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a b s t r a c t

In this article we present a new plug-in for the ARGoS swarm robotic simulator to implement the
E-Puck2 robot model, including its graphical representation, sensors and actuators. We have based
our development on the former E-Puck robot model (version 1) by upgrading the existing sensors
(proximity, light, ground, camera, and battery) and adding new ones (time of flight and simulated
encoders) implemented from scratch. We have adapted the values produced by the proximity, light
and ground sensors, including the E-Puck2’s onboard camera according to its resolution, and proposed
four new discharge models for the battery. We have evaluated this new plug-in in terms of accuracy
and efficiency through comparisons with real robots and extensive simulations. In all our experiments
the proposed plug-in has worked well showing high levels of accuracy. The observed increment of
execution times when using the studied sensors varies according to the number of robots and types
of sensors included in the simulation, ranging from a negligible impact to 53% longer simulations in
the most demanding cases.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Simulations are a vital part of robotic research [1] in order
o design, develop and test different algorithms before going
or real robots experiments, improving reproducibility, scalability
nd safety. There is a trade-off between accuracy and simulation
ime [2] which is especially relevant when thousands of simula-
ions using many entities have to be performed. Other aspects [3]
o be taken into account are programming language support,
ocumentation, user interface, debugging techniques, physical
idelity, functional fidelity, ease of development and cost.

ARGoS [4] is a widespread, well-known swarm robotic sim-
lator featuring a modular multithread architecture which is
ble to efficiently simulate multi-robot swarms, including sen-
ors, actuators, and communications. Optionally, it also allows
he visualisation of the 3D simulation environment (arena). Its
erformance has been proven [3] to be one of the highest with
low use of memory when it was compared to other simulators,
.g. V-Rep [5] and Gazebo [6]. As mentioned, ARGoS’ modular
rchitecture allows extending its features, adding new robots,
ensors, etc., without modifying the original core code. The cur-
ent version (3.0.0-beta59) includes the following robot plug-ins:
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E-Puck, Eye-Bot, Foot-Bot, Pi-puck, Spiri, and some extensions for
Kilobot, KhepheraIV, etc.

The E-Puck robot [7] is a two-wheel small ground robot,
specifically designed for educational purposes, featuring diverse
types of sensors and extensions. The real robot and its simu-
lated model have been used in different research works since
2005, such as formation [8,9], acoustic identification [10], test-
ing fuzzy logic controllers [11], neural control of wheeled mo-
bile robots [12], mobile wireless sensor networks [13], trajectory
planning and collision avoidance [14], just to name a few.

On the contrary, the E-Puck2 (E-Puck version 2, Fig. 1) is
still a relatively new development (2018) although it has been
already seen in proposals related to cooperative localisation us-
ing limited communication resources [15], testing a landslide
victim detection system [16], decentralised event-triggered co-
operative localisation [17], and robot formation surrounding a
central object [18], among others. It includes new sensors and
some upgrades with respect to the previous model which are not
present in ARGoS nowadays.

Hence, in this article we present the implementation, study,
and validation through experiments of our ARGoS plug-in for the
E-Puck2 robot, based on the original E-Puck plug-in. New sensors
such as distance (Time of Flight) and simulated encoders where
implemented and others (proximity, ambient light, ground, cam-
era and battery discharge models) were upgraded to achieve
more accurate simulations and range of output values. We have
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. The E-Puck2 robot (E-Puck version 2).

alidated our implementation by comparing results from simula-
ions with data obtained from real robots. Additionally, we have
ddressed the execution times for different number of simulated
obots and sensors to better know the extra computing resources
eeded when they are active. We believe that this plug-in can
e useful for researchers who would like to test and tune their
roposals involving E-Puck2 robots in a simulator (in silico) before
alidating their results with real E-Puck2 robots (in vivo).
The rest of this paper is organised as follows. In the next

ection, we review the state of the art related to our work. In
ection 3 our proposed plug-in and the different sensors and
ctuators included are presented. The conducted experiments,
heir results and validation are discussed in Section 4. And finally,
n Section 5, conclusions and future work are given.

. Related work

In this section we review some related works in which the
uthors have developed and evaluated different plug-ins for the
RGoS simulator, including the former E-Puck robot and the
urrent E-Puck2.
The E-Puck robot is presented in [19] as a simple, robust and

ser-friendly open-hardware robotic platform. In this paper the
uthors describe the robot’s sensors, capabilities and comment
n communication experiments such as a foraging arena where
ood and poison are differently coloured [20]. The E-Puck robots
ere able to identify these areas using ground sensors and com-
unicate each other using omni-directional camera turrets. The
-Puck robot is still being used in several research works [21,22].
The Pi-puck extension consists of a Raspberry Pi interface

nd software, initially supporting E-Puck robots [23], and lately
xtended to E-Puck2 robots [24]. This board is intended to en-
ance the processing power, memory and communication of the
obots leaving the robot to deal with motor control and sensor
nterfacing. The Raspberry Pi Zero board is connected to the
obot’s microcontroller via I2C bus which makes it compatible
ith both the E-Puck and E-Puck2. It features long range sensors,
udio amplifier plus speaker, an OLED display, extra RGB LEDs
nd USB ports, allowing developing new applications such as
mage processing (up to 640 × 480, 15 fps) without relying
n external resources, taking advantage of an embedded Linux
ystem. Additionally, it provides an extra battery and two spring

ontacts allowing the use of a charging wall. Recent research

2

works using the Pi-puck robot include the use of blockchain
technology to secure robot swarms [25] and the analysis of the
Buzz Swarm programming language [26].

