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Abstract

The positron is the antiparticle of the electron, possesing the same mass and obeying the
same spin statistics but with an opposite charge. When a positron and an electron col-
lide, both annihilate within a few nanoseconds, emitting two or three photons. However,
positrons can also form energetically metastable states with atoms and molecules before
the pair annihilation.

The relatively long positronic lifetime, on a nanosecond time scale, allows a positron to
interfere with the faster molecular vibrational motions or with molecular reactions, which
are typically in the range between femto- and picoseconds. Therefore, such positronic sys-
tems expand the �eld of physical chemistry, which is still vastly unexplored theoretically
and experimentally, and it could lead to new and exciting applications.

In recent decades, signi�cant e�orts have been made in the development of theoretical
methods to accurately describe the interactions of positrons with matter, which often re-
quires explicit many-body correlation e�ects, posing a substantial challenge for quantum-
chemical methods based on single-particle atomic orbitals. Despite many creative and accu-
rate approaches, most of them are extremely computationally expensive. Therefore, their
application is limited to small and highly polar molecular systems, where the binding is
mainly driven by the strong attractive electrostatic interaction.

This thesis aims to attain a robust understanding of positrons interacting with molecular
systems, starting from �rst principles of quantum mechanics. To this end, new variational
electron-positron wave function ansatzes are proposed and discussed, which are based on
a combination of electron-positron geminal orbitals and a Jastrow factor that explicitly
includes three- and four-body electron-positron correlations in the �eld of the nuclei, that
is fully optimized within the framework of the Variational Monte Carlo (VMC) method. The
performance of this approach is validated in combination with the Di�usion Monte Carlo
(DMC) method by calculating total energies and binding energies of a set of positronic
atomic and molecular systems, demonstrating that a representation in terms of electron-
positron orbitals for the fermionic and Jastrow wave functions is an accurate and e�cient
approach for studying the interactions of positrons with matter.
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Moreover, the developed methodology is applied here to study electronic and positronic
response properties such as dipole polarizabilities, annihilation lifetimes, and expectation
values of interparticle distances as a function of an external electric �eld, aiming to gain
further physical insights into the electron-positron wave function structure. Through the
Quantum Monte Carlo (QMC) method, non-trivial variations of the polarizabilities with re-
spect to the interatomic length were unveiled. A further decomposition of the polarizability
into electronic and positronic contributions revealed that the positronic cloud in the outer
regions is highly polarizable and screens the response of the electrons to the same external
electric �eld.

Furthermore, the QMC methodology was employed to investigate the stability of a sys-
tem consisting of two positrons and three hydride anions, discovering the formation of
a three-center two-positron bond, analogous to the well-known three-center two-electron
counterpart in Li+3 , thus extending the concept of positron-bonded molecules, in which two
or more repelling anions are stabilized by one or more positrons.

The �nal section is dedicated to the exploration of using positron-bonded diatomic sys-
tems as an alternative approach for estimating interacting atomic sizes, in which it was
found that their equilibrium distance is connected to the sum of van der Waals radii of the
corresponding neutral atoms, and to a lesser extent to the sum of anionic radii.

Overall, this thesis presents the development of a computational methodology based on
QMC techniques to compute and analyze the wave function of positrons interacting with
atoms, molecules, and external electric �elds. The methods and analysis developed in the
presented work will pave the way for further study of complex positronic systems of phys-
ical and chemical interest, encouraging new theoretical and experimental investigations in
the �eld of positron-matter interactions.

Keywords: positrons, electron-positron correlation, quantum Monte Carlo, variational
Monte Carlo, di�usion Monte Carlo, polarizability, annihilation lifetimes, positron-bond,
three-center bonds, atomic radius.
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Chapter 1

Introduction

One of the important milestones of 20th century physics was the discovery of the positron,
an elementary particle with the same mass and same spin statistics of the electron but
with opposite electric charge [1], hence its antiparticle counterpart. The �rst experimental
evidence of this particle was attained by Anderson in 1933 [2]. While studying cosmic ra-
diation in a cloud chamber, Anderson observed a particle’s trail with a curvature matching
the one obtained by electrons, but going in the opposite direction, revealing that its charge
was positive, like a positively charged electron. Before this observation, one of the theo-
retical arguments to support the existence of an antiparticle of the electron was implied by
the relativistic quantum mechanics of Dirac’s equation [3], allowing particles like electrons
to have either positive or negative energy solutions. However, due to the natural tendency
of systems towards equilibrium and thus lower energy, these negative states would lead
the energy to be unbound from below [4]. To overcome this issue, Dirac proposed a model
of vacuum, described as an in�nite sea �lled with particles of negative energy, and thus
impeding an electron from occupying those states. In this model, a hole in the sea could be
seen as a particle with positive energy and positive charge, which Dirac initially identi�ed
as a proton. However, shortly after, it was pointed out that if that was the case, then stable
atoms would not exist, therefore the mass of the positively charged particle should be the
same as the electron, but no such particle was observed at the time until Anderson’s dis-
covery. Years later, Stuckelberg and Feynman reinterpreted the negative energy solutions
as positive energy states of a particle with inverse charge, in a mirrored space, and moving
backward in time [5], thus disregarding the notion of electron sea and holes.

Following the discovery of the positron, the phenomenon of electron-positron annihilation
was observed experimentally [6, 7]. When an electron and a positron get in contact with
each other, both can form a pseudo-atom called Positronium (Ps), a system similar to a Hy-
drogen atom but with the notable di�erence of having half of the reduced mass, and where
both particles equally orbit their center of mass. Once the electron and the positron in Ps
get into contact at a distance of approximately ~/mc ≈ 10−13m, the particles annihilate,

1
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converting their total rest mass m into a pair of photons with an energy of 511 keV, which
move in opposite directions according to the conservation of momentum [8]. This phe-
nomenon was also predicted by Dirac’s model, in which he proposed that an electron of
positive energy could make a transition into an unoccupied negative-energy state, leading
to the simultaneous disappearing of both the electron and a ‘proton’, emitting their energy
in the form of electromagnetic radiation [9]. The lifetime of Ps also depends on its total spin
state, going from 125 ps for antiparallel spins, for which the two particles decay through
a two-photon channel as mentioned before, to 142 ns for parallel spin particles that decay
into three photons with a total energy of 1022 keV [8]. However, once the particles are in
contact, the time of the annihilation event is very short, of just 10−21 seconds.

Since the discovery of the positron, many exciting applications have been emerging in sev-
eral �elds, most of them based on electron-positron pair annihilations. For example, in
medicine, positron emission tomography (PET) is a well-established functional imaging
technique employed for cancer detection and for the visualization of metabolic processes in
living tissues. It is based on the detection of gamma rays produced from a positron-emitting
radionuclide, which is incorporated into a molecule that will be involved in a biochemical
reaction [10, 11, 12]. In materials science, the Positron Annihilation Lifetime Spectroscopy
(PALS) [8, 13, 14] is a non-destructive technique used to study defects and voids in solids,
which is based on the principle that in the bulk of a material the positron will annihilate
promptly with an electron, while if the positron resides in a vacancy defect, its lifetime will
be longer, due to the absence of a close electron to annihilate. The production of positrons
in both applications is based on the same principle; the β+ radioactive decay of a neutron-
poor isotope, in which a proton of a radionuclide atom is converted into a neutron, releasing
a positron and an electron neutrino [8]. The most common positron sources for PALS and
PET techniques are the isotopes 22Na and 18F, decaying into 22Ne and 18O, respectively.

Prior to the pair annihilation process, positrons and electrons are capable to form energeti-
cally metastable systems. As was mentioned above, the simplest bound state is the Ps atom,
which was predicted by Mohorovičić in 1934 [15] and detected experimentally in 1951 by
Deutsch [16]. Other electron-positron systems are the positronium anion Ps− and positro-
nium dimer Ps2, both speculated in 1946 by Wheeler [17]. Theoretically, these species are
remarkably fascinating systems because they expose the complexity of stable three- and
four-body systems, interacting through a Coulomb potential [18, 19]. However, due to the
short lifetime of Ps and the technical di�culty of obtaining low-energy positrons in large
numbers, the experimental observation of these species was achieved many years later, in
1981 [20] and 2007 [21], for Ps− and Ps2, respectively. Larger species, such as Ps3 have been
predicted to be unbound [22].

For decades, several enthusiastic physicists and chemists have dedicated themselves to
studying the interactions between positrons and regular matter [23, 24], �nding some en-
ergetically stable bound states between a positron and an atom or a molecule. About 50
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atoms have already been theoretically identi�ed to bind a positron in the ground states of
their neutral or anionic forms [25, 26], while for others, unbound states are mostly guaran-
teed, according to empirical predictions based on the correlation between highly accurate
positron or positronium binding energies with other electronic properties of atoms such
as polarizabilities, ionization potentials, or numbers of valence electrons. Nevertheless,
no experimental evidence for positron-atom bound states has been found so far, with the
remarkable exception of Positronium Hydride (denoted as PsH or e+H−), which was in-
directly observed by analyzing the products of the collisions between e++ CH4 and their
dissociation energies threshold [27].

Regarding positron-molecule interactions, during the last two decades, the experimental
evidence of such positronic complexes has only been obtained via vibrational Feshbach
resonances (VFR) [28, 29]. In this technique, higher annihilation rates are observed at
resonant frequencies of the incident positron energy with the vibrational motions of the
positronic molecular complex, a process mainly explained through dipole coupling. Under
this approach, the positron binding energies are inferred from the redshifts between the
positron annihilation spectra and selected vibrational modes in the infrared spectra of the
corresponding molecule. This innovative methodology has allowed the measurement of
positron binding energies for over 90 molecules, mostly small organic nonpolar or weakly
polar species [29], which has led to the following relationship

ε = 12.4(α1 + 1.6µ+ 2.4Nπ − 5.6), (1.1)

between the positronic binding energies (in meV), and the dipole polarizabilities α1 (in Å3),
dipole momentµ (in Debye), and the number of π bondsNπ (for aromatic compounds) of the
isolated molecule. Figure 1.1 illustrates the positronic and electronic density distribution
for a polar molecule, showing that the positron localizes around the most negative region of
the molecule, since the interaction is mainly driven by the electrostatic attraction between
the positron and permanent dipoles in the molecule.

In general, the addition of a positron induces a slight change in the electronic structure.
However, due to the coupling between the vibrational motions and enhanced annihilation
rates, it is suggested that positron binding should also include molecular structures deviated
from the equilibrium [30]. Apart from these �ndings, other types of coupling mechanisms
are presumed to exist for nonpolar molecules [31, 32, 33] beyond dipole coupling, and thus
further physical and chemical understanding remains to be unveiled.

The interest in metastable positronic states lies in the fact that, due to the somewhat relative
long positronic lifetime, within the nanosecond, they can interfere with the faster molecular
vibrational motions or with molecular reactions that are typically in the range between
femto- and picoseconds [34]. Thus, the positronic binding phenomena can be envisioned
as a useful mechanism for controlling chemical reactivity. Furthermore, the techniques to
accumulate and manipulate positrons [35] and positronium atoms [36] at low energies have
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Figure 1.1: Electronic density (in red) and positronic density (in blue) for the positronic
tryptophan system obtained at HF level. A contour value of 0.001 a.u. was used for both
densities.

signi�cantly advanced, allowing the possibility of a more careful study of the interaction
between matter and antimatter, as well as achieving remarkable breakthroughs, such as the
production of dipositronium (Ps2) [21], the development of positronium gamma-ray lasers
[37], and the production of long-lived positronium beams to study gravitational interactions
[38].

In molecular physics, such experimental and technical advancements have stimulated a
wide range of theoretical investigations, mostly aimed at developing accurate methods for
predicting positron binding to atoms or molecules [29, 39]. Other related studies are focused
on the calculation of scattering cross-sections [40, 41, 42, 43, 44], annihilation rates [40, 45,
46, 47, 48, 49, 50, 51, 52, 53], excited states [54, 55, 56, 57], electric response properties
[58, 59, 60, 61, 62, 63], positron dynamics [30, 64, 65], or chemical reactions [66, 67, 68, 69,
70]. Among some recent theoretical discoveries, one could remark a new type of chemical
binding in which the positron is directly responsible for binding and stabilizing two or more
electronic species [71, 72, 73, 74]. Furthermore, it has been shown that positrons can act
as a chemical mediator by drastically changing energy pro�les of proton-transfer reactions
in aminoacid compounds [69]. Nevertheless, further experimental work is necessary to
con�rm such �ndings.

Despite the aforementioned advancements, the �eld of positronic chemistry is still in its
early stage, requiring further e�orts to narrow the gap between experiment and theory
[29, 39, 49, 75, 76]. Experimentally, the main challenge is accumulating and manipulating
positrons before pair annihilation. On the other hand, the prediction of positron bind-
ing to atoms and molecules requires robust theoretical methods that can handle both lo-
calized and delocalized positronic and electronic states, and at the same time accurately
capture electron-positron correlation energies. For this purpose, one can rely on the well-
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established hierarchy of quantum-chemical methods. However, these methods, based on a
single-particle atomic orbital representation, cannot explicitly capture the correlation aris-
ing from the attractive electron-positron Coulomb interaction [40], making them incapable
to predict correct bound states in comparison to experiments. As a result, the methods
based on the Multi-Component Molecular Orbital (MCMO) reference, including Many-body
Perturbation Theory (MBPT) and Con�guration Interaction (CI), still struggle to describe
positron-matter systems accurately [76] and have to rely on large basis set extrapolations
and multireference approaches at an extreme computational cost, limiting their applicabil-
ity to relatively small systems [29, 77]. Recent progress has been achieved in this direction
through the use of GW approaches [39, 78, 79], which correct the positron-molecule self-
energy by including the contribution of virtual-positronium terms. Yet, their applicability is
limited to positron binding energies only, and there is no guarantee of a monotonic conver-
gence at higher orders. Nevertheless, these approaches represent the best agreement with
experiment to date [39]. Given that, an accurate systematic description of electron-positron
interactions can be obtained with highly accurate approaches such as explicitly correlated
methods [80, 81, 82] and the Stochastic Variational Method (SVM) [83, 84], where the de-
pendence on interparticle distances is explicitly introduced in the wave function.

In the direction of theoretical predictions, a successful computational approach to accu-
rately describe the ground state of positronic complexes is represented by the family of
QMC methods [85], which have already been applied to study positron interactions with
atoms [45, 86, 87, 88, 89, 90, 91], small molecules [46, 92, 93], and solids [94]. The QMC tech-
niques correspond to a family of stochastic integration approaches commonly used to solve
Schrödinger’s equation and to compute ground-state properties of quantum systems. The
main advantage of these approaches lies in the versatility to work with elaborated wave
functions that are capable of including explicit many-body interactions between the spa-
tial degrees of freedom in the system, greatly enhancing the accuracy and improving the
convergence with respect to the basis set size. Therefore, over the decades, for many physi-
cists and chemists, QMC has been a powerful tool for proposing and testing sophisticated
variational ansatzes. Additionally, for QMC calculations, the 3rd to 4th order scaling of the
computational operations with respect to the number of fermions makes these techniques
promising for the study of large systems with respect to the many correlated electronic
methods, and due to the intrinsic parallel nature of their algorithms, it can fully exploit
the progress of modern high-performance computing facilities despite their large compu-
tational prefactor [90, 95]. Thus, the main challenge for QMC remains the de�nition of
an e�cient variational ansatz, which for positron-matter systems should also include the
electron-positron correlation interactions [96], besides the standard electronic correlation
e�ects and cusp conditions.

This thesis presents contributions related to the development and applications of method-
ologies aimed at expanding the current computational tools and understanding of positron
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interactions with atomic and molecular systems, mainly employing QMC techniques. The
aforementioned topics serve as a general introduction and motivation for the subjects pre-
sented in the following chapters and a more speci�c introductory paragraph is given at the
beginning of each chapter. The structure of the thesis is organized as follows:

Chapter 2 brie�y summarizes the theoretical background employed in this work to tackle
the problem of positron-matter interactions and describes the methodological approaches,
highlighting all important points that should be taken into account for the inclusion of a
positron into a quantum-mechanical system.

Chapter 3 describes in detail a new proposal for a variational ansatz of the total electron-
positron wave function based on a combination of electron-positron geminal orbitals and a
Jastrow factor, which are optimized at the level of VMC. This approach, in combination with
DMC, is applied to calculate binding energies for either a positron e+ or a Ps, bound to a set
of atomic systems, as well as to study the Potential Energy Surface (PES) of two hydrogen
anions H− mediated by a positron, comparing the results to most accurate reference data
available in the literature.

Furthermore, Chapter 4 presents an improved version of the Jastrow factor for the study
of electron-positron interactions that explicitly includes three- and four-body correlations
between pairs of positive charges (positrons, nuclei) and pairs of negative charges (elec-
trons), expanded in a set of atomic and positronic orbitals. The performance of this Jastrow
factor is analyzed through a systematic study of its components on the convergence of total
energies and dissociation energies for the most relevant positronic compounds, computed
by means of VMC and DMC.

Once the methodology is established and analyzed in Chapters 3 and 4, the following chap-
ters 5, 6, and 7 present further studies and applications aimed to expand the current under-
standing of the positron behavior in atomic and molecular systems.

More speci�cally, Chapter 5 provides a detailed QMC study of the e�ects of an external elec-
tric �eld on the properties of positronic systems such as dipole polarizabilities, expectation
values of interparticle distances, and two-photon annihilation rates for the most common
positronic species, aiming to gain valuable insights into the electron-positron wave func-
tion structure, and their electric response to an external environment.

Next, Chapter 6 presents a QMC computational study on how two positrons can stabilize
three repelling atomic anions through the formation of a three-center positronic bond, ana-
lyzing the local stability of the system against the vertical detachment and adiabatic energy
dissociation channels, as well as comparing its bonding properties with those of the purely
electronic H +

3 and Li +
3 systems.

Chapter 7 discusses how the equilibrium distance of positron bonded dimers, similarly to
the one described in Chapter 6, can be connected to the sum of their atomic radii, presum-
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ably serving as a new way to estimate atomic sizes.

Finally, Chapter 8 presents concluding remarks covering all preceding chapters, pointing
out the main developments in the methods presented, the most relevant results obtained by
studying the proposed applications, and a general outlook on future studies based on the
�ndings and methodology discussed in this thesis.
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Chapter 2

Theoretical Background

This chapter provides a brief introduction to the basics of quantum mechanics in the context
of a system comprised of electrons and positrons as quantum particles within the frame-
work of a non-relativistic Time-Independent Schrödinger Equation (TISE) as described in
Section 2.1. In addition to covering the essential steps of the methodologies used in this the-
sis, the current chapter will also highlight all the modi�cations required to extend the well-
known electronic structure theory to the case of multiple electrons and positrons. Section
2.2 summarizes the most relevant expressions of MCMO, starting from HF to Second-Order
Möller-Plesset (MP2) theories. A major emphasis will be given to Section 2.3 that covers
the fundamental aspects of QMC techniques, since later in this thesis novel developments
based on QMC will be described. Finally, Section 2.4 brie�y summarizes technical aspects
of the computational packages used in this work. In this thesis, atomic units were employed
for all formulas, in essence: ~ = 1, me = 1, and q−e = e = 1. Although, in some equations
the variables of mass and charge are reintroduced to remark di�erent terms coming for
electrons and positrons, aiming for future generalizations to other particles with di�erent
mass and charge.

2.1 Electron/Positron Hamiltonian

Under the framework of the Born-Oppenheimer Approximation (BOA) [97], the non-relativistic
Hamiltonian of a system comprised of Nf fermionic quantum particles and Nc classical
point charges is written as:

Ĥ = −
Nf∑
i

1

2mi

∇2
i +

Nf∑
i

Nc∑
J

qiZJ
RiJ

+

Nf∑
i

Nf∑
j>i

qiqj
rij

+
Nc∑
I

Nc∑
J>I

ZIZJ
rIJ

. (2.1)
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For the speci�c case of Ne− electrons, Ne+ positrons, and Nc classical nuclei, the Hamilto-
nian correspond to:

Ĥ = −
Ne−∑
i

1

2me−
∇2
i +

Ne−∑
i

Nc∑
J

qe−ZJ
RiJ

+

Ne−∑
i

Ne−∑
j>i

qe−qe−

rij

−
Ne+∑
k

1

2me+
∇2
k +

Ne+∑
k

Nc∑
J

qe+ZJ
RkJ

+

Ne+∑
k

Ne+∑
l>k

qe+qe+

rkl

+

Ne−∑
i

Ne+∑
k

qe−qe+

rik
+

Nc∑
I

Nc∑
J>I

ZIZJ
rIJ

. (2.2)

Here, i-j and k-l are indexes for the electrons and positrons, respectively, while capital
letters are used to denote nuclear indices. The masses and charges of the quantum particles
are expressed withm and q, while Z is used for the nuclear charges. In Eq. 2.2, the �rst and
fourth terms correspond to the kinetic energy, the second and �fth terms to the Coulomb
potential with the nuclear charges, and the third and sixth terms are the repulsive Coulomb
potential between fermionic particles of the same type. Finally, the second last term is the
attractive Coulomb potential between electrons and positrons, and the last is the classical
Coulomb potential between �xed point charges.

2.1.1 Born-Oppenheimer approximation

The previous molecular Hamiltonian is based on the BOA [97], one of the cornerstones of
molecular physics and quantum chemistry. This is based on the fact that the nuclear motion
is much slower than the motion of the electrons due to the large di�erence between their
masses by at least a factor of 1800. Considering that, at �rst instance, the electronic and
nuclear degrees of freedom can be decoupled, allowing to separate the molecular TISE into
electronic and nuclear parts

Ĥe(r,R)Ψ(r;R) = EeΨ(r;R) (2.3)
[T̂n + Ee(R)]Φ(R) = EΦ(R), (2.4)

which converts the problem into solving an electronic Hamiltonian (Eq. 2.3) that explicitly
depends on all electronic coordinates r and parametrically on all nuclear coordinates R. By
extension, this approximation can also be applied to positrons with respect to the nuclei
since me+ = me− . Numerous electronic structure methods based on the BOA have been
developed to solve the electronic Schrödinger equation (Eq. 2.3) [98]. The nuclear part can
be solved in a second step by solving the nuclear equations with kinetic energy operator T̂n
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for all nucleiNn in a potential generated by the electronic part Ee(R). The next sections of
this thesis describe some methodologies employed to solve the TISE for electron-positron
molecular systems.

2.2 Multicomponent molecular orbital approach

This section summarizes the expressions of MCMO methods for the speci�c case of multi
electron-positron quantum systems based on the Any Particle Molecular Orbital (APMO)
approach; a more detailed description can be found in a recent review of the method in
reference [76]. Within this subsection, the Greek letters α and β are used to identify a
quantum species, for example electrons or positrons.

2.2.1 Hartree-Fock method

The APMO/HF level wave function for an electron-positron molecular system in the ground
state, Ψ0, is constructed as a product of a single-con�gurational electronic wave function,
Φe− , and a single-con�gurational positronic wave function, Φe+ ,:

Ψ0 = Φe−Φe+ . (2.5)

In the most common case, Φe− and Φe+ are built as a Single-Determinant (SD) of single-
particle spin molecular orbitals χi as

ΨSD(x) =
1√
Nα!

∣∣∣∣∣∣∣∣
χ1 (x1) χ1 (x2) . . . χ1 (xNα)
χ2 (x1) χ2 (x2) . . . χ2 (xNα)
. . . . . . . . . . . .

χNα (x1) χNf (x2) . . . χNα (xNα)

∣∣∣∣∣∣∣∣ , (2.6)

here α symbol is used to represent either electrons or positrons, x corresponds to their
spin-coordinates vector, and x is the full set of 4N coordinates. The spatial part of these
spin orbitals, φ, is written as a linear combination of atomic orbitals ϕ with a basis set of
sizeB (notice that the number of atomic centers can be greater than the number of classical
nuclei Nc) as

φ (ri) =
B∑
a=1

caϕa (ri,q) . (2.7)

Commonly these atomic orbitals are constructed with Gaussian Type Functions (GTFs) that
depend on the spatial coordinate of one single particle ri and are centered on a �xed position



12 CHAPTER 2. THEORETICAL BACKGROUND

ra for each atomic center. The molecular orbitals are obtained by solving the coupled Fock
equations

fα(i)φαi = εαi φ
α
i , α = e−, e+, (2.8)

where εi are the single particle orbital energies. The e�ective one-particle Fock operators,
fα(i), for the quantum species e− and e+ are expanded as

fα(i) = hα(i) +
Nα∑
j

[Jαj −Kα
j ]− Jβ. (2.9)

In the above equation hα(i) is the single-particle core Hamiltonian

hα(i) = −1

2
∇2
i +

Nc∑
J

qαZα

RiJ

, (2.10)

and Jα and Kα are the Coulomb and exchange operators de�ned as

Jαj (1)φαi (1) = qαqα
[∫

dr2φ
α∗
j (2)

1

r12

φαj (2)

]
φαi (1), (2.11)

Kα
j (1)φαi (1) =

[∫
dr2φ

α∗
j (2)

1

r12

φαi (2)

]
φαj (1). (2.12)

In addition, Jβ is the operator which accounts for the Coulomb potential between particles
of di�erent quantum species, thus is the term which couples the electronic and positronic
Fock equations, and is de�ned as

Jβj (1)φαi (1) = qβqα
[∫

dr2φ
β∗
j (2)

1

r12

φβj (2)

]
φαi (1). (2.13)

In practice, these expressions are implemented in a matrix form [99] as

Sαµν =

∫
dr1φ

α
µ(1)φαν (1)

Fα
µν = Hα

µν +Gα
µν +Gβ

µν

Hα
µν =

∫
dr1φ

α
µ(1)hα(1)φαν (1)

Gα
µν =

∑
λσ

Pα
λσ [(µανα | σαλα)− (1/2) (µαλα | σανα)]

Gβ
µν =

∑
λσ

P β
λσ

(
µανα | σβλβ

)
,

(2.14)
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where Sµν , Fµν , Hµν , and Gµν correspond to the overlap, Fock (Eq. 2.9), one-core Hamilto-
nian (Eq. 2.10), and two-particles (Eqs. 2.11,2.12,2.13) element matrices, which run over the
total number of atomic orbitals µ, ν. Here, the chemistry notation of two-particles integrals
(φµφν |φσφλ) has been simpli�ed to (µν|σλ). In addition, the density matrix elements are
de�ned from the coe�cient matrix C of the molecular orbitals expansion in Eq. 2.7 and the
fermionic orbital occupation η

Pα
µν = ηα

∑
λ

Cα
µλC

∗α
λν . (2.15)

These coe�cient matrices are found by diagonalizing the Roothan-Hall equations

FC = εSC. (2.16)

Finally, the total Hartree-Fock energy is computed from

E0 =
1

2

∑
µ

∑
ν

Pα
µν

(
Hα
µν + Fα

µν

)
. (2.17)

2.2.2 Second-order Möller-Plesset perturbation theory

The APMO/MP2 energy of a molecular system containingN e− electrons andN e+ positrons
is given by [76]

EAPMO/MP2 = E(0) + E(2)
αα + E

(2)
αβ , (2.18)

where E(0) is the APMO/HF energy (Eq. 2.17), while E(2)
αα and E(2)

αβ are the second-order
same fermion (electron-electron and positron-positron) and di�erent fermion correlation
energies, respectively. These second-order corrections are written in the physicist notation
[99] as

E(2)
αα =

1

4

occα∑
a

occα∑
b

virα∑
r

virα∑
s

| 〈ab | rs〉 − 〈ab | sr〉 |2
εa + εb − εr − εs

, (2.19)

and

E
(2)
αβ =

1

4

occα∑
a

occβ∑
b

virα∑
r

virβ∑
s

| 〈ab | rs〉 |2
εa + εb − εr − εs

, (2.20)

where occα and virα are, respectively, the number of occupied (a − b) and virtual (r − s)
molecular orbitals for the fermionic type particle α = e−, e+. Here, it should be noted that
the two-particles integrals are built in terms of molecular orbitals as

〈ij|kl〉 =
∑
µ

∑
ν

∑
κ

∑
λ

CµiCνjCκkCλl〈µν|κλ〉. (2.21)
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The second-order correction to the APMO/HF energy has contributions from double elec-
tronic or positronic excitations, according to Eq. 2.19, and from double excitations com-
prising of single excitations of the electronic and positronic subspaces, as given by Eq. 2.20.
Both the direct (rs) and exchange (sr) contributions are accounted for in Eq. 2.19, and the
MP2 perturbation potential, namely the di�erence between the sum of the Coulomb in-
teractions and the sum of the single-particle Fock potentials [99], is implied in the above
expressions.

2.3 Quantum Monte Carlo

QMC methods [85, 100, 101] are a family of stochastic techniques used to numerically in-
tegrate the many-body Schrödinger equation on a chosen trial wave function in order to
calculate the mean value of physical observables for molecules, surfaces, and bulk mate-
rials. All these methods are characterized for using random samplings to integrate multi-
dimensional functions that appear in many-body problems.

The di�culty of handling the Schrödinger equation lies in the correct description of an an-
tisymmetric many-body wave function, which has a complexity that grows exponentially
with the number of fermionic particles and explicitly depends on the two-particle distances.
Traditionally, the approximations for the wave function are based on a linear combination
of one-body Gaussian Type Orbital (GTO)s like in HF, see Section 2.2, due to the relative
simplicity and low computational cost of the analytic integrals that arise in its formulation.
Under this approach, the correlation e�ects can be introduced by using many-body pertur-
bative expansion such as MBPT or Green functions approaches or by con�guration state
expansions in the Coupled Cluster (CC) and CI based methods, which usually dominate the
�eld of quantum chemistry simulations. In these formulations, the accuracy is determined
by the uncorrelated mean �eld reference provided by the single particle orbitals, which can
only be systematically improved by increasing the many-body expansion. In practice, this
orbital expansion is typically slowly convergent, quickly increasing the computational time
and storage demands. Alternatively, methods based on Density Functional Theory (DFT)
are generally not strongly limited by the system size, but the incomplete or unknown treat-
ment of exchange and correlation e�ects decreases the accuracy [98], which are approx-
imated by the use of empirical functionals, especially for mixed systems of electrons and
positrons [64, 102, 103]. Nevertheless, DFT is fundamental in the PALS methodology for
materials [94].

On the other hand, QMC methods are not necessarily constrained by the choice of the
wave function, such as basis set type and size, or many-particle expansions, since more
intricate explicitly correlated e�ects can be introduced in the wave function ansatz without
relying on analytically available integrals or expensive spatial grid numerical integration
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techniques. In addition, the highly parallelizable nature of Monte Carlo algorithms allows
to e�ciently exploit the advantages of large supercomputer resources. Therefore, over
the decades QMC has been a powerful tool to study highly correlated systems, in which
the accuracy can be improved by including novel and sophisticated variational ansatzes
de�ned through physical intuition, while the precision can be systematically improved by
increasing the number of samples.

The following subsections discuss the basic ideas of Monte Carlo stochastic integration and
how this method is applied to evaluate the energy functional for a given approximate trial
wave function of the Schrödinger equation, starting with the VMC method, which is con-
sidered as the most popular application of Monte Carlo integration technique for quantum
mechanics, as well as describing the technical aspects of the optimization techniques of the
variational parameters of the wave function. Finally, the basic concepts behind the DMC
procedures within the Fixed-Node (FN) approximation Fixed-Node Di�usion Monte Carlo
(FN-DMC), which is further employed to overcome the limitations of the VMC trial wave
function.

2.3.1 Monte Carlo integration

Monte Carlo methods encompass a large number of numerical algorithms which can be
used to solve integration problems through random sampling [85]. The common issue in
solving an integral is the large number of evaluations of the integrand over many coupled
degrees of freedom. However, in Monte Carlo, the idea is to create random samples of
con�gurations that will be added together to give an accurate estimate of the desired exact
quantity.

