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Abstract—This paper explores how the condition number
of the channel matrix affects the performance of different
precoding techniques in non-terrestrial network (NTN) com-
munications. Precoding is a technique that can improve the
signal-to-interference-plus-noise ratio (SINR) and bit error rate
(BER) in massive multi-beam systems. However, the performance
of precoding depends on the rank and condition number of
the channel matrix, which measures how well-conditioned the
matrix is for inversion. We compare three precoding techniques:
zero-forcing (ZF), minimum mean square error (MMSE), and
semi-linear precoding (SLP), and show that their performance
degrades as the condition number increases. To mitigate this
problem, we propose a user ordering approach that forms
optimally conditioned channel matrices by selecting users with
orthogonal channel vectors. We demonstrate that this approach
improves the SINR and goodput of all the precoding techniques
in full-frequency reuse NTN communications.

Index Terms—Multiuser MISO, Symbol-level precoding, user
ordering, channel matrix,

I. INTRODUCTION

Non-terrestrial network (NTN) communications are emerg-
ing as a promising technology for beyond 5G (B5G) appli-
cations, as they can provide wide-area coverage and service
availability over untapped or underserved geographic areas
[1]. NTN communications rely on multi-layer space platforms,
such as satellites and high-altitude platforms, to support vari-
ous types of connections that may be made anywhere and at
any time [2]. In order to fulfill the demands of connections that
may be made anywhere and at any time, an NTN is designed
to offer wide-area coverage while ensuring service availability
and scalability [3]. Moreover, NTN communications can en-
sure service continuity in mission-critical scenarios that cannot
tolerate failures, such as disaster relief or emergency response,
where terrestrial communications may be disrupted by natural
catastrophes or terrorism [4].

One of the key challenges in NTN communications is
to improve the spectral efficiency and reliability of massive
multi-beam systems, where multiple users share the same
frequency band and interfere with each other. Precoding is a
technique that can enhance the performance of these systems
by pre-processing the transmitted signals at the transmitter
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side to mitigate the interference and improve the signal-to-
interference-plus-noise ratio (SINR) and bit error rate (BER)
at the receiver side [5]–[7].

Many studies have demonstrated various precoding enabled
system designs for NTN communications in [8]–[10]. In [11],
[12] we demonstrated a complete end-to-end test-bed for
precoding validation over a live satellite link using the DVB-
S2X framework [13].

The effectiveness of precoding depends on the rank and
condition number of the channel matrix, which measures how
well-conditioned the matrix is for inversion. A high condition
number indicates a poorly conditioned matrix that can degrade
the performance of precoding techniques such as zero-forcing
(ZF), minimum mean squared error (MMSE), and symbol-
level precoding (SLP). Previous studies in [5], [14] and [15]
have proposed user ordering techniques for precoding, but
they did not provide a closed-form solution or establish a
clear relation between the condition number and the precoding
performance. In [16], [17] different user ordering techniques
were developed tailored for specific precoding techniques.

In this work, we address these gaps by investigating how
different channel matrix configurations affect the SINR and
goodput of ZF, MMSE, and SLP precoders. We also propose
a user ordering approach that forms optimally conditioned
channel matrices by selecting users with orthogonal channel
vectors. We demonstrate that our approach improves the
performance of all the precoding techniques in full-frequency
reuse NTN communications.

