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Abstract

Active learning enhances the systematic review process by effectively screening a large amount

of titles and abstracts, using machine learning in combination with human expertise. However,

the intricacy of full-text (traditional) abstracts can lead to issues, such as token restrictions and

longer processing time. In light of these challenges, this thesis harnesses the capabilities of argu-

ment mining to distill salient information from abstracts in order to refine the screening process.

Therefore, I propose the integration between ASReview LAB, an active learning tool for sys-

tematic reviews, and MARGOT, an argumentation mining software. This suggested approach

leverages the power of computational argumentation, illustrating its significant value in litera-

ture processing. On this basis, I conducted an experiment based on various benchmark data,

employing machine learning techniques to extract features from both traditional and Argument

Mined abstracts. These features informed subsequent classification models. Next, I test the

consistency of the experiment and conduct a quantitative and qualitative analysis spotlighting

the benefits of Argument Mined abstracts. Results indicate marginal differences between tra-

ditional and Argument Mined abstracts. Yet, in different scenarios, Argument Mined abstracts

elevate the overall quality of the systematic reviews. Furthermore, the efficiency of machine

learning models depends heavily on the intrinsic attributes of the data they process.
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1. Introduction

A systematic review is a comprehensive synthesis of the literature that uses explicit and repro-

ducible methods to systematically search, evaluate and synthesise a particular topic or research

question [1]. Researchers rigorously write systematic reviews to detect and fill gaps in a specific

scientific field and to provide an overarching, unbiased summary of all the scholarly research

on a given topic [2]. Hence, the process of a systematic review involves manually screening

thousands of articles to identify studies that meet specific inclusion criteria while being fully

reproducible and transparent [3]. Consequently, systematic reviews occupy a prominent po-

sition in research due to their rigorous methodological approach, exhaustive data collection

and meticulous evaluation of existing evidence, resulting in an unparalleled ability to offer a

comprehensive overview of the available evidence on a specific topic [4]. However, with the

exponential growth of scientific papers and policy reports covering diverse subjects [5], crafting

a systematic review by hand can be a very labor-intensive and time-consuming task [6]. Ad-

vances in technology and the emergence of Artificial Intelligence (AI) techniques have opened

up new ways to automate and speed up this process. Since 2016, AI tools like EPPI-Reviewer

and Abstrackr have been employed for evidence review [7]. The introduction of ChatGPT by

OpenAI in 2022 and subsequent tools like ChatGPT for Sheets and Docs, Casper AI, and Chat-

PDF have further elevated the role of AI in research, particularly in text-based data analysis

[7]. Active learning (AL) is a subset of the Machine Learning (ML) field that demonstrated its

efficiency in selecting relevant studies from a large pool of literature as it outperforms human

screening using various ML models such as feature extractors and classifiers [8], saving up to

95% of screening time [9]. This approach departs from conventional methods that randomly

select which documents to label [10]. Instead, it denotes a scenario in which the ML model iter-

atively selects which studies should be prioritized for screening [11]. These are then presented

to a human oracle, typically a domain expert or annotator, who classifies them as relevant or not

and the model updates its predictions based on this feedback [12]. In AL systematic reviews,

the ML model is trained just on the most relevant data, becoming more adept at identifying and
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Introduction

presenting relevant records to the oracle [13]. This continuous improvement leads to a more ac-

curate and efficient review process, in which the model becomes better at recognising relevant

studies at each iteration [14].

This approach turns out to be beneficial as it addresses imbalance issues — given that typically

less than 5% of studies are deemed relevant [15] — while reducing the annotation burden [16].

In besides systematic reviews, AL finds applications in different fields and there is different

software that implements this technique for different purposes. For instance, Prodigy [17] is a

data annotation tool that utilizes AL techniques for tasks like NER, Image Categorization, Ob-

ject Detection and Text Classification. KNIME [18], is a software in which one of the available

features is the labelling of documents with the use of AL. The branch of computer vision that

studies the driving of autonomous vehicles has integrated AL for annotating driving scenario

trajectories [19]. This dissertation focuses on the application of AL to systematic reviews.

In order to identify relevant literature reviewers generally evaluate the titles and the abstracts

[20] of the retrieved studies. This initial assessment helps to determine whether the studies po-

tentially meet the inclusion criteria and warrant further examination in the systematic review.

Active machine-learning model (AML) can thus be incorporated into the title-abstract screen-

ing process in order to reduce the amount of time spent [21]. In this regard, ASReview LAB

[14] is an open-source machine learning tool which integrates AL techniques for screening and

systematically labelling a large collection of textual data [22]. The software offers a reliable and

transparent title-abstract screening for deciding which studies to include in a systematic review

[14]. Therefore, it does an Information Retrieval (IR) of the relevant scientific literature. It

supports multiple ML models to extract features from text and classifying them as relevant/non

relevant. It comes equipped with exploration and simulation modes, especially beneficial for

algorithm comparison and design. ASReview LAB is highly extensible, permitting third-party

developers to integrate modules that bolster the pipeline with new models, data, and other en-

hancements. In addition, with ASReview LAB, it is possible to simulate with the Python API,

the Web Interface or the command line interface (CLI). Makita (Make it Automatic) is a work-

flow generator which exploits the CLI of ASReview to conduct large-scale simulation studies,

making it possible to mimic the screening process for a systematic review as if a researcher

were using AL [23].

The research of [16] provides a comprehensive understanding of the advantages and limitations

2



of AL in the context of systematic reviews. A challenge that arises when incorporating AL into

systematic reviews is to determine the appropriate point to stop the screening process. To tackle

this issue, there are several works by [24] and [25]. Furthermore, the ASReview GitHub page

hosts open discussions on the matter [26].

Another aspect to consider is the common practice in systematic reviews of relying solely on

titles and abstracts due to their concise availability in scholarly databases. Yet, this approach

comes with potential limitations such as token restrictions for ML models as well as textual

ambiguities.

Argumentation Mining (AM) emerges as a promising remedy. AM’s capability to extract ar-

gumentative structures from text [27] could enhance the process of feature extraction and help

text’s representativeness. MARGOT is an AM system developed by [28] which employs state-

of-the-art ML and NLP techniques to extract relevant claims and evidence from text, without

prior knowledge of the topic. The application of MARGOT spans different domains, from text

summarization, to detect trends in newspapers, recommendation and user customisation [28].

The tool is able to support the end-user in highlighting part of text containing the most argu-

mentative content and aims to generalize across multiple domains and genres [28], which is still

an open challenge for many current AM methods. In its implementation it is closely followed

the definition of [29] where a claim is ”a general concise statement that directly supports or

contests the topic”, whereas a context-dependent evidence is ”a portion of text supporting a

claim in the context of a given topic.”. To detect argumentative-rich information the tool was

trained on the largest available corpus dataset of argumentative text from IBM Research. The

corpus contains 547 Wikipedia articles organized into 58 topics, and it has been annotated with

2294 claims and 4690 evidence facts, both context-dependent, meaning that they are labelled

only if they are relevant to a given topic [28].

The system builds upon and extends the previous work on detecting context-independent claims

[30] using Tree Kernels [31].

MARGOT implements an AM-pipeline that can be divided into two steps:

1. build two distinct classifiers - given an input text MARGOT labels the sentences of the

textual corpora as claims and/or evidence.

2. detect the boundaries of the argument components.

3
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The ideal structure to encode the grammatical structure of a sentence was thought to be a con-

stituency parse tree, driven by the observation that argumentative sentences often have common

syntactic structure [28]. Then, MARGOT employs tree kernels to capture similarities between

pairs of trees by considering the number of common substructures or fragments they share.

The higher the similarity of the common substructure between pairs of trees, the stronger the

indication of similarity between the arguments represented by those trees. The second step is

formulated as a sequence labeling problem. In MARGOT is considered a technique which com-

bines Structured Support Vector Machines with Hidden Markov Models (SVM-HMM), where

SVM-HMM is trained to label a sentence by identifying both claim and non-claim tokens. At

the end of this two subsequent stages, the system returns a claim and evidence score which

represent the confidence that a sentence is a claim and/or evidence.

AM and IR can complement each other in various domains. For instance, AMICA [32] is an

AM-based search engine designed for the analysis of literature related to Covid-19, it retrieves

scientific papers from matching keywords and ranks the results according to their argumentative

content. This dissertation focuses on building a bridge between AM and IR in the context of

systematic reviews. To this end, my goal is to seamlessly integrate the Argument Mining (AM)

capabilities of MARGOT with the Information Retrieval (IR) functions of ASReview LAB. In

particular, I want to analyse the impact of the use of Argument Mined abstracts (AM abstracts)

in the systematic review process when using Active Learning (AL) techniques to retrieve rele-

vant documents during scientific literature screening.

The key contribution of this dissertation lies in the in-depth analysis of the various aspects and

potential benefits of the use of AM abstracts in systematic reviews with AL techniques and the

possibility that they could replace full-text abstracts. Specifically, I want to identify both the

benefits and challenges associated with the harmonisation of these tools in order to explore po-

tential solutions to the problems or limitations encountered. Finally, I validate the effectiveness

of the integrated approach through experimental validation.

The thesis opens with the ”Methods” section, which explains the data, the experiment setup

and the analytical strategy in which are detailed all stages of the analysis. The subsequent ”Re-

sults” section shows the outcomes of the simulations of the various datasets, considering also

the effect of the absence of both the abstracts and titles. This aspect is further expanded upon

with a result overview, a test on the stability of the results performed by carrying out several
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simulations, and a comparative analysis in the ”Results Across the Simulations” section. The

study wraps up with a discussion and a conclusion section.

Thesis Objective and Contributions

The objective of the present thesis is to find a synergistic integration between MARGOT and

ASReview LAB. The main contribution of this dissertation is an analysis of the nuances and

potential benefits of AM abstracts in systematic reviews that use active learning techniques.

Thus, starting with some labelled benchmark data containing screened studies of different top-

ics, the research question this work tries to answer is how AM abstracts impact in the process

of systematic review and if they could possibly replace full-text abstracts.

Addressing this challenge presents both opportunities and potential pitfalls. Specific concerns

include handling of textual data which pertains to different topic, the variability in terminology

of scientific literature as well as noise and ambiguities. Additionally, determining appropriate

evaluation metrics, designing experiments, and establishing benchmarks to answer the research

question can be challenging, particularly when evaluating the combined performance of the two

tools. The thesis tries to achieve the following objectives:

• Examine and understand the differences in text representation in terms of argumentative

structure, coherence, quality as well as noise and ambiguities by carrying out a compara-

tive analysis between traditional (full-text) abstracts and AM abstracts.

• Analyse different aspects of the data such as unbalance issues, completeness (presence

of both abstract and title) and investigate also on the missingness of the AM abstracts

and full-text abstracts, exploring the impact of their removal on the performance of the

systematic reviews with ASReview LAB.

• Design an experiment by considering the appropriate benchmark data, machine learn-

ing models and evaluation metrics in order to accurately assess the performance and the

outcomes resulting from integration of the tools.

