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A B S T R A C T

A data-driven framework is presented, that enables the prediction of quantities, either observations or
parameters, given sufficient partial data. The framework is illustrated via a computational model of the
deposition of Cu in a Chemical Vapor Deposition (CVD) reactor, where the reactor pressure, the deposition
temperature and feed mass flow rate are important process parameters that determine the outcome of the
process. The sampled observations are high-dimensional vectors containing the outputs of a detailed CFD
steady-state model of the process, i.e. the values of velocity, pressure, temperature, and species mass fractions
at each point in the discretization. A machine learning workflow is presented, able to predict out-of-sample (a)
observations (e.g. mass fraction in the reactor), given process parameters (e.g. inlet temperature); (b) process
parameters, given observation data; and (c) partial observations (e.g. temperature in the reactor), given other
partial observations (e.g. mass fraction in the reactor). The proposed workflow relies on two manifold learning
schemes: Diffusion Maps and the associated Geometric Harmonics. Diffusion Maps are used for discovering a
reduced representation of the available data, and Geometric Harmonics for extending functions defined on the
discovered manifold. In our work a special use case of Geometric Harmonics is formulated and implemented,
which we call Double Diffusion Maps, to map from the reduced representation back to (partial) observations
and process parameters. A comparison of our manifold learning scheme to the traditional Gappy-POD approach
is provided: ours can be thought of as a ‘‘Gappy DMAPs’’ approach. The presented methodology is easily
transferable to application domains beyond reactor engineering.
1. Introduction

Since nonlinear manifold learning methods were introduced (Bala-
subramanian et al., 2002; Roweis and Saul, 2000; Coifman and Lafon,
2006a; Nadler et al., 2006; Coifman et al., 2008), a new route was
carved for the parsimonious description of data derived from models
of nonlinear applications.

The main premise of reduced order modeling methodologies is that
state observables often live in low-dimensional manifolds, despite their
apparent high dimensionality. Nonlinear manifold learning methodolo-
gies identify an intrinsic parametrization of the manifold that describes
the data (Xing et al., 2016; Dsilva et al., 2018; Holiday et al., 2019;
Xue et al., 2013; Bhattacharjee and Matouš, 2016) and, when coupled
with appropriate mappings between the reduced description and the
high-dimensional ambient space, they can be used for interpolation and

∗ Corresponding author.
E-mail address: yannisk@jhu.edu (I.G. Kevrekidis).

regression (Giovanis and Shields, 2020; Evangelou et al., 2023, 2022;
Chiavazzo et al., 2014).

Here, we demonstrate how the mapping between the ambient and
the reduced space, determined with Diffusion Maps (DMAPs), can be
used not only to enable efficient prediction of outputs (in our case,
observations) given new inputs (in our case, process parameters), or the
inputs that correspond to a new output, but also in the spirit of static
and dynamic observers (Kazantzis and Kravaris, 1998; Luenberger,
1964; Cassez and Tripakis, 2008; Park et al., 2002): for the prediction
of all or only part of the variables or parameters, given partial infor-
mation. To achieve that, DMAPs is implemented in conjunction with
a special use case of Geometric Harmonics interpolation (Coifman and
Lafon, 2006b; Chiavazzo et al., 2014; Evangelou et al., 2023). The latter
is implemented not only as a means of mapping between the reduced
vailable online 20 July 2023
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and ambient space, but also as a regression tool between the input and
output space.

The goal is to reconstruct variables that are inaccessible, due to
technical considerations pertinent to process stability and product qual-
ity. This is particularly important in the context of dynamical systems
with process control as the ultimate goal (Kazantzis et al., 2005; Alonso
et al., 2004b; Chiu and Christofides, 2000; Duan and Kravaris, 2020;
Patel et al., 2021; Alhajeri et al., 2021; Khatibi et al., 2021). In this
work, our methodologies are implemented for Chemical Vapor Depo-
sition (CVD), a process where in situ sensors are scarce, and therefore
critical process variables that influence product quality are inferred by
ex situ measurements. Akiki et al. (2020), Gleason (2020), Desenfant
et al. (2021), Nishinaka et al. (2021), Koronaki et al. (2014, 2016),
Psarellis et al. (2018), Papavasileiou et al. (2022, 2023), Gkinis et al.
(2019), Koronaki et al. (2019), Deshpande et al. (2022).

The proposed methodology is reminiscent of the so-called Gappy
POD method, proposed by Everson and Sirovich (Everson and Sirovich,
1995), as an extension of the Proper Orthogonal Decomposition (POD)
method, that accounts for partly known (hence ‘‘gappy’’) data. Accord-
ing to Gappy POD, it is possible to accurately reconstruct a vector that
is only partially known, provided that it is spanned by a previously
defined basis of POD vectors (Willcox, 2006; Xing et al., 2022; Jo
et al., 2019). In the case where the data live in a curved manifold,
the size of the POD basis required for accurate reconstruction of the
data is expected to be high, since several hyperplanes are necessary
to describe it; this will be discussed briefly in a subsequent section.
This drawback is addressed with DMAPs, which typically require less
coordinates than its linear counterpart, to accurately capture the data
variance (Martin-Linares et al., 2023).