Notation: Upper-case and lower-case bold-faced letters are
used to denote matrices and column vectors. The superscripts
(·)H , (·)† and (·)−1 represents Hermitian matrix, matrix trans-
pose and inverse operations. ∥·∥2 is the Euclidean norm, | · |
is an absolute magnitude of a complex value. The real and
imaginary parts of a complex value are defined as Re(·) and
Im(·). The imaginary unit is denoted as ι. Square diagonal
matrices are denoted as diag[·] with the elements defined on
their main diagonal. Identity n× n matrix is defined as In

II. MATRIX CONDITION NUMBER IMPACT ON PRECODING

A. System Model

We consider a system model with the forward link of a
multiuser multi-antenna wireless communication system. We
assume the system to use the full frequency reuse scenario,
in which all the antennas transmit in the same frequency and



time. The multi-user interference is managed using precoding.
We define the number of the transmitting antennas as Nt

and the total number of single-antenna user terminals (UTs)
as Nu in the coverage area. In the specified MU-MIMO
channel model, the received signal at the i-th UT is given
by yi = h†

ix + ui + ni, where h†
i is a 1 × Nt vector

representing the complex channel coefficients between the i-
th UT and the Nt antennas of the transmitter, x is defined
as the Nt × 1 vector of the transmitted symbols at a certain
symbol period, ui is a constructive interference component of
SLP precoding, and ni is the independent complex circular
symmetric (c.c.s.) independent identically distributed (i.i.d)
zero mean Additive White Gaussian Noise (AWGN) measured
at the i-th terminal’s receive antenna.

Looking at the concatenated formulation of the received
signal, which includes the whole set of receiver terminals, the
linear signal model is

y = Hx+ n = HW(s+ u) + n, (1)

where y = [y1, y2, . . . , yi] ∈ CNu×1, n = [n1, n2, . . . , ni] ∈
CNu×1, x ∈ CNt×1, s ∈ CNu×1, u = [u1, u2, . . . , ui] ∈
CNu×1 and H = [h†

i ,h
†
i , . . . ,h

†
i ] ∈ CNu×Nt . We define a

precoding matrix W ∈ CNt×Nu which maps the information
symbols s into precoded symbols x. We consider the data
symbols s to be unit variance complex vectors |si| = 1 for
every i = 1, 2, . . . , Nu. The vector u represent the constructive
interference in the received symbols of all the users. The
precoding matrix W and the vector u are defined accordingly
to the selected precoding technique, which we describe in the
following section.

B. Precoding Techniques

1) Channel Inversion: We define the precoding matrix
WZF as the ZF precoder:

WZF = HH(HHH)−1/fZF, (2)

where fZF =
√∑Nt

n=1

∑Nu

m=1 WZF
2
n,m is a rescaling factor

to account for sum power constraints. In this case ui = 0 for
all i = 1, 2, . . . , Nu.

2) Regularized Channel Inversion: We define the precoding
matrix (W) as the MMSE precoder:

WMMSE = HH(HHH + σ2INU
)−1/fMMSE, (3)

where fMMSE =
√∑Nt

n=1

∑Nu

m=1 WMMSE
2
n,m is a rescal-

ing factor to account for the sum power constraints, σ2 -
noise variance at the UTs. In this case ui = 0 for all
i = 1, 2, . . . , Nu.

3) Symbol-Level Precoding: We define symbol-level pre-
coding (SLP) as in [18]. The following optimization problem
is devoted:

min
ũ

∥ŴZF(̃s+ ũ)∥2

s.t. ũk ≥ 0,
(4)

for all k = 1, 2, . . . 2Nu ,ŴZF =
[Re(WZFB),−Im(WZFB); Im(WZFB),Re(WZFB)] ∈

R2Nt×2Nu , s̃ = [|Re(s1)|, |Re(s2)|, . . . ,
|Re(sNu

)|, |Im(s1)|, |Im(s2)|, . . . , |Im(sNu
)|] ∈ R2Nu×1, and

ũ = [|Re(u1)|, |Re(u2)|, . . . , |Re(uNu)|, |Im(u1)|, |Im(u2)|,
. . . , |Im(uNu)|] ∈ R2Nu×1. There are additional constraints
for ũk in the [18]. We ignore these constrains in this work,
as they are required only for QAM constellations with
modulation order higher than 4. For simplicity, we use
4-QAM symbols in all the benchmarks.