• The stability, scalability and efficiency of the experiment are also considered.

Figure 1.1 shows a very general picture of the steps carried out. More in-depth details are

provided in the following chapters.
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Figure 1.1: General pipeline of the phases of the study

The study seeks to explore the benefits of integrating MARGOT with ASReview LAB by

providing the output characteristics of MARGOT (the claims and evidence extracted in the

abstracts) as input to ASReview LAB, which conducts a systematic review by retrieving the

most relevant documents. Thus, this dissertation holds importance due to several reasons:

• Systematic reviews play a key role in synthesising a large amount of literature [14], by

integrating Argument Mining into ASReview LAB this research aims to analyse and try

to enhance the screening process into different scenarios.

• Find relevant arguments acknowledges challenges related to the information loss and con-

tent missingness. Addressing these issue will contribute in a more in-depth understanding

of the text representation and data quality.

• With advancements in technology and the emergence of AI techniques, there is a growing

opportunity to automate and expedite the systematic review process. Thus, the aim is to

explore the harmonisation of two distinct AI domains: how text processed by an AM

tool influences the screening processes of an IR tool based on active learning and if AM

abstracts could potentially replace the full ones.

• This project aims to generalise across different topics and domains, including healthcare

and statistics. Hence, the answer to the research question is assessed from different per-

spectives.

Different scenarios when evaluating the integration of AM abstracts into the process of system-

atic review are taken into account with the aim of trying to contribute to improve the data quality

and decision-making in academic research. Moreover, AM information may be valuable for re-

searchers that manage large volumes of data in order to reduce the reliance on full-text sources

and to aid in effective information management.
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2. Methods

2.1 Experimental Set-Up

In order to try to further speed up the process of systematic review when using AL, this ex-

periment employed a comparative approach to determine the efficacy of full-text (traditional)

abstracts and MARGOT AM abstracts. I relied on various benchmark datasets, each containing

studies labeled as either relevant or non-relevant. The choice of the data was mainly influenced

by the performance described in [33]. This, allowed to assess the impact of MARGOT on data

with varying quality standards and to identify potential room for improvement for systematic

reviews when using the tool. Although these datasets might differ in some attributes, each in-

cludes a title and an abstract field suitable for input to ASReview LAB. The core objective

was to evaluate how systematic reviews perform when utilizing full-text abstracts versus AM

abstracts, both within individual datasets and across all datasets under consideration.

2.2 Data

The choice of data was made by considering both their difference in performance in terms of

the WSS@95 score obtained in a previous simulation carried out by [33] as well as their dif-

ference in topics. The simulation was conducted with an ensemble classifier using NB and LR

and proposed two ensembling strategies: Multiply Ensemble and Random Ensemble. The for-

mer multiplies the probabilities of each model, giving more weight to records that both models

agreed upon, while the Random Ensemble strategy randomly chooses a classifier at each iter-

ation and the probabilities are calculated using the selected classifier. The data were chosen

based on the results of the Multiply Ensemble strategy.

The data in the present study belong to both the statistical and the medical field. They are

all available at SYNERGY, a free and open dataset on study selection in systematic reviews

[34]. The data exhibited both high and low performance in the above mentioned simulation.
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Methods

The threshold value of the WSS@95 is 0.5. This choice was due to the fact that a WSS@95

score below 0.5 means that less than 50% of the records can be safely skipped. This indicates

that a significant amount of manual screening effort is still required to achieve a high recall

level. The first two datasets under analysis are PTSD-Trajectories from [35] and ACEInhibitors

from [36]. The former contains screened studies on Bayesian PTSD-Trajectory Analysis with

Informed Priors whereas the latter is a gold standard dataset utilised for systematic review of

drug classes. I selected these datasets based on their good performance in terms of WSS@95,

quantified as 0.889 and 0.789 for the first and second datasets, respectively.

Conversely, the remaining datasets were selected for their low performance. These are: Antihis-

tamines, Estrogens, ADHD, Urinary Incontinence, Opioids. All are from [36], like ACE, and

are used in research on automated classification of document citations for systematic review of

drug classes. The former exhibited an almost negligible WSS@95 score of 0.055 but the others

demonstrated a score ranging from 0.20 to 0.49. Table 2.1 shows the data with their respective

WSS@95 scores.

Table 2.1: WSS@95 scores of datasets from the simulation of [33]

Dataset WSS@95
PTSD 0.889
ACE 0.789
Antihistamines 0.055
Estrogens 0.257
ADHD 0.411
Urinary Incontinence 0.455
Opioids 0.482

The characteristics of the data can be summarised in Tables 2.2 and 2.3. The tables include

an overview of the size, domain and percentage of relevant studies, as well as the percentage

of missing abstracts, titles and abstracts in the records. None of the datasets contain duplicate

values.

In this work, PTSD is the first dataset under study. It comprises 5782 records and 39 at-

tributes detailing information of a scientific article such as title, abstract, authors, publisher,

type of reference, year, and so forth. It contains 38 relevant studies and 747 empty abstract

fields.

The second dataset is ACE. It consists of 2544 records and 8 attributes, such as publication ID,
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Data Field Size Relevant Records %
PTSD Statistics 5782 0.66%
ACE Medicine 2544 1.61%

Antihistamines Medicine 310 5.16%
Estrogens Medicine 368 21.73%

ADHD Medicine 851 2.35%
Urinary Incontinence Medicine 327 12.23%

Opioids Medicine 1915 0.78%

Table 2.2: Characteristics of datasets: domain, size, and relevance percentage

Data Missing Abs.% Missing Titles% Missing Abs. & Titles %
PTSD 12.92% 1.11% 1.07%
ACE 12.15% 0% 0%

Antihistamines 10.65% 3.23% 3.23%
Estrogens 8.42% 3.80% 3.80%

ADHD 8.23% 2.82% 2.82%
Urinary Incontinence 17.13% 5.50% 5.50%

Opioids 10.34% 3.13% 3.13%

Table 2.3: Characteristics of datasets: percentage of missing abstracts, percentage of missing titles,
percentage of missing abstracts and titles

title, keywords, authors, abstract, and label type descriptions. Within this dataset, 41 records

represent relevant studies, approximately 1.61% of the total. Additionally, there are 309 empty

abstract fields.

The other datasets are those with a comparatively lower level of performance. For all these data,

the number of attributes is the same as that of ACE.

Antihistamines is the starting point due to its notably inferior WSS@95 score in comparison to

the other data. This choice was made to facilitate an immediate comparative evaluation of the

different performance of the models using data with different performance outcomes. Out of

the 310 rows of Antihistamines, 16 are relevant studies. Furthermore, 33 records have an empty

abstract field, which represents 10.65% of the entire dataset. The next dataset is Estrogens and

comprises 368 rows, of which 80 relevant studies and 31 records without an abstract field. Uri-

nary Incontinence presents a significantly higher proportion of missing abstracts. In fact, 56 out

of 327 abstracts are empty in the original version, or 17.13%. The last dataset is Opioids which

has 198 missing abstracts out of a total of 1915 records.
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2.3 MARGOT Set Up

In this phase, MARGOT was configured to identify argumentatively rich information from the

abstracts. Given that MARGOT requires text-based inputs, I employed a Python script to ex-

tract and export each abstract into individual .txt files, with each dataset having its dedicated

folder. To keep the indexing of the records, missing abstracts were also included. Thus, a text

file might be empty. Next, I fed these files into MARGOT using a Bash script provided by [28].

The tool then broke down each abstract into sentences, assigning them claim and/or evidence

scores. A sentence is deemed relevant if its corresponding score is greater than zero. After-

ward, I could export the results in various formats such as HTML, JSON, TXT, and XML. For

convenience, I opted for the JSON format. After processing, I created for each dataset two sep-

arate folders: one with the full-text abstracts and another, named AM abstracts, containing the

abstracts processed by MARGOT. The total amount of files produced by MARGOT is 12097,

matching the combined number of records from all the datasets. Through another Python script,

I reconstructed the text from the JSON files, retaining only the parts with a significant score. As

the final step, I created a dataset which reflects the original one by mapping each AM abstract

in place of the full one. In this way, I set the stage for a comparative analysis between full-text

and AM abstracts.

The abstract of this dissertation provides an example on how MARGOT finds relevant

claims and evidences in a text corpus:

Active learning enhances the systematic review process by effectively screening a large

amount of titles and abstracts, using machine learning in combination with human exper-

tise. This suggested approach leverages the power of computational argumentation, illustrating

its significant value in literature processing. Next, I test the consistency of the experiment and

conduct a quantitative and qualitative analysis spotlighting the benefits of Argument Mined

abstracts.

Bold text highlights claims, while italics text represent the evidence. I reported only the

claims and evidence with a score greater than zero.
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2.3.1 Handling Abstracts Fields in Data

In the datasets under analysis it may be the case some records have an empty abstract field.

Therefore, an abstract field left unpopulated in the original dataset, is kept as such also in the

dataset processed by MARGOT. In the circumstance where MARGOT does not find any claims

or evidence in a given abstract, it is labelled as empty in the MARGOT dataset and regarded

as a ”missing abstract” despite its presence in the original dataset. This choice was made with

the aim of enabling a comprehensive comparative analysis between the two tools. Thus, it is

assumed that the pertinent information is encapsulated within the title alone, given the fact that

ASReview requires a title and abstract as input for carrying out a systematic review. If neither

is present, the software is still able to learn about the irrelevance of a record.

2.4 Experiment Design and Evaluation Metrics

Before moving on to the second part of the experiment, this section provides a theoretical un-

derstanding of the machine learning algorithms implemented in ASReview LAB and employed

in this project. It also gives an overview of the measures used to evaluate their performance.

2.4.1 Machine Learning Models

The experiment involves multiple machine learning models to perform classification and feature

extraction on text data. The feature extractor identifies relevant features from the text, which

are subsequently given as input to the classifier which binary labels the study as relevant/non

relevant. Here’s is the list of the models that I will use in this work. Further details about their

combinations are given in the Makita’s setup section. The classifiers considered in this study

are the following:

• Logistic Regression (LR) - is a model which estimates the probability of an event oc-

curring [37], in our case determining the likelihood of a record being relevant. The main

idea behind it is to pass a weighted sum of inputs through a sigmoid function (activation

function) which maps the output to a range of probabilities between 0 and 1. Although

logistic regression is commonly used for binary classification problems, there are also

variants for multi-class classification.
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• Naive Bayes (NB) - is a probabilistic algorithm rooted in the Bayes Theorem [38]. The

theorem relates the conditional and marginal probabilities of two random events, and can

be viewed as a way to update probabilities with new evidence. The term ”naive” in Naive

Bayes arises from the assumption that all predictor variables are independent of each other

given the class variable [39]. While this independence assumption often doesn’t hold in

real-world scenarios, the algorithm simplifies computational complexity by treating each

predictor variable independently, making it especially efficient with large datasets [40].

• Random Forest (RF) - is an ensamble of decision trees [41] where a decision tree is

a tree structure where each internal node represents a feature, each branch represents a

decision taken based on that feature, and each leaf node represents the predicted outcome

[42]. In ASReview, the default number of trees is set to 100.

