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“Nature uses only the longest threads to weave her patterns, so that each small piece of her
fabric reveals the organization of the entire tapestry.”

Richard P. Feynman
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Abstract

The increasing interest in the climate in general and, in particular, in the role that Arctic
processes play within it has led to an increasing demand for accurate predictions for sea ice
motion. However, the problem of finding suitable equations to accurately describe the drift
and deformation of the sea ice cover has challenged the sea ice dynamics community for
many years. This thesis presents the developments in sea ice modeling research, from its
origins to the current state focusing on models based on a continuum mechanics framework.
To do so, we will first describe the relevant sea ice state parameters: sea ice velocity, sea
ice thickness, sea ice concentration, internal sea ice stresses and sea ice properties like
cohesion as well as the equations describing their time evolution. Special attention will be
devoted to the formulation of the internal stress as function of the (rate of) deformation,
i.e. the rheology. This relation changed from being absent, as the earliest models did
not include internal stresses, via a simple linear relation, similar to the one found in a
viscous fluid, to rheologies in which ice can exhibit different relations below and above a
critical stress threshold given by a yield curve. The Mohr-Coulomb curve and elliptic yield
curves will be discussed. Subcritical ice behavior is either elastic, viscous or a combination
of the two. Supercritical ice deforms plastically. Discussed examples of such rheologies
are the elastic-plastic (EP) and viscous-plastic (VP) rheologies. As a consequence of the
need to stay within the yield curve, the viscosity and/or elasticity needs to change. It
has been found that models are more capable of reproducing features in the sea ice if the
processes happening at a lower scale than the model spatial resolution are parametrized.
This has resulted in the development of the the Elasto-Brittle (EB), the Maxwell-Elasto-
Brittle (MEB) and the Brittle-Bingham-Maxwell (BBM) rheologies. The latter is the
current state-of-art model rheology successful in reproducing the multifractal nature of
sea ice deformation in both space and time, i.e. the characteristic heterogeneity and
intermittency.

Keywords: sea ice dynamics, sea ice rheology, brittle mechanics, multifractality.
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Sommario

Il crescente interesse per il clima in generale e, in particolare, per il ruolo svolto dai processi
artici al suo interno, ha portato a una crescente richiesta di previsioni accurate per il moto
del ghiaccio marino. Tuttavia, il problema di trovare equazioni adeguate per descrivere con
precisione la deriva e la deformazione della coperta di ghiaccio marino ha messo alla prova
la comunità scientifica per molti anni. Questa tesi presenta gli sviluppi nella ricerca sulla
modellizzazione del ghiaccio marino, dalle sue origini allo stato attuale, concentrandosi su
modelli basati su una schematizzazione del ghiaccio come un mezzo continuo. Per fare
ciò, descriveremo innanzitutto i parametri caratterizzanti lo stato del ghiaccio marino:
la velocità di deriva, lo spessore, la concentrazione, gli sforzi interni e le proprietà del
ghiaccio marino come la coesione, così come le equazioni che ne descrivono l’evoluzione
temporale. Particolare attenzione sarà dedicata alla formulazione dello sforzo interno come
funzione della (variazione di) deformazione, ovvero la reologia. Storicamente, si è passati
da un’assenza di tale relazione, poiché i primi modelli non includevano gli sforzi interni,
attraverso una semplice relazione lineare, simile a quella di un fluido viscoso, a reologie in
cui il ghiaccio può presentare diverse relazioni al di sotto e al di sopra di una soglia critica
data da una curva di resa. Saranno discusse la curva di Mohr-Coulomb e le curve di resa
ellittiche. Il comportamento subcritico del ghiaccio è elastico, viscoso o una combinazione
dei due. Il ghiaccio supercritico si deforma plasticamente. Esempi di tali reologie discusse
sono le reologie elastico-plastiche (EP) e viscoso-plastiche (VP). A causa della necessità
di rimanere entro la curva di resa, la viscosità e/o l’elasticità devono cambiare. Si è
scoperto che i modelli sono più capaci di riprodurre le caratteristiche del ghiaccio marino
se i processi che avvengono su una scala inferiore rispetto alla risoluzione spaziale del
modello sono parametrizzati. Ciò ha portato allo sviluppo delle reologie note con il nome
di Elasto-Brittle (EB), Maxwell-Elasto-Brittle (MEB) e Brittle-Bingham-Maxwell (BBM).
Quest’ultima è la reologia implementata dal modello attualmente più avanzato, che si è
dimostrata capace di riprodurre la natura multifrattale della deformazione del ghiaccio
sia nel dominio spaziale che in quello temporale, ovvero l’eterogeneità e l’intermittenza
caratteristiche.

Parole chiave: dinamica del ghiaccio marino, reologia del ghiaccio marino, meccanica
dei mezzi fragili, multifrattalità.
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Chapter 1

Introduction

The sea ice cover

Sea ice is what we call any form of frozen seawater floating on the ocean surface. The
main components are brittle floes, irregularly shaped pieces of ice, with large horizontal
dimensions, normally between 100m and 5 km, several meters thick, which form a contin-
uous cover by welding together during winter (see Figures 1.1 and 1.2). The presence of
the atmosphere and the ocean bounding sea ice contribute to its deformation and motion:
wind and water stress cause the cover to fracture and to drift over the ocean. As a result
of the external forcing the cover fails to form a set of cracks. When these narrow features
align together they form long regions of open water (or very thin ice) called leads. If sea
ice is very compact and subject to a high stresses, it can pile up to form pressure ridges
(Nansen, 1897). Remote sensing observations processed during the first RADARSAT pro-
gram (1995-2013) using synthetic aperture radar imagery showed the existence of localized
regions of shear in the sea ice cover, known as Linear Kinematic Features (LKFs; Kwok
et al. 1998; Kwok 2001). Consisting of leads and ridges, these are basically regions of
strong weakness of the cover and their properties give us critical information about the
nature of the mechanical behavior of sea ice both at the smaller and at the larger scales.

Motivation for the study

Sea ice is a critical component of the Earth’s cryosphere. It is profoundly important in
regulating the planet’s climate and in influencing various interconnected systems. The
albedo effect, a key mechanism associated with sea ice, plays a pivotal role in climate reg-
ulation. With its high albedo, sea ice reflects back a substantial portion of incoming solar
radiation. This reflective quality helps to maintain Earth’s energy balance by preventing
the excessive absorption of solar energy in the underlying ocean. As sea ice diminishes,
the reduction of this reflective surface contributes to a positive feedback loop, amplifying
warming trends.

Beyond its albedo effect, sea ice actively participates in driving global ocean circulation
patterns. The formation of sea ice in polar regions contributes to the production of dense,
cold water, fostering the global thermohaline circulation1. Alterations in sea ice dynamics
can influence these circulation patterns, thereby impacting climate systems on a global
scale.

Changes in sea ice can also influence atmospheric circulation patterns, potentially
altering weather systems globally. This includes shifts in storm tracks and precipitation
patterns, which can have far-reaching consequences for regional climates.

1Thermohaline circulation, also known as the “global conveyor belt”, is a deep-ocean current system
resulting from temperature and salinity-driven density variations. In polar regions, cold temperatures
cause seawater to freeze into ice, leaving behind saltier water that sinks due to increased density. This
sinking initiates a continuous cycle of deep-ocean currents, playing a vital role in redistributing heat and
momentum worldwide.
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Figure 1.1: The picture shows sea ice floes as present in the Nares Strait
during the Enduring Ice Project (see https://albedo.cool/).

Credit: Cristopher Horvat.

Sea ice’s dynamic nature affects various maritime activities, including shipping routes
and resource extraction such as oil and gas. Diminishing sea ice opens up new possibilities
for navigation in the Arctic. This presents both opportunities and challenges for human
endeavors in polar regions.

Reports, such as those from the US National Snow & Ice Data Center, indicate an
undoubted decline in the Arctic’s sea ice cover extent. This decline, measured as the area
of the ocean covered by sea ice for a fractional portion of at least 15%, has been observed
since the systematic collection of data commenced in 1979.

Motivated by this an international effort to create an advanced continuum sea ice model
for climate research has been initiated: the Scale-Aware Sea Ice Project - SASIP. SASIP
aims at radical knowledge step in the understanding of the sea-ice processes and on our
ability to model them. The project’s scope is to accurately capture sea ice dynamics, i.e.
the drift and deformation, and thermodynamics, i.e. the melting/growing by incorporating
physical accuracy, data adaptability, high parallelization and computational efficiency.
SASIP intends to leverage machine learning and data assimilation techniques, utilizing
extensive datasets from simulations and remote sensing to enhance its capabilities.

A multiscale dynamics

Sea ice is a complex medium with a very heterogeneous (granular) nature at the smaller
scales and a quasi-continuum nature at the larger scales. This is especially true during
the colder seasons (see Figure 1.2). As will be discussed in this work, sea-ice deformation
exhibits multifractal properties: it is characterized by many intense events isolated in
time and the deformation is strongly localized in space around the LKFs. This renders it
necessary to adopt a multiscale modeling approach.

https://albedo.cool/
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Figure 1.2: Aerial pictures of sea ice (from bottom to top) at the scale
of 100m, ∼ 5 km and 60 km. At the smallest time and space scales, the
discontinuous nature of the ice cover cannot be ignored when modeling its
deformation and drift. At large scales (104 m), the ice cover is constituted
by a large number of individual ice floes of different shapes and sizes and

is described by mean quantities in continuum models.
From Dansereau (2016)

Aiming to build a model that is consistent with observations, makes the resolution at
which observations are obtainable a critical factor. Current resolution for sea ice defor-
mation measurements from the RADARSAT Geophysical Processor system (RGPS), that
is the main source of observations for this kinematic quantity in the Arctic to date, is of
the order of 10 km.

In this work we focus on the larger scales, which allows for the use and development
of a continuum theory approaches. This approach is also the one that is currently taken
by sea ice models effectively implemented into larger climate models (e.g. The CMIP6
Sea-Ice Model Intercomparison Project; Notz et al. 2016).

Coupling to thermodynamics

In this thesis the mechanical behavior of sea ice is analyzed ignoring the thermodynamics.
Mechanical growth occurs at very short time scales compared to thermal production,
therefore, in the long run, thermal production of ice volume usually exceeds mechanical
production (Leppäranta, 2011). This strongly impacts the time horizon until when the
model can provide a faithful description of reality. This is one of the main reasons why
these mechanical models are used is a stand-alone (non-coupled) implementation. Large
coupled climate models (ice-ocean-atmosphere-land) are usually run for longer timescales,
thus in those cases it is unavoidable to include ice thermodynamics. Forcing provided by
solar radiation and heat exchange with water and air lead to ice growth and melt both in
the interior and at the boundaries. Freezing and melting are thus responsible for changing
ice material properties. To account for this, the conservation laws for these properties
should contain appropriate sink/source terms. However, models of thermodynamics are,
to a good approximation, vertical (Maykut and Untersteiner, 1971). This partly supports
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the commonly adopted perspective of treating sea ice as a flat, two-dimensional sheet
whose motion is happening in the horizontal plane.

Structure of the thesis

This work is meant to provide the theoretical basis underlying continuum models of sea
ice dynamics and review some of the main approaches employed in the modeling of its
rheological behavior. The structure is the following:

• Chapter 2 explains why we treat ice as a two-dimensional continuous sheet. The
relevant quantities entering the mechanical description of its drift and deformation
are presented. The concept of sea ice rheology is introduced in a general manner.
Following this, we then describe the governing equations. At the end of the chapter
we provide a diagram illustrating the big picture on the physics of a sea ice model.

• In the first part of Chapter 3 the early (equilibrium-based) drift models of sea ice,
lacking a rheological parametrization, are presented. In the second part, the main
rheologies historically employed in sea ice mechanical behavior are outlined, ranging
from the simplest viscous to the plastic ones.

• Eventually, Chapter 4 addresses the new solid-like brittle rheology approach that is
the subject of recent research efforts. The description of the brittle-based rheologies
follows an introduction of this new paradigm and an evaluation of the extent to which
it is able to reproduce the observed multifractal properties of sea ice deformation.
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Chapter 2

Sea ice dynamics modeling

This chapter wants to provide the physical framework to study continuum theories of sea
ice dynamics. First, the working hypothesis and the physical quantities relevant to the
study of the problem are specified. Then, the governing equations are presented. At the
end of the chapter, a diagram providing an overview on the physical components of a full
sea ice model is given.

2.1 A continuum model of the sea ice cover

In this work, we focus on the study of models capable of explaining sea ice deformation
and motion, i.e. its dynamics.

Ever since the first sea ice-dynamics modeling attempts were made, in which the wind-
driven drift of a single floe was considered (e.g. Gudkovich and Nikiforov, 1963), it was
clear that the kinematics depended upon the floe size and shape (see Figure 2.1 for the
sketch of a free floe). However, successive developments have taught that velocities alone
are poor indicators of ice behavior (Rothrock, 1975b) and that it is necessary to account for
interactions between the floes. These may be in direct contact, freezing together forming
aggregates, or separated by open water or very thin ice, normally refrozen leads.

In the following, sea ice dynamics is analyzed, in particular in its continuum-scale
approach, and the rationale behind the development of a two-dimensional theory for sea
ice-dynamics is given.

2.1.1 The continuum scale

As outlined in chapter 1, the sea ice cover displays a great spatial and temporal variability
ranging from the purely discontinuous character at the shorter scales to the approximately
continuous one at the larger scales. In the latter case, the subject of study are drift ice
particles, continuum elements containing several ice floes1. In the sea ice community it is
common to speak of ice fields: any area of floating ice consisting of any size of floes, which
is greater than 10 km across (WMO, 2014).

If we let d denote the characteristic floe size, a material particle of size D will contain
n ≈ (D/d)2 floes. For the continuum approximation to hold, we need n to be large enough,
say n > 100, which means that the single continuum element’s dimension should be at
least an order of magnitude greater than the floe size. In addition to that, it is clear
that any property of the ice field should have much larger spatial variability D̃ than the
previous length scales; formally, the scales should satisfy (Rothrock, 1975b):

d≪ D ≪ D̃ . (2.1)
1Until recently drift ice was indicated as pack ice, but now the latter term pack ice refers to very

densely packed ice (WMO, 2014).
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Figure 2.1: Schematic picture of a free ice floe. The freeboard and draft
are, respectively, the portion of the ice floe outside of and submerged into
the sea. In many cases the floe might be partially covered by snow. The

melt pond consists of a pool of open water formed on the sea ice.
Taken from: A. Grobe and H. Grobe (2007).

In practice, most (numerical) sea ice models work with a mid-coarse spatial resolution
(e.g 10 km in Rampal et al. 2016; 12 km in Boutin et al. 2023), i.e. the smallest resolved
spatial scale, which guarantees each grid cell to contain enough floes while simultaneously
keeping computation cost reasonable. As D approaches d (higher resolution), a system
of a few floes is being resolved: field properties change abruptly at the floes’ boundaries,
thus requiring some sort of spatial smoothing.

Recently, efforts have been made to include evolving information about the distribution
of floe sizes into the models (e.g. Horvat and Tziperman, 2015). At present time, however,
all IPCC-class climate models employ a continuous description of the sea ice cover. I.e.
in the following we will consider sea ice to be a continuous medium.

2.1.2 A two-dimensional theory

In the modeling approach described hereafter, the sea ice cover is considered as a thin
plate, due to its large aspect ratio, with the horizontal length scales being many orders of
magnitude larger than the vertical scales. As such, a two-dimensional dynamical theory is
believed to be adequate. In particular, the kinematics and constitutive properties of the
ice sheet will be described by a two-dimensional horizontal velocity field u and the planar
stress hypothesis will be taken (Timoshenko and Goodier, 1951; Zienkiewicz and Taylor,
2000).

In a key study, Nye (1973) provided evidence that such an approach is justified at
the mesoscale and larger. A detailed derivation of the two-dimensional conservation laws
and constitutive relations from the fundamental three-dimensional equations integrating
through the ice layer depth can be found in Gray and Morland (1994) and Leppäranta
(2011)2.

The greatest bulk of research in sea ice dynamics has been concerned with the devel-
opment of two-dimensional models.

2Gray and Morland (1994) made used the theory of interacting continua, so their result is technically
valid for a mixture of ice and water.
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Figure 2.2: Cartesian coordinate system at the sea level used to formulate
the theory.

It is customary to consider the vertically-integrated linear momentum balance equation
as the governing equation of motion of the ice cover (see Section 2.5.3).

In the following we present the sea ice dynamics in a two-dimensional Cartesian frame
defined by orthonormal vectors ı̂ and ȷ̂ (see Figure 2.2).

2.2 Ice kinematics

Let u(x, y; t) be the horizontal sea ice velocity. As our main concern will be the large scale
modeling, where multiple floes are considered, we assume u to be sufficiently smooth. More
specifically, we assume it is to at least second order (Coon et al., 1974; Hunter, 1983).

For the reasons outlined in Section 2.1.2, a plane stress condition is assumed, which
means only the horizontal components of internal stress and strain (deformation) tensors
are considered.

2.2.1 Deformation of drift ice

The motion of a continuum element of the ice cover can be decomposed into a rigid trans-
lation, rigid rotation and strain. Clearly, in a two-dimensional continuum flow model of
ice, translation can happen in the plane and an eventual rotation is just about the vertical
axis. On the other hand, strain, the physical deformation of drift ice particles (continuum
elements) may be of three different modes: tensile strain or extension, compressive strain
or contraction and shear strain. The first two modes are normal to the surface and are
responsible for changing lengths and therefore causing a relative volume variation. Shear
strain, instead, is responsible for changing the shape of the continuum.