The remainder of the paper is organized as follows: the main
concepts pertaining to DMAPs and Geometric Harmonics are presented,
followed by Double Diffusion Maps (Double DMAPs), which is the
particular implementation of the latter necessary for interpolation. The
Gappy POD method is then summarized for completeness. The CVD
reactor used in this work as a case study is then briefly described, as
well as some details about the CFD model which generates the data. The
results of the proposed workflow are then presented and compared to
the Gappy POD algorithm, followed by our conclusions.

2. Diffusion maps

Diffusion Maps (Coifman and Lafon, 2006a; Nadler et al., 2006;
Coifman et al., 2008) is a framework based upon diffusion processes for
finding meaningful geometric descriptions of data sets, even when the
underlying geometry of the data is complex, nonlinear and corrupted
by (relatively low level) noise. The method is based on the construction
of a Markov transition probability matrix, corresponding to a random
walk on a graph, whose vertices are the data points, with transition
probabilities being the local similarities between data points. The first
few eigenvectors of the sparse Markov matrix are used as data-driven
coordinates that provide a reparametrization of the data.

To construct a low-dimensional embedding for a data set 𝐗 of 𝑁
ndividual points (represented as 𝑑-dimensional real vectors 𝑥1,… , 𝑥𝑁 ),

∈ R𝑁×𝑑 ,a similarity measure between each pair of vectors 𝑥𝑖, 𝑥𝑗
s computed. The standard Euclidean distance is typically used for
his purpose. By using this similarity measure, an affinity matrix is
onstructed. A popular choice is the Gaussian kernel

(𝑖, 𝑗) = exp

[

−
(

‖𝑥𝑖 − 𝑥𝑗‖
𝜖

)2 ]

here 𝜖 is a hyperparameter that quantifies the kernel’s bandwidth.
To recover a parametrization insensitive to the sampling density, the
normalization

𝐖 = 𝐏−1𝐖𝐏−1
2

is performed, where 𝑃𝑖𝑖 =
∑𝑁
𝑗=1𝑊𝑖𝑗 and 𝑊𝑖𝑗 the elements of the matrix

𝐖. A second normalization applied on 𝐖,

𝐊 = 𝐃−1𝐖

gives a 𝑁 ×𝑁 Markov matrix K; here 𝐃 is a diagonal matrix, collecting
he row sums of matrix 𝐖. The stochastic matrix 𝐊 has a set of real
igenvalues 1 = 𝜆1 ≥ ... ≥ 𝜆𝑁 with corresponding eigenvectors 𝜙𝑖.

To check if dimensionality reduction can be achieved, the number
f retained eigenvectors has to be appropriately truncated. In practice,
t is useful to consider that not all obtained eigenvectors parametrize
ndependent directions, but rather most of them can be considered as
panning the same directions with different frequencies. Eigenvectors that
arametrize the same directions in this context are called harmonics
nd the ones that parametrize independent directions non-harmonics.
herefore, a minimal representation of the DMAPs space is made
ossible by carefully selecting the leading non-harmonic coordinates,
hich do not necessarily correspond to the most dominant eigenmodes
f the Markov matrix. This is a stark difference between DMAPs and its
inear counterpart, POD (also known as Principal Components Analysis,
CA), where the dominant modes are retained for the truncated repre-
entation of the data. If the number of the non-harmonic eigenvectors
s less than the number of the ambient space dimensions then model
variable) reduction is achieved.

An algorithm for identifying the non-harmonic eigenvectors is pre-
ented in (Dsilva et al., 2018), based on local linear regression. In

nutshell, a local linear function is used in order to fit the DMAP
oordinate 𝜙𝑘 as a local linear function, 𝑓 , of the previous vectors
�̃�𝑘−1 = [𝜙1, 𝜙2,… , 𝜙𝑘−1]). If 𝜙𝑘 can be accurately expressed as function
f the other DMAP coordinates over the data, then it does not represent
new direction on the dataset and is omitted for dimensionality

eduction. On the contrary if 𝜙𝑘 cannot be expressed as a function of the
revious eigenvectors, then 𝜙𝑘 is a new independent eigendirection that
s retained for a parsimonious representation of the data. To quantify
he accuracy of the fit, the following metric is used:

𝑘 =

√

√

√

√

∑𝑛
𝑖=1(𝜙𝑘(𝑖) − 𝑓 (�̃�𝑘−1(𝑖)))2

∑𝑛
𝑖=1(𝜙𝑘(𝑖))2

A small value of 𝑟𝑘 is associated with a 𝜙𝑘 that is a harmonic function
of the previous eigenmodes, whereas a higher value of 𝑟𝑘 signifies that
𝜙𝑘 is a new independent direction on the data manifold. It has been
demonstrated (Dsilva et al., 2018), that selecting only the eigenvec-
tors that correspond to higher values of 𝑟𝑘 leads to a parsimonious
representation of the data. Eventually, the vector 𝑥𝑖 is mapped to a
vector whose first component is the 𝑖th component of the first selected
nontrivial eigenvector, whose second component is the 𝑖th component
of the second selected nontrivial eigenvector, etc.

