSF) for taking the
data association decisions required for people tracking. These tech-
niques exhibit a good performance, and do not require a significant
computational cost. The Spencer system is suitable for our task due
to its modularity, its efficiency and its flexibility; it has been tested
previously in both real and simulated robots, it is multimodal, it is very
complete, and it is publicly available in Github (SPENCER, 2023). For
a comprehensive guide about this package, please refer to Linder and
Arras (2016).

The real experiments for navigation in human environments have
been carried out with the CRUMB robot in a scenario with a pedestrian
(see Section 5.5), which is sufficient to prove the advantages of our
solution, i.e., no crowded environment application is intended. For all
these experiments, the proposed Bayesian sensory architecture has been

implemented in MATLAB by using the Bayes Net Toolbox (BNT) (Afrassa
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et al., 2019). The robot navigates autonomously in the mentioned
environment thanks to the use of the Model Predictive Control (MPC)
approach from (Castillo-Lopez et al., 2020), which incorporates a unicy-
cle model of the robot to generate collision-free trajectories with safety
guarantees. In the experiments, the MPC controller, the Spencer system
and the sensory architecture are coordinated within the ROS frame-
work, which is run on board the robot and also on an external, remote
PC with an Intel i7-9700K at 3.6 GHz and 32 GB DDR4. Such external
hardware is employed to avoid the execution of several nodes with
potentially high computational requirements (e.g., the ones related to
the MPC controller or the sensory architecture) in a single machine,
which could reduce the system performance in certain situations.

Regarding the simulations, a similar setup has been employed. In
this case, the CRUMB robot is integrated as part of a simulated envi-
ronment based on Gazebo (Aguilar-Moreno et al., 2018) (see Fig. 6(a)).
The rest of the software used for the experiments is the same as in
the real setup; however, an extra module is added for the simulation
of human presence and motion. This is also a ROS package, known
as Pedestrian Simulator or simply Pedsim, which enables 2D pedestrian
simulation and visualization in real time (see Fig. 6). This package is
based on the social model force of Helbing and Molnár (1995), and it
was also developed during the Spencer project (SPENCER, 2016). Only
the external PC mentioned before has been used as the hardware for
the simulated experiments.

5.3. Definition of the Bayesian architecture

The instantiation of the Bayesian architecture for the problem of
navigation in human environments is carried out by following the
procedure detailed in Section 3.2. As explained before, all the features
offered by the Bayesian sensory model will be necessary in this case,
since there is sensory information evolving over time and also belong-
ing to different levels of cognitive abstraction. A list with the necessary
Bayesian sensors along with the knowledge they rely on is compiled in
Table 3.

The Bayesian sensory architecture is built upon the nine Bayesian
sensors listed in Table 3; in this particular case there are no cyclic
dependencies among them. Taking into account the existing relations
among these sensors, a dependency graph as the one shown in Fig. 7

can be defined. Note that the model is instantiated identically for
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Fig. 6. Simulated environment for the problem of navigation in human environments. (a) View of the environment in Gazebo, with the CRUMB robot and a simulated pedestrian
controlled by Pedsim. The blue area corresponds to the field of view of the laser rangefinder. (b) Three-dimensional view of the pedestrians detected by the Spencer system. The
white lines correspond to the walls of the scene detected by the laser rangefinder. The pedestrian on the right corresponds to the one in Fig. 6(a), while the pedestrian on the left
is fictitious (see Section 5.4).
Table 3
Bayesian sensors used in this model and their corresponding sources of data.
Bayesian sensor Sensory information source(s)

Pose and velocity predictor Pose and speed of pedestrians (Spencer system)
Age sensor Age of the detected pedestrian (external computer vision system)
Ghost pedestrian sensor Map of the scene and localization of the pedestrian
Situation sensor Social knowledge, pose and age of the detected pedestrian
Pose and velocity estimator Pose and speed of pedestrians (Spencer system)
Long-term occlusion sensor Geometry of occlusion zones and their persistence over time
Distance sensor Pose of several pedestrians of interest
Difference of orientation sensor (idem)
Identity sensor Identity of the detected pedestrian (Spencer system)
Fig. 7. Annotated dependency graph for the proposed Bayesian architecture for each detected pedestrian, with layer assignment. Recall that the annotations in the graph indicate
the level of cognitive abstraction and the dynamic character of each sensor, respectively. The interactions existing between different pedestrians are also shown.
each detected pedestrian in the system, and that these instances ex-
change information with each other. Fig. 7 represents these connections
only between two different pedestrians, since they can be applied
analogously to every pair of detected pedestrians.

In the following, we only cover the definition of one of the Bayesian
sensors in the architecture, for being the most relevant one for anomaly
13
recovery in this context and for the sake of brevity. Please refer to
Appendix B for a description of the remaining sensors.

In the proposed sensory architecture, layer three (Fig. 8) represents
one of the most complex networks. It contains a sensor that serves to
recover a useful estimation of the pose and velocity of a pedestrian in
case of severe occlusion. Also, this network can be used to improve
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Fig. 8. Bayesian network corresponding to the pedestrian pose and velocity estimator (layer three). Here, replicated ideal nodes and auxiliary Bayesian sensors are represented in
white.
the estimation of these state variables if there are no occlusions. In this
context, the state of the pedestrian is represented by using six variables,
namely, the three describing the two-dimensional pose of a pedestrian
(i.e., 𝑥, 𝑦, 𝜃) and their derivatives (i.e., 𝑣𝑥, 𝑣𝑦, 𝜔, respectively), defined
with respect to a global, fixed frame.

The anomaly subnetwork in this case is devoted to the detection
of occlusion events, encoding three different causes for that: occlusion
when the pedestrian gets out of the field of view of the range sensors,
occlusion produced by a fixed obstacle (e.g., the scene itself) and
occlusion provoked by other pedestrians (i.e., by dynamic obstacles).
For the first two situations, the Bayesian sensor relies on two different
discretizations of the pose of the considered pedestrian, obtained from
layer one, along with environmental knowledge. Each one of these
discretizations serves to determine whether the pedestrian is situated
within one of these occlusion zones, defined either by the field of view
of the range sensors or by the scene itself, respectively. For the case
of occlusion provoked by dynamic obstacles, the sensor incorporates
an auxiliary one representing the difference between the estimated
pose of two different pedestrians, being one of them the pedestrian
of interest, and the other one, a pedestrian chosen for being the most
likely to be occluding the former. This difference is also discretized
into different zones in order to define in which ones would be the
pedestrian occluded. This last part of the anomaly subnetwork also
includes two extra discrete variables representing flags provided by the
Spencer system, which are useful to determine the occlusion situation.