In the following treatment the reference frame is the sea surface Cartesian system
shown in Figure 2.2. Let x(t) be the coordinate of an ice particle. The material deforma-
tion, without considering pure translation, is given by the two-dimensional displacement
gradient ∇x − I. The displacement gradient is made up of two parts: a symmetric one,
the strain ε, and an antisymmetric one, the rotation ω. It can be easily seen that the
velocity gradient, ∂uij

∂xk
, i, j, k = 1, 2, a second-order tensor with matrix representation

∇u =

[
∂ux
∂x

∂ux
∂y

∂uy

∂x
∂uy

∂y

]
(2.2)

corresponds to the rate of displacement gradient, the latter being composed of two parts:

∇u = ε̇+ ω̇ (2.3)
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ε̇I/
√
2

ε̇ I
I/
√
2

ε̇

φ

Figure 2.3: Strain-rate representation in the principal axes system. The
modes of deformation are determined by the angle φ.

where we have introduced the strain-rate:

ε̇ =
1

2

[
∇u+ (∇u)T

]
. (2.4)

The strain-rate gives us the deformation rate of the sea ice cover and it can be decomposed
into a isotropic (pure compression/dilatation) and deviatoric part (pure shear deforma-
tion): ε̇ = ε̇s + ε̇′ = (12tr ε̇)I + ε̇′ = (12∇ · u)ε̇ + ε̇′. As second-order tensors, the strain
and the strain rate have a 2× 2 matrix representation in the Cartesian orthogonal system
considered:

ε =

[
ε11 ε12
ε21 ε22

]
ε̇ =

[
ε̇11 ε̇12
ε̇21 ε̇22

]
. (2.5)

The magnitude of the strain-rate is given by the Frobenius norm of the strain-rate tensor:

∥ε̇∥ =
√
ε̇211 + ε̇212 + ε̇221 + ε̇222 . (2.6)

Since the dimension is 1/time, this value defines the timescales of strain and rotation. In
the principal axes coordinate system the normal strain-rates are given by the principal
values (eigenvalues):

ε̇1,2 =
1

2
tr ε̇± 1

2

√
(tr ε̇)2 − 4 det ε̇ (2.7)

with ε̇1 ≥ ε̇2. One way to visualize the strain-rate is through the invariants:

ε̇I ≡ ε̇1 + ε̇2 = tr ε̇ (2.8a)

ε̇II ≡ ε̇1 − ε̇2 =
√
(tr ε̇)2 − 4 det ε̇ (2.8b)

which are themselves functions of the invariants of 2 × 2 matrices: tr ε̇ and det ε̇. The
first invariant equals the divergence of the velocity while the second one equals twice the
maximum shear rate. In terms of these two invariants, the magnitude of the strain-rate
tensor (Equation 2.6) reads:

∥ε̇∥ =

√
ε̇2I + ε̇2II

2
. (2.9)

We have a simple but handy visualization of the mode of deformation, that is, as a vector
in the (ε̇I, ε̇II)

√
2 upper-half plane (see Figure 2.3):
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{
ε̇I =

√
2 ∥ε̇∥ cosφ

ε̇II =
√
2 ∥ε̇∥ sinφ

φ = 2arctan

(
ε̇II

ε̇I +
√
2 ∥ε̇∥

)
, 0 ≤ φ ≤ π (2.10)

where the vector’s direction φ represents the ratio of rates of shearing and divergence
and the vector’s length the magnitude of the deformation-rate. The main deformations
mode are the following: pure divergence (φ = 0), uniaxial tension (φ = π/4), pure shear
(φ = π/2), uniaxial contraction (3π/4) and pure convergence (π).

2.2.2 Sea ice internal stress

In keeping with the preceding sections, sea ice motion is considered to take place in the
horizontal plane. In this work, as in the models of Ólason et al. (2022), Bouillon and
Rampal (2015b), Sulsky et al. (2007), the two-dimensional horizontal internal stress is
indicated with σ and it is given by:

σ = σtot − pI (2.11)

where σtot is the (horizontal) Cauchy stress tensor (e.g. Hunter, 1983) while −pI represents
an isotropic averaged stress due to gravity working on the ice.

Since the equation of motion is obtained through vertical integration of the three-
dimensional momentum equation (see Section 2.5.3) it is customary in the sea ice modeling
community to refer to the sea ice internal stress, σice, as the tensor whose components
are the depth-integrated horizontal components of the three-dimensional internal stress3

(e.g. Gray and Morland, 1994; Sulsky et al., 2007). However, in practice, the homogeneity
of the stress in the ice volume is often assumed (e.g. Ólason et al., 2022; Rampal et al.,
2016), the sea ice internal stress simply being given by σice = σĥ, where σ is given by
Equation 2.11 and ĥ is the mean ice thickness (see Section 2.3.1).

Similarly to the strain and strain rate, the ice internal stress has a 2 × 2 matrix
representation with respect to the usual orthogonal reference frame,

σ =

[
σ11 σ12
σ21 σ22

]
, (2.12)

where the symmetry (e.g. Hunter, 1983) ensures the independence of σ11, σ22, related to
the normal stress, and σ12, related to shear stress. The of normal stress, σN , and shear
stress τ , respectively given by:

σN =
σ11 + σ22

2
(2.13)

τ =

√(
σ11 + σ22

2

)2

+ σ212 (2.14)

are two invariants of σ.
The horizontal stress is usually characterized by the two invariants, σI, σII, given by:

σI ≡ σ1 + σ2 = trσ (2.15a)

σII ≡ σ1 − σ2 =
√
(trσ)2 − 4 detσ (2.15b)

where the principal stresses σ1,2, i.e. the eigenvalues of the internal stress tensor, are
obtained by replacing ε̇ with σ in Equation 2.7. Ice is said to possess a stress-state given
by a point in the {σI, σII} plane.

Section 2.5.3 explains how the internal stress of the ice enters the equation of motion.
3We point out to the reader that σ has units of Nm−2(Pa) while σice of Nm−1.
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2.3 The state of the ice cover

Due to its complex and diverse physics, it is not easy to identify a reasonable set of
material properties to parametrize the state of the ice cover. Sea ice thickness, i.e. ice
volume per unit area, has proved an important indicator of the state of the cover: many
of the quantities linked to ice mechanical behavior, e.g. the internal resistance to the
motion, are very sensible to its change. Another important property is given by sea ice
concentration, i.e. the fractional area of ocean covered by ice, which, combined with ice
thickness, provides an estimate of ice volume. Here we will discuss how these concepts
enter the description of sea ice as a continuous medium.

2.3.1 Ice thickness distribution

Local measurements tell us that the ice cover is a horizontally nonuniform mixture of
ice of different thicknesses, each of which may respond differently to similar thermal and
mechanical forcing (Maykut, 1982). Due to ridges and leads, sea ice thickness will vary
on scales even smaller than the sizes of the sea ice floats. In order to incorporate the
sea ice thickness into a continuous theory for sea ice dynamics, these subscale variations
of sea ice thickness are customarily represented as a thickness distribution4. I.e. the
sea ice thickness per unit of area in a continuous sea ice model at point x can be given
as (Thorndike et al., 1975; Rothrock, 1986):

ĥ(x, t) =

∫ ∞

0
hg(h;x, t) dh (2.16)

with g(h;x, t) dh the probability to find a sea ice thickness between h and h + dh at
location x.

No simple general form exists for g, so often histogram approximations are employed.
In one extreme, but frequently applied, approach one makes a binary division between ice
and no-ice. I.e. a function “ice”, I, is defined as follows (Leppäranta, 2011):

I(h, h0) =

{
0 if h ≤ h0

1 if h > h0
(2.17)

where h0 is the so-called demarcation thickness. In terms of Heaviside step-function H,
I = H(h − h0). This way, what is considered by the theory as mechanically active ice
has been separated from very thin ice, just considered as a region of weakness in the ice
cover. The choice made by some modelers to exclude very thin ice from the mean ice
thickness is also motivated by a certain difficulty of detection by the means of remote
sensing techniques. Combining the definition in Equation 2.17 with the sea ice thickness
distribution allows to introduce a variable sea ice concentration or compactness as:

A(x, t) =

∫ ∞

0
I(h, h0)g(h;x, t) dh . (2.18)

The constraint 0 ≤ A ≤ 1 is straightforward from the definition. Basically A(x) gives
P (I = 1;x), the probability to encounter sea ice when randomly sampling at location
x. Consequently, the probability to encounter open water or negligible thin ice, i.e. the
no-ice condition, is given by 1 − A. The practice of expressing compactness in multiples

4While this seems a reasonable mathematical assumption which grants us a possibility to estimate the
statistics of the ice thickness, in physical terms there is no intrinsic randomness associated with h. As
a matter of fact, the dynamical change of volume of the ice cover can explained in terms of Newtonian
mechanics, a deterministic theory.
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of 0.1 is typically applied to observed or measured sea ice concentration (WMO, 2014).
This method is used to provide a more detailed and standardized way of reporting sea ice
coverage, especially in the context of remote sensing and satellite observations; it allows
for a finer resolution in reporting variations in sea ice extent.

Using Bayes’ theorem, the average thickness of the sea ice floats, also known as the ice
slab thickness (e.g. in Ólason et al., 2022), at location x in this binary division is given as

ĥthick(x, t) =

∫ ∞

0
hg(h|I = 1;x, t) dh

=
1

P (I = 1;x, t)

∫ ∞

0
hg(I = 1|h;x, t)g(h;x, t) dh

=
1

A(x, t)

∫ ∞

h0

hg(h;x) dh

≈ 1

A(x, t)
ĥ(x) (2.19)

neglecting any mass in ice below the demarcation thickness in line with the histogram
approximation. The evolution equations for sea ice thickness and compactness will be
presented in Section 2.5.

2.3.2 The ice state variables

In this work we indicate with J the set of ice state variables chosen by a model. There
are two main approaches to choose how to model the material properties of sea ice.

The first approach is based on defining ice categories, each of which must obey the
conservation laws in Section 2.5. In this case J = {A, h1, . . . }, where A is the sea ice
concentration, defined by Equation 2.18, and h1, . . . are the thicknesses of the various ice
categories. Ice concentration or ice thickness have been proved to be poor indicators of
the actual state of the ice cover by themselves and proper characterization of ice prop-
erties requires combination of concentration with at least 1 sea ice category (Nikiforov,
1957; Doronin, 1970). Examples of using a single sea ice thickness category in combina-
tion with sea ice concentration are Nikiforov (1957), Doronin (1970), and Bouillon and
Rampal (2015b). Another example is given by neXtSIM model equipped with thermo-
dynamics (Rampal et al., 2016) which contains variables for the thickness of regular sea
ice and snow (see Figure 2.1) as well as sea ice concentration. In general, the number of
sea ice categories in the model depend upon their dynamical significance and observabil-
ity (Haapala, 2000).

The second approach is to take the thickness distribution as state variable and to
determine the optimal degree of resolution of the distribution. In other words, how many
different discrete thicknesses classes should be used in the model to maintain the desired
accuracy while keeping (computational) complexity as low as possible? This approach
makes sense whenever more than a few thickness classes are considered, otherwise the
information about the actual thickness class can easily be lost. An example of a model
implementing this second approach is the AIDJEX sea ice model introduced by Coon et al.
(1974).

In the context of brittle-based models, a typical variable encompassed by J is the
material’s cohesion, i.e. its inherent shear strength (see e.g. Equation 4.11), which can be
used as a means of characterizing the material’s natural heterogeneities.
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2.4 Sea ice rheology

Rheology is branch of physics concerned with studying the deformation and flow of ma-
terials, both solids and liquids. The aim of rheological studies is mainly to provide an
extension of continuum mechanics to characterize the flow of materials exhibiting both
solid-like (elastic, plastic, brittle) and fluid-like (viscous, non-Newtonian) behavior (Barnes
et al., 1989).

In the case of sea ice, observational evidence shows that drift ice deforms and frac-
tures under the action of external forcing, presenting itself as a large field broken into
floes (Feltham, 2008). In this context, sea ice rheology is what we call the relationship
between the sea ice internal stress to the large-scale deformation of the ice cover and the
state of the ice cover.

If we exactly knew the form of the constitutive equation for sea ice, we would not
need to pay attention to the mechanisms of floe interaction (Rothrock, 1975b). However,
performing a field experiment capable of furnishing enough information to conclusively
establish the constitutive law for sea ice has not been possible. The determination of
suitable constitutive relations to describe sea ice rheology has guided sea ice-dynamics
research since it began. To this day it remains an outstanding problem that limits the
success of sea ice models (Feltham, 2008).

The main stress-generating mechanisms affecting sea ice are the following:

• Ice ridging processes due to convergence of very compact ice;

• Ice opening, causing the creation of leads;

• Edge shear tractions between floes;

• Thin pieces of ice sliding over each other as a consequence of currents or winds’
push, known as rafting ;

• Interaction between floes and leads.

The knowledge of these mechanisms along with some observational insights about the ice
cover guide the development of a constitutive law for sea ice. The constitutive equation
relating stress and deformation for drift ice has the generic form:

σ = σ(J , ε, ε̇) (2.20)

where the ice state J is determined by the material properties (sea ice concentration, sea
ice thickness, cohesion, etc.) as well as model dependent parameters, while the strain ε and
strain rate ε̇ are determined by the (large-scale) deformation of the sea ice. Determining
the appropriate constitutive relation for sea ice has proven to be very difficult both because
of its highly non-linear character (see Figure 2.4 for a one-dimensional illustration) and
for the initial lack of useful data.

In chapter 3 and 4 the different rheological models for σ(J , ε, ε̇) are presented.

2.5 Governing equations

In this section the general equations for the evolution of the model variables are presented.

2.5.1 Evolution of the ice thickness and concentration

As mentioned in Section 2.3.2, J contains the sea ice state variables that are advected by
the flow. The actual variables J contained in J are model dependent, but they should
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Figure 2.4: Schematic representation of the change in quality of sea ice
rheology as a function of ice compactness A and thickness h. When the
plastic regime is reached the stress becomes independent of the strain-rate.

Taken from: Leppäranta (2011).

follow the advection equation (see Appendix A for an example of how such an equation
would be implemented in a sea ice model like neXtSIMDG; Richter et al. 2023):

∂J

∂t
+ (u · ∇)J = SJ (2.21)

where u is the two-dimensional velocity of the ice sheet, SJ represents changes in sea ice
state variables due to mechanical and thermodynamic processes (Dansereau, 2016), the
latter being outside the scope of this work. The left-hand side of Equation 2.21 can be
rewritten using the Lagrangian (material) derivative D/Dt = ∂/∂t+ (u · ∇) as DJ

Dt .
The mass conservation of ice is a necessary condition for any ice state. When ice

density, ρ, is assumed to be constant (neglecting compressibility), the conservation of
mean sea ice thickness is equivalent to the conservation of mass. In this incompressible
case, the mean ice thickness can change due to the divergence of ice motion or by thermal
growth/melt, so the conservation equation reads (see Appendix A for an example of how
such an equation would be implemented in a sea ice model like neXtSIMDG; Richter et al.
2023):

Dĥ

Dt
= −ĥ∇ · u+ Sh , ĥ ≥ 0 (2.22)

where ĥ is given by Equation 2.16 and Sh is a potential thermodynamic source/sink term.
The equation obeyed by compactness A is somewhat more complex to determine and

depends on the chosen level of mechanical deformation complexity. In simpler two-level
models in which a selected surface of the ocean S is assumed to be partially covered by
ice, Sice, and by open water, S − Sice, the change in compactness is given by (Rothrock,
1975b):

DA

Dt
=

D

Dt

Sice
S

=
1

S

DSice
Dt

− Sice
S2

DS

Dt
= −A∇ · u (2.23)

where (1/S)(DS/Dt) = ∇ · u by definition and the ice-covered are is assumed to be
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conserved (Nikiforov, 1957). Including a thermodynamic term, the complete conservation
law for concentration assumes the form

DA

Dt
= −A∇ · u+ SA , 0 ≤ A ≤ 1 . (2.24)

The constraint A ≤ 1 is enforced by specifying a mechanical redistribution mechanism.
Simplified versions of mechanical redistribution in which A is clipped at 1 are popular
(Hibler, 1979; Dansereau, 2016). Despite their simplicity, several sea ice models employ
Equations 2.22 and 2.24; for instance Hibler (1979) and Bouillon and Rampal (2015b).

Additional complexity can be considered if the changes due to mechanical deformation
are let depend on the deformation mode φ (see Equation 2.10), and from the magnitude
of the strain rate ∥ε̇∥ (e.g. Thorndike et al., 1975), rather than simply the divergence of
the flow.

2.5.2 Evolution of the ice thickness distribution

In those more sophisticated models implementing thickness distribution as the ice state its
evolution equation must evaluated. Mechanics and thermodynamics have different roles in
this context. Freezing and melting are source/sink terms in the thickness distribution in
the thickness space, i.e. for rearranging relative amounts of ice in different categories (Hi-
bler, 1980). On the other hand, how dynamics affects the form of the distribution is a
model prescription. Generally, thinner ice is produced as a result of a diverging motion,
while thicker ice is produced through convergence of thinner ice, i.e. through ridging.

In Lagrangian form, the equation for the evolution of the thickness distribution g(h;x, t)
reads (Thorndike et al., 1975; Rothrock, 1986):

Dg

Dt
= Ψ− g∇ · u− g

∂Φ

∂h
(2.25)

where the first term on the right-hand side represents the mechanical redistribution due
to opening and ridging, the second term is the flux divergence, the third term is the
ablation and accretion with Φ the accretion rate. Equation 2.25 is non-linear since each
function may depend on g itself. The mechanical complexity of the model is enclosed
in the redistribution function Ψ. This function may depend on the thickness h, on the
strain rate ε̇ and may have a functional dependence on the thickness distribution g. Any
redistribution function must satisfy these two strong constraints (Thorndike et al., 1975):∫ ∞

0
hΨdh = 0 (2.26)∫ ∞

0
Ψdh = ∇ · u . (2.27)

Equation 2.26 ensures that the mean ice thickness will not change due to redistribution,
while Equation 2.27 imposes that the area of ice imported by convergence must exactly
accommodate the new open water area on top of the area lost by ridging. It is obtained
by integration of Equation 2.25.

In his work Thorndike et al. (1975) concluded that, when shearing occurs along a crack,
the components of the displacement vector normal to the crack will locally cause a redistri-
bution very similar to the ridging/opening events observed in pure convergence/divergence
configurations5. On the other hand, g is not changed by displacements along the crack.