To recall the basic concepts of the Monte Carlo integration procedure [85, 100], let us con-
sider a set of 3N -dimensional coordinates r̄ for a system of N fermions

r̄ = {r1, r2, . . . rN} . (2.22)

A particular value of r̄ is sometimes called a walker or a con�guration. The normalized
probability density of �nding the fermions in a given con�guration r̄ has to satisfy the
properties

Π(r̄) ≥ 0,

∫
Π(r̄)dr̄ = 1. (2.23)

Now, for a set ofN mutually independent con�gurations (uncorrelated) distributed accord-
ing to the probability distribution Π(r̄), a new random variable Z[f(r̄)] will be introduced

Zf =
1

N
N∑
i=1

f(r̄), (2.24)
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where f(r̄) is a function with mean valuemf and variance σ2
f which are exactly de�ned by

the �nite integrals

mf =

∫
drf(r)Π(r) , σ2

f =

∫
dr (f(r)−mf )

2 Π(r).

Due to the central limit theorem, it can be demonstrated that for a large number of con-
�gurations N , the random variable Zf follows a normal distribution with mean mf and
standard deviation σf/

√
N . Implying that, in general, the mean value of independent mea-

surements of a given function f over a large number of con�gurations r can be a good esti-
mator of the exact mean valuemf , with an error that decreases as 1/

√
N , independently of

the number of integration variables and independently of the form of the probability distri-
bution Π(r). This idea can be extended to evaluate integrals over generic multidimensional
functions. In essence, in order to compute the integral of a function g(r), as

I =

∫
drg(r), (2.25)

a distribution function Π(r) is introduced to guide the exploration of the integration space
of f(r) over the most probable region; this procedure is called the importance sampling
technique.

I =

∫
drg(r) =

∫
drf(r)Π(r) f(r) ≡ g(r)

Π(r)
. (2.26)

As seen before, the above integral can be obtained as the average of discrete evaluations of
f(r) over an in�nite set of random con�gurations r generated according to the distribution
Π(r) as

I = limN→∞

{
1

N
N∑
i=1

f(r̄)

}
, (2.27)

then, a stochastic estimation of the integral can be obtained by averaging over a large but
�nite sample of con�gurations drawn from Π(r) as

I ≈
〈
f(r)2

〉
Π

=
1

N
N∑
i=1

f(r̄), (2.28)

with an associated error of

σf√
N
≈
√

1

N (N − 1)
[〈f(r)2〉Π − 〈f(r)〉2Π]. (2.29)

According to this way, a better choice of the distribution function Π(r) reduces to the vari-
ance of �xed sample size, more speci�cally, the best choice for Π(r) would be to make it as
close as possible to |g(r)/I|, when f(r) becomes constant. However, I is unknown for this
problem.
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Metropolis algorithm

As described before, when using Monte Carlo integration, it is necessary to sample proba-
bility distributions in multidimensional spaces, which are generally very complicated and
highly correlated, and of which its normalization is unknown, as in the case of quantum
mechanics problems. To overcome this issue, the Metropolis algorithm was introduced
[104] to generate a collection of con�gurations according to a desired distribution Π(r).
Before enumerating the basic steps of the method, it is necessary to start by introducing
some quantities. The Metropolis algorithm is based on the detailed balance principle, which
establishes that to maintain a stable stationary relationship, the number of processes un-
dergoing a transition r′ → r has to be exactly compensated by the same amount of reverse
processes r→ r′. Then, in order to de�ne a Markov process (a process in which the proba-
bility of each event depends only on the state attained in the previous event), according to
a desired distribution Π(r), the transition probability ω (r′, r) of being in a state r transi-
tioning to state r′ must be equal to the probability of being in state r′ transitioning to state
r, such that

ω (r′, r) Π(r) = ω (r, r′) Π(r′). (2.30)

In the Metropolis algorithm, the transition probability ω is split into two parts: the proposal
and the acceptance-rejection as

ω (r′, r) = T (r′, r)A (r′, r) , (2.31)

whereT (r′, r) de�nes a trial probability that proposes the new con�guration r′ andA (r′, r)
is the acceptance probability of that move. Therefore, an acceptance ratio can be written as

A (r′, r)

A (r, r′)
=

T (r, r′) Π (r′)

T (r′, r) Π(r)
. (2.32)

The next step is to choose an acceptance probably, which in the Metropolis algorithm is
given by

A (r′, r) = min

(
1,

T (r, r′) Π (r′)

T (r′, r) Π(r)

)
, (2.33)

In this way, the detailed balance principle is satis�ed either when A (r, r′) = 1 or A (r′, r) =
1. If A(r̄′, r̄) > 1 the move is always accepted, otherwise it is compared to a random number
µ uniformly extracted between [0,1], so that if A(r̄′, r̄) > µ then it will be accepted, oth-
erwise refused. When the move is accepted the new position r̄′ becomes the new starting
point from which to continue the random walk, otherwise a new move must be extracted
again with the probability T(r̄′, r̄) from the old position r̄. This procedure is repeated un-
til the chosen number N of fermionic con�gurations are generated. In most cases (as in
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the original work by Metropolis and collaborators), it is useful to consider symmetric trial
probabilities T (r, r′) = T (r′, r) simplifying the acceptance probability to

A (r′, r) = min

(
1,

Π (r′)

Π(r)

)
, (2.34)

Considering the above de�nitions, the Metropolis algorithm is summarized in the following
steps:

1. Initial setup: set initial random con�guration r.

2. Propose a move according to a transition probability T (r, r′), for example as:

r′ = r +
1

2
η̄[−1, 1]∆t, (2.35)

where η[−1, 1] is a set of 3Nf random numbers extracted uniformly in the interval
[−1, 1], and ∆t is an initial Metropolis step that de�nes the maximum length of the
move. Here, it should be noted that in practice, this variable is allowed to be di�erent
for electrons and positrons.

3. Evaluate the acceptance probability A (r′, r).

4. Acceptance or rejection criteria

• Generate a random number u ∈ [0, 1].

• If A (r′, r) ≥ u the move is accepted and r′ will become the new con�guration.

• If A (r′, r) < u the move is rejected and the new con�guration will remain the
previous position r.

The above process is repeated until generating the desired number of con�gurations N .
In order for a random walk to move according to the detailed balance principle imposed by
the acceptance probability, it is necessary to perform a certain number of thermalization
steps to equilibrate the Markov process according to Π(r). Each walker moving in a new
con�guration of the space will depend on the ∆t parameter that appears in Eq. 2.33. The
smaller ∆t, the more con�gurations visited by each walker will be correlated, leading to
an error in the estimation of the variance of f(r̄). On the other hand, using values of ∆t
which are too large, would lead to a small acceptance probability, with the consequence
that the majority of the moves proposed would be refused. Empirically, ∆t (also called
thermalization time step) is chosen so that the acceptance rate of the moves is around 50%
along all the random walks.

One of the main advantages of this algorithm is that the normalization of Π(r) is never
required since it only depends on the ratio of two di�erent con�gurations Π(r′)

Π(r)
, therefore
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the normalization condition
∫

Π(r̄)dr̄ = 1 will appear on both numerator and denominator
of the ratio, canceling out itself. This allows for arbitrarily sampling complex distribution
in a straightforward way without knowledge of its normalization.

Binning technique

An issue of the Metropolis algorithm is the fact that in a random walk, the walkers mov-
ing towards a new con�guration in space will have a memory of their previous position
that will depend on the ∆t amplitude of the step; they are serially correlated, leading to
autocorrelation of the con�gurations and thus to an underestimation of the variance of
the functions estimated over the sampling. To decorrelate the variables, the so-called bin-
ning method (or reblocking) is used [105]. This method is based on the division of the N
consecutive samplings into Nbin segments (bins) of length Lbin = N /Nbin.

For each bin j, in j = 1 . . . Nbin, the partial average of a property x is de�ned as

xj =
1

Lbin

jLbin∑
i=(j−1)Lbin+1

xi, (2.36)

which are equal to the original average x. However, the distribution of each binned vari-
ables xj is di�erent from the one of the xi’s. Therefore, the total variance will also change
and can be estimated as

s2
bin =

1

Nbin − 1

Nbin∑
j=1

(xj − x)2. (2.37)

Notice that in the case when the Nbin increases, therefore the length of each bin decreases,
the average of each bin xj goes further away from the real average x leading to an increase
of their variance. In contrast, the error bar

√
s2
bin/Nbin goes lower due to the larger number

of bins. Thus, in practice, it is recommended to plot the estimated standard error in the
mean energy against the number of blocks. It should converge to a constant value for large
enough blocks, which is a better standard error in the mean.

2.3.2 Variational Monte Carlo

In quantum mechanics, the simplest QMC method is VMC [85], where Monte Carlo inte-
gration is applied to compute the energy functional

E [ΨT (ᾱ)] =

∫
Ψ∗T (ᾱ; r̄)ĤΨT (ᾱ; r̄)dr̄∫
|ΨT (ᾱ; r̄)|2 dr̄

, (2.38)
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over a trial wave function ΨT (ᾱ; r̄), where ᾱ is a set of variational parameters. In the
above-normalized expectation value, the integrand can be rewritten as the product of two
functions by dividing and multiplying by the function ΨT (ᾱ; r̄) on the left of the operator
Ĥ , leading to

E [ΨT (ᾱ)] =

∫
Eloc(ᾱ; r̄)Π(ᾱ; r̄)dr̄, (2.39)

where the �rst function corresponds to the local energy

Eloc(ᾱ; r̄) =
ĤΨT (ᾱ; r̄)
ΨT (ᾱ; r̄)

, (2.40)

which is the energy of a particular electronic con�guration r̄, and

Π(ᾱ; r̄) =
|ΨT (ᾱ; r̄)|2∫
|ΨT (ᾱ; r̄)|2dr̄ , (2.41)

is the probability density, which is proportional to the square modulus of the wave function
ΨT (ᾱ; r̄), according to which the fermionic con�gurations r̄ are distributed.

In the Monte Carlo method (see Section 2.3.1) the estimation of the energy functional cor-
responds to the mean value of the local energies computed for a certain number N of
fermionic con�gurations extracted through the Metropolis-Hastings (see Section 2.3.1) al-
gorithm according to Π(ᾱ; r̄)

E [ΨT (ᾱ)] = 〈Eloc(ᾱ; r̄)〉Π(ᾱ;̄r) ≈
1

N
N∑
i=1

Eloc(ᾱ; r̄i). (2.42)

With the notation 〈. . .〉Π(ᾱ;̄r) from now on indicating the Monte Carlo average of a quantity
on the con�gurations extracted according to Π(ᾱ; r̄). Because of their stochastic nature,
the estimation of the observable is always accompanied by an error that is proportional to
the square root of the variance of the local quantity

Var [Eloc(ᾱ; r̄)] =
〈
Eloc(ᾱ; r̄)2

〉
Π(ᾱ;̄r) − 〈Eloc(ᾱ; r̄)〉2Π(ᾱ;̄r) , (2.43)

and inversely proportional to the square root of the number of samplingsN allocated dur-
ing the random walk:

σE =

√
1

N
[
〈Eloc(ᾱ; r̄)2〉Π(ᾱ;̄r) − 〈Eloc(ᾱ; r̄)〉2Π(ᾱ;̄r)

]
. (2.44)

Here it should be noted that the above error bar does not include the uncertainty due to
the stochastic optimization of the variational parameters α. As discussed before while de-
scribing the principles of importance sampling and Monte Carlo integration, it also holds
the zero variance principle, which a�rms that when the trial wave function is exactly an
eigenfunction of the Hamiltonian, the variance of the local energies Eq. 2.43 goes to zero,
i.e. the local energy is a constant function.
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Variational principle

The variational principle represents one of the most important features when searching for
reliable approximations of the ground state wave function for quantum systems [99]. Given
an approximate trial wave function ΨT for the exact ground state Ψ0 of a given Hamiltonian
Ĥ , the variational energy of Eq. 2.38 in Dirac notation is written as

ET =
〈ΨT |Ĥ|ΨT 〉
〈ΨT |ΨT 〉

. (2.45)

Within the Hilbert space, any state can be expanded in terms of a linear combination of
eigenstates of the Hamiltonian, which forms a complete orthonormal basis set

ΨT =
∑
i

ai|Ψi〉, ai = 〈Ψi|ΨT 〉. (2.46)

By introducing this expansion in the variational energy expression, and assuming the or-
thonormalization conditions 〈Ψi|Ψj〉 = δij and

∑
i |ai|2 = 1, it follows that

ET =
∑
i

|ai|2〈Ψi|Ĥ|Ψi〉 =
∑
i

|ai|2Ei, (2.47)

which can be split in

ET = |a0|2E0 +
∑
i>0

|ai|2Ei. (2.48)

Similarly, the normalization condition can be rewritten as

|a0|2 = 1−
∑
i>0

|ai|2 (2.49)

Combining both expressions leads to

ET = (1−
∑
i>0

|ai|2)E0 +
∑
i>0

|ai|2Ei = E0 +
∑
i>0

|ai|2(Ei − E0). (2.50)

Since the second term on the right-hand side is always positive due to Ei − E0 > 0, it
follows that

ET = 〈ΨT |Ĥ|ΨT 〉 ≥ E0, (2.51)
and thus, the expectation value of the energy for any trial wave function is greater or
equal to the true ground-state electronic energy. Considering this variational principle and
the zero variance principle previously described, it is possible to approximate the correct
ground state of the system of interest, by �nding the most optimal variational parameters
of the trial wave function to lower the VMC energy or its variance, that will be computed
through Monte Carlo integration.
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2.3.3 Optimization methods

The quality of the trial wave function controls the statistical e�ciency of the VMC and
DMC algorithms and determines the �nal accuracy obtained. For this reason, by perform-
ing an optimization of its variational parameters at VMC level, it is possible to reach the
lowest-energy state, which is expected to capture the correct ground-state behavior as pre-
viously discussed in the variational principle (see Section 2.3.2). The following lines will
brie�y describe two common optimization techniques applied to VMC, namely Stochastic
Recon�guration (SRC) and Signal-to-Noise Ratio (SNR) [85, 95], although other successful
approaches have also been proposed [90].

Stochastic Recon�guration

A straightforward technique to optimize a wave function is to employ the steepest descent
method, where the variational parameters are iteratively updated as follows

α→ α′ = α + ∆fα, (2.52)

here α is the set of variational parameters, ∆ is a small constant to control the minimization
process, and fα = − δE

δα
are the generalized forces, here de�ned as the partial derivatives

of the energy functional of Eq. 2.42 with respect to a parameter, that in Monte Carlo are
computed as

fα = −2 {〈ElocOα〉Π − 〈Eloc〉Π 〈Oα〉Π} , (2.53)

which are based on the derivatives of the logarithm of the wave function Oα = ∂α ln ΨT .
However, in their straightforward implementations, this method and more sophisticated
ones, such as the Newton-Raphson method and the conjugate gradient, do not work e�-
ciently within the stochastic approach of VMC [95]. To improve the situation, one can intro-
duce a positive-de�nite matrix S that takes into account the non-linearity of the variational
space. In the SRC approach introduced by Sorella [85], the Matrix S de�nes essentially a
metric for the parameters’ space as

Sαiαj =
〈
OαiOαj

〉
Π
− 〈Oαi〉Π

〈
Oαj

〉
Π
, (2.54)

which corresponds to the covariance matrix of the derivatives of the logarithmic wave func-
tion. Therefore, the problem of �nding the optimal parameter variation δα that minimizes
the energy reduces to solving the linear systems of equations Sδᾱ = f̄ . Additionally, to
avoid numerical instabilities in the new parameters caused by small eigenvalues of the ma-
trix, or for elements in di�erent scales, a shift in the diagonal elements of the matrix can be
introduced Sαiαj = Sαiαj + εδαiαj . Then the parameters are updated as

α→ α + ∆δα. (2.55)
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Signal-to-noise ratio

As show in reference [85], the SRC method is parent to the SNR approach, in which the
S matrix is substitued with the covariance matrix of the forces The generalized force de-
�ned before (Eq. 2.53) has a corresponding statistical noise, which can also be estimated in
conjunction with its correlation function, namely the correlation between two parameters.
This procedure can be done by calculating the covariance matrix

σ2
αiαj
≈
〈
fαifαj

〉
Π
− 〈fαi〉Π

〈
fαj
〉

Π
. (2.56)

Now, the new parameters set can be expressed as α → α + ∆δα where ∆ parametrizes a
line change of the parameters in the pointing out in the direction of δα vector starting from
α. Therefore, one could de�ne a new force vector in the direction of τ as

fτ = −∂Eloc
∂∆

= −
∑
i

∂Eloc
∂αi

∂αi
∂∆

= f · δα, (2.57)

with a standard deviation given by

στ =

√∑
i,j

δαiσ2
i,jδαj. (2.58)

These two de�nitions can be used together within the signal-to-noise ratio technique to �nd
the direction where the force (the signal) is the largest compared to its standard deviation
(the noise), providing a direction that guarantees to lower the energy if the following ratio:

Σ2(τ ) =

∑
i,j δαifαifαjδαj∑
i,j δαiσ

2
αi,αj

δαj
, (2.59)

is much larger than one. Then, to obtain the vector of the parameter variation δα the
problem reduces to the inversion of σ2, so that δα = (σ2)−1f .

2.3.4 Di�usion Monte Carlo

Although considerable research focuses on developing high-quality trial functions at VMC
level, their accuracy will always be limited by the trial wave function’s form, �exibility, and
parametrization. To improve the treatment of quantum many-body e�ects and overcome
the limitations of the variational wave function, a common approach consists of applying
the DMC method [85, 100, 106] over a trial wave function, which in practice is prepared by
a preceding VMC calculation. DMC is a projection technique based on wave function prop-
agation in imaginary time that is able to converge to the ground state of a fermionic system
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within the Fixed-Node (FN-DMC) approximation. The FN-DMC overcomes the standard
DMC algorithm’s sign problem by �xing the projected wave function’s nodal surface to
that of the trial wave function and relaxing its amplitudes. In this way, one obtains the best
estimation of the ground state for a particular nodal surface, recovering dynamical corre-
lation between fermions and obtaining a more accurate estimation of the corresponding
observables.

The foundations of the DMC method are based on the transformation of the Time-Dependent
Schrödinger Equation (TDSE) into a di�usion equation in imaginary time with shifted en-
ergy. In the standard TDSE

i
∂

∂t
ϕ(r̄, t) = Ĥϕ(r̄, t). (2.60)

For a time-independent Hamiltonian operator, the space and time variables of Eq. 2.60
can be separated, allowing to express the solution of the integrodi�erential equation as a
product of spatial and temporal wave functions ϕ(r̄, t) = ϕ(r̄, t0)a(t) where the initial state
ϕ(r̄, t0) can be expressed as a linear combination of a complete orthonormal basis in the
Hilbert space, corresponding to the stationary eigenstates of the Hamiltonian as

ϕ(r̄, t0) =
∞∑
k=0

ak(t)Ψk(r̄), (2.61)

where the temporal function is a phase factor of the form:

ak (t) = ak (t0) e−iEk(t−t0). (2.62)

The two critical steps behind the DMC methods correspond to transforming the real-time
variable t to an imaginary time t = −iτ and adding a constant shift in the energies ER,
thus transforming Eq. 2.60 into a di�usion equation of the form:

−∂ϕ(r̄, τ)

∂τ
= (Ĥ − ER)ϕ(r̄, τ). (2.63)

The solution of this modi�ed version of the Schrödinger equation here will be convergent
in imaginary time instead of being oscillatory, which can still be expanded as linear com-
binations of the stationary states of the TISE as

ϕ(r̄, τ) =
∞∑
k=0

ake
−(Ek−ER)τΨk(r̄). (2.64)

The above equation exhibits interesting properties. First, if the energy shift ER is equal
to the ground state energy E0, the time-dependent function will be null, so that the term
associated to the ground state Ψ0 will be constant during the time evolution. However,
in the other cases, where ER is higher than the ground state, each stationary state will
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be multiplied by an exponential function that decays as τ → ∞ according to the energy
di�erences Ek−ER, thus, by letting the solution to evolve in time, the only component that
will survive in the expansion will be the one corresponding to the ground state Ψ0(~r). In
addition, all the excited states with Ek > ER will decay faster in time, while all the states
with Ek ≤ ER will gain more and more weight in the linear combination.

Based on these properties, Eq. 2.63 gives a way to determine the ground state energy by
observing how the amplitude of the wave function propagates in time depending on the
choice of the energy shift ER, which will be changed during the time evolution to maintain
the total weight of the wave function constant. If the amplitude increases, then decrease
the estimation of ER; if the amplitude decreases, then increase the o�set energy. In general,
for τ → ∞ the algorithm will project out the ground state wave function Ψ0(r̄) from a
general trial wave function ϕ(r̄, τ0), for any given Hamiltonian.

In order to de�ne the algorithm procedure behind DMC, the �rst step is to de�ne the integral
form of the time evolution of an initial wave function written in terms of a Green’s function:

ϕ(r̄′, τ) =

∫
V

G(r̄′, τ ; r̄, τ0)ϕ(r̄, τ0)dr̄, (2.65)

that de�nes the time propagation from r̄ to r̄′ between a time interval τ−τ0, and is expressed
as

G(r̄′, τ ; r̄, τ0) = 〈r̄′|e−(τ−τ0)(T̂+V̂−ER)|r̄〉. (2.66)
The following step is to separate the operators that appear in the exponent of the above
equation. Unfortunately, since eÂ+B̂ = eÂeB̂ is valid only if [Â, B̂] = 0, and this is not the
case for the kinetic T̂ and potential V̂ operators, such procedure is not straightforward. Nev-
ertheless, the Trotter-Suzuki decomposition [107] provides a clever workaround through
the discretization of the time interval inM intervals of length δτ = (τ − τ0)/M, allowing
to express the full operator as the product

e−(τ−τ0)(T̂+V̂−ER) = lim
M→∞

(e−(V̂−ER) δτ
2 e−T̂δτe−(V̂−ER) δτ

2 )M. (2.67)

For �nite small enough intervals, this time discretization of the Green function (Eq. 2.66)
allows approximating the propagation in an in�nitesimal time with an error ofO(δτ)3 as:

G(r̄′, r̄; δτ) = 〈r̄′|e−δτ(T̂+V̂−ER)|r̄〉 ≈ e−(V(r̄′)+V(r̄)−2ER) δτ
2 〈r̄′|e−T̂δτ |r̄〉, (2.68)

where |r̄〉 is the position basis vector, normalized such that 〈r̄|r̄〉 = δ(r − r′). The above
equation can be expressed as a product of two functions:

G(r̄′, r̄; δτ) ≈ P (r̄′, r̄; δτ)W (r̄′, r̄; δτ),

where 〈r̄′|e−T̂δτ |r̄〉 is the Green function for non-interacting systems, de�ned by a di�usion
function

P (r̄′, r̄; δτ) =
( mf

2πδτ

)3Nf/2

e−
me
2δτ
|̄r′−r̄|2 , (2.69)
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and the second function is the so-called weighting, branching, or growth/decay function

W (r̄′, r̄; δτ) = e−
δτ
2

(V (r̄′)+V (r̄)−2ER). (2.70)

To understand the basic procedure to stochastically solve the integral in Eq. 2.65 with
the approximate Green function in Eq. 2.3.4, it is necessary to consider a set of all the
coordinates positions r̄n,0 in a con�guration n at time τ0 initially distributed according to
ϕ(r̄, τ0), for a total ofN con�gurations. Each con�guration, will evolve in the time interval
τ − τ0 from r̄n,0 to the �nal one, r̄n,M.

For each walker the total probability of a certain path will be de�ned as the product of the
single di�usion probabilities

P(r̄n,M, τ ; r̄n,0, τ0) =
M∏
m=1

P (r̄n,m, r̄n,m−1; δτ), (2.71)

and each walker will accumulate a weight given by the product

W(r̄n,M, τ ; r̄n,0, τ0) =
M∏
m=1

W (r̄n,m, r̄n,m−1; δτ). (2.72)

At the end of the time evolution the wave function ϕ(r̄, τ) will be represented through the
distribution of the walkers, each multiplied by its weight:

ϕ(r̄′, τ) =
N∑
i=1

W(r̄n,M, τ ; r̄n,0, τ0)δ(r̄n,M − r̄′). (2.73)

Finally, inserting these expression in Eq. 2.3.4 back into the convolution integral in Eq. 2.65
leads to

ϕ(r̄′, τ) =

∫
V

[ M∏
m=1

dr̄m−1δ(r̄′ − r̄M)P (r̄m, r̄m−1; δτ)W (r̄m, r̄m−1; δτ)

]
ϕ(r̄0, τ0), (2.74)

which corresponds to the propagation of ϕ(r̄0, τ0) in in�nitesimal time steps. Because of
this time discretization, DMC calculations always su�er from the so-called time-step error,
a�ecting the estimation of its observables. In practice, this e�ect is alleviated by extrapo-
lating the values obtained for di�erent time steps δτ to the zero time-step limit δτ → 0.
The next step is to stochastically evaluate Eq. 2.74, but before that, it is necessary to men-
tion two limitations of the simple DMC algorithm. First, the Coulomb potential term in
the exponential part V (R)−ET , can diverge, causing large �uctuations in the probability
distributions. Secondly, this approach also lacks the antisymmetry conditions of the wave
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function since the time-dependent wave function ϕ(r̄, τ0) acts as a probability density, and
thus it must be a positive function in all the volume (see Eq. 2.74). Then, for fermionic sys-
tems, the original DMC algorithm su�ers from a sign problem. Both issues are alleviated by
incorporating a trial function to guide the sampling and to impose the nodal surface of the
fermionic wave function forcing the DMC solution to be antisymmetric. This constraint
method is known as the �xed-node approximation.

The �xed-node approximation

The FN-DMC algorithm employs a time-independent trial function ΨT (r̄) to steer the im-
portance sampling to the wave function [108] constraining the nodal surface and removing
the sign problem that a�ects the original DMC algorithm. In FN-DMC the idea is to evolve
the product

f(r̄, τ) = ϕ(r̄, τ)ΨT (r̄), (2.75)

by multiplying the right and left sides of the imaginary TDSE (Eq. 2.63) by ΨT (r̄), leading
to

∂

∂τ
ϕ(r̄, τ)ΨT (r̄) =

[
1

2mf

∇2ϕ(r̄, τ)− (V(r̄)− ER)ϕ(r̄, τ)

]
ΨT (r̄), (2.76)

which can be rewritten as

∂

∂τ
f(r̄, τ) =

1

2me

∇2f(r̄, τ) − 1

me

∇ [f(r̄, τ)v̄D(r̄)] − (Eloc(r̄)− ER) f(r̄, τ). (2.77)

In such a way, two time-independent quantities appear, the local energy Eloc(r̄) = ĤΨT (r̄)
ΨT (r̄)

as de�ned in VMC (Eq. 2.42) and the drift velocity v̄D(r̄) = ∇ΨT (r̄)
ΨT (r̄) . In Eq. 2.77, the last term

now is proportional to the excess energy (Eloc − ER), which helps to control the branch-
ing in low probability regions, unlike the singularities caused by (V̂ − ER) in the original
branching term of DMC. On the other hand, the drift velocity helps to guide the di�usion
process by pushing away the walkers from low probability regions, according to the form
of the trial wave function.

As seen before, the solution of Eq. 2.77 will still be of the form

f(r̄′, τ) =

∫
V

G̃(r̄′, τ ; r̄, τ0)f(r̄, τ0)dr̄, (2.78)

where now the Green function includes the importance sampling function, and is written
as

G̃(r̄′, τ ; r̄, τ0) = ΨT (r̄′)G(r̄′, τ ; r̄, τ0)
1

ΨT (r̄)
. (2.79)
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Similarly to Eq. 2.67, the Trotter-Suzuki decomposition can be applied to approximate the
Green function into a product of a di�usion (with the addition of a drift component) and
reweighting process through an in�nitesimal time variation δτ , leading to the approxima-
tion

G̃(r̄′, r̄; δτ) ≈ P (r̄′, r̄; δτ)W (r̄′, r̄; δτ), (2.80)
with the di�usion process de�ned by the function

P (r̄′, r̄; δτ) =
( mf

2πδτ

)3Ne/2

e−
mf
2δτ [r̄′−r̄− δτ

me
v̄D(r̄)]

2

, (2.81)

and the reweighting

W (r̄′, r̄; δτ) = e−
δτ
2

(S(r̄′)+S(r̄)), S(r̄) = Eloc(r̄)− ER. (2.82)

As seen in the Monte Carlo integration section (2.3.1), if ΨT (r̄) resembles the exact eigen-
function of the system, the variance on the local energy will reduce to zero, thus the branch-
ing term Eloc−ER becomes independent on the con�guration r̄. For FN-DMC, the choice of
a good approximate trial function that correctly describes any information about the exact
wave function, such as cusp conditions, will yield averages with lower statistical uncertain-
ties than those obtained without the importance sampling technique [108].

2.3.5 Basic �xed-node DMC algorithm

The basic procedure to stochastically solve integral in Eq. 2.78, requires to de�ne an initial
set of con�gurations r̄n,0 with n = 1, 2, ...,N . Each con�guration is assumed to be the
initial position of an independent random walk that evolves in the time interval τ−τ0 from
r̄n,0 to the �nal one, r̄n,M. The complete algorithm used to perform a FN-DMC calculation
requires many technical considerations, but the main elements can be summarized in the
following steps:

I. Initialize a set of N walkers distributed according to the probability density of the
guiding function |ΨT (r̄)|2 = f(r̄, τ0). Set initial weights to one: W n,0 = 1. Set the
initial reference energy ER to the VMC energy estimate.

II. For each walker of the N con�guration set

– For every fermionic particle i in the con�guration

∗ Propose a new position based on the drift/di�usion equation

r̄n,m+1 = r̄n,m +
δτ

me

v̄D(r̄n,m) +

√
δτ

me

ρ̄, (2.83)

where ρ̄ is a vector of random variables extracted with a Gaussian distribu-
tion.
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∗ Check the sign of ΨT (r̄m+1) compared to ΨT (r̄m), if a node has been crossed,
reject the move of fermion i

∗ Accept the move according to the Metropolis acceptance probability ratio

An ⇒ A(r̄nm+1, r̄
n
m; δτ) = min

[
1,
|ΨT (r̄nm+1)|2P (r̄nm, r̄nm+1; δτ)

|ΨT (r̄nm)|2P (r̄nm+1, r̄nm; δτ)

]
, (2.84)

III. Once all N walkers are moved, update their weights by the factor:

W (r̄nm+1, r̄
n
m; δτ) = e−

δτ
2 (S(r̄nm+1)+S(r̄nm)), (2.85)

IV. After each reweighting process, accumulate the local quantities to compute the weighted
averages of each observable (e.g., the local energy). Update the trial reference energy
ER, to bring it closer to that of the current ensemble.

Repeat steps from II to IV until the projection has evolved for a chosen time τ =Mδτ .

For direct applications to fermionic problems, the FN-DMC algorithm needs to deal with
further considerations such as: i) singularities near the nodal surface [109], usually ad-
dressed by introducing cut-o�s function in the values of both the local energy and the drift
velocity that depend on the time step δτ ; ii) singularities near the nuclear cusps [110]; iii)
e�cient branching procedure [110, 111]; iv) updates of the reference energy ER; v) size
consistency error correction [112].