To map a new point, 𝑥𝑛𝑒𝑤, from the ambient space to DMAPs space,
a mathematically elegant approach known as Nyström extension is
used (Nyström, 1929; Fowlkes et al., 2001). The starting point of the
Nyström extension is to compute the distances between the new point,
𝑥𝑛𝑒𝑤 in ambient space, and the 𝑁 data points in the original data set;
the same normalizations used for DMAP need to be applied also here.
The Nyström extension formula reads

𝜙𝑗 (𝑥𝑛𝑒𝑤) = 𝜆−1𝑗

𝑁
∑

𝑖=1
�̃�(𝑥𝑖, 𝑥𝑛𝑒𝑤)𝜙𝑗 (𝑥𝑖),

where 𝜆𝑗 is the 𝑗th eigenvalue, 𝜙𝑗 (𝑥𝑖) is the 𝑖th component of the j-th
eigenvector and �̃�(⋅, 𝑥𝑛𝑒𝑤) is the kernel’s value between the new point
and each point in the original data set.

3. Geometric harmonics

Geometric Harmonics was introduced in Coifman and Lafon (2006a),
inspired by the Nyström Extension, as a scheme for extending functions
defined on data 𝐗, 𝑓 (𝐗) ∶ 𝐗 → R, for 𝑥 ∉ 𝐗. This extension is
𝑛𝑒𝑤
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achieved by using a particular set of basis functions called Geometric
Harmonics. These functions are computed as eigenvectors of the sym-
metric 𝑁 ×𝑁 𝐖 matrix, defined in Section 2. The eigendecomposition
of the symmetric and positive semidefinite matrix 𝐖 leads to a set of
orthonormal eigenvectors 𝝍1,𝝍2,… ,𝝍𝑁 and non negative eigenvalues
1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑁 ≥ 0.

From this set of eigenvectors, we consider a truncated subset 𝑆𝛿 = (𝛼:
𝛼 ≥ 𝛿𝜎1) where 𝛿 > 0. The extension of 𝑓 for a new point 𝑥𝑛𝑒𝑤
s accomplished by firstly projecting the function of interest in the
truncated) computed set of eigenvectors

→ 𝑃𝛿𝑓 =
∑

𝛼∈𝑆𝛿

⟨𝑓, 𝜓𝛼⟩𝜓𝛼 ,

here 𝑃𝛿 denotes the projection of the function 𝑓 on the eigenvectors
we retained and ⟨𝑓, 𝜓𝛼⟩ is the inner product between the function 𝑓 and
he obtained 𝛼-th eigenvector 𝜓𝛼 . This projection step is performed only
nce.

To obtain the values of function 𝑓 for 𝑥𝑛𝑒𝑤 ∉ 𝐗, we extend the
Geometric Harmonic functions as

𝛹𝛼(𝑥𝑛𝑒𝑤) = 𝜎−1𝛼

𝑁
∑

𝑖=1
𝑤(𝑥𝑛𝑒𝑤, 𝑥𝑖)𝜓𝛼(𝑥𝑖)

where 𝜎𝛼 is the 𝛼-th eigenvalue, 𝜓𝛼(𝑥𝑖) is the 𝑖th component of the 𝛼-th
eigenvector and 𝑤(𝑥𝑛𝑒𝑤, 𝑥𝑖) denotes the kernel

𝑤(𝑥𝑛𝑒𝑤, 𝑥𝑖) = exp
[

−
(

‖𝑥𝑛𝑒𝑤 − 𝑥𝑖‖
𝜖

)2]

The function 𝑓 at 𝑥𝑛𝑒𝑤 is then estimated as a linear combination of the
extended Geometric Harmonics

(𝐸𝑓 )(𝑥𝑛𝑒𝑤) =
∑

𝛼∈𝑆𝛿

⟨𝑓, 𝜓𝛼⟩𝛹𝛼(𝑥𝑛𝑒𝑤)

where 𝐸𝑓 denotes the estimated values of 𝑓 at 𝑥𝑛𝑒𝑤.

4. Double diffusion maps and latent harmonics

A slight twist of the Geometric Harmonics is presented in this
section. As discussed above, Geometric Harmonics constructs an input–
output mapping between the ambient coordinates X and a function of
interest 𝑓 defined on X. However, it is possible, if the data are lower
dimensional to construct a map in terms of only the non-harmonic
eigenvectors, Φ. This can be achieved by operating directly on the
non-harmonic DMAPs coordinates. Similar to the traditional Geometric
Harmonics, firstly an affinity matrix is constructed

𝑤(𝑖, 𝑗) = exp

[

−
(

‖𝜙𝑖 − 𝜙𝑗‖
𝜖⋆

)2 ]

.