5See Fig. 10 of Thorndike et al. (1975) or Fig. 2.9 of Coon et al. (1974) for a schematic diagram of
the formation of leads and pressure ridges during pure shearing deformation.
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On these bases, a general redistribution function should be the combination of the two
following modes (e.g. Feltham, 2008; Thorndike et al., 1975):

Ψ =
√
2 ∥ε̇∥ [αr(φ)wr(h) + αo(φ)wo] (2.28)

where φ gives the deformation mode (see Equation 2.10), αr and αo are the ridging and
opening coefficients describing the relative amount of deformation realized through pure
convergence-type ridging and though pure divergence-type opening such that αo(0) =
1, αr(π) = −1 and αo = αr + cosφ (Feltham, 2008). The opening mode wo provides a
source of open water and it is defined as twice the Dirac-delta:

∫ +∞
0 wo(h) dh = 1, wo(h) =

0,∀h > 0. Finally, the ridging mode wr specifies how ice is moved between the thickness
categories, i.e. the loss and gain of different thicknesses in ridging. Several ridging models
have been developed, prescribing an expression for wr (e.g. Parmerter and Coon, 1973;
Coon et al., 1974).

2.5.3 The momentum equation

The two-dimensional momentum equation is of the general form

ρĥ

[
∂u

∂t
+ (u · ∇)u

]
= Fint + Fext (2.29)

where ρ is the sea ice density, u the (horizontal) velocity of the ice sheet and the two terms
on the right-hand side represent, respectively, the vertically-integrated internal force and
the total external forcing acting on the ice cover. The external forcing typically comes
from the air and ocean drags, the Coriolis force and the sea surface tilt. On the other hand,
the internal force arises from the sum of all mechanical interactions between ice floes. The
vertically-integrated internal force is given by (Gray and Morland, 1994; Hunter, 1983):

Fint = ∇ · (ĥσ) (2.30)

where the (vertically integrated) ice stress σice has been written explicitly in terms of the
two-dimensional horizontal stress given by Equation 2.11 (Bouillon and Rampal, 2015b;
Ólason et al., 2022).

Inserting expressions for these forces into (Equation 2.29) gives us the following mo-
mentum equation (Ólason et al. (2022), Bouillon and Rampal (2015b), Dansereau (2016)):

ρĥ
Du

Dt
= ∇ · (σĥ) +A(τa + τw)− ρĥfc k̂ × u− ρhg∇H (2.31)

with

• τa and τw the surface wind (air) and ocean (water) stresses, respectively;

• −ρhfc k̂ × u the horizontal component of Coriolis pseudo-force, with fc = 2ω sinϕ,
ω being Earth’s angular speed and ϕ the latitude and

• −ρhg∇H the force due to gradients in the sea surface dynamic height, H.

Commonly employed parametrizations of τa and τw are presented in Section 2.6. Fur-
thermore, as is customary in ocean dynamics, the part of the Coriolis force arising from
vertical motion is very small compared to the horizontal one and has therefore been ne-
glected. The horizontal gradient of the sea surface atmospheric pressure should be taken
into account with a −ĥ∇pa term on the right-hand side of Equation 2.31 but it is small
compared to the others (Rothrock, 1975b) and thus usually neglected.
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Some models (e.g. Rampal et al., 2016) implement an additional (vertically integrated)
pressure gradient term, −∇P , on the right-hand side of Equation 2.31 which is meant to
avoid excessive convergence for very densely-packed and highly damaged ice. Other models
(e.g. Lemieux et al., 2015), include an extra basal term τb on the right hand side of the
momentum equation 2.31 (e.g. Rampal et al., 2016; Ólason et al., 2022) to account for
land fast ice. This is however outside the scope of this work.

2.6 Atmospheric and oceanic coupling with ice

Sea ice provides an interface between the atmosphere and the underlying ocean and it
exchanges momentum with both. This momentum transfer between the mean flow in the
atmosphere and the ocean is intermediated by the atmospheric boundary layer (ABL) and
oceanic boundary layer (OBL). The ABL over sea ice has been thoroughly examined (e.g.
Rossby and Montgomery, 1935; Brown, 1980). The OBL beneath sea ice, on the other
hand, still contains unknown details (Leppäranta, 2011; McPhee, 2017). These boundary
layers are made up of two parts: a turbulent surface layer next to ice, in which the stress is
approximately constant and an Ekman layer (e.g. Cushman-Roisin, 1994; Ekman, 1905)
in which the velocity “rotates” as a result of the Coriolis effect, with stress gradually
decreasing moving farther away from the ice boundary. The height of such layers varies
based on different conditions, but it is of the order of the km for the ABL and ∼ 50m
for the OBL (Leppäranta, 2011). The dominant balance in the momentum equations
in the first layer is between pressure gradient and turbulent dissipation terms, while in
the second layer it is between pressure gradient, turbulent dissipation and Coriolis terms.
The latter cause the horizontal velocity within the Ekman layer to turn in the vertical.
Consequently, the direction of the stress exerted by the atmosphere (ocean) on the the
sea ice differs from the direction of the main flow in the lower atmosphere (upper ocean).
Formally, the atmospheric (oceanic) stress on the sea ice is given by (e.g. Brown, 1980)

τa = ρaCa ∥ua∥ [ua cos θa + k̂ × ua sin θa] (2.32a)

τw = ρwCw ∥uw − u∥ [(uw − u) cos θw + k̂ × (uw − u) sin θw] (2.32b)

where Ca, Cw are the air drag and water drag, ρa, ρw the air and water density, ua (uw)
is the main flow (large-scale) velocity at the bottom of the atmosphere (top of the ocean)6

and θa (θw) the angle between the stress τa (τw) and the main flow at the bottom of
the atmosphere (top of the ocean). Different boundary layer theories exist giving rise to
different values for Ca, Cw, θa, θw. The treatment of these theories is beyond the scope
of this work.

2.7 A full sea ice model

The goal of the diagram in Figure 2.5 is to provide an overview on the various physical
components that have to be integrated into a sea ice model. In the case of a stand-alone
model, the contribution of the atmosphere and the ocean to the dynamics is given by
external forcing, prescribed through the air/ocean drags. In coupled models, the feedback
from the ice is connected to the air/ocean variables through a coupler.

6This is the velocity immediately outside of the boundary layer, free from the frictional influence of
the surface, and it is usually close to the geostrophic (free-stream) velocity. In coupled models, this is
determined by the atmospheric/oceanic model employed.
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Figure 2.5: Diagram showing the physical components of a full sea ice
model. Each scalar variable J encompassed by the ice state (set of material
properties), J , is advected and is subject to mechanical and thermody-
namic changes (not considered in the present work). The internal stress
of ice, σ, is related to deformation and the ice state through the rheol-
ogy (see chapters 3 and 4). The fundamental dynamical equation, given
the evolution of the drift velocity u is given by the linear momentum bal-
ance, in which external forcing from the air/ocean and from the Coriolis
effect is applied. If an oceanic/atmospheric model is considered, a coupler
is responsible for updating the external air/ocean variables (as a result of

feedback from the ice) and for providing the forcings to the ice.
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Chapter 3

Toward rheology-based sea ice
models

This chapter is meant to be a review of the sea ice dynamics modeling, concentrating on
the development of rheological models. Section 3.1 consists of a brief history of the early
modeling approaches of sea ice. Section 3.2 then proceeds to introduce rheological models
which have been used to model sea ice leaving the latest developments based on brittle
mechanics concepts for a separate discussion in Chapter 4. Eventually, Section 3.3 reviews
the developments in rheology-based dynamics up to the current state.

3.1 Early sea ice models

Early investigations into sea ice dynamics began in the late 1800s when the first expeditions
to the northern polar region took place. The relevance of the sea ice drift problem was first
highlighted by Fridtjof Nansen’s observation of the wind-driven drift of ice subsequent to
his 1893–1896 Fram expedition across the Eurasian Arctic Ocean (Nansen, 1902). Based
on his observations, he concluded that ice does not exactly drifts in the same direction
as the wind blows as was commonly believed at the time. Instead he found that it was
deviating about 20◦ − 40◦ to the right of it. His suggestion, later confirmed by Ekman’s
mathematical work (Ekman, 1902), was that this deviation is due to the Coriolis force
turning the flow in clockwise direction (in the Northern hemisphere). Building on these
observations, Ekman formulated his theory of oceanic drift currents (Ekman, 1905).

Wind-driven ice drift was further examined in the case of the oceanic and atmospheric
drag forces by Sverdrup (1928), Rossby and Montgomery (1935) and Shuleikin (1938).

In particular, Rossby and Montgomery (1935) were the first to implement a Prandtl-
type boundary layer in the study of steady ice drift. Their aim was to develop a quantita-
tive theory relating the eddy-viscosity coefficient1 to the physical parameters of the layer.
Then, Shuleikin (1938) was able to complete a model of ice in the free drift regime, i.e. a
regime in which internal stresses are neglected.

Subsequent empirical studies performed by Soviet scientists, notably Zubov, Somov
and Gordienko, were key to more accurately clarify the relation between wind and drift.
For instance, Zubov (1945) contributed with the development of some semi-empirical
modifications of Nansen-Ekman drift law previously derived, and of the isobaric drift law
among other things. With the introduction of the ice conservation law (Nikiforov, 1957)
and with the first attempts to gain a more quantitative knowledge of ice internal resistance
through a rheological equation (Laikhtman, 1958; Ruzin, 1959; Reed and Campbell, 1960)
the ice dynamics problem reached a critical turning point.

1In ocean dynamics, large-scale turbulent stresses have a first-order approximation as linear viscous
stresses (see Equation 3.10), with the “viscosity” then called eddy viscosity (e.g. Gill, 1982).
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3.1.1 Equilibrium drift theories

As in most situations ice accelerations are negligible, the great bulk of early research
on sea ice dynamics has been concerned with equilibrium, or steady-state, drift theories.
Analytical solutions to the steady-state motion of ice may be derived in many cases by
algebraic means, while the general accelerated problem requires numerical integration of
systems of non-linear differential equations (Reed and Campbell, 1960).

For the matter of this section, the most general steady-state momentum equation
considered reads (Campbell, 1965):

τa + τw − ρhfc k̂ × u− ρhg∇H + Fint = 0 (3.1)

where all the physical quantities had been defined when discussing the momentum equation
(Equation 2.31) in Section 2.5. In Equation 3.1 we see the that the internal force has not
been explicitly written in terms of internal stress divergence (see Equation 2.30). At
this early research stage, indeed, the lack of information about how internal stress was
transmitted through drift ice forced sea ice scientists to enclose all the information about
the internal resistance of ice into a term, Fint, whose form was then prescribed. The first
attempts, relating ice internal force to its drift velocity (e.g. Sverdrup, 1928), were source
of misunderstanding since ice stress is actually linked to relative movement of the material,
i.e. strain or strain-rate (Rothrock, 1975b).

Because of the lack of computational power at the time, it was almost impossible
to numerically solve sea ice models. Various authors addressed the problem and devel-
oped equilibrium theories making different assumptions on which terms to retain from
Equation 3.1.

What follows is a presentation of the main developments in sea ice steady-state mod-
elling up to the 1960s (Campbell, 1965). All the force-balance diagrams are assumed to
be located in the Northern Hemisphere, where fc > 0.

Nansen (1902) neglected ice stress and the pressure gradient force due to the sea surface
tilt reducing Equation 3.1 to:

τa + τw − ρhfck × u = 0 (3.2)

where the wind and ocean stress were parametrized as follows:

τa,w =
∥τa,w∥

∥ua,w − u∥

[
cos θa,w sin θa,w
− sin θa,w cos θa,w

]
(ua,w − u) (3.3)

with ua,w the main flow velocity and θa,w the air/water turning angle between the main
flow and the surface stress (see Section 2.6). In his model the Ekman spiral2 starts
directly below the ice-water interface. I.e. the Ekman spiral in the ocean is assumed to
be similar to the case in which no sea ice is present. Figure 3.1 shows the balance of force
in Nansen (1902). This approach turned out to overestimate the angle between the wind
stress τa and the ice velocity u. To fit the observations Nansen (1902) tried to add a
wind-independent gradient current, similar to the term −ρhg∇H in Equation 3.1, to the
description. However, this addition did not successfully describe correctly newly-available
drift data.

2In the context of the Ekman transport, this phenomenon occurs as a consequence of the Coriolis
effect. As the wind applies a shear stress on the Ocean’s water, the latter’s surface starts moving but
the Coriolis forces a deflection to the right in the Norhern Hemisphere and on the left in the Southern
Hemisphere. This deflection is then transmitted from the surface to deeper layers of the ocean. As a
result, the velocity-depth profile assumes a spiraling pattern.



3.1. Early sea ice models 21

x

y

u

τw

τa

Fco

45◦

Figure 3.1: Balance of forces in Nansen (1902) according to Equation 3.2.
Because of the Ekman layer starting at the sea surface, τw forms a 45◦

angle with the surface velocity u0, which is in the same direction as the ice
velocity u. Fco represents the Coriolis force.
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Figure 3.2: Force diagram in Sverdrup (1928) model.

Sverdrup (1928) proposed an equilibrium drift theory that neglected the pressure gra-
dient force and the water stress:

τa − ρhfc k̂ × u+ Fint = 0 (3.4)

were he considered the internal force to be linearly related to the drift velocity through
Fint = −kρu, where k is a friction coefficient. As outlined earlier such an approach has
no real physical basis and it is appropriate for the expression of the friction between a
moving object and a stationary object (Rothrock, 1975b). The balance of forces is shown
in Figure 3.2. Sverdrup’s theory was successful with data from the North-Siberian shelf
but failed within other regions (Campbell, 1965).

Rossby and Montgomery (1935) developed three different theories to study sea ice.
In the first theory, ice was assumed to be a two-dimensional internal stress-free plate
with negligible thickness, hence with a negligible Coriolis contribution to the motion.
Consequently, Equation 3.1 reads:

τa + τw = 0 . (3.5)

This theory was the first to include a Prandtl boundary layer (Prandtl, 1905) beneath the
ice. Albeit furnishing results well in agreement with air stress and ice velocity values in
the study region of the Weddell Sea, their solution underestimated the angle between ice
drift and wind velocity (see Figure 3.3a). This first attempt was followed by an extension
of the previous theory to include Coriolis force and a Sverdrup type of internal force with
a general equilibrium equation of the form:

τa + τw − ρhfck × u− kρu = 0 (3.6)

Although in good agreement with observations from the Weddell Sea, predictions from
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Figure 3.3: Balance of forces in the three equilibrium-drift theories devel-
oped in Rossby and Montgomery (1935). Figure (a) shows the stress and
Coriolis-free case (Equation 3.5). u0 indicates the ocean’s surface velocity.
The highlighted angle was calculated to be around 54◦. Fig. (b) shows the
extended model where Coriolis force was included (Equation 3.6). Even-
tually, when water drag is neglected the balance diagram is like the one in

Fig. (c).
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Figure 3.4: The figure shows the force balance in Shuleikin (1938) theory.
The water stress form an angle of 18◦ with the drift direction.

Equation 3.6 were found to deviate from observations collected from the North-Siberian
shelf (Campbell, 1965). Consequently, Rossby and Montgomery (1935) water stress was
put aside and an equation like 3.4 was employed. The force balance diagram for these
two latter two theories is shown in Figure 3.3b and Figure 3.3c, respectively. This theory
successfully fitted summer data characterized by a strong stability of the surface waters,
but failed with winter data when neutral stability conditions were approached (Campbell,
1965).

Shuleikin (1938) proposed a solution of Equation 3.2 with a constant angle between
the water drag and the surface drift velocity. In order to close the solution to the problem,
a relationship between the ocean surface velocity u0 and the wind flow velocity ua was
needed. Shuleikin (1938) made use of the following empirical expression derived by Ekman
on the basis of Mohn and Nansen3:

∥u0∥
∥ua∥

=
0.0127√
sinϕ

. (3.7)

It can be shown that this formulation yields a turning angle θ = 18◦ in Equation 3.3 (see
Figure 3.4). This is contrast to θ = 45◦ expected from Ekman’s theory (Ekman, 1902).
Results were in agreement with selected drift segments data coming from the first Arctic
Ocean drift station, North Pole 1, landed by the Soviet Union in 1937. Shuleikin work
was critical to show the importance of the boundary layer.

3Eq. 3.7 was derived in open water conditions with a different turbulent regime than under the ice
sheet.
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Figure 3.5: Force diagram in Reed and Campbell (1960) equilibrium
theory. The velocity u0 is the current velocity at the interface between the
boundary layer and the deeper layer in which the Ekman spiral is assumed

to prevail.

Felzenbaum (1958) proposed yet another steady-state model where the pressure gra-
dient force, derived from a simple ocean model in which density and eddy viscosity are
uniform. He considered wind and water stress forces on the ice, along with Coriolis force,
though in a form independent of latitude, while neglecting any large scale resistance to
strain within the ice cover. His study was also important because he stressed on the fact
that ice flow needs to be studied in relation to the whole ice cover and on the importance
of considering sea as a dynamic unit (Campbell, 1965).

Reed and Campbell (1960) studied the equilibrium drift of an isolated floe of ice
following the path traced by Shuleikin (1938). In their work, they first replaced the
contribution of internal ice force Fint with wind and water pressure acting on the exposed
vertical edges of the floe. They reasoned that, since the integrated stress over the horizontal
faces of the floe increases with the square of the radius while the side pressure increase
only with the radius itself, the latter could be neglected by taking a sufficiently large
floe. Therefore they ended up analytically solving Equation 3.2. They did this purely
on theoretical grounds without resorting to the empirical expression of Equation 3.7. In
particular, to close the system of equations they derived a theoretical relationship:

∥u0∥ = B(∥u∥ − ∥u0∥)3/2 (3.8)

where B depends on the physical quantities of the boundary layer. The balance of forces
is shown in Figure 3.5. In Reed and Campbell (1960) the authors collected data from
the drift ice station Alpha, historically the first non-Soviet floe-station established and
maintained by a Western country (Cabaniss et al., 1965). Their main conclusion was that
the pressure gradient force due to a dynamic change in the sea elevation and the internal
ice stress play a key role in the dynamics of the ice cover and cannot be neglected.