• Support Vector Machine (SVM) - The main idea is to transform the input data into a

higher-dimensional feature space and find a hyperplane that maximally separates the data

points of different classes while maximizing the margin, which is the distance between

the hyperplane and the nearest data points of each class [43].

All this algorithms are supervised meaning that algorithms are trained on labelled dataset to

make predictions on unseen data [43].

The feature extractors are:

• Doc2Vec - also known as paragraph vectors - enables to learn the representation of doc-

uments as vectors (document embeddings) by mapping each document as a fixed-length

vector in a high dimensional space [44]. In ASReview the vector length is set to 40.

• TFIDF - Term Frequency - Inverse Document Frequency is a statistical measure that

evaluates the relevance of the representation of a string in a document within a set of

documents. It is obtained by multiplying the number of times a word appears in a spe-

cific document (Term Frequency) by its rarity in a set of documents (Inverse Document

Frequency) [45]. The method penalises words that appear frequently in documents and

assigns greater importance to words that appear less commonly.

• SBERT - Is a variation of the classical BERT model and it relies on a Siamese archi-

tecture, which consists of two identical neural network branches with shared weights to
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better capture sentence-level semantics [46]. This architecture allows to process pairs of

sentences and learn to encode their semantic similarity [47]. BERT architectures have

a token processing limit of 512 [48]. Unlike traditional BERT, which primarly focuses

on word-level representations, SBERT aims to generate meaningful sentence embeddings

by considering the contextual information of each word within the broader context of the

sentence.

More details on the hyperparameters that all these models (classifiers and feature extractors)

have by default are available in the official ASReview documentation [22].

2.4.2 Evaluation Metrics

The metrics used to evaluate the performance of the ML models used to carry out a systematic

review on both the titles and the AM abstracts as well as the titles with the full abstracts are

Recall, WSS and ATD. The Recall is the main metric considered. The Recall measures the

proportion of relevant records (true positives) that have been found after screening X% of the

total records [49]. It can be measured as:

Recall =
relevant instances retrieved

all relevant instances
from [50]

In this work, the Recall is measured at 10% of screened records (Recall@10).

According to [36], the WSS is a measure of ”the work saved over and above the work saved by

simple sampling for a given level of recall”. Specifically, it calculates the percentage of records

that a reviewer can skip after receiving prior knowledge used to train the initial model iteration

compared to random reading. The WSS is typically measured at a Recall of 0.95 (WSS@95)

and it a commonly used benchmark reflecting the proportion of records saved through active

learning while still missing 5% of relevant publications [49].

WSS@95 =
T P+FN

N
−0.05 from [36]
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Figure 2.1 illustrates the difference between the metrics Recall (y-axis) and WSS@95 (green

line). The diagonal on the stepped line represents the naive labeling method, where records are

screened in random order. Each step represent a relevant record, excluding the ones taken as

prior knowledge.

Figure 2.1: Explanation of Recall and WSS@95

ATD (Average Time to Discovery) [51] is chosen in order to investigate the difference in

speed in discovering a relevant record between AM and the full-abstracts, with the measurement

unit being seconds. ATD can be formulated as follows:

T Di = ranki

AT D =
N

∑
i=1

T Di

N

Where N is the total number of relevant paper, T Di is the time to discover a relevant record

i which is equal to the ranki. As all record are discovered in a certain order, ranki stands for

the ranking of a relevant record i among all record discovered. The ranking excludes the prior

knowledge that is used to initially train the algorithms.
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2.5 Makita Set Up

With Makita it is possible to mimick the screening process for a systematic review as if a

researcher were using active learning [23]. Makita offers various templates tailored to different

simulation needs. In this work, I carried out 14 simulations. For each of the seven datasets,

I considered both the original and AM versions. I employed the ’multiple models’ template,

which prepares a script for running simulations with varied algorithms and a fixed set of priors.

This includes one relevant and one irrelevant record that remain unchanged across all models.

The default models are:

• Classifiers: Logistic Regression (LR), Naive Bayes (NB), Random Forest (RF), Support

Vector Machines (SVM)

• Feature extractors: Doc2Vec, SBERT, TF-IDF

• Impossible models: [Naive Bayes, Doc2Vec], [Naive Bayes, SBERT]

A simulation incorporates combinations of the above mentioned classifiers and feature extrac-

tors. However, certain pairings, such as the Naive Bayes classifier with Doc2Vec or Sen-

tence BERT (SBERT) feature extractors, are incompatible. This is primarily because Naive

Bayes takes as input only positive numbers, which TF-IDF provides, whereas both SBERT and

Doc2Vec may produce negative values.

2.6 Experiment Reproducibility

The data can be found at SYNERGY [34]. The specific versions employed in this project

include ASReview LAB version 1.1.1 and Makita version 0.6.3. To perform batch processing

in a large number of documents, e.g all the abstracts, MARGOT is available as a stand-alone

package, provided by [28]. The experiment is initially conducted once (number of runs = 1) to

compare the outcomes of each dataset with its respective version processed by MARGOT (AM

version). It is executed on a macOS equipped with a quad-core 2.3 GHz Intel Core i7 processor

and 16 GB RAM. The command to set up the Makita’s multiple model template that has to be

launched from the terminal inside the Makita folder is:

asreview makita template multiple models
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More information on how to set up a simulation study using Makita can be found at [23].

Then, the stability of the results obtained is verified using a CPU optimized Computer cluster by

running 15 simulations for 32 GB of memory. The platform that hosts these simulations is called

Exoscale, an European cloud service provider. To speed up the process, the simulation processes

are run in parallel, divided over the 16 available computing cores. For these simulations, it is

used a custom Makita’s multiple model template in which the parameter ’n runs 15’ is added

to the command for the parallel processing line. Importantly, in the multiple model template

all the ML models have a default random seed, instead the seed of the prior knowledge (one

relevant and one irrelevant record) increases with each run, starting at 535.
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2.7 Data Pre Processing

This section delves into the characteristics of the data after being processed by MARGOT. In

particular, it focuses on the percentage of missing abstracts, abstracts length as well as MAR-

GOT’s ability to find relevant claims and evidence from those abstracts and its capacity to

process relevant studies. Overall, this analysis sheds light on the implications of MARGOT for

data completeness.

2.7.1 Margot Data

Table 2.4 provides the percentage of missing abstracts in the datasets before and after being

processed by the AM tool.

Data Missing Abs.% Missing AM Abs.
PTSD 12.92% 14.60%
ACE 12.15% 14.19%

Antihistamines 10.65% 12.26%
Estrogens 8.42% 8.97%

ADHD 8.23% 9.99%
Urinary Incontinence 17.13% 18.35%

Opioids 10.34% 12.17%

Table 2.4: Missing abstracts percentage of the data before and after being processed by MARGOT

In PTSD, MARGOT doesn’t detect 97 abstracts resulting in a total of 844 empty abstracts

fields. The ACE dataset contains 309 empty abstract fields. MARGOT doesn’t detect 52 ab-

stracts, resulting in a total of 361 missing abstracts in its AM version. Figure 2.2 shows the

frequency of missing and non-missing abstracts for both PTSD and ACE.

Shifting the attention to the data characterized by a comparatively lower score, Antihistamines

comprises 33 missing abstracts and MARGOT doesn’t identify any claim and/or evidence in

5 abstracts, bringing the total number of missing abstracts fields to 38 in its AM version. In

Estrogens the AM version of MARGOT results in a total number of 33 missing abstracts.

The AM version of ADHD results in a total number of 85 missing abstracts, so about 10% of

the entire set of data. Urinary Incontinence is the fourth dataset under analysis and its AM

version has total of 60 missing abstracts. The last dataset considered to assess the influence of

AM abstracts in the process of systematic review is Opioids. It has 198 missing abstracts in the
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(a) Abstracts in PTSD (b) Abstracts in ACE

Figure 2.2: Missing Abstracts in high WSS@95 data
Histograms of missing/non-missing abstracts in the data with a WSS@95 greater than 0.5

full version and 233 missing abstracts in the AM version. Figure 2.3 illustrates the frequency

of missing and non-missing abstracts for the data with a low WSS@95.
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(a) Abstracts in Antihistamines (b) Abstracts in Estrogens

(c) Abstracts in ADHD (d) Abstracts in Urinary
Incontinence

(e) Abstracts in Opioids

Figure 2.3: Missing Abstracts in low WSS@95 data
Histograms of missing/non-missing abstracts in the data with a WSS@95 lower than 0.5

2.7.2 Analysis of missing abstract fields and data completeness in relevant

records

For each dataset, I conduct a comprehensive examination on the record labelled as relevant to

identify missing abstract fields and instances where MARGOT failed to detect argumentative

rich information within the abstracts.

PTSD includes 38 relevant records, all of which have complete abstract fields. Similarly, ACE

has 41 relevant records without missing abstracts. However, in Urinary Incontinence 2 of the 40

relevant records have an empty abstract field. In Antihistamines, all 16 relevant records contain

the abstract field. Concerning the Estrogens data, a total of 80 records were deemed relevant,
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but 3 of them have missing abstracts. In ADHD, out of the 20 relevant records, 19 have com-

plete abstracts. Finally, within the Opioids dataset, there are 15 relevant records of which 1

contains an empty abstract.

In relation to all the relevant records in the PTSD, ACE, Opioids, Estrogens, and ADHD

datasets, MARGOT effectively identifies claims and evidence, demonstrating its ability in ex-

tracting argumentative rich information from the relevant abstracts. In the case of Antihis-

tamines, MARGOT successfully finds arguments in all the relevant records. The only exception

is the abstract field with index 91. This is may be due to the fact that the sentences in this

abstract mainly provide information and results, rather than explicitly stating claims and sup-

porting evidence.

2.7.3 Examining Abstract Length and Investigating MARGOT’s Poten-

tial in Systematic Reviews

To shed light on potential insights gained from the use of MARGOT within the process of

systematic review conducted with ASReview LAB, I carry out statistics on the corpora. In

order to deepen the cases where MARGOT finds no argumentative rich information, I calculate

the average and the median of the lengths of the abstracts fields in both the original and in the

AM datasets. I also consider the minimum and the maximum abstract lengths where MARGOT

doesn’t find any claims and supporting evidence.