Mixed averages

For a QMC calculation, it is possible to de�ne di�erent estimators for a quantity described
by an operator Â [85]. First of all, the variational energy estimator (the VMC energy esti-
mator) from the trial wave function ΨT that imposes the nodal surface is given by

EVMC = 〈E〉T =
〈ΨT |Ĥ|ΨT 〉
〈ΨT |ΨT 〉

. (2.86)

If ΨT is appropriately constructed, the method usually provides a good estimation for the
true quantum-mechanical expectation value of Ĥ . As seen before, in FN-DMC, the time
evolution generates the mixed distribution f(r̄, τ) = ϕ(r̄, τ)ΨT (r̄), where ϕ(r̄, τ) is the
best (lower energy) wave function for the ground state with the same nodes as the trial
function ΨT (r̄). To obtain the exact energy with respect to the distribution |ϕ(r̄, τ)|2,

EFN = 〈E〉ϕ =
〈ϕ|Ĥ|ϕ〉
〈ϕ|ϕ〉 , (2.87)
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it is necessary to project by means of a mixed estimator (which corresponds to the FN-DMC
estimation)[113, 114] in the limit when τ →∞,

〈E〉mix =
〈ϕ|Ĥ|ΨT 〉
〈ϕ|ΨT 〉

= limτ→∞

∫
ϕ(r̄, τ)ĤΨT (r̄)dr̄∫
ϕ(r̄, τ)ΨT (r̄)dr̄

= limτ→∞

∫
ϕ(r̄, τ)ΨT (r̄)Elocdr̄∫
ϕ(r̄, τ)ΨT (r̄)dr̄

(2.88)

≈ 1

N
N∑
i

Eloc(ri), (2.89)

which is a biased estimation of 〈E〉ϕ, since ϕ satis�es the equation Ĥϕ = EFNϕ within
the nodal surface of ΨT . The calculation of this mixed average is possible for any type
of operator Â that commutes with Ĥ , due to the fact that the operator Â is also de�ned
in the ground state Â|ϕ〉 = AFN|ϕ〉. For all other operators, an approximated scheme to
evaluate the ground-state expectation value can be used if the trial wave function di�ers
from ground-state wave function by a small di�erence [85]

ϕ = ΨT + δΨ,

where δΨ should be normalized and orthogonal to ΨT . Then the ground-state average can
be written as

〈Â〉pure =
〈
ϕ|Â|ϕ

〉
=
〈

ΨT |Â|ΨT

〉
+ 2

〈
ϕ|Â|δΨ

〉
+ 〈δΨ|Â|δΨ〉.

If δΨ is small enough, the second order term 〈δΨ|Â|δΨ〉 can be neglected. After substitution〈
ϕ|Â|δΨ

〉
=
〈

ΨT |Â|ϕ
〉
−
〈

ΨT |Â|ΨT

〉
the extrapolation formula becomes

〈Â〉 ≈ 2〈Â〉mix − 〈Â〉T.

Such combinations of variational 〈Â〉T (VMC) and mixed 〈Â〉mix (DMC) estimators are often
called extrapolated estimators.

2.4 Software

2.4.1 QMeCha code

The QMeCha (Quantum MeCha) code is a quantum Monte Carlo package to study many-
body interactions between electrons, positrons, and an embedding environment of classical
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charges and quantum Drude oscillators. The main developer and scienti�c supervisor of
the code is Dr. Matteo Barborini. It has been written in FORTRAN03 following an object-
oriented programming philosophy. The QMeCha package has been designed to integrate
many-particle Hamiltonians under the VMC and FN-DMC techniques for molecular sys-
tems of many-electron, positrons, or drudons. Regarding the wave function, the code has
implemented single- and multi-determinant ansatzes, built as a linear combination of ex-
ponential, gaussian, or mixed-type function orbitals. QMeCha is capable of optimizing all
variational parameters of the wave function by using either the SRC or SNR techniques
integrated at VMC level. The code is published in a private repository[115].

2.4.2 LOWDIN code

The LOWDIN code is a MCMO computational package developed under the supervision of
professor Dr. Andrés Reyes [116] following the formalism of the APMO approach. The code
has been written in FORTRAN 2008 standard with C bindings to external libraries, following
an object-oriented programming philosophy. Since its conception, the code was designed
to perform MC-HF calculations for molecular systems containing any number of di�erent
quantum species with their charge and mass. LOWDIN can solve the coupled Roothan-
Hall equations for all quantum particles under a self-consistent procedure, �nding all the
mean-�eld eigenvalues and eigenvectors, which are constructed as a linear combination of
single-particle atomic orbitals. The HF and MP2 methods of Section 2.2 are implemented in
the code, among other quantum chemistry methods and capabilities. The LOWDIN code is
currently available under a GNU General Public License v3.0 [117].
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Chapter 3

Correlated Electron-Positron Wave
Functions

Parts of this chapter have been published in this or similar form in:

J. Charry, M. Barborini, A. Tkatchenko. “Correlated Wave Functions for Electron-Positron
Interactions in Atoms and Molecules" J. Chem. Theory Comput. 18, 4, 2267-2280, 2022,

and have been produced in collaboration with the above authors.

For a quantum-mechanical description of positron-matter systems de�ned by the Hamilto-
nian of Eq. 2.2, the wave function ansatz should include the standard electronic correlation
e�ects and cusp conditions, but also the electron-positron correlation interactions, satis-
fying the nucleus-positron, electron-positron end eventually positron-positron cusp con-
ditions, together with the correct asymptotic behaviors as a function of the interparticle
distances [96]. In order to ful�ll these requirements, several ansatzes have been proposed
in the literature, which can be essentially categorized into three di�erent approaches: The
�rst is to consider the electron-electron and electron-positron correlations directly into the
determinantal part of the wave function [66, 67, 86, 96]; the second is to include these
correlation e�ects through a two-body Jastrow factor, as a remodulating factor only, and
constructing the single particle positronic orbital as a linear combination of an atomic cen-
tered basis set [87, 88, 118, 119], similarly to the case of electrons; the third is to include
the correlation e�ects through an electron-positron orbital that explicitly depends on the
two-particle distances, and that multiplies the purely electronic wave function [49, 82, 86].
The �rst approach, although the most accurate, is also the most complicated to generalize
for a larger number of fermions, due to the antisymmetrization condition of the total wave
function. The simplicity of the second approach relies on the fact that correlation e�ects are
included in the Jastrow factor, which acts only as a re-modulating factor without a�ecting

33
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the symmetry of the total wave function. While the third approach aims to combine the ad-
vantages of the previous two. Thus, this work compares the second and third types of wave
function, discussing the crucial di�erences in recovering the electron-positron correlation
and introducing a novel three-body Jastrow factor [120, 121] to describe the correlation
between electrons and positrons in the �eld of the atomic nuclei, achieving a robust im-
provement in the description of the positron-matter interactions.
This chapter presents an e�cient and transferable variational ansatz based on a combina-
tion of electron-positron geminal orbitals and a Jastrow factor that explicitly includes the
electron-positron correlation in the �eld of the nuclei, which can be variationally optimized
at the level of VMC and further employed as the trial wave function for a DMC calculation.
This approach was applied to systematically study the binding energies of positron and
positronium with the �rst row atoms, anions or cations (H−, Li+, Li, Li−, Be+, Be, B−, C−,
O− and F−). In particular, for the largest positron-atom systems, PsB, PsC, PsO, and PsF, the
QMC total energies presented here are lower than the results available in the literature. To
further assess the performance towards molecular systems, this approach was also tested
on the computation of the PES describing the bond formation of the repelling H− anions
mediated by one positron [71, 73, 122, 123, 124], demonstrating the robustness of the ap-
proach that can be generalized to larger electron-positron systems, and obtaining accurate
estimations of its spectroscopic properties.
This chapter is organized as follows: Section 3.1 explicitly de�nes the construction of the
electron-positron wave function. Next, Section 3.2 shows the total energies and the positron
binding energies for several positronic atomic and molecular systems. Finally, Section 3.3
summarizes the results and provides concluding remarks.

3.1 Wave function

3.1.1 Generalized cusps conditions

The generalized cusp conditions described by Kato [125]

1

Ψ

dΨ

dr

∣∣∣∣
r=0

=
2qiqjµij
d± 1

, (3.1)

establish the correct behavior of a fermionic wave function when two particles interacting
through Coulomb potential �nd each other at the same point in space. There, qi and qj are
the particles’ charges in units of the electronic charge, µij = mimj/(mi+mj) is the reduced
mass, and d is the dimensionality. The minus sign is used for distinguishable particles (anti-
parallel-spin fermion, or di�erent fermions like electron and positron), and the plus sign is
for indistinguishable particles (parallel-spin fermions).
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3.1.2 Electron–positron wave functions

The most general expression for many-electrons and a positron wave function Ψ(x̄e,xp; R̄)
explicitly describes the many-body correlation e�ects between the 4Ne electronic Cartesian
and spin coordinates x̄e and the four positronic xp coordinates in the �eld of the nuclei R̄.
A �rst approximation to this fully correlated state can be built by considering only the
explicit correlation between particle pairs. The wave function is thus built as a symmetrized
product (or a linear combination of symmetrized products) of two-particle functions, as
proposed for example by Bressanini et al. in Ref. 126, describing the correlation between
electron-electron, electron-positron, nucleus-electron, and nucleus-positron pairs. Clearly,
this ansatz, although very accurate, is more computationally expensive when applied to
large systems of many atoms and many positrons.

A way to further simplify the total wave function is to decouple it into a product

Ψ(x̄e,xp; R̄) = ψe(x̄e; R̄)ψp(xp; x̄e, R̄)J(x̄e,xp; R̄), (3.2)

of two fermionic functions, an electronic one ψe(x̄e; R̄) (such as a Slater determinant) and a
positronic orbital ψp(xp; x̄e, R̄), and a bosonic Jastrow factor that describes the correlation
between the remaining particle pairs, eventually also including three or four body correla-
tion e�ects, as later proposed in this work.
Assuming that the electronic wave function ψe(x̄e; R̄) describes the spin and angular sym-
metries of the electrons in the �eld of the nuclei, the general positronic functionψp(xp; x̄e, R̄)
should depend on both the nuclear and electronic coordinates, being symmetric for the ex-
change of any electronic coordinate. In the literature, the ψp(xp; x̄e, R̄) function has been
further simpli�ed, assuming it to be independent of x̄e [71, 76, 118, 124, 127] or from R̄ [86],
the former chosen especially for computational reasons, since it is also simpler to imple-
ment and integrate with post-HF methods. The following sections discuss the three parts
of the total wave function.

3.1.3 Electronic wave function

Because of the multicon�gurational nature of some of the electronic systems studied in this
work, for example the Be atom and the Li− anion, the electronic wave function is chosen to
be the Antisymmetrized Geminal Power (AGP) [128] which corresponds to a more compact
and constrained multideterminantal expansion[129]. For a closed shell system, the AGP is
built as the determinant

ψe(x̄e; R̄) = det [G] , (3.3)

of a N↑e × N↓e matrix G, whose elements Gij describe the coupling of electronic pairs in
a singlet state |0, 0〉 = 1√

2

(∣∣1
2
, 1

2

〉 ∣∣1
2
,−1

2

〉
−
∣∣1

2
,−1

2

〉 ∣∣1
2
, 1

2

〉)
, through the symmetric linear
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combination of products of two atomic orbitals modulated by the coupling coe�cients λqp:

Gij = φG(r↑i , r
↓
j) =

Q∑
q,p=1

λqpψq(r↑i )ψp(r
↓
j) |0, 0〉 . (3.4)

For a spin polarized systems (N↑e > N↓e ), the geminal matrix can be generalized [130] by
adding Nu

e = N↑e − N↓e columns, each with N↑e elements, containing unpaired molecular
orbitals

Gik = φk(r↑i ) =

Q∑
q=1

lkqϕq(r
↑
i )

i ∈ [1, N↑e ]
k ∈ [N↓e + 1, N↑e ]

, (3.5)

occupied solely by the spin-up electrons, therefore, reconstructing a square G matrix of
N↑e ×N↑e elements.

3.1.4 Positronic wave function

A very common approach in the literature [71, 76, 118, 124, 127] assumes that the positronic
wave function is independent of the electronic coordinates and can be written as Positronic
Molecular Orbitals (PMO), which are a linear combination

ψp(xp; R̄) =

Q∑
q=1

lqφq (xp) , (3.6)

of atomic orbitals φq (xp), which are centered on the nuclear coordinates, hidden here for
simplicity. This kind of approach is well suited when describing the positron’s interac-
tions with atoms or anions, since its density is spherically distributed around the electronic
charge. Yet, for molecules, such approach becomes de�cient, since while the positron forms
bound states with the electrons to which it is attracted, it does not form bound states with
the atomic nuclei that repel it.

One way to solve this inconsistency is to construct the positron’s orbital through a positronic
basis set [86, 126] explicitly describing the bound states between electron-positron pairs.
As a matter of fact, it can be easily shown that the ground state of a system of one elec-
tron and one positron, i.e. the Positronium (Ps), can be exactly described by an exponential
function of the electron-positron distance rep = |xe − xp|:

φ (xep) = repR (rep)Y m
l (θep, φep). (3.7)

whereR (rep) is a radial function normalized with respect to the distance rep andY m
l (θep, φep)

is a real spherical harmonic (centered on the positron) that is used to introduce an angular
momentum [131].
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Through these orbitals, one can construct a positronic wave function for many electrons
and one positron as the product:

ψp(xp; x̄e) =
Ne∏
i=1

ϕp(repi ), (3.8)

of identical orbitals (so that the function is symmetric with respect to the exchange of the
electronic coordinates), each dependent on the electron-positrons distance repi , thus referred
to as Electron-Positron Orbitals (EPO), that are de�ned as linear combinations

ϕp(rep) =

Q∑
q=1

lqφq (rep) , (3.9)

of the newly de�ned positronic orbitals.

It can be shown that the scaling of the computational cost with respect to the number of
electrons, of both the PMO and the EPO wave functions, is negligible with respect to that of
the electronic determinant. It is in fact known that through the Sherman-Morrison formula
[132], the operations required for Ne consecutive updates of the electronic determinant
scale at most as N3

e .

The PMO wave function, which is updated only when the positron’s coordinates are changed,
requires at most Qmultiplications (beingQ the length of the atomic basis set which is pro-
portional to Ne), which is negligible with respect to the electronic determinant.

For the EPO, on the other hand, since the update of the wave function for the change
of one electronic coordinate requires Q operations, Ne consecutive updates require NeQ
multiplications, which is the same computational cost of the EPO update for the change of
the positron’s coordinates. Thus, the full con�guration update will cost 2NeQ operations
where Q is the length of the positronic basis de�ned in Eq. 3.7, which can also be set to
one and that in any case is lower than the number of electrons. Again this means that
the computational cost of the update of the EPO is negligible with respect to the update of
the electronic determinant. The next section compares the results obtained with both the
PMO and the EPO based wave functions used in combination with a novel Jastrow factor
to accurately recover the correlations between electron-positron pairs in the electrostatic
�eld of the nuclei. This Jastrow factor is described in the next subsection.

3.1.5 Jastrow factor

The bosonic Jastrow factor [121] constructed in this work, that explicitly includes many-
body correlations in the QMC wave functions, is inspired by the general form introduced
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by Casula et al. in Ref. 128, as the linear combination of �ve terms

J(x̄e,xp; R̄) = exp {J en
c (r̄e, R̄) + J pn

c (rp, R̄) +

+J ee
c (r̄e) + J ep

c (r̄e, rp) + J3/4(r̄e, rp; R̄)
}
, (3.10)

which can be classi�ed as one-body terms, J en
c (r̄e; R̄) and J pn

c (rp; R̄) that are used to de-
scribe the fermion-nucleus cusps conditions, pure homogeneous two-body terms, J ee

c (r̄e)
and J ep

c (r̄e, rp), that describe the pair correlations between electronic pairs and electron-
positron pairs, and �nally a many-body (or inhomogeneous) term J3/4(r̄e, rp; R̄) that is
used to describe the fermionic pair correlations in the �eld of the nuclei.

The one-body Jastrow factors are written as the sums

J en
c (r̄) =

Ne∑
i=1

Nc∑
a=1

f ea(ria), (3.11)

J pn
c (r̄) =

Np∑
i=1

Nc∑
a=1

fpa (ria), (3.12)

of functions that only depend on the relative distances ria between the ith fermion and the
ath nucleus, and are used to reproduce the nuclear cusp condition.

The functions used to describe the nuclear cusp condition are di�erent for electrons and
the positron, due to the corresponding attractive and repulsive nature of the interactions
(see Section 3.1.1). For this reason, for the electron-nucleus cusp the following short-range
function [128] was chosen

f ea(ra) =
Za
Aa

e−Aara +
N∑
n=1

gane
−ζanr2ia , (3.13)

while the positron-nucleus cusp is given the long-range cusp[128]

fpa (ra) = − Za
Aa (1 +Aara)

+
N∑
n=1

γane
−ξanr2ia , (3.14)

where Aa = (2Za)
1/4Ba is a factor depending on the nuclear charge and a remodulating

variational parameter Ba that can depend on the atom. In all calculations, this variational
parameter was simply �xed to one. The sums that appear in the two equations are a linear
combination of Gaussian functions centered on the corresponding atom that are modulated
by a set of coe�cients gan as well as γan and by the corresponding exponents ζan and ξan, that
depend on the atom and are optimized.
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The homogeneous two-body Jastrow factors that describe the correlation between elec-
tronic pairs and electron-positron pairs are also written as the sum of functions depending
only on the distances between particle pairs:

J ee
c (r̄e) =

Ne∑
j>i=1

fee(rij), (3.15)

J ep
c (r̄e, rp) =

Ne∑
i=1

fep(rip). (3.16)

The functions used to describe the fermionic cusps conditions are di�erent for the two types
of particle pairs. For the repulsive electronic pairs, the following functions are employed

fee(rij) =

{
− 1

4bp(1+bprij)
+
∑N

n=1 g
p
ne
−ζpnr2ia indis.

− 1
2ba(1+barij)

+
∑N

n=1 g
a
ne
−ζanr2ia dis.

. (3.17)

respectively for indistinguishable electrons (parallel spin) and distinguishable ones (an-
tiparallel spin). The variational parameters bp and ba are related to the cusp functions, and
are optimized independently [133]. The additional linear combination of Gaussian type or-
bitals works as a remodulating factor depending on the set of coe�cients gpn and gan as well
as exponents ζpn and ζan that are optimized. For the attractive electron-positron cusp, the
short-range cusp function of the following form was used:

fep(rij) =
1

2b
e−brip +

N∑
n=1

hne
−ηnr2ip , (3.18)

where again b, the coe�cients hn and the exponents ηn are optimized variational parame-
ters.

Finally, the last non-homogeneous term in the Jastrow factor is a three/four body term,
written as the linear combination of products of two atomic orbitals:

J3/4(r̄e, rp; R̄) =
Ne∑

j>i=1

Q∑
q,p=1

γqpχq(ri)χp(rj) +
Ne∑
i=1

P∑
q,p=1

νqp$q(ri)$p(rp), (3.19)

in which the �rst group of elements describes the correlation of two electrons in the �eld
of one or two nuclei, and the second group of elements describes the correlation of the
electron-positron pairs in the �eld of one or two nuclei. Here χq(r) and $q(r) are a set of
atomic orbitals and γqp and νqp are a set of coe�cients that are fully optimized.

This Jastrow term is an extension to the one introduced for pure electronic systems by Ca-
sula et al. [128], and it is necessary to recover the dynamical correlation between fermionic
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pairs, suppressing also nonphysical charge �uctuations [134]. Since the Jastrow factor must
be symmetric with respect to the exchange of all the electrons, the γqp parameters satisfy
the condition γqp = γpq. Also for simplicity, in this work the two atomic basis sets are
chosen to be identical, so that χq(r) = $q(r).

It is important to mention that the presence of one positron does not change the original
computational cost of the purely electronic dynamical Jastrow factor. In fact, by partially
storing intermediate matrix-vector operations, it can be shown that the update of this Jas-
trow factor for the change of the positronic coordinate requiresQNe multiplications which
is the same computational cost of the update of the dynamical Jastrow factor that describes
correlation between electronic pairs. Thus, the update of the dynamical Jastrow factor for
the change of all the fermionic coordinates requires a number of multiplications that is
proportional to QN2

e ∝ N3
e and comparable to the computational cost required for Ne

consecutive updates of the electronic determinant and of its inverse matrix.

3.1.6 Computational details

As discussed in the previous sections, to construct the electronic wave functions, the AGP
ansatz was chosen with a basis set of contracted Gaussian Type Orbitals (GTOs). In partic-
ular, for the H atoms a 3s1p Gaussian primitives contracted in 1s1p orbitals were chosen,
i.e. (3s1p)/[1s1p]. For Li, a basis set of (5s4p1d)/[2s1p1d] contracted GTOs, and for B, C, O
and F a similar basis set of (6s4p1d)/[2s1p1d] contracted orbitals. These orbitals have been
initialized before starting the full optimization by maximizing the overlap of the primitives’
linear combinations together with the one-body cusp function in Eq. 3.11, with the con-
tracted orbitals from the Slater type basis of Bunge et al.[135]. For the many-body Jastrow
factor term described in Eq. 3.19, theχq(r) and$q(r) orbitals are assumed to be the same. In
particular, for the H atoms a (3s2p) uncontracted GTOs were used, while for all the heavier
atoms one uncontracted d orbital was added, using the total basis of (3s2p1d) GTOs. Notice
that during the optimization all the orbitals’ parameters are relaxed.

The basis set used to construct the PMOs (Eq. 3.6) or the EPOs (Eq. 3.9) has been cho-
sen to be simply made of contracted GTO functions with the same number of primitives
[5s1p1d]/(1s1p1d). After the optimizations, higher angular momenta p and d were associ-
ated to very small coe�cients, thus not contributing to the �nal wave function, as expected.

Finally, for all the cusp functions in Eqs. 3.11,3.12,3.15,3.16, the number of additional Gaus-
sian functions have been chosen to be equal to N = 5.

Regarding the DMC calculations, a time-step extrapolation to the continuum was carried
out to suppress the error in the energies due to time discretization, obtained with approxi-
mately 2000 walkers and with the following time-steps dt = [0.015, 0.010, 0.005, 0.001].
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3.2 Total Energies of Atomic-Positron System

3.2.1 Electron a�nities

As known from previous computational investigations [26] of the neutral �rst-row atoms,
only Li and Be are known to bind with e+. On the other hand, e+ has been found to bind
also with some of the anions such as H−, Li−, B−, C−, O− and F−. In order to compute
the energetic stability of these positronic systems with QMC and to study the behavior
of the implemented wave functions, it is �rst important to verify the convergence of the
electronic wave functions by computing the total energies and by evaluating the Electron
A�nity (EA) and the Ionization Potential (IP) for the di�erent atoms.

The values of the total energies, obtained using the AGP wave function with the VMC and
DMC methods are reported in Tables A1 and A2 of the appendix and compared to the ac-
curate SD and Multideterminant (MD) calculations from refs. 136 and 137. To simplify
the comparison, Figure 3.1 shows the correlation energy ratio recovered at the VMC level
(panel a) and at the DMC level (panel b) de�ned as E−EHF

(Eexact−EHF )
, where the exact refer-

ence corresponds to the most accurate non-relativistic total energies of atoms obtained by
Chakravorty et al. [138] who estimated the correlation energy from experimental ionization
potentials and Complete Active Space (CAS) calculations. The di�erences in the energies
of the two refs. 136 and 137 are due to two factors. For the SD wave functions, the authors
used di�erent basis sets and slightly di�erent Jastrow factors. Regarding the di�erences
within the two MD results, these are due to the fact that while Brown et al. [136] con-
verged the energies as a function of the number of con�gurations, including a number of
determinants ranging from 83 for Li to 499 for Ne, Buendía et al. [137] limited the number
of con�gurations including only selective excitations involving 2p, 3s, 3p and 3d orbitals.

Since the AGP wave function is a constrained MD expansion, it is capable to include up to
double excitations depending on the basis set. For this reason, the AGP energies of the Li
and Be atoms, whose wave functions require the inclusion of the nearly degenerate p or-
bitals, are comparable to the most accurate MD calculations from Brown et al. [136]. For the
heavier atoms and anions, on the other hand, the AGP wave function greatly outperforms
the single determinant, and is comparable with the results of Maldonado et al. [137, 140]
that only include a limited number of con�gurations. Given the aforementioned reasons,
it is evident that the AGP gives results that are in between the SD calculations and the MD
ones, for all the atoms and ions taken into consideration, and converges towards the MD
results for the lighter atoms, or for those atoms in which the used MD space was kept small.
Although these results seem to point towards rather accurate and converged estimations,
some inconsistencies are observed when looking at energy di�erences such as EAs and IPs
(Table A3 of the appendix).
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Figure 3.1: Correlation energy ratio de�ned as E−EHF
(Eexact−EHF )

, between the exact reference
[138] and the correlation energies recovered by the AGP wave function, compared to the
single-determinant (SD) and multi-determinant (MD) results from Ref. 136 and Ref. 139
with VMC (panel a) and with DMC (panel b). A From Ref. 136, B From Ref. 139

According to the information compiled for this work, a complete analysis of the EA and the
IP for SD and MD wave functions with QMC methods has been done only by Maldonado,
Buendía and coworkers[140]. For this reason, from now, the comparison discussion will
focus only against their calculations.

Again to simplify the understanding of the results, Table 3.1 collects the relative error, de-
�ned as (Ecalc−Eexp)/Eexp, between the calculated and experimental values in percentage.
It can be seen that for H, Li, Be, O, and F, the values computed with the AGP wave function
have an accuracy within 5% with respect to the experimental value with VMC and within
less than 1% with DMC. Yet, for C and especially for B, the EA is greatly underestimated.
The same discrepancy can also be observed for the MD wave function of Ref. 140 and can
be explained by the inconsistency between the multi-con�gurational spaces of the neutral
atom and its anion. This is due to the fact that, especially for the AGP wave function, the
addition of one electron removes the possibility to include double p excitations in the ex-
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Table 3.1: Values of the relative errors (in percentage), de�ned as (Ecalc − Eexp)/Eexp,
for the electron a�nities (EA) and ionization potentials (IP) of the various atoms, obtained
with the AGP wave function and compared with the single-determinant (SD) and multi-
determinant (MD) results (when present) of Ref. 140.a

VMC DMC
SD[140] MD[140] AGPb SD[140] MD[140] AGPb

EAH -0.52(3) 0.1(8)
EALi -36.1(3) -2.4(2) -4.5(2) -9.6(3) 0.2(2) -0.2(8)
EAB -15(1) -108(3) -82(2) 21.5(7) -44(1) -32(3)
EAC 2.1(3) -22.4(2) -14.8(6) 6.3(5) -8.0(2) -7(1)
EAO -11.0(4) -5(1) -6(1) -0.6(3)
EAF -0.5(3) 0.2(2) 1.3(2) 1.3(5)
IPLi -0.55(2) -0.14(2) -0.01(2) 0.01(2)
IPBe -5.48(5) -0.06(5) -0.11(3) -2.93(2) -0.03(1) -0.01(1)

aValues of the IPs and EAs are reported in Table A3 of the appendix.
bThis work.

pansion of the anion orbital space, that are in fact present in the atom. As a consequence,
the wave function of the atom is more accurate, and the energy di�erence between the two
states is underestimated. This inconsistency is also at the root of what was observed with
the AGP wave function for more complex molecules in Ref. 141. A way to correct this in-
consistency and to verify its e�ect, is to use for the Boron atom a single SD wave function
that seems to give more consistent results.

The VMC and DMC energies computed with the SD wave function for B and B− are reported
in Tables A1 and A2 of the appendix. Even if these SD energies are slightly lower than those
reported in Ref. 140, they give values for the EA that are absolutely comparable, obtaining
a value of 0.273(4) eV for VMC and 0.341(8) eV with DMC (Table A3 ). This time, while the
VMC results are quite accurate, the DMC results appear to overestimate the EA by nearly
50% of its value. Thus, since the B atom remains the most complicated system that requires
careful attention, in the next section, when computing its binding energy with the positron,
both the SD and AGP wave functions will be compared.

3.2.2 Total energies of atomic-positron system

Total energies for the positronic atoms are given in Table 3.2 at VMC and DMC levels
employing the two positronic wave-function ansatzes PMO and EPO, while as electronic
wave function the AGP was employed for all the atoms and the SD for the case of PsB,
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Table 3.2: Non-relativistic total energies of the positron (e+) and the positronium (Ps)
interacting with the atomic systems. In parenthesis, the symmetry state of the electrons.
All energies are reported in Hartree.a

e+Li(2S) e+Be(1S) PsH(1S) PsLi(1S) PsB(3S) PsC(4S) PsO(2P) PsF(1S)

VMC SP [142] -7.52510(10) -0.786200(10)
VMC MP [142] -7.530180(10) -0.788230(10) -7.726160(80)
VMC [86] -7.498200(30) -24.765(2) -38.0030(20) -75.1450(30) -99.9960(30)
VMC SD/PMO -24.84035(12)
VMC SD/EPO -24.84097(13)
VMC AGP/PMO -7.52302(11) -14.6577(33) -0.785600(37) -7.722950(85) -24.845635(81) -38.06727(37) -75.28046(81) -100.02199(67)
VMC AGP/EPO -7.52566(80) -14.66386(18) -0.786416(33) -7.723921(87) -24.846154(81) -38.06800(39) -75.28366(53) -100.02490(58)
DMC SP [142] -7.531650(80) -0.789160(30)
DMC MP [142] -7.532290(20) -0.789150(40) -7.739529(60)
DMC [86] -7.737600(40) -24.875(1) -38.09590(60) -75.31770(50) -100.07190(80)
DMC SD/PMO -24.87389(26)
DMC SD/EPO -24.87563(82)
DMC AGP/PMO -7.53072(95) -14.66857(28) -0.78901(13) -7.73817(17) -24.87796(83) -38.09680(78) -75.32739(20) -100.07088(49)
DMC AGP/EPO -7.53094(23) -14.66931(36) -0.7891191(31) -7.73804(41) -24.87819(37) -38.09795(57) -75.32969(63) -100.07435(15)
CI -0.78874(60)b -24.83056c -38.05362c -75.28127c -100.001817d
SVM -7.532323[83] -14.669042[83] -0.789196[143] -7.740208[144]
Hylleras[145] -0.7891967147(42)

aAGP and SD are related to the electronic wave function: they indicate respectively the antisymmetrized
geminal power and the Slater determinant. SP,i.e. single-pairing, corresponds to one antisymmetrized
explicitly correlated pairing function from ref.142, while MP, i.e. multiple-pairing, corresponds to a linear
combination of SP functions. For H the authors use a linear combination of 28 SP functions, while for Li they
use 111.
bFCI extrapolation from Ref. 71.
cFCI limit with higher momentum corrections from Ref. 77.
dMRCI calculation from Ref. 146.

which will be discussed later in detail in this section. Additionally, Table 3.2 collects the
most accurate values present in literature obtained with other methods such as the SVM
method [144, 147, 148], Multi-Reference Con�guration Interaction (MRCI) [77, 146, 149]
and Hylleraas functions [145].

As expected, the EPO wave function provides lower energies due to the fact that the depen-
dency on the electron-positron distances is included explicitly into the wave function, dif-
ferently from the PMO where these correlation e�ects are introduced only as re-modulating
factors through the Jastrow term. Nevertheless, both the EPO and PMO energies are com-
parable at VMC level and are virtually identical at DMC level for these atomic systems.
This is because in atomic systems, where the positronic orbital is spherically symmetric
and localized around the electronic charge, the atomic basis set expansion used in the PMO
becomes a reasonable approximation. This is clearly not the case in molecules, as will be
shown in the next section.

Comparing the results with those obtained by Bressanini et al. in Ref. 86 for the PsLi, PsB,
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PsC, PsO, and PsF systems, it can be seen that VMC energies with both EPO and PMO wave
functions are always lower. This is explained by two facts. First, in their VMC calculations
the variational parameters of the electronic wave function were optimized for the neutral
atoms and kept frozen in the positronic complex, thus optimizing the positronic orbital
but preventing the distortion in the electronic density which is polarized by the positron.
Second, the authors only used a two-body Jastrow factor, compared to PMO and EPO wave
functions that include dynamical correlation e�ects of the electron-positron pairs in the
�eld of the nucleus, through the dynamical Jastrow factor described in Eq. 3.19. Despite
this, their DMC energies are comparable to ones obtained in this work, indicating that DMC
is capable to correct the electron-positron distribution, since most likely the positron does
not drastically change the nodal surface of the electronic wave function.