An infrastructure composed by E-Puck robots and task ab-
straction modules (TAM), hosted by the DEMIURGE project, is
presented in [27]. The robots used in the project feature extension
boards such as ground sensors, an omni-directional camera, and
an embedded computer running Linux. The robots’ firmware was
adapted to the new hardware configuration and the new model
has been integrated into the ARGoS simulator. Additionally, the
TAM included in the project’s infrastructure allows researchers
to omit the details of the task execution, focusing on the logi-
cal relations between multi-robot tasks. The TAM shape resem-
bles a booth where an E-Puck robot can enter. It is equipped
with two light barriers, three RGB LEDs, and an infrared link for
communications.

An open source simulator based on ARGoS framework for the
Thymio [28] robotic platform is available at [29]. It uses an in-
terface, which is developed using core libraries from ASEBA [30].
Thymio is an educational two-wheel robot equipped with a loud-
speaker, Li-Po battery, microphone, three-axis accelerometer, five
proximity sensors, two ground sensors, two proximity sensors, 39
LEDs, USB connection, buttons, activity display, and a memory-
card slot. It runs the ASEBA open-source programming environ-
ment designed to be easy to use, featuring a lightweight virtual
machine that runs on the Thymio microcontroller.

A plug-in for the ARGoS simulator to experiment with Kilobots
is presented in [31]. The Kilobot is a small robot which moves
by using two vibrational motors. It has infrared transceivers for
communications and detection of other robots, light sensors, and
LEDs. It has been modelled in ARGoS using a simple 3D rep-
resentation and its simulated motors were calibrated according
to the nominal robot characteristics. After describing the robot
plug-in, the authors present a set of experiments to validate
the simulations in terms of accuracy and scalability, by compar-
ing their models with real robots. Recently, Kilobots have been
used to study different communication ranges in a swarm of 50
robots [32] and to implement collective decision-making using a
distributed Bayesian approach [33].

A Swarm Robotics Construction System (SRoCS) composed of
Stigmergic Blocks as building material and a BuilderBot robot is
discussed in [34]. The authors proposed a set of block algorithms
where the intelligence that coordinates the building process is in
the blocks, and compare it with standard algorithms where the
intelligence is in the robots. In order to perform simulations in
ARGoS, the authors have developed ad-hoc plug-ins to provide
comprehensive models of robots and blocks.

Regarding other simulators, an E-Puck2 plug-in for the We-
bots [35] simulator is available. It includes support for the dif-
ferential wheel motors, simulated encoders, proximity and light
sensors, accelerometers, gyroscopes, ground sensors, camera and
LEDs. Webots is an open source, multi-platform robot simulator
which presents much more elaborated graphic representations
than ARGoS as it is very focused on 3D visualisations. In addition
to the models included in Webots, some research works propose
new sensors for this simulator such as the case of the Servosila
Engineer crawler robot [36] and new ultrasonic sensors [37] for
the Spherical Underwater Robot (SUR) [38].

We propose a new plug-in for the E-Puck2 robot which in-
cludes the new LEDs, adapted proximity, light and ground sen-
sors, and novel simulated encoders, battery discharge models,
time of flight sensor, and onboard camera. It will allow the
researchers using these robots to conduct their experiments in
the ARGoS simulator, having a more accurate model (sensors and
range of values) than the currently offered by the available E-Puck
(version 1) model. In the following sections we describe the plug-
in and its sensors, analyse their behaviour and performance, and

validate them with actual robots.
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. E-Puck2 plug-in for ARGoS

The E-Puck2 robot was developed in 2018 by GCtronic [39],
spin-off of the Autonomous System Lab at the Swiss Federal

nstitute of Technology Lausanne. It is an open hardware devel-
pment which features a STM32F407 microcontroller @ 168 MHz,
SP and FPU, 192 kB of RAM, 1020 kB of ROM, eight proximity
nd ambient light sensors, one distance sensor (Time of Flight), a
D inertial measurement unit (accelerometers and gyroscopes), 4
mnidirectional microphones, a VGA colour camera (typical use:
60 × 120), IR receiver for remote control, 10 LEDs (4 RGB) and
speaker. Two stepper motors control the corresponding two
heels to allow moving the robot up to 15.4 cm/s, providing
lso a pair of simulated encoders. The robot is powered by a LiPo
lithium-ion polymer) rechargeable battery capable of providing
800 mAh. The E-Puck2 is a 7-cm-diameter cylindrical robot, 4.5-
m height, weighting 130 g. It can be controlled by embedded
oftware or via Bluetooth, USB or Wi-Fi links.
Besides the onboard sensors, there are several expansion

oards available for the E-Puck2. Range and bearing [40] is an
xpansion board which is installed on the upper part of the robot,
sing the I2C bus, to provide short-range infrared communication
etween robots. Another expansion consists of three ground
ensors [7] meant to detect different levels of grey in the surface
elow the robot.
Our implemented E-Puck2 plug-in is based on the original

-Puck plug-in developed by Carlos Pinciroli in the ARGoS sim-
lator [4]. We have implemented new actuators (LEDs) as well
s new sensors (wheel encoders, time of flight) and battery dis-
harge models corresponding to the new robot’s features. We
ave also updated the already existing sensors (proximity, am-
ient light, camera, and battery) to match the data observed in
he E-Puck2 through our experiments, increasing the accuracy of
he simulations and allowing to work with scenarios that were
mpossible before, e.g. measuring accurate distances. It can be
sed in ARGoS by programming and compiling the controller’s
++ code, although Lua is also supported. This is especially useful
or learning robotic programming without having to setup C++
uild environments (Lua is a lightweight, embeddable scripting
anguage).

Regarding the expansion boards, the range and bearing sen-
or/actuator already exists in the ARGoS simulator, and can be
asily added to the simulated robots through the configuration
ile, including our E-Puck2 plug-in. However, we have developed
specific ground sensor for our plug-in, based on the existing
eneric ground sensor implemented in ARGoS, by adapting the
easured values to the range observed in the real robots.
Fig. 2 shows a schema with the sensors and actuators mod-

lled in the E-Puck2 plug-in. A comparison between the new
lug-in and the former one is available in Table 1. As it can
e seen the range of values has been modified according to
he values provided by the E-Puck2 robot when communicat-
ng using the SERCOM protocol. The implemented sensors allow
sing the same noise model provided by ARGoS, i.e. uniformly
istributed between −1 and 1. The following sections describe
he modifications and additions performed, individually.