n this case the affinity matrix is constructed in term of the DMAPs
oordinates. To distinguish the notation between Geometric Harmonics
nd Double DMAPs, we will use overlined symbols and 𝜖∗. As in

the traditional Geometric Harmonics, the function 𝑓 is projected to a
truncated set of the obtained eigenvectors

𝑓 → 𝑃𝛿𝑓 =
∑

𝛽∈𝑆𝛿

⟨𝑓, 𝜓𝛽⟩𝜓𝛽 .

he extension of 𝑓 for 𝝓𝑛𝑒𝑤 is achieved by firstly extending the values
of the Geometric Harmonic functions 𝛹 𝛽 for 𝝓𝑛𝑒𝑤,

𝛹 𝛽 (𝝓𝑛𝑒𝑤) = 𝜎−1𝛽

𝑁
∑

𝑖=1
𝑤(𝜙𝑛𝑒𝑤, 𝜙𝑖)𝜓𝛽 (𝝓𝑖),

nd then estimating the value of 𝑓 at 𝝓𝑛𝑒𝑤

𝐸𝑓 )(𝝓𝑛𝑒𝑤) =
∑

⟨𝑓, 𝜓𝛽⟩𝛹 𝛽 (𝝓𝑛𝑒𝑤)
3

𝛽∈𝑆𝛿
5. Gappy POD

In this section the Gappy POD method is summarized, in order
to better highlight the differences with the proposed approach. Lets
consider the matrix, 𝐗 = 𝐗T, the transpose of the data set 𝐗. A POD
basis, 𝐔 ∈ R𝑑×𝑁 , of 𝐗 is computed. We approximate 𝐗 using a truncated
number, 𝑁𝑝 of basis vectors, where 𝑁𝑝 ≤ 𝑁 such that:

‖𝐗 − �̃�‖
‖𝐗‖

100 ≤ 𝜖𝑝

where 𝜖𝑝 is a prescribed tolerance for the truncation; in our case
𝜖𝑝 = 5% was selected.

Let us consider a vector 𝑥𝑛𝑒𝑤 not in the original data set, spanned
by the same basis 𝐔, for which only 𝜇 values of this vector are known
(𝜇 partial observations are known) denoted as 𝑥𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑛𝑒𝑤

𝑥𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑛𝑒𝑤 = 𝑚 ⊙ 𝑥𝑛𝑒𝑤

where ⊙ denotes the pointwise multiplication, between the vector 𝑥𝑛𝑒𝑤
and 𝑚 the masking vector that contains ones in the positions of the 𝜇
known vector components and zeros in the rest.

The goal is to find the missing values (observations) of 𝑥𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑛𝑒𝑤 . This
is achieved by the following step

𝑥𝑟𝑒𝑐𝑛𝑒𝑤 = 𝐔𝐩𝑐

where 𝑥𝑟𝑒𝑐𝑛𝑒𝑤 is the recovered vector, 𝐔𝑝 is the truncated POD basis and
𝑐 are the POD coefficients estimated by solving the following linear
system of equations

𝐀 ⋅ 𝑐 = (𝑚 ⊙ 𝐔) ⋅ 𝑥𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑛𝑒𝑤

here 𝐀 is given by

𝐀 = (𝑚 ⊙ 𝐔)T(𝑚 ⊙ 𝐔)

.1. The drawback of hyperplanes in parsimoniously capturing nonlinearity

In the case where the data live on a curved manifold, the size
f the POD basis required for accurate reconstruction of the data is
xpected to be higher than the intrinsic dimension of the manifold,
ince it needs to be spanned by several hyperplanes. In Fig. 1, an
llustrative caricature of data sampled from the singularly perturbed
ystem �̇� = 2 − 𝑥− 𝑦, �̇� = 1

𝜀 (𝑥− 𝑦) is aiming to convey this shortcoming
of POD in contrast to its nonlinear counterpart, DMAPs. In Fig. 1(a)
the direction of the first POD basis vector 𝐮1 is shown as a red vector.
The direction of 𝐮1 parametrizes the data but does not fully span them
because of their nonlinearity. To accurately reproduce this nonlinear
curve both POD basis vectors are needed. Please notice that, as can be
seen from Fig. 1(b), the coefficient of the second POD basis vector (𝐮2)
is a function of the first POD mode coefficient (𝐮1). On the contrary,
ig. 1(c) illustrates that DMAPs applied on this data set need only a
ingle coordinate, 𝜙1 to fully parametrize the data.