The limitations of the wave function presented in Ref. 86 were fully discussed and im-
proved by the same authors in a subsequent publication [142]. In their work, Bressanini
and coworkers proposed the use of a more accurate trial wave function, written as the anti-
symmetrized product of two-body pairing functions constructed between all the fermionic
or nuclear degrees of freedom in an Hylleraas-type ansatz. They construct the wave func-
tions with only one of these antisymmetrized pairing functions, Single-Pairing (SP), and as
linear combinations of many of these terms, Multi-Pairing (MP), applying them to compute
the binding energies of the e+Li, PsH, and PsLi spherical systems at both VMC and DMC
level.

Interestingly, by comparing the SP results with the AGP/EPO wave function, it can be seen
that at both VMC and DMC levels there is an agreement for both the e+Li and PsH systems.
This is because the AGP/EPO includes the pair correlation between all particles in a com-
bination of Jastrow and EPO function, and it can be thought of as an explicitly correlated
single pairing function.

On the other hand, the MP energies obtained by Bressanini and coworkers for the e+Li
and PsLi systems are 5 mHa more accurate at the VMC level and around 1-2 mHa more
accurate at the DMC level when compared to the AGP/EPO wave function. Thus, in order
to improve the current variational estimations, it would be needed to expand the variational
ansatz in a combination of many AGP/EPO fermionic terms, which is beyond the scope of
this investigation.

Another proof of the accuracy of the present approach can be found by examining the e+Be
system, for which the DMC energy is exceptionally lower than the accurate value obtained
with SVM [144]. This is explained by the numerical di�culties the authors have faced to
converge the ECG basis of 1275 functions. For this reason, they decided to focus their e�orts
into improving the frozen core SVM polarization wave function which led to an improve-
ment of the total energy prediction for e+Be, obtaining the value of -14.6705(1) Ha which is
around 1 mHa lower than the current DMC estimation. Finally, for the anionic positronic
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Figure 3.2: Positron a�nities (PA) (panel a) and positronium binding energies (BEPs) (panel
b) of the e+X systems computed with the PMO and EPO wave functions using VMC and
DMC methods. The results are compared to other references in the literature, A From Ref.
26, B From Ref. 147, C From Ref. 148.

atoms (PsB, PsC, PsO, PsF) the only references present in the literature are the VMC and
DMC results of Bressanini et al from Ref. 86 and the extrapolated FCI energies of Saito in
refs. 77, 146, 149. Regarding these last results, it is worth mentioning that their estimated
total energies are 0.04 Ha higher than the EPO DMC predictions on average, probably due
to the frozen core approximation employed and to the fact that the CI expansion is written
in terms of single-particle atomic basis sets.

In summary, for e+Li, e+Be, PsH, and PsLi, the best results obtained at DMC AGP/EPO level
are in good agreement with the highly accurate approaches based on explicitly correlated
wave functions [142]. Moreover, for PsB, PsC, PsO, and PsF, since the present VMC and
DMC values are always lower in energy with respect to the results previously published in
the literature [77, 86, 146, 149], it can be concluded that they are the best energy references
reported until now in the literature.

3.2.3 Positron a�nities andpositroniumbinding energieswith atoms

Having compared the total energies of all atomic systems and assessing the quality of
the overall results, the discussion will now focus on studying the binding energies of the
positron, i.e. the Positron A�nity (PA), and of Positronium, i.e. Positronium binding ener-
gies (BEPs), with atoms.

The PA is related to the direct binding of the positron to the electronic system and it cor-
responds to the di�erence between the total energies of the system without and with the
positron attached to it:

PA[X] = E[X]− E[e+X], (3.20)

similar to electron a�nity. The BEPs is related to the separation of the electron/positron sys-
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Figure 3.3: Positron a�nities (PA) (panel a) and positronium binding energies (BEPs) (panel
b) of the PsX systems computed with the PMO and EPO wave functions using VMC and
DMC methods. The results are compared to other references in the literature. For clarity
purposes, the scale of the BEPs plot is intentionally chosen to cuto� the under-estimated
VMC values. A From Ref. 86, B From Ref. 146, C From Ref. 77, D From Ref. 142, E From Ref.
147.

tem into the electronic system with one less electron and Positronium (with a total energy
of -0.25 Ha), being thus de�ned as the energy di�erence:

BEPs[X] = E[X+] + E[Ps]− E[e+X]. (3.21)

Considering the above de�nitions, when both channels give positive binding energies the
positronic atom can be considered energetically stable. On the contrary, when even one
of the two has a negative value, this indicates that the system is predicted to dissociate
according to that channel.

Table A4 of the appendix presents the computed binding energies for all the atomic systems
studied in this work using both dissociation channels in Eq. 3.20 and Eq. 3.21 at VMC
and DMC levels employing the two positronic wave-function ansatz PMO and EPO. For
comparison, the same table also reports the best values present in literature, including those
obtained with SVM [147, 148], MRCI [77, 146, 149], Hylleras functions [145], the predicted
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values by Cheng et al. [25], the recommended values compiled by Harabati et al. [26], and
those obtained through the VMC and DMC calculations done by Bressanini and coworkers
[86, 142]. However, to simplify the discussion, Figs. 3.2 and 3.3 present the PA and BEPs
data as bar plots.

Considering the performance obtained for the total energies, it could be assumed that the
best estimation, within those presented in this work, corresponds to the bindings obtained
at the DMC level with the AGP/EPO wave function. Based on these calculations, all the
electron/positron systems are in fact stable with respect to both the dissociation channels,
except for B− for which the BEPs is negative, predicting it to dissociate in Ps and the neu-
tral B atom. These binding energies are comparable to the most accurate DMC [86, 142],
SVM [147, 148] or MRCI [77, 146, 149] calculations present in the literature for some of the
systems.

Surprisingly, within the same QMC method, there are no appreciable di�erences between
the binding energies obtained with the PMO or EPO wave functions. As discussed above,
this is probably due to the fact that the positronic orbital is spherically symmetric and
centered around the atoms, making the atomic basis set of the PMO wave function suitable
to describe these systems, when used in conjunction with the present novel dynamical
Jastrow factor. However, this is not the case for molecules.

The relevant di�erences can be found, on the other hand, between the binding energies
estimated at the VMC level and those predicted by DMC. This is a reasonable result, since
the binding depends on the strong correlation between the electronic cloud and a single
positron. If this electron-positron correlation e�ect is not exactly described through the
trial wave function (which is generally the case also in pure electronic systems), the binding
predicted by VMC will be consistently underestimated.

In general though, VMC and DMC agree qualitatively well, except for the cases in which
the binding energies are quite small, as for the BEPs of e+Li PsLi, PsB, PsC and the PA of
e+Be, for which in some cases the stability is inverted.

Within this group of systems, e+Li and e+Be are two of the most challenging ones, since the
rather weak positronic bond is explained by Li and Be atoms’ low ionization potential, low
electron a�nities and large covalent radius [25]. Fortunately, due to the reduced number
of fermions, they have been studied with the most accurate SVM methods [147, 148] that
can serve as reference. Now, by comparing the accurate DMC (AGP/EPO) results with the
SVM ones for the BEPs of e+Li and the PA of e+Be it can be seen that the former is lower
by about 0.03 eV with respect to the latter. This is consistent with the corresponding total
energies, that are compatible with the SP function [142], while Bressanini and coworkers
have shown the necessity to converge the energy with a MP wave function of up to a linear
combination of 111 pairing functions [142].
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Another special case is PsB system, which is stable with respect to the PA dissociation
channel, but unstable against the BEPs one. Moreover, as reported in the previous section,
due to the size consistency problem of the AGP or MR approaches in the description of the
B atom and its anion, the error in the estimation of the electron a�nity can range between
20% and 100% of the total value. As a consequence, this a�ects the estimation of the BEPs
energy introducing an error of about 0.08 eV for the AGP wave function at the DMC level
(see Table A3 of the appendix). For this reason, the Boron PA and the BEPs were computed
using also an SD wave function to describe the electronic correlation. Table 3.2 compares
the total energies of the SD and AGP wave function, used in conjunction with the PMO and
EPO positronic ones at both VMC and DMC level, and Table A4 of the appendix reports the
numerical values of the PA and BEPs.

As expected, the PA is practically the same between all the wave functions ansatzes with
VMC and DMC, since there is no change in the number of electrons between the atomic
species in Eq. 3.20. On the contrary, the positronium dissociation channel involves the
removal of one electron, which can be expressed in terms of the EA of the neutral atom as

BEPs[X] = PA[X] + EA[X] + E[Ps]. (3.22)

For this reason, with the SD wave function the BEPs value is about 200 meV higher with
respect to the AGP with both VMC and DMC. The BEPs DMC energy obtained with the
SD/EPO wave function is of -0.4080(32) eV which is only 0.05 eV lower than the predicted
FCI extrapolation value and more compatible with respect to the previous DMC estimations
[126]. Qualitatively, it must be pointed out that also with the SD wave function, the PsB is
still unstable with respect to the BEPs dissociation channel.

In light of these results, a similar e�ect is expected behind the underestimation of the bind-
ing energy observed for the same BEPs channel in PsC, where the best DMC value with
AGP/EPO is 192 meV away from extrapolated FCI [77]. In fact, by taking a look at the
electron a�nity of carbon (reported in Table A3 ) it can be seen that the error is about 200
meV for VMC and 100 meV for DMC, which explains the discrepancy with the BEPs value
predicted by the extrapolated FCI.

In conclusion, since the positron or positronium a�nities are energy di�erences, it is not
possible to argue that the present methodology actually obtains a better estimation of those
quantities, nevertheless the DMC values are shown to be in good agreement with the other
references obtained with QMC and CI [77, 142, 146, 149].

3.2.4 Dissociation channels of e+ · H2−
2 molecule

As a �rst attempt to study molecular systems, the performance of the di�erent wave func-
tions was also tested on the dissociation channels of two hydrogen anions bound by one
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positron [71, 73, 124]:

e+ · H2−
2 →


H− + PsH
H−2 + Ps
H2 + Ps−

. (3.23)
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Figure 3.4: Comparison between the VMC and DMC potential energy surfaces of the e+ ·
H2−

2 around the M1 minimum (panel a) and around second minimum M2 (panel b) obtained
with the AGP/PMO and AGP/EPO wave functions and with other wave functions presented
in the literature. A From Ref. 124, B From Ref. 73.

Figure 3.4 gathers all the PES of the e+ ·H2−
2 molecule as a function of the internuclear dis-

tance between the hydrogen atoms, calculated at VMC and DMC levels with the AGP/PMO
and AGP/EPO wave functions, as well as the results previously reported in literature. As
discussed by Ito et al. [124] and Bressanini [73], the PES of the e+ · H2−

2 molecule has two
minima: the �rst minimum appears at an internuclear distance equal to the equilibrium



3.2. TOTAL ENERGIES OF ATOMIC-POSITRON SYSTEM 51

distance of the two H atoms in the H2 molecule, which is referred as M1 in panel a of Fig-
ure 3.4; the second minimum, which is de�ned as M2 in panel b of Figure 3.4, is observed
at larger distances between 5.5 and 6.5 Bohr and is found to be stable with respect to the
dissociation of e+ ·H2−

2 in PsH and H−, yet, its total energy is higher than the M1 minimum.

From Figure 3.4, it is clear that at the VMC level the qualitative description of the PES
strongly depends on the variational ansatz. The least accurate representation of the molec-
ular dissociation is given by the wave function used by Ito et al. [124], which is composed of
the product between a Slater determinant (for the electronic wave function), a PMO orbital
for the positron, both optimized at the Hartree-Fock level, and a two-body Jastrow factor
that recovers correlation between electron-electron, electron-nuclei and electron-positron
pairs. Clearly, the two-body Jastrow factor, which is a function that tends to one as the in-
terparticle distances increase, is not suitable to describe the long-range attraction between
positrons and electrons, that form bound states. On the other hand, the most accurate
wave function is the correlated SP wave function used by Bressanini [73], which explicitly
includes two-particle correlation e�ects and has been used also for the PsH and PsLi and
e+Li atomic systems described in the section above.

Regarding the M2 minimum in Figure 3.4b it can be seen that the AGP/PMO wave function
is better with respect to Ito’s description, due to the combination of the full relaxation of the
variational parameters within the VMC framework, and the use of the dynamical Jastrow
factor that was introduced in Eq. 3.19. The AGP/EPO wave function on the other hand,
gives results that are more accurate with respect to those of the AGP/PMO, but does not
match the accuracy of Bressanini’s SP wave function, di�erently for what was obtained for
the atomic systems. Moreover, the estimated M2 energy minimum of the AGP/EPO wave
function is more accurate with respect to that predicted by the AGP/PMO wave function
which is slightly shifted towards shorter distances by 0.2 Bohr.

Interestingly, all DMC curves are practically equal for the M2 region, suggesting that the
nodal surface is correctly described by all the trial wave functions.

The results around the M1 minimum require further discussion. Bressanini [73] demon-
strated that the M1 minimum is actually the non-interacting state between the H2 molecule
and the Ps− anion. In order to describe this region at the variational level, it is essential to
have a wave function that can correctly factorize as the product of the two non interacting
subspaces. This is in fact the type of wave function that Bressanini uses to describe this
state in Ref. 73. This is clearly not the case for Ito’s wave function and for the proposed
AGP/PMO. Consequently, taking into account this fragmentation, it is clear why in this case
the EPO ansatz is again superior than PMO, since the latter forces the positron to localize
around the nuclei, while the EPO gives enough �exibility for the positron to adapt to the
distribution of the electronic cloud. As a matter of fact, the relaxation of the AGP/EPO can
qualitatively describe this region of space and is remarkably close to exact H2 PES rescaled
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by the energy of the Ps− anion, yet, also this function cannot fully factorize to a product
of the non-interacting subsystems, and this explains the slight error obtained at the VMC
level, that disappears when using the higher DMC level of calculation (see also Figure 3.5).
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Figure 3.5: Potential energy surfaces (PESs) around the M1 minimum of H2+Ps− (panel
a) and around the M2 minimum of e+ · H2−

2 (panel b) obtained at the DMC level for the
chemical systems consisting of two hydrogen atoms (H) plus the positronium anion (Ps−).
The dissociation energy of this system in H+H+Ps− fragments, equal to -1.262 Ha is as-
sumed to be the reference. In orange, the potential energy curve of the H2 molecule shifted
by the energy of Ps− (-0.262 Ha). The potential energy surface of the e+ · H2−

2 molecule is
shown for the AGP/EPO (blue circles) and for the AGP/PMO (full red circles). In green, the
potential energy surface of the H−2 anion shifted by the energy of Ps (-0.25 Ha).

Following the stability analysis proposed by Bressanini [73], Figure 3.5 plots the PES at
DMC level for the e+ · H2−

2 system as a function of the internuclear distance between the
hydrogen atoms. In addition, this plot also includes the PES of H2 shifted by the energy of
Ps− (-0.262 Ha) as well as the PES of H−2 shifted by the energy of Ps (-0.250 Ha), that allow
to discuss the vertical dissociation channels at each distance. In panel a of Figure 3.5 it can
be seen that around 3.5 bohrs the PES of H2+Ps− and of the e+ · H2−

2 positronic molecule
intersect, thus e+ · H2−

2 spontaneously dissociates in the H2+Ps− fragments.

This second M2 minimum of the e+ · H2−
2 molecule, shown in panel b, observed at larger

distances, around 6.0 to 6.5 Bohr, is found to be stable with respect to the dissociation in
PsH and H− from which it is separated by a potential barrier of 24 mHa, and also against the
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vertical dissociations in H2+Ps− or H−2 + Ps. For this minimum, the vibrational parameters
were also calculated using perturbation theory [150] as also explained in Ref. 151, obtaining
an equilibrium geometry of RHH = 6.367(5) Bohr, a dissociation energy with and without
Zero Point Energy (ZPE) corrections equal to D0 = 22.31(1) mHa and De = 23.35(1)
mHa respectively, ZPE corrections of 229(2) cm−1, harmonic vibrational frequency of ωe =
461(3) cm−1, and a �rst anharmonicity constant of xeωe = 6(1) cm−1. These are the most
detailed results, reported up till now in the literature for the M2 minimum of the e+ · H2−

2

positronic molecule, and the dissociation energy without ZPE only slightly di�ers from the
previous accurate predictions of Bressanini [73], of -0.2 mHa, and from those of Ito et al.
[124], by about 0.6 mHa.

The nature of this particular bond and of the positronic bonds, in general, is still largely
debated. In the literature, the M2 minimum is referred to as a positronic covalent bond [71,
122], since similarities are observed by comparing, for example, the covalently bound Li+2
cation (or e−Li2+

2 ) with the corresponding e+Li2−2 positronic molecule. The two molecules
were seen to share properties such as equilibrium distances, vibrational frequencies, and
binding energies, as well as similarities in the distributions of the electronic HOMO (for
e−Li2+

2 ) and of the positron (for e+Li2−2 ) densities. Later, Goli and Shahbazian [122], us-
ing AIM analysis, con�rmed that the dominant contribution to the bonding is the positron
density in between the atoms, which acts as a mediator between the otherwise repulsive
anions that do not share any electrons. Furthermore, the authors con�rmed a recent study
by Nascimento and coworkers [152] which demonstrated that there was no distinction be-
tween the mechanism responsible for the formation of one- and two-electron bonds. De-
spite this, for systems sharing positron pairs, such as the (PsH)2 molecule studied in a
recent work by Bressanini [153], the author highlights relevant di�erences with the corre-
sponding electronic bond formation in H2 stating that: “It remains to be seen if the binding
mechanism in (PsH)2 is the same as in the H2 covalent bond or it is a completely di�erent
and new type of bond” [153]. Moreover, it must be added that the bond in the e+ · H2−

2

molecule shows intriguing similarities with a van der Waals minimum, such as the slow
decay of the interaction energy, where two non-covalently bound atoms are energetically
stabilized by a delicate balance between the Pauli repulsion and the attractive dispersion
e�ects. For this reason, in the future it will be interesting to study in detail the electronic
properties and their response to an external perturbation, which will shed more light on
the bonding nature of positronic molecules.

Regarding the results presented in this section, it can be said that although at the DMC level
both the AGP/EPO and AGP/PMO ansatzes agree in the description of the M2 minimum,
it is evident that the AGP/PMO is overall less accurate. In fact, around the M1 minimum
the AGP/PMO is not capable to correctly reproduce the nucleiless positronic bound state
of the partitioned H2 + Ps− system, which on the other hand is better described by the
AGP/EPO wave function. Moreover, the AGP/EPO is also capable to give a good qualitative
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description of the system at the level of VMC, due to the more e�cient description of the
electron-positron correlation e�ects, also enhanced by the novel dynamical Jastrow factor,
which could be suitable to describe loosely Ps or Ps− bound states as well as more localized
positronic molecular systems. Finally, at the DMC level the AGP/EPO PES of the e+ · H2−

2

molecule has been described with a similar accuracy obtained by Bressanini[73] using DMC
applied to an explicitly correlated ansatz. Thus, the new approach of this work, allows
to provide the most detailed information regarding the vibrational properties of the M2
minimum.

3.3 Summary

This chapter presents a simple yet e�cient correlated wave function to study the inter-
action of a positron with complex atomic and molecular systems. The wave function is
constructed as a product of an electronic determinant, in this case the AGP or the SD, a
positronic orbital, built on electron-positron correlation functions (the EPO), and a novel
explicit Jastrow factor that includes the correlation between electron-positron pairs in the
�eld of the nuclei. This approach was compared with the most commonly used methods
in quantum chemistry, to study the binding energies of the positron with di�erent atomic
systems and with simple molecules for which accurate results have been obtained in the
literature.

For atomic systems, the comparison between the two wave functions in conjunction with
the Jastrow factor, demonstrates their accuracy and its important role in the recovery of the
necessary correlation to obtain an excellent estimation of the binding energies at the level
of VMC. The EPO and PMO results are in fact comparable at the VMC level and identical
when doing DMC calculations. This agreement between VMC and DMC is explained by
the isotropy of the positron wave function, which is centered around the electronic charge
and thus can be represented correctly by a basis set composed of atom-centered orbitals.

Importantly, for the heaviest atoms, such as B, C, O and F, the total energies of the positronic
systems PsB, PsC, PsO and PsF presented in this chapter are the most accurate in the lit-
erature so far and will serve as references for future investigations. For the lighter atoms,
such as H, Li and Be, it has been shown that these approaches are comparable to the SD
wave functions used by Bressanini in ref.142, yet easier to generalize also to heavier atoms
and more complex molecules. Regarding the positron and positronium a�nities, the accu-
racy analysis is not straightforward since these quantities are energy di�erences and the
variational principle cannot be used as a guide, however the DMC values obtained in this
chapter are in excellent agreement with other references present in the literature.

For molecular systems, the discrepancy between the EPO and PMO approaches becomes
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more evident. As a matter of fact, at the VMC level the dissociation curves of the e+(H−)2

molecular system, computed with the EPO and PMO wave functions, show a discrepancy
in energies of about 0.005 Ha in favour of the former. Through the EPO wave function and
using a dense grid of points to construct the PES of the M2 minimum, accurate spectroscopic
properties for the e+(H−)2 molecule were computed.
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Chapter 4

Dynamical Electron-Positron Jastrow
Factor

Parts of this chapter will be published in this or similar form in:

J. Charry, M. Barborini, A. Tkatchenko. “Dynamical Jastrow factor for electron-positron
interactions" In preparation.

and have been produced in collaboration with the above authors.

Chapter 3 described which type of fermionic wave functions can be used in QMC to suc-
cessfully describe the ground states of positronic atomic and molecular systems [91]. Apart
from the computational advantages of the QMC methods, such as the third order scaling
with the number of fermions, and the intrinsic parallelization of the algorithms, their main
e�ectiveness lies in the possibility of integrating the Schrödinger equation over intricate
trial wave functions that explicitly include few-body correlation factors. Commonly, in
QMC, these correlation factors are introduced through a multiplicative function, the Jas-
trow factor [121, 154, 155], and can be enhanced by more complex and computationally
expensive back-�ow transformations [156, 157, 158] or Neural Networks [159, 160, 161,
162, 163] ansatz functions.

The Jastrow term is a factor that multiplies a fermionic wave function, such as a Slater deter-
minant, without directly in�uencing its spatial and spin symmetries, and thus it is always a
positive bosonic term. As such, it is usually expressed as a function of two-particle distances
that remodulates the wave function amplitudes when two or more particles come close to
each other. Its purpose is to describe the correct fermion-fermion and nucleus-fermion cusp
conditions of the exact wave function, and secondly to recover explicit dynamical correla-
tion between few-particles in the non-homogeneous Coulomb �eld of the molecular nuclei
(Section 3.1.1). Many di�erent expressions of the Jastrow factors [121, 154, 155, 164] have

57
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been presented in the literature for purely electronic systems including at most four-body
correlations between particles.

For positronic systems, on the other hand, a �rst three- and four-body Jastrow factor was
introduced in Ref. 91, built as an extension of the electronic one proposed in Ref. 164. This
factor is based on a linear combination of products of non-normalized atomic orbitals, and
it has the advantage of being relatively simple and fast to compute. Yet, being expressed
in terms of atomic orbitals, the Jastrow factor is ine�cient in describing the correlation
between the attractive electron-positron pairs and requires further improvements, such as
a dependency on the electron-positron distances. For that reason, this chapter investigates
the e�ectiveness of previously introduced dynamical Jastrow factor by including all three-
and four-body terms that arise from the linear combinations of products not only of atomic
but also of positronic orbitals [91], that are written as a function of the fermion-nuclei and
electron-positron distances, respectively. Through both sets of orbitals, it is possible to ex-
plicitly describe the distance and angular correlation of the positrons with respect to the
electrons, and vice-versa, preserving the overall spatial and spin symmetry of the wave
function. In particular, this chapter presents a systematic study of the contributions of the
various Jastrow terms to the variational and di�usion Monte Carlo estimations of the total
and positronic binding energies, also investigating the e�ects on the relaxation of the nodal
structure once the Jastrow factor is optimized together with the fermionic parameters. In
order to enhance the Jastrow factor’s capability to recover correlation, this approach is used
in combination with a simple Slater determinant that does not include explicit correlation
between particles and is most commonly used in quantum chemistry. This total wave func-
tion is applied to describe a set of one positron (PsH, e+Li, PsLi, PsO, and e+LiH) and two
positrons (e+PsH, (PsH)2, and Ps2O) systems, that have been chosen due to their challeng-
ing description of the electronic and positronic structures, and for the availability of highly
accurate reference values in the literature.

The chapter is organized as follows. The electron-positron wave function used in this work
is brie�y summarized in Section 4.1, Section 4.2 describes the construction of the extended
dynamical Jastrow factor for the electron-positron systems. Afterward, Section 4.3 reports
and discusses the results, focusing mainly on the total energies and the lowest positronic
dissociation energies of the several positronic systems examined. Finally, Section 4.4 pro-
vides concluding remarks.
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4.1 Electron-positron wave functions

In the literature, many ansatzes have been proposed to describe the many-electrons and
many-positrons wave function ΨT (x̄p, x̄e; R̄), where x̄e = {r̄e,σe} and x̄p = {r̄p,σp}
are the set of Cartesian and spin coordinates for the electrons and positrons, respectively.
Whereas R̄ is the vector of the nuclear positions. Ideally, the most general expression of
the wave function should explicitly include all particle correlation e�ects, including the
nuclei, while establishing the correct spatial and spin symmetries for both the electrons
and positrons [74, 86].

This study employs the most straightforward trial wave function, written as the product of
determinants and a Jastrow factor

ΨT (x̄p, x̄e; R̄) = det[Se↑] det [Se↓] det[Sp↑] det[Sp↓]e
J (r̄e ,̄rp;R̄), (4.1)

where Se↑ and Se↓ are the Slater matrices for the spin-up and spin-down electrons, Sp↑ and Sp↓
are the corresponding matrices for the positrons, and J (r̄e, r̄p; R̄) is the Jastrow factor.

Several QMC studies have employed similar trial wave functions [91, 118, 119, 124, 165, 166]
based on products of determinants constructed via atomic basis sets since they are simpler
to implement and to integrate with traditional quantum chemistry methods based on HF
or DFT. The determinantal part of the wave function de�ned in Eq. 4.1 correctly describes
the total spin and spatial symmetry for many-fermionic systems but completely disregards
the correlation of the attracting electron-positron couples.

Although more e�cient correlated fermionic wave functions have been proposed in the
literature [86, 91, 96], the use of this simple determinantal part has the scope of enhancing
the correlation e�ects recovered by the dynamical Jastrow factor between the fermions in
the �eld of the nuclei, thus rendering more evident its e�ectiveness.

4.2 Electron-positron Jastrow factor

The bosonic Jastrow factor constructed in this work can be written as the sum of two many-
body terms

J (r̄e, r̄p; R̄) = Jc(r̄e, r̄p; R̄) + Jd(r̄e, r̄p; R̄), (4.2)

the �rst term describes the fermion-nucleus and fermion-fermion cusps conditions of the
exact wave function, while the second term is the one containing few-body correlations
between the various particles, also with respect to the nuclear positions, and is responsible
for the recovery of dynamical correlation.
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The Jc(r̄e, r̄p; R̄) term is extensively discussed in Refs. 72, 91 and Chapter 3.1.3. This chap-
ter will focus on the dynamical Jastrow factor Jd(r̄e, r̄p; R̄) and its extension.

A �rst version of the dynamical Jastrow factor for electron-positron systems, inspired by the
purely electronic that of Casula et al. in Ref. 128, was introduced in Ref. 91, simply written
as a linear combination of products of atomic orbitals centered on the nuclei. Although this
is not the most common expression of the three-/four-body correlation term [121, 154], the
advantages of this formulation lie in its simplicity and computational e�ciency [128]. Yet,
this Jastrow explicitly depends only on the distances between the nuclei and the fermions.
While this is a reasonable correlation factor in describing the attraction between nuclei and
electrons, it becomes less e�cient for the positrons that are attracted by the electrons.

In order to further generalize this Jastrow factor, the atomic orbitals will be coupled with a
set of positronic orbitals, that explicitly depend on the relative distances between electrons
and positrons. Therefore, the new dynamical Jastrow factor is built as a combination of
three groups of terms

Jd(r̄e, r̄p; R̄) = A(r̄e, r̄p; R̄) + G(r̄e, r̄p) +M(r̄e, r̄p; R̄), (4.3)

which correspond to the atomic Jastrow A(r̄e, r̄p; R̄), built purely from the combination of
atomic orbitals as previously used in Refs. 72, 91, a set of terms G(r̄e, r̄p) constructed only
from the positronic orbitals, and a mixed term that combines both orbital sets,M(r̄e, r̄p; R̄).

The following sections describe the various terms and explain their relative importance
in constructing the full set of four-body correlations included in the Jastrow factor. A
schematic representation of the total number of terms is anticipated in Figure 4.1.

4.2.1 Atomic dynamical Jastrow factor

The �rst part of the dynamical Jastrow, already introduced for multi-positronic systems in
Ref. 91, is built on a basis set of Q non-normalized atomic orbitals χν(r), that are centered
on di�erent atoms (the atomic index is included in the orbital index µ or ν and will always
be omitted in the following sections).

For a system comprised of Ne electrons and Np positrons, this part of the Jastrow factor
consists of the sum of three groups of correlation functions,

A(r̄e, r̄p; R̄) =
Ne∑
j>i

Aee(rei , rej ; R̄) +

Np∑
h>t

App(rph, rpt ; R̄) +
Ne∑
i

Np∑
h

Aep(rei , rph; R̄), (4.4)

all written as linear combinations of products of two atomic orbitals. The �rst set will
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Positron

Electron

Nuclei

Figure 4.1: Schematic representation of the dynamical Jastrow factor. A terms correspond
to the Atomic dynamical Jastrow, G terms for Germinal Electron-Positron dynamical Jas-
trow, and �nally theM terms for the Mixed Atomic and Geminal dynamical Jastrow. The
hyphen mark is used to represent the distance between two particles within an orbital and
the comma symbol to indicate a product of two uncoupled orbitals.

correlate two electrons

Aee(rei , rej ; R̄) =

Q∑
µ,ν

Aeeµνχµ(rei )χν(r
e
j), (4.5)

the second set will correlate two positrons

App(rph, rpt ; R̄) =

Q∑
µ,ν

Appµνχµ(rph)χν(r
p
t ), (4.6)

and the third set will correlate one electron and one positron

Aep(rei , rph; R̄) =

Q∑
µ,ν

Aepµνχµ(rei )χν(r
p
h). (4.7)

Here the square matrices Aee, App, and Aep contain the linear coe�cients of the expansions,
Aeeµν , Appµν , and Aepµν , respectively. Those matrices describe the coupling between the various
atomic orbitals occupied by di�erent fermionic pairs. To avoid spin contamination, the Aee
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and App matrices must be symmetric, i.e. Aeeµν = Aeeνµ and Appµν = Appνµ, allowing the Jastrow
factor to be invariant with respect to the exchange of two electrons or two positrons, no
matter their spin.

Despite the quality of the results presented in Refs. 72, 91, these Jastrow terms only contain
functions of the electron-nuclei and positron-nuclei distances with no explicit correlation
between the two attractive fermionic particles (electrons and positrons). Yet, the correlation
e�ects arising from explicit electron-positron terms are crucial, especially when describing
homogeneous systems of pure electron-positron pairs, or for systems with large numbers
of electrons where the positron particle is not in general spherically distributed around an
atom [71, 72, 73, 74, 91, 153]. For this reason, the following sections will introduce additional
Jastrow components based on electron-positron (or positronic) orbitals [82, 91].

4.2.2 Geminal dynamical Jastrow factor

As previously discussed, the dynamical Jastrow factor constructed as a linear combina-
tion of atomic orbitals does not explicitly include the correlation between electron-positron
pairs. These pair correlation functions are essential, for example, when describing homo-
geneous systems of pure electrons and positrons, such as the positronium anion (Ps−) or
the positronium dimer (Ps2), or in those cases in which the positronic wave function is not
spherically symmetric around the nuclei, such as in molecular systems.