The rest of the network is dedicated to the recovery of the pose
and velocity of the considered pedestrian, as mentioned above. For
that, it incorporates the information from the situation given by the
corresponding sensor in layer two. This information serves to use an
adequate motion model depending on the age of the pedestrian and
the location in the scene. All these models are encoded in the CPD
corresponding to the ideal node of the current time interval 𝑡. Each
ne corresponds to the mean of a multivariate Gaussian distribution,
hich is a constant velocity model of the form:

𝑥𝑡 = 𝑥𝑡−1 + 𝑣𝑥𝑡−1 𝛥𝑡

𝑦𝑡 = 𝑦𝑡−1 + 𝑣𝑦𝑡−1 𝛥𝑡

𝜃𝑡 = 𝜃𝑡−1 + 𝜔𝑡−1 𝛥𝑡 (12)

𝑥𝑡 = 𝑉 cos(𝜃𝑡−1)

𝑣𝑦𝑡 = 𝑉 sin(𝜃𝑡−1)

𝜔𝑡 = 𝛺,

here 𝑉 is a constant linear speed, 𝛺 is a constant angular speed and
𝑡 is the elapsed time between intervals 𝑡 and 𝑡 − 1. Thus, each one
f the mentioned models only differs from the others in its constants

and 𝛺, leading to a different motion depending on the situation of
he pedestrian. The complete CPD is then a list of Gaussian distributions
14
Fig. 9. Top view of the controlled scenario used for the simulated experiments, with
some points highlighted. The blue area corresponds to the field of view of the laser
rangefinder.

with different means depending on the value of the situation sensor (see
Fig. 8). The covariance matrices for the Gaussian distributions in the
CPD are all diagonal, only adding uncertainty depending on the amount
of change of the corresponding variable over time. Recall, again, that all
these state variables (i.e., pose and velocities) are defined over a global,
fixed reference frame. Note, also, that the constant velocity model for
pedestrians defined in Eq. (12) represents a nonlinear function of the
previous state. In order to encode this in a CLG Bayesian network, the
CPDs are transformed by using first-order Taylor series linearization,
which involves the intermediate calculation of a Jacobian matrix of the
model (please refer to Koller and Friedman, 2009 and Miklavcic, 2020
for further details).

5.4. Simulated experiments

The proposed Bayesian architecture model for the problem of nav-
igation in human environments has been tested in several simulations.
As reported in Section 5.2, the experiments described in this subsection
have been carried out in a simulated environment based on Gazebo.
This environment includes an scenario where the CRUMB robot nav-
igates surrounded by two pedestrians (see Fig. 9). For the simulated
tests, three kinds of experiments have been carried out. In all of them,
the pedestrians incessantly follow a cyclical path between points A and
D (see Fig. 9), and they are not aware of the presence of the robot.
The pedestrian simulator (i.e., Pedsim) allows the emulation of age
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Fig. 10. Comparative boxplots for the measures of safety considered in the first simulated experiment, where the robot tries to maintain a given pose while avoiding nearby
pedestrians. (a) Distance to the closest pedestrian. (b) Inverse time to collision.
by setting one of its parameters, which has been modified in order
that each pedestrian moves at a different pace (two different ages are
considered, namely, young and elder).

Each experiment or set of experiments is performed in the same
conditions but with different approaches in order to obtain the most
complete comparative that it is possible considering that no general
benchmark exists in the literature for carrying out FDD in this particular
robotic task —also notice that existing datasets are not suitable for
testing closed-loop applications like ours—. The baseline in all exper-
iments has been the previously referred method of Linder and Arras
(2016) implemented in the SPENCER stack, which pursues robustness
and efficiency in people detection and tracking with ad-hoc algorithms.
In subsequent figures, we compare the results obtained by the baseline
(‘Spencer’) and several variants/ablations of our solution: ‘Arch (LW)’ is
our BN architecture with a Monte Carlo approximate inference method
based on importance sampling, called likelihood weighting (Koller and
Friedman, 2009), and no NN compilation; ‘Arch (jointree)’ refers to our
BN architecture using the exact jointree inference algorithm described
in Section 4.1 and also without the NN compilation; ‘Arch (NN)’ is the
complete hybrid system —with the jointree algorithm— once compiled
to NNs.

The first kind of experiment aims to prove that the use of the
proposed Bayesian architecture serves to improve safety during nav-
igation, even under adverse conditions. In the experiment, the robot
tries to maintain its pose around point B while avoiding approaching
pedestrians. The safety of navigation has been assessed in this case
through two measures: the distance to the closest pedestrian 𝑑, and the
inverse time to collision 𝑇𝑇𝐶−1 = �̇�∕𝑑, which are commonly used in
he literature related to robotic navigation (Castillo-Lopez et al., 2020).
n general, large and negative values of 𝑇𝑇𝐶−1 indicate high risk of
ollision, while values close to zero correspond to safe navigation.

The results of 5 min of simulation are shown in Fig. 10, where
nly the data concerning the moments when anomalies occur are
ompared. The most common anomaly in this case is the occlusion
roduced when the pedestrian leaves the horizontal field of view of
he robot, which is of 180 degrees. The proposed Bayesian architecture
nd its variants manage to recover an estimated pose of the missed
edestrians better than Spencer, with particularly improved safety in
he case of our complete BN+NN solution due to the fastest response
imes that compiled NNs provide (see Fig. 11). In the case of comparing
he baseline with the complete BN+NN architecture, we find that the
edian distance to the closest pedestrian rises from 1.45 to 3.71 m (an

mprovement of 156%), and the median 𝑇𝑇𝐶−1 from −0.16 to −0.047
𝑠−1 (71%). Also, the robot collides with the pedestrians a total of 7
times during the experiment carried out only with the Spencer system;
when the proposed architecture is integrated, the test is collision free.
Note that the other variants of our architecture (non-compiled and
Monte Carlo inference algorithm) are not significantly different among
them but also show improvements w.r.t. the baseline.
15
Fig. 11. Three dimensional view of the pedestrian tracking system using the Bayesian
sensory architecture during the first experiment. The robot is pointing towards the
positive sense of the X axis. Pedestrian 6 is recovered despite being placed behind the
robot, and pedestrian 4 despite being occluded by the walls of the scene, detected by
the 2D laser (white lines).