.1. Body and LEDs

The implemented E-Puck2 plug-in presents a redesigned 3D
odel to resemble the real robot, although the level of detail was
ept low in order to ensure low computing resources usage when
endering the robot model (only important when the 3D visual-
sation is active). The number and types of LEDs were updated
ith respect to the original E-Puck, to represent now the four red
EDs and the other four RGB LEDs found on the top of the new
3

Table 1
Characteristics of the implemented E-Puck2 plug-in compared to the former
E-Puck plug-in.
Actuator/Sensor E-Puck E-Puck2

LEDs 8 RGB 4 RED + 4 RGB + FRONT + BODY
Proximity 8 [0.0–1.0] 8 [0 – 4095]
Light 8 [0.0–1.0] 8 [4095 – 0]
Ground 3 [0.0–1.0] 3 [0 – 1023]
Time of flight – 1 [20 – 2000]
Simulated encoders – 2 [−32768 – 32767]
Camera – 1 (160 × 120)
Battery Generic 4 discharge models

Table 2
LEDs included in the proposed E-Puck2 plug-in.
LED 1 2 3 4 5 6 7 8 9 10

Colour RED RGB RED RGB RED RGB RED RGB RED GREEN
Position 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦ Front Body

Table 3
Orientation of the E-Puck2’s proximity and light sensors.
Sensor 1 2 3 4 5 6 7 8

Angle 15◦ 50◦ 90◦ 150◦ 210◦ 270◦ 310◦ 345◦

robot. Additionally, the green body LED was added as well as the
red front LED. All these LEDs can be detected by other robots’ (not
only E-Puck2’s) using their corresponding sensors. Fig. 3 shows
the new robot’s 3D model and its LEDs, while Table 2 lists the
LEDs characteristics.

3.2. Proximity and light sensors

The proximity and ambient light sensors in the proposed E-
Puck2 plug-in were placed according to the real positions in
the new robot (Table 3). They are described together in this
section because both functionalities are provided by the same
reflective sensor (TCRT1000) including an infrared emitter and
phototransistor which detects infrared light.

The proximity sensors have a maximum detection distance of
50 mm while the light sensors can detect light sources up to
50 cm away according to the robot specifications. The returned
range of values is between 0 and 4095. For the proximity sen-
sors, 0 corresponds to no object detected and 4095 to an object
touching the sensor. On the contrary, a saturated light sensor
would produce a 0-output value and 4095 when there are not
light sources detected.

3.3. Ground sensor

The ground sensor actually comprises three different sensors
located at the bottom front of the E-Puck2. They are arranged in
a row perpendicular to the robot moving direction and measure
the grey level of the ground under the robot. Although this
sensor is an optional part of the commercial E-Puck2 robot, we
have decided to model it due to its utility for many experiments
based on sensing data from the ground, e.g. robots following a
fixed path painted in the ground. These sensors have the same
implementation as in the original E-Puck but in this case the
range of the measured values has been adapted to the actual
sensor specifications. Consequently, its range goes from 0 (black)

to 1023 (white).
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Fig. 2. Sensors and actuators modelled in the E-Puck2 plug-in.
Fig. 3. E-Puck2’s 3D model and the new LEDs included, i.e. four red, four RGB, the front LED and the green body. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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3.4. Time of Flight (ToF) sensor

We have implemented this new sensor in the ARGoS simulator
or the E-Puck2 robot plug-in using the ray intersection functions
rovided by the simulator libraries. It mimics the laser sensor
STM-VL53L0X) installed at the front of the actual E-Puck2 robots
hich is capable of measuring distances to obstacles up to 2 m
way. The values provided by the ToF sensor are in millimetres,
aving a minimum distance value of 20 mm. as observed in the
eal robots.

.5. Simulated encoders

This is another sensor we have implemented from scratch for
he E-Puck2 robot plug-in as it was not present in the former
obot plug-in. It consists of two registers to count the number
f steps that each wheel rotates with a precision equal to 0.36
egrees (1000 steps per wheel revolution). The range of values is
−32768–32767) corresponding to the robot’s 16-bit registers.
nternally, we have used real values to represent partial wheel
otations that do not end in a new step but add to the next future
alue, e.g. two rotations of 0.18 degrees would produce 1 step
fter the second rotation but no extra step after the first one.

.6. Camera

The E-Puck2’s onboard camera is the Omnivision OV7670
MOS image sensor, featuring a resolution of 640 × 480 pixels.
4

Due to the limited robot’s hardware capabilities, it provides
by default an image 160 pixels wide by 120 pixels high (full
size frames can be obtained using an extension board). It was
replicated in our plug-in using the existing model of a coloured
perspective camera included in ARGoS. In contrast, the original
E-Puck robot provides a 52 × 39-pixel image or alternatively
480× 1, as it has a lower onboard memory available. This camera
as not been implemented in the currently available E-Puck plug-
n. The simulated camera is able to detect LEDs and project their
D coordinates in a rectangular coordinated space, reporting also
heir colours. Since the aperture and maximum range of the
amera are not available in the robot specifications, they are
xperimentally calculated in Section 4.1.6

.7. Battery

The original E-Puck plug-in does not include its own battery
odel, relying on a generic implementation provided by the
imulator. Consequently, we wanted to define and test different
attery models for our E-Puck2 plug-in. With that objective in
ind, we have collected data from several robots to assess the
ctual battery discharge curves and proposed different discharge
odels, from a simpler and lightweight linear model to a more
ccurate but also more complex model, based on polynomials.
hese experiments are presented in Section 4.1.7.
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Fig. 4. Proximity Sensors: ARGoS simulation scenario, data collected from the robots, and polynomial fitting compared to the E-Puck’s (version 1) model.
4. Experiments and results