For this reason, additional terms will be introduced, indicated as the Geminal Jastrow fac-
tor, which is built through a set of K non-normalized positronic orbitals ϕη (repih)[91], that
depends on the distance vector repih = rei − rph connecting the electron-positron pair. For
convention, the center of these positronic orbitals is considered to be on the positron’s
position.

As for the atomic Jastrow factor, the coupled three-/four- body correlations between two
pairs of electron-positron are built as the sum of three sets of correlation functions

G(r̄e, r̄p) =
Ne∑
j>i

Np∑
h

Gepe(rei , rph, rej) +

Np∑
t>h

Ne∑
i

Gpep(rph, rei , rpt ) +
Ne∑
j>i

Np∑
t>h

Gepep(rei , rph, rej , rpt ),

(4.8)
each written as the linear combination of products of two positronic orbitals. Here, the �rst

Gepe(rei , rph, rej) =
K∑
η,τ

Gepe
ητ ϕη(r

ep
ih)ϕτ (repjh), (4.9)
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and second

Gpep(rph, rei , rpt ) =
K∑
η,τ

Gpep
ητ ϕη(r

ep
ih)ϕτ (repit ), (4.10)

sets of terms represent three fermion correlations respectively between two electrons and
one positron (Eq. 4.9) and two positrons and one electron (Eq. 4.10).

Since the Jastrow factor must be invariant with respect to the exchange of two same-spin
electronic or positronic coordinates, the square matrices of the coe�cients that de�ne the
two expansions, Gepe and Gpep, must be symmetric, i.e. Gepe

ητ = Gepe
τη and Gpep

ητ = Gpep
τη .

The third set of terms describes the correlation between four di�erent fermions: two elec-
trons and two positrons, again as a product of two geminal orbitals,

Gepep(rei , rph, rej , rpt ) =
K∑
η,τ

Gepep
ητ

[
ϕη(repih)ϕτ (repjt ) + ϕη(repjh)ϕτ (r

ep
it )
]
. (4.11)

As for the last two terms, the four-particle correlation function must be symmetric with
respect to the exchange of both electrons and positrons, and in order to impose this not
only the coupling matrix Gepep must be symmetric, i.e. Gepep

ητ = Gepep
τη , but also to impose

symmetrization to the exchange of both electron pairs and positron pairs. For this reason,
they should be written as the sum of the two contributions ϕη(repih)ϕτ (repjt )+ϕη(repjh)ϕτ (r

ep
it ).

4.2.3 Mixed atomic-geminal dynamical Jastrow factor

The atomic and geminal Jastrow factors de�ned in the previous sections do not exhaust
the four-body correlations that can be described with the atomic and positronic basis sets.
While the atomic part neglects the pair correlation between electron-positron pairs and
the Geminal part neglects the in�uence of the nuclei, a third term exploits the possibility of
describing the correlation of two or three fermions in the �eld of one nucleus, as products
of positronic and atomic orbitals.

The �rst option is to describe a three-body coupling of the ith electron with the hth positron
in the �eld of the nuclear positions. This correlation is constructed as the sum of two
combinations, the �rst of which is the term

Mnep(rei , r
p
h; R̄) =

Q∑
ν

K∑
η

Mnep
νη χν(r

e
i )ϕη(r

ep
ih), (4.12)

that correlates the ith electron with the nuclear coordinates through the atomic basis set and
the hth positron through the positronic basis set. The second term inverts the couplings,
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correlating the positron with the atomic basis and with the electron through the positronic
basis set:

Mepn(rei , r
p
h; R̄) =

Q∑
ν

K∑
η

M epn
νη ϕη(r

ep
ih)χν(rph). (4.13)

Following the same procedure, it is possible to build terms correlating three fermions in the
�eld of the nuclei. The �rst set of terms will correlate two electrons and a positron in the
�eld of the nuclei,

Menep(rei , r
e
j , r

p
h; R̄) =

Q∑
ν

K∑
η

M enep
νη χν(rei )ϕη(r

ep
jh), (4.14)

while the second set of terms will correlate two positrons and one electron:

Meppn(rei , r
p
h, r

p
t ; R̄) =

Q∑
ν

K∑
η

M eppn
νη ϕη(repih)χν(rpt ). (4.15)

Since the �rst two sets of terms are two-body correlation functions coupling an electron
and a positron, no symmetries have to be imposed in the rectangular matrices, Mnep and
Mepn. The same holds for the rectangular matrices Menep and Meppn that appear in the last
two three-body terms. Yet, the invariance of the Jastrow factor should be guaranteed for
the exchange between the two electrons in Eq. 4.14 and the two positrons in Eq. 4.15. To
this end, it is su�cient to extend the sums to all pairs of di�erent fermions. Therefore, using
Eqs. 4.12, 4.13, 4.14, and 4.15, the total mixed atomic-geminal dynamical factor is expressed
as:

M(r̄e, r̄p; R̄) =
Ne∑
i

Np∑
h

Mnep(rei , r
p
h; R̄) +

Ne∑
i

Np∑
h

Mepn(rei , r
p
h; R̄)

+
Ne∑
j 6=i

Np∑
h

Menep(rei , r
e
j , r

p
h; R̄) +

Ne∑
i

Np∑
t6=h
Meppn(rei , r

p
h, r

p
t ; R̄). (4.16)

Finally, Figure 4.1 summarizes all the dynamical Jastrow factors in a simple yet illustrative
schematic picture.

4.2.4 Computational details

A single Slater determinant was employed for the electronic and positronic wave functions,
built with a linear combination of atomic-centered orbitals as a sum contracted GTOs. In
particular, the H atoms basis employed a 3s1p Gaussian primitives contracted in the 1s1p
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orbitals, that is, (3s1p)/[1s1p]. For Li, a basis set of (5s4p1d)/ [2s1p1d] contracted GTOs, and
for O atom, a similar basis set of (6s4p1d)/[2s1p1d] contracted orbitals was employed. For
simplicity, the same set of orbitals is used for both the positronic and fermionic wave func-
tion determinant parts. The initialization of the exponents and contraction coe�cients is
fully described in a previous work [91]. The dynamical Jastrow factor uses a (3s2p) uncon-
tracted and not normalized GTOs centered on each atom to construct the atomic part, while
the positronic basis was built from a single set of (3s2p) uncontracted electron-positron
GTOs.

In the present work, all the parameters are optimized simultaneously, including the con-
tracted exponents and coe�cients, the molecular orbitals coe�cients, the cusps parameters,
and the linear and orbital parameters of the dynamical Jastrow factor.

For LiH, e+LiH, and (PsH)2 molecular systems, the calculations have been done using equi-
librium distances of respectively 3.015[67], 3.458[67], and 6.000[153] Bohr, consistent with
the reference calculations present in the literature.

Regarding the DMC calculations, each optimized VMC wave function was taken as the
guiding function, and the estimation of the DMC energy was performed with 6400 walkers
divided into 4000 blocks, each 2000 steps long, for a time step of 0.001 atomic units. All
computed VMC and DMC energies with their associated estimates error are reported in
Table B1 of the appendix.

Table 4.1: Variational Monte Carlo (VMC) and di�usion Monte Carlo (DMC) total energies
(in Hartree) of the three-/four- body systems of the form [e−,e−,e+] and [e−,e−,e+,e+] with
variable positronic mass me+ . Here, mH is the mass of the Hydrogen atom, which is set to
mH = 1836 me− .

Ps− H−(QN) H−(CN) Ps2 H2(QN) H2(CN)
me+ = me− me+ = mH me+ =∞ me+ = me− me+ = mH me+ =∞

VMC Jc -0.252856(16) -0.521290(34) -0.521622(25) -0.502504(24) -1.145409(66) -1.170694(31)
VMC Jc + Jd -0.2610146(73) -0.526716(42) -0.5272118(78) -0.513893(16) -1.162724(55) -1.1743590(94)
DMC Jc -0.26175(12) -0.527340(76) -0.527525(86) -0.51590(20) -1.16341(24) -1.174471(52)
DMC Jc + Jd -0.261941(34) -0.527398(26) -0.527756(18) -0.515990(55) -1.16368(15) -1.1744693(86)
Referencea -0.26200507 -0.527445881093 -0.527751016523 -0.516003790416b -1.164025024c -1.17447593140021d
a From Ref. 167, b From Ref. 19, c From Ref. 168, and d 169



66 CHAPTER 4. DYNAMICAL ELECTRON-POSITRON JASTROW FACTOR

4.3 Results and discussion

4.3.1 Pure electron-positron systems

In order to understand the purpose of the Geminal Jastrow factor (Section 4.2.2), an initial
study was performed on systems of only electrons and positrons, as well as the molecular
ones derived from the variation of the positronic mass me+ . More speci�cally, this test
considers the three-particle system [e−,e−,e+] that corresponds to Ps− when me+ = me−

(me− is the mass of the electron that is set to 1), to H− with quantum nucleus (QN) when
me+ = 1836 me− = mH ) and to H− with classical nucleus (CN) if me+ = ∞. Similarly, it
was considered the four particle system [e−,e−,e+,e+] that corresponds to the positronium
dimer Ps2 with me+ = me− , to the Hydrogen molecule H2 with quantum nuclei if me+ =
1836 me− = mH , and to the Hydrogen molecule with classical nuclei if again me+ =∞.

These purely fermionic systems, Ps− and Ps2, as well as for their analogs H− and H2 with
quantum nuclei, require a fermionic wave function representation that cannot be based on
�xed nuclear positions. Therefore, for these systems, the fermionic part was built using the
electron-positron orbital ansatz proposed in a previous work [91]

ψp (r̄p; r̄e) =
Ne∏
i=1

Np∏
j=1

ϕ
(
repij
)
,

whereϕ(rij) are molecular orbitals identical for each electron-positron pair, built as a linear
combination of positronic orbitals. On the other hand, for comparing in�nite mass cases in
the classical H− and H2 molecules, the simple Slater determinant function was employed
(Eq. 2.6).

In all cases, the Jastrow factor is written as the sum of the two body cusp functions Jc, (see
Eqs. 3.15,3.11,3.16) that are optimized for each system, and the dynamical term Jd respon-
sible for the three and four body correlation e�ects between the particles. Clearly, for the
purely fermionic systems, Ps− and Ps2, and for their analogs H− and H2 with quantum nu-
clei, the three- and four-body correlation e�ects can only be described through the geminal
Jastrow factor described in Section 4.2.2, due to the �xed center’s absence. Albeit, for the
in�nite mass cases, the dynamical Jastrow factor is constructed only through the atomic
orbital terms described in Section 4.2.1.

The VMC and DMC energies obtained for these systems with and without the dynamical
Jastrow factors are reported in Table 4.1. In all cases, it can be observed that the addition
of the dynamical Jastrow factor reduces the absolute error of the VMC energies by one or-
der of magnitude from 10 mHa to 1 mHa on average, compared to the accurate reference
values obtained with fully explicitly correlated Gaussian functions [19, 167, 168, 169]. At
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the DMC level, on the other hand, since all systems consist of distinguishable particles,
the total energies are always converged, yet remarkably, the use of the dynamical Jastrow
factor signi�cantly reduces the absolute errors with respect to the reference values, since
the Jastrow factor remodulates the amplitude of the wave function towards the exact solu-
tion. This can be observed by comparing the di�erences between the VMC and DMC total
energies that are greatly reduced with the use of the dynamical Jastrow factor.

The above results indicate that the geminal Jastrow factorw introduced in Section 4.2.2
plays the same role as the atomic one (Section 4.2.1) used for purely electronic systems,
and it is necessary to recover the three- and four-body correlations between electrons and
positrons in systems of many electrons and positrons.

Yet, while the atomic Jastrow factor correlates the fermionic pairs with the nuclei and the
Geminal Jastrow correlates fermionic pairs of opposite charge, a Jastrow factor capable of
considering explicit electron-positron pair correlation in the non-homogeneous �eld of the
nuclei is still missing. This is the reason to introduce the mixed Jastrow factor (Section
4.2.3), whose e�ects are studied in the following sections through positronic molecules.

4.3.2 Jastrow basis set e�ect

The dynamical Jastrow factor (Eq. 4.3) is built in terms of either atomic-centered orbitals
or electron-positron geminal orbitals, therefore it is important to analyze the basis set con-
vergence exploring the dependency of the total VMC energy with respect to the number of
Gaussian type functions (GTFs) and their angular momentum.

Considering the simplest positronic atom, Positronium hydride (PsH) using classical proton,
with the full dynamical Jastrow factor that includes the atomic, geminal and mixed terms,
Table 4.2 reports the convergence of the VMC energy combining basis sizes of (1s), (3s),
(3s2p), and (3s2p1d) uncontracted GTFs.

Subsequently, by analyzing the energy di�erence with respect to the highest energy ob-
tained, which corresponds to the smallest basis combination 1s/1s as expected, it can ob-
serve a convergence of the VMC energy gain around 3.8 mHa after using a set of 3s2p
GTFs for both the atomic Jastrow basis and the geminal one. Further addition of d-GTFs
does not lower the variational energy signi�cantly. Now, by analyzing the convergence of
both basis sizes individually, it can be observed that the e�ect of the geminal basis size is
slower than the atomic basis; for example, all combinations of 1s atomic basis with 3s,3s2p,
and 3s2p1d geminal orbitals provide almost the same energy gain of just 0.5 mHa. On the
other hand, for the 1s geminal basis, the variation from 1s to 3s and then to 3s2p provides
an energy change of 1.6 and 1.2mHa respectively. This behavior will be further discussed
in the following sections by analyzing the contribution of each dynamical Jastrow term
individually.
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In addition, this converged Jastrow basis with p-GTF functions should be adequate for sys-
tems where the spatial symmetry has to be broken, in a similar fashion to how polarization
GTFs are added in standard quantum chemical methods to describe the polarization of the
electron density of atoms in molecular systems [170]. For all the above reasons mentioned,
further calculations on this work employed the 3s2p/3s2p dynamical Jastrow basis for the
atomic and geminal Jastrow orbitals, respectively.

Table 4.2: E�ect of the size of the atomic Jastrow basis and Geminal electron-positron ba-
sis on the VMC energy for PsH (in Hartree units) using the full dynamical Jastrow (atomic,
geminal and mixed) according to Eq. 4.3. The ∆E column corresponds to the energy di�er-
ence between each basis set combination and the highest energy obtained.

A G VMC ∆E
Basis Basis [Ha] [mHa]

1s 1s -0.784278(19) 0.0
1s 3s -0.784856(19) -0.6
1s 3s2p -0.784797(18) -0.5
1s 3s2p1d -0.784794(19) -0.5
3s 1s -0.785832(16) -1.6
3s 3s -0.786660(19) -2.4
3s 3s2p -0.786674(12) -2.4
3s 3s2p1d -0.786675(15) -2.4
3s2p 1s -0.787104(14) -2.8
3s2p 3s -0.787620(15) -3.3
3s2p 3s2p -0.788107(12) -3.8
3s2p 3s2p1d -0.788111(10) -3.8
3s2p1d 1s -0.787131(14) -2.9
3s2p1d 3s -0.787630(16) -3.4
3s2p1d 3s2p -0.788159(9) -3.9
3s2p1d 3s2p1d -0.788203(13) -3.9

4.3.3 Atoms and molecules

Once a reasonable Jastrow basis set size has been determined, the next step is to analyze
the contribution of each dynamical Jastrow term of Eq. 4.3 to the description of electron-
positron correlation by systemically performing individual wave function variational op-
timizations, by switching on or o� the atomic electron-positron term Aep, the geminal G
terms, and the mixed one M in all possible combinations. All tests employed a Slater
determinant for the fermionic part except for e+Li and PsLi where a constrained multi-
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determinantal [91] was chosen, in addition to the one- and two-body cusp Jastrow, and
the pure electronic atomic dynamical Jastrow term Aee, note that in the present approach,
all the variational parameters are optimized in order to see their relaxation e�ect and to
provide lower variational energies at VMC level. This study presents results for eight of
the most relevant positronic systems previously studied in the literature with highly accu-
rate methods, more precisely: PsH, which is the most studied system due to its small size
[171]. The e+Li and PsLi, which are characterized by their very low dissociation energies
[57, 83, 142], therefore one of the most challenging systems, and e+LiH as the most stud-
ied small positronic molecule [75]. Regarding two positronic systems: e+PsH, the simplest
two positronic atom [84], the two positron bond in (PsH)2 [153], and the positronic water
molecule Ps2O which was hypothesized to be one of the fewest two-positron systems that
can be experimentally observed due to their stability [45], in addition to Ps2.

Figure 4.2 compares the VMC energies employing di�erent combinations of dynamical Jas-
trow terms of Eq. 4.3 for the aforementioned positronic systems. All the data in these plots
are also presented as a table in the appendix, B1. Overall, the e�ect of each term on the
total correlation energy seems to be consistent for this set of systems. First of all, the cal-
culations employing only the electron-electron atomic dynamical Jastrow Aee can be seen
as the starting point since the electron-positron correlation e�ects are only considered in
the two-body Jastrow term, which is presented for all calculations. Next, it is observed that
the addition of the G terms has the lowest contribution for improving the total energy, and
even in the cases of PsH, e+Li the improvement is almost absent, while for the other systems
the energy gain is at most around half of the correlation energy that the other terms can
add. This low contribution could indicate that there is no need to describe Ps− formation
into the wave function for PsH and e+Li, a process that will require breaking the stable 1s2

shell. On the contrast, these terms provide a better description in the following cases: two
positronic systems as e+PsH and (PsH)2, positronic distribution far from the nuclei like in
e+LiH and (PsH)2, or negatively charged atoms with high nuclei charge as in PsLi, PsO, and
Ps2O.

Regarding theM dynamical Jastrow factor, its mere addition provides one of the largest
contributions to lower the VMC energy, indicating the importance of including in the wave
function the formation of Ps, Ps− or anti-Ps− species in the vicinity of the nuclei. Fur-
thermore, the addition of both G andM combined does not signi�cantly improve further
thanM alone, suggesting that the electron-positron correlation e�ects described by G are
fully covered in the mixed terms, in other words, the coupling with the atomic orbitals for
electrons in the �eld of the nuclei.

The next Jastrow term in the current analysis is the Aep, which displays a slightly better
performance (in e+Li, +LiH, PsO) than the mixed JastrowM, suggesting that the positronic
distribution can be improved as a simple linear combination of coupled atomic-centered
orbitals. On the contrary, for e+PsH, PsLi, (PsH)2 theM outperforms Aep indicating the
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importance of the explicitly Ps geminal orbitals coupled to atomic orbitals.

Similarly to the G +M case, for Aep + G there is no signi�cant change in the reduction
of the VMC energy, indicating again that the contribution G can be either included in the
atomic Aep orM mixed Jastrow factor.

Consequently, the next signi�cant improvement of the variational energy is obtained with
Aep +M. Here it is important to note that the combination of both is not accumulative.
Therefore the �nal contribution is not the sum of the independent terms, indicating that
some of the missing electron-positron correlation e�ects can be described by both terms,
and the further improvements are probably due to the explicit Ps Jastrow orbital and the
coupled Ps− in the mixed termM.

Lastly, as expected, all terms combined provide the lowest variational energy, but once
more the addition of G on top of Aep +M does not signi�cantly decrease the energies,
reinforcing the present observations of the low impact for the geminal dynamical Jastrow
factor compared to the atomic and mixed one.

The optimized VMC wave functions for each dynamical Jastrow combination were further
taken as guiding functions in the DMC calculations, these results are gathered in Figure
4.3. Overall, there is a decrease in the standard deviation of the mean according to the
same trend observed in the total VMC energies for each Jastrow factor, indicating that the
correlation e�ects included in the dynamical Jastrow factors allow a correct relaxation of
the nodal structure in the fermionic part. For the systems: PsH, e+PsH, (PsH)2, and e+LiH
the di�erences with respect to reference values are lower than 0.5 mHa, with no signi�cant
di�erences between Jastrow combinations. As the number of electrons increases, so does
the absolute error on the total energies in e+Li, PsLi, PsO, and Ps2O, except in e+LiH where
the dominant electrostatic interaction is simpler to describe than polarization e�ects due
to its permanent dipole moment [29].

4.3.4 Dissociation energies

For positronic systems, the energy of the dissociation channels should also be addressed
in order to establish a true bound state, since in some cases the most energetically sta-
ble species corresponds to the ejection of a positron, Ps, Ps− or even Ps2. Therefore, the
following lines discuss the lowest dissociation channels for all the Jastrow combinations
and systems presented in Figure 4.4. For the two positron systems, the dissociation ener-
gies calculations employ the energies for each corresponding Jastrow in the one positron
counterpart.

First, for PsH the lowest dissociation channel is H + Ps, therefore any variational energies
lower than -0.75 Hartree means a bound state, which is the case for all Jastrow combinations
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Figure 4.2: Comparison of the VMC energies for di�erent combinations of the atomic,
geminal, and mixed electron-positron dynamical Jastrow terms for one- and two-positron
systems. Energy di�erences (in mHa) are displayed on the right side of each bar against the
reference value, indicated by a red vertical.

(see Figure 4.2), therefore the same trends are observed as in the total energies. The analysis
in e+PsH is also trivial since the lowest channel is the ejection of one positron as e+PsH
→ PsH + e+, then any energy lower than PsH gives a bound state as seen in Figure 4.2.
However, for the Aee + G Jastrow, the corresponding binding energies seem to be higher
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Figure 4.3: Comparison of the DMC energies (in Ha) with a time step of 0.001 a.u for di�er-
ent combinations of the atomic, geminal, and mixed electron-positron dynamical Jastrow
terms for one- and two-positron systems. Energy di�erences (in mHa) are displayed on the
right side of each bar against the reference value, indicated by a red vertical.

than expected. This discrepancy is caused by the poor performance of the geminal term
in PsH, which for the case of e+PsH is compensated by the anti-positronium anion term
Gpep, and by the dipositronium term Gepep, clearly indicating that these two Jastrow factors
cannot be comparable at the same level, although the absolute error is just 0.02 eV.
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Next, for e+Li all Jastrow combinations fail to predict the bound state, this system is the
most challenging one due to its low binding energy attributed to the large electronic vol-
ume in the Li atom. Additionally, it has been already reported that at large distances from
the Lithium nucleus the probability distribution of the valence electron and positron have
combined to form a Ps cluster [83], which can probably only be correctly described with ex-
plicit electron-electron and electron-positron correlation into the fermionic wave function
[142].

In PsLi, using only the atomicAep and mixedM terms, it is possible to attain a bound state,
although the binding energy is far from the accurate reference by one order of magnitude.
The structure of the ground state of PsLi was recently studied by Bressanini, �nding that in-
troducing explicitly the positronium wave function of the form Ψ(Li)Ψ(Ps)f(Li,Ps) is ca-
pable to surpass the energy threshold of Li + Ps, opposite to the form Ψ

(
Li−
)

Ψ (e+) f
(
Li−, e+

)
,

which is more similar to our ansatz. Nevertheless, this work will focus only on the descrip-
tion at the level of the Jastrow factor [57].

Regarding the dissociation channels in (PsH)2 as demonstrated by Bressanini [153], due
to the instability of the two repulsive H−, the potential energy curve of (PsH)2 intersects
with the energy curve of multiple dissociation channels at short distances. Therefore the
analysis there is more complex and goes beyond the scope of this work. For that reason,
only the dissociation at long internuclear distances of two PsH will be considered in this
work. Surprisingly, even with the full dynamical Jastrow, the dissociation energy has an
error of 50%, indicating that at VMC level the positronic structure of PsH is better described
than in the dimer. This is explained by the di�erent type of interactions, in the case of PsH
[83] the positron probability densities is spherically symmetric around the nuclei following
the electronic density with a maximum at 3 Bohr of distance, while in PsH2 [153] it is
localized in the internuclear region between the two H− where the electronic density goes
to a minimum. Therefore in the latter case it would be better described by using an auxiliary
orbital centered in the middle region (ghost center) or by an explicit geminal [91], as can
be seen on the more consistent results for all the other Jastrow factors based on geminal
orbitals. Similarly to the e+PsH case, for PsH2 there is an overestimation of the dissociation
energy Aee + G Jastrow factor, which is also explained by the unbalanced description in
PsH with this Jastrow factor.

The diatomic system of e+LiH is an interesting case because the vertical binding energy
obtained with only Aee of 0.6720(22) eV is more than triple the previously reported VMC
value of 0.15(2) eV [86] were the authors employed a similar wave function to ours but
keeping frozen the parameters of the one- and two-body Jastrow factor with respect to
LiH. Thus, indicating the importance of relaxing those parameters in the calculation of the
positronic complexes. On the other hand, the other Jastrow factors signi�cantly improve
the binding energies to only less than 0.2 eV error for the Geminal Jastrow G and less than
0.06 eV for the others. For PsO, both the atomicAep and mixedM correctly reach a bound
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state by lowering the energy in 0.4 eV, whereas both the purely electronic Jastrow and gem-
inal alone are not enough to breach the dissociation threshold, although for the others the
binding is still underestimated by 0.5 eV. Finally, for Ps2O all Jastrow combinations man-
age to correctly predict the bound state, however it should be noted here that the binding
can be closer to the reference due to the missing correlation e�ects on PsO with the same
Jastrow factor. Nevertheless, the Aep and mixedM ones improve the binding energy by a
considerable amount of 0.7 eV.

The dissociation energies calculated at DMC level are gathered in Figure 4.5. For the sys-
tems PsH, e+PsH, (PsH)2, e+LiH, and Ps2O, there is a good agreement against the reference
values within the error bars. For e+Li, most of the Jastrow factors cannot provide a qualita-
tively good guiding wave function, since they still predict an unbound state, except for the
combination of atomic A and mixedM Jastrow factors, although their predicted energy
is strongly underestimated. Additionally, all DMC calculations proved to be unstable for
e+Li. For example, Figure B1 of the appendix shows the estimated error as a function of the
block length in the reblocking technique, observing no convergence with long blocks sizes,
indicating an underestimation of the error bars [85]. In PsLi, the bound state is correctly
achieved, nevertheless, the energies are far away from the reference data by 75 meV on
average. For PsO, the gap to the reference is attributed to the missing multireference char-
acter from single-determinant DMC calculations for Oxygen atom, evidenced by an error
of 80 meV in its electron a�nities compared to experimental value [77, 91], which is already
accounted in the multireference con�guration interaction calculation performed by Saito
for estimating the Positronium binding energy [77]. In the case of Ps2O, this multireference
error is not present since the reference value also corresponds to a single determinant DMC
calculation.

4.3.5 Scaling

Finally, the next lines discuss the scaling of each Jastrow factor with respect to the number
of variational parameters. As shown in Equations 4.4, 4.8, and 4.16, the scaling with respect
to the size of the Jastrow basis sets is Q2 for the atomic A, K2 for the geminal G, and QK
for the mixed JastrowM. For practical applications, the size of the atomic Jastrow basis
will increase proportionally to numberQ ∝ (NA), while the geminal basis will be �xed to a
certain number of geminal orbitals K ∝ (ngem). Therefore the scaling will be simpli�ed to
N2
A for atomic, n2

gem for geminal, andngemNA for the mixed Jastrow factor. Considering that
for large systems NA >> Ngem, and the performance discussed in the previous sections,
the mixed Jastrow alone outperforms the others by reaching the lowest VMC energies with
only a linear scaling with respect to the number of atoms, contrary to the atomic Jastrow
having slightly lower performance with quadratic scaling, on the other hand, the geminal
Jastrow factor provides a non-negligible energy gain without scaling with the number of
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Figure 4.4: Comparison of the lowest dissociation energies at VMC level for di�erent com-
binations of the atomic, geminal, and mixed electron-positron dynamical Jastrow terms for
selected one- and two-positron systems. The vertical red line indicates the reference values.
Unbound and bound values are associated with red and blue color bars, respectively.

atoms.
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Figure 4.5: Comparison of the lowest dissociation energies at DMC level for di�erent com-
binations of the atomic, geminal, and mixed electron-positron dynamical Jastrow terms for
selected one- and two-positron systems. The vertical red line indicates the reference values.
Unbound and bound values are associated with red and blue color bars, respectively.
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4.4 Summary

This chapter has introduced a set of homogeneous and non-homogeneous dynamical Jas-
trow factors to account for three- and four-body electron-positron correlation e�ects in the
�eld of nuclei. This new Jastrow factor is built as a linear combination of products of atomic
and geminal orbitals, which can be grouped together in three di�erent types: fully atomic
Jastrow terms, fully geminal orbitals, or a mixed term combining products of both types of
orbitals.

As demonstrated for the three and four-body systems Ps− and Ps2, by changing the mass of
the positive particle this generalized Jastrow factor successfully connects the extreme cases
of positron mass, �nite nuclear mass, and in�nite nuclear mass by lowering the absolute
error in VMC from 10 mHartee to only 1 mHartree.

In order to test the e�ects of this dynamical Jastrow in the description of electron-positron
interactions, total and dissociation energies were computed for selected positronic com-
plexes at VMC and DMC levels, relaxing all variational parameters of the fermionic and
bosonic wave function. The atomic and mixed terms alone provide the biggest improve-
ment to the total and dissociation energies at VMC level, and the combinations of both
further improve by some extra mHa with respect to the most accurate data available in the
literature. Nevertheless, the mixed Jastrow factor only scales linearly with respect to the
number of atoms, preserving an optimal balance between accuracy and the number of vari-
ational parameters to optimize, making it the most suitable term for larger systems. The
geminal Jastrow factor shows the smallest energy gain, although this term could be rele-
vant for positronic distributions far from the nuclei and poses the best scaling compared to
the other terms since it depends on a �xed number of positronic orbitals.

Despite the signi�cant improvement in the variational VMC energies, for e+Li and PsLi sys-
tems, their lowest dissociation channels are still wrongly predicted as an unbound state, due
to an insu�cient description of the electronic and positronic distributions at long distances
from the nuclei. Nevertheless, the positronic atoms are the most challenging systems; on
the contrary, positronic molecular systems should be simpler to describe correctly due to
their ability to have permanent or induced dipole moment enhancing the electron-positron
interactions.
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Chapter 5

Electric Response Properties of
Positronic Systems

Parts of this chapter will be published in this or similar form in:

J. Charry, M. Barborini, A. Tkatchenko. “Electric response properties of positronic atom
and molecules" In preparation.

and have been produced in collaboration with the above authors.

While Chapters 3 and 4 have focused on the development of a QMC methodology to study
the ground state and binding energies of isolated positronic systems, the present chapter
explores how to unveil the electron-positron wave function structure and the positron bind-
ing mechanism through the evaluation of their response properties to an external electric
�eld, computed by QMC techniques.

The e�ect of an external electric �eld on electronic and positronic systems has been known
for many decades and can be classi�ed according to its intensity. In the strong electric �eld
regime, the recent advances in laser technology are aimed at the generation of electron-
positron pairs from vacuum, that are predicted in quantum electrodynamics (QED) [172,
173, 174, 175]. For moderate �elds, the main goal is to explore how the electric �eld can
increase the positronium lifetimes [176, 177, 178, 179, 180], thus controlling the annihilation
dynamics [181, 182]. Since the electron-positron annihilation rates depend on the overlap
of their wave functions [183], the long-lived matter-antimatter systems are explained by
the increase of the electron-positron distance induced by the electric �eld, in which the
probability density contact is reduced. On the other hand, low electric �elds are used to
study the response properties of the electron-positron systems, which can be generated, for
example, by an external atom or molecule of the environment surrounding the positronic
complex.

79
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Most of the computational studies focus in particular on the evaluation of binding energies
and annihilation rates of the isolated positronic complex, but other electronic and positronic
properties, or their interactions with external atoms and molecules, are an almost unex-
plored topic [59] due to the di�culty of correctly capturing the correlated motions of elec-
trons and positrons. In addition, for such properties, the wave function should be versatile
enough to describe the small polarization e�ects that break the spatial symmetry caused
by the electric �eld. Nevertheless, there are a few reports on the calculation of the polar-
izability of PsH using explicitly correlated ansatz [58, 59, 60, 184], as a �rst step towards
understanding the interaction of PsH with external potentials. For some years, there was a
discrepancy between the �rst reported dipole polarizability of 123 a.u. by Le Sech and Silvi
[58], compared to the estimate of 49 a.u. reported by Mella et al. [67].