The second simulated experiment illustrates the effect of false pos-
itive detections, i.e., detections of nonexistent —ghost— pedestrians
on the efficiency of navigation. The measure chosen to quantify such
efficiency is the time that the robot takes to go from point A to C. The
test has been prepared so that none of the pedestrians are nearby the
robot along the trajectory, and the experiments have been repeated
20 times for each approach. When the baseline system is used, some
nonexistent pedestrians appear, leading to avoidance maneuvering that
is not actually needed (see Fig. 12). As a result, the total navigation
time increases.

The impact of navigating around fictitious pedestrians has been also
quantified through the linear correlation between the time that the
robot is nearby them and the total navigation time. The same linear
correlation has been calculated as well for the number of anomalous
detections. The coefficient of determination 𝑅2 is of 0.9234 for the
former and of 0.5385 for the latter, thus, it is clear that the total
time needed to complete the trajectory is strongly correlated with the
amount of time the robot remains nearby ghost pedestrians, rather than
with the number of them.

The results for this experiment are shown in Fig. 13 (the second
linear fit is omitted for being of little relevance). In this case, the
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Fig. 12. Snapshot of the simulated environment during an avoidance maneuvering due to the presence of a so-called ghost pedestrian (second experiment). (a) Top view of the
simulation in Gazebo. (b) Top view of the pedestrian tracking system when it is using the Spencer baseline approach. Here, the MPC controller predicts a maneuvering action to
be performed in order to avoid the fictitious pedestrian.
Fig. 13. Results for the second simulated experiment, when the robot has to navigate to a target even when false pedestrians are detected. (a) Comparative boxplots for the total
navigation time. (b) Linear regression of the time nearby ghost pedestrians recorded by the Spencer baseline versus the total navigation time.
pplication of the full BN+NN architecture manages to reduce the
edian navigation time from 26.62 to 21.88 s (18%). Again, this is

he best mark, mainly due to the shorter reaction times allowed by the
se of the NNs, but the non-compiled and the LW alternative inference
lgorithm also improve the results of the baseline.

The third and last simulated experiments aim to assess the utility of
he proposed Bayesian architecture in the case of identity anomalies.
or that, the robot tracks the pose of one of the pedestrians throughout
he scene until the identity is missed or confused with another one.
n this case, the total tracking time is measured, and eight different
onfigurations are used for the tests by combining the age of the tracked
edestrian (young or elder) with the approach implemented to navigate
baseline, LW, jointree, BN+NN). The experiment has been repeated
total of 10 times for each configuration. The tracking time results

re depicted in Fig. 14. As it is shown, the full BN+NN approach
ncreases the median tracking time from 20.68 to 125.14 s for the
oung pedestrian (505%) and from 42.46 to 136.19 s for the elder
ne (221%), which are greatly significant results w.r.t. the baseline,
emonstrating that for tracking correctly a pedestrian with a Bayesian
nference architecture the reaction time of the system is crucial; the
16
non-compiled jointree and LW inference algorithms also improve track-
ing time significantly, but they are not able to reach the same marks
due to their slower processes.

To reinforce this idea, it is also interesting to analyze the kind and
amount of adverse events being overcome during these tests. Table 4
shows, for the cases of using our BN core architecture (jointree, non-
compiled) and each kind of pedestrian, the mean percentage of time
dedicated to recover from those situations, which are the ones behind
the majority of identity problems. Recall that a pedestrian can be
occluded when leaving the field of view of the robot or due to the
presence of either an static or dynamic obstacle.

The obtained results show that the amount of abnormal situations
recovered during the tests using the proposed Bayesian architecture
is double in general. In other words, this means that the proposed
approach is still robust despite a greater amount of anomalies occurring
during a much longer period of time. In particular, this is true for the
occlusion anomalies related to the field of view of the robot and the
static obstacles, which tend to last longer in the case the architecture
is employed. In contrast, the Spencer baseline recovers reasonably well
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p

Fig. 14. Comparative boxplots for the total tracking time of pedestrians in the third simulated experiment, where the robot has to track a given pedestrian. (a) Results for a young
edestrian. (b) Results for an elder pedestrian.
Table 4
Average percentage of time for recovering occlusion anomalies.

Pedestrian Configuration Occlusion anomaly Total

FOV Static Dynamic

Young BN 10.98 11.50 6.65 29.13
Baseline 2.42 5.38 6.63 14.43

Elder BN 4.58 0.66 1.23 6.47
Baseline 1.27 0.00 2.00 3.27

from the brief occlusions produced by dynamic obstacles (i.e., by other
pedestrians).

5.5. Real experiments

The real experiments presented in this subsection have been con-
ducted in situations similar to the ones analyzed in the simulations.
They are intended both to demonstrate the strong correlation between
simulated results and the possible real achievements of the proposed
solution and to show its potential when implemented in a real robot.
Recall that these experiments are not developed in crowded environ-
ments, since their aim is to properly assess the capabilities of the
proposed approach.

In this case, two different experiments have been performed, both in
the real scenario shown in Fig. 15. As commented in Section 5.2, the
software and hardware employed is the same as the one used in the
simulations, with the exception of the netbook available on board the
CRUMB robot. Each test in these real experiments is repeated with and
without incorporating the Bayesian architecture to the Spencer system,
and the obtained results are compared, as in the simulated case.