In this section we present the experiments conducted to
odel and evaluate the implemented sensors as well as the ob-
erved results. We have used E-Puck2 robots (Firmware 11.01.21
f7e095,1 Radio 25.02.19 e2f48832) and the ARGoS simulator
Version 3.0.0-beta59) running in a DELL XPS 15 9570 (12 Intel
ore i7-8750H CPU @ 2.20 GHz and 16 GB of RAM). We have
et up 10 simulation ticks per second as resolution (the default
alue) and each experiment was conducted in its own arena, i.e. a
all close to robots for testing the proximity sensors, some light
ources for testing the light sensors, etc. The main objectives
f the experiments were to evaluate the implemented sensors
nd compare them with the actual robot, and also assess the
erformance impact of using those sensors in the simulation
odel.

.1. Sensor and battery discharge models

The model of each sensor has been calculated based on data
e collected from real robots and validated to produce realistic
imulations with the proposed E-Puck2 plug-in. The following
ections describe the process followed for each sensor.

1 https://github.com/e-puck2/e-puck2_main-processor/commit/cf7e095.
2 https://github.com/e-puck2/esp-idf/commit/e2f4883.
5

4.1.1. Proximity sensors
To calibrate the proximity sensors an experiment was con-

ducted by measuring the readings from two different static robots
using their front right sensor (PROX0) during 15 s (about 24
readings per second) to calculate the maximum, minimum and
mean values as shown in Fig. 4(b). The different measures were
collected by placing the real robot with its sensor under test
facing a white cardboard surface, at the predefined distances.
These measures can be affected by several factors such as the
angle of incidence, surface colour and texture, ambient light, etc.
We have tried our best to keep the same conditions for all these
experiments to achieve reliable and reproducible results.

Once completed the data collection, a quadratic polynomial
(Eq. (1)) was fitted to both, the mean points and the maximum
values, as shown in Fig. 4(c) where the polynomial proposed
by Garattoni and Francesca [27] for the E-Puck robot was also
drawn. It can be seen that if we choose the model fitted to the
maximum values, the resulting polynomial is almost coincident
(when the values are normalised in the range 0–1) with the E-
Puck’s model (version 1), what makes sense as they use the same
sensor component. The values of the calculated coefficients for
the polynomial fitted to the maximum points are a = 197.8633,
b = −30.47182, and c = 1.011635, where the values used in
the original E-Puck were slightly different, i.e. a = 298.701, b =
−36.8961, and c = 1.08212. We have used the new calculated
polynomial and also adapted the range of values produced by the
plug-in to match the real robot’s, i.e. 0 – 4095, where 0 means
that no object was detected by the sensor. The ARGoS simulation
scenario used for collecting data from the proximity sensors is

https://github.com/e-puck2/e-puck2_main-processor/commit/cf7e095
https://github.com/e-puck2/esp-idf/commit/e2f4883
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hown in Fig. 4(a).

rox(d) =
{
min(1, a× d2 + b× d+ c), if d ≤ 0.05
0, otherwise

(1)

4.1.2. Light sensors
We have tested the ambient light sensors by collecting data

from different distances using two sensors (PROX0 and PROX7) of
a real robot facing an infrared LED, to assess their characteristic
response curve. The distance between the light source and the
sensor was set to 10, 20, 30, 40, and 50 cm, corresponding to light
intensities of 1.24, 0.62, 0.40, 0.25, and 0.20 lx, respectively. The
collected data points, shown in Fig. 5(b), were used to calculate a
new transfer function (Eq. (2)) based on the one proposed for the
original E-Puck robot. There, i is the intensity of the light source, d
is its distance to the sensor, and γ = 0.075 is a constant to obtain
he new response curve for the E-Puck2 plug-in, also shown in
ig. 5(b). The intensity values were normalised to the range [0-
] to easily compare the new transfer function (E-Puck2) with
he former one (E-Puck). Note that the ARGoS implementation
ssigns a value 1.0 to a saturated light sensor while the actual
alues obtained from the robots are the opposite.

ight(i, d) =

{
max(0, 1− (γ×i)2

d2
), if d ≤ 0.50

1, otherwise
(2)

Our implementation of the light sensor was tested in simu-
lations using different light sources (intensities) producing the
results shown in Fig. 5(c). It can be seen that the function fitted
to the collected data corresponds to a light source of intensity 1
(light sources do not have any unit in ARGoS). Different light in-
tensities are producing the saturation of the sensor (output equal
to 0) at different distances, as expected. There is a limitation in
the simulations using these sensors. As in the case of the original
E-Puck, the detections in ARGoS are meant to detect LEDs (visible
light) in the scenario. On the other hand, the infrared sensors of
the real robots will not detect the LEDs from other robots but the
infrared emissions from the other proximity sensors. The ARGoS
simulation scenario used for collecting data from the light sensors
is shown in Fig. 5(a).

4.1.3. Ground sensor
We have set up an experiment to test the implemented ground

sensor (made of three individual sensors), consisting in two sce-
narios where it is exposed to different levels of grey. In the
first scenario (Fig. 6(a)) an E-Puck2 robot crosses the simulation
arena from left to right whilst in the second, the robot rotates
at the centre of the arena (Fig. 6(b)). The detections obtained
from the first scenario show that the readings from the three
individual sensors are almost coincident as the robot moves in
a straight line (Fig. 6(c)). However, the second scenario presents
detections shifted in time as each new grey level is detected in
order, sequentially, following the sensor locations at the bottom
of the robot (Fig. 6(d)).