. Case study

The case study here is the vertical cylindrical Metal Organic Chemi-
al Vapor Phase Deposition (MOCVD) reactor used for the deposition of
u from copper amidinate, described in Spencer et al. (2021), shown

n Fig. 2. The mixture of gas reactants enters the chamber from the
op, then gets evenly distributed by passing through a showerhead and
ventually leads to the deposition of Cu on a heated substrate. The
uality of the produced film is affected by various process parameters;
mong them, significant effect have the deposition temperature, 𝑇 , the

mass flow rate of incoming gas, 𝑀 and the chamber pressure, 𝑃 .
In this work, the conservation equations for mass, momentum,

energy and species are discretized with the finite volume method
with 11,500 finite volumes and solved in ANSYS/Fluent, in a two-
dimensional computational geometry with axial symmetry (cf. Fig. 2).
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Fig. 1. (a) A data set sampled from a singularly perturbed dynamical system is shown (black dots). The span of the first POD basis vector is shown with a red vector (𝐮1) and the
span of the second POD basis vector is shown as a blue vector (𝐮2) (b) The components of the first POD basis vector 𝐮1 plotted against the components of the second POD basis

vector 𝐮2 indicating that 𝐮2 is a function of 𝐮1 (c) the first non-trivial DMAPs, 𝜙1, eigenvector is plotted as function on the data set, indicating that is able to fully parametrize it.
Fig. 2. (a) Schematic illustration of the experimental MOCVD reactor; (b) 2D computational domain with axial symmetry and representative temperature distribution.
The interested reader is referred to Spencer et al. (2021) for details
on the setup of the CFD model. Here some relevant details are in-
cluded for completeness. In this implementation, the temperature of
the walls and of the incoming gas mixture is constant at 𝑇𝑤 = 370 K
and 𝑇𝑔 = 370 K respectively. The composition of the mixture of
incoming gas, in terms of mass fractions is 𝐴𝑟∕𝑁2∕𝐻2∕ Cu amidinate
= 73.9%/25.5%/0.4%/0.1%. Steady states are computed for various
inputs, i.e. values of three critical, for the process, parameters: the
substrate temperature, 𝑇 , the chamber pressure, 𝑃 and the mass inflow
rate of the mixture of gas reactants, 𝑀 . Specifically, the input (or
parameter) space is uniformly sampled for 487 K < 𝑇 < 501 K,
7.97 × 10−6 kg∕s < 𝑀 < 8.87 × 10−6 kg∕s and 1383 Pa < 𝑃 < 1463 Pa,
as shown in Fig. 3a. This region in parameter space is interesting for
the process, as it corresponds to the transition between the kinetics-
and transport-limited regime, i.e. the process turns from being limited
by the reaction rate to being defined by the diffusion rate of species
toward the deposition surface.

The resulting states are collected as an ensemble of high
-dimensional vectors containing the values of the two components of
velocity, pressure, temperature and precursor mass fraction at each dis-
cretization point (cf. Fig. 3b). Eventually, the sample matrix 𝐗 ∈ R𝑁×𝑑

is assembled, where 𝑑 = 58,100 degrees of freedom (dimensions) and
𝑁 = 720 samples, i.e. vectors containing steady states.

7. Results

7.1. Interpolation between ambient and intrinsic space

The DMAPs algorithm is implemented to identify a low dimensional
parametrization of the data manifold. In order to establish which are
4

the independent coordinates, it is useful to examine the variation of
each eigenvector versus the first non-trivial eigenvector of the Markov
matrix, as shown in Fig. 4: the two-dimensional variation of 𝜙3 vs.
𝜙2 (cf. Fig. 4a) signifies that there are two independent directions on
the data. Having established that the intrinsic space is at least two-
dimensional, the subsequent DMAP eigenvectors are plotted against
the first two. The fact that the 3D plot of 𝜙4 vs. 𝜙3 and 𝜙2 reveals a
surface (cf. Fig. 4b), suggests that 𝜙4 is a harmonic of the previous
two. In contrast, 𝜙5 is a new independent eigenvector and hence its
variation versus the first two independent DMAPS reveals a 3D object
(cf. Fig. 4c).

These visual observations are verified by the results of the im-
plementation of the local linear regression algorithm (Dsilva et al.,
2018), according to which a function 𝑓 (𝜙𝑘−1, 𝜙𝑘−2,…𝜙1) is fitted to
𝜙𝑘. The results suggest that indeed 𝜙2, 𝜙3, 𝜙5 (cf. Fig. 5), represent a
parsimonious low dimensional embedding of the available data, since
the error, 𝑟𝑘 of the local linear regression function is high for 𝜙3 and
𝜙5. On the contrary, 𝑟𝑘 for 𝜙4 is small, indicating that it is a harmonic
function of 𝜙2.

In an attempt to provide a physical interpretation of the derived
low dimensional coordinates, the eigenvectors 𝜙2, 𝜙3, 𝜙5 are plotted
and colored by the values of 𝑇 (Fig. 6a), 𝑀 (Fig. 6b) and 𝑃 (Fig. 6c).
Each one of the three directions in the reduced space corresponds to
the variation of each one of the three input parameters. This is shown
with more clarity in (Fig. 6d), (Fig. 6e) and (Fig. 6f), specifically that
𝜙2 corresponds to 𝑇 , 𝜙3 to 𝑀 and 𝜙5 to 𝑃 . Therefore, the DMAP coor-
dinates provide a parametrization that appears to be one-to-one with
the actual physical parameters that were varied in order to produce it.