The matrix B represents the rotation of the symbol vectors
into the first quadrature of the complex plane and is defined
as

B = diag
[
b1, b2, . . . , bi

]
. (5)

bi =


1 if Re(si) > 0 and Im(si) > 0

ι1 if Re(si) < 0 and Im(si) > 0

−ι1 if Re(si) > 0 and Im(si) < 0

−1 if Re(si) < 0 and Im(si) < 0

, (6)

for i = 1, 2, . . . , Nu. The following equality is therefore
respected

s = Bs̃. (7)

The problem (4) is a non-negative least squares (NNLS) prob-
lem. It can be solved using Fast NNLS algorithm developed in
[19]. In this case u is the output of the Fast NNLS algorithm.

C. SINR Estimation

To evaluate the performance, we consider signal-to-
interference-plus-noise ratio (SINR) estimation measured on
the actual pilots at the UT side rather than using SINR esti-
mation based on the precoding matrix [20]. SINR estimation
is suitable for SLP techniques, where SINR depends on both
the precoding matrix and the symbol constructive interference.
The authors in [21] showed that estimating SINR at the UT
side is more reliable than SINR calculated at the gateway side.
The DVB-S2 standard uses the Signal-to-Noise Ratio Estima-
tion (SNORE) algorithm [22]. The SNORE algorithm work in
data-aided (DA) operating mode. The pilot presence allows to
use the DA version of the SNORE algorithm operating on the
pilot time slots and therefore we insert pilots into the beginning
of transmitted frames for each user. The pilot sequence for i-
th UT is generated as in [13] part E.3.5.3. The pilot fields are
determined by a Walsh-Hadamard (WH) sequence of size 32
plus padding of a Walsh-Hadamard (WH) sequence of size 16.
A set of 25 = 32 orthogonal WH sequences results from the
following recursive construction principle:

Pm =

[
Pm−1 Pm−1

Pm−1 −Pm−1

]
, (8)

starting from m > 1 and P1 = 1 until P32 is denoted. The
i-th row of P32 corresponds to the i-th WH sequence with
i = 1, . . . , 32. For the sake of padding, a matrix of size 32×16
is appended. This matrix is generated from P16 by repeating
P16 vertically to get:

Ppadding =
[
P16;P16

]
. (9)



Putting both matrices together yields:

Ppilot3 =
[
P32;Ppadding

]
, (10)

hosting the whole set of possible pilot sequences row by row.
The selection of i is a static choice for the transmit signal, thus
we transmit i-th sequence to the i-th UT. The pilot sequences
are multiplied by (1 + ι)

√
2 to generate complex symbols.

At each UT, SINR is calculated as follows:

Eb

N0
=

PS

PN

1

log2 4
, (11)

where PS - power of the intended signal and PN - power of
noise plus interference. We calculate Ps as

PS =
1

48
|

48∑
t=1

yi[t] ∗ Ppilot3i[t]|
2 (12)

We calculate PN from the total signal power

PN = PR − PS , (13)

where PR = 1
48

∑48
t=1 |yi[t]|2.

D. Generating Channel Matrices

We consider a MU-MISO system, which has an equal
number of the transmit and receive antennas Nt = Nu = 16.
We accordingly generate a full rank N×N MU-MISO channel
matrix with i.i.d. complex values. If the condition number of
the matrix is very large, then the matrix is said to be ill-
conditioned. Practically, such a matrix is almost singular, and
the computation of its inverse, or solution of a linear system
of equations is prone to large numerical errors. A matrix that
is not invertible has condition number equal to infinity. The
2-norm matrix condition number is defined as

κ2(H) = ||H||2 · ||H−1||2. (14)