Other response properties reported in the literature for positronic systems are the two-body
dispersion coe�cients, mainly the C6, corresponding to the dipole-dipole term r−6 of the
multipole expansion of the long-range interaction potential between two atoms. In partic-
ular, these coe�cients were computed for PsH [59, 60], Ps with a few neutral atoms [61, 63],
Ps and H in all combinations [62], and Ps2 with atoms [63]. Those studies assumed that
the interatomic interaction is repulsive at short distances due to the Pauli exclusion prin-
ciple, which repels the same spin electron between atoms. In contrast, at long distances
between atoms, the interaction should be attractive due to the dispersion interaction be-
tween the electronic clouds. However, this assumption ignores the e�ects on the positron
wave function at the typical equilibrium distances for regular non-covalent electronic in-
teractions. This premise was recently proven inadequate in the case of two interacting PsH.
By performing QMC calculations at several internuclear distances, Bressanini [153] found
that the two positrons can induce the formation of a chemical bond between two otherwise
repelling ions, similarly to the case of one positron [71].

Even though QMC techniques have proven to yield accurate absolute and relative energies
for regular electronic [90, 95, 100] and positronic systems [67], their application to com-
puting polarizabilities is more challenging because of the stochastic error that comes with
these approaches, causing the computation of accurate second-order derivatives to be quite
demanding [185, 186, 187]. On the contrary, although HF based methods can more easily
provide accurate polarizabilities for electronic systems[188], for positronic ones, the lack
of explicit correlation greatly a�ects the accuracy of total and binding energies [29], and
has repercussions on the estimation of all electronic properties.

Motived by the above challenges and by the lack of data regarding the response properties
of positronic systems, this chapter explores at VMC and DMC levels, the computation of
dipole polarizabilities and the e�ects of an external electric �eld to the annihilation rates
and expectation values of the interparticle distances for Ps, Ps2, PsH and (PsH)2. Those
quantities are analyzed in order to shed light into the structure of their electronic and
positronic wave functions, revealing non-trivial scaling of the dipole polarizability with
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respect to the number of interacting particles.

This chapter is organized as follows: Section 5.1 brie�y describes the wave function em-
ployed, as well as describing the computation of the response properties. Next, Section 5.2
shows and analyzes the total energies, dipole moment, annihilation rates, density changes,
and interparticle distances for a few positronic atoms and their dimers. Finally, Section 5.3
summarizes the results and provides concluding remarks.

5.1 Methods

This study considers electrons and positrons as quantum particles and atomic nuclei as
point charges within the Born-Oppenheimer approximation described by the Hamiltonian
in Eq. 2.2. All molecular properties were computed using the VMC and DMC methods as
described in Section 2.3.

5.1.1 Wave function

The general trial wave function employed for this work is written as the product of a
fermionic part and a bosonic component, the Jastrow factor, used to describe the explicit
correlation between particles, expressed as

Ψ(x̄e, x̄p; R̄) = ψe(x̄e; R̄)ψp(x̄e, x̄p)Exp[J (x̄e, x̄p; R̄)]. (5.1)

For multielectronic systems, ψe is built as a Slater determinant (Eq. 2.6), whereas the
positronic wave function is described by the EPO orbitals in Eq. 3.7 but generalized for
two positronic systems as

ψp(x̄e, x̄p) =
Ne∏
i=1

Np∏
j=1

ϕ(repij ), (5.2)

based on identical orbitals ϕ(repij ) (so that the function is symmetric with respect to the ex-
change of the electronic coordinates) that depend on the electron-positron distance repi . The
generalization for multipositronic systems will require the introduction of an antisymmetry
operator. The orbitals ϕ are built as linear combinations

ϕ(rep) =

Q∑
q=1

lqφq (rep) , (5.3)

of electron-positron orbitals

φ (xep) = repR (rep)Y m
l (θep, φep). (5.4)
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Finally, the Jastrow factor consists of the two-body terms between fermions and fermion-
nuclei to describe their cusp conditions and pair correlations, together with the full three-
and four-body dynamical Jastrow described in Eq. 4.3 to account for homogeneous and
non-homogeneous two-body correlations in the �eld of the nuclei or positrons as

J (r̄e, r̄p; R̄) = J en
c (r̄e, R̄) + J pn

c (r̄p, R̄) + J ee
c (r̄e)+

+ J pp
c (r̄p) + J ep

c (r̄e, r̄p) + J3/4(r̄e, r̄p; R̄). (5.5)

All the parameters of the wave functions are optimized with the SRC method [189, 190], as
described in Section 2.3.

5.1.2 External electric �eld

The dipole moment operator for a system with Nn number of particles [191], is de�ned as

µ̂a =
Nn∑
i

qiria a = {x, y, z}, (5.6)

where qi is the charge of a particle i and its position in the cartesian component a is de-
scribed by ri,a. Given that, in the QMC formalism (Section 2.3), the local dipole moment
corresponds simply to:

µa,loc(r̄) =
µ̂ΨT (ε̄; r̄)
ΨT (ε̄; r̄)

=

Np∑
i

qiri,a. (5.7)

The Hamiltonian of a quantum system in a weak static electric �eld [191] is described by

Ĥ = Ĥ0 −
∑
a

µ̂aFa −
1

3

∑
ab

ΘabFab − . . . {a, b = x, y, z}, (5.8)

where Ĥ0 is the unperturbed Hamiltonian, Fa is the strength of the electric �eld, Θ is the
quadrupole moment, and Fab is the �eld gradient. However, for the present calculations,
it will be considered only uniform electric �elds, such that Fab = 0. Taking into account
the expressions from Eq. 5.7 for the local dipole moment, the local energy of this type of
perturbed system can be computed as [186]

EF
loc(ε̄; r̄) = E0

loc(ε̄; r̄)−
∑
a

µa,loc(r̄)Fa −
1

2

∑
a, bαa,bFaFb − . . . {a, b = x, y, z}. (5.9)

Here, it should be noted that the contributions from the external �eld do not depend ex-
plicitly on the set of variational parameters ε of the trial wave function ΨT (ε̄; r̄), but its
sampling will depend on the probability distribution according to the trial wave function.
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5.1.3 Polarizabilities

Considering that the energy of a system under a weak external electric �eld can be expanded
in a power series with respect to the strength of the electric �eld [191] as

E(F ) = E0 −
∑
a

µ(0)
a Fa −

1

2

∑
a,b

αabFaFb − . . . , (5.10)

then, the dipole polarizability α1 (from now on simpli�ed as α, and its cartesian component
αab), is de�ned as the second derivative with respect to the strength of the �eld when this
one goes to zero [184]

αab = −
(

∂

∂Fa

(
∂E(F )

∂Fb

))
F=0

. (5.11)

Analogously, the dipole moment can be expanded as

µa(F ) = µ(0)
a +

∑
b

αabFb + . . . , (5.12)

leading to de�ning the polarizability as the �rst derivative of the dipole moment

αaa =

(
∂µa(Fb)

∂Fb

)
F=0

. (5.13)

The �rst or second derivative can be obtained by numerical di�erentiation with respect to
di�erent applied electric �elds [192]. Vrbik et al.[193] proposed an alternative method to
compute the estimate of the polarizability, as well as any �rst and higher derivatives of the
expectation value of an operator with respect to one or more physical parameters. Within
that approach, �nite di�erences of an unknown exact wave function are determined by
analytical averaged expressions involving only the total serial correlation of known quan-
tities, such as the local dipole moment. However, that approach will not be discussed in
this thesis.

In this work, the dipole polarizabilities were computationally estimated by performing a
quadratic or linear �tting of the total energies or dipole moment, respectively, for a set of
di�erent strengths of a uniform external electric �eld F , according to

E(Fa) = −αaa/2 · F 2
a + b · Fa + E0, (5.14)

where αaa, b, and E0 are the �tting parameters. Therefore, the quadratic function’s second
derivative at F = 0 corresponds to the dipole polarizability. Similarly, from the dipole

µ(Fa) = αaa · Fa + µ0, (5.15)

where αaa and µ0 are the �tting parameters, and the �rst derivative at F = 0 of the linear
function corresponds to the dipole polarizability.
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5.1.4 Annihilation rate

For a closed-shell electronic and positronic system, the dominant annihilation path is the
two-photon process. Thus, the rate at which an electron and a positron in a singlet state
come into direct contact is given by the two-photon annihilation rate [183]

Γ2 = πr2
0c 〈δep〉 , (5.16)

which is proportional to the electron-positron contact density, related to the probability of
�nding the electron and the positron at a certain point in space

〈δep〉 =

〈
Ψ (rp, re)

∣∣∣∣∣
Ne∑
i=1

Np∑
j=1

δ (ri − rj)

∣∣∣∣∣Ψ (rp, re)

〉
. (5.17)

here c is the speed of light in vacuum and r0 is the classical electron radius, which is con-
nected to the Bohr radius a0 by r0 = α2

fsca0, where αfsc is the �ne structure constant. In
VMC and DMC, it is extremely expensive to properly sample the coalescence integral be-
cause of the low number of con�gurations for which an electron and a positron are located
at the same point, or close to it. For that reason, it is preferred to use the simple extrapo-
lation technique proposed by Jiang et al. in Ref. [45], where the coalescence δ (ri − rj) is
replaced by

δa (xi − xj) =

{
3

4πa3
, for |xi − xj| 6 a

0, otherwise . (5.18)

Therefore, the quantity Γ2(a) should be computed and stored for a set of di�erent distance
values a by summing the contribution of each walkers with an electron-positron distance
lower than a. Afterward, the QMC averages of Γ2(a) are extrapolated to a = 0 by doing
a standard linear �t considering the standard error of the averages. However, it should be
noted that when a is small, the deviation of the counts becomes larger because the counts
are few.

5.1.5 Computational details

For systems with �xed nuclei, a single Slater determinant was employed for the electronic
wave functions, built with a linear combination of atomic-centered orbitals as a sum of con-
tracted GTOs. In particular, the H atoms basis is built with a 3s1p Gaussian primitives con-
tracted in the 1s1p orbitals, that is, (3s1p)/[1s1p]. The dynamical Jastrow factor uses a (3s2p)
uncontracted and not normalized GTOs centered on each atom to construct the atomic part,
while the positronic basis is built from a single set of (3s2p) uncontracted electron-positron
GTOs. In the present work, all the parameters are optimized simultaneously, including the
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contracted exponents and coe�cients, the molecular orbitals coe�cients, the cusps param-
eters, and the linear and orbital parameters of the dynamical Jastrow factor. Regarding the
DMC calculations, each optimized VMC wave functions were taken as the guiding function,
and the estimation of the DMC energy was performed with 6400 walkers divided into 4000
blocks, each 2000 steps long, for a time step of 0.001 hartree−1. For the systems without
�xed charged nuclei, namely Ps and Ps2, a ghost 1s orbital was added for the electronic
wave function. This ghost center with a �xed delocalized exponent allows constraining the
sampling over a center, stabilizing the optimization procedure.

5.2 Results and discussion

5.2.1 Dipole polarizabilities

Figure 5.1 plots the quadratic and linear �tting for Ps, Ps2, PsH, and (PsH)2 computed at
VMC and DMC levels. For the Ps atom, a great accuracy can be achieved for the energies
of the perturbed systems. Nevertheless, since in this approach the dipole polarizability is
computed as a second-order quantity, small �uctuations can greatly impact the accuracy
of the polarizabilities. This issue is due to the fact that the energy di�erences are smaller
or equal to the error bars for small electric �elds, whereas, for large electric �elds, the
optimization of the variational parameters becomes more unstable. On the other hand, for
the estimates obtained through the �rst derivative of the dipole moment, the �uctuations of
the dipole averages are larger than the �uctuations of the energies with the same sampling.
Therefore, in both approaches, the accuracy of polarizability estimates is greatly a�ected by
di�erent causes, explaining the high uncertainties for that property prediction, which can
be improved by increasing the sampling. The same behavior is observed for all the other
systems studied here.

Table 5.1 reports all the computed quantities for dipole polarizabilities, expectation values
of interparticle distances, and twp-photon annihilation rates (ns−1) for the unperturbed (
no external �eld) Ps, Ps2, PsH and (PsH)2 systems computed at VMC and DMC levels. Ex-
cept for (PsH)2, in all cases, the computed polarizability is slightly smaller at VMC than
at DMC despite the error bars, which might indicate that, within the �xed-node approxi-
mation and imaginary time discretization, the correct description of the wave function is
more polarizable than the trial wave function. Within the error bars, the Ps polarizability
agrees with the analytical value for VMC and DMC levels. The Ps2 polarizability is also in
good agreement with the reported value, which was obtained using a �eld-free estimator
from Path-Integral Monte Carlo (PIMC) method [63]. Unfortunately, the error bars are too
large to discern if the polarizability is larger or smaller than the sum of the polarizability
of two non-interacting Ps atoms. Nevertheless, it is interesting the small variation in the
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Figure 5.1: Total energies (�rst column) and dipole moment (second column) as a function
of the strength of an external electric �eld for a: Ps, b: Ps2, c: PsH and d: (PsH)2 (parallel
component) computed at VMC (orange) and DMC (purple) levels. Solid lines indicate the
quadratic or linear �t.
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Table 5.1: Dipole polarizabilities (a.u.), expectation values of Interparticle distances (bohr),
and two-photon annihilation rates (ns−1) for Ps, Ps2, PsH and (PsH)2 systems computed at
VMC and DMC levels. Reference values for Ps2 and PsH were taken from the ECG values
of Ref. [171], and the DMC energy of (PsH)2 was taken from Ref. [153].

Property Ps Ps2 PsH (PsH)2
EVMC -0.249999970(10) -0.5148778(44) -0.7885914(31) -1.5818902(94)
EDMC -0.249999920(10) -0.5160019(90) -0.789204(20) -1.588591(68)
Eref -0.25 -0.516004 -0.7891967100(42) -1.58880(10)
αVMC [E] 35.850(60) 71.39(72) 39.54(68) 137.15(30)
αVMC [µ] 36.39(15) 73.47(41) 41.52(13) 128.05(40)
αDMC [E] 36.430(80) 73.08(43) 42.75(27) 133.1(28)
αDMC [µ] 36.77(11) 73.78(35) 42.38(26) 132.62(59)
αref 36.0 71.70(20) 42.28360(50) -
〈ree〉VMC - 5.92592(81) 3.51261(30) 5.53093(20)
〈ree〉DMC - 5.9928(40) 3.5490(23) 5.5490(17)
〈ree〉ref - 6.03321 3.574788 -
〈rpp〉VMC - 5.92626(84) - 6.94941(44)
〈rpp〉DMC - 5.9929(40) - 6.9756(39)
〈rpp〉ref - 6.03321 - -
〈rep〉VMC 3.00080(18) 4.43607(44) 3.45129(22) 5.11751(21)
〈rep〉DMC 3.00228(95) 4.4683(20) 3.4674(25) 5.1266(17)
〈rep〉ref 3.0 4.487155 3.480273 -
Γ2,VMC 2.013(15) 4.587(63) 2.399(10) 4.507(13)
Γ2,DMC 2.0092(20) 4.5221(19) 2.4675(35) 4.746(14)
Γ2,ref 2.0 4.465106 2.471406 -

polarizability of the interacting dimer, despite the relatively large binding of 0.4 eV and the
signi�cant change in the average electron-positron distance (from 3.0 to 4.48 bohr), sug-
gesting that their electric response is very similar to the one in Ps, probably compensated
by the balance between the attraction and repulsion forces in Ps2. For PsH, the estimated
value of the polarizability is close to the highly accurate value of Yan et al. obtained with
Hylleraas functions [60], corroborating all previous calculations, in contrast to the �rst re-
ported value of 123 a.u. [58]. For the recently observed PsH dimer, there is no reported
polarizability. According to the present results, the polarizability (in its parallel compo-
nent) is considerably larger than the sum of two non-interacting PsH ( 84.6 = 2 × 42.3 a.u.
), indicating that there is a signi�cant redistribution of the wave function in the bound state,
similar to what is observed for covalently bonded diatomic systems at equilibrium distance
[194, 195, 196]. Figure 5.2 elaborates on the latter idea by plotting the parallel, α‖ and per-
pendicular α⊥ polarizabilities of PsH dimer as a function of the internuclear distance. The
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α‖ displays a non-trivial behavior; at short distances, the high polarizability is attributed
to the dissociated state of Ps2 and H2 [153], then rapidly decreases until increasing to a
maximum near the equilibrium distance, followed by a slow second decrease converging to
the polarizability of two non-interacting PsH. The α⊥ exhibits similar behavior to the α‖,
but the magnitude of the changes is signi�cantly smaller and close to the estimated error
bars. Therefore, it is almost constant compared to the sum of two PsH.

Figure 5.2 also shows the results of Li2 for comparison purposes due to the previous similar-
ities observed between positron-bond systems and alkali metals [71, 72, 123]. Even though
the form of the curves is similar to that of the PsH dimer, there are signi�cant di�erences.
Firstly, the absolute and relative changes of the polarizabilities are larger compared to the
two non-interacting Li atoms. Secondly, the maximum polarizability is attained at much
larger distances. Lastly, at their respective equilibrium distances, the dipole polarizability
for Li dimer is smaller than two Li atoms, while in PsH dimer it is larger than the one of the
sum of two PsH. Therefore, considering the above, the response properties of (PsH)2 and
Li2 are signi�cantly di�erent.

In order to have a better understanding of the polarizabilities of the PsH dimer as a function
of the internuclear distance, Figure 5.3 shows the positronic density di�erences between an
unperturbed system and the perturbed system with an electric �eld of 0.007 (a.u.), computed
at DMC level. First of all, in Figure 5.3a, it can be seen how the electric �eld produces an ac-
cumulation of the positronic density towards the same dimensional axis of the applied �eld,
and the consequent reduction of the positronic density in the opposite side, with a nodal
surface at the nuclei position, thus forming a dipole. Next, Figure 5.3b shows the density
change induced by an electric �eld perpendicular to the nuclear axis in PsH dimer, display-
ing an equivalent density redistribution as the one observed for PsH, but for two adjacent
PsH. On the other hand, Figures 5.3c and 5.3d display the e�ect of an electric �eld parallel to
the nuclear axis in the positronic density of PsH dimer. At the equilibrium distance, Figure
5.3c, the electric �eld induces an accumulation of positronic density over one side of one
nucleus facing away from the other nucleus, while the opposite e�ect is produced at the
other hydrogen atom. Overall, this e�ect forms a dipole between the two hydrogen nuclei,
thus depending on the internuclear distance. Although, at longer distances like 9.0 a.u.,
the electric �eld forms two collinear dipoles, one at each hydrogen nuclei, as seen in Fig-
ure 5.3d, explaining the dissociation limit of the polarizability as the sum of polarizabilities
of two non-interacting fragments. An analogous behavior is observed for Li2 (see Figure
C1 in appendix ) with remarkable di�erences close to the nuclei surroundings due to the
repulsion with the core electrons [71, 123].

Since the dipole moment in Eq. 5.6 is a one-particle operator, it can be decomposed into
electronic

µ̂e
−

= −
Ne−∑
i

ri, (5.19)
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Figure 5.2: Dipole polarizability parallel (α‖) and perpendicular component (α⊥) as a func-
tion of the internuclear distance for a: (PsH)2 at DMC level, and b: for Li2 at CCSD(T)/aug-
cc-pVQZ level. Vertical dotted lines indicate the equilibrium distance.

and positronic parts

µ̂e
+

=
Ne+∑
i

ri. (5.20)

For neutral-charged or homonuclear diatomic systems like PsH and (PsH)2, the net contri-
bution from the �xed point charges is zero. Thus, the above separation allows to express
the dipole probability as the �rst derivative of the electronic and positronic contribution to
the dipole moment

αaa =

(
∂µ(Fa)

∂Fa

)
Fa=0

=

(
∂µe

−
(Fa)

∂Fa

)
Fa=0

+

(
∂µe

+
(Fa)

∂Fa

)
Fa=0

= αe
−
aa + αe

+

aa . (5.21)

Figure 5.4 displays such decomposition of the dipole moment for PsH and (PsH)2 at DMC
level as a function of the strength of the external electric �eld, with their corresponding
calculated dipole polarizabilities obtained from a linear �tting regression. From such de-
composition, it is evident that for PsH and (PsH)2, the largest contribution to the dipole
polarizability comes from the positronic wave function, while the electronic part is almost
zero. These results suggest that from the point of view of their response properties, the
system can be interpreted as a positronic cloud surrounding an H anion, fully screening its
electronic response, since on the contrary, an isolated H anion exhibits a large polarizability
of 203 a.u. [59] explained by the loosely bound electrons that can be more easily distorted.

This e�ect is similar to the case of regular atoms, where the main contribution to the polar-
izability comes from the electronic valence orbital, while the core orbitals are barely a�ected
by an external electric �eld [197]. This observation contradicts the arguments of Yan [60],
who proposed that a simple estimate of the polarizabilities of PsH (42.3 a.u.) as a weakly
bound state between Ps and H atoms ( 40.5 = 36 + 4.5 a.u.), but con�rms previous studies
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Figure 5.3: 2D cuts of the positronic density di�erence between unperturbed system and
the perturbed system with an electric �eld of 0.007 (a.u.). All densities were obtained as
histograms of the number of particles inside voxels (width=0.08 bohr) disposed along an
internuclear axis. Panel a: PsH, Panel b: (PsH)2 at RH-H = 6.0 a.u. perturbed with a �eld
perpendicular to the internuclear axis. Panel c and d, are for (PsH)2 at RH-H = 6.0 a.u. and
RH-H = 9.0 a.u. respectively, both perturbed by an electric �eld parallel to the internuclear
axis. Black circles are used to represent the hydrogen nuclei positions.

based on the wave functions distributions, which concludes that the structure of PsH as an
H anion slightly perturbed by a positron [96]. In the PsH dimer, a similar e�ect is observed.
The main contribution to the polarizability also comes from the positronic dipole �uctua-
tions. However, in this system, the electronic contribution is higher than the one observed
in PsH by a factor of ten. This larger contribution can be explained by the electronic and
positronic density analysis [153], which indicates that even if the positronic density distri-
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Figure 5.4: Decomposition of the dipole moment (purple) into electronic (red) and
positronic (blue) displacement from the nuclei as a function of the strength of an exter-
nal electric �eld for a: PsH and b: (PsH)2 (parallel component) at DMC level.

bution is mainly localized in the internuclear regions, it is still capable to partially screen
the hydrogen anions.

5.2.2 Interparticle expectation distances and annihilation rates

Table 5.1 also reports all expectation values of the distances and annihilation rates at zero
electric �eld. For all the systems and distances, there is excellent agreement at VMC and
DMC with respect to accurate reference values corroborating the good description of the
wave function in addition to their total variational energies. Nevertheless, their response
to the external electric �eld exhibits small �uctuations compared to the larger changes ob-
served in the dipole moment, as seen for example in PsH dimer in Figure 5.5. In the case
of the distances between same type of fermions (electron-electron and positron-positron),
there is no clear trend. However, this situation is expected since an external electric �eld
will tend to move together all particles with the same electric charge. On the contrary,
for oppositely charged pairs, the electric �eld will force the oppositely charged particles to
displace in opposite directions, producing the observed subtle increment of the electron-
positron distances as a function of the strength of the �eld. Consequently, the decrease
in annihilation rates is also attributed to the increase of the average electron-positron dis-
tances, which lowers their contact probability density ( see Eq. 5.16). Nevertheless, the
variations of those averages are too small compared to their estimated errors. Thus, it is
not possible to draw conclusions with this methodology for those properties, and further
analysis is required.

Among the possible causes, it could be attributed to an ine�cient sampling of the fermionic
distances averages, a serial correlation problem in the walkers moves, or constraints of the
two body-cusps conditions.
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Figure 5.5: Expectation values of a: electron-electron distance, b: positron-positron, c:
electron-positron, and d: two-photon annihilation rates, as functions of the strength of an
external electric �eld for (PsH)2 in the parallel component at DMC level.

5.3 Summary

This chapter has presented the computation and analysis of the response properties of
positronic systems, focusing in particular on the dipole polarizability, and the e�ect of the
external electric �eld on the expectation values of the interparticle distances, and on the
two-photon annihilation rates. A comparison with previously reported values reveals that
at the QMC level, the fermionic wave function and Jastrow factors presented in Chapter 3
and 4 can provide comparable results to highly accurate and precise all particle explicitly
correlated wave functions. Speci�cally, for the case of dipole polarizabilities, a good agree-
ment with the reference values was obtained, either through the �nite numerical evalua-
tion of the second derivative of the energy or from the �rst derivative of the dipole moment
under the e�ect of �nite external electric �elds. In particular, for PsH, the current method-
ology provides a dipole polarizability value of 42 a.u, corroborating all the estimations that
followed the �rst result of 123 a.u. reported by Le Sech [58]. The polarizability of Ps2 is
again found to be close to twice the polarizability of Ps, suggesting that in an electric �eld,
Ps2 behaves like two non-interacting Ps. On the contrary, for the PsH dimer, its parallel
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component of the polarizability is vastly greater than that of two PsH systems due to the
formation of a bound state with a di�erent positronic probability distribution. Thus, it is
revealed by the present work a non-trivial and non-linear scale of the polarizability with
respect to the number of particles and internuclear separation.

This chapter also analyzed the decomposition of the dipole polarizability in terms of inde-
pendent electronic and positronic dipole �uctuations. For PsH and (PsH)2, the main contri-
butions come from the positronic component, which can screen the electronic response to
the external potential. Therefore, from the point of view of the electric response properties,
PsH and its dimer can be understood as one or two positrons surrounding one or two hy-
drogen anions, respectively. The expectation values of the distances and annihilation rates
at zero electric �elds are also in excellent agreement at VMC and DMC with respect to the
reference values present in the literature. However, with the current QMC methodology,
the variation of those averages is too small to provide conclusive trends, at least for the
weak electric �elds employed here.
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Chapter 6

Three-center Two-positron Bond

Parts of this chapter have been published in this or similar form in:

J. Charry, F. Moncada, M. Barborini, L. Pedraza-González, M. T. do N. Varella, A. Tkatchenko,
A. Reyes. “The three-center two-positron bond" Chem. Sci. 13, 13795, 2022.

and have been produced in collaboration with the above authors. Based on the CRediT
standardised author contribution description, the author contribution corresponds to: Con-
ceptualization, Formal Analysis, Investigation, Methodology, Resources, Software, Visual-
ization, Writing - original draft, Writing - review & editing. The full description of each
author’s contribution can be found in the published paper.

In the �eld of positronic chemistry, most of the research focuses on the study of the positron
interactions with a previously stable atom or molecule [29, 39]. Recently, the existence of
a di�erent kind of positronic molecules was theoretically predicted by Charry et al. [71]
based on computational quantum chemical simulations at Full Con�guration Interaction
(FCI) level. The authors found that two otherwise repelling hydride anions can be bound by
a positron, and the analysis of the positronic orbital suggested the formation of a positronic
bond. Subsequent computational studies pointed out that similar bonds should also exist
in positronic dihalides [123].

The positronic dihydride system, denoted as e+[H2 –
2 ], has attracted considerable atten-

tion. Goli and Shahbazian [122] addressed the nature of the interaction employing Multi-
Component Quantum Theory of Atoms in Molecules (MC-QTAIM). The authors concluded
that the accumulation of positron density between the two nuclei would underlie the bond-
ing process, acting as “a positronic glue” that converts the repulsive H2 –

2 system into a sta-
ble one, and no electronic covalent bond is conceivable in between. The energy stability
of positron-bonded dihydrides was further con�rmed by QMC calculations performed by
Ito et al. [124], Bressanini [73] and Charry et al. [72]. Bressanini also concluded that the

95



96 CHAPTER 6. THREE-CENTER TWO-POSITRON BOND

bonding is not limited to one positron and in later works [153] he showed that two singlet-
coupled positrons can form a bond between two hydride anions, thus giving rise to the
2e+[H2 –

2 ] molecule, or simply (PsH)2. The equilibrium internuclear distance was reduced
from 6.4 bohr to 6.0 bohr as the number of positrons was increased from 1 to 2. Unexpect-
edly, the bond length shortening was accompanied by a reduction in the Bond Energy (BE),
from 23.5 mEh to 10.4 mEh.

These fascinating theoretical results raise questions on how complex positron-bonded com-
pounds can become, or on how far the analogy between electronic and positronic bonds can
be stretched. Bressanini has conjectured that a system analogous to H+

3 with three protons,
six electrons, and two positrons, could be stable [74, 153]. In this direction, the present study
further explores positronic bonding mechanisms beyond the previously studied two-center
to three-center systems. More speci�cally, to study the stabilisation of three repelling hy-
dride anions by the addition of two positrons. Based on the QMC simulations performed
in this chapter, it is conjectured the existence of an energetically stable system denoted as
2e+[H3 –

3 ]. Such hypothetical Three-center Two-positron (3c2p) bond is further compared
against the analogous Three-center Two-electron (3c2e) bond, which is a well-established
bonding mechanism found in purely electronic molecules [198, 199, 200, 201].

The H+
3 molecule is probably the best known example of 3c2e bonds [201], in view of its

astrochemical relevance [202, 203, 204]. While the trihydrogen cation could be rated the
closest analogue of 2e+[H3 –

3 ] at �rst glance, previous studies have consistently shown that
the properties of electronic and positronic bonds are closest when the systems have iso-
electronic ion cores [71, 123]. Therefore, this chapter also considers Li +

3 as an alternative
purely electronic analogue of the di-positronic tri-hydride compound for comparison of the
bonding properties.

This chapter is organised as follows: In Section 6.1 the methods and numerical procedures
are described. Next, the properties of the di-positronic system and the purely electronic
analogues are presented and discussed in Section 6.2. Finally, the concluding remarks and
perspectives for future work are outlined in Section 6.3.

6.1 Methods

This study considers electrons and positrons as quantum particles and atomic nuclei as
point charges within the Born-Oppenheimer approximation described by the Hamiltonian
in Eq. 2.2. Exploratory studies of the PES of the 2e+[H3 –

3 ] system were performed at the
MP2 level of theory. The MP2 expressions for systems composed of electrons and positrons
can be found in Eq. 2.18 and more detailed described in Refs. 76, 127. The MP2 equilibrium
energies and geometries were further re�ned with the VMC and DMC methods as described
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in Sections 2.3 and 3.1.

6.1.1 Quantum Monte Carlo wave function

As previously discussed, QMC methods are stochastic techniques employed to integrate
the TISE for a given trial wave function, the most common of which are VMC and DMC
[85, 100, 106].