The first experiment aims to validate the simulated results related
to the efficiency of navigation in presence of ghost, non-existent pedes-
trians. For that, the robot is ordered to go from point A to C (see
Fig. 15) in the absence of actual people. During this trajectory, some
fictitious pedestrians are detected by the Spencer system, as in the
simulated case. The impact of navigating around such false detections
of human presence is assessed by measuring the time that the robot
is placed nearby ghost pedestrians and the total navigation time. The
obtained results are compiled in Table 5. As expected, they prove
that the incorporation of the Bayesian architecture manages to reduce
the navigation time, since it is conceived to notice false detections of
pedestrians, allowing the robot to ignore them. The results also show
the correlation between the total navigation time and the one that
the robot is influenced by the presence of these pedestrians. In other
words, they prove that, the longer the robot is situated around fictitious
pedestrians, the more likely it is that the navigation time increases.
17
Fig. 15. Image of the setup used for the real experiments, with some points high-
lighted. The corridor shown is 13 m long. Recall that the pedestrian appearing here is
only present during the second experiment.

Table 5
Comparative results for the real experiments (see the text).

Experiment Measure Baseline BN Arch. Improv.

First Total navigation time 29.1 s 26 s 10.65%
Time nearby ghosts 1.41 s 0.18 s 87.23%

Second Number of collisions 4 0 –
Time with occlusions 53.88 s 89.12 s –

When this abnormal situation takes place in the real setting, it can be
observed how the robot performs unnecesary avoidance maneuvering
in the case that the Bayesian sensory architecture is not used.

The second and last experiment is intended to validate the simulated
results concerning the safety of navigation. In this test, the robot tries
to maintain its pose around point B while avoiding a pedestrian that
follows a cyclical path between points A and C during 3 min. Here,
safety is assessed by counting the times the robot collides with the
pedestrian. Also, the total time of the test with occlusion anomalies
is measured. The obtained results (Table 5) prove that the use of the
Bayesian architecture increases safety, since the test is collision free
when the proposed approach is incorporated. As in the simulated case,
the period of time dedicated to recover from anomalous situations is
much longer when the architecture is used, since it is prepared to
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Fig. 16. Snapshot of an instant recorded during the second experiment. Here, the pedestrian is walking from point A to C while being situated out of the field of view of the
obot. (a) The robot manages to avoid the pedestrian thanks to the use of the Bayesian sensory architecture. (b) The pedestrian collides with the robot, which is only relying on
he detections provided by the Spencer system.
andle long-term occlusions. This demonstrates, again, the robustness
f the proposed approach, which enables to improve safety even under
asting abnormal conditions. In fact, it is observed in the real setting
hat only the use of the Bayesian architecture enables the robot not to
ollide with the pedestrian when he/she is out of its field of view (see
ig. 16).

.6. Analysis of the performance of the proposed methodology

Due to the importance of compiling our BNs into NNs for the
eaction times and therefore for the improvements achievable by the
ystem, as it has been shown in the previous section, in this one we
nalyze in more detail the performance aspects of our architecture. We
irst describe the details of the process of compilation of our Bayesian
ensory architecture as neural networks for the problem of navigation
n environments with human presence. Then, we discuss the results
hese models achieve regarding both computation time and error w.r.t
nference on Bayesian networks that have not been compiled.

The process of neural network design, training and evaluation has
lso been implemented in MATLAB, relying again on the BNT library
or Bayesian networks. Regarding hardware, the platform employed for
raining is the same desktop PC used for the experiments carried out
n this work, which has an Intel i7-9700K CPU. Also, those networks
ith higher computational requirements have been trained with an
VIDIA Tesla V-100 GPU, which is part of an NVIDIA DGX Station.
he queries considered essential for the problem of navigation in
uman environments (and thus, the ones considered here) are listed in
able 6. The configuration of all the neural network models designed
o approximate such queries is compiled in Table 7.

Note that some queries are represented by more than one neural
etwork (see Table 7). This is the case for layer 0 (corresponding to
he pose and velocity prediction), layer 2 (dedicated to the situation
ensor) and layer 3e (conceived for the improved estimation of pose and
elocity). The main reason for using several networks is to reduce the
omputational requirements for the training process. For instance, the
wo networks designed for layer 0 represent the mean and covariance of
he prediction, respectively. In the case of layer 2, three equal networks
ave been defined, two of them for a different age of the detected
edestrian (i.e., young and elder), and the last one for the case in
hich the age is not known. Here, only these three possibilities are

onsidered, for the sake of simplicity. Finally, layer 3e is represented
y four different networks. The first one refers to the estimation mean,
nd the other three, to some elements of the covariance. Such matrix
as not been fully represented, since there are numerous values in it
hat do not vary much across the different tests performed for both

he simulated and real experiments. These values have been ignored in

18
Table 6
Query variables employed for the problem of navigation in human
environments. Each variable corresponds to a layer of the proposed
Bayesian sensory architecture defined in Section 5.3 and Appendix B.
Layer numbering has been completed with letters to denote different
queries in the same Bayesian network.
Layer Query variable (𝑄)

0 Ideal pose and velocity (current time interval)
1 Ghost anomaly
2a Ideal situation (young pedestrian)
2b Ideal situation (elder pedestrian)
2c Ideal situation (unknown age)
3a Out of field of view (anomaly node)
3b Fixed obstacle (anomaly node)
3c Dynamic obstacle (anomaly node)
3d Occlusion anomaly
3e Ideal pose and velocity (current time interval)
4a Ideal long-term occlusion
4b Ideal distance
4c Ideal difference of orientation
5 Identity anomaly

order to reduce the network output size, and thus, the complexity of its
training.

As explained in Section 4.3, for each neural network corresponding
to a query, the subset of evidences of the layer of interest are considered
as input data —plus the CPDs for the priors of the replicated ideal nodes
that serve as interfaces with lower layers—; output data corresponds to
the parameters that define the distribution of the query. The training
dataset for each neural network is then obtained by sampling the space
of possible values for the inputs and then calculating the corresponding
outputs through the inference algorithm in the Bayesian network of
the corresponding layer (see Algorithm 5). Fig. 17 depicts the results
of the training of the neural networks corresponding to the queries of
layer three (see Fig. 8 and Table 6). Note that the training dataset
is randomly divided by MATLAB for the process into three disjoint
subsets, i.e., one sub-dataset for the training itself and other two for
validation and test, respectively. The results of other queries in other
layers have been omitted for the sake of space —they are quite similar
to the ones presented here.