The matrix condition number corresponds to the ratio of
the largest singular value of that matrix to the smallest
singular value. In the case of the MU-MISO system, the
matrix condition number describes the power imbalance in
the channel. To generate a channel matrix with random i.i.d.
values and a desired condition number we calculate singular-
value decomposition (SVD) [23] of the generated matrix (H)
as H = UΣV†. U is an Nu×Nu complex unitary matrix, Σ
is an Nu ×Nt rectangular diagonal matrix with non-negative
real numbers on the diagonal, and V is an Nt × Nt real or
complex unitary matrix. We reconstruct Σ for its diagonal
elements to monotonically increase from 1 to κ2 as

Σκ2
= diag

[
1, . . . , κ2

]
. (15)

The resulting channel matrix is then computed and its power
is normalized as

H =
UΣκ2

V†√∑Nu

n=1

∑Nt

m=1 hn,mhH
n,m

. (16)

We average the results over 50 channel matrix iterations with
the condition numbers (κ2) from 1 to 200.

E. Numerical Validation

We consider the following benchmarks to evaluate the per-
formance of the precoding techniques under various channel
matrix condition numbers: SINR ( Eb

N0
), which is calculated

using the SNORE algorithm at the UTs and the achieved BER
score.
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Fig. 1. Received average SNR at the UTs vs the channel matrix condition
number.

The received SINR as a function of the channel matrix
condition number is shown in Fig. 1. The received SINR
decreases for all the benchmarked precoding techniques when
the condition number increases. The ZF exhibits the most
loss in SINR compared to other techniques. In the SLP case,
SINR degrades less rapidly than ZF. The MMSE precoder
demonstrates similar SINR dynamics in the beginning but
soon reaches its optimum SINR point due to normalization
in the inverse operation, which becomes more dominant in
this region.
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Fig. 2. Achieved BER at the UTs vs the channel matrix condition number.

We can see the achieved average BER in Fig. 2 for the
same benchmark. We can see that the SINR and BER are
closely related to all the techniques as would be expected. For
the MMSE case, BER error is saturated near the condition
number 10 as was seen for the SINR benchmark.

Fig. 3 shows the BER curves vs the achieved SINR derived
from Fig. 1 and 2. We can see that SLP has a slightly
lower BER in the high SINR region than ZF and MMSE
techniques. In the case of the MMSE technique, the SNR
range achieved during the benchmark is between 1 dB and
10 dB. We can see, that the SINR and BER performance is
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Fig. 3. Achieved BER vs the received SNR.

sensitive to the condition number of the channel matrix for all
the benchmarked precoding techniques.

III. MANIPULATING THE CONDITION NUMBER OF THE
CHANNEL

A. Ordering Algorithm

Based on the findings, presented in the previous section,
we demonstrate a user ordering algorithm to minimize the
condition number of the resulting channel matrix. We consider
the system has a pool of M randomly generated users, there
M > Nt. The system serves the maximum number Nu = Nt

of users at any given time. For simplicity of this demonstration,
we consider that the users in the pool are preselected based on
the same QoS demands by the medium access control (MAC)
layer of the communication system. Therefore, the ordering
algorithm has no prioritization towards the users in the pool.
There are Mcomb possible permutations to order M users into
sets of NT -s. Since the order of the users in a single set does
not effect the condition number so as

κ2(hi;hi+1) = κ2(hi+1;hi), (17)

the number of possible permutations Mcomb can be found as

Mcomb =
M !

Nt!(M −Nt)!
(18)

When the two users have a similar channel the condition
number will increase towards infinity as

κ2([h1;h1]) → ∞, (19)

which allows the ordering algorithm to avoid potentially not
invertible MIMO channels in the system.

The ordering algorithm makes Mcomb sets of Nu × Nt

channels matrices and selects the one with the lowest condition
number. The users, which are not in the winning set are stored
back in the pool and are reconsidered in the next iterations of
the algorithm when the pool is refilled with new users by the
MAC layer. The users in the winning set are transferred to the
precoder. The flow diagram of the proposed ordering algorithm
is presented in Fig. 4.