Here, ’length’ denotes the aggregate count of characters in a string, including both spaces and

punctuation. For each set of data, the average abstract length is computed using the arithmetic

mean, without taking into account the empty abstracts fields. Let mi be the number of non-

empty abstracts in a dataset i and li j the length of the jth abstract in the dataset i. The average

abstract length for a dataset i can be calculated as:

Average Abstract Lengthi =
1
mi

mi−1

∑
j=0

li j
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Analogously, the average number of claims and evidence detected by MARGOT is calcu-

lated through the arithmetic mean which considers the total number of detected claims and

evidence divided by the total number of files, excluding empty ones. Let me denote m as the

number of non-empty abstracts that a dataset i has. Within each dataset i, let CEi j represent

the number of claims and evidence detected in the j-th abstract field. The average number of

claims and evidence (CE) found by MARGOT in a dataset i can be calculated as:

Average CEi =
1
mi

mi−1

∑
j=0

CEi j

The median represents the middle value obtained by sorting the abstract lengths in ascend-

ing order. This measure is also considered as it is robust to outliers and it can help to understand

the distribution of the length of the abstracts since it provides insights into the central tendency

around which the lengths are distributed. Table 2.5 shows the outcomes resulting from these

calculations. It can be noted that, indicatively, the average length of the AM abstracts is halved

compared to the full-abstracts. Additionally, the values are normally distributed as the median

and the average are usually close in values for both the original and the MARGOT data. More-

over, the average number of claims and evidence is the nearly similar for each set of data. This

may be because the average abstracts length doesn’t vary a lot within the dataset as academic

abstracts often follow a standardised structure that usually includes specific sections such as

backgrounds, methods, results, and conclusions [52]. Hence, it helps MARGOT to consistently

identify claims and evidence in different abstracts.

Figure 2.4 shows respectively the average length of both the original and the MARGOT

processed abstracts, as in Table 2.5. Moreover, it shows also the average, the minimum and

the maximum abstracts length of the original abstracts where MARGOT failed to identify any

relevant claims and evidence. It can be observed that the average length of the abstracts is longer

than the average length of the abstracts that MARGOT fails to extract.

It is remarkable to say that, in the PTSD data, there is an outlier, namely the abstract in

record with index 133, which has 14687 characters but MARGOT still cannot find any relevant
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Dataset
Original Margot

Avg Median Avg Median Avg Claims-Ev.
PTSD 1537 1459 892 834 5.00
ACE 1623 1637 846 788 4.00
Antihistamines 1511 1466 746 721 4.34
Estrogens 1789 1726 863 790 4.99
ADHD 1531 1506 781 734 4.62
Urinary Incontinence 1537 1535 766 751 4.77
Opioids 1463 1461 719 663 4.47

Table 2.5: Average and Median of Abstracts Lengths and of Claims and Evidences detected by
MARGOT

Figure 2.4: Statistics on the abstract fields

claims and evidence. The reason may be attributed to the fact that the text stored in this abstract

field primarily consists of a descriptive list of topics and papers presented at a conference on

child and adolescent psychopharmacology. Therefore, it does not provide specific claims or

supporting evidence that can be detected by MARGOT. As it is labelled as non relevant, no

operation is performed on this record. If this outlier is discarded in the plot and the second

maximum is considered, the maximum abstract length that MARGOT fails to detect is in line

with the ones of the others data.

2.8 Analytical Strategy of the simulation studies

After analysing the various aspects of the data and processing them, I carry out the simula-

tions studies first on the dataset that scored an high WSS@95 and then on the dataset with low

WSS@95 in the simulation of [33]. I then present the outcomes of the various models for each
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simulation, making a comparative analysis between the original data and the ones processed by

MARGOT (AM data). Then, I evaluate the models’ performance relying on the Recall@10,

WSS@95 and ATD. The Recall is the main metric used as a yardstick since it is a measure

of quantity. It is measured at 10% of screened records. This means that if a Recall of 1.0 is

reached, all relevant records have been found at 10 % of the screening phase. The WSS@95

calculates the percentage of records that a screener can skip after receiving prior knowledge

used to train the initial model iteration compared to random reading [12]. The WSS is typically

measured at a Recall of 0.95 (WSS@95) and it a commonly used benchmark reflecting the pro-

portion of records saved through active learning while still missing 5% of relevant publications

[49]. The last measure is chosen in order to investigate the difference in speed in discovering

a relevant record between the AM dataset and the original dataset with the measurement unit

being seconds.

After concluding this part, I analyse the effect of missing abstracts on two optimally performing

datasets belonging to two different topics.

In a subsequent step of this work, I investigate the presence of records that contain neither the

abstract nor the title field. If these type of records are labelled as relevant, they are removed.

Conversely, if deemed irrelevant, they are retained as such. This choice is mainly because, for

ASReview LAB, is still possible to learn about the irrelevance from these records but not to

capture meaningful insights about the relevance. Then, a new ASReview simulation is carried

out on the cleaned datasets in order to analyse the influence of false positives in a systematic

review. At the end of this phase, an analysis of the results is presented. In the final stage, the

stability of the obtained results is examined by conducting 15 simulations for each dataset (full-

abstracts and AM) on the Exoscale Cloud Service using a customised multiple model template.

These simulations are run on an CPU optimised computer Cluster due to limited computational

resources on the local machine used for the initial experiment. The total number of simulations

is 2100, namely 10 ∗ 15 ∗ 14. Where 10 is the number of models, 15 is the number of simu-

lations performed and 14 are the datasets (as each dataset comes with its own AM version).

Following this, I perform a comparative analysis of the average performance with respect to

the performance obtained on the previous simulations as well as a quantitative analysis of the

results obtained. Then, I set up a script in which all the outcomes are fetched from the folders

of the simulations. Lastly, a new dataset that has as following features is created:
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• dataset name

• classifier

• feature extractor

• seed used during the simulation

• Recall@10 score obtained from that combination of classifier + feature extractor with the

full-abstracts data

• Recall@10 score obtained from that combination of classifier + feature extractor with the

AM abstracts data

• WSS@95 score obtained from that combination of classifier + feature extractor with the

full-abstracts data

• WSS@95 score obtained from that combination of classifier + feature extractor with the

AM abstracts data

From the pairing of the results by the seed of the simulation, the dataset results in a total of

1050 rows. Finally, the Wilcoxon signed-rank test, a non-parametric statistical test, is used to

compare the medians of paired samples [53]. This test assesses whether there’s a statistically

significant difference between the medians of two paired sets [54]. In this study, I compare the

Recall@10 scores from the original data with those from the AM data. The same is done for

the WSS@95 scores.

24



3. Results

After completing the preceding stages, through Makita it is possible to conduct a large-scale

simulation study leveraging the CLI interface of ASReview LAB. This chapter offers a com-

prehensive analysis of the systematic review results. It presents the outcomes for each dataset,

comparing the full-abstracts version with the corresponding AM version. In all the tables, the

best result is displayed in bold while the second best is underlined. Each simulation study took

a few hours and varied depending on the size of the dataset. The results reported are rounded to

two decimal places.

3.1 Case study 1: Systematic Review on data with high WSS@95

3.1.1 The PTSD Data

The outcomes presented in Table 3.1 indicate that, under two circumstances, PTSD and its AM

version (AM PTSD) have identical Recall@10 values: when using LR and NB as classifiers

and TF-IDF as feature extractor. However, the full-abstracts version of the data outperforms the

AM one with respect to ATD and WSS@95 in both cases. Although when using LR-TFIDF

with AM PTSD there’s a small decrease in WSS@95 and ATD scores, it is achieved first the

highest recall score (the proportion of labelled records is smaller). Specifically, the original

dataset reaches the maximum recall score with roughly 20% of labelled records, while AM

PTSD requires approximately 15%. This behaviour can be observed by comparing the recall

scores of LR-TFIDF in Figure 3.1. It may be due to the fact that the representation of the text

is denser with MARGOT as it captures only the most argumentative rich information.

Nevertheless, when NB is deployed as the classifier, the change in proportion is not signif-

icantly different. This leads to the assumption that the difference between NB and LR plays

a key role. Based on this results, LR appears to achieve the recall faster with the AM data

due to the nature of condensed text and the fact that this model is designed to learn the rela-
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Model
Dataset

Metrics
Classifier Features Extractor Recall@10 WSS@95 ATD

LR Doc2Vec
PTSD 1.0 0.86 246.08
AM PTSD 0.89 0.82 259.27

LR SBERT
PTSD 0.95 0.86 153.49
AM PTSD 0.97 0.83 185.81

LR TFIDF
PTSD 0.97 0.90 117.30
AM PTSD 0.97 0.87 156.41

NB TFIDF
PTSD 0.97 0.90 91.81
AM PTSD 0.97 0.85 151.62

RF Doc2Vec
PTSD 0.97 0.86 236.54
AM PTSD 0.95 0.85 257.19

RF SBERT
PTSD 0.97 0.86 149.92
AM PTSD 0.84 0.82 227.24

RF TFIDF
PTSD 0.97 0.88 160.27
AM PTSD 0.84 0.77 257.70

SVM Doc2Vec
PTSD 0.95 0.84 224.35
AM PTSD 0.86 0.80 277.92

SVM SBERT
PTSD 0.92 0.83 181.24
AM PTSD 0.84 0.78 240.16

SVM TFIDF
PTSD 0.97 0.89 124.95
AM PTSD 0.95 0.86 177.08

Table 3.1: Performance results on the PTSD dataset

tionship between predictors, in this case the TF-IDF features, and outcomes. In general, the

dataset in its original form exhibits superior performance compared to the version processed by

MARGOT. However, AM PTSD surpasses the Recall@10 level of PTSD when using a LR as

classifier and SBERT as feature extractor. This result may be explained by the discrepancy in

word processing capabilities between ASReview and BERT-based models. The former has no

limits in the number of words it can process whereas the latter is programmed to restrict input

tokens to the initial 512 [48], equivalent to roughly 400 words for English text [55]. Hence, by

condensing the richer parts of the text with MARGOT, only the fundamental features can be

extracted and the text will probably be truncated to a lesser extent or not at all. Additionally,

the shorter abstract fields could result in less noise, which may make it easier for the models

to identify true positives. It is important to emphasise that this data in its original form already

exhibits excellent performance and AM data did not lead to any particular improvement. How-

ever, MARGOT manages to improve the Recall@10 at the expense of a slight deterioration of

WSS@95 and ATD when carrying out a systematic review using LR-SBERT.
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(a) Recall Curve Margot

(b) Recall Curve Original

Figure 3.1: Recall Plot of PTSD Data

3.1.2 The ACE Data

In the context of the ACE dataset, changes in the outcomes of the models have been observed.

Table 3.2 reveals that the application of a LR classifier with SBERT as feature extractor leads

to an improvement in the performance of systematic reviews, similar to PTSD. This enhance-

ment is not limited to a 0.02 increase in Recall@10 alone, but also includes a 0.03 increase in

WSS@95 and a significant decrease in ATD. The recall curves in Figure 3.2 demonstrate that

MARGOT attains the peak recall level at approximately 70% of labelled records, compared
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to the original ACE data, which achieves its maximum recall at around 85% of the labelled

records.

The performance of the systematic review in the PTSD dataset was significantly reduced

due to the use of the combination of RF classifier and SBERT with MARGOT. Here, by con-

trast, AM ACE exhibits a significant enhancement. This is demonstrated by an increase of 0.03

in Recall@10 level, a 0.07 increase in WSS@95, and a reduction in ATD. The recall curves in

Figure 3.2 indicate that AM ACE attained a maximum recall at a faster pace, at approx. 80% of

labelled records compared to the 85% of the original data for this combination of models.