Once all the necessary neural networks have been defined and
trained, it is possible to assess the performance of our new inference
approach. For that, new validation datasets have been used, all of them
obtained the same way as the ones for training. Then, two measures
of performance have been calculated, namely, the error in inference
w.r.t. to the algorithm proposed in this work and the computation time.
The former has been obtained by using the Hellinger’s distance (Pacini,
2022). For the case of probability distributions over discrete random
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Table 7
Configuration parameters for all the feedforward neural networks designed, each one representing a query in Table 6. Again,
layer numbering has been completed with letters to denote different queries for the same layer in the Bayesian network.
Here, the number of hidden layers and neurons corresponding to each neural network is expressed in the form 𝐴 x 𝐵, which
means that the network has 𝐴 layers with 𝐵 neurons each. The training algorithm employed for each network is specified
along with the hardware platform used (see text).
Layer Neural networks designed

# Inputs # Hidden layers and neurons # Outputs Training algorithm

0 7 1 x 21 6 LM (CPU)
16 1 x 48 21 LM (CPU)

1 2 2 x 25 1 SCG (CPU)
2a 5 2 x 25 20 SCG (CPU)
2b 5 2 x 25 20 SCG (CPU)
2c 5 2 x 25 20 SCG (CPU)
3a 2 2 x 25 1 SCG (CPU)
3b 12 2 x 25 1 SCG (CPU)
3c 13 4 x 15 1 SCG (CPU)
3d 3 2 x 25 1 SCG (CPU)

3e

35 1 x 595 6 SCG (GPU)
30 1 x 180 1 SCG (GPU)
30 1 x 180 1 SCG (GPU)
30 1 x 180 1 SCG (GPU)

4a 3 2 x 25 1 SCG (CPU)
4b 2 2 x 25 1 SCG (CPU)
4c 2 2 x 25 1 SCG (CPU)
5 3 2 x 25 1 SCG (CPU)
Fig. 17. Performance measures of the training of the neural networks associated to queries of layer three (see Fig. 8 and Table 6). The measured values are the evolution of
either cross-entropy or mean squared error during training (left) and the errors w.r.t output targets after training (right), for all the datasets employed (train, validation and test).
(a) Out of field of view anomaly, layer 3a. (b) Fixed obstacle anomaly, layer 3b. (c) Dynamic obstacle anomaly, layer 3c. (d) Occlusion anomaly, layer 3d. (e) Ideal pose and
velocity, mean estimation (first network of layer 3e). (f) Ideal pose and velocity, variance estimation (second network of layer 3e).
19
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Fig. 18. Hellinger’s distance for the distributions produced by the defined neural networks w.r.t the ones obtained by the approximate algorithm introduced in this work, calculated
or each layer of the Bayesian architecture. These boxplots represent 9000 inferences per layer. (a) View of the lowest errors. (b) View of the highest errors.
Table 8
Single query time per layer achieved by inference with Bayesian networks and by inference with neural networks. The results
are expressed in seconds, in the form 𝜇±2𝜎, where 𝜇 and 𝜎 are the mean and standard deviation, respectively, of 9000 tests
carried out per layer and inference method. The ratio is calculated for mean values only.
Layer Single query time

BN inference NN inference NN/BN ratio (means)

0 0.002 ± 8.440 ⋅ 10−4 1.024 ⋅ 10−4 ± 1.930 ⋅ 10−5 0.051
1 0.004 ± 0.001 3.777 ⋅ 10−5 ± 2.421 ⋅ 10−6 0.009
2a 0.030 ± 0.008 3.549 ⋅ 10−5 ± 1.684 ⋅ 10−6 0.001
2b 0.031 ± 0.009 3.534 ⋅ 10−5 ± 1.628 ⋅ 10−6 0.001
2c 0.030 ± 0.007 3.580 ⋅ 10−5 ± 4.089 ⋅ 10−6 0.001
3a 0.004 ± 0.002 3.447 ⋅ 10−5 ± 1.831 ⋅ 10−6 0.009
3b 0.007 ± 4.266 ⋅ 10−4 3.436 ⋅ 10−5 ± 1.447 ⋅ 10−6 0.005
3c 0.015 ± 0.006 3.548 ⋅ 10−5 ± 1.723 ⋅ 10−6 0.002
3d 9.762 ⋅ 10−4 ± 5.719 ⋅ 10−4 3.885 ⋅ 10−5 ± 3.506 ⋅ 10−5 0.040
3e 0.013 ± 0.003 5.379 ⋅ 10−4 ± 9.212 ⋅ 10−4 0.041
4a 9.252 ⋅ 10−4 ± 3.833 ⋅ 10−4 2.612 ⋅ 10−5 ± 1.902 ⋅ 10−6 0.028
4b 0.004 ± 9.560 ⋅ 10−4 3.701 ⋅ 10−5 ± 1.006 ⋅ 10−4 0.009
4c 0.004 ± 0.001 3.856 ⋅ 10−5 ± 7.677 ⋅ 10−6 0.009
5 9.352 ⋅ 10−4 ± 3.447 ⋅ 10−4 3.466 ⋅ 10−5 ± 1.863 ⋅ 10−6 0.037
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variables, the Hellinger’s distance 𝐻 is defined as follows. Let 𝑃1(𝑥𝑖)
nd 𝑃2(𝑥𝑖) be two discrete probability distributions defined over the
ame support 𝑥 = {𝑥1, 𝑥2,… , 𝑥𝑛}; then,

(𝑃1, 𝑃2) =

√

√

√

√

√

√

𝑛
∑

𝑖=1

(

√

𝑃1(𝑥𝑖) −
√

𝑃2(𝑥𝑖)
)2

2
(13)

where 0 ≤ 𝐻(𝑃1, 𝑃2) ≤ 1. In our context, however, there are also
some queries involving continuous variables, which will always be dis-
tributed normally. The Hellinger’s distance between two multivariate
normal distributions 𝑃 ∼  (𝜇1, 𝛴1) and 𝑄 ∼  (𝜇2, 𝛴2) is (Pardo,
2006):

𝐻(𝑃 ,𝑄) =
√

√

√

√

√

√

1 −
det(𝛴1)1∕4 det(𝛴2)1∕4

det
(

𝛴1+𝛴2

2

)1∕2
exp

(

−1
8
(

𝜇1 − 𝜇2
)𝑇

(

𝛴1 + 𝛴2

2

)−1
(

𝜇1 − 𝜇2
)

)

(14)

here, again, 0 ≤ 𝐻(𝑃 ,𝑄) ≤ 1.
The obtained results for the error performance are shown in Fig. 18.

hey prove that most of the compiled neural networks produce a
easonably good estimation of the desired queries. Nevertheless, some
f them produce a significant but moderate error (see Fig. 18(b)) that
an be improved by simply increasing the training time (i.e., none of
he parameters established for these networks have to be modified). In
eneral, the obtained error is not high enough to distort the original
20
istributions queried, and thus, these approximations can be employed
or the task of inference in the proposed navigation problem (as it has
een shown in Section 5.4).