This conclusion served as the main impetus for the development of the first rheology-
based models which were just getting underway at that time.
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3.2 Viscous and Plastic Rheologies

In this section we will take a first look into rheologies employed in continuum sea ice
models. We can take as an axiom that any real material, sea ice included, possesses
all the rheological properties (Mellor, 1986). However, developing a model taking into
considerations all of them is not, in practice, feasible. As a result, the modeler has to
evaluate the significance of each rheological property by studying the material response
over a wide range of temporal/spatial scales and in multiple stress-strain configurations.
Historically, a hierarchy of models ranging from simple to complex can be discerned.
Here the complexity of a model is determined by the number of aforementioned processes
included and the degree of nonlinearity of the stress-strain rate relationship (Mellor, 1986).

An apt sea ice rheology is one that is able to display the main physical features of
sea ice: weakness in tension, mild strength in shear and largest strength in compression.
In particular, strain hardening is observed in compression and softening or instability in
pure shear. Furthermore, it should reflect the observations that stresses are constrained
to specific range (Rothrock, 1975b).

Note on the chosen convention in the formulation of a rheology

In this work, unlike in most of the sea ice dynamics literature, we formulate the rheologies
in terms of the horizontal two-dimensional stress, σ, given by Equation 2.11 rather than
in terms of the vertically integrated stress, σice. The motivation for stating the laws
in terms of σ lies in the more apparent physical meaning of the two-dimensional stress
tensor, possessing the unit of a pressure. In addition to that, in brittle-based rheologies,
presented in Chapter 4, this allows a direct comparison between the local state of stress
and the critical stresses (σN,max, σT,max; see Section 4.2.3) when estimating how far the
stress state is from the failure envelope.

The relationship between rheological parameters appearing in the constitutive equa-
tions hereafter and the ones in the σice− formulated version are consistent with σice = σĥ,
where ĥ is the mean sea ice thickness (see Equation 2.16).

3.2.1 Viscous rheologies

When ice is assumed to act as a fluid in response to stress, a fluid-like constitutive law
of the form σ = σ(J , ε̇) is employed. The Reiner-Rivlin fluid model provides a general
viscous model applicable to sea ice (e.g. Hunter, 1983):

σ = αI+ βε̇+ γε̇2 (3.9)

where the last quadratic term (matrix multiplication is implied) is generally neglected in
sea ice modeling. The coefficients α, β, γ may depend on the material properties, J and
on the strain-rate invariants, ε̇I, ε̇II.

Linear viscous model

Although too crude for a realistic representation of sea ice mechanical behavior by them-
selves, viscous laws were the first class of applied sea ice rheologies. The first and simplest
approach was to consider ice as a highly viscous Newtonian fluid. I.e. it was assumed
to posses a constitutive equation of the form (Laikhtman, 1958; Ruzin, 1959; Campbell,
1965):

σ = 2ηε̇′ (3.10)
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Figure 3.6: One-dimensional illustration of the linear-viscous response.
The mechanical analog is the dashpot model. The stress is directly pro-

portional to the strain-rate.

where η is the shear (linear) viscosity and ε̇′ is the deviatoric part of the strain rate
(see Section 2.2.1). In this simple model, the stresses are along on the σII -axis and
consequently convergence is unopposed. Typical values of viscosity are in the range 108−
1012 kg ĥ

−1
s−1 (e.g. Campbell, 1965), where ĥ is the mean ice thickness (Equation 2.16).

The 1D mechanical analogue of linear viscosity is given by a dashpot (see Figure 3.6).
When ice is modeled as an incompressible Newtonian fluid governed by Equation 3.10
then the internal force, Fint, in the momentum equation 2.31 is simply given by ĥη∇2u).

A more general, yet still linear, model is given by (Hibler, 1974; Campbell and Ras-
mussen, 1972):

σ = ζtr ε̇I+ 2ηε̇′ (3.11)

where the bulk viscosity ζ has been introduced. In order to better fit data, Campbell and
Rasmussen (1972) and Rothrock (1975b) proposed a version of Equations 3.11, 3.10 with
stepwise viscosities, smaller in diverging flows and larger in converging ones. This supports
the observed resistance of ice against convergence and absence of it against tension. In
the case of constant viscosities, Fint = ĥζ∇(∇ · u) + ĥη∇2u.

Another linear modeling approach consisted in considering a pressure term in the
rheology active only during convergence. For instance, Kheisin and Ivchenko (1973) added
such a term, −psI, to Equation 3.10 where ps = kδA for δA > 0 and null otherwise, with
δA small compactness variations and k the elastic bulk modulus, effectively developing a
linear viscoelastic model, e.g. the linear Maxwell model in Section 4.3.2.

Linear viscous models can satisfy realistic boundary conditions and provide first-order
approximation for basin-wide ice circulation (Leppäranta, 2011).

Nonlinear viscous model

The general form of a isotropic, homogeneous nonlinear viscous law reads (Glen, 1970)

σ = (−p+ ζtr ε̇)I+ 2ηε̇′ (3.12)

with ζ = ζ(J , ε̇I, ε̇II), η = η(J , ε̇I, ε̇II) and p = p(J ) to account for (vertically-averaged)
hydrostatic pressure (Leppäranta, 2011).
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Figure 3.7: One-dimensional illustration of the rigid-plastic response.
The mechanical analog is the dry friction of a block. From this simple
model it is not possible to determine any functional relation between σ

and ε for σ < σcrit.

3.2.2 Plastic rheologies

Rationale behind a plastic model of sea ice

The adoption of a plastic rheology finds its strongest argument in the mechanical behavior
of compact ice. In fact, despite relatively smooth variations in atmospheric and oceanic
forcing fields, local events such as ridging and formation of leads occur sporadically and
irreversibly, as though a critical stress state in the ice had been reached (Feltham, 2008).

Another argument in favor from rate-independent plastic theory was presented by
Parmerter and Coon (1973) and Rothrock (1975a). They developed a kinematic model of
ridging and showed that the shape of a pressure ridge and the loss of kinetic energy in the
process are independent of the rate of formation. The rate independence of deformation
is an important feature of ideal plastic behavior.

Lastly, observations of sea ice appearance and deformation suggest the analogy with
granular mediums, e.g. soils. For these media, the plastic modeling approach has been
shown to be successful (Schofield and Wroth, 1968).

A rigid-plastic model is unsatisfactory in that it does not allow for subcritical stresses to
be calculated and thus leaves the subcritical rheological response undetermined. Therefore,
in sea ice modeling, approximations of ideal plastic laws are used, prescribing simple
subyield models. In the following, two plastic rheologies with different subyield behaviors,
linear elastic (see Figure 3.8) and linear viscous (see Figure 3.6), respectively, are presented.

The yield curve and plastic flow

A material is said to possess a plastic behavior if it has the property of retaining a new
shape even upon removal of forces of appropriate magnitude and direction (Lubliner,
2008). Ideal plasticity or rigid-plastic behavior is a simple rheological model in which
there is no strain until a critical yield stress is reached. In 1D this is modeled by a block
experiencing dry friction, i.e. which begins to move only when a strong enough forcing is
applied (see Figure 3.7). The strong limitation of a rigid-plastic model is that it does not
allow subcritical stresses to be calculated.

The general approach to model the plastic response of an ideal (i.e. rate-independent)
plasticity theory is to postulate the existence of a yield criterion defining whether a stress
state is critical, causing plastic deformation, subcritical, causing small deformation, or
supercritical, causing the material’s rupture. The yield criterion defines a region in the
space spanned by the stresses that is bounded by a convex surface. This surface is referred
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to as the yield surface (Phillips and Sierakowski, 1965) and can depend on the scalar
parameters contained in the ice state J . The allowed material’s states are the ones lying
on or inside the yield surface with the ones outside are unphysical.

A general, implicit, formulation of the yield criterion in a two-dimensional isotropic
model is given by (Feltham, 2008)4

F (σI, σII;J ) = 0 (3.13)

where F is the yield function, symmetric about the σI axis (Truesdell and Noll, 2004).
Equation 3.13 defines a family of yield curves, parametrized by variations of the scalar
properties of the ice. In plastic models of sea ice the approximation of a null tensile
strength is normally employed. I.e. for all points on the yield curve σII ≤ 0. In addition
to that, to display a stronger resistance to compression rather than to shear, the yield
curve must have a shape elongate in the σI axis.

Once the stress is on the yield curve, however, how the material deforms (plastically)
remains to be specified. The flow must be such that the stress state keeps lying on the yield
curve. The missing piece of information is given by the so-called flow-rule which allows
strains to be calculated. Many theories employ Drucker’s postulate: plastic flow is given
by the solution that maximizes the rate at which plastic work is dissipated (Drucker, 1950).
Its widespread use is sea ice plastic models is perhaps linked to its successful application
to granular mechanics (Feltham, 2008).

The determination of the plastic yield curve has generally followed two main ap-
proaches (Feltham, 2008):

a) By evaluation of the energetic budget of the subcontinuum-scale deformation (e.g.
Rothrock, 1975a; Ukita and Moritz, 1995);

b) By imposition of a scale-invariant Mohr-Coulomb rheology (e.g. Coon, 1974; Hibler
and Schulson, 2000).

The methodology in a) is taken by mean-field or scale-dependent rheologies5 while b) by
scale-invariant rheologies. In the context of approach a) and building on the develop-
ments in ridging modeling by Parmerter and Coon (1973), Rothrock (1975a) considered
pressure ridges as the main sink of energy in the ice cover. By equating the plastic work
of deformation to the gravitational potential energy due to the ridge creation plus the
associated frictional loss in the formation he suggested two possible yield curve for the
elastic-plastic model shapes: a teardrop shape and a lens shape. Ukita and Moritz (1995)
also found the teardrop shape to be appropriate by extending Rothrock (1975a) reasoning
with an energy sink due to the sliding motion of floes parallel to cracks. The teardrop
and lens-shaped curves have been implemented by Zhang and Rothrock (2005) and have
recently been suggested as a valid alternative to the standard elliptical curve for a high-
resolution viscous-plastic rheological framework (Ringeisen et al., 2023). As for approach
b), Pritchard (1977) found a wedge-shaped yield curve to be more appropriate for an
elastic-plastic model. A Mohr-Coulomb (triangular) yield curve, usually applied in granu-
lar media mechanics (e.g. Tremblay and Mysak, 1997), was implemented by Coon (1974)
in a ideal plastic model and by Hibler and Schulson (2000) in an anisotropic viscous-plastic
model.

4The yield criterion can be equally written in terms of the invariants σ1, σ2.
5The elastic-plastic rheology Coon et al. (1974) and the viscous-plastic rheology of Hibler (1979) both

rely on this assumption.
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Figure 3.8: One-dimensional illustration of the linear elastic response.
The mechanical analog is a dashpot. The stress is directly proportional to

the strain through the elastic modulus E.

Elastic-plastic rheology (EP)

The elastic-plastic rheology (EP) arises when elastic subcritical behavior is coupled to
a plastic law. The stress-strain relationship for such a model is shown in Figure 3.9.
This approach was first taken by Coon et al. (1974) in the so-called AIDJEX model (see
Section 3.3). They reasoned that for small deformations the stress-strain relationship is
dominated by the elastic deformation of the thicker ice floats, while larger deformations
also permanently rearrange thinner ice between them.

In postulating a material response, it is important to choose properly the reference
configuration from which strain will be measured. In other words, a coordinate frame needs
to be defined in which the strain is zero and with respect to which strain is measured. The
choice of reference configuration is a constitutive assumption (Pritchard, 1974). However,
in a fluid-like approach, ice is considered as material that has no permanent memory
for any particular state (Truesdell and Noll, 2004) therefore no preferred configuration
exists. In the AIDJEX model, elastic strains are evaluated with respect to a reference
configuration evolving according to the plastic flow (Pritchard, 1975). It is commonly
posed in plasticity theory that the strain rate, ε̇, is the sum of an elastic part, ε̇E , and a
plastic part, ε̇p.

The EP constitutive model is given by the law of linear elasticity for an isotropic
continuum, i.e. Hooke’s law. In tensor form this reads

σ = EK : ε (3.14)

where E is the elastic (Young) modulus and K is the adimensional elastic stiffness tensor
whose action on a generic symmetric tensor ϵϵϵ is defined by

K : ϵϵϵ =
ν

(1 + ν)(1− 2ν)
tr ϵϵϵ I+ 2

1

2(1 + ν)
ϵϵϵ (3.15)

ν being Poisson’s ratio. An isotropic linear elastic material is always characterized by two
independent elastic constants (Timoshenko and Goodier, 1951). Usually employed elastic
constants are the adimensional (i.e. normalized by E) Lamé parameters

Λ =
ν

(1 + ν)(1− 2ν)
, G =

1

2(1 + ν)
(3.16)

and the (adimensional) bulk modulus K and shear modulus G (corresponding to the
second Lamé parameter), with K = Λ+ 2

3G.
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Figure 3.9: Typical 1D stress-strain diagram in tension for an elastic-
plastic sea ice. The points in the figure have the following meaning: (A) is
the elastic limit point, i.e. when the relation between σ and ε ceases to be
linear, (B) is the yield strength, (C) the ultimate tensile strength and (D)

the rupture point.

Usually, the time derivative of both sides of Equation 3.14 is taken ino order to have a
formulation in terms that can be evaluated directly from the velocity gradient (Pritchard,
1975). So, in terms of the rate-of-deformation tensor Equation 3.14 reads

Dσ

Dt
= E[Λtr ε̇(u) I+ 2Gε̇(u)] . (3.17)

Originally, Coon et al. (1974) stated the AIDJEX constitutive model in terms of the
bulk and shear moduli and considered only compressive stresses to be allowed in the linear
subcritical regime (σ = 0, εE,I ≥ 0). For ice with an average thickness ĥ ≈ 1m typical
values of the dimensional ( i.e. multiplied by E) bulk and s are K = 107 Pa, G ≈ 1

2K
(Leppäranta 2011; Coon and Pritchard 1974). The yield compressive strength P ∗ is around
105 Pa (Pritchard, 1980). These constants are one to two orders of magnitude larger at
the smaller scales (Mellor, 1986). The yield curve is parametrized by the compressive
strength P ∗, which depends on the thickness distribution g (see Section 2.3.1) and on
ice concentration A. The AIDJEX model employed a teardrop-shaped yield curve. Coon
et al. (1974) chose the plastic flow to follow the associated or normal flow rule (Drucker,
1950):

ε̇pI = κ
∂F

∂σI
ε̇pII = κ

∂F

∂σII
(3.18)

where κ is a positive scalar determined as part of the solution to the dynamical equations
and ε̇p is the plastic part of the strain rate, perpendicular to the yield curve.

Viscous-plastic rheology (VP)

A viscous-plastic (VP) sea ice rheological model was proposed by Hibler (1979). The
physics remains essentially the same of the AIDJEX EP model by Coon et al. (1974),
but a linear viscous response substitutes the linear elastic one. Nevertheless, there is a
difference in how the EP and the VP rheology models compact ice subject to a high level
of stress persisting over an extended period of time. The EP rheology allows stationary
states with (almost) no relative motion to exist while the VP approximates these states
as subject to a very slow, but nonzero, deformation, a phenomenon known as viscoplastic
creep (Duval et al., 1983). Another benefit from using a viscous law over an elastic one
is the fact that it is not necessary to keep track of an evolving stress-free configuration,
unlike in the EP (Pritchard, 1975). I.e. in the EP model stress is a prognostic variable
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Figure 3.10: Elliptical yield curve used in the VP model. The concentric
ellipse (dashed-lined) inside the yield curve represents the limiting curve in

correspondence of upper bounds values for ζ and η (Hibler, 1977).

that has to be saved into memory, while in the VP model it is a diagnostic variable that
can be calculated directly from the strain-rate field.

VP rheology follows from the assumption that the sea ice can be represented as the mo-
tion of floes randomly experiencing perfectly plastic interactions with each other averaged
over sufficiently long time scales (≳ 1 day). More specifically, Hibler (1977) demonstrated
that if the floe interaction follow a rigid-plastic model with an elliptical yield curve, the
resulting stress averaged over all interactions is the combination of a viscous term and an
additional pressure term

σ = 2ηε̇+ [ζ − η]tr ε̇I− P

2
I . (3.19)

Here P/2 is a pressure term, with P the ice strength and ζ, η are the bulk and shear
viscosity, respectively, defined in Section 3.2.1.

If an elliptic yield curve

F (σI, σII, P ) =

(
σI + P

P

)2

+
(σII
P
e
)2

− 1 = 0 (3.20)

and a normal flow rule is assumed (see also figure 3.10) it is possible to obtain explicit
expressions for ζ and η can be obtained (Hibler, 1977):

ζ =
P

2∆
, η =

P

4∆e2
(3.21)

such that the stress stays on the yield curve. Here

∆ =
√

(ε̇211 + ε̇222)(1 + e−2) + 4e−2ε̇212 + 2ε̇11ε̇22(1− e−2) . (3.22)

and e is the eccentricity of the ellipse, constituting a parameter of the rheology.
The VP rheology is closed by specifying an equation of state for the ice strength.

Hibler (1979) used:
P = P ∗ĥ exp [−c∗(1−A)] (3.23)

where ĥ is the mean ice thickness6, and c∗ is a (positive) compaction parameter, charac-
terizing the strength reduction for lead opening.

6Hibler used a simple ice-open water model, so the mean ice thickness is exactly equal to ĥthickA.
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Figure 3.11: Stress states recorded during the SHEBA experiment in the
Beaufort sea at one sensor, from mid-October, 1997, to end of June, 1998
(1 measure per hour). The figure is a plot in the shear versus normal stress

space of |τ | = −µσN + C with C = 40 kPa and µ = 0.7.
Taken from Weiss et al. (2007).