The energy functional is evaluated over a trial wave function which is written as the product
of a fermionic part, such as a Slater determinant, and a bosonic component, the Jastrow
factor, used to describe explicit correlation between particles. The trial wave function used
in this study of electron-positron systems is written as the product

Ψ = det [Se↑] det [Se↓] det [Sp↑] det [Sp↓] eJ (r̄e,rp;R̄), (6.1)

where Se↑ and Se↓ are the electronic Slater matrices associated to the two spin populations,
Sp↑ and Sp↓ are the corresponding matrices for the positrons, and eJ is the Jastrow factor.
Several QMC studies have employed similar trial wave functions [72, 118, 119, 124, 166, 205]
based on products of determinants constructed via atomic basis sets. This particular Jastrow
factor was introduced in Ref. 72 and Chapter 2 of this thesis. Here it is now generalized for
two-positron systems in the present work. The Jastrow factor is built as the sum

J (r̄e, r̄p; R̄) = J en
c (r̄e, R̄) + J pn

c (r̄p, R̄) + J ee
c (r̄e)+

+ J pp
c (r̄p) + J ep

c (r̄e, r̄p) + J3/4(r̄e, r̄p; R̄), (6.2)

of �ve functions describing respectively the electron-nucleus (J en
c (r̄e, R̄)), positron-nucleus

(J pn
c (r̄p, R̄)), electron-electron (J ee

c (r̄e)), positron-positron (J pp
c (r̄p)) and electron-positron

(J ep
c (r̄e, r̄p)) cusps, and a term that describes the dynamical correlation between the fermionic

particles in the �eld of the nuclei (J3/4(r̄e, rp; R̄)), which is an extension of the one de�ned
in Ref. 120. The functions used to describe the cusp conditions are of two types. For particle
pairs with the same charge the slowly decaying functions [206] are employed together with
a linear combination of Gaussian Type Function (GTF)s,

J ee
c (r̄e) =

Ne∑
i>j=1

(
− Γ

βee0 (1 + βee0 |rei − rej |)
+

G∑
g=1

βeeg e
−ζeeg |rei−rej |2

)
, (6.3)

J pp
c (r̄p) =

Np∑
i>j=1

(
− Γ

βpp0 (1 + βpp0 |rpi − rpj |)
G∑
g=1

βppg e
−ζppg |rpi−r

p
j |2
)
, (6.4)

J pn
c (r̄p, R̄) =

Np∑
i=1

Nn∑
I=1

(
− ZI

βpI0 (1 + βpI0 |rpi −RI |)
+

G∑
g=1

βpIg e
−ζpIg |rpi−RI |2

)
, (6.5)
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while for particles with opposite charges, the faster decaying cusp functions [207] were
used along with the linear combination of GTFs,

J en
c (r̄e, R̄) =

Ne∑
i=1

Nn∑
I=1

(
ZI
βeI0

e−β
eI
0 |rei−RI | +

G∑
g=1

βeIg e
−ζeIg |rei−RI |2

)
, (6.6)

J ep
c (r̄e, r̄p) =

Np∑
j=1

Ne∑
i=1

(
Γ

βep0

e−β
ep
0 |rei−r

p
j | +

G∑
g=1

βepg e
−ζepg |rei−r

p
j |2
)
. (6.7)

Here β and ζ are sets of variational parameters, ZI are the nuclear charges, and Γ is a
constant that is equal to 1/2 and 1/4 respectively for distinguishable and indistinguishable
particles to correctly describe the cusp conditions. In this investigation, the number of GTFs
used in the cusps expansions is G = 5. To reduce the variance in the wave function, the
variational parameters for distinguishable or indistinguishable electronic and positronic
pairs are optimized separately, also reducing the eventual spin contamination.[133]

Finally, the dynamical Jastrow factor [72, 120] is written as a linear combination of products
of non-normalized atomic orbitals χq, which corresponds to the atomic dynamical Jastrow
de�ned in Eq. 3.19 of Chapter 3

J3/4(r̄e, r̄p; R̄) =
Ne∑

j>i=1

Q∑
q,p=1

γqpχq(rei )χp(r
e
j)+

+

Np∑
j>i=1

Q∑
q,p=1

µqpχq(rpi )χp(r
p
j) +

Ne∑
i=1

Np∑
j=1

Q∑
q,p=1

νqpχq(rei )χp(r
p
j), (6.8)

where Q is the total length of the basis set, while γqp, µqp and νqp are coupling parameters
that are fully optimized. To further avoid the spin contamination introduced by the Jastrow
factor, the γqp and µqp parameters, which respectively describe correlation between electron
pairs and positron pairs, are symmetric (γqp = γpq and µqp = µpq). In this investigation,
(3s2p1d) uncontracted GTFs were employed as the χq orbitals.

All the parameters of the wave functions are optimized with the Stochastic recon�guration
method [189, 190], as described in Section 2.3, using the Correlated Sampling technique
[208] to stabilize the convergence if necessary. To better describe the dynamical corre-
lation between the particles, the DMC [100] method was employed with the Fixed-Node
approximation [108] from the optimized VMC trial wave function.

6.1.2 Computational details

MP2 calculations for the positronic systems were carried out with the LOWDIN software
[116] using the standard aug-cc-pVTZ basis set [170] for electrons with an uncontracted set
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of (6s4p3d2f) GTFs, denoted as PSX-TZ, for positrons [123]. VMC and DMC calculations
were performed with the QMeCha [72, 115] QMC package, published privately on GitHub,
see Section 2.4. The electronic and positronic Slater determinants for the QMC calculations
of H systems were constructed from (7s3p2d) primitive GTFs contracted to [4s3p2d], with
the initial values of the exponents and contraction coe�cients taken from the aug-cc-pVTZ
basis set [170, 209, 210, 211]. In the VMC calculations, orbital coe�cients, basis set con-
traction coe�cients, and GTF exponents were variationally optimized with the Stochastic
Recon�guration Optimization method [120], amounting to 1152 non-zero parameters for
2e+[H3−

3 ] in the singlet state, and 837 for 2e+[H3−
3 ] in the triplet state. The VMC optimized

wave functions were taken as guiding functions in the �xed-node DMC calculations [108]
performed with 6000 walkers divided into 5000 blocks, each 100 steps long, for a total of
3×109 sampled con�gurations. Calculations were repeated with a time step of 0.005 a.u. to
verify the accuracy of the DMC results. Statistical agreement was observed between the re-
sults computed with two time steps. The DMC density plots were obtained by counting the
number of particles of each weighted con�guration in a three-dimensional grid. The �nal
bonding properties such as energy minimum, equilibrium distances, and forces constants,
were estimated by �tting the VMC and DMC energy values to a 4th-degree polynomial
with respect to one of the internuclear distances.

6.2 Results and discussion

6.2.1 Energy stability analysis

To study the 2e+[H3 –
3 ] system, it was assumed the electrons to be in a closed shell singlet

state, while for the positrons both the singlet and triplet states were investigated. An initial
exploratory study of the PES is performed at the MP2 level of theory according to the
coordinates R1 = R2 = R and θ described in Figure 6.1a, to preserve the symmetry of
the charge distribution. The two-dimensional potential energy surfaces obtained for both
the singlet and triplet positronic states in that system of coordinates (constrained to C2v

symmetry) are shown in Figure 6.2, together with the contours paths for con�gurations
with R3 constant value that are represented as dashed lines. The singlet state displays a
single energy minimum with D3h symmetry (see Figure 6.1b), corresponding to a triangular
con�guration with θ = 60o and R ≈ 6 bohr. In contrast, the triplet state has a minimum
at a linear conformation with D∞h symmetry (see Figure 6.1d) and R ≈ 6 bohr. Further
analysis of the PESs in Figure 6.2 reveals that both the singlet and triplet states display two
regions with low energies (blue color). The �rst region follows a dissociation path along
the R coordinate in the C2v con�guration, with the R3 coordinate constrained to 6 bohr.
The second region corresponds to the transition between the D3h and D∞h con�gurations
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Figure 6.1: Panel a shows the coordinates for the molecules with three atomic centers.
The other panels illustrate relevant particular cases: b equilateral triangle (D3h symmetry),
c isosceles triangle (C2v symmetry), and d collinear geometry (D∞h symmetry).

along the angle coordinate, for constant R. For comparison purposes, the 2D PES of Li+3
was also computed at MP2 level for both singlet and triplet electronic states, as shown in
Figure 6.2. Qualitatively, it can be appreciated that at MP2 level, the PES of 2e+[H3 –

3 ] system
reassembles the same shape and features of the one obtained for Li+3 , further comparisons
between both systems will be analyzed later in this chapter.

The optimal MP2 geometries were further re�ned with the VMC and DMC methods for
both the singlet and triplet states. The minima were located for geometries constrained to
D3h and D∞h symmetries. The results shown in Table 6.1 corroborate the singlet D3h state
as the most stable one. Therefore, from now the discussion will focus on the lowest-energy
2e+[H3 –

3 ] singlet state.

Table 6.1: Equilibrium energies and distances computed with the VMC and DMC methods
for the singlet and triplet states of the 2e+[H3−

3 ] system. The symmetry of the potential
energy minima is also indicated.

Positronic
State Symmetry Method Energy

[Eh]
Req

[bohr]

Singlet D3h
VMC −2.1489(1) 6.15(1)
DMC −2.1652(2) 6.11(1)

Triplet D∞h
VMC −2.1266(1) 6.77(2)
DMC −2.1401(4) 6.62(1)

Once the minimum was found, the thermodynamic stability of 2e+[H3 –
3 ] is explored with
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Figure 6.2: Potential energy surfaces for the singlet (a) and triplet (b) positronic states
of the 2e+[H3−

3 ] system, and for the singlet (c) and triplet (d) electronic states of the Li+3
system. The energies were computed at the MP2 level using the aug-cc-pVTZ/PSX-TZ com-
bination of electronic and positronic basis sets centered at the hydrogen nuclei. The dashed
lines correspond to constant R3 paths obtained for C2v conformations.

respect to the lowest dissociation channels given below,

2 e+[H3−
3 ] −→


a) 2 e+[H2−

2 ] + H− ∆Ea = 48.6(2)mEh

b) e+[H2−
2 ] + PsH ∆Eb = 35.5(2)mEh

c) H2 + PsH + Ps− ∆Ec = −60.5(2)mEh

d) H−3 + Ps2 ∆Ed = −54.4(2)mEh.

(6.9)
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An expanded list of predicted dissociation channels into chemical meaningful species is
given in the Tables D4 and D5 of the appendix. The dissociation energies of channels 6.9a-
6.9d were calculated employing the DMC results of Table 6.1 and the energy data reported
in Table D3. The negative ∆E of channels 6.9c and 6.9d reveal that 2e+[H3 –

3 ] is thermo-
dynamically unstable with respect to these dissociation products. It is therefore clear that
the lowest energy arrangement of a set of three protons, six electrons, and two positrons
consists of a sum of dissociated species rather than the bonded D3h structure. Here it must
be added that the �xed-node errors of the DMC calculations are negligible in the compu-
tation of the binding energies, because the nodal surfaces of the purely electronic systems
and of the electron-positron ones are described at the same level of theory, leading to a
cancellation of errors when computing the energy di�erences. Moreover, the wave func-
tion optimization of the full set of variational parameters in the presence of the correlating
Jastrow factor tends to reduce the �xed-node error also in the total energies.

A similar situation was found for positron bonded dihydrides. Previous studies pointed
out that I) e+[H2 –

2 ] [72, 73, 124], II) 2e+[H2 –
2 ] [153], and III) 3e+[H2 –

2 ][74] are thermody-
namically unstable with respect to dissociation into I’) H2 + Ps– , II’) H2 + Ps2, and III’)
H2 + Ps2 + e+, respectively. The local range of stability for the systems I, II, and III was
explored by comparing the Potential Energy Curve (PEC) for the (I, I’), (II, II’), and (III,III’)
pairs. The PEC pairs were found to intersect at internuclear distances considerably shorter
than the equilibrium distances of the corresponding positron bonded dihydrides. Those
studies further con�rmed the kinetic (or local) energy stability of the dihydrides I-III, since
their energy barriers, calculated at the crossing points of the potential curves, were found
to be su�ciently high to support a few vibrational states.

Along similar lines, the local stability of 2e+[H3 –
3 ] was further explored around the D3h

minimum. For this purpose, it was necessary to compute at VMC and DMC levels all the
dissociated species in the four lowest-energy vertical detachment channels given by

2e+[H3−
3 ] −→


a) 2 e+[H2−

3 ] + e− ∆Ea = 72.8(2)mEh

b) e+[H2−
3 ] + Ps ∆Eb = 68.1(2)mEh

c) e+[H−3 ] + Ps− ∆Ec = 116.8(2)mEh

d) H−3 + Ps2 ∆Ed = 107.4(2)mEh.

(6.10)

Here, positive ∆E values con�rm the stability of 2e+[H3 –
3 ] against vertical detachments.

Figure 6.3 presents PECs along the R coordinate constraining the system to preserve the
D3h symmetry, and along the θ coordinate imposing C2v symmetry with R = 6.1 bohr.
Panel 6.3a reveals that the energy of 2e+[H3 –

3 ] along the R coordinate is always lower than
those computed for the 6.10a-6.10d channels, and no curve crossings were found. In con-
trast, panel 6.3b reveals that the PEC of 2e+[H3 –

3 ] intersects the 6.10c potential around 20o

and R3 = 2.1 bohr. The stabilization of the 6.10c channel as the R3 distance decreases is
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consistent with the formation of a H2 molecule (R = 1.40 bohr) in the adiabatic channel
6.9c. Although the 6.9c channel energy lies below the 2e+[H3 –

3 ] energy, the intersections
are separated from the D3h minimum by a rather high (≈ 20 mEh) and broad (θ ≈ 30o)
energy barrier across the 2e+[H3 –

3 ] potential. The PECs in Figures 6.3a and 6.3b therefore
corroborate the local (kinetic) energy stability of the 2e+[H3 –

3 ] species.
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Figure 6.3: Potential energy curves for the 2e+[H3 –
3 ] system and the vertical detachment

channels 6.10a-6.10d. The energies were computed with the DMC method as functions of
the R coordinate in the D3h symmetry (a), and of the ϑ coordinate in the C2v symmetry
(b) �xing R=6.1 bohr. The lowest variation energies for Ps– and Ps2 were employed from
references [171, 212], and the exact value for Ps is -0.25 Eh.

6.2.2 Comparison with analogous purely electronic systems

As in previous studies of positron bonded dihydrides[71] and dihalides[123], it is relevant
to compare the properties of the 2e+[H3 –

3 ] system with a fully electronic counterpart of two
3c2e bonded systems, i.e., H+

3 and Li+
3 . Speci�cally, by comparing the equilibrium distances

and the force constants for the symmetric stretching (ν1) and bending (ν2) vibrational modes
of the D3h ground states, calculated with the DMC method, and shown in Table 6.2. These
results indicate that the equilibrium distance of the positronic molecule (R = 6.11 bohr) is
much closer to that of Li+

3 (R = 5.64 bohr) that H+
3 (R = 1.63 bohr). This observation is

consistent with previous studies, which pointed out that purely electronic molecules with
isoelectronic cores are the closest analogues to positron bonded systems. Although, larger
discrepancies are found for the vibrational frequencies of 2e+[H3 –

3 ] and Li+
3 (roughly a factor
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of 2), they are still much closer if compared to the frequencies of H+
3 , having di�erent orders

of magnitude.

Table 6.2: Total energies (in Eh), equilibrium distance (in bohr) and force constants (in
a.u.) for the symmetric stretching ν1 mode and bending ν2 mode of triatomic systems in
D3h symmetry calculated at DMC level.

System E R kν1 kν2

H+
3 −1.346(4) 1.63(3) 0.57(5) 0.16(2)

Li+
3 −22.3419(1) 5.645(7) 0.0254(3) 0.0110(4)

2e+[H3 –
3 ] −2.1652(2) 6.11(1) 0.0114(4) 0.0047(7)

The longer equilibrium distances and lower vibrational frequencies also indicate a weaker
3c2p bond compared to the 3c2e analogs. In addition, it is possible to contrast the energy
stability of 2e+[H3 –

3 ] with equivalent dissociation species of the purely electronic Li+3 , and
H+

3 , in essence, by considering the dissociation channels of Li+
3 , and H+

3 into the following
chemically meaningful products

H+
3 −→

{
a) H2 + H+ Ediss = 171(4) mEh

b) H+
2 + H Ediss = 243(4) mEh

(6.11)

Li+3 −→
{
a) Li2 + Li+ Ediss = 66.8(1) mEh

b) Li+2 + Li Ediss = 58.3(1) mEh

(6.12)

2e+[H3−
3 ] −→

{
a) 2 e+[H2−

2 ] + [H−] Ediss = 48.6(2) mEh

b) e+[H2−
2 ] + e+[H−] Ediss = 35.5(2) mEh

(6.13)

The energies of channels 6.11 and 6.12 were calculated employing the DMC energy data
reported in Table D3. It can be observed that the lowest energy dissociation channel for
H+

3 (Ediss = 171.84mEh) involves the formation of a neutral molecule and a proton. Con-
trastingly, for Li+

3 (Ediss = 58.27mEh) and 2e+[H3 –
3 ] (Ediss = 35.54mEh), it involves the

formation of a neutral atom, and an ionic single particle bonded molecule. It is worth notic-
ing that Ediss of Li+

3 and 2e+[H3 –
3 ] are of the same order and di�er considerably from that

of H+
3 for all dissociation channels considered here.

6.2.3 Densities

To gain further insight into the 3c2p bond formation, the positron (ρe+) and electron (ρe−)
densities of 2e+[H3 –

3 ] were computed. One-dimensional (1D) cuts of the electron densities
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obtained for the unbound [H3 –
3 ] trianion and the bound 2e+[H3 –

3 ] compound are shown in
Figure 6.4. The densities are remarkably similar, thus pointing out that the binding mech-
anism in 2e+[H3 –

3 ] is not electronic, as previously observed for positronic bonds [71, 122].
In contrast, the positron density prominently accumulates between the H nuclei, balancing
the otherwise repulsive interaction between the anions and producing a slight increase of
the electronic density in that region.

Figure 6.4: 1D cuts of the electronic density of [H3−
3 ] (black line), as well as the electronic

(blue) and positronic (red) densities of 2e+[H3−
3 ]. The inset panel displays the electronic

density di�erence, ∆ρe− , between 2e+[H3−
3 ] and [H3−

3 ] (violet). The density of the unstable
[H3−

3 ] system was constructed as the sum of the densities of three H− anions at the equi-
librium positions of 2e+[H3−

3 ]. The densities were obtained as histograms of the number of
particles inside voxels (width=0.08 bohr) disposed along an internuclear axis.

A comparison between the two-particle bonding densities in three-center systems is carried
out in Figure 6.5. In H+

3 the bonding density presented in panel a) is the total electron
density, ρe− . ρe− in H+

3 has maxima on top of the nuclei and accumulates around the centroid
of the system, where ρe− has a local minimum. For Li+

3 the bonding density, ∆ρe− , displayed
in panel b), was obtained as the ρe− di�erence between the [Li+3] and [Li3+

3 ] systems, both
calculated at the same geometry. ∆ρe− in Li+

3 also displays maxima around the nuclei and
accumulates around the centroid, but in this case, it has a local maximum at that point. The
symmetric accumulation of electronic density in the centroid of the system is a signature
of 3c2e bonding. In turn, in 2e+[H3 –

3 ] the bonding density is the total positron density,
ρe+ portrayed in panel c). ρe+ in 2e+[H3 –

3 ] is depleted around the nuclei, as expected from
the Coulomb interaction, gradually accumulates at the internuclear region and peaks at
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the centroid, clearly resembling ∆ρe− of Li+
3 in that region. Therefore, this accumulation

around the centroid of 2e+[H3 –
3 ] can be viewed as the formation of a 3c2p bond.

The densities (Figure 6.5), vibrational properties (Table 6.2) and bond energies (Eqs. 6.9 and
6.12) provide strong evidence that similar three-center two-particle bonding mechanisms
are present in Li+

3 and in 2e+[H3 –
3 ].

Now that it was established the local stability of 2e+[H3 –
3 ], its bonding properties, and its

similarities with Li+3 , it is worth exploring the chemistry of the latter to gain further insight
into the chemical implications of the three-center two-positron bond.

Previous studies of the nature of the 3c2e bond in Li+
3 based on topological analyses of

the electronic density [213, 214] and an Interference Energy analysis [215] have concluded
that Li+

3 can be considered as the smallest metallic cluster, where the valence electrons in
the centroid act as free metallic electrons. Additionally, to explain the relative stability and
structure of Li+

3 , the presence of σ-aromatic or σ-antiaromatic states is still widely discussed
[213, 215, 216, 217]. Based on the reported similarities of the bonding densities of 2e+[H3 –

3 ]
and Li+

3 , it can be speculated that the positrons in 2e+[H3 –
3 ] could also be considered as

‘pseudo’-metallic in character and that the positronic delocalization in 2e+[H3 –
3 ] could pro-

vide in the future evidence of a new type of positronic σ-aromaticity or σ-antiaromaticity.
Clearly, exploring the extension of the metallic bond and aromaticity concepts to positronic
molecules would require a more in-depth analysis of the bonding nature. For instance, by
employing energy decomposition, quantum interference [215] or multicomponent atoms-
in-molecules [122, 218, 219] analyses. However, those studies are beyond the scope of the
present work.
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Figure 6.5: Comparison of three-center two-particle bonding densities. Electronic density
of 2e−[H3+

3 ] (a), electronic bonding density of Li+3 (b), and positronic bonding density of
2e+[H3−

3 ] (c). The densities were obtained with the DMC method as histograms of the
number of particles inside voxels (width=0.08 bohr) disposed along the molecular plane. In
all panels, the atomic nuclei are represented as black dots.
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Remarkably, the similarities between 2e+[H3 –
3 ] and Li+3 are also observed for their triplet

positronic and electronic states, respectively. Figure 6.6 shows the bonding densities of
both species in their equilibrium minimum for the triplet state, which is characterized by
a linear con�guration. Again, it can be appreciated that both density distributions share
similar features in the internuclear region, while being fundamentally distinct at the nuclei.
However, these bonding densities indicate another type of bonding interaction, di�erent
from the 3c2p bond, which could be interesting for further investigations.
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Figure 6.6: Comparison of three-center two-particle bonding densities. Electronic bonding
density of Li+3 (a), and positronic bonding density of 2e+[H3−

3 ] (b) on triplet electronic and
triple positronic states, respectively. The densities were obtained with the DMC method as
histograms of the number of particles inside voxels (width=0.08 bohr) disposed along the
molecular plane. In all panels, the atomic nuclei are represented as black dots.

6.3 Summary

Based on the research performed in this work, it has been found that two positrons can
form a locally stable bound state with three hydride anions in a D3h con�guration and sin-
glet positronic spin state. The results suggest the formation of a 3c2p bond, pointing out
that the chemical bond concept reaches beyond the positron covalent bonds in two-center
molecules, as addressed in previous studies. The dissociation products H2 + PsH + Ps−

correspond to the lowest-energy con�guration of the system comprising two positrons,
six electrons, and three hydrogen nuclei. Nevertheless, the vertical detachment and adi-
abatic energy dissociation analysis con�rm the local stability of 2e+[H3 –

3 ] around the D3h

equilibrium geometry. A comparative analysis reveals that the positronic molecule is sim-
ilar to the trilithium cation with isoelectronic atomic cores, and remarkably di�erent from
the trihydrogen cation. Similarities were found for the equilibrium geometries, force con-
stants in the symmetric stretch and bending modes, and also dissociation energies trends.
The positronic species has slightly longer bond lengths, weaker force constants, and lower
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bond energies than the trilithium cation, which can be viewed as the analog purely elec-
tronic system. In addition, the electronic (Li +

3 ) and positronic (2e+[H3 –
3 ]) bonding densities

are similar around the internuclear region and equally spread among all three atomic cen-
ters, suggesting strong similarities between the 3c2p and 3c2e bonds.
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Chapter 7

Positron-
Bonded Diatomics: Estimating the Size
of Interacting Atoms

Parts of this chapter will be published in this or similar form in:

J. Charry, M. Barborini, A. Tkatchenko. “Positron-bonde diatomics: Estimating atomic size"
In preparation.
J. Charry, D. V. Fedorov, A. Tkatchenko. “van der Waals radius for Hydrogen atom" In
preparation.

and have been produced in a collaboration of the above authors.

De�ning the size of an atom is one of the most fundamental questions in physics and chem-
istry. However, there is no unique answer to this question due to the quantum nature of
the electrons in an atom since its boundary is not physically de�ned. Despite the ambiguity
in the concept of size of an atom, numerous empirical de�nitions have been proposed for
establishing a consistent size for all atoms in the periodic table [220, 221, 222, 223, 224, 225,
226]. The most common examples are the covalent radii, determined from the equilibrium
internuclear distance between two atoms covalently bonded in molecules and crystals; van
der Waals (vdW) radii, de�ned in terms of the distance of closest approach of non-covalently
bonded atoms; ionic radii, determined from inter-ionic distances in crystals; metallic radii,
obtained from the internuclear distances in a metal. However, determining such atomic
radii presents many di�culties since most of them are inferred from a system of many
interacting atoms, rather than as isolated entities. Therefore, the presence of any other
atom will modify the electron density cloud associated with an atomic nucleus in di�erent
manners: shape, size, and direction. Despite this, the key aspect of de�ning an atomic size
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relies on establishing a consistent and relative size de�nition for all atoms that can satisfy
the group and periodic trends of the periodic table for selected types of interactions, such
as the ones observed in molecules or crystals. Following these ideas, the aforementioned
atomic size concepts have been employed in chemistry for a century to provide qualitative
and quantitative descriptions and predictions for many phenomena and properties.

This chapter presents a tentative alternative to estimate the size of an interacting atom
based on a positronically bonded diatomic molecule, similar to the three-positron bond
system studied in Chapter 6, where the positrons were identi�ed to be responsible for the
bonding rather than electrons.

7.1 Methods

MP2 calculations for the positronic diatomic systems were carried out with the LOWDIN
software [116], as described in Section 2.2. The standard def2-TZVPPD basis set was em-
ployed for electrons [227] centered at each nuclei, while an uncontracted set of (6s4p3d2f)
GTFs for positrons [123] in three di�erent centers: two at each nucleus, and one addi-
tional in the midpoint. The basis set choice follows the one used in the previous work for
positron-bonded dihalides [123]. In the reported MP2 calculations, all electrons were taken
into account, as well as all virtual orbitals from the basis set employed.

7.2 Positron-bond systems

One common feature in all studied positron-bonded systems [71, 123] is the small change
in the electronic density distribution of the repulsive anionic atoms by the addition of the
positron, as observed in the hydrides e+[H– H– ] and halides e+[X– Y– ] (X– ,Y– =F– ,Cl– ,Br– ).
Further analysis based on Quantum Theory of Atoms In Molecules (QTAIM) elucidated that
the electron exchange phenomenon is virtually non-existent between the two atoms, and no
electronic covalent bond is conceivable in between [122]. Given that, it is worth exploring a
possible atomic size de�nition based on the interatomic distance of those positron systems,
which will be driven by the positronic bonds and not regular electronic bonds as in the case
of covalent, van der Waals or anionic radii.

First of all, Table 7.1 shows di�erent atomic radii for the atoms previously found to form
a positron-bonded [71, 123, 228]. Here, it is important to notice the di�erence between
crystallographic radii and e�ective or equilibrium radii. The former is usually derived from
the closest approach of atoms in crystal structures, while the latter is more suitable to
describe equilibrium distances between atoms in molecular systems.
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Table 7.1: Comparison of di�erent atomic radii (in Angstroms) for selected elements.
where (crys.) stands for crystallographic values

Atom RvdW RvdW Ranionic Ranionic Rcovalent
(crys.)a (equilibrium)a (crys.)b (e�ective)b (crys.)c

H 1.1 1.66d - 1.40 0.31
Li 2.2 2.63 - - 1.28
F 1.5 1.65 1.19 1.33 0.57
Cl 1.8 2.05 1.81 1.81 1.02
Br 1.9 2.1 1.82 1.96 1.20

a Recommended value from [224]
b Recommended value from [222]
c Recommended value from [226]
d Recommended value from [229]

For this work, the previously known positron-bond diatomics were recomputed at MP2
level, in order to have a consistent value of the equilibrium distance. All the PECs are
available in Figure E1 of the appendix. Table 7.2 collects and compares all equilibrium
MP2 distances with respect to previously reported values in literature. For e– [H– H– ], a
good agreement is observed between MP2 and FCI data, with a slight di�erence of just
0.1 Å compared to DMC. For e– [Li– Li– ], there is also a good agreement against CISD.
Although, Ito et al. [228] observed at DMC level the appearance of a global energy minimum
at closer distances, featuring a bound state described as a delocalized Ps orbiting a Li –

2 ,
distinct from the e– [X– Y– ] bond. Thus, that minimum structure will not be considered
for this work. Furthermore, for the positron bond halides e– [X– Y– ], MP2 results exhibit
a constant shift of 0.3 Å due to the lack of electron-positron correlation e�ects compared
to the more accurate renormalized third-order propagator theory correction (RENPP3) [78,
127].

The data of Table 7.2 is further expanded by calculating the MP2 equilibrium distance of all
the remaining combinations of anions not considered in previous works; namely, between
H−Li−,H−F−, H−Cl−, H−Br−, Li−F−, Li−Cl−, Li−Br−.

Therefore, and based on the information compiled for atomic radii, Table 7.3 compares the
newly calculated MP2 equilibrium distances of positron bond systems of the form e+[A– B– ]
with the sum of atomic radii for each constituent atom. From that data, it is evident that the
equilibrium distance is much longer than the sum of electronic covalent radii, con�rming
once more that there is no electronic covalent bond formation [122]. In order to simplify
the comparison, the two closest radii values are compared in Figure 7.1, which is split into
two categories for a clear visual comparison: equilibrium van der Waals radii and e�ective
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Table 7.2: Comparison of equilibrium distances of positron-bond diatomics obtained with
several methods. All values in Angstroms. The last column indicates the di�erence between
MP2 results and the most accurate data from the literature.

System AB MP2a CI CC-PT d DMC ∆Req

H-H 3.27 3.26b - 3.38(2)e 0.11(2)
Li-Li 5.57 5.51c - 3.06c -0.058
F-F 3.42 - 3.088 - -0.330
F-Cl 3.82 - 3.545 - -0.280
F-Br 3.96 - 3.709 - -0.253
Cl-Cl 4.15 - 3.869 - -0.282
Cl-Br 4.30 - 4.019 - -0.281
Br-Br 4.43 - 4.149 - -0.281

a This work
b FCI [71]
c CISD and DMC [228]
d Electronic CCSD(T)/CBS + RENPP3 [123]
e DMC [73]

anionic radii.

a b

Figure 7.1: Sum of atomic radii versus equilibrium distance of positron-bonded diatomic
system of the form e+[A– B– ]. Panel a for equilibrium van der Waals radii and panel b for
e�ective anionic radii.

The equilibrium positron bond distance seems to follow the same trends of crystallographic
vdW radii for halides slightly shifted towards higher distances, but there is a large discrep-
ancy for hydrogen. On the other hand, the sum of anionic crystallographic radii does not
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Table 7.3: Comparison between the equilibrium distance of positron bond diatomic system
and the sum of radii of their constituent atoms. All distances in Angstrom units.

System Req RvdW RvdW Ranionic Ranionic Rcov
AB e+[A– B– ] (crys.) (equilibrium) (crys.) (e�ective) (crys.)
H-H 3.27 2.2 3.32 - 2.80 0.62
H-Li 4.46 3.3 4.29 - - 1.59
H-F 3.23 2.6 3.31 - 2.73 0.88
H-Cl 3.66 2.9 3.71 - 3.21 1.33
H-Br 3.85 3.0 3.8 - 3.36 1.51
Li-Li 5.57 4.4 5.26 - - 2.56
Li-F 4.39 3.7 4.28 - - 1.85
Li-Cl 4.77 4.0 4.68 - - 2.30
Li-Br 4.88 4.1 4.7 - - 2.48
F-F 3.42 3.0 3.30 2.38 2.66 1.14
F-Cl 3.82 3.3 3.70 3.00 3.14 1.59
F-Br 3.96 3.4 3.8 3.01 3.29 1.77
Cl-Cl 4.15 3.6 4.10 3.62 3.62 2.04
Cl-Br 4.30 3.7 4.2 3.63 3.77 2.22
Br-Br 4.43 3.8 4.2 3.64 3.92 2.40

follow a clear linear trend, mainly given by the slight di�erence between Cl– and Br– radii.
Additionally, Shannon [222] pointed out the wide variations in the observed radius of H– ,
attributed to its large polarizability and for changes in interatomic distances due to cova-
lence e�ects of Hydrides, therefore the author did not consider useful to report a unique
anionic radius for H– . On the contrary, a better correlation is observed when comparing
against e�ective anion radii (Figure 7.1) following the same trends of the equilibrium dis-
tance but shifted by a constant value of 0.6 Å. This shift in the distances could be reduced
by including more attractive electron-positron correlation e�ects, missing in MP2, and by
extrapolation to the complete basis set limit [71, 127]. The e�ective radii were empirically
proposed to closely reproduce interatomic distances in solids based on the assumption of
a �xed value for oxygen and �uorine in metal-oxygen and metal-�uorine bonds. Further-
more, a closer resemblance is obtained with the sum of equilibrium vdW radii, with further
deviations for larger radii, which can be explained by the di�culty of capturing long-range
electron-positron correlation e�ects at MP2 level using single-particle orbitals. Unfortu-
nately, such deviations cannot be observed for the anionic radii, since there are no estimated
values for lithium atom, which is the one with larger radius.