The inverse map, 𝑓−1, i.e. from the reduced to the ambient space,
is approximated with the double DMAPS Geometric Harmonics inter-

polation and its accuracy is assessed against a random test sample. For
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Fig. 3. (a) Input parameters for the collection of data; (b) Sample set 𝐗 ∈ R𝑑×𝑁 , where 𝑑 is the total number of degrees of freedom of the CFD model and 𝑁 is the number of
collected steady states.
Fig. 4. Diffusion Maps: (a) 𝜙3 vs. 𝜙2; (b) 𝜙4 vs. 𝜙3 and 𝜙2; (c) 𝜙5 vs. 𝜙2 and 𝜙3; the three-dimensional ‘‘spread’’ of 𝜙5 with respect to 𝜙3 and 𝜙2 suggests that these are independent
directions on the low dimensional space; the distribution of 𝜙4 with respect to 𝜙2 and 𝜙3 lies on a surface which indicates that 𝜙4 is a harmonic function of 𝜙2 and 𝜙3.
Fig. 5. Residual of the local linear regression algorithm, 𝑟𝑘; The first, second and fourth
nontrivial eigenvectors (𝜙2 , 𝜙3 , 𝜙5) have the highest 𝑟𝑘 values, indicating that they each
represent independent directions on the data manifold.

this implementation, the value of the kernel parameter 𝜖 = 5.105 and
38 eigenvectors are retained as interpolation functions. The % relative
error for each vector, shown in Fig. 7, is computed as:
5

%error =
(

𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 −𝑋𝑎𝑐𝑡𝑢𝑎𝑙𝑖
𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖

)

100.
The average error for the test samples is 0.01%.

7.2. Prediction of outputs for a new set of inputs

The mapping from the ambient space to the intrinsic space and
back provides a means of deriving various useful correlations, such as
the prediction for a new output of a set of input parameters. Specif-
ically, Geometric Harmonics interpolation is implemented in order
to define functions 𝑔1 ∶ (𝜙2) = 𝑔1(𝑇 , 𝑃 ,𝑀), 𝑔2 ∶ (𝜙3) = 𝑔2(𝑇 , 𝑃 ,𝑀) and
𝑔3 ∶ (𝜙5) = 𝑔3(𝑇 , 𝑃 ,𝑀). The interpolation mean squared error for 𝜙2, 𝜙3
and 𝜙5 is 7.39 × 10−8, 2.23 × 10−6 and 9.12 × 10−6 respectively. The
predicted reduced coordinates versus the actual ones are shown in
Fig. 8.

Having established a mapping from the input space to the reduced
variables, Double DMAPs interpolation with Geometric Harmonics –
which defines the inverse map described in the previous paragraph – is
implemented in order to find the corresponding state variables in the
ambient space. The average mean squared error for the test sample is
(1.2 × 10−5).

7.3. Prediction of the inputs that correspond to a new output

It is possible to find the values of inputs, (𝑇 , 𝑃 , 𝑀) that correspond
to a new output, by first using the Nyström extension to obtain the
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Fig. 6. The identified DMAP coordinates 𝜙2 , 𝜙3 , 𝜙5, plotted and colored by the process inputs (a) 𝑇 , (b) 𝑀 , (c) 𝑃 ; the three-dimensional plots show that the variation of 𝜙2 , 𝜙3 , 𝜙5,
follow the variation of 𝑇 , 𝑀 and 𝑃 respectively. This is further demonstrated in (d), (e) and (f) respectively.
Fig. 7. Prediction error of the Double DMAP implementation of Geometric Harmonics
for each one of the vectors 𝑥𝑖 in the test sample.

corresponding reduced variables. Then an interpolation function can be
constructed from the reduced coordinates to the input parameters, with
Double DMAPS: (𝑇 , 𝑃 ,𝑀) = 𝑓 (𝜙2, 𝜙3, 𝜙5). The interpolation relative
error is below 0.5%, as shown in the top row of Fig. 9 and the predicted
input parameters versus the actual ones are shown in the bottom row
of Fig. 9.

7.4. Prediction of inputs from partial observations

Instead of a full state vector in ambient space, it is also possible to
use partial observations, such as, for example, the value of temperature
at a few points, in order to predict the corresponding input values. To
this end, Geometric Harmonics interpolation is implemented in order
to define a function (𝜙2, 𝜙3, 𝜙5) = 𝑓 (𝑋1

𝑝𝑎𝑟𝑡𝑖𝑎𝑙 , 𝑋
2
𝑝𝑎𝑟𝑡𝑖𝑎𝑙 , 𝑋

3
𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ,… , 𝑋𝑚

𝑝𝑎𝑟𝑡𝑖𝑎𝑙).
In this implementation, 𝑋𝑖

𝑝𝑎𝑟𝑡𝑖𝑎𝑙 , 𝑖 = 1,… , 𝑚 are values of temperature
in seven random positions (cf. Fig. 11a). From the reduced space, it is
now possible to map to the input space with the interpolation function
from the reduced space to the input space discussed in the previous
paragraph.