Mohr-Coulomb failure

Another approach in the plastic modeling of sea ice has been to use Mohr-Coulomb frac-
ture theory (Coulomb, 1776) to determine the point ice fails plastically. The idea is to
assert a scale-invariant yield curve based on the idea of shear fracture or frictional sliding
along flaws (Feltham, 2008). This is supported by the evident self-similarity (see Sec-
tion 4.1.2) of fragmented and deformed sea ice on a wide range of scales (e.g. Rothrock
and Thorndike, 1984; Weiss and Marsan, 2004; Matsushita, 1985) and by its granular
deformation behavior. Erlingsson (1988) and Weiss and Schulson (2009) are example of
studies where Coulombic faulting was observed to happen at both the micro (grain)-scale
and the geophysical scale, with a scale-invariant (to a good approximation) angle of inter-
nal friction between the floes. Studies have shown that ice stress remains in an envelope
resembling the Mohr-Coulomb form (see Figure 3.11; Weiss et al. 2007; Richter-Menge
et al. 2002). If we consider a surface with unit normal n in the sea ice horizontal plane,
the traction exerted on a line with tangent unit vector t is, by definition,

σ · n = σNn+ τt (3.24)

where σN (Equation 2.13) and τ (Equation 2.14) are two invariants of σ respectively
representing the normal stress across the line and the shear stress along it. The relationship
between the normal and shear stresses and the other invariants σI, σII implicitly defines
the Mohr circle in the {σN , τ} plane:

τ2 + (σN + σI)
2 = σ2II . (3.25)

In a Mohr-Coulomb fracture theory, the failure criterion has a general form given by
Mohn’s law (e.g. Feltham, 2008):

|τ | = Ω(σN ;J ) . (3.26)
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Equation 3.26 states that the material fails when a certain shear stress-normal stress is
reached. In practice, however, a simple form for Ω is chosen, giving rise to the Mohr-
Coulomb shear stress criterion7 (Coulomb, 1776):

|τ | = −µσN + C (3.27)

where µ > 0 is an internal friction coefficient (related to the angle of internal friction
between the floes Θ through µ = tanΘ (constant) and C is the cohesion, i.e. inherent
shear strength. Equation 3.27 defines a wedged-shaped yield curve, commonly referred to
as Mohr-Coulomb envelope.

Coon (1974) proposed the first plastic sea ice rheological model assuming a Mohr-
Coulomb criterion , namely of the form of Equation 3.27 with Θ = 35◦ and C = 0.

The criteria described in this section will be widely employed in Chapter 4, when
discussing the britte-based rheological frameworks.

3.3 A summary of rheology-based sea ice dynamics up to the
current state

The concept of a large-scale ice rheology to describe floe interaction mechanisms was
first introduced in the works by Laikhtman (1958), Ruzin (1959) and Reed and Camp-
bell (1960). There, the ice cover was treated like a thin film of Newtonian viscous fluid
characterized by a uniform eddy viscosity. Viscous rheologies were employed through the
1960s to model the mechanical behavior of sea ice (e.g. Campbell, 1965; Doronin, 1970;
Rothrock, 1970; Solomon, 1970; Glen, 1970).

A great advancement in sea ice dynamics understanding was made thanks to the
Arctic Ice Dynamics Joint Experiment (AIDJEX) which took place between 1970 and
1978 (Untersteiner et al., 2007). The aim of the experiment was to gather a substantial
amount of observations relating ice deformation to the external stress fields. Among the
main achievements of the AIDJEX program, we find the introduction of elastic-plastic
rheology (EP; Coon et al. 1974), in which a plastic failure law to model compact ice
behavior was used, and the concept of ice thickness distribution (Thorndike et al., 1975).
However, some of the underlying assumptions concerning ice mechanical behavior were
later revised and found inadequate (Coon et al., 2007).

A step forward in sea ice dynamics research was moved with the viscous-plastic model
(VP) by Hibler (1979). This is a two-categories model where ice is assumed to deform in
a viscous manner with a high viscosity up to a plastic threshold. The yield curve in the
stress plane was chosen to have elliptic shape.

Various improvements have been made to the original VP rheology, but the physical
principles remain the same (Ólason et al. 2022; e.g. VP with JNKF in Lemieux et al. 2010).
The elastic-viscous-plastic rheology (EVP ; Hunke and Dukowicz 1997) was developed to
addresses numerical issues related to the VP. Even in this case, several works continue to
be aimed at improving the numerical efficiency of the EVP (e.g. Kimmritz et al. 2016,
mEVP in Bouillon et al. 2013).

Virtually all current operational modeling platforms, whether assimilating data or not,
and IPCC global coupled climate models including sea ice dynamics (e.g. the Coupled
Model Intercomparison Project Phase 6, Notz and Community, 2020) use the VP or EVP
rheological frameworks. For instance, the Los Alamos sea ice model (CICE) employs a
revised version of the EVP rheology (Hunke et al., 2017). Despite its widespread use, the
VP rheology has certain deficiencies both in the underlying assumptions (e.g. Coon et al.,

7Equation 3.27 is also referred to as Coulomb’s friction law.
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2007) and in the results obtained by the models that implement it. Recent modeling
studies have shown that the VP model can represent with a certain level of accuracy
the mean, global (> 100 km) drift of sea ice, but it fails at reproducing the observed
properties of sea ice deformation, especially at the fine scales (Dansereau (2016); Lindsay
et al. (2003), Kwok et al. (2008), and Girard et al. (2009)). VP-based models were also
shown to capture the “linear kinematic features”, linear-like faults, or leads due to large
velocity gradients in the cover (Kwok, 2001) only if run at high resolution, i.e. < 2 km,
which is one order of magnitude higher than the observational data (Hutter and Losch,
2020).

It is not yet clear whether these shortcomings should be attributed to incorrect physics,
problematic numerics or other factors (e.g. Bouchat et al., 2022; Hutter et al., 2022). In the
meanwhile, research efforts have led to the development of new rheological frameworks with
an alternative physical approach. Among those, Tremblay and Mysak (1997) developed a
rheology based on granular mechanics using a Mohr-Coulomb failure envelope, Wilchinsky
and Feltham (2006) proposed a continuum model where anisotropy was introduced at the
scale of leads (which are oriented features) and Schreyer et al. (2006) proposed an elastic-
decohesive constitutive model, with an explicit representation of leads.

However, this work will now focus on another branch of rheologies, with an innovative
brittle-like approach, initiated with the works of Girard et al. (2011), Dansereau et al.
(2016), and Ólason et al. (2022). Their rheological models are based on a progressive
damaging mechanism, a concept borrowed from rock mechanics (e.g. Amitrano et al.,
1999). These models have been shown to give a more faithful description of the deformation
rates. These brittle rheologies are discussed in Chapter 4.
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Chapter 4

Sea ice brittle modeling

This Chapter presents the novel solid-like sea ice modeling approach. Section 4.1 explains
the new process of evaluation of a sea ice model, which motivates the recent state-of-the-
art brittle-based rheological models described in later sections. A summarized timeline in
sea ice brittle modeling is given at the end of the chapter.

4.1 A new modeling paradigm

Because of the growing importance of scaling analysis, hereafter we present the concepts
used to investigate the scale-invariance of sea ice deformation. Then, we explain how these
concepts have guided to a new sea ice modeling paradigm.

4.1.1 A quantitative approach to study scale-invariance

The degree of scale invariance in sea ice deformation can be measured quantitatively by
examining the shape of the distributions of deformation rate invariants, ε̇I, ε̇II. These
probability density functions (P ) have been demonstrated to exhibit “heavy-tailed” char-
acteristics, indicating a prevalence of extreme values. This heavy-tailed behavior follows
a power-law decay of the form

P (ε̇tot) = ε̇−γ
tot (4.1)

where ε̇tot indicates the magnitude of the total strain rate and γ > 1 is an exponent
that depends on the spatial and timescale considered (Lindsay and Stern, 2003; Marsan
et al., 2004). Nevertheless, from Equation 4.1 it is impossible to evaluate the scale at
which a certain deformation is taking place, not even by comparing the relative number
of deformation events of different sizes (Rampal et al., 2019).

The mean deformation rate has been shown to scale according to a power law (Lindsay
and Stern, 2003; Marsan et al., 2004):

⟨ε̇tot⟩ ∼ L−β(1) (4.2a)

⟨ε̇tot⟩ ∼ T−α(1) (4.2b)

where the scaling exponents β, α ≥ 0 quantify the degree of localization of the deforma-
tion. In the realm of space dynamics, a value of β = 0 signifies the uniform deformation of
either an elastic solid or a viscous fluid. This type of deformation remains consistent across
spatial scales. Conversely, when β = 2, representing the topological dimension applicable
to a 2-D-like sea ice cover, it denotes a singular "point" where all deformation concentrates
within an otherwise unaffected material, as discussed by Rampal et al. (2008). On the
flip side, within the temporal domain, a value of α = 0 signifies a uniform deformation,
while a singular deformation event occurring in isolation over time aligns with the limit
of α = 1, as explained by Rampal et al. (2008).
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In order to properly study how the scaling changes with the magnitude of the defor-
mation events, one has to study the higher order moments of the distribution 4.1, e.g. the
variance (order 2) and the skewness (order 3); in particular, one has to evaluate the change
of β, α as the order changes. The proper way to do that is through so-called structure
functions (in space and time, respectively):

β(q) = aq2 + bq (4.3a)

α(q) = cq2 + dq (4.3b)

where q indicates the moment of the distribution and a, b, c, d are scalars. There are two
notable cases:

• a = 0 or c = 0, i.e. the structure functions are linear;

• a, c > 0 or c, d > 0, i.e. the structure functions are convex.

In the first case, the amount of localization of large and small deformation events is the
same, regardless of the scale. These systems are known as monofractal. The second
instance implies that the higher-order moments of the distribution experience a notably
greater rate of increase than the lower-order moments as the observational scale diminishes.
Put differently, substantial deformation events manifest a more concentrated localization
in both temporal and spatial dimensions compared to smaller events. The system is then
said to exhibit multifractal scaling (Kolmogorov, 1962; Lovejoy and Schertzer, 2007). This
multifractal scaling is referred to as heterogeneity in the spatial domain and intermittency
in the temporal domain (Rampal et al., 2019).

4.1.2 The multifractal scaling properties of sea ice deformation

Spatial scaling analysis of sea ice deformation derived from radar or buoy drift data re-
veals a distinct multifractal scaling characterized by a power law relationship (of the form
of Equation 4.2) encompassing the first, second, and third moments. This scaling phe-
nomenon is discernible across a range extending from the resolution of the data to scales
reaching hundreds of kilometers, as evidenced by studies conducted by Marsan et al.
(2004), Rampal et al. (2008), Hutchings et al. (2011), and Bouillon and Rampal (2015a).
Results from one of such studies are shown in Figure 4.1 and Figure 1.2. Figure 4.1 shows
the dependence of the first three moments of the total deformation distribution on the
spatial and temporal scales, respectively, as dederived from the Radarsat Geophysical Pro-
cessor System (RGPS; Kwok 1998) data set and as simulated by neXtSIM model (Rampal
et al., 2019).

From a qualitative point of view, deformation has been observed to be highly local-
ized around long, narrow apertures distributed in the sea ice cover in “web-like arrays”,
commonly known as linear kinematic features (LKFs; Kwok et al. 1998). Analyses of ob-
servations have shown that what originates and keeps “active” these high stress zones of
the cover are very intense and intermittent events, i.e. events that are highly localized in
the time domain. More specifically, intermittency has been shown to characterize sea ice
deformation on a time window from 3 to 160 days Weiss and Dansereau (2017).

4.1.3 A new validation metric for sea ice models

A growing comprehension of the aforementioned properties of sea ice deformation is leading
sea ice researchers to employ a new modeling paradigm to build rheology-based models.
Indeed, the potentially crucial role of multifractal scaling in developing a sea ice rheological
model that is able to statistically link the observed dynamics at the larger scales (≳
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Figure 4.1: (a) Values of the first three moments of the rate of deforma-
tion distribution from (black) RGPS data and (light blue) neXtSIM simu-
lations of ⟨ε̇qtot⟩ for q = 1, 2, 3, with space scales in the range 7.5 to 580 km;
solid lines are the power-law scaling of Equation 4.2a. (b) Corresponding
spatial structure function β(q) of Equation 4.3a with the extrema of the
bars indicating minimum and maximum power-law exponents obtained for
two successive spatial scales. These effectively work as an estimation of the
goodness of fit as in Bouillon and Rampal (2015a). Gray points represent
the mean values for the considered time scales calculated by averaging over

the period 1996-2008 (Stern and Lindsay, 2009).
Taken from Rampal et al. (2019)

.

Figure 4.2: As Fig. 4.1 but as function of the temporal scales for a spatial
scale of 7.5 km. The dotted gray points correspond to the mean rate of
deformation values for a shorter timescale, 3 hours to 1 day with the same

spatial scale (Oikkonen et al., 2017).
Taken from Rampal et al. (2019)
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10 km) to the dynamics the smaller (unresolved) scales has been recognized (e.g. Weiss
and Dansereau, 2017).

The self-similarity and multifractality observed in sea ice deformation pose great chal-
lenges for the continuum modeling framework (see Section 2.1) covered in this work.Its
equations describe the progression of the mean quantities (see Section 2.5) in time. How-
ever, multifractality implies a lack of clear scale separation between mesoscale and larger-
scale strain rates (Rampal et al., 2008) and no evident way of homogenizing field variables
over different scales (Rampal et al., 2019) exists. In the absence of a defined spatial scale
and temporal scale for sea ice deformation, the optimal approach within a continuum
framework for sea ice modeling may involve accurately replicating the deformation statis-
tics across scales. This encompasses capturing the statistics from the smallest resolved
scales (nominal scale) to the largest scale. I.e. ranging from the spatial grid resolution
(usually around 10 km) and model time step to the dimensions of the Arctic basin and
the seasonal timescale. More quantitatively, that requires (Ólason, 2023)

a) Power-law scaling of the first moments of the strain-rate distribution, i.e. ⟨ε̇qtot⟩, q =
1, 2, 3 should follow Equation 4.2;

b) The correct scaling exponents and form for the structure functions α(q), β(q) and

c) The moments should be of the correct magnitude.

The diagram in Figure 4.3 offers a graphical representation of the above requirements
for the spatial scale of the deformation. The right hand side part (colored in red in the
figure) represents the spatial scales resolved by the model, i.e. coarser than the model’s
resolution ∆x, while the left-hand side (colored in blue) represents the unresolved scales.
In order to fulfill requirements a) and b) the values of ⟨ε̇qtot⟩ should fall in a straight line
whose slope is comparable to the one obtained by fitting observations (see Figure 4.1).
Then, the points on the vertical red dashed line should be at the right (observed) height,
i.e. ⟨ε̇qtot⟩ has the right magnitude, satisfying c). The deformation events happening at
coarser scales than ∆x are caused by grid scale interactions, while the ones in the drawn
circles are the result of sub-grid scale physics. For these a different parametrization is
needed. Had we adequate models with a high-enough resolution we would be able to
resolve the lines colored in blue up to a certain scale χ, at which a new modeling approach
would be needed1. This unknown scale corresponds to the size of a stress concentrator.
I.e. the typical length scale of features with higher stresses than those found in the
areas surrounding them. This is the length scale at which the “multiplicative cascade” of
deformation events (e.g. Marsan et al., 2004) starts.

The goal of the brittle rheological frameworks discussed later in this Chapter is pre-
cisely to fulfill the previous requirements and furnish a continuum-based approach that is
apt at giving good results at all scales greater than the above-discussed stress concentrator
scale.

4.2 The Elasto-Brittle rheology (EB)

4.2.1 Toward an elasto-brittle approach for sea ice rheology

Brittle-based rheology is based on the similarity between sea ice mechanical behavior
and that of the Earth crust. For the latter, brittle fracturing, scaling properties and
a Coulomb-like stress redistribution was already established (e.g. Kagan and Knopoff,
1980). For example, Tang (1997) and Amitrano et al. (1999) combined a linear elastic law

1Discrete element modeling seems to be the answer, but this is an open research question.
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Figure 4.3: This diagram shows the spatial dependence of the first three
moments of the deformation rate distribution on a typical timescale (see
e.g. Figure 4.1), where q is the moment order and χ is the size at which

single floes are resolved. See text for the explanation.
Taken from Ólason (2023)

with local threshold mechanics to obtain the desired nonlinear behavior of rocks at the
macroscale. In particular, Amitrano et al. (1999) used a progressive damage mechanism
based on a damage level affecting the elastic stiffness of the Earth crust and allowing
stress redistribution triggering large-scale elastic deformation. Marsan and Weiss (2010)
provided evidence for similarities between Earth crust and ice dynamics. They also showed
that in both cases deformation is the result of a multiplicative cascade of local fractur-
ing events (Marsan et al., 2004) with the influence of these events spanning longer time
windows and larger spatial areas. Building upon these works, Girard et al. (2011) applied
this “elasto-brittle” approach to the ice cover developing the so-called elasto-brittle (EB)
rheology.

Development of the brittle-based rheological framework was motivated by the desire
to reproduce the statistical and scaling properties that characterize sea ice deformation
described in Section 4.1. It is based on continuum mechanics and is simple enough to be
implemented in climate models (Girard et al., 2011).

In the EB rheology, ice is seen as a continuous elastic plate encountering progressive
damage, simulating local fracturing events, i.e. the opening of leads and cracks. The
internal stress is able to propagate over long distances as a result of a damage event,
thanks to long-range elastic interactions.

The EB rheology was first implemented in the “neXt generation Sea Ice Model”,
neXtSIM (Rampal et al., 2016). Since improvements were made from its initial intro-
duction by Girard et al. (2011), we will present the improved version by Bouillon and
Rampal (2015b) hereafter.