Notably, the highest level of performance was achieved by the AM data when used in con-

junction with the aforementioned models (RF-SBERT), outperforming all the other models in

both the versions of the data. In this way, it exceeds the best performance previously obtained

for the full-abstract version. MARGOT demonstrates efficacy in another combination of mod-

els, namely RF in conjunction with Doc2Vec. While its effectiveness slightly diminished in the

PTSD dataset, it exhibited considerable enhancement in this dataset, resulting in a 0.05 increase

in Recall@10, a 0.13 increase in WSS@95, and a significant reduction in ATD.

Furthermore, AM ACE attains the maximum recall level at a substantially faster rate than ACE.

It achieves this level at approximately 30% of labelled records, as opposed to around 65%

in the full-abstracts version. A small room for improvement is also noticeable when using

the SVM-SBERT models: the Recall@10 remains the same for both datasets, but the ATD

and WSS@95 scores improve when using MARGOT. A singular behaviour is observed with

SVM-Doc2Vec in AM ACE. In fact, there is an important decrease of the Recall@10 but an

increase in performance at the ATD and WSS@95. To conclude, for some model combinations,

better performance is achieved with MARGOT than with the original data. In particular, the

RF-SBERT models with MARGOT led to the most effective systematic reviews in the ACE

dataset, achieving the highest performance among all models tested.
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3.1 Case study 1: Systematic Review on data with high WSS@95

(a) Recall Curve Margot

(b) Recall Curve Original

Figure 3.2: Recall Plot of ACE Data
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Model
Dataset

Metrics
Classifier Features Extractor Recall@10 WSS@95 ATD

LR Doc2Vec
ACE 0.80 0.62 251.65
AM ACE 0.75 0.74 205.18

LR SBERT
ACE 0.88 0.79 166.4
AM ACE 0.90 0.82 143.88

LR TFIDF
ACE 0.88 0.80 148.33
AM ACE 0.80 0.70 176.83

NB TFIDF
ACE 0.88 0.78 141.38
AM ACE 0.83 0.72 165.70

RF Doc2Vec
ACE 0.83 0.57 212.75
AM ACE 0.88 0.70 152.33

RF SBERT
ACE 0.90 0.76 166.13
AM ACE 0.93 0.83 134.65

RF TFIDF
ACE 0.83 0.76 142.15
AM ACE 0.83 0.65 211.13

SVM Doc2Vec
ACE 0.73 0.65 295.23
AM ACE 0.45 0.69 293.40

SVM SBERT
ACE 0.85 0.75 185.15
AM ACE 0.85 0.78 174.18

SVM TFIDF
ACE 0.90 0.75 124.70
AM ACE 0.85 0.64 211.30

Table 3.2: Performance results on the ACE dataset

3.2 Case study 2: Systematic Review on data with low WSS@95

In this section, we focus on data with a low (< 0.5) WSS@95. This approach aims to investi-

gate potential benefits that may arise from integrating MARGOT in the process of systematic

review, under the hypothesis that extracting topics from the abstracts of low-performing data

can potentially improve the quality of the systematic review.
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3.2 Case study 2: Systematic Review on data with low WSS@95

3.2.1 The Antihistamines Data

Antihistamines is the dataset which obtained the lowest WSS@95 score in the simulation of

[33]. The findings presented in Table 3.3 indicate that MARGOT, in combination with LR and

SBERT, enhances the Recall@10 score, as in the previous datasets. Additionally, as depicted

in Figure 3.3, the proportion of labelled data corresponding to the recall level attained through

MARGOT is approximately 0.70%, whereas it is marginally higher when using the original

data, i.e 0.80%. When combined with LR and TFIDF, with MARGOT there’s an increase

in both Recall@10 and WSS@95 and a decrease in ATD. Although the Recall@10 is 0.07

lower than the highest score, the WSS@95 and the ATD register the best scores demonstrating

remarkable validity when using the AM data with these models. It is of note that when using

RF in conjunction with SBERT, the AM data achieves the maximum recall level earlier than

the original dataset, despite the slight worsening in terms of Recall@10 score. For the same

models, the AM data has a difference of 0.18 higher than the original data and a decrease in

ATD of approximately 20 seconds. The exact same behaviour can be observed when using SVM

together with SBERT, but this time the Recall@10 shows a significant decrease. The use of

MARGOT improves the WSS@95 scores for several models, such as RF-SBERT, NB-TFIDF,

SVM-TFIDF, SVM-SBERT and LR-TFIDF. Looking at all three metrics, with a preference for

both the Recall@10 and WSS@95, LR-SBERT models when using MARGOT leads to the

highest performance.
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Model
Dataset

Metrics
Classifier Features Extractor Recall@10 WSS@95 ATD

LR Doc2Vec
ANT 0.27 0.15 91.67
AM ANT 0.13 0.12 87.80

LR SBERT
ANT 0.40 0.22 82.47
AM ANT 0.47 0.21 73.73

LR TFIDF
ANT 0.33 0.10 81.0
AM ANT 0.40 0.33 73.33

NB TFIDF
ANT 0.47 0.14 69.80
AM ANT 0.40 0.20 75.67

RF Doc2Vec
ANT 0.33 0.21 87.67
AM ANT 0.20 0.19 93.73

RF SBERT
ANT 0.33 0.11 101.40
AM ANT 0.27 0.29 80.73

RF TFIDF
ANT 0.40 0.13 79.07
AM ANT 0.07 0.02 115.13

SVM Doc2Vec
ANT 0.27 0.33 78.80
AM ANT 0.20 0.20 95.47

SVM SBERT
ANT 0.40 0.22 96.20
AM ANT 0.20 0.33 78.67

SVM TFIDF
ANT 0.40 0.18 76.60
AM ANT 0.33 0.26 84.47

Table 3.3: Performance results on the Antihistamines dataset
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3.2 Case study 2: Systematic Review on data with low WSS@95

(a) Recall Curve Margot

(b) Recall Curve Original

Figure 3.3: Recall Plot of Antihistamines Data

3.2.2 The Urinary Incontinence Data

This subsection reports the analysis of the Urinary Incontinence dataset. Table 3.4 shows the

outcomes of the simulations. In the AM version of the data, a remakable improvement in terms

of Recall@10 and WSS@95 is obtained when using LR as a classifier Doc2Vec as a feature

extractor. In addition to the positive results, the proportion of labelled records is even lower, as

Figure 3.4 shows. Classifiers like RF and SVM with TF-IDF as feature extractors, exhibit good

Recall@10 performance with the AM data, even outperforming the original version with a dif-
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Model
Dataset

Metrics
Classifier Features Extractor Recall@10 WSS@95 ATD

LR Doc2Vec
UR 0.23 0.32 72.10
AM UR 0.28 0.48 71.18

LR SBERT
UR 0.13 0.36 85.23
AM UR 0.21 0.40 86.51

LR TFIDF
UR 0.44 0.46 57.90
AM UR 0.38 0.43 64.79

NB TFIDF
UR 0.46 0.42 58.08
AM UR 0.41 0.38 64.79

RF Doc2Vec
UR 0.28 0.44 68.67
AM UR 0.28 0.42 72.46

RF SBERT
UR 0.28 0.31 79.62
AM UR 0.15 0.46 77.18

RF TFIDF
UR 0.38 0.46 56.49
AM UR 0.41 0.42 60.59

SVM Doc2Vec
UR 0.23 0.16 93.26
AM UR 0.21 0.46 82.26

SVM SBERT
UR 0.21 0.36 76.18
AM UR 0.08 0.45 94.82

SVM TFIDF
UR 0.10 0.48 69.10
AM UR 0.38 0.43 62.74

Table 3.4: Performance results on the Urinary Incontinence dataset

ference of 0.28 using SVM together with TFIDF. This time, this latest combination of models

with AM Urinary Incontinence improves the Recall@10, whereas in previous cases it did not.

While the Recall@10 value is lower, an increase in the WSS@95 is observed using RF and SVM

in conjunction with SBERT and SVM with Doc2Vec. These findings supports the assumptions

that the performance of machine learning models is highly dependent on the structure, organi-

sation, and size of the dataset at hand and that the models are highly data-dependent.

A recurring pattern in this study is the use of LR and SBERT models, which leads improvements

when using MARGOT. Analogously to the previous cases, the results can be explained by the

fact that the combination of SBERT embeddings and LR may complement each other: SBERT

generates semantically rich embeddings and LR effectively models the relationships between

those embeddings and labels. If the embeddings capture significant semantic information about

the abstracts, LR can effectively discern meaningful connections with the labels.

In this case, however, it appears that the AM data do not outperform the systematic review with

the original data, where the best overall performance is achieved when using NB-TFIDF.
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3.2 Case study 2: Systematic Review on data with low WSS@95

(a) Recall Curve Margot

(b) Recall Curve Original

Figure 3.4: Recall Plot of Urinary Incontinence Data
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3.2.3 The Opioids Data

The results of the systematic review carried out for Opioids are presented in Table 3.5. The

outcomes are highly unsatisfactory, thereby suggesting an error in the data. Moreover, for both

AM and full-abstracts Opioids, there are models that have the recall curve that grows slower

than the random curve, suggesting that the models are learning incorrectly. This behaviour is

evident in Figure 3.5. Looking at the data metric file generated during the simulation, there are

some records that present an negative Extra Relevant records Found (ERF) score. This score

represents ”the proportion of relevant records found after correcting for the number of relevant

records found via random screening (assuming a uniform distribution of relevant records)”

[49]. The records which have a negative ERF score are 1174, 518 and 850. The hypothesis is

that as the multiple model template selects one irrelevant and one relevant record that are the

same across all models. During the systematic review, the default seed initially selects one of

these erroneously labelled record and begins to carry out a systematic review where the models

are learning in a wrong way. In order to correct this error, another dataset was created without

these rows.