The similarity between vdW radii of neutral atoms and their anionic radii was initially ob-
served by Pauling [220]. He considered that a covalently bonded closed-shell atom behaves
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similarly to its anionic atom, therefore for nonmetallic elements, their vdW radii were ap-
proximated to their anionic radii counterpart. The case of positron-bond systems seems
to share similar features with those observed for regular electronic systems, employed to
de�ne either an anionic or vdW radii. For the former, the anionic radii are derived from in-
teratomic distance in ionic bonds. Hence, it depends on the attractive interaction between a
cation and anion, but in this case, the cation is replaced by the positron. For the vdW radius,
the radii are established in terms of the distance at which the Pauli repulsion balances the
attraction forces between the non-covalently bonded closed-shell atoms [230], while in the
positronic bonded case would correspond to the distance at which the electrostatic repul-
sive force of the non-covalently closed-shell atoms balances the attractive electrostatic force
introduced by the positronic density distribution spread between the anions. In both cases,
the positron is acting as the attractive force between two otherwise repulsive closed-shell
anions, until reaching the inter-penetrability limit of the electronic atoms.

The main advantage of de�ning an atomic radius with positron-bonded systems lies in the
fact that the anionic atoms are isolated and there are not covalently bonded. Thus they are
not a�ected by a chemical environment, as opposed to previous de�nitions on other atomic
radii [222, 224, 226].

The numerical evidence of Figure 7.1 supports this hypothesis, although further studies are
required for constructing a new interacting atomic size de�nition. In essence, one needs
to i) Calculate the equilibrium distance with a highly accurate method such as QMC; ii)
corroborate that the type of interactions is consistent for all systems, either fully positronic,
fully electronic, or a mixture; iii) expand the study to more anionic atoms, either isolated or
in a molecule, so far the atom studied here share a common feature, all of them are closed
shell atoms, they have positive electron a�nities, thus the anion is stable, and are capable
of forming positronium atom [72]; iv) explore the equilibrium distances of two positron-
bonded system, in singlet and triplet positronic spin state.
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Chapter 8

Summary and Outlook

In the last decades, experimental and theoretical evidence has accumulated for the for-
mation of metastable states between atoms and molecules with positrons, raising inter-
est in understanding their binding mechanisms, examining new compounds with unique
molecular properties, and studying their physical and chemical processes. Yet, the �eld of
positron-matter interactions is still vastly unexplored.

The description of metastable positron-matter states represents a di�cult challenge for
quantum-chemical methods due to the need to describe the strong attractive correlation
e�ects between the electronic cloud and the positrons. In this direction, QMC methods
are a powerful tool since they can easily incorporate sophisticated wave functions with
the ability to explicitly include the correlation e�ects between particles. Naturally, even in
QMC, it is necessary to �nd a balance between simplicity and accuracy of wave functions in
order to be applicable to compute large molecular systems without introducing prohibitive
computational costs.

This thesis contributes to the theoretical development and computational implementation
of correlated electron-positron wave function ansatzes. The main challenge for quantum
chemistry methods lies essentially in the employment of single-particle atom-centered ba-
sis sets to describe the positronic orbitals. Since the positron does not form bound states
with the nuclei, the natural basis should be based on an expansion of electron-positron or-
bitals, which explicitly capture the correlation between electron-positron pairs. The wave
function ansatz proposed in Chapter 3 has been shown to be e�cient in reaching a quanti-
tative description of the binding properties for positronic atoms and molecules with rather
small basis sets and lower computational e�ort with respect to the converged limits of tradi-
tional quantum-chemistry approaches. It was demonstrated that electron-positron orbitals
deliver a suitable and e�cient ansatz, which provides the lowest reported variational en-
ergies for PsB, PsC, PsO, and PsF, at VMC and DMC level. Moreover, the presented wave
function is general enough to be applied to larger molecular compounds, taking advantage
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of the scalability of the QMC methods.

Furthermore, the dynamical Jastrow framework presented in Chapter 4 in conjunction with
the relaxed fermionic part and the one- and two-body Jastrow factor, stands as a simple and
e�cient scheme to construct an improved VMC guiding wave function for DMC calcula-
tions, reducing the number of con�gurations needed for a desired variance. The proposed
improved version of the Jastrow factor demonstrates the importance of including three-
and four-body correlations between pairs of positive charges (positrons, nuclei) and pairs
of negative charges (electrons), which can be described by introducing a set of products of
atomic and positronic orbitals.

For these reasons, the Jastrow factor presented in Chapter 4 in conjunction with a correlated
fermionic wave function, like an electron-positron geminal of Chapter 3, can be applied to
study the positron-matter interactions on larger and more complex polar and non-polar
molecules.

The proposed methodologies were implemented in the QMeCha computational package
[115] (see Section 2.4). Even if the aforementioned developments are focused on studying
positronic systems, the methodology is general enough to be applied to studying other pos-
itively charged quantum particles, such as positive muons or quantum nuclei. The latter is
particularly crucial in the case of Hydrogen atoms to study nuclear quantum e�ects (NQEs)
in many phenomena, such as proton transfer reactions, zero-point vibrations, tunneling,
resonance, isotope e�ects [76]

Once the methodology was established to accurately compute positronic-matter systems,
as described in Chapters 3 and 4, the following chapters focused on examining the physical
and chemical properties of selected systems. Chapter 5 showed how QMC and the wave
functions developed in this work can be used for positronic systems to compute other prop-
erties such as expectation values of interparticle distances, two-photon annihilation rates,
and dipole polarizabilities, in addition to showing the physical insights that can be inferred
from analyzing those properties. Good agreement was obtained in comparison to highly
accurate and precise reference data, despite the numerical challenges of estimating polariz-
abilities through �nite di�erence derivatives of averaged quantities with a statistical error
introduced by the stochastic nature of QMC techniques.

Therefore, the current methodology can be employed to explore dipole polarizability of
other molecules, which is a valuable physical quantity that is related to the ability of a
system to respond to an external potential, and related to dispersion forces, all essential
concepts to the understanding of intermolecular interactions with regular electronic or
positronic systems. Although here it should be remarked that intramolecular positronic
interactions are just being discovered, for example, for many decades the dimer of PsH was
assumed to be formed through van der Waals interactions [59], but the possibility to form
a bound state electrostatically stabilized by a large redistribution of the positronic cloud
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has been just recently discovered [71, 153]. Chapter 5 also introduced a dipole polarizabil-
ity decomposition in terms of independent electronic and positronic dipole �uctuations.
For PsH and (PsH)2, it was revealed that the main contributions come from the positronic
component. Therefore, from the perspective of response functions, PsH and (PsH)2 can be
understood as a highly polarizable positronic cloud in the nuclei’s outer regions, screen-
ing the electrons’ response to the external potential. Such simple decomposition can be
computed for other positronic systems to better understand their electronic and positronic
structure. In addition, the polarizability of PsH dimer exhibits a non-trivial and non-linear
scaling with respect to the interatomic length, a similar quantum e�ect observed in regular
electronically bonded diatomic.

Chapter 6 described one of the �rst applications of the electron-positron wave function
ansatz presented in this thesis under QMC methodology discussed before. The present re-
sults revealed that two positrons are capable of bonding three otherwise repelling atomic
anions, forming a three-center positronic bond, extending the �ndings of previous theoret-
ical studies that have evidenced the formation of locally stable systems composed of two
repelling atomic anions and one-to-three positrons. On such systems, the antiparticles are
mainly responsible for the conformers’ stabilization, thus expanding the de�nition of chem-
ical bonding beyond the ordinary purely electronic systems [71, 72, 73, 74, 122, 124, 153].
Positron-bonded systems are fundamentally distinct from those formed by positron attach-
ment to previously stable atoms and molecules. Therefore, these results will hopefully
stimulate further theoretical and experimental research on novel physical and chemical
processes involving this kind of bond. The two-positron three-center bond was found to
be remarkably similar to the two-electron three-center bond observed in Li +

3 . This com-
parison encourages to further explore the chemistry of lithium, and alkali metals, in order
to �nd more exciting positronic counterparts. Additionally, such similarities could also
give further hints on the nature of electronic bonds, bene�ting the understanding of both
positronic and electronic bonds.

The investigations performed for the positron-bonded systems led to an appealing obser-
vation: half the equilibrium distance of positron-bonded dimers is approximately the sum
of their isolated atomic radii. Therefore, positronically bonded system could serve as an
alternative to estimate the size of interacting atoms, numerically similar to the anionic or
van der Waals radii, and sharing features with both de�nitions. However, further studies
are required to construct a new atomic size de�nition consistent for several atoms, based on
accurate equilibrium distances for a larger number of positron-bond systems and a deeper
understanding of the type of interactions, either electronic or positronic, or both of them.

As concluding remarks, the main developments and �ndings discussed in this thesis for the
study of positron interactions with atoms, molecules, and electric �elds, are the following:

• A new e�cient fermionic VMC wave function ansatz based on explicitly correlated
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electron-positron orbitals.

• An improved Jastrow factor that accounts for thee- and four-body electron-positron
correlation e�ects in the �eld of the nuclei.

• Benchmarking total variational and binding energies for selected positronic atoms
and molecules at VMC and DMC level.

• Elucidating the electron-positron wave function structure by computing the dipole
polarizability decomposed as electronic and positronic contributions, revealing non-
trivial scaling with respect to the size of the system, and positronic screening e�ects
to an external �eld.

• The stability of three hydrogen anions by two positrons, forming a three-center two-
positron bond in analogy to three-center two-electron bonds.

• The equilibrium distance of positron-bonded diatomic systems is connected to the
sum of van der Waals radii of the corresponding neutral atoms, and to their anionic
radii, which serves as an alternative approach to de�ning atomic sizes.

The developments and �ndings reported in this thesis can serve as valuable tools for boost-
ing the investigation of positron-matter interactions on a wider variety of systems and
phenomena, encouraging further experimental and theoretical studies. There are many
possible directions for the latter. For example, the methodology developed here can be a
powerful tool to predict new molecular systems that could bind a positron, and to explain a
large amount of experimental data that remains unexplained; namely, alkanes, alkenes, aro-
matic compounds, halogenated hydrocarbons, alcohols, or acetates [29]. In addition, the de-
veloped methodology can be used to further understand the relationship between positron
binding and molecular properties such as dipole moment, polarizability, and aromaticity,
among others [29], helping to develop simple yet e�cient physical models. Also, this ap-
proach would aid in �nding the molecular region that is more energetically favorable for
the positron binding to occur, as well as the fragmentation products upon the annihilation,
in order to establish if a positron can be used as “molecular scissors" with a unique frag-
mentation pattern, therefore as an alternative ionization tool in mass spectrometry [231].

Another challenge that can be handled with the proposed methodology is the possibility
of e�ciently exploring complex PES of positronic complexes, allowing to study the cou-
pling of the positron binding with the vibrational motion of a molecule, a crucial step to
elucidate the resonant annihilation mechanism, which is the main phenomena exploited in
the Vibrational Feshbach Resonance (VFR) technique to obtain positron binding energies
experimentally. In addition, accurate PES are required to describe the e�ect of a positron on
complex chemical processes, such as chemical reactions [69] and molecular dynamics sim-
ulations [70], �elds that are still highly unexplored due to the lack of accurate and e�cient
computational methodologies.
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On the other hand, due to the high accuracy delivered by QMC techniques, the variational
ansatz proposed in this work can be employed to generate accurate benchmark data for to-
tal or binding energies of positronic compounds, serving as reference values to develop and
parametrize e�cient model potentials. For example, Gribakin and coworkers [50] proposed
to include a model-potential between a positron and a molecule expressed with a simple
asymptotic form αA

r6
, where αA is the polarizability of an atom A within a molecule at a dis-

tance rA from the positron, very similar to a van der Waals interaction in regular electronic
systems [232]. Within a DFT scheme, electron-positron correlation functionals have not
yet been widely explored [89, 102, 103, 233]. Therefore, this kind of correlation functionals
can be derived in an analytical form by studying the physical behavior of positrons with
the aid of highly accurate methods, like QMC.

All the aforementioned aspects and the developments reported in this thesis could poten-
tially lead to the discovery of breakthrough applications based on matter-antimatter inter-
actions, a fascinating emerging �eld in chemical physics.
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Appendix A: Correlated
Electron-Positron Wave Functions

Part of the results presented in the following section have been reproduced from the Sup-
porting Material of Reference [91]

Table A1: Non-relativistic total energies of the atoms obtained with Single determinant
(SD) and multi determinantal (MD) wave functions. In parenthesis, the electronic state of
the system. All energies are reported in Hartree.

Li(2S) Be(1S) B(2P) C(3P) O(3P) F(2P)

VMC SD[136] -7.47683(3) -14.6311(1) -24.6056(2) -37.8147(1) -75.0233(3) -99.6874(3)
VMC SD[137] -7.47693(3) -14.64622(1) -24.62361(9) -37.8083(1) -75.0229(2) -99.6877(3)
VMC MD[137] -14.66480(3) -24.64432(8) -37.82972(8)
VMC MD[136] -7.47752(3) -14.66630(4) -24.65055(6) -37.8383(1) -75.0429(2) -99.7054(3)
VMC AGPa -7.477478(26) -14.66624(11) -24.64287(19) -37.82430(27) -75.02917(48) -99.69212(24)
VMC SDa -24.62860(10)
DMC SD[136] -7.478 02(1) -14.65717(7) -24.63978(5) -37.8295(1) -75.0516(5) -99.7167(8)
DMC MD[136] -7.478 00(1) -14.66729(1) -24.65325(5) -37.84317(7) -75.0578(3) -99.7237(3)
DMC AGPa -7.47805252(60) -14.667315(90) -24.65034(19) -37.83713(22) -75.0529960(65) -99.719018(95)
DMC SDa -24.64062(24)
HF[234] -7.432726931 -14.57302317 -24.52906073 -37.68861896 -74.80939847 -99.40934939
Exact[138] -7.47806 -14.66736 -24.65391 -37.8450 -75.0673 -99.7338
aThis work.
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Table A2: Non-relativistic total energies of the atomic ions. All energies are reported in
Hartree.

H−(1S) Li−(1S) B−(3S) C−(4S) O−(2P) F−(1S) Li+(1S) Be+(2S)

VMC SD[140] -7.49145(6) -24.63235(6) -37.85566(8) -75.0707(1) -99.8121(2) -7.279880(10) -14.32241(18)
VMC MD[140] -7.49909(2) -24.6435(3) -37.8657(1)
VMC AGPb -0.5275729(51) -7.49916(36) -24.644739(85) -37.86381(11) -75.08019(18) -99.81738(22) -7.279624(27) -14.324014(35)
VMC SDb -24.63863(12)
DMC SD[140] -7.498 58(5) -24.65230(5) -37.8788(1) -75.1027(2) -99.8434(2) -7.2799100(50) -14.3246360(40)
DMC MD[140] -7.50077(4) -24.6574(1) -37.88351(4)
DMC AGPb -0.527741(23) -7.50072(19) -24.65734(26) -37.88037(40) -75.10639(19) -99.84561(66) -7.279905(32) -14.324723(31)
DMC SDb -24.65317(19)
HF[234] -7.42823206 -24.5192214 -37.7088436 -74.7897459 -99.4594539 -7.23641520 -14.2773948
Exact[138] -0.527751a -7.50077 -24.6642 -37.8910 -75.1210 -99.8588 -7.27992 -14.32476
aSVM calculation from Ref. 83. bThis work.

Table A3: Electron a�nities (EA) and Ionization potentials (IP). All values are in eV.

Electron a�nities [eV] Ionization potentials [eV]
H Li B C O F Li Be

VMC
SD[140]

0.395(2) 0.238(3) 1.289(4) 1.301(6) 3.385(9) 5.362(1) 8.812(5)

VMC
MD[140]

0.603(1) -0.022(8) 0.979(3) 9.317(5)

VMC SDa 0.273(4)
VMC AGPa 0.7503(2) 0.590(1) 0.051(6) 1.075(7) 1.388(15) 3.409(6) 5.384(1) 9.312(3)
DMC
SD[140]

0.559(2) 0.340(2) 1.342(6) 1.37(2) 3.445(8) 5.391(1) 9.050(2)

DMC
MD[140]

0.619(1) 0.158(3) 1.161(2) 9.320(1)

DMC SDa 0.341(8)
DMC AGPa 0.7549(6) 0.617(5) 0.190(9) 1.177(12) 1.453(5) 3.445(18) 5.392(1) 9.322(1)
Exp. 0.754195(19) 0.618049(22) 0.279723(25) 1.2621226(11) 1.461112(3) 3.4011895(25) 5.3917149(4) 9.322699(7)
Ref. Exp. [235] [236] [237] [238] [239] [240] [241] [242]
aThis work.
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Table A4: Positron a�nity (PA) calculated as PA[X] = E[X] - E[e+X] and Positronium
binding energy BEPs[X] = E[X+] + E[Ps] - E[e+X]. All energies are in eV. The energies of
Hydrogen and Positronium atoms correspond to the exact values of -0.5 and -0.25 Hartree,
respectively.

PA BEPs PA BEPs

H− Li
VMC AGP/PMOa 7.0213(10) 0.9687(10) VMC AGP/PMOa 1.2392(32) -0.1798(32)
VMC AGP/EPOa 7.04347(92) 0.99092(91) VMC AGP/EPOa 1.3112(26) -0.1078(23)
DMC AGP/PMOa 7.1094(35) 1.0614(35) DMC AGP/PMOa 1.433(26) 0.022(26)
DMC AGP/EPOa 7.11248(62) 1.064485(86) DMC AGP/EPOa 1.4390(63) 0.0280(63)
MRCI[149] 7.110 1.066 Ref.[26] 1.477
Hylleras[145] 1.0666 SVM[147] 0.0675

Li− Be
VMC AGP/PMOa 6.0896(26) -0.1232(24) VMC AGP/PMOa -0.232(90) 2.277(90)
VMC AGP/EPOa 6.1160(26) -0.0968(24) VMC AGP/EPOa -0.0646(58) 2.4449(50)
DMC AGP/PMOa 6.4613(69) 0.2753(44) DMC AGP/PMOa 0.0340(81) 2.5536(78)
DMC AGP/EPOa 6.458(12) 0.272(11) DMC AGP/EPOa 0.054(10) 2.5740(98)
VMC[86] 0.460(16) -6.1171(82) Ref.[26] 0.086 2.608
DMC[86] 6.506(22) 0.261(22) SVM[148] 0.086
DMC[46] 0.3137(16)
SVM [148] 0.330564

B− C−

VMC AGP/PMOa 5.4667(32) -1.2854(61) VMC AGP/PMOa 5.536(10) -0.191(12)
VMC AGP/EPOa 5.4808(32) -1.2713(61) VMC AGP/EPOa 5.556(11) -0.171(13)
DMC AGP/PMOa 6.003(24) -0.609(23) DMC AGP/PMOa 5.890(24) 0.263(22)
DMC AGP/EPOa 6.010(12) -0.603(11) DMC AGP/EPOa 5.921(19) 0.294(17)
VMC SD/PMOa 5.48908(46) -1.04074(42)
VMC SD/EPOa 5.50594(47) -1.0239(44)
DMC SD/PMOa 6.00605(87) -0.45546(94)
DMC SD/EPOa 6.0535(23) -0.4080(32)
VMC[86] 3.837(54) -2.667(54) VMC[86] 4.354(82) -1.170(82)
DMC[86] 6.014(27) -0.435(27) DMC[86] 5.940(16) 0.479(16)

MRCI[77] 6.176 -0.350 MRCI[77] 6.029 0.486

O− F−

VMC AGP/PMOa 5.449(23) 0.035(26) VMC AGP/PMOa 5.567(19) 2.173(19)
VMC AGP/EPOa 5.536(16) 0.122(19) VMC AGP/EPOa 5.647(16) 2.253(16)
DMC AGP/PMOa 6.0138(76) 0.6639(55) DMC AGP/PMOa 6.130(22) 2.772(14)
DMC AGP/EPOa 6.076(18) 0.726(17) DMC AGP/EPOa 6.224(19) 2.8663(48)
VMC[86] 2.286(82) -3.157(82) VMC[86] 5.306(82) 2.122(82)
DMC[86] 5.861(16) 0.433(16) DMC[86] 6.169(22) 2.838(22)
MRCI[77] 6.150 0.796 MRCI[146] 6.215 2.806
aThis work.
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Appendix B: Dynamical Jastrow Factor
for Electron-Positron Interactions

Table B1: VMC and DMC energies (in Ha) for di�erent combinations of the atomic, gem-
inal, and mixed electron-positron dynamical Jastrow terms for one- and two-positron sys-
tems.

PsH e+PsH e+Li PsLi
Jastrow VMC DMC VMC DMC VMC DMC VMC DMC

Aee -0.777492(21) -0.789146(32) -0.794937(32) -0.810268(42) -7.521910(34) -7.529001(80) -7.68695(12) -7.738171(85)
Aee + G -0.777764(28) -0.789164(34) -0.798360(25) -0.810292(32) -7.522307(45) -7.528735(78) -7.70091(10) -7.737916(53)
Aee +M -0.787418(11) -0.789175(10) -0.806575(18) -0.810234(13) -7.523687(33) -7.528693(57) -7.725894(49) -7.738399(52)
Aee + G +M -0.787514(11) -0.789186(11) -0.807058(15) -0.810256(14) -7.523807(31) -7.528865(68) -7.726793(69) -7.738315(28)
A -0.785933(20) -0.789181(14) -0.803536(23) -0.810259(18) -7.524366(27) -7.528902(80) -7.723217(71) -7.738215(97)
A+ G -0.786253(16) -0.789203(11) -0.805261(19) -0.810278(15) -7.523687(36) -7.528901(74) -7.723645(73) -7.738276(48)
A+M -0.787664(11) -0.789203(10) -0.8076672(99) -0.810250(16) -7.525400(32) -7.530292(72) -7.728644(46) -7.738292(25)
A+ G +M -0.7881051(95) -0.7892214(86) -0.808631(12) -0.8102536(86) -7.525370(26) -7.530268(80) -7.728064(54) -7.738268(34)

PsH2 e+LiH PsO Ps2O
Jastrow VMC DMC VMC DMC VMC DMC VMC DMC

Aee -1.556093(48) -1.588450(71) -8.092050(66) -8.107221(32) -75.26849(30) -75.327403(89) -75.52708(33) -75.63102(27)
Aee + G -1.568067(33) -1.588586(47) -8.097067(50) -8.107262(29) -75.27116(28) -75.327225(90) -75.54416(35) -75.63122(18)
Aee +M -1.577253(24) -1.588615(33) -8.102010(38) -8.107276(17) -75.28564(27) -75.327589(98) -75.57351(27) -75.63139(10)
Aee + G +M -1.578942(69) -1.588638(28) -8.102353(35) -8.107303(17) -75.28663(26) -75.327495(66) -75.57180(30) -75.63147(15)
A -1.573522(53) -1.588593(37) -8.102712(41) -8.107321(15) -75.28684(25) -75.328505(72) -75.57060(32) -75.632139(84)
A+ G -1.576586(45) -1.588609(31) -8.103249(32) -8.107289(14) -75.29025(26) -75.328107(68) -75.57210(32) -75.631878(77)
A+M -1.579580(23) -1.588615(22) -8.103622(43) -8.107218(14) -75.29240(21) -75.328314(56) -75.57892(38) -75.63175(11)
A+ G +M -1.581438(20) -1.588693(22) -8.104458(37) -8.107332(11) -75.29489(27) -75.328299(44) -75.59325(32) -75.632253(62)
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Figure B1: The DMC (dt 0.001) errorbar estimated with the reblocking technique as a
function of the block length for all the positronic systems studied comparing with di�erent
combination of the dynamical Jastrow factor.
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Appendix C: Electric Response
Properties of Positronic Systems

Figure C1: 2D cuts of the electronic density di�erence between unperturbed system and
the perturbed system with an electric �eld of 0.007 (a.u.). All densities were obtained at
CCSD/aug-cc-pVQZ level. Panel a and panel b for Li2 at RLi-Li = 5.0 a.u. perturbed with a
�eld parallel and perpendicular to the internuclear axis, respectively. Black circles are used
to represent the lithium nuclei positions.
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Appendix D: The Three-Center
Two-Positron Bond

Part of the results presented in the following section have been reproduced from the Sup-
porting Material of Reference [72].

Table D1: Total energies (in Eh), equilibrium distance (in Bohr) and force constant (in a.u.)
of triatomic systems for D3h symmetry calculated at VMC level

System E req kν1
2 e– [H3+

3 ] S -1.347(4) 1.64(3) 0.56(6)
2 e– [Li3+

3 ] S -22.3345(2) 5.687(10) 0.0248(4)
2 e+[H3 –

3 ] S -2.1489(1) 6.149(10) 0.0110(4)
2 e– [Li3+

3 ] T -22.3105(2) 5.950(7) 0.0175(3)
2 e+[H3 –

3 ] T -2.1266(1) 6.78(2) 0.0085(6)

Table D2: Total energies (in Eh), equilibrium distance (in Bohr) and force constant (in a.u.)
of triatomic systems for D3h symmetry calculated at DMC level.

System E req kν1 kν2
2 e– [H3+

3 ] S -1.346(4) 1.63(3) 0.57(5) 0.16(2)
2 e– [Li3+

3 ] S -22.34190(10) 5.645(7) 0.0254(3) 0.0110(4)
2 e+[H3 –

3 ] S -2.1652(2) 6.11(1) 0.0114(4) 0.0047(7)
2 e– [Li3+

3 ] T -22.31280(7) 5.937(7) 0.0168(2) -
2 e+[H3 –

3 ] T -2.1401(4) 6.62(1) 0.0080(4) -
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Table D3: Total energies (in Eh) of atomic, diatomic, and triatomic species along with
diatomic and triatomic equilibrium distances (in bohrs)

System E(DMC) E(Ref.)
Ps - -0.25a
Ps– - -0.262005 [212]
Ps2 - -0.516004 [171]
H– -0.52759(4) -0.52779(3) [124]
PsH -0.78919(4) -0.78907(7) [124]
Li+ -7.27992(1) -7.279910(5) [140]
Li -7.47801(2) -7.47802(1) [136]
System E(DMC) R(DMC) E(Ref.) R(Ref)
H+

2 - -0.602635 [243] 2.00
H2 - -1.174476 [169] 1.40
H+

3
b -1.346(4) 1.63(3) -1.343426 [244] 1.65

H–
3
c - -1.703511 [245] 1.42, 6.07

Li+
2 -14.80562(2) 5.90 -14.80562(1) [246] 5.877

Li2 -14.99175(6) 5.05 -14.9952(1) [247] 5.051
Li+

3
b -22.3419(1) 5.645(7) -

Li+
3
d -22.31280(7) 5.937(7) -

e+[H2 –
2 ] -1.3403(1) 6.39(3) -1.3403(1) [73] 6.4(4)

2e+[H2 –
2 ] -1.5885(1) 6.003(7) -1.5888(1) [153] 6.0(4)

2e+[H3 –
3 ] b -2.1652(2) 6.11(1)

2e+[H3 –
3 ] d -2.1401(4) 6.62(1)

a Exact
b Singlet D3h symmetry
c Singlet C∞v symmetry
d Triplet D∞h symmetry
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Table D4: Vertical dissociation channels for the 2 e+H 3 –
3 system into two subsystems A

without nuclei and B with the three hydrogen atom nuclei at the internuclear separation
near the equilibrium geometry of 2 e+H 3 –

3 . The column "Estimated Energy" (in Eh) cor-
responds to the estimated energy according to the species described in the column "Esti-
mation." The dissociated species are highlighted in red with a total charge larger or smaller
than +1 or -1 for subsystemsA andB. In pink color, all rows where subsystem A dissociates
in more than one species.

ID A B Estimation Estimated
Energy

Total
charge
of A

#
Species

A

Total
charge

of B
1 e+ 1 e+H 3 –

3 H– + e+H 2 –
2 -1.868 1 1 -2

2 2 e+ H 3 –
3 3 H– + 3/ r -1.093 2 2 -3

3 e– 2 e+H 2 –
3 H + 2 e+H 2 –

2 -2.089 -1 1 0
4 Ps 1 e+H 2 –

3 Ps + H + e+H 2 –
2 -2.090 0 1 -1

5 2 e+e– (−−Ps– ) H 2 –
3 H + 2 H– + Ps– -1.817 1 1 -2

6 2 e– 2 e+H –
3 2 H + PsHe+ -1.810 -2 2 1

7 Ps– 1 e+H –
3 PsH + 2 H + Ps– -2.051 -1 1 0

8 Ps2 H –
3 H– + 2 H + Ps2 -2.044 0 1 -1

9 3 e– 2 e+H3 3 H -1.500 -3 3 2
10 Ps– + e– e+H3 3 H + Ps– -1.762 -2 2 1
11 Ps– + Ps H3 3 H + Ps– + Ps -2.012 -1 2 0
12 Ps2 + e– H3 3 H + Ps2 -2.016 -1 2 0
13 4 e– 2 e+H +

3 2 H -1.000 -4 4 3
14 Ps– + 2 e– e+H +

3 2 H + Ps– -1.262 -3 3 2
15 2 Ps– H +

3 2 H + 2 Ps– -1.524 -2 2 1
16 Ps2 + 2 e– H +

3 2 H + Ps2 -1.516 -2 3 1
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Table D5: Adiabatic dissociation channels for the 2 e+H 3 –
3 system after the vertical disso-

ciation into two subsystems A without nuclei and B with the three hydrogen atom nuclei,
which later dissociates again in subsystem B1 with one nucleus and B2 with two nuclei.
The column "Estimated Energy" (in Eh) corresponds to the estimated energy according to
the species described in the columns A,B1, and B2.

ID A B B1

(1H)
B2

(2H)

Estimated
Energy,

A+B1+B2

1 e+ 1 e+H 3 –
3 H –

3 Ps– -1.966
2 2 e+ H 3 –

3 H– H2 + 2 e– -1.702
3 e– 2 e+H 2 –

3 PsH H2 + Ps -2.214
4 Ps 1 e+H 2 –

3 PsH H2 + e– -2.214
5 2 e+e– (−−Ps– ) H 2 –

3 H– H2 + e– -1.964
6 2 e– 2 e+H –

3 PsHe+ H2 -1.985
7 Ps– 1 e+H –

3 PsH H2 -2.226
8 Ps2 H –

3 - H –
3 -2.220

9 3 e– 2 e+H3 H H2 + 2 e+ -1.674
10 Ps– + e– e+H3 H H2 + e+ -1.936
11 Ps– + Ps H3 H H2 -2.186
12 Ps2 + e– H3 H H2 -2.190
13 4 e– 2 e+H +

3 - H +
3 + 2 e+ -1.343

14 Ps– + 2 e– e+H +
3 - H +

3 + e+ -1.605
15 2 Ps– H +

3 - H +
3 -1.867

16 Ps2 + 2 e– H +
3 - H +

3 -1.859



Appendix E: Positron-
Bonded Diatomics: Estimating the Size
of Interacting Atoms
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Figure E1: Potential energy curves of positron-bond diatomics of the form e+[A– B– ] com-
puted at MP2/def2-TZVPPD//6s4p3d2f Gaussian-type
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