4.2.2 Constitutive law

The linear constitutive model was already introduced when discussing the (linear) elastic-
plastic model (see Section 3.2.2):

σ = EK : ε (4.4)
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where here E is an effective elastic modulus coupled to the spatially and temporally
evolving level of damage of the material and K is the dimensionless stiffness tensor given
by Equation 3.15. By taking the time derivative of Equation 4.4 we can rewrite the
constitutive law in terms of the rate of deformation tensor:

Dσ

Dt
= EK : ε̇+ ĖK : ε (4.5)

where Ė stands for the total time derivative of the effective elastic stiffness. In plane-stress
hypothesis, valid in sea ice dynamics, K assumes a simple form given by (e.g. Timoshenko
and Goodier, 1951; Zienkiewicz and Taylor, 2000)2(K : ε̇)11

(K : ε̇)22
(K : ε̇)12

 =
1

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 ε̇11ε̇22
2ε̇12

 . (4.6)

The effective stiffness changes with the level of damage and sea ice concentration as3:

E(A, d) = E0f(A)(1− d) (4.7)

where E0 is Young elastic modulus (intrinsic property), d is the damage level (e.g. Ami-
trano et al., 1999), a dimensionless scalar variable, which is equal to 0 for undamaged ice
and to 1 for “completely damaged ice” (see Section 4.2.4 for the details) and A is sea ice
concentration (see Equation 2.18).

How the concentration impacts the elastic stiffness is not really known and thus has to
be parametrized (Bouillon and Rampal, 2015b). The dependence of the compactness has a
form inspired by the parametrization of the ice strength in VP models (see Equation 3.23)

f(A) = exp [−c∗(1−A)] (4.8)

where c∗ is the compaction parameter in Hibler (1979) model, usually set to c∗ = 20
(Rampal et al., 2019). This exponential factor can be interpreted as the local contact
fraction between floes (as in Gray and Morland, 1994).

The dependence on the damage level in the constitutive equation can be made explicit
by calculating Ė from Equation 4.7:

Ė =
∂f

∂A
Ȧ− E

ḋ

1− d
(4.9)

where ḋ is the mechanical time-change in damaging. As it does not impact significantly
the results, we neglect the compactness change in time and write the constitutive law 4.5
as (see Bouillon and Rampal 2015b; Ólason et al. 2022)

Dσ

Dt
= EK : ε̇− ḋ

1− d
σ . (4.10)

2ε̇21 = ε̇12 by symmetry and as by definition of the plane-stress hypothesis all stresses perpendicular
to plane are zero (Zienkiewicz and Taylor, 2000).

3In Girard et al. (2011)’s version the ice thickness h appears to the right-hand side of Equation 4.7. In
this formulation, as in Bouillon and Rampal (2015b), h is explicitly present in the momentum equation
2.31 through explicit integration of σ. included the ice thickness to the
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Figure 4.4: Failure envelope combining a Mohr-Coulomb criterion
(thicker black line) with maximal compressive and tensile criteria. The
lower symmetric branch has been coloured in gray. The three possible su-
percritical states on the upper branch have been represented. After the
damaging process the states are brought back to the × point on the yield

curve.

4.2.3 Damage criterion

Study of fracture patterns has led sea ice scientists to hypothesize that failure occurs on
many scales through highly localized deformation via scale-independent mechanisms (Schul-
son, 2004). On the basis of an analysis of in situ ice stresses and of satellite-derived ice
strain rates as well as a comparison between field and laboratory behavior, a combination
of the Mohr-Coulomb criterion with tensile and compressive criteria was found to best de-
scribe faulting within the sea ice cover (see Figure 3.11; Weiss et al. 2007; Richter-Menge
et al. 2002).

Since the damaging process is isotropic (Amitrano, 2003), the damage criterion can be
equally stated in any of the stress-invariant spaces. In the context of brittle rheologies, the
damage criterion (Mohr-Coulomb; introduced at the end of Section 3.2.2) is often stated in
terms of shear stress (e.g. Girard et al., 2011; Ólason et al., 2022) or in the principal stress
space (e.g. Bouillon and Rampal, 2015b; Dansereau, 2016; Rampal et al., 2019) instead
of the {σI, σII} space (e.g. Plante et al., 2020). In sea ice models implementations, e.g.
neXtSIMv1 (EB-,MEB-based) versus neXtSIMv2 (BMM-based), slightly different versions
of the Mohr-Coulomb criterion have been used. However, the principles remain the same.
Hereafter we will stick to the shear-normal stress representation of the envelopes, with the
convention of negative compressive stress as elsewhere in this work.

For the EB model the following criterion is generally used (e.g. in neXtSIM, Bouillon
and Rampal, 2015b):

|τ | ≤ −µσN + C (Mohr-Coulomb criterion) (4.11a)
σN ≤ σT,max (tensile stress criterion) (4.11b)
σN ≥ −σN,max (compressive stress criterion) (4.11c)

where µ is the internal friction coefficient, C is the cohesion (see Section 3.2.2) and
σT,max, σN,max > 0 are the maximal tensile and compressive stress respectively. In order
to constitute an additional effective constraint, σT,max must be smaller than C/µ. This
failure envelope in represented in Figure 4.4.
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In Girard et al. (2011) the friction coefficient µ was set to 0.7, a common value for geo-
materials (Amitrano et al., 1999), seemingly scale-independent (Weiss and Schulson, 2009).
On the contrary, the sea ice cohesion C strongly depends on the spatial scale (Weiss et al.,
2007). Following Schulson (2004),Bouillon and Rampal (2015b) assumed the cohesion to
scale with the model resolution as

C ≈ Cref

√
lref
∆x

(4.12)

where lref = llab for which the cohesion is estimated to be around 1MPa. In order to
introduce natural heterogeneity, i.e. the presence of stress fractures, lead, shear zones
(effectively, stress concentrators) at the model resolution scale the cohesion value at each
model element is drawn randomly from a uniform distribution of values spanning estimates
from in-situ stress measurements (Weiss et al., 2007). Typical ranges for C, guarantee a
representation of stress concentrators in the 25 km− 10 km range (Bouillon and Rampal,
2015b). An important point is that Equation 4.12 implies that the compressive and tensile
strength values also follow the same scaling law as C. From observations the following
relationships are deduced (Bouillon and Rampal, 2015b): σT,max = 5

4C, σN,max = 5
2C.

4.2.4 Progressive damaging and healing

In the EB rheology, the mechanical parameter E is not constant, but coupled to the level
of damage, described by d, 0 ≤ d ≤ 1. This parameter is interpreted as a measure of the
sub-grid cell defects or crack density (Kemeny and Cook, 1986). In other terms, the effect
of sub-gridscale fracturing is represented by a parameter at the grid scale (Girard et al.,
2011). Two competing mechanisms contribute to damage evolution. On the one hand
we have damaging, representing fracturing and the opening of leads, occurring when the
internal stress exceeds the mechanical resistance of the material, and which leads to its
weakening (Dansereau, 2016). On the other, we have healing, representing the mechanical
strength recovery through refreezing of open leads4.

When the stress exceeds the yield criterion presented in Equation 4.11, the level of
damage of an element d increases and the elastic modulus E drops, leading to local strain
softening (Amitrano et al., 1999). Since we are considering an elastic cover able to sus-
tain long-range interactions, the decrease in E results in a stress redistribution around
the damaged element, which mostly affects its nearest neighbors. Because of the stress
redistribution, the strength threshold for damage can be exceeded in other elements and
this can trigger an “avalanche” of damage events (Amitrano et al. 1999; Girard et al. 2011;
see e.g. Fig. 2.4 in Dansereau 2016). This propagation mechanism is at the very root of
the emergence of both spatial heterogeneity and anisotropy in the stress and strain fields,
i.e. in the formation of linear-like features (Dansereau, 2016).

In the following, we will discuss the derivation of the evolution equation for the damage
d in the EB model.

Damaging

Since the time scale of healing, Th, is way larger than the characteristic time scale of
damage propagation, Td, the latter being comparable to the time of propagation of an
elastic shear wave in the medium, we can treat damaging and healing separately.

4This has not to be confused with a thermodynamical healing process, e.g. the one taken into account
by neXtSIMv1 (Rampal et al., 2016), or with the mechanical/thermal changes described in Section 2.5
because it applies only to damaged ice. The thermodynamical healing process in Rampal et al. (2016)
is driven by a local temperature gradient between the bottom of the ice and the snow, reasoning that a
cooler environment will cause faster freezing (healing).
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The damaging mechanism of the EB model is based on the following assumptions:

a) The model time step has to be smaller than the characteristic damaging time scale
i.e. Td ≫ ∆t. Furthermore, the damaging process is assumed to take place uniformly
over Td;

b) Stress states lying outside the failure envelope are unphysical (brittle failure would
have occurred before). In order to bring them back to the yield curve, the damage
has to change by a factor dcrit;

c) The strain of each model element is conserved during a damaging process, only the
stress level is changed as a result.

We note that point c) is a fundamental assumption, which allows stress to be redistributed
among neighbouring model elements, i.e. the avalanche process previously described takes
place. We now discuss the damaging process.

The first step accounts for the elastic deformation without considering the damaging
process, i.e. Equation 4.5 with a constant damage is employed rendering a potentially
supercritical stress σi (Rampal et al., 2016). If the state σi happens to be supercritical, a
damage factor dcrit is computed as the distance of σi to the yield curve moving on a line
passing through the origin:

σf = dcritσi . (4.13)

furnishing a new physical state, σf , lying on the yield curve. The damage level of the
material has therefore been increased. Clearly, the expression for dcrit changes based on
which of the criteria in Equation 4.11 has been exceeded(see e.g. Plante et al. 2020,
Rampal et al. 2016):

dcrit = min

[
1,

C

(τ + µσN )
,−

σN,max

σN
,
σT,max

σN

]
(4.14)

which ensures 0 < dcrit < 1. We now want to derive the damage change in time, which will
be then coupled to the healing process. Using the chain rule, the internal stress evolution
may be written as

Dσ

Dt
=
∂σ

∂t
+
∂σ

∂ε
ε̇+

∂σ

∂d
ḋ . (4.15)

Combining this with Equation 4.10 gives

∂σ

∂d
=

−σ

1− d
. (4.16)

Rewriting Equation 4.13

σf − σi

Td
= −σi

1− dcrit
Td

(4.17)

and observing that the left-hand side is an approximation of the time derivative gives

∂σf

∂d
ḋ = σf

1− dcrit
Td

. (4.18)

Combining Equations 4.16 (where σ = σf ) and 4.18 we finally get the time-change in the
level of damage:

ḋ =
(1− dcrit)(1− d)

Td
. (4.19)
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In the original EB formulation of Girard et al. (2011) a simpler version of the damaging
mechanism was employed. Instead of employing a varying damage factor, they opted for a
sub-iteration loop. In this loop, the elastic stiffness was consistently reduced by a constant
damage factor at each iteration step until the stress state realigned with the yield curve.
This was proved not to have significant impact on the simulated deformation fields, but
required a much higher computational cost than the version of Bouillon and Rampal
(2015b). However, they used the same form of the damage source term (right-hand side
of Equation 4.19).

Healing

As introduced by Bouillon and Rampal (2015b), the mechanical healing process is handled
by a simple restoring term

ḋ = − d

Td
(4.20)

where the Td is the damage relaxation time.

Damage level evolution

Coupling the damaging and the healing processes, the evolution equation for the damage
level is established:

ḋ =
(1− dcrit)(1− d)

Td
−H(1− d)

d

Td
(4.21)

where H is the Heaviside step function, ensuring that the damage level remains below the
upper limit of 1..

Now, the coupling of the constitutive law Equation 4.10 is fully defined with E evolving
according to Equation 4.7 and the damage level with Equation 4.21.

4.2.5 Results and known limitations of the EB rheology

In introducing the EB rheological framework, Girard et al. (2011) performed an idealized
short timescale basin-scale simulation (three days) at the mid-coarse 10 km resolution
neglecting advective effects on the dynamics. The simulated deformation rates and scaling
laws were consistent with those expected based on RGPS observations (see Section 4.1.2).
In addition to that, VP simulations with a similar setup were performed in order to make
a comparison. The results for the shear rates of deformation are shown in Figure 4.5. It
was also shown that the EB gives much better result in terms of statistical and scaling
properties than the VP.

The EB rheology was also implemented in neXtSIM with a pan-Arctic simulation of
one year (Rampal et al., 2016). The results showed that the model correctly reproduced
the multi-scale statistics of the rate of deformation fields as well as the ice volume and
extent of the ice cover.

A key limitation of the elasto-brittle framework lies in its ability to represent large,
permanent deformation fields. Using a simple linear elastic law, the model will solve
for the total strain ε without distinguishing between the elastic (recoverable) and the
potentially permanent part of the deformation (Dansereau, 2016). An assumption on the
strain partitioning of damaged ice thus have to be made.

Girard et al. (2011) assumed all the deformation of the damaged material to be elastic,
which means the material will return to the original position after stress-unloading, but
with a decreased elasticity. This approach might be suitable for short-term simulations,
where advective processes are neglect, as in Girard et al. (2011). However, in order to run
long-term simulations this assumption had to be revisited.
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Figure 4.5: Shear rate from (a) RGPS observations, (b) EB simulation
and (c) VP simulation. The RGPS observations represented were obtained
between 27 March and 1 April 2007. Strain rates from EB and VP simula-
tions were computed between 27 and 30 March 2007, for a temporal scale

of 3 days.
Taken from Girard et al. (2011)

Strain rate estimates coming from RGPS observations suggested a dominant contribu-
tion of permanent deformations for a damaging elastic cover (Weiss et al., 2007; Marsan
et al., 2004). This motivated Bouillon and Rampal (2015b) to assume damaged ice to only
undergo permanent deformation in neXtSIM EB-based model with advection. Neverthe-
less, this all-permanent approach, opposite to the all-elastic one of Girard et al. (2011),
is defective in that it implies an instantaneous dissipation of internal stress once the ap-
plied loading is removed or reset. This inability to “remember” the history of previous
stresses strongly compromises EB-models to reproduce the intermittency, i.e. the multi-
fractality in the time domain (see Section 4.1.1, intrinsic to sea ice (Dansereau, 2016)).
The full dynamic-thermodynamic EB-based version of neXtSIM (Rampal et al., 2016)
weakly reproduces this intermittency, which is instead well captured by the MEB-based
version (Rampal et al., 2019).

In order to overcome these shortcomings, a suitable rheological model should discern
between small/reversible and large/permanent deformations.

4.3 The Maxwell elasto-brittle rheology (MEB)

4.3.1 Motivation

In order to achieve a better representation of observed ice deformation rates, an extension
to the EB rheology has been developed by Dansereau (2016). This Maxwell-Elasto-Brittle
(MEB) rheology uses a linear-elastic constitutive model, like the EB, but with an addi-
tional viscous-like relaxation term. Thus effectively resulting in a Maxwell viscoelastic
model. Nevertheless, the “apparent” viscosity, coupled to the damage level as the elas-
tic modulus in the EB model, provides a way for highly damaged ice to dissipate stress
into permanent deformations. That being said, an important difference with the Maxwell
model (Maxwell, 1867) is that the fictitious viscosity is not meant to represent the vis-
coplastic creep of bulk ice (Duval et al., 1983).

Arguments in favor of a viscoelastic rheology with a pseudo-viscosity are (a) the
already-presented similarity of sea ice with the lithosphere (see Section 4.2.1), where relax-
ation of elastic strains occurs in active faults (e.g. Çakir et al., 2012) and (b) the analogy
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η E

Figure 4.6: One-dimensional illustration of the Maxwell linear visco-
elastic model . The mechanical model is given by a dashpot and a spring
placed in series. In the MEB model both η and E evolve in space and time,

being coupled to the compactness and damage level.

of ice with sheared granular media when it is highly packed. For flows in such media a
high apparent viscosity is typical (Jop et al., 2006; Aranson and Tsimring, 2006).

Although not new in the context of rock-like materials modeling (e.g. Lyakhovsky et al.,
1997), applied viscoelastic rheologies with an apparent viscosity term are fundamentally
different from the MEB rheology. In those models, pseudo-viscous relaxation is meant to
represent small brittle-failure deformations (Dansereau 2016; e.g. Lyakhovsky et al. 1997)
not to link small to large deformations.

4.3.2 Constitutive model

In the MEB model, the ice sheet is modeled as an continuous, isotropic, compressible solid
satisfying the Maxwell (linear viscoelastic) constitutive law (Maxwell, 1867). The one-
dimensional representation of the Maxwell model is shown in Figure 4.6. It is composed
of a linear elastic element, whose behavior is characterized through the elastic modulus
E (see Figure 3.8), and of a viscous element, with a stress-independent viscosity η (see
Figure 3.6).

Extending the one-dimensional Maxwell model concept to the solid ice sheet, the total
deformation ε resulting from an applied stress σ reads

ε = εE + εv (4.22)

i.e. it is effectively partitioned into an (instantaneous) elastic, reversible component, εE ,
and a (linearly increasing with time) viscous, permanent component, εv. The model
assumes the viscous stress σv, i.e. the time-dependent part of the stress, to be linearly
dependent on the strain rate

σv = ηK : ε̇v (4.23)

where η is a stress-independent coefficient setting the rate of increase of permanent defor-
mation with the time and has the dimensions of a viscosity (Dansereau, 2016). From the
elastic constitutive law in terms of the rate of deformation tensor (Equation 4.5) follows

DσE

Dt
= E(K : ε̇E) + Ė(K : εE)

= E(K : ε̇)− E(K : ε̇v) +
Ė

E
σE (4.24)

= E(K : ε̇)− E

η
σv +

Ė

E
σE (4.25)



4.3. The Maxwell elasto-brittle rheology (MEB) 47

Using that σ = σE = σv since the stress in each serially connected element must be equal
to total stress (Ólason et al., 2022) the previous reads5

Dσ

Dt
= E(K : ε̇)− 1

λ
σ +

Ė

E
σ (4.26)

where we have introduced the viscous relaxation time λ = η
E .