The outcomes from the simulations are shown in Table 3.6, a significant increase in perfor-

mance can be seen, which means that the problem has been solved. The best and the second

best model have identical performance, the only difference is that the best model is minimally

faster. Figure 3.6 shows the recall plot of these outcomes.
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3.2 Case study 2: Systematic Review on data with low WSS@95

Model
Dataset

Metrics
Classifier Features Extractor Recall@10 WSS@95 ATD

LR Doc2Vec
OP 0.0 0.28 547.86
AM OP 0.79 0.64 180.64

LR SBERT
OP 0.0 0.56 464.79
AM OP 0.0 0.55 519.86

LR TFIDF
OP 0.0 0.49 721.86
AM OP 0.0 0.42 840.07

NB TFIDF
OP 0.0 0.47 715.43
AM OP 0.1 0.41 879.07

RF Doc2Vec
OP 0.14 0.50 327.93
AM OP 0.57 0.29 307.21

RF SBERT
OP 0.0 0.53 431.00
AM OP 0.21 0.50 380.71

RF TFIDF
OP 0.0 0.25 1052.21
AM OP 0.0 0.33 959.21

SVM Doc2Vec
OP 0.0 0.27 819.07
AM OP 0.07 0.48 668.21

SVM SBERT
OP 0.1 0.59 505.86
AM OP 0.0 0.51 590.14

SVM TFIDF
OP 0.43 0.18 369.36
AM OP 0.57 0.45 322.21

Table 3.5: Performance results on the Opioids dataset
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(a) Recall Curve Margot

(b) Recall Curve Original

Figure 3.5: Recall Plot of Opioids Data
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3.2 Case study 2: Systematic Review on data with low WSS@95

(a) Recall Curve Margot

(b) Recall Curve Original

Figure 3.6: Recall Plot of Opioids Data
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Model
Dataset

Metrics
Classifier Features Extractor Recall@10 WSS@95 ATD

LR Doc2Vec
OP 0.91 0.76 105.73
AM OP 0.82 0.76 99.64

LR SBERT
OP 0.64 0.62 155.09
AM OP 0.55 0.63 163.45

LR TFIDF
OP 1.0 0.79 62.55
AM OP 0.82 0.75 78.45

NB TFIDF
OP 0.82 0.76 63.36
AM OP 0.82 0.75 71.91

RF Doc2Vec
OP 0.64 0.74 97.36
AM OP 1.0 0.78 76.82

RF SBERT
OP 0.64 0.59 188.45
AM OP 0.64 0.69 132.64

RF TFIDF
OP 0.91 0.78 83.18
AM OP 0.91 0.79 87.18

SVM Doc2Vec
OP 0.91 0.77 109.09
AM OP 0.73 0.75 107.82

SVM SBERT
OP 0.64 0.65 136.09
AM OP 0.73 0.68 111.00

SVM TFIDF
OP 1.0 0.79 64.27
AM OP 0.82 0.75 94.27

Table 3.6: Performance results on the Opioids dataset without the rows with the negative ERF
score

3.2.4 The ADHD Data

Table 3.7 shows the results of the ADHD dataset. Interestingly, the performance of all models

that included SBERT as a feature extractor was found to be lower when using MARGOT, in

contrast to the previous datasets. It is plausible that, this time, MARGOT has summarised the

abstracts in such a way that SBERT encountered difficulty in extracting relevant features.

MARGOT proved to be essential in achieving the highest level of Recall@10, reaching a value

of 84% with the SVM-TFIDF models. Figure 3.7 indicates that this value was attained more

quickly. Moreover, MARGOT, with classifiers like RF, NB and LR, demonstrated promising

results in terms of WSS@95 when using TFIDF as feature extractor.
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3.2 Case study 2: Systematic Review on data with low WSS@95

Model
Dataset

Metrics
Classifier Features Extractor Recall@10 WSS@95 ATD

LR Doc2Vec
ADHD 0.63 0.58 112.16
AM ADHD 0.47 0.31 144.32

LR SBERT
ADHD 0.79 0.67 80.63
AM ADHD 0.68 0.64 89.84

LR TFIDF
ADHD 0.79 0.51 95.84
AM ADHD 0.79 0.56 84.89

NB TFIDF
ADHD 0.79 0.45 98.05
AM ADHD 0.79 0.55 85.42

RF Doc2Vec
ADHD 0.63 0.61 109.37
AM ADHD 0.58 0.35 138.68

RF SBERT
ADHD 0.79 0.69 98.26
AM ADHD 0.74 0.65 96.53

RF TFIDF
ADHD 0.58 0.09 160.0
AM ADHD 0.58 0.42 126.52

SVM Doc2Vec
ADHD 0.53 0.48 124.42
AM ADHD 0.58 0.21 182.00

SVM SBERT
ADHD 0.79 0.39 120.95
AM ADHD 0.63 0.47 119.11

SVM TFIDF
ADHD 0.79 0.26 121.68
AM ADHD 0.84 0.44 97.68

Table 3.7: Performance results on the ADHD dataset
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(a) Recall Curve Margot

(b) Recall Curve Original

Figure 3.7: Recall Plot of ADHD Data

3.2.5 The Estrogens Data

The final dataset under study is the Estrogens dataset. From Table 3.8, it is worth noting that,

with the AM data, LR-SBERT models help to achieve better results. Also, when using RF to-

gether with SBERT the Recall@10 is increased by 0.05.

The best performing model is NB-TFIDF with original data, the second best model is LR-

TFIDF with AM data. Although the overall performance of the systematic review is not very

high, it must be taken into account that with the 21% of relevant records the maximum Re-
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3.2 Case study 2: Systematic Review on data with low WSS@95

Model
Dataset

Metrics
Classifier Features Extractor Recall@10 WSS@95 ATD

LR Doc2Vec
ES 0.15 0.23 130.81
AM ES 0.16 0.23 116.68

LR SBERT
ES 0.18 0.36 107.76
AM ES 0.22 0.39 99.29

LR TFIDF
ES 0.25 0.28 92.97
AM ES 0.28 0.20 97.70

NB TFIDF
ES 0.29 0.26 92.14
AM ES 0.27 0.30 98.75

RF Doc2Vec
ES 0.19 0.13 106.53
AM ES 0.18 0.26 180.09

RF SBERT
ES 0.19 0.45 99.62
AM ES 0.24 0.36 89.25

RF TFIDF
ES 0.18 0.28 104.24
AM ES 0.16 0.22 116.11

SVM Doc2Vec
ES 0.15 0.20 135.97
AM ES 0.15 0.25 123.70

SVM SBERT
ES 0.15 0.28 106.10
AM ES 0.15 0.27 105.67

SVM TFIDF
ES 0.24 0.31 93.38
AM ES 0.24 0.19 97.19

Table 3.8: Performance results on the Estrogens dataset

call@10 level achievable is approximately 45%.
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(a) Recall Curve Margot

(b) Recall Curve Original

Figure 3.8: Recall Plot of Estrogens Data
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3.3 Effect of Missing Abstracts on systematic reviews

3.3 Effect of Missing Abstracts on systematic reviews

3.3.1 The PTSD Data

Due to the significant percentage of missing abstract in PTSD data, i.e 12.9%, a complementary

dataset was generated to examine the potential impact of absent abstracts on the systematic

review. This new dataset comprises 4938 entries. It excludes all the missing abstracts, including

the ones not detected by MARGOT.

Model
Dataset

Metrics
Classifier Features Extractor Recall@10 WSS@95 ATD

LR Doc2Vec
PTSD 0.95 0.87 226.86
AM PTSD 0.89 0.81 254.86

LR SBERT
PTSD 0.95 0.87 144.73
AM PTSD 0.95 0.84 168.27

LR TFIDF
PTSD 0.97 0.89 98.41
AM PTSD 0.95 0.87 138.68

NB TFIDF
PTSD 0.97 0.90 88.35
AM PTSD 0.97 0.85 138.30

RF Doc2Vec
PTSD 0.97 0.86 144.38
AM PTSD 0.89 0.74 254.22

RF SBERT
PTSD 0.92 0.81 168.03
AM PTSD 0.84 0.80 198.22

RF TFIDF
PTSD 0.97 0.86 132.05
AM PTSD 0.78 0.73 277.30

SVM Doc2Vec
PTSD 0.97 0.86 210.41
AM PTSD 0.86 0.78 264.68

SVM SBERT
PTSD 0.95 0.85 167.41
AM PTSD 0.89 0.79 201.76

SVM TFIDF
PTSD 0.97 0.89 112.43
AM PTSD 0.97 0.86 154.83

Table 3.9: Performance results on the PTSD dataset without missing abstract

From Table 3.9, the overall systematic review scores are slightly lower than in the dataset

with the missing abstracts. For ASReview LAB, titles also play a key role. Thus, if records

with missing abstracts are removed, there is a risk of discarding titles that hold importance in

discerning the relevance of a given record. Moreover, ASReview LAB is also able to learn

patterns from the empty fields. Nevertheless, a decrease in ATD is noticed in almost all the

models. This may support the hypothesis that the presence of abstracts is decisive for the
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improvement of ATD. It is interesting to note that despite the worsening of some models, there

is a slight improvement of others both with both MARGOT and the original version of the

data. Furthermore, models using SVMs as classifiers have a slight improvement in Recall@10

and WSS@95. This may be due to the fact that the SVM model can make more accurate

predictions when it comes to smaller set of data [56]. In conclusion, although the differences

are not remarkable, the version of the datasets with the missing abstracts is slightly better.

3.3.2 Opioids Data

As the percentage of missing abstracts is very high, i.e. 10.34% and the topic is different from

PTSD, I want to investigate whether there is room for improvement by removing the missing

abstracts. In the AM Opioids there are 233 empty abstracts field, this number includes both

abstracts in which MARGOT found no relevant information (35) and the number of empty

abstracts in the dataset. In order to make a fairer comparison, I remove these entries from both

the versions of the data without the rows with negative ERF. Table 3.10 displays the outcomes

of the simulation. This clean version of the data, gives commendable results for all the models.

It is worth to notice that SBERT-based models improve the WSS@95 and ATD when using

the AM data. The best overall performance, is achieved with RF-Doc2Vec with the AM data.

Since the differences are minimal compared to the previous version and this dataset shows better

performance, I keep this new version of Opioids for the next steps.
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3.4 Effect of Missing Abstracts and Titles on ASReview Simulations

Model
Dataset

Metrics
Classifier Features Extractor Recall@10 WSS@95 ATD

LR Doc2Vec
OP 0.82 0.76 110.64
AM OP 0.91 0.78 78.36

LR SBERT
OP 0.64 0.65 128.27
AM OP 0.64 0.72 100.55

LR TFIDF
OP 1.0 0.78 60.91
AM OP 0.82 0.73 78.27

NB TFIDF
OP 0.82 0.75 59.00
AM OP 0.82 0.74 66.00

RF Doc2Vec
OP 0.73 0.73 93.55
AM OP 1.0 0.82 46.64

RF SBERT
OP 0.73 0.71 93.27
AM OP 0.73 0.75 94.45

RF TFIDF
OP 0.82 0.71 95.73
AM OP 0.73 0.74 91.09

SVM Doc2Vec
OP 0.82 0.74 104.73
AM OP 0.82 0.74 105.18

SVM SBERT
OP 0.82 0.64 110.82
AM OP 0.73 0.76 72.91

SVM TFIDF
OP 1.0 0.77 63.36
AM OP 0.82 0.74 93.45

Table 3.10: Performance results on the Opioids Cleaned dataset

3.4 Effect of Missing Abstracts and Titles on ASReview Sim-

ulations

In all the data, with the exception of ACE there are some records which contain neither the

abstract field nor the title field. These records are left as such if labelled as irrelevant since

ASReview LAB can still learn about the irrelevance of a record. However, information about

the relevance cannot be obtained if these features are missing. In the Opioids, Estrogens and

ADHD datasets there are some relevant records where these fields are missing. To address this

lack, it is worthwhile to try running another simulation by removing the mislabelled records in

both the AM and full-abstracts versions of these data and compare the results with the previous

simulations. The outcomes are presented in the tables within this section. The data with labelled

’-C’ excludes the records with missing titles and abstracts.