The number of partial observations required in order to define the
function from the partial observations to the input space is dictated
6

by Whitney’s embedding theorem (Whitney, 1936). 2𝑛 + 1 indepen-
dent observations are provably sufficient to create an embedding of
the 𝑚-dimensional manifold. Here, for the three-dimensional reduced
manifold, at least seven partial observations should be considered.
Eventually the predicted values of the input parameters for the test
sample are in excellent agreement with the actual values, as presented
in Fig. 10, where the prediction relative error for the test sample is
shown to be on average less than 0.1%.

7.5. Prediction of partial observations from other partial observations

The possibility to predict part of the observations, given a different
part of the observations, is discussed in this section. As an illustrative
example, the prediction of the value of mass fractions right above
the heated susceptor surface (cf. Fig. 11b), given seven temperature
measurements in a different part of the geometry (cf. Fig. 11a) will
be presented here. This choice is dictated by the fact that, although
in this particular process the mass fraction of precursor reaching the
deposition surface is crucial for determining both the quality of the
product and also the film deposition rate, it is not easily measurable.
On the other hand, temperature measurements are generally more
accessible, and the idea is to use such measurements in order to make
predictions for quantities that are harder to measure, similar to the
concept of a nonlinear observer.

To begin with, the function (𝜙2, 𝜙3, 𝜙5) = 𝑓 (𝑋1
𝑝𝑎𝑟𝑡𝑖𝑎𝑙 , 𝑋

2
𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ,… ,

𝑋𝑚
𝑝𝑎𝑟𝑡𝑖𝑎𝑙), discussed in the previous paragraph is used in order to map

from the partial observations to the reduced space. The inverse func-
tion, 𝑓−1, from the reduced to ambient space, is then used in order
to predict the desired values (in this case the values of the species
mass fractions above the heated substrate at seven points). The average
relative error is less than 0.5% (cf. Fig. 12a), whereas the predicted
versus the actual values of the mass fraction at a single point above the
substrate is shown in Fig. 12b.

7.6. Implementation of Gappy POD and comparison to DMAPs-based pre-
dictions

In this section the Gappy POD method is implemented and the
results are compared to those delivered by the DMAPs/Geometric
Harmonics method presented in the previous sections. The first step is
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Fig. 8. The predicted versus the actual DMAPs coordinates. The solid lines correspond to 𝑦 = 𝑥.
Fig. 9. Prediction % relative error of input parameters (a) 𝑇 , (b) 𝑃 , (c) 𝑀 that correspond to a new state in the ambient space. Predicted versus actual values of (d) 𝑇 , (e) 𝑃 ,
(f) 𝑀 ; the red dashed lines correspond to 𝑦 = 𝑥.
Fig. 10. Prediction error of inputs 𝑇 , 𝑃 , 𝑀 .
to compute a basis of the given data-set using Singular Value Decom-
position. The size of the basis is determined based on the cumulative
percentage of the energy of the system captured by 𝑖 modes, defined as

𝐸𝑖% =
∑𝑖
𝑛=1 𝜉𝑛

∑𝑚 ∗ 100
7

𝑛=1 𝜉𝑛
where 𝜉𝑛 stands for the 𝑛th singular value of the diagonal matrix Ξ

that results from the singular value decomposition of the transpose
of the data matrix 𝐗. In addition to that, the reconstruction error of
the data-set is computed for increasing size of the POD basis. In this
implementation, and for the purposes of comparison, the selected POD
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Fig. 11. Partial observations: (a) positions in computational geometry where temperature values are considered; (b) positions in computational geometry where mass fractions are
predicted; The red line indicates the heater susceptor surface where deposition of material takes place.
Fig. 12. (a) Approximation error for the mass fraction, 𝜔 values in the sample test set (b) predicted vs. actual mass fraction values at one point for all test samples.
Fig. 13. (a) Cumulative energy captured by POD modes (b) Mean absolute percentage error of the reconstructed data-set 𝐗.
basis consists of 3 vectors that capture 99.93% of the energy of the
system (cf Fig. 13a) and the approximation error is 4.7% (cf Fig. 13b).

Initially, the goal is to predict the output vector 𝑥𝑛𝑒𝑤, containing
the distributions of velocity, pressure, temperature and mass fractions,
8

given a new set of process parameters (𝑇 , 𝑃 , 𝑀). Therefore, the
partial data considered in this comparison correspond to the values
of the three process parameters. The predicted values are compared
to the projection of the test vector on the POD basis. In this case the
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Fig. 14. Prediction error (a) x-velocity (b) temperature (c) precursor mass fraction.
Fig. 15. Predicted vs. actual values of (a) x-velocity (b) temperature (c) precursor mass fraction.
predictions are inaccurate, especially for the temperature distributions
(cf. Fig. 14b) and even unphysical as negative values for the mass
fractions are produced (cf. Fig. 14c).

Nevertheless, the results of the Gappy POD method are heavily
influenced by the choice of the ‘‘known’’ values, i.e. the partial data
considered. To illustrate this, instead of the three process parameters,
three values of temperature are considered known, a subset of the
values mentioned in Section 7.4 and shown in Fig. 11a. In this case
the approximation error drops to 8%, while the predicted versus actual
velocity, temperature and mass fractions are shown in Fig. 15a, 15b
and 15c respectively.