The Maxwell model was originally designed to describe small deformations of viscoelas-
tic materials (Maxwell, 1867). However, the MEB rheology aims at representing both
small and large deformations. This means some non-linearity must enter the equations
when transitioning from the small elastic to the large permanent deformations for which
advective processes are non-negligible. Therefore, Dansereau (2016) stated the evolution
of the internal stress in terms of the objective Gordon-Schowalter derivative (Saramito,
2016) rather than in terms of the usual material derivative:

Dσ

Dt
=
∂σ

∂t
+ (u · ∇)σ + βa(∇u,σ) (4.27)

where the additional term βa accounts for the effects of rotation and deformation on the
evolution of σ and reads6

βa(∇u) = σω(u)− ω(u)σ − a[σε(u) + ε(u)σ] (4.28)

with ε̇(u), ω̇(u) the symmetric and antisymmetric part of the velocity gradient respectively
(see Section 2.2.1).

4.3.3 Damage criterion

Referring to envelope used in the MEB implementation in neXtSIM model (Rampal et al.,
2019), the same failure criterion was used (see Equation 4.11; Figure 4.4).

Originally, Dansereau (2016) used a Mohr-Coulomb criterion, stated in the principal
stress plane combined with a tensile cut-off, which basically is the same as considering
Equation 4.11 with σN,max → ∞. In this cutoff, the ultimate tensile strength is defined
as the intersection of the Mohr–Coulomb criterion with the σ2 axis (Paul, 1961).

As mentioned in Section 4.2.3, the way to introduce the material’s natural hetero-
geneities in these models is by stochastically perturbing the spatial distribution of the
cohesion.

4.3.4 Progressive damaging

In the following, we will keep with the notation already introduced in the EB model
formulation. The mechanisms giving rise to the progressive damaging remain the same:
one for the local degradation of the ice, i.e. damaging, and the other for its restrengthening,
i.e. healing. As discussed in Section 4.3.2, the MEB model employs two mechanical
parameters, the effective elastic stiffness E and the effective apparent viscosity η (both
linked to the relaxation time λ). The sub-grid scale processes are parametrized with the

5We remark that in the original formulation by Dansereau (2016) the last term of Equation 4.26 was
neglected.

6In their simulation Dansereau (2016) set a = 1, effectively using the so-called upper convected objec-
tive derivative (Saramito, 2016). Stating the constitutive law this way, frame-independece is guaranteed
for both vector and tensor quantities.
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dimensionless scalar parameter d at the grid scale, with the meaning already presented
above7.

The assumptions outlined for the progressive damaging mechanism of the EB continue
to hold in the MEB formulation. As for the newly added apparent viscous behavior we
require the model time step to be very small compared to the viscous relaxation time and
that a negligible part of the stress is dissipated in viscous deformations.

The damage source term in the MEB damage evolution equation is the same as in
the EB (see Equation 4.19). In deriving the evolution equation, the time resolution was
set to be the exact time of propagation of an elastic (shear) wave through the cover:
∆t = Td = ∆x

c , with c the wave velocity. Average values for an heterogeneous ice pack
indicate a value of c around 500m s−1 (Marsan et al., 2011). Combined with the spatial
resolution of current climate models, ranging from 1 km to 100 km, this implies a damaging
time between O(1) and O(102) s.

As the assumption of a healing time inversely proportional to the damage level (see
Section 4.2.4) possesses no real physical foundation, in the MEB model an even simpler
parametrization is used:

ḋ = − 1

Th
(4.29)

where Th is the characteristic time of healing, i.e. the time required for a completely
damaged element (d = 1) to recover its initial stiffness (d = 0).

An order of magnitude for the healing time can be obtained by studies on leads re-
freezing. For instance, in Petrich et al. (2007) it is shown that the time for 1m of ice to
grow within an opening of 10 cm with an air temperature of −15◦ is of O(100) hours or
O(105) seconds.

Damage evolution equation

The difference, by several order of magnitudes, between Th and Td shows two decoupled
competing mechanism, justifying the separate analysis. By putting them together, the
continuous damage evolution equation for the MEB is obtained:

ḋ =
(1− dcrit)(1− d)

Td
− 1

Th
. (4.30)

4.3.5 Coupling of damage with mechanical parameters

The way in which the progressive damage mechanism couples with the MEB model’s
mechanical parameter constitutes one of the main advancements over the EB rheology.
This coupling is based on the following ideas.

When in an undamaged state, sea ice is characterized by the (maximum) elastic mod-
ulus E0 and very large apparent viscosity η0. In analogy to the usual behavior of solid
undamaged media, in such a configuration sea ice is subject to small and reversible defor-
mations, i.e. elastic. Under these conditions, the Maxwell constitutive law, Equation 4.26,
is well approximated by a fully-elastic linear law.

On the other hand, large and permanent deformations are concentrated in highly
damaged areas of the ice pack. The deformations at these locations are effectively modeled
as the result of a large dissipation of internal stress in a relatively short amount of time.
Consequently, the time scale over which dissipation occurs, i.e. the relaxation time λ = η

E ,
must be decrease in areas with high amounts of damage. As the completely damaged limit
is approached (d → 1), the cover begins to deform in a strictly irreversible manner with

7Originally, Dansereau (2016) used the opposite convention regarding the damage level, with d = 0
standing for completely damaged ice and d = 1 for undamaged ice.



4.4. The brittle Bingham-Maxwell rheology (BBM) 49

λ → Td. In this limit the elastic memory is totally lost and the recovered behavior is the
one of a soft viscous-plastic material. One such parametrization for E, η that renders the
aforementioned behavior is (Dansereau, 2016):

E(d) = E0 exp [−c∗(1−A)](1− d) (4.31)
η(d) = η0 exp [−c∗(1−A)](1− d)α (4.32)

where α > 1 is a constant damage parameter such that

λ(d) =
η0
E0

(1− d)α−1 = λ0(1− d)α−1 . (4.33)

We note that d = d(t) and evolves according to Equation 4.30 and that sea ice concentra-
tion A is time-dependent as well. Typical values of the damage parameter and undamaged
relaxation time used in a realistic setups are, respectively, α = 5, λ0 = 107 s (Rampal et al.,
2019). In order to preserve the mathematical consistency of the constitutive law, either
the limit d = 1 is never reached or the viscosity has to be constrained to an interval of
allowed values.

4.3.6 Some results and known limitations of the MEB rheology

The MEB rheological framework has been successfully tested on both ideal and realistic
setups and has furnished very promising results. The first test case was a simulation of ice
flow through a narrow pathway in the Arctic (the Nares Strait; see Figure 1.1) in which the
model was able to capture complex observed dynamical features like the spatial localization
of thick ridges and the large discontinuity of the velocity field in correspondence of linear
kinematic features (Dansereau et al., 2017).

In Rampal et al. (2019) the MEB was implemented into the neXtSIM model. Through
a statistical analysis, this study showed that the neXtSIM model correctly reproduces the
distribution of sea ice deformation rates, its scaling properties in both the space and time
domains and its multi-fractal behavior (see Section 4.1.2). In particular, it was the first
time that multi-fractality in the time domain is shown to be reproduced in a sea ice model
(see Figure 4.2).

The main limitation of models implementing the MEB rheology was shown to be
the excessive convergence of highly damaged ice, with unrealistic piling (Ólason et al.,
2022). In fact, unlike rheologies based on the VP, the MEB (but also in the EB) rheology
provides insufficient resistance to compression which leads to the just-mentioned excessive
thickening of large amounts of ice in simulations longer than a year.

In addition to this, a dependence of the reproduced behavior on the time step arises
when running longer simulations For instance, in order to achieve a proper numerical
performance, Rampal et al. (2019) had to use a much longer time step and could not use
a fixed-point iteration scheme as in the original implementation (Dansereau, 2016; Ólason
et al., 2022).

In the next section, a recently introduced rheological framework meant to address these
issue is presented.

4.4 The brittle Bingham-Maxwell rheology (BBM)

4.4.1 Motivation

The brittle Bingham Maxwell (BBM) rheology (Ólason et al., 2022) is newly developed
rheology meant to address the excessive thickening as well as the numerical issues discussed
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E

η

Pmax

Figure 4.7: One-dimensional mechanical illustration of the Bingham-
Maxwell model. It combines a spring in series with a dashpot and a parallel

friction element.

in Section 4.3.6. The main addition is a new threshold for large, permanent deformations,
implemented through a new Bingham-Maxwell constitutive model. As a consequence, this
model is more apt to simulate ridging in high compression and to provide a resistance to
ridging whenever the compressive stress is below a (newly introduced) threshold.

In their work, by analyzing the MEB-based solution of a Couette-flow problem, Dansereau
(2016) suggested, as a possible subsequent improvement, the use of a more complex fluid
model, e.g. Bingham or Oldroyd (Saramito, 2021; Cheddadi et al., 2008), of which the
linear Maxwell model is a special case lacking a plastic threshold for the deformation or
a solvent viscosity term. However, they suggested a different damaging criterion than the
one used in the BBM.

In the BBM, the progressive damaging mechanism remains the same of the one pre-
sented in the MEB model (see Section 4.3.4).

4.4.2 Constitutive model

The constitutive model used in the BBM rheology is the Bingham-Maxwell model (Bing-
ham, 1922; Saramito, 2021) with the elasticity and (apparent) viscosity on damage de-
pendant on damage

The one-dimensional mechanical representation of Bingham-Maxwell model is shown
in Figure 4.7. By adding a new friction element, with a characteristic critical stress Pmax, a
new regime is defined (see Figure 4.8). In terms of normal stress, first we have a diverging
regime, σN > 0, in which the friction element has no effect and the ice deforms with a total
deformation ε partitioned in the elastic and viscous component = εE + εv. Then, when
−Pmax < σN < 0, the friction element prevents any permanent deformation to occur and
the linear elastic behavior is recovered: σE = EεE . Only when the compressive stress is
sufficiently high, i.e. σN < −Pmax, the effect of the friction element ceases and permanent
convergent deformation arises. In 1D the total stress σ is partitioned between the parallel
viscous and friction element as σ = σv −Pmax, where Pmax is a constant quantity here. In
terms of the viscous stress

σv = σ

(
1 +

Pmax

σ

)
. (4.34)

We now apply Bingham-Maxwell model to the two dimensional ice sheet. By intro-
ducing a quantity

P̃ =


Pmax

σN
σN < −Pmax

−1 − Pmax < σN < 0

0 σN > 0

, (4.35)
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Equation 4.34 generalizes into
σv = (1 + P̃ )σ . (4.36)

which, contrary to Equation 4.34, is applicable under all conditions. In two dimensions,
the ridging threshold Pmax is not constant and several parametrizations have been devel-
oped (Ólason et al., 2022). Following the results of the ridging model by Hopkins (1998),
in neXtSIMv2 a VP ice strength-like dependence was assumed:

Pmax = P0

(
ĥthick
h0

)3/2

exp [−c∗(1−A)] (4.37)

where ĥthick is the ice slab thickness (Equation 2.19), h0 is a constant reference thickness,
P0 is a constant to parametrize Pmax, and c∗ is a constant similar to the compaction
parameter of Hibler (1979).

To obtain the constitutive equation of the BBM model, first substitute Equation 4.23
and the time derivative of Equation 4.22 into Equation 4.5 to get:

DσE

Dt
= E(K : ε̇E) + Ė(K : εE)

= E(K : ε̇)− E(K : ε̇v) + σEĖ

= E(K : ε̇)− E

η
σv + σEĖ . (4.38)

Now, by observing that σE = σ and σv is given by Equation 4.36 we are able to write
the constitutive law:

Dσ

Dt
= E(K : ε̇)− σ

λ

(
1 + P̃ − λĖ

)
. (4.39)

where λ = λ(d) is the pseudo-viscous relaxation time defined above. Anticipating that the
parametrization for E is the same as in the EB and MEB, we can explicit the dependence
on the damage level change ḋ:

Dσ

Dt
= E(K : ε̇)− σ

λ

(
1 + P̃ + λ

ḋ

1− d

)
. (4.40)

4.4.3 Damage criterion

The damage envelope used in BBM-based neXtSIM (Ólason et al., 2022) is based on the
one used by Plante et al. (2020). They suggested adding a compressive cut-off to the usual
Mohr-Coulomb criterion in order to avoid numerical instabilities when running simulations
over longer periods. We note this upper compressive limit, to which we refer as N , is a
numerical construct. It is chosen large enough as not to influence the results (Ólason
et al., 2022). This parameter is let scale as the cohesion, according to Equation 4.12, with
a chosen value at the lab scale Nref = 10GPa. This envelope is shown in Figure 4.8.

4.4.4 Damage propagation and coupling with mechanical parameters

The damage level in the BBM evolves in the same manner as in the MEB model. Therefore
in the BBM, the damage level evolves according to Equation 4.30 with the damage factor
being given by:

dcrit = min

[
1,

C

(τ + µσN )
,− N

σN

]
(4.41)

which results in 0 < dcrit ≤ 1.
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Figure 4.8: Failure envelope used in the BBM rheology by Ólason et al.
(2022). Here, the compressive cut-off, N , is a numerical construct meant
to avoid numerical instability and it is very large. The two points indi-
cate the two possible supercritical states in the upper branch, which are
brought back to the × symbol (on the yield curve) following the damaging
mechanism. The Roman numbers indicate the three main regimes of the
BBM rheology: (I) is the ridging mode, (II) the purely elastic mode and

(III) the diverging one.

However, there is a slight variation in the coupling of η with the damage level:

η = η0(1− d)α exp [−αc∗(1−A)] . (4.42)

This change compared to the MEB parametrization (Equation 4.32) is motivated by two
reasons. First, the MEB formulation gave very high level of viscosity at low concentration,
so the current formulation will give a more faithful viscous-like behavior at low-medium
concentrations. Second, Equation 4.42 provides a relationship between damage and con-
centration. This is desirable as, e.g., waves are more likely to break the ice into small floes
when moving traveling through low-packed areas.

4.4.5 Results

The BBM rheology was implemented in neXtSIM model neXtSIMv2. The model setup is
very similar to that in Rampal et al. (2019) with oceanic and atmospheric forcing coming
from realistic datasets (Ólason et al., 2022). For comparison, simulations a setup as close
as possible to neXtSIMv2 with a mEVP rheology (Bouillon et al., 2009), a numerically
more efficient version of the VP rheology (see Section 3.2.2), have been performed.

Results of a 20 years simulation in part of the Arctic showed a reasonable sea ice
thickness magnitude and distribution when compared to observations. In particular, they
did not suffer from the excessive thickening experienced by the MEB and EB in longer
simulations. A spatial scaling analysis of the BBM and mEVP models, compared against
RPGS-based observations was performed using the same method coarse-graining analysis
method as in Marsan et al. (2004). The timescale used for the analysis was 3 days as
in Rampal et al. (2019) (see Figure 4.1). The results are shown in Figure 4.9. We can
see that the BBM-based model furnishes extremely good results on all the spatial scales,
while the mEVP-based falls short at the shorter scales.

Determining the impact of sea-ice rheology on deformation statistics is complex, as
factors like model configuration (e.g., numerical convergence, atmospheric representation,
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Figure 4.9: (a) Power-law fit (see Equation 4.2a) of the first three mo-
ments of the rate of the rate of deformation distribution over a 10−100 km
range and (b) the corresponding fit of the spatial structure function β given
by Equation 4.3a. Shown are the analyses based on (orange) neXtSIMv2
with the BBM, (green) mEVP and (blue) RGPS observations. The filled
areas indicate the standard deviation from averaging moments from De-

cember 2006 to May 2007.
From Ólason et al. (2022).

spatial resolution) and physical parameterizations (e.g., ice strength parameters, ice thick-
ness distribution) are equally influential. Therefore, attributing model performance ex-
clusively to a particular rheological framework using current deformation metrics is not
a straightforward task (Bouchat et al., 2022). However, the consistency of the above-
mentioned deformation statistics obtained with the BBM rheology and the ones obtained
with the mEVP rheology found in the Sea Ice Rheology Experiment (SIREx):1 (Bouchat
et al., 2022) show that the source of heterogeneity (causing better statistics at the smaller
scales) is physical and not due to these other factors (Ólason et al., 2022).

4.5 A timeline of sea ice brittle modeling

Building on the ideas in Marsan et al. (2004), Weiss and Marsan (2004), Schulson (2004),
Schulson and Hibler (2004) and Weiss et al. (2007) Girard et al. (2011) proposed the
elasto-brittle (EB) rheology. In this rheology, plasticity gave way to brittle behavior by
introducing a damage propagation model. In this damage model, the sub-grid-scale is
parametrized through a scalar variable, the damage level or fracture density, whose value
changes whenever the local stress exceeds the Mohr-Coulomb failure criterion. These
brittle rheologies are able to reproduce the observed properties of sea ice on both on the
large-scale and at the finer scales including correct patterns of Linear Kinematic Features
(LKFs).

The next step was taken by Dansereau (2016) with the development of the Maxwell-
Elasto-Brittle model (MEB). In this approach ice is seen as a Maxwell (linear viscous-
elastic) medium fracturing in a brittle manner when a Mohr-Coulomb yield criterion is
reached. This model differs from the previous EB model in that it is able to simulate the
large and permanent deformations once the ice is fractured and fragmented (Ólason et al.,
2022).
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The EB and MEB rheologies have been tested on a broad range of spatial and temporal
scales in the stand-alone large-scale sea ice model neXtSIM (Bouillon and Rampal, 2015b;
Rampal et al., 2016; Rampal et al., 2019). Despite the generally satisfactory results
obtained with the MEB rheology in the neXtSIM model, excessive convergence of highly
damaged ice was observed (Rampal et al., 2019). To resolve this issue, Ólason et al. (2022)
proposed the Bingham-Maxwell constitutive model (Bingham, 1922; Saramito, 2021) or
BBM for short. Recently the BBM rheology has successfully been applied to a coupled ice-
ocean sea ice model in a pan-Arctic simulation (Boutin et al., 2023). Figure 4.10 presents
a timeline of the latest developments in the new brittle-based modeling approach.
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neXtSIMv2-NEMO
First coupled ocean-sea ice model im-
plementing a brittle rheology (BBM) to
determine the mass balance in a pan-
Arctic simulation.