A comparative study of the computational efficiency has also been
arried out. Table 8 shows the time needed by each approach (i.e., by
he non-compiled inference done on the proposed BN architecture and
y the neural networks) to obtain a single query. This experiment
as been repeated 9000 times for each layer in the architecture and
nference approach. The results show that, in general, the execution
ime achieved by using neural networks is several orders of magnitude
ower compared to the one corresponding to performing inference with
ayesian networks.

Finally, another study regarding computational cost has also been
arried out. As explained in Section 4, the proposed inference algorithm
omputes queries for each sensory sampling iteration taking all the
xisting layers into account. Also, in the current navigation problem,
he Bayesian architecture is completely replicated for each detected
edestrian. Thus, it would be interesting to analyze the cost of in-
erence per sampling iteration for both approaches, considering an
ncreasing number of actual pedestrians. Recall that, in the proposed

algorithm, each layer is inferred the same times as the number of
detected pedestrians. Several sequences of 5000 iterations have been
simulated in these conditions, each one for a different number of
detected pedestrians, up to 20 of them. The obtained results are shown
in Fig. 19. Both inference approaches achieve a computational cost
that is approximately linear with the number of processed pedestrians.
These results also prove that the use of feedforward neural networks
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Fig. 19. Mean inference time per sensory sampling iteration achieved by inference with Bayesian networks and by inference with neural networks, as a function of the number
of detected pedestrians. Dashed lines correspond to ±2𝜎, where 𝜎 is the standard deviation for each test, containing 5000 samples. (a) Comparative results for both inference
pproaches. (b) Vertically zoomed view of the results for inference with neural networks.
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oes not only increases the efficiency for a single layer, but that also
nables for real time inference with a reasonable amount of pedestrians.
n contrast, direct inference over Bayesian networks only achieves
easonable execution times for a reduced number of them. Recall that
he time of inference in these experiments has been measured by using
he same desktop PC as in the training process.

. Conclusions and future work

In this work we have contributed with a new probabilistic model
or the representation and management of abnormal sensory behavior
n mobile robots along with an inference methodology that enables for
iagnosis and recovery in real time. The most relevant novelty in our
pproach is its multi-dimensional architecture, that allows us to cope
fficiently with dependencies among sensors, their temporal dynamics
nd the complexities of their diverse kinds of data and operations, all at
nce. Furthermore, this is based on the rigorous formalism of Bayesian
etworks, whose power for doing knowledge inference is leveraged
nd enhanced in order to target complex systems, augmenting the
xpressiveness of monolithic approaches in different aspects. This is
specially noticeable for the concurrent treatment of several levels
f cognitive abstraction, which is not found among the works in the
iterature of FDD related to robotics.

We have adapted existing inference methods to work in this mul-
idimensional setting and also have presented a systematic methodol-
gy for its compilation as neural networks, aimed at providing real-
ime performance, that leverages the particular topologies of our BN-
ased models to alleviate the requirements of training. We have imple-
ented all these proposals for mobile robot navigation in environments
ith human presence, a particular demanding task with a diversity
f sensors and possible anomalies which could have been much more
ard to model without the multidimensional features of the proposed
rchitecture.

The obtained quantitative results in different sets of both simulated
nd real experiments show that our proposal serves to increase the
afety of operation while performing anomaly detection and recovery
n real time. For that purpose we have used well-known measures of
afety for environments with vehicles and persons; all of them show
ignificant statistical improvements in many aspects of the task under
nomalies, e.g., minimum distance to pedestrians, tracking time and
avigation time.

Being aimed this work at solving relevant limitations of previous
nes, it still has its own. On the one hand, its intrinsic approximate na-
ure may produce more or less important errors in inference depending
21
on the way the different layerings of the structure are decided. In this
paper we do not deal with the automatic learning of that structure, thus
the expert is responsible for finding good trade-offs concerning where
to cut dependency cycles or placing layers, which concentrates a big
part of the engineering effort for this system; in the future, structural
learning methods adapted to our particular architecture should be
devised. On the other hand, the very cognitive axis should have a
systematic procedure for definition, and/or an utility measure that can
serve to optimize it with respect to the achievable performance and
the ease of design simultaneously; expert knowledge has an important
role here, but even that subjectivity could be provided with suitable
guidelines.

Besides doing further research on these issues, there are different
topics that can be addressed in the future. The proposed multidimen-
sional Bayesian model and inference algorithm have been validated
in a real mobile robot; however, they should be implemented for a
wider variety of robotic platforms (aerial, terrestrial and submarine)
and, above all, tasks that use more complex sensory devices and need
complex sets of anomalies and recovery processes in order to complete
their validation.

The modeling process should also be improved in order to be
done more automatically and autonomously, but keeping its ability to
reflect human knowledge as well as other heterogeneous sources of
information. For that, it would be interesting to explore the existing
algorithms for parameter and structure learning in the context of
Bayesian networks (Koller and Friedman, 2009).