External 
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Find Mcomb sets of 

HNu x Nt channel 
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Fig. 4. Flow Diagram of the Proposed User Ordering

TABLE I
TOTAL GOODPUT WITH THE SIZE OF THE USER POOL M = 17

Precoding ZF MMSE SLP CF
Random ordering 7949 9381 8315
Proposed ordering 8789 9434 9059
Goodput increase 10% 1% 9%

TABLE II
TOTAL GOODPUT WITH THE SIZE OF THE USER POOL M = 19

Precoding ZF MMSE SLP CF
Random ordering 8041 9390 8391
Proposed ordering 9222 9544 9410
Goodput increase 14% 2% 12%

B. Numerical Validation

In this benchmark, we consider a system that has Nt =
16 transmit antennas and the size of the user pool is M =
17, 19 and 21. We consider that the pool is constantly refilled
with a total number of 10000 randomly generated users. The
number of permutations to find a winning set in each case is
17, 969 and 20349 respectively. The number of final sets to
be transmitted is 625. We can select the channel matrix from
a greater number of permutations so we have more chances to
get the lowest possible condition number, but it comes with
the price of longer processing delays. We define the complete
system goodput as

R =

10000∑
c

(1−BERc)
2bits

sHz
. (20)

In the Table I we can see numerical results of the total
achieved goodput with the proposed user ordering compared
to the case without ordering (i.e. random ordering). The size
of the pool is 17 in this case. We can see that all the precoders
achieve the higher goodput when the proposed user ordering
is applied. We get a 10% increase in terms of goodput for the
ZF precoder.

In Table II we see the achieved goodput for the size of
the user pool 19. Extra users in the pool give the ordering
algorithm more possible perturbations to choose the best
combination. We see a 14% and 12% increase of the goodput
for ZF and SLP precoders. even the robust to high condition



TABLE III
TOTAL GOODPUT WITH THE SIZE OF THE USER POOL M = 21

Precoding ZF MMSE SLP CF
Random ordering 8072 9398 8421
Proposed ordering 9537 9676 9649
Goodput increase 18% 3% 15%

numbers MMSE precoder demonstrates now 2% goodput
increase.

In the Table III we utilize the pool of 21 users. We can see
now 18% and 15% goodput increase for ZF and SLP precoders
respectively. The MMSE technique improves by 3%.

Naturally, the larger is the user pool and the greater the
number of possible perturbations to find a better-conditioned
channel matrix, the higher results we achieve. The authors
would like to note, that calculating the condition number of
each possible channel matrix is a computationally expensive
operation. As seen from (14), the operation involves a matrix
inverse, which asymptotic complexity alone is of O(N3) for
a N × N channel. This can be improved if another metric
with a lower complexity is proposed to reliably detect ill-
conditioned matrices. Moreover, the number of perturbation
grows asymptotically with the size of the pool and results
in longer calculation delays. Nevertheless, even while using
the lowest user pool possible for this system, we already see
improved system performance.

IV. CONCLUSION

In this paper, we demonstrated the impact of the condition
number of the channel matrix on the performance of the
selected precoding techniques. It was shown that if the rank
of the channel matrix is fixed and its condition number is
increasing, the SINR performance degrades for all the bench-
marked precoding techniques, for a NTN system with a limited
transmitter power. This leads to lower goodput performance
at the UTs. The matrix is ill-conditioned then its condition
number is high, thus the norm of the inverse of such matrix
is higher. In the case of SLP, the SINR performance degrades
slower than in the case of the ZF technique. On the other hand,
MMSE is less sensitive to the condition number than both ZF
and SLP as the technique’s normalization factor is dominating
in the low SINR region. We showed a closed-form algorithm
to improve the channel matrix by tackling user ordering in a
precoded communications system. The algorithm chooses sets
of users to create channels with the lower condition number by
brute-forcing though all the possible combinations of the user
channel. We saw the goodput increase ranging from 1% to
18% depending on the size of the user pool and the precoding
technique.
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