When testing the same patterns on the E-Puck2 robot we have
observed some residual detections for black (likely due to some
infrared light still being reflected by the black surface) and also
some discrepancies among them, i.e. slightly different readings
for the same level of grey. Figs. 6(e) and 6(f) show a comparison
between the actual sensor readings and the values provided by
our ground sensor implemented for the E-Puck2 plug-in. Despite
the clear differences observed from the ideal sensors and the real
devices, the experiment outcome shows that detecting different
grey levels is possible, whether it is done using the plug-in or the
actual robot.
6

Table 4
Angles calculated from the camera experiment and from the simulated
scenarios.
E-Puck2 robot ARGoS Plug-in

x y α x y α

250 144 32.1◦ 263 141 30.0◦
150 86 29.5◦ 143 77 30.1◦

Mean: 30.8◦ Mean: 30.1◦

4.1.4. Time of Flight (ToF) sensor
For the ToF distance sensor we have run a series of experi-

ments comparing the measures from simulations (Fig. 7(a)) with
the values collected from the robots. We have set up a robot
moving in straight line, at six different speeds, to collide with an
obstacle placed 30 cm away. Our results can be seen in Fig. 7,
where the values collected from the robots show a classical noise
(which can be also simulated by the plug-in, as in the original E-
Puck, using the ARGoS’ noise generator, although it was not used
in our study), plus a few bounces when the obstacle used in the
experiment was reached. Since we have used the robot speed to
estimate the distance travelled by time unit, the plotted lines are
not exactly coincident. It can be attributed to wheel spins and
speed inaccuracies happening in the real robot which are bigger
at higher accelerations.

4.1.5. Simulated encoders
The simulated encoder sensor was tested in the same sce-

narios as in the ToF sensor (Fig. 8(a)), comparing the simulation
results with a real E-Puck2 robot. Fig. 8 shows the results ob-
tained where we can see that wheel spins and probably speed
inaccuracies were also present in this experiment. There were
some irregularities in the measures obtained from the real robot,
due to the fact that the sampling rate, when accessing to the sen-
sor readings via WiFi connection, presents some variability (hun-
dredths of a second), more noticeable at higher speeds. Although,
the observed offset between the measures do not invalidate the
experiment, it is possible that internally recording the encoder
values directly on the robot would have provided more accurate
readings.

4.1.6. Camera
Two experiments were performed to calculate the vision angle

of the robot’s camera as shown in Fig. 9(a). The measured values
are in Table 4 as well as the resulting angle values (α). We have
chosen α = 30◦ to model the camera in our plug-in, and tested
it as shown in Fig. 9(b). It can be seen that the red LEDs of the
robots placed at the border of the camera vision are mapped at
the minimum and maximum horizontal coordinates of the points
detected by ARGoS (Fig. 9(c)). Moreover, the central blue light is
detected at the centre of the image as it was expected, according
to its position in the simulation scenario. The maximum range
for the camera implementation was experimentally set to 1 m as
the limited resolution makes it difficult to identify objects farther
away when using the real robot.

4.1.7. Battery
The battery model in ARGoS relies on an associated discharge

model. We wanted to provide a new set of discharge models
for the E-Puck2 plug-in so that researchers can decide between
a faster or a more accurate model, depending on their needs.
We have evaluated robots moving at different speeds as we have
assumed that the main components draining the batteries were
the stepper motors.

As a first step, we have collected data from eight E-Puck2
robots rotating at different speeds, from static (0 cm/s) to max-
imum speed (15.0 cm/s), with increments of 1 cm/s, to assess
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Fig. 5. Ambience Light Sensors: ARGoS simulation scenario, data collected and proposed sensor response curves, and data from simulations using different light
intensities.
the discharge curve of their batteries in different conditions. The
robot movement was implemented by rotating one wheel in one
direction and the other in the opposite. We repeated each exper-
iment twice using different robots (and batteries) to obtain the
data shown in Fig. 10(a), with the aim of being used to calculate
four discharge models: simple, linear, cubic, and approximated.

Our first finding was that the autonomy of the battery is not
linear, nor monotonously decreasing with the speed, as it was to
be expected. On the contrary, as it can be seen in Fig. 10(b), the
maximum autonomy decreases when the speed is increasing until
5 cm/s. Beyond that point, an extra battery duration has been
observed which is increasing until 14 cm/s are reached. From that
point it begins to decrease again. We believe that this behaviour
is due to the characteristics of the stepper motors whose coils
consume energy permanently, not only when they are rotating.
As a consequence, they consume different amounts of energy
not only according to the rotational speed but also to the time
they are stopped. Beyond 14 cm/s the robots stopped moving
despite the fact that some little battery charge was still available.
We have considered that point as the end of the experiment as
the robots were unusable in such conditions. Having acquired
some knowledge about the robot’s battery, we propose four dis-
charge models: Simple, Linear, Cubic, and Approximated, shown
in Fig. 11, and described in the following sections.

Simple discharge model. This model is the simplest one, featuring
a low complexity and thus low usage of computational resources.
7

It consists of two linear discharge functions, one fitted to the
maximum autonomy, observed when the robot was static (speed
equal to 0 cm/s), and the other was calculated using the av-
erage autonomy when the robot is moving. The calculated dis-
charge slope for the function corresponding to the static robot
is m0 = −5.064963 × 10−5 while for the moving robots is
m1 = −8.699124 × 10−5. The implemented pseudocode can be
seen in Appendix, and the discharge functions compared with
the collected battery points are shown in Fig. 12(a).