For Estrogens, the relevant records without abstract and title are: 29, 70, 111. For ADHD
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it is the one with index 213 and for Opioids it is the one with index 1174. For Opioids, the

comparison of the simulations is done with the version of the data in which all records with

a negative ERF score and all missing abstracts have been removed. The results for the new

versions of Estrogens are shown in Table 3.11 which reports also the ones of the previous

simulations.

With Estrogens the best performance was obtained when using NB with TFIDF. This model

combination is still the best but, with the clean version of the data, there is an increase in

WSS@95 and a decrease in ATD.

The outcomes from the simulations conducted using the ADHD data are presented in Table

3.12. The best performance is achieved with the clean version of the data, emphasising the

importance of data quality.

The new version of the Opioids (OP-C) containing all records present in the full version

except record 1174 was compared with the version of it where both records 1174, 518 and 850

and all records with missing abstracts were removed. Since the comparison is made with an

even cleaner version the outcomes of this simulation are worse. However, the results prove that

the removal of the record 1174 is sufficient to correct the error in the data.

In conclusion, the removal of the relevant records with both missing abstracts and titles help

to achieve better results. The findings suggest that addressing the issue of missing abstracts and

titles in the datasets can have a significant impact on the performance of the systematic review,

emphasizing the importance of data quality and preprocessing before starting the process.
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3.4 Effect of Missing Abstracts and Titles on ASReview Simulations

Model
Dataset

Metrics
Classifier Features Extractor Recall@10 WSS@95 ATD

LR Doc2Vec
ES 0.15 0.23 130.81
ES-C 0.11 0.17 129.38
AM ES 0.16 0.23 116.68
AM ES-C 0.14 0.26 121.37

LR SBERT
ES 0.18 0.36 107.76
ES-C 0.21 0.40 98.97
AM ES 0.22 0.39 99.29
AM ES-C 0.20 0.42 92.42

LR TFIDF
ES 0.25 0.28 92.97
ES-C 0.26 0.43 89.91
AM ES 0.28 0.20 97.70
AM ES-C 0.18 0.33 108.22

NB TFIDF
ES 0.29 0.26 92.14
ES-C 0.29 0.44 82.07
AM ES 0.27 0.30 98.75
AM ES-C 0.16 0.40 100.64

RF Doc2Vec
ES 0.19 0.13 106.53
ES-C 0.26 0.35 101.74
AM ES 0.18 0.26 180.09
AM ES-C 0.12 0.29 111.16

RF SBERT
ES 0.19 0.45 99.62
ES-C 0.21 0.52 86.26
AM ES 0.24 0.36 89.25
AM ES-C 0.20 0.50 86.50

RF TFIDF
ES 0.18 0.28 104.24
ES-C 0.25 0.41 86.46
AM ES 0.16 0.22 116.11
AM ES-C 0.22 0.35 97.42

SVM Doc2Vec
ES 0.15 0.20 135.97
ES-C 0.09 0.18 146.74
AM ES 0.15 0.25 123.71
AM ES-C 0.12 0.25 128.41

SVM SBERT
ES 0.15 0.28 106.10
ES-C 0.20 0.40 104.07
AM ES 0.15 0.27 105.67
AM ES-C 0.12 0.36 109.14

SVM TFIDF
ES 0.24 0.31 93.38
ES-C 0.22 0.45 87.80
AM ES 0.24 0.19 97.19
AM ES-C 0.13 0.33 109.18

Table 3.11: Performance results on the Estrogens dataset
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Model
Dataset

Metrics
Classifier Features Extractor Recall@10 WSS@95 ATD

LR Doc2Vec
ADHD 0.63 0.58 112.16
ADHD-C 0.61 0.67 103.39
AM ADHD 0.47 0.31 144.32
AM ADHD-C 0.56 0.52 169.22

LR SBERT
ADHD 0.79 0.67 80.63
ADHD-C 0.72 0.77 66.56
AM ADHD 0.68 0.64 89.84
AM ADHD-C 0.67 0.76 70.44

LR TFIDF
ADHD 0.79 0.51 95.84
ADHD-C 0.89 0.52 67.33
AM ADHD 0.79 0.56 84.89
AM ADHD-C 0.78 0.60 64.17

NB TFIDF
ADHD 0.79 0.45 98.05
ADHD-C 0.83 0.47 74.06
AM ADHD 0.79 0.55 85.42
AM ADHD-C 0.83 0.58 61.28

RF Doc2Vec
ADHD 0.63 0.61 109.37
ADHD-C 0.67 0.76 74.61
AM ADHD 0.58 0.35 138.68
AM ADHD-C 0.50 0.29 123.67

RF SBERT
ADHD 0.79 0.69 98.26
ADHD-C 0.72 0.77 59.33
AM ADHD 0.74 0.65 96.53
AM ADHD-C 0.78 0.77 66.56

RF TFIDF
ADHD 0.58 0.09 160.00
ADHD-C 0.61 0.32 121.00
AM ADHD 0.58 0.42 126.53
AM ADHD-C 0.78 0.68 80.72

SVM Doc2Vec
ADHD 0.53 0.48 124.42
ADHD-C 0.61 0.65 105.89
AM ADHD 0.58 0.21 182.00
AM ADHD-C 0.50 0.50 138.83

SVM SBERT
ADHD 0.79 0.39 120.95
ADHD-C 0.72 0.78 79.56
AM ADHD 0.63 0.47 119.11
AM ADHD-C 0.56 0.70 81.11

SVM TFIDF
ADHD 0.79 0.26 121.68
ADHD-C 0.83 0.27 95.06
AM ADHD 0.84 0.44 97.68
AM ADHD-C 0.83 0.54 73.39

Table 3.12: Performance results on the ADHD dataset
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3.4 Effect of Missing Abstracts and Titles on ASReview Simulations

Model
Dataset

Metrics
Classifier Features Extractor Recall@10 WSS@95 ATD

LR Doc2Vec
OP 0.82 0.76 110.64
OP-C 0.69 0.24 328.08
OP-Margot 0.91 0.78 78.36
OP-C-Margot 0.69 0.54 225.15

LR SBERT
OP 0.64 0.65 128.27
OP-C 0.62 0.66 169.62
AM OP 0.64 0.72 100.55
OP-C-Margot 0.46 0.64 219.15

LR TFIDF
OP 1.0 0.78 60.91
OP-C 0.85 0.32 264.62
AM OP 0.82 0.73 78.27
OP-C-Margot 0.69 0.47 241.85

NB TFIDF
OP 0.82 0.75 59.00
OP-C 0.69 0.44 242.69
AM OP 0.82 0.74 66.00
OP-C-Margot 0.69 0.53 236.62

RF Doc2Vec
OP 0.73 0.73 93.55
OP-C 0.69 0.50 220.15
OP-Margot 1.0 0.82 46.64
OP-C-Margot 0.54 0.63 217.46

RF SBERT
OP 0.73 0.71 93.27
OP-C 0.54 0.60 234.38
AM OP 0.73 0.75 94.45
OP-C-Margot 0.54 0.60 235.92

RF TFIDF
OP 0.82 0.71 95.73
OP-C 0.85 0.55 201.00
AM OP 0.73 0.74 91.09
OP-C-AM 0.69 0.56 247.69

SVM Doc2Vec
OP 0.82 0.74 104.73
OP-C 0.77 0.62 174.23
AM OP 0.82 0.74 105.18
OP-C-Margot 0.54 0.58 245.62

SVM SBERT
OP 0.82 0.64 110.82
OP-C 0.54 0.62 197.08
AM OP 0.73 0.76 72.91
OP-C-Margot 0.62 0.65 172.08

SVM TFIDF
OP 1.0 0.77 63.36
OP-C 0.85 0.26 255.15
AM OP 0.82 0.74 93.45
OP-C-Margot 0.69 0.52 250.69

Table 3.13: Performance results on the Opioids Cleaned dataset
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4. Results Overview

This section presents a comparative analysis on the performance. Figure 4.1 shows the results

that led to the most efficient systematic review for each dataset. The data ending with ’-C’ refer

to data that have been pre-processed by removing relevant records that contain neither the title

nor the abstract field.

Figure 4.1: Best overall performance of the systematic review for each dataset
This table displays the best performance in terms of Recall@10 and WSS@95 for AM

(MARGOT) data and full-abstracts data

Table 4.1 provides some insights about the size, the percentage of relevant records, missing

abstracts and the scores obtained with the best models. The inverse correlation between the

percentage of relevant records and the Recall@10 is given by the fact that the Recall is measured

at 10% of screened records. Therefore, the higher the percentage of relevant records, the more

difficult it is for all relevant records to be screened before 10%. For instance, let me consider

Estrogens where the number of relevant record is 0.21 ∗ 365 ≈ 77. As the recall is measured

at 10%, the maximum number of screened study at 10% is 365 ∗ 0.10 = 36.5. Since I am

looking for the highest possible Recall@10 score, let me assume that all relevant records (True

Positives) are all correctly identified in the first 36 records checked. Hence, the maximum
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recall after screening 10% of the record is 36/77 ≈ 0.47. Instead, the WSS@95 is a measure of

sampling over the normal rate (random screening) [49]. Thus, this percentage has no influence

on the relevance of the records. In any case, a positive value means that a certain amount of

time is saved compared to manual screening.

Table 4.1: Characteristics of the data and their best overall performance

This table shows the dataset that obtained the best overall performance with their
characteristics. These are: PTSD, Argument Mined ACE, Argument Mined Antihistamines,

Estrogens, ADHD, Urinary Incontinence and Argument Mined Opioids
Data Size Relevant Records Missing Abs. Recall@10 WSS@95 Models
PTSD 5782 0.66% 12.92% 1.00 0.86 LR-Doc2Vec

AM-ACE 2544 1.61% 14.19% 0.93 0.83 RF-SBERT
AM-Ant. 310 5.16% 12.26% 0.47 0.21 LR-SBERT
Estrogens 365 21.73% 7.67% 0.29 0.44 NB-TFIDF

ADHD 850 2.24% 8.12% 0.89 0.52 LR-TFIDF
Urinary Inc. 327 12.23 % 17.12% 0.46 0.42 NB-TFIDF
AM-Opioids 1680 0.71% 0% 1.00 0.82 RF-Doc2Vec

Table 4.2 compares the difference in performance metrics (Recall@10 and WSS@95) be-

tween both the original and the AM data processed by MARGOT for each combination of

classifier and feature extractor. Considering that in the multiple model template there are 10

different combinations of models, let me denote a specific combination of models as Mi and

Score(Mi) as both the Recall@10 and the WSS@95 metrics. The following formula gives a

representation of the difference in performance between the AM data and the full-abstracts

ones, normalized by nd which are the number of datasets under analysis, 7 in this case.

Score(Mi) =
∑

nd
n=1 ScoreAMDatan(Mi)−ScoreOriginalDatan(Mi)

nd

A positive Recall@10 or WSS@95 value indicates that MARGOT has achieved better per-

formance, while a negative value indicates a decrease in performance compared to the original

dataset.