This finding is directly related to the condition number of the matrix
𝐀, defined in Section 5. Specifically, the elements of this matrix result
from the inner products of the ‘‘Gappy’’ POD vectors, i.e. the elements
of the original POD vectors that correspond to the known elements of
𝑥𝑛𝑒𝑤. These are no longer orthogonal, and therefore the matrix 𝐀 is
fully populated. In general, the positions of the known elements, and
hence the non-zero elements of 𝐀, must be such that orthogonality is
preserved. Furthermore, the diagonal entries of 𝐀 must not be very
small, which means that the POD basis element at that point must
not be small. These two requirements are reflected in the condition
number of the matrix 𝐀: specifically, the smaller the condition num-
ber, the more they are satisfied. This analysis is presented in Willcox
(2006), in the context of optimal sensor placement, and in Alonso et al.
(2004a), where the angle between the measurement subspace and the
low dimensional space that spans the data is taken into account. The
condition number of 𝐀 drops from 12.4 × 1012 to 24.5 when the known
components correspond to the input parameters and the temperature
measurements respectively.

When all the temperature measurements at points shown in Fig. 10a
are known, the prediction error drops further to 0.1% and it is possible
to reproduce accurately the distributions of velocity (cf Fig. 16a),
temperature (cf Fig. 16b) and pressure (cf Fig. 16c), as well as the
corresponding process parameters (cf Fig. 17 a, b and for 𝑇 , 𝑃 and
9

𝑀 respectively). In this case the condition number of the matrix 𝐀 is
12.45.

The results above, point directly to the apparent disadvantage of
Gappy POD, when compared to the proposed methodology, based
on DMAPs: given the same number of POD vectors as DMAP coor-
dinates, the accuracy of Gappy POD is inherently linked to which
elements of the partial vector are known. This consideration is much
less prevalent when DMAPs/Geometric Harmonics are implemented,
which enables the accurate prediction of entire vectors of outputs for
various new combinations of input parameters, as well as from partial
measurements.

Apart from the pathology related to the known values, one ex-
pected drawback of Gappy POD is directly linked to the inability
of hyperplanes to accurately parametrize a curved manifold. In this
implementation this is reflected in the size of the POD basis required
to reconstruct the data set with an error of less than 1%: here 5 POD
modes are required to achieve 0.7% reconstruction error, more than the
only 3 DMAPs coordinates that are sufficient to parametrize the mani-
fold. By selecting 5 POD modes, it is no longer possible to reconstruct
the state vector, given the values of the three input parameters, 𝑇 , 𝑃 and
𝑀 . In this case, the values of at least 5 measurements are necessary to
achieve accurate reconstruction of the state vector. This is illustrated
in Fig. 18, where the predicted input parameters and distributions
of velocity, temperature and mass fractions are plotted against the
actual values. In this implementation, the value of temperature at five
positions are considered known.

8. Conclusions

This work presents a data-driven workflow, based on nonlinear
manifold learning, specifically DMAPs, that enables the parsimonious
description of high-dimensional data, but also interpolation and regres-
sion for out-of-sample predictions with remarkable accuracy.
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Fig. 16. Predicted vs. actual values of (a) x-velocity (b) temperature (c) precursor mass fractions.
Fig. 17. Predicted vs. actual values of (a) temperature, 𝑇 (b) mass flow rate, 𝑀 (c) pressure, 𝑃 .
Fig. 18. Gappy POD performance: 5 POD vectors and 5 known Temperature values; predicted vs. actual values of (a) temperature, 𝑇 (b) mass flow rate, 𝑀 (c) pressure, 𝑃 , (d)
x-velocity (e) temperature (f) mass fractions.
The case study here is a Chemical Vapour Deposition Reactor,
although the proposed approach is not restricted to this particular
application. Mapping between the reduced (or DMAPs) and the ambient
10
space is achieved with Geometric Harmonics, amended with a special
‘‘twist’’ that implements a second round of DMAPs in order to define
functions for accurate interpolation.
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Having defined the reduced description of the data-set and the
means to map back and forth between ambient and reduced DMAPs
space, we proceed to show the implementation of out-of-sample pre-
dictions: We first demonstrate the possibility to predict the high-
dimensional output of a new set of inputs, here process parame-
ters, namely temperature, pressure and the mass inflow rate, without
additional expensive CFD simulations. The opposite, i.e. accurately
predicting the inputs that correspond to a new output, is also possible.

Based on the reduced description of the data-set, provided by
DMAPs, and the computational means of transitioning between the am-
bient and the reduced DMAPs space of the data, we show how to predict
not only outputs but also inputs, i.e. process parameters, when only a
handful of measurements, temperature in this case, are known we also
demonstrate the superiority of interpolating on nonlinear manifolds
(our ‘‘Gappy DMAPs’’ approach) rather than on linear hyper-planes, as
in the Gappy POD approach.
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