Linear discharge model. A more precise model is proposed using
not two but seventeen discharge functions, each one fitted to
the collected data from the robot for the corresponding speeds.
As the robot would (probably) be moving at a different speed
from the predefined functions (tested speeds), an interpolation
might be required to calculate the next battery charge value. The
pseudocode of this model is in Appendix and its block diagram is
shown in Fig. 11. The first step is calculating the robot speed and
if it corresponds to one of the existing discharge functions, the
next battery charge level is obtained. Otherwise, an extra step
is needed consisting in interpolating the values of two existing
discharge functions, corresponding to the immediately lower and
upper speeds, e.g. if the robot is moving at 13.3 cm/s, values
from 13 cm/s and 14 cm/s will be used in the interpolation. Now
the next battery charge value can be calculated and returned
by the algorithm. Note that, this discharge algorithm (and the
following ones) is focused on efficiency as it has to be calculated
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Fig. 6. Ground sensor tests. The testing scenarios are in the upper row, the data collected from the implemented ground sensors, in the central row, and a comparison
ith the data obtained from the robot is presented in the lower row.
t each simulation step. The different discharge curves for the
ested speeds of the Linear model are shown in Fig. 12(b).

ubic discharge model. The Cubic discharge model uses third-
order polynomials fitted to the battery data points obtained from
the robots. Again, we use 17 curves as this is the number of
speeds tested in our experiments. Similarly to the linear algo-
rithm, one discharge function is obtained if the robot’s moving
speed corresponds to one of the pre-calculated (fitted) poly-
nomials. Otherwise, an interpolation is needed to obtain the
next battery charge level. This algorithm is expected to be more
demanding in terms of computing resources as it requires calcu-
lating cubic roots to obtain the corresponding polynomials. The
pseudocode of the Cubic discharge model is also in Appendix and
its block diagram, in Fig. 11. The different discharge curves for the
Cubic model are shown in Fig. 12(c).

Approximated discharge model. Finally, the Approximated dis-
harge model presents a simplification of the Cubic model in
8

which no cubic roots are calculated. Mainly, what it does is
dividing each fitted cubic curve into four linear sections and after
finding the corresponding line segment, the next battery charge
value is calculated using two known speeds and an interpola-
tion, if needed. The discharge curves made of line segments can
be seen in Fig. 12(d), the algorithm’s block diagram is shown
in Fig. 11, and its pseudocode is included in Appendix. This
model was expected to have an accuracy comparable to Cubic
but at lower computational times. Both metrics are discussed in
the following sections for the four proposed battery discharge
models.

4.2. Accuracy of the discharge models

We have compared the battery charge values obtained from
each model with the collected values from the robots in order to
assess its accuracy. We have used the Mean Square Error (MSE) as
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Fig. 7. ARGoS simulation scenario for the experiment and distances measured from simulations in ARGoS using the ToF sensor, compared to a real E-Puck2 robot,
for six different speeds.
Table 5
Average MSE values of the analytic model and those obtained from the ARGoS
simulations.
Source Simple Linear Cubic Approximated

Analytic 0.0221 0.0170 0.0020 0.0025
ARGoS 0.0216 0.0167 0.0019 0.0023

a metric, calculated as shown in Eq. (3), where n is the number of
ata points, Yi are the observed values, and Ŷi are the estimated
alues.

SE =
1
n

n∑
i=1

(Yi − Ŷi)2 (3)

The average MSE values are presented in Table 5. They have
been obtained from the functions calculated for each discharge
9

model (analysis) and also from the simulations performed in
ARGoS. Firstly, we can see that for each model the analytic and
ARGoS values are quite similar (the maximum difference is 5 ×
10−4), denoting an accurate implementation of the models in our
plug-in. Secondly, the accuracy values are as expected, being the
Simple model the least accurate (MSE = 0.0216) and the Cubic,
the most (MSE = 0.0019). We can also see, that the accuracy
of the Approximated model is quite close to the Cubic (MSE
= 0.0032 vs. MSE = 0.0019), representing a viable alternative,
providing that the former is more lightweight than the later. In
the next section we will try to answer this question by testing
each model in terms of execution times.

4.3. Execution times

Experimenting with robot simulations usually implies testing
many scenarios and problem instances where a few tenths of
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Fig. 8. ARGoS simulation scenario for the experiment and distances vs. Simulated Encoder values from simulations in ARGoS compared to a real E-Puck2 robot, for
six different speeds.

Fig. 9. Experiments conducted with the camera of the real robot and the simulated camera sensor of the proposed E-Puck2 plug-in. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

10
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Fig. 10. Data collected from the battery experiment and curves showing how the depletion time changes depending on the robot speed. Intermediate points for a
25%, 50% and 75% charge are also represented.
Fig. 11. Block diagram of the algorithms proposed for the four battery discharge models.
Fig. 12. Plots showing the different battery discharge models and the collected data from the robots in the background.
econds in a single simulation run can represent several extra
ours in the computing cluster. In the following sections we
ropose the study on how the execution times are affected by
sing the new sensors in the ARGoS simulations.
11
4.3.1. Setup
We have conducted a series of experiments to assess how the

simulations are affected in terms of execution times when the
studied sensors are active. Different characteristics can increase
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Fig. 13. ARGoS simulation scenarios, corresponding to the 50-robot experiments, for measuring the execution times using the different E-Puck2’s sensors.
the use of computing resources such as arena size, number of
robots and lights. Therefore, each sensor was tested in its partic-
ular scenario, without modifications, whether robots were using
sensors or not, to ensure a fair comparison. We performed 30
independent simulations using one, five, ten, twenty, and fifty
robots as well as eleven robot speeds (0 cm/s, 1.5 cm/s, 3 cm/s,
4.5 cm/s, 6 cm/s, 7.5 cm/s, 9 cm/s, 10.5 cm/s, 12 cm/s, 13.5 cm/s,
and 15 cm/s), running for 2 simulated hours. The robots in each
scenario would be rotating at a given speed while interacting with
the different objects in the simulation, depending on the sensor
under evaluation.