It would be also interesting to study up to what extent the integra-
tion of human knowledge at different levels of abstraction enhances the
robustness of existing algorithms related to pedestrian detection and
tracking.
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Appendix A. Dependency graphs for multidimensional sensory
systems

Consider a list of identifiers 𝐁𝐢𝐝 = {𝑎, 𝑏, 𝑐,…}, where each element
is associated with a Bayesian sensor (e.g., 𝑎, 𝑏, 𝑐 , etc.). We denote
a dependency involving two sensors 𝑎 and 𝑏 as a pair (𝑎, 𝑏). Then,
a homogeneous binary relation can be defined as a set of pairs 𝐃 ⊆
{(𝑎, 𝑏)|(𝑎, 𝑏) ∈ 𝐁2

𝐢𝐝 ∶ 𝑎 ≠ 𝑏}. For non-cyclic dependencies, 𝐃 is an
symmetric homogeneous relation 𝐃𝐧𝐜, where any two elements (𝑎, 𝑏)
nd (𝑐, 𝑑) verify (𝑎 ≠ 𝑑) ∨ (𝑏 ≠ 𝑐). For the cyclic case, 𝐃 is a symmetric
omogeneous relation 𝐃𝐜, where for any element (𝑎, 𝑏) there exist
nother and unique element (𝑐, 𝑑) such that (𝑎 = 𝑑) ∧ (𝑏 = 𝑐).

In order to capture the interactions among sensors in an abstract and
ompact manner while considering levels of abstraction and temporal
ynamics, a dependency graph 𝐷𝐺 is defined from 𝐃𝐧𝐜, which is a
irected acyclic graph whose vertices are the set of identifiers 𝐁𝐢𝐝,
nd its edges the set of dependencies in the sensory system, thus,
𝐺 = (𝐁𝐢𝐝,𝐃𝐧𝐜). Each node in 𝐷𝐺 is also annotated with a pair of

lements from two different sets. One of them is 𝐂𝐢𝐝 = {𝑐𝑎, 𝑐𝑏, 𝑐𝑐 ,…},
hich is formed by natural numbers, each one indicating the level of

ognitive abstraction to which each sensor represented in 𝐁𝐢𝐝 belongs,
n the same order (e.g., 𝑐𝑎 would be the level for sensor 𝑎, etc.). These
umbers range from the lowest possible level (i.e, zero) to the highest
ne (i.e., the total number of cognitive levels in the system 𝑐𝑙 minus
ne). The other set is 𝐓𝐢𝐝 = {𝑡𝑎, 𝑡𝑏, 𝑡𝑐 ,…}, which contains boolean values
ndicating whether temporal dynamics are encoded for the Bayesian
ensors represented in 𝐁𝐢𝐝, in the same order (e.g., 𝑡𝑎 = 𝑑 indicates that
ayesian sensor 𝑎 is dynamic, 𝑡𝑏 = 𝑑 indicates that sensor 𝑏 is not,
tc.). A procedure to build this graph given a list of Bayesian sensors,
he interactions among them, the levels of abstraction these sensors
elong to, and the indicators of their dynamic character is detailed in
lgorithm A.1. For the sake of simplicity, it is assumed there that the
ssignment of cognitive levels in 𝐂𝐢𝐝 is defined such that every node in
𝐺 verifies that each one of its children belongs to an equal or higher

evel of abstraction.

ppendix B. Complete description of the proposed Bayesian sen-
ory architecture

In this appendix, we provide a complete description of the remain-
ng models in the proposed Bayesian sensory architecture. Some of
he Bayesian sensors used rely, in turn, on auxiliary sensors that have

ot been included in the model definition for the sake of simplicity.

22
Algorithm A.1 Creation of the annotated dependency graph
input:
𝐁𝐢𝐝: list of identifiers of Bayesian sensors
𝐂𝐢𝐝: list of levels of cognitive abstraction associated with Bayesian sensors
𝐓𝐢𝐝: list of temporal dynamics indicators for Bayesian sensors
𝐃𝐧𝐜: list of non-cyclic dependencies
𝐃𝐜: list of cyclic dependencies

output:
𝐷𝐺: annotated dependency graph
𝐁𝐢𝐝: updated list of identifiers of Bayesian sensors

main:
1: for each pair of elements of the form {(𝑖, 𝑗), (𝑗, 𝑖)} ⊂ 𝐃𝐜 do
2: 𝑘 ← choose one of the sensors, either 𝑖 or 𝑗
3: 𝐁𝐢𝐝 ← 𝐁𝐢𝐝 ∪ 𝑘
4: if 𝑘 is a new instance of 𝑖 then
5: 𝐂𝐢𝐝 ← 𝐂𝐢𝐝 ∪ 𝑐𝑘, with 𝑐𝑘 = 𝑐𝑖
6: 𝐓𝐢𝐝 ← 𝐓𝐢𝐝 ∪ 𝑡𝑘, with 𝑡𝑘 = 𝑡𝑖
7: 𝐃𝐧𝐜 ← 𝐃𝐧𝐜 ∪ {(𝑖, 𝑗), (𝑗, 𝑘), (𝑖, 𝑘)}
8: else if 𝑘 is a new instance of 𝑗 then
9: 𝐂𝐢𝐝 ← 𝐂𝐢𝐝 ∪ 𝑐𝑘, with 𝑐𝑘 = 𝑐𝑗
0: 𝐓𝐢𝐝 ← 𝐓𝐢𝐝 ∪ 𝑡𝑘, with 𝑡𝑘 = 𝑡𝑗
1: 𝐃𝐧𝐜 ← 𝐃𝐧𝐜 ∪ {(𝑗, 𝑖), (𝑗, 𝑘), (𝑖, 𝑘)}
2: end if
3: end for
4: 𝐷𝐺 = (𝐁𝐢𝐝,𝐃𝐧𝐜)
5: Annonate each node 𝑖 in 𝐷𝐺 with a pair (𝑐𝑖,𝑡𝑖), where 𝑐𝑖 ∈ 𝐂𝐢𝐝 and 𝑡𝑖 ∈ 𝐓𝐢𝐝
6: return 𝐷𝐺 and 𝐁𝐢𝐝

All of them will be described as they appear within each layer of the
architecture. Also, only some key CPDs will be shown, for the sake of
brevity.