Brittle Bingham-Maxwell rheology
(BBM), neXtSIM v2
Further evolution of MEB rheology.
Addition of a compressive threshold for
the subcritical elastic response.

neXtSIMv1 LKFs statistics analysis
Analysis of lead fraction statistics in
the Central Arctic as predicted by
neXtSIMv1.

neXtSIMv1 scale-invariance analysis
Evaluation of neXtSIM multi-fractal
properties through temporal and spa-
tial scale analysis.

neXtSIMv1
Full neXtSIM stand-alone Lagrangian
dynamical-thermodynamical model.

Brittle Maxwell-EB (MEB)
Evolution of EB-rheology. Addition of
a viscous-like relaxation term, with a
damage-evolving effective viscosity.

neXtSIM sea-ice model(dynamical core)
Presentation of the dynamical core of
neXtSIM sea ice model using an opti-
mized version of the EB rheology.

Elasto-brittle rheology(EB)
First rheology employing brittle mechan-
ics through a progressive damage mech-
anism for a continuum elastic sea ice
model.

Evidence for a brittle sea-ice rheology
Observation of sea-ice mechanical
events at different scales in the RGPS
data set. Analysis of spatial/temporal
scaling and events localization. Analogy
with rock mechanics.

Boutin et al. (2023)

Ólason et al. (2022)

Ólason et al. (2021)

Rampal et al. (2019)

Rampal et al. (2016)

Dansereau (2016)

Bouillon and Rampal (2015b)

Girard et al. (2011)

Marsan et al. (2004)
Weiss and Marsan (2004)
Weiss et al. (2007)
Rampal et al. (2008)
. . .

2023

2022

2021

2019

2016

2016

2015

2011

2000s

Figure 4.10: Timeline showing the ongoing research on Brittle rhe-
ologies and their implementation into the next generation sea-ice model

(neXtSIM).
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Chapter 5

Summary and concluding remarks

This thesis provides a review of the main approaches used to model sea ice mechanical
behavior in a continuum framework, transitioning from traditional fluid-like models to
state-of-the-art solid-like brittle models.

First, the physical components of sea-ice models, along with the underlying assump-
tions, were described. The variables used to describe the material state of the ice cover,
e.g. thickness or concentration, follow a conservation equation taking into account their
advection and the mechanical and thermodynamic (here not considered) changes to which
they are subject. The chosen level of mechanical complexity determines also how ice is
redistributed in the aftermath of deformation events. The atmosphere and the ocean force
the ice causing it to drift and to deform. The key equation governing the kinematics of
ice is the momentum equation. For the sea ice this equation contains terms for the ex-
ternal forces, i.e. air/water drags and the Coriolis force, as well as the internal forces, i.e.
those stemming from the internal stress that has accumulated in the sea ice as a result of
mechanical interactions throughout it. Figure 2.5 provides a graphical overview on how
the physical components integrate inside a sea ice model.

After a review of the first historic efforts to model the drift of sea ice, the first rhe-
ological models were presented. The viscous rheologies schematize sea ice as a (linear)
viscous fluid with a resistance to shear deformation given by the viscosity but without
resistance to converging flow. These rheologies were found not to be very representative
of ice mechanical behavior.

Plastic rheologies provide a more accurate description of sea ice mechanical behav-
ior. The elastic-plastic (EP; Coon et al. 1974) and the viscous-plastic (VP; Hibler 1979)
rheologies constitute two rheological models in which sea ice is assumed to deform in an
elastic and viscous manner respectively, until a critical internal stress state is reached. In
fact, the plastic rheologies are based on the concept of a yield curve. This is a curve in
the stress space that defines which stress state a material can withstand before failing, i.e.
before deforming plastically. How the ice state changes once such a stress state is reached
is given by the prescription of a flow rule. The flow is normally chosen such that the
plastic deformation is in the direction normal to the yield curve. Current climate models
and operational modeling platforms are based on the VP rheology.

In the last two decades efforts have been made to correctly model the multifractal
properties of sea ice in both space and time. These multifractal properties are known as
heterogeneity and intermittency respectively. These requirements have been quantitatively
evaluated by analyzing the spatial/temporal scale dependence of the statistical moments
of the rate of deformation distribution as these are directly linked to the multifractality
properties mentioned above.

Over the past two decades, there has been an acknowledgment of the similarity in the
mechanical behavior between sea ice and the Earth’s crust. The rocks in the Earth’s crust
deform in a manner closely resembling that described above. Additionally, the hypoth-
esis of a cascading mechanism, in which local fracturing events propagate over extensive
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distances through the ice cover, has been raised (e.g. Weiss and Marsan, 2004; Weiss
et al., 2007; Schulson and Hibler, 2004). This recognition has prompted the implemen-
tation of elasto-brittle rheologies, a methodology already proven to be successful in rock
mechanics (Amitrano et al., 1999), to the modeling of sea ice.

The Elasto-Brittle (EB; Girard et al. 2011) rheology considers the ice sheet as an
elastic continuum with long-range interactions arising from a progressive damaging mech-
anism. The elastic stiffness evolves with the damage level accounted for in terms of a
grid-scale dimensionless parameter that represents the concentration of fractures at the
sub-grid scale. The neXtSIM model, based on the EB approach (Bouillon and Rampal,
2015b; Rampal et al., 2016), exhibits a greater ability to capture the spatial scaling of the
deformation rate compared to the VP model.

The Maxwell-Elasto-Brittle (MEB; Dansereau 2016) extends the previous EB approach
by adding an effective viscous behavior. Consequently, it can correctly represent large,
permanent deformations, an aspect on which the EB model failed. The integration of
MEB rheology in neXtSIM (Rampal et al., 2019) successfully managed to reproduce the
observed intermittent nature of sea ice deformation. A behavior that was only weakly
captured in the previous implementions using the EB rheology (Rampal et al., 2016).

The latest advancement in the realm of brittle rheology is the Brittle-Bingham-Maxwell
rheology (BMM; Ólason et al. 2022). This model introduces a threshold for permanent
deformations that prevents excessive thickening in extended simulations — a phenomenon
observed in the MEB model.

The chronological evolution of the described sea ice brittle modeling advancements is
illustrated in the timeline provided in Figure 4.10.

The field of sea ice modeling is still very much a work in progress. The most advanced
sea-ice models based on brittle rheologies have shown to be successful of reproducing small-
scale features. This raised the question of how the presence of these features impacts the
ice-ocean and ice-atmosphere interactions in these models. Studies to answer this question
have already been initiated using the neXtSIMv2 model (e.g. Boutin et al., 2023). Given
the ability of sea ice to inhibit the heat transfer from atmosphere to the ocean and vice-
versa, and the importance of this process for accurate climate forecasts, we expect the
study of these interactions to be one of the major focus points for sea ice modeling research
in the next years.

Another challenge in sea ice rheology research is the creation of parameterizations that
accurately capture the relationship between the mechanical strength of large-scale ice cover
(10−100 km) and its granular concentration and fracturing at the small scale (< 10 km; see
Figure 4.3). Development of such parametrizations will allow the rheological framework
to effectively represent the spatial and temporal mechanical transition between a densely
packed, brittle ice pack and a loosely aggregated formation of ice floes, resembling the
Marginal Ice Zone, i.e. the transitional zone between open sea and dense drift ice.
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Appendix A

Discontinuous Galerkin solver in sea
ice modeling

Solution to the partial differential equations discussed in this work are in operational
practice approximated by numerical methods. A plethora of numerical schemes is available
to find the approximation. For instructional purpose, we will present how approximations
to the solutions of the conservation (see e.g. Equation 2.22) and advection equations (see
Equation 2.21) can be found using one such scheme: the discontinous Galerkin method.

A.1 Continuity equation

The continuity equation for sea ice thickness on domain Ω ⊂ RN with boundary ∂Ω is
given by

∂h

∂t
= −∇ · (uh) .

Let {Ωm : 1 ≤ m ≤M} be a grid mesh of open grid cells for Ω such that their closure
Ωm satisfies

⋃M
m=1Ωm = Ω and Ωm ∩Ωl is negligible in RN if m ̸= l. For the discontinous

Galerkin formulation we are seeking an approximation hV ∈ V ⊂ L(Ω) such that ∀ψ in
some function vector space V of functions that are continuous on Ωm for each 1 ≤ m ≤M

and for velocity u ∈W
def
= V N the following holds∫

Ω
ψ
∂hV
∂t

dx = −
∫
Ω
ψ∇ · (uWhV ) dx (A.1)

∂

∂t

∫
Ω
ψhV dx = −

∫
Ω
ψ∇ · (uWhV ) dx (A.2)

∂

∂t

M∑
m=1

∫
Ωm

ψhV dx =

M∑
m=1

−
∫
Ωm

ψ∇ · (uWhV ) dx (A.3)

∂

∂t

M∑
m=1

∫
Ωm

ψhV dx =

M∑
m=1

∫
Ωm

∇ψ · uWhV dx−
M∑

m=1

∫
∂Ωm

n|∂Ωm · (uWhV )ψ dS (A.4)

∂

∂t

M∑
m=1

∫
Ωm

ψhV dx =

M∑
m=1

∫
Ωm

∇ψ · uWhV dx

−
M∑

m=1

M∑
l=m+1

∫
∂Ωm∩∂Ωl

(uWhV )|∂Ωm∩∂Ωl
·
(
(nψ)|∂Ωm + (nψ)|∂Ωl

)
dS

−
M∑

m=1

∫
∂Ωm∩∂Ω

(uWhV )|∂Ω · n|∂Ωψ dS . (A.5)
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Here (uWhV )|∂Ω is prescribed by the boundary conditions on the domain boundary
∂Ω. n|∂Ωm is the outward pointing normal to the boundary of grid cell m and n∂Ω the
outward pointing normal to the domain. If ∂Ωm ∩ ∂Ωl ̸= ∅ the normal to the grid cell
boundary satisfies n|∂Ωm = −n|∂Ωl

and so (nψ)|∂Ωm+(nψ)|∂Ωl
= n|Ωm(ψ|∂Ωm−ψ|∂Ωl

)
def
=

n|Ωm{{ψ}}∂Ωm . Since uW , hV might contain discontinuities at the grid cell boundaries,
(uWhV )|∂Ωm∩∂Ωl

is not unambiguously defined. Here we decide to define it using the
upwind flux, i.e.

(uWhV )|∂Ωm∩∂Ωl
=

{
(uWhV )|∂Ωm if ⟨uW ⟩ · n|Ωm ≥ 0

(uWhV )|∂Ωl
if ⟨uW ⟩ · n|Ωm < 0

(A.6)

with ⟨u⟩ = 1
2(u|∂Ωm + u|∂Ωl

).

A.1.1 Finite dimensional approximation

If we assume V to be a finite dimensional space, we can choose a basis for it,{
ψd

}D
d=1

def
= {ψ1, . . . , ψD} ,

allowing us to expand the unknown thickness function in terms of its elements:

hV =
D∑

k=1

ckψk

where the expansion coefficients ck = ck(t) depend on time whereas the basis functions
ψd = ψd(x) depend on space. The formulation in Equation A.5 has to hold for any
arbitrary function ψ ∈ V . As Equation A.5 is linear in ψ, this is equivalent to requiring
it to hold for any basis function ψd with 1 ≤ d ≤ D.

Inserting the expansion for hV into the weak formulation of the conservation equa-
tion A.5 yields a system of ordinary differential equations for ck :

M
d

dt
c = Sc+ f (A.7)

with c a vector consisting of the coefficients c1, . . . , cD and the elements of the matrices
M, S and vector f are given by

Mdk =

M∑
m=1

∫
Ωm

ψdψk dx

Sdk =

M∑
m=1

∫
Ωm

∇ψd · (uWψk) dx

−
M∑

m=1

M∑
l=m+1

∫
∂Ωm∩∂Ωl

(ψkuW )|∂Ωm∩∂Ωl
· n|∂Ωm{{ψd}}∂Ωm dS

fd = −
M∑

m=1

∫
∂Ω
ψd(huW )|∂Ω · n|∂Ω dS

with d = 1, . . . , D and (ψkuW )|∂Ωm∩∂Ωl
given by Equation A.6. Basis functions are usually

selected to have their support within a single grid cells which simplifies the integrals above.
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At this point a numerical approximation for d
dtc needs to be chosen. In this example we

pick Euler forward d
dtc(t) ≈

c(t+∆t)−c(t)
∆t with ∆t the time step. In that case Equation A.7

becomes
Mc(t+∆t) = Mc(t) + ∆tSc(t) + ∆tf (A.8)

which can be solved for c(t + ∆t) given c(t) using conventional linear algebra methods.
The linear system for other time-stepping methods can be derived in a similar way.

A.1.2 Advection equation

The advection equation for an arbitrary ice parameter J ∈ J is given by

SJ =
DJ

Dt

def
=

∂J

∂t
+ u · ∇J =

∂J

∂t
+∇ · (uJ)− (∇ · u)J

Again let Ω =
⋃M

m=1Ωm, Ωm ∩ Ωl = ∅ if m ̸= l and let V , W be function spaces
of functions (possibly different from those in the previous section) that are piecewise
continuous on Ωm : ∀ 1 ≤ m ≤M . Introduce the variable q = ∇ · u. For the discontinous
Galerkin approximation of the advection equation we search for JV ∈ V , qW ∈ W such
that ∀ψV ∈ V and ∀ψW ∈W

∫
Ω
ψV SJ dx =

∫
Ω
ψV

∂JV
∂t

dx+

∫
Ω
ψV ∇ · (uJV ) dx−

∫
Ω
ψV qWJV dx (A.9)

0 =

∫
Ω
ψW qW dx−

∫
Ω
ψW∇ · udx (A.10)

Applying Gauss divergence theorem to Equation A.10 gives

0 =
M∑

m=1

∫
Ωm

ψW qW dx−
M∑

m=1

∫
Ωm

ψW∇ · u dx

=
M∑

m=1

∫
Ωm

(ψW qW +∇ψW · u) dx−
M∑

m=1

∫
∂Ωm

(ψWn · u)|Ωm dS

=
M∑

m=1

∫
Ωm

(ψW qW +∇ψW · u) dx

−
M∑

m=1

M∑
l=m+1

∫
∂Ωm∪∂Ωn

({{ψW }}n)|∂Ωm · u|∂Ωm∩∂Ωl
dS

−
M∑

m=1

∫
∂Ω∩∂Ωm

ψWn|∂Ωm · u|∂Ω dS . (A.11)

Here u|∂Ω is given by the boundary conditions. Once again we use the upwind flux, but
this time to define the velocity on the cell boundaries, i.e.

u|∂Ωm∩∂Ωl

{
u|∂Ωm if n|∂Ωm · ⟨u⟩|∂Ωm ≥ 0

u|∂Ωl
otherwise

(A.12)
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The 1st and 2nd term in Equation A.9 are the same as those in Equation A.1 after
substituting hV with JV . So, Equation A.9 can be rewritten as

0 =
∂

∂t

M∑
m=1

∫
Ωm

ψV JV dx−
M∑

m=1

∫
Ωm

∇ψV · uWJV dx

+
M∑

m=1

M∑
l=m+1

∫
∂Ωm∩∂Ωl

(uJV )|∂Ωm∩∂Ωl
· ({{ψV }}n)|∂Ωm dS

+
M∑

m=1

∫
∂Ωm∩∂Ω

(uJV )|∂Ω · ψV n|∂Ω dS

−
M∑

m=1

∫
Ωm

ψV [qWJV + SJ ] dx .

A.1.3 Finite dimensional approximation

Similar to what is done in A.1.1, we assume that V =W and that V is a finite-dimensional
function space with bases ψ1, . . . , ψD. In that case, JV and qW can be expanded as
JV =

∑D
d=1 cdψd and qW =

∑D
d=1 pdψd. Inserting this into Equation A.10 gives

Sqp = f q

(Sq)pk =
M∑

m=1

∫
Ωm

ψpψk dx

(f q)p =
M∑

m=1

M∑
l=m+1

∫
∂Ωm∪∂Ωn

({{ψp}}n)|∂Ωm · u|∂Ωm∩∂Ωl
dS

+

M∑
m=1

∫
∂Ω∩∂Ωm

ψpn|∂Ωm · u|∂Ω dS −
M∑

m=1

∫
Ωm

∇ψp · u

with p the vector having p1, . . . , pD as its components.
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Similarly, Equation A.13 becomes

MJ d

dt
c = SJc+ p ·Tc+ fJ

(MJ)dk =
M∑

m=1

∫
Ωm

ψdψk dx

(SJ)dk =
M∑

m=1

∫
Ωm

∇ψd · uWψk dx

−
M∑

m=1

M∑
l=m+1

∫
∂Ωm∩∂Ωl

(uψk)|∂Ωm∩∂Ωl
· ({{ψd}}n)|∂Ωm dS

−
M∑

m=1

∫
∂Ωm∩∂Ω

(uψk)|∂Ω · ψdn|∂Ω dS

(TJ)bdk =

M∑
m=1

∫
Ωm

ψdψbψk dx

(fJ)d =
M∑

m=1

∫
Ωm

ψdSJ dx

with c the vector having c1, . . . , cD as components.
Inserting an approximation for the time-derivative e.g. the Euler forward d

dtc(t) ≈
c(t+∆t)−c(t)

∆t gives

Sqp(t) = f q(t)

MJc(t+∆t) = MJc(t) + ∆tSJc(t) + ∆tp(t) ·TJc(t) + ∆tfJ(t) . (A.13)

These equations can be solved one after another for p(t) and c(t+∆t) respectively using
linear algebra methods. In case an implicit time-solver is used the 3rd term on the right-
hand side of Equation A.13 becomes nonlinear p(t + ∆t) · TJc(t + ∆). In this case a
nonlinear solver, like a Gauss-Newton method, needs to be employed to solve for p(t+∆t)
and c(t+∆t) complicating things somewhat.
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