Fig. 13 shows the ARGoS scenarios designed for testing the
execution times when using the different sensors in simulations
involving 50 E-Puck2 robots. Some robots were removed to test
the other scenarios keeping the rest of elements unaltered. Four
walls were placed alongside the robots in the simulation arena
to test the proximity and ToF sensors (Figs. 13(a) and 13(d)). Six
light sources were used to produce readings in the robot’s light
sensors (Fig. 13(b)) and eight light sources were used for the
camera (Fig. 13(f)). The ground sensor performance was evaluated

using a greyed floor (Fig. 13(c)) and no extra objects were needed

12
to evaluate the simulated encoders (Fig. 13(e)). Finally, this same
scenario was used to evaluate all the different battery discharge
models. In contrast to the former, the robots would rotate at
a variable speed (one wheel forward and the other backward
and vice versa) in the latter. The range of speeds used was from
−15 cm/s (counter clockwise) to 15 cm/s (clockwise) changing
in steps of 0.1 cm/s. This is relevant to test the extra computing
resources needed to calculate the interpolation points at different
speeds.

As each researcher’s hardware configuration is going to be
different, we report the values obtained using the equipment
described at the beginning of Section 4, to be used as a reference
of the expected efficiency when using each sensor in the E-Puck2
plug-in.

4.3.2. Sensors
Fig. 14 shows the mean execution times and standard devia-

tion obtained from simulations where the robots were using the
sensor under evaluation, compared with the base case where all
sensors are inactive. Each mean value was calculated from 330
independent simulations to increase the accuracy of the mea-

sures (30 simulations using eleven different robot speeds). Note
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Fig. 14. Mean execution times in seconds and standard deviation when using the proposed sensors in simulations with different number of robots.
that the mean execution times when no sensor is active differs
through the experiments due to the fact that each scenario is
different, independently of the sensors being tested. For example,
there are always six light objects in the light sensor experiment
even when no light sensor is active. However, there are not light
objects in the ToF experiment.

We can see that using proximity sensors results in a maximum
45% longer simulations for fifty robots and that simulations using
light sensors are up to 53% slower (50 robots). The increment of
the execution time observed is similar beyond ten robots using
proximity sensors (40%–45%), although the time values in seconds
are different. Simulations with robots using light sensors have
also shown a comparable time increment for five, ten, and twenty
robots (around 45%).

Regarding the computational resources required after activat-
ing the ground sensor in ARGoS simulations, it can be seen that
13
when using one robot, there is a small increment of the execution
time (7.5%) which represents 30 negligible milliseconds. How-
ever, for five, ten, twenty, and fifty robots, the average execution
times are about 10%–13% slower, not negligible but much less
than some of the other sensors.

Simulation of fifty robots using the ToF sensor are 14% slower
than the case in which it is inactive, while one robot is only 3%
slower. We can see that simulation times when using the ToF
sensor, scale accordingly with the number of robots as expected.
The performance test done for the simulated encoders showed
that this sensor has a little effect on the simulation times showing
an maximum increment of 2.8%. This is mainly because there is
no ray calculations involved to detect intersections with other
objects in the arena.

Experiments involving the new camera presented a time in-
crement in the range 9%–16%. Interestingly, the simulation of five
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Table 6
Mean execution times in seconds and standard deviation when using the proposed battery discharge models in simulations with different number of robots, compared
with the case base where no battery model was used.
Robots None Simple Linear Cubic Approximated

Mean SD Mean SD Slower Mean SD Slower Mean SD Slower Mean SD Slower

1 0.43 0.01 0.43 0.01 0.3% 0.43 0.01 0.6% 0.44 0.01 1.8% 0.43 0.01 0.7%
5 1.36 0.03 1.37 0.03 1.2% 1.38 0.04 1.7% 1.41 0.04 4.2% 1.38 0.04 1.6%
10 2.60 0.06 2.63 0.07 1.2% 2.65 0.07 2.1% 2.70 0.07 3.8% 2.64 0.07 1.8%
20 5.39 0.13 5.37 0.13 −0.4% 5.34 0.14 −0.9% 5.40 0.15 0.2% 5.37 0.14 −0.3%
50 15.10 0.34 14.84 0.37 −1.7% 15.38 0.39 1.8% 15.54 0.44 2.9% 15.26 0.41 1.0%
robots has shown the biggest percentage difference in execution
times, although the absolute values (in seconds) are according
to the expected. We believe that it is mainly due to the limited
precision of our experimental setup when measuring execution
times since 3% represents here, 4 hundredths of a second.

4.3.3. Battery
To asses the complexity of the battery sensor, we have con-

ucted 30 simulations per discharge model, for one, five, ten,
wenty and fifty robots. Then, we have compared the obtained
alues with the same scenarios where no battery consumption
as been measured. Table 6 shows the average results from the
imulations where we can see that the Simple model is at the
ost 1.2% slower than the case without battery, the Linear model
resents a maximum 2.1% longer execution times, the Cubic
odel is up to 4.2% slower, and the Approximated model, up to
.8%.
We have observed experiments in which the robots using

attery models were faster that the base simulations (up to 1.7%
aster) which a priori is something that ought not to happen.
We believe that since we are dealing with so small time val-
ues (tenths and hundredths of second), the obtained results are
falling into the precision of our experiments, not to say possible
optimisations done by the C++ compiler and at microprocessor
level. All in all, we can see that the impact of using any of the
battery models is almost negligible, at least for simulations up to
fifty robots, especially if we compare the obtained values with the
other sensors. Cubic model is confirmed to be the more accurate
model (see Section 4.2) but at the price of having slightly longer
simulations.

5. Conclusion

In this article we have presented a plug-in for the ARGoS
simulator to perform experiments using the E-Puck2 robot. We
have described the new graphic model for the robot and the
implementation of its sensors, tested them on different number of
robots, and studied the results obtained to address their accuracy
and how much they impact on execution times. We have mod-
elled the new robot body and added the existing LEDs, updated
the positions and detection response of the proximity and light
sensors. We have also adapted the existing ground sensors to
the E-Puck2 characteristics and tested them in two scenarios
featuring different ground patterns.