Layer zero (Fig. B.1) contains two different Bayesian sensors. One of
them is a dynamic sensor (Fig. B.1(a)), defined over continuous random
variables, that serves to predict the pose and velocity of a pedestrian
that was detected by the Spencer system in a previous iteration but not
in the current one for some reason. In the case that the pedestrian is
not missing, this sensor can also be used as a filtered estimation of the
state by incorporating the information from Spencer as evidence (thus,
the evidence set would be empty in the previous case). The prediction
is based on a simple constant velocity model over six variables, which
is improved in subsequent layers, as explained in the main text (see
Section 5.3).

The other sensor in this layer is a so-called age sensor (Fig. B.1(b)),
which represents the age of a detected pedestrian using discrete binary
variables for that (the possible values considered here are young and
elder). This commonsense knowledge will be useful in subsequent
layers in order to estimate the speed at which a detected pedestrian
is most likely to move. This sensory information should come from an
external source, for instance, from a computer vision system, with some
uncertainty. Note that the age of a pedestrian could be considered at
a higher level of cognitive abstraction; however, the sensor is assigned
here to a low cognitive level since the information it represents only
serves to modify the belief in the expected speed of a pedestrian, as
mentioned before.

Layer one (Fig. B.2) contains a unique Bayesian sensor, dedicated to
the detection of non-existent, ‘‘ghost’’ pedestrians that are sometimes
produced by the Spencer tracker. These fictitious pedestrians, if any,
usually appear nearby walls or other boundaries. In order to include
such an environmental knowledge, the anomalies subnetwork of this
sensor is based on an auxiliary one that serves to determine whether
the distance of a given pedestrian to the closest wall is too short. To
obtain that, the auxiliary sensor counts with the pose estimation for
the considered pedestrian from layer zero and with a map of the scene.
In case of anomaly, i.e., in case the distance is actually too short,
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Fig. B.1. Bayesian sensors assigned to layer zero in the architecture. Recall that squared nodes represent discrete random variables and that round ones represent continuous
ariables. (a) Pedestrian pose and velocity predictor. (b) Age sensor.
Fig. B.2. (a) Bayesian network corresponding to the ghost pedestrian sensor (layer one). Replicated ideal nodes from lower layers are specified, as well as auxiliary sensors. Again,
quared nodes represent discrete variables and round ones continuous variables. (b) CPD for the real distance node of the auxiliary Bayesian sensor, with physical units. Here, 𝑑
efers to the typical distance that a pedestrian usually keeps from nearby walls.
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he recovered pose from the ideal node will have a highly inflated
ncertainty, thus severely deteriorating its value. This is done in order
hat such a fictitious pedestrian can be eliminated from the system,
ince the implemented version of the architecture ignores detected
edestrians if their uncertainty is too high.

Layer 2 (Fig. B.3) also contains only one sensor, which serves to
eason about the situation of a given pedestrian within the scene. More
pecifically, this sensor aims to encode a more abstract version of the
ose of a considered pedestrian, while simultaneously capturing the
ge. This information is represented as a discrete value indicating the
ind of zone the pedestrian is situated along with the age, which will
e useful to improve the pose and velocity estimation in subsequent
ayers. It is common that the map of a scene, specially in structured
nvironments, is constituted by recognizable parts such as hallways,
nd of hallways, corners, etc. These ones are precisely the kind of
ones considered in this sensor. Combining them with the age of a
edestrian, it would be possible to define a suitable motion prediction
odel according to this information, considered social knowledge. For

nstance, a pedestrian is more likely to move forward in a hallway, and
lso, is more likely to turn while being around a corner.
 t

23
Taking all the above into account, there will be as many possible
alues for the ideal sensor variable as the number of possible com-
inations of kinds of zones and ages. To encode the information, the
ensor uses a replicated version of the age sensor from layer zero, and
lso discretizes the support of the continuous pose obtained from layer
ne, by defining different zones. Recall, again, that the use of more
bstract information does not imply that the sensor must correspond to
high cognitive level, as long as such information is only employed for

easonings involving low-level data.
Layer 4 (Fig. B.4) contains three different Bayesian sensors. One of

hem is the long-term occlusion sensor (Fig. B.4(a)), which is employed
o determine whether any of the occlusions events defined before
ersist over time. For that, this sensor incorporates an auxiliary one
hat discretizes the recovered pose from layer three (see Section 5.3).
his serves to determine whether a given pedestrian is situated within
ny of the mentioned occlusion regions. Note that the ideal node of
he auxiliary sensor is defined over a discrete binary random variable,
hich takes a true value when the occlusion situation occurs. The more

his situation persists over time, the greater will be the belief in a long-
erm occlusion. The other two sensors in this layer, i.e., the distance and
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Fig. B.3. Bayesian network corresponding to the situation sensor (layer two). Again, replicated ideal nodes and auxiliary Bayesian sensors are specified.
Fig. B.4. Bayesian sensors assigned to layer four in the architecture. (a) Long-term occlusion sensor. (b) Distance sensor. (c) Difference of orientation sensor.
Fig. B.5. (a) Bayesian network corresponding to the identity sensor (layer five). (b) Tabular CPD for the identity anomaly node.
difference of orientation sensors (Figs. B.4(b) and (c), respectively), rely
on the recovered pose from the layer three of two different pedestrians,
the one considered and the one having the most similar pose compared
to the former. These sensors serve to provide a discrete distance and
difference of orientation between these pedestrians, in order to deter-
mine whether their poses are actually similar. This information will be
used by the identity sensor, as explained later on.

Finally, layer 5 (Fig. B.5) contains the identity sensor, which serves
to recover the correct identity of a given pedestrian in case it has
been confused with another one. This adverse situation occurs when
a pedestrian re-appears after suffering a long-term occlusion event. In
this case, the Spencer system would assign a new identity, leading
to the presence of two pedestrians, the one being maintained by the
24
sensory model during the occlusion period and the one just recovered
by the tracker. The identity sensor allows to determine whether this
is the case, relying on the information provided by the sensors in
layer four. Thanks to the use of the identity sensor, the implemented
version of the architecture is able to recover the correct identity of the
affected pedestrian while ignoring the other one. Note that this sensor
is considered here to belong to a higher level of cognitive abstraction,
since its ideal node is defined over a discrete random variable encoding
a reasoning about the identity of a pedestrian. In other words, low-level
information of pose and distance is being used in this case to produce
high-level information about identity, in contrast to the case of sensors
in lower layers.
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