Additionally, we have implemented the new distance (Time
of Flight) and simulated encoder sensors and calibrated them
using data from the actual robots. We have observed some speed
deviations and wheel spin in the robots that resulted in a small
difference between the simulated and actual trajectories. Using
the ARGoS’ coloured perspective camera we have implemented
the specific E-Puck2 camera taking into account its resolution
and aperture. We have conducted two experiments to measure
all those values using real robots and validated them through
14
simulations. We have also proposed four different battery dis-
charge models based on the data collected from 32 experiments
(2 different robots and 16 speeds) to obtain the actual discharge
curves. They were used to model the proposed battery models
taking into account different levels of accuracy and efficiency
(computing times).

Our results, after testing the implemented sensors and com-
paring their behaviours with the real robots, show accurate mod-
els based on the response curves of the Time of Flight, ground,
proximity and light sensors. The simulated encoders worked sim-
ilarly as in the E-Puck2 robots while the representation of the
objects observed by the onboard camera were placed in the
corresponding 2D coordinates with precision. From the study of
the four proposed battery discharge models, Simple, Linear, Cubic,
and Approximated, we have obtained different accuracy metrics
(MSE) in accordance with the complexity of each model, i.e. the
more complex the more accurate.

We have evaluated the execution times of the simulations
when using the proposed sensors as a metric of computing effi-
ciency. In general, the simulations were longer when there were
more robots in the scenario, as expected. Some sensors presented
a negligible influence in execution times, e.g. simulated encoders,
while the sensors internally using ray traces had a higher impact,
e.g. light sensors. Finally, after evaluating the different battery
discharge models, we can say that none represented a high im-
pact on the simulation times, especially if they are compared with
the sensors that use rays to calculate intersections, e.g. proximity
and light sensors.

As a matter of future work we would like to further test
our plug-in and evaluate the possibility of adding other external
extension boards such as the cliff sensor. We plan to make the
plug-in source code freely available at https://gitlab.uni.lu/adars/
e-puck2 to be used by researchers in their experiments involving
E-Puck2 robots simulated on ARGoS.
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A
ppendix. Discharge model algorithms

See Algorithms 1–4.

Algorithm 1 Simple Model.
function Simple(∆t , ∆x, CurrentCharge)

if ∆x = 0 then ▷ Static robot
NextCharge← CurrentCharge+m0 ×∆t

else ▷ Moving robot
NextCharge← CurrentCharge+m1 ×∆t

end if
return NextCharge ▷ Next battery charge value

end function

Algorithm 2 Linear Model.
function Linear(∆t , ∆x, CurrentCharge)

Speed← ∆x
∆t

▷ Current robot speed
SpeedL ← ⌊Speed⌋ ▷ Lower speed line
mL ← Line(SpeedL) ▷ Slope for SpeedL
NextL ← CurrentCharge+mL ×∆t
SpeedH ← ⌈Speed⌉ ▷ Upper speed curve
if SpeedL = SpeedH then

NextCharge← NextL ▷ No interpolation needed
else

mH ← Line(SpeedH ) ▷ Slope for SpeedH
NextH ← CurrentCharge+mH ×∆t
ω←

Speed−SpeedL
SpeedH−SpeedL

▷ Interpolation factor
if NextL < NextH then

NextCharge← NextL + ω(NextH − NextL)
else

NextCharge← NextH + ω(NextL − NextH )
end if

end if
return NextCharge ▷ Next battery charge value

end function
15
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Algorithm 3 Cubic Model.
function Cubic(∆t , ∆x, CurrentCharge)

Speed← ∆x
∆t

▷ Current robot speed
SpeedL ← ⌊Speed⌋ ▷ Lower speed curve
PL ← Poly(SpeedL) ▷ Polynomial for SpeedL
TmaxL ← MaxT (SpeedL)
tL ← FindRoot(PL, CurrentCharge) ▷ Finds t
if tL ≥ TmaxL then

NextL ← 0 ▷ Maximum t was reached
else

tL ← tL +∆t
NextL ← PL(tL) ▷ Next charge value for tL

end if
SpeedH ← ⌈Speed⌉ ▷ Upper speed curve
if SpeedL = SpeedH then

NextCharge← NextL ▷ No interpolation needed
else

PH ← Poly(SpeedH ) ▷ Polynomial for SpeedH
TmaxH ← MaxT (SpeedH )
tH ← FindRoot(PH , CurrentCharge) ▷ Finds t
if tH ≥ TmaxH then

NextH ← 0 ▷ Maximum t was reached
else

tH ← tH +∆t
NextH ← PH (tH ) ▷ Next charge value for tH

end if
ω←

Speed−SpeedL
SpeedH−SpeedL

▷ Interpolation factor
if NextL < NextH then

NextCharge← NextL + ω(NextH − NextL)
else

NextCharge← NextH + ω(NextL − NextH )
end if

end if
return NextCharge ▷ Next battery charge value

end function

Algorithm 4 Approximated Model.
function Approximated(∆t , ∆x, CurrentCharge)

Speed← ∆x
∆t

▷ Current robot speed
SpeedL ← ⌊Speed⌋ ▷ Lower speed segment
mL, hL ← Line(SpeedL) ▷ Segment for SpeedL
tL ←

CurrentCharge−hL
mL

▷ Finds t
NextL ← mL(tL +∆t )+ hL ▷ Next charge
SpeedH ← ⌈Speed⌉ ▷ Upper speed segment
if SpeedL = SpeedH then

NextCharge← NextL ▷ No interpolation needed
else

mH , hH ← Line(SpeedH ) ▷ Segment for SpeedH
tH ←

CurrentCharge−hH
mH

▷ Finds t
NextH ← mH (tH +∆t )+ hH ▷ Next charge
ω←

Speed−SpeedL
SpeedH−SpeedL

▷ Interpolation factor
if NextL < NextH then

NextCharge← NextL + ω(NextH − NextL)
else

NextCharge← NextH + ω(NextL − NextH )
end if

end if
return NextCharge ▷ Next battery charge value

end function
16
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