MARGOT demonstrates its ability to improve the performance by increasing, on average,

the Recall@10 when employing LR-SBERT. Furthermore, the outcomes reveal that MARGOT
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Results Overview

Model Recall@10 WSS@95
Classifier Features Extractor Mean STD Mean STD
LR Doc2Vec -0.026 0.085 0.024 0.108
LR SBERT 0.019 0.045 0.016 0.035
LR TFIDF -0.063 0.080 0 0.118
NB TFIDF -0.043 0.048 -0.004 0.065
RF Doc2Vec -0.02 0.152 -0.051 0.197
RF SBERT -0.034 0.075 0.054 0.084
RF TFIDF -0.054 0.155 -0.006 0.169
SVM Doc2Vec -0.077 0.103 0.013 0.151
SVM SBERT -0.106 0.065 0.026 0.083
SVM TFIDF -0.0186 0.144 0.001 0.135

Table 4.2: Differences in performance for the models between AM and original data
This table highlights the performance disparities between various models using Recall@10

and WSS@95 metrics, comparing the AM (MARGOT) data with the full-abstracts data.

consistently leads to improvements across multiple models in terms of WSS@95, underlining

the positive impact of using MARGOT.

It can be observed that, when the difference between the absolute mean and the standard de-

viation, abs(mean(Recall@10))−std(Recall@10) and abs(mean(WSS@95))−std(WSS@95),

is negative for certain model combinations, there are datasets where the optimal score is achieved

when using the AM data, as well as datasets where the best score is obtained with the original

data. This phenomenon occurs in almost all models (except SVM-SBERT when looking at the

Recall@10) and highlights the interdependence between models and data, emphasizing the sig-

nificance of selecting appropriate data for optimal performance.

Similarly, with the aim of comparing the difference in performance in term of ATD, the follow-

ing formula is used:

AT D(Mi) =
∑

nd
n=1 AT DOriginalDatan(Mi)−AT DAMDatan(Mi)

nd

If the outcome is a positive value, it indicates that MARGOT is faster in the process of sys-

tematic review as fewer records need to be screened on average in order to find all the relevant

records in a dataset n with a combination models (classifier and feature extractor) Mi.

54



Model ATD
Classifier Features Extractor Mean STD
LR Doc2Vec 1.79 35.978
LR SBERT 4.007 19.764
LR TFIDF -14.191 16.758
NB TFIDF -15.643 22.703
RF Doc2Vec 2.621 38.245
RF SBERT -4.483 34.918
RF TFIDF -24.659 46.683
SVM Doc2Vec -10.353 25.635
SVM SBERT -2.539 30.732
SVM TFIDF -24.279 36.575

Table 4.3: Comparison of the difference in performance in terms of ATD metric for different mod-
els between the full-abstracts and the AM data.

Table 4.3 shows that MARGOT is averagely faster in some models. However, for both the

versions of the data the standard deviation deviates significantly from the mean. Therefore, it

implies a greater variability and dispersion in the data. For all the combination of models, the

subtraction of the absolute value of the mean from the standard deviation - abs(mean(AT D))−

std(AT D) - gives always a negative outcome. This means that there are some datasets in which

the version with the AM abstracts is faster compared to the original one and vice versa.
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5. Check the Stability of the Results Obtained

The last part of this analysis consists of verifying the stability of the results obtained in the

previous simulations. In this chapter, the results of 15 further simulations performed for each

dataset on the Cloud platform are presented. The evaluation of the results is based on the calcu-

lation of the mean and standard deviation of Recall@10 and WSS@95 of these 15 simulations

and their comparison with the original results obtained in the first simulation. I do not consider

the ATD because its values vary significantly between the simulations. Most importantly, there

is no significant difference in this metric between AM and full-abstracts data.

The values in the tables in the following sections are indicative of both performance (Recall@10

and WSS@95) and stability (Mean and Std). Theoretically, to have a perfectly stable model, its

standard deviation resulting from these then simulations must be zero. So, the average of the

scores must be equal to the ones obtained during the first simulation study.

5.1 Stability of PTSD

Table 5.1 shows the comparison between the results from the previous simulation conducted on

the PTSD data and the mean and the standard deviation derived from the 15 simulations on the

same dataset. The same comparison is also made for the AM version of the data.

• All the models show slight variations in performance for both versions of the data.

• Although in the first simulation the best performance was given by LR-Doc2Vec, now on

average, the LR-TFIDF model is the best model and NB-TFIDF is the second best. The

outcomes are almost equal, but LR-TFIDF is slightly more stable in terms of Recall@10.

These best outcomes are all obtained with the full-abstracts data.

• LR with SBERT generally improves scores with AM data. However, in this case, the

mean of Recall@10 decreases slightly, suggesting a potential instability in this pattern.
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5.1 Stability of PTSD

Model
Dataset

Recall@10 WSS@95
Classifier Features Extractor Recall Mean Std WSS Mean Std

LR Doc2Vec
PTSD 1.0 0.98 0.032 0.86 0.85 0.012
AM-PTSD 0.89 0.90 0.013 0.82 0.81 0.008

LR SBERT
PTSD 0.95 0.95 0.011 0.86 0.87 0.009
AM-PTSD 0.97 0.94 0.032 0.83 0.83 0.01

LR TFIDF
PTSD 0.97 0.98 0.009 0.90 0.90 0.003
AM-PTSD 0.97 0.96 0.013 0.87 0.88 0.004

NB TFIDF
PTSD 0.97 0.98 0.011 0.90 0.90 0.002
AM-PTSD 0.97 0.97 0.01 0.85 0.86 0.005

RF Doc2Vec
PTSD 0.97 0.97 0.015 0.86 0.86 0.012
AM-PTSD 0.95 0.91 0.032 0.85 0.82 0.014

RF SBERT
PTSD 0.97 0.88 0.236 0.86 0.84 0.025
AM-PTSD 0.84 0.81 0.157 0.82 0.79 0.028

RF TFIDF
PTSD 0.97 0.97 0.014 0.88 0.88 0.008
AM-PTSD 0.84 0.87 0.035 0.77 0.79 0.014

SVM Doc2Vec
PTSD 0.95 0.98 0.024 0.84 0.84 0.008
AM-PTSD 0.86 0.86 0.025 0.80 0.79 0.008

SVM SBERT
PTSD 0.92 0.94 0.015 0.83 0.85 0.017
AM-PTSD 0.84 0.89 0.020 0.78 0.81 0.012

SVM TFIDF
PTSD 0.97 0.98 0.011 0.89 0.89 0.004
AM-PTSD 0.95 0.97 0.011 0.86 0.86 0.005

Table 5.1: Analysis of model stability on PTSD
The Recall and WSS columns stand for the result obtained from the initial simulation in terms
of Recall@10 and WSS@95, while the mean and standard deviation are derived to verify the

stability of Recall@10 and WSS@95 based on 15 simulations.

The most unstable model is RF-SBERT as it has the highest standard deviation for the Re-

call@10. Yet, across all models and for both data versions, the standard deviation is generally

low. This suggests minimal obscillations in Recall@10 and WSS@95 across simulations. Fig-

ure 5.1 illustrates the stability of the best model across the 15 simulations.
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Check the Stability of the Results Obtained

Figure 5.1: Stability of the best model of PTSD
This figure illustrates the stability of the best model, NB-TFIDF, for the full-abstracts version

of PTSD across 15 simulations

5.2 Stability of ACE

Table 5.2 shows the comparison between the results from the previous simulation conducted on

both the versions of the ACE data and the mean and the standard deviation derived from the 15

simulations on the same datasets. For ACE:

• No model exhibits perfect stability.

• The overall best model (RF-SBERT) and the second-best model (LR-SBERT) still have

the highest average scores.

• SVM-Doc2Vec with the AM version of the data performs considerably better on average

in terms of Recall@10 compared to the initial simulation. However, it has the highest

standard deviation value, indicating greater variability across the simulations. This dif-

ference depends on the selection of the training data as, different seeds selects different

prior knowledge.

Figure 5.2 shows the stability of the best model across simulations, revealing fluctuations

between runs, especially in terms of Recall@10. Although on average this is the best model, the

Recall@10 metric is not perfectly stable. In contrast, the WSS@95 metric has greater stability.

The same scenario applies to the second best model.
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5.2 Stability of ACE

Model
Dataset

Recall@10 WSS@95
Classifier Features Extractor Recall Mean Std WSS Mean Std

LR Doc2Vec
ACE 0.80 0.76 0.028 0.62 0.65 0.037
AM-ACE 0.75 0.70 0.042 0.74 0.74 0.006

LR SBERT
ACE 0.88 0.87 0.019 0.79 0.78 0.009
AM-ACE 0.90 0.89 0.046 0.82 0.83 0.013

LR TFIDF
ACE 0.88 0.86 0.015 0.80 0.78 0.017
AM-ACE 0.80 0.82 0.022 0.70 0.72 0.012

NB TFIDF
ACE 0.88 0.88 0.012 0.78 0.78 0.007
AM-ACE 0.83 0.83 0.014 0.72 0.72 0.007

RF Doc2Vec
ACE 0.83 0.82 0.028 0.57 0.55 0.123
AM-ACE 0.88 0.86 0.014 0.70 0.75 0.041

RF SBERT
ACE 0.90 0.87 0.023 0.76 0.78 0.019
AM-ACE 0.93 0.90 0.044 0.83 0.83 0.012

RF TFIDF
ACE 0.83 0.86 0.033 0.76 0.78 0.025
AM-ACE 0.83 0.78 0.029 0.65 0.67 0.052

SVM Doc2Vec
ACE 0.73 0.71 0.024 0.65 0.66 0.047
AM-ACE 0.45 0.69 0.022 0.69 0.71 0.027

SVM SBERT
ACE 0.85 0.84 0.024 0.75 0.74 0.014
AM-ACE 0.85 0.86 0.025 0.78 0.79 0.024

SVM TFIDF
ACE 0.90 0.89 0.02 0.75 0.78 0.021
AM-ACE 0.85 0.82 0.016 0.64 0.65 0.032

Table 5.2: Analysis of model stability on ACE
The Recall and WSS columns stand for the result obtained from the initial simulation in terms
of Recall@10 and WSS@95, while the mean and standard deviation are derived to verify the

stability of Recall@10 and WSS@95 based on 15 simulations

Figure 5.2: Stability of the best model of AM-ACE
This figure illustrates the stability of the best model, RF-SBERT, for the AM version of ACE

across 15 simulations
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Check the Stability of the Results Obtained

5.3 Stability of Antihistamines

Table 5.3 shows the outcomes regarding the models’ stability for Antihistamines.

• This dataset generally has very low scores. The standard deviation values from the 15

simulations are quite high. Moreover, the average Recall@10 scores are almost always

significantly lower than the ones obtained during the first simulation. This stresses the

instability of the models.

• Considering that this dataset has about 5% relevant records, it could potentially achieve a

Recall@10 score of 1.0. However, it reaches only about 20% on average. In some cases,

after about 10% of screened records, it fails to find any relevant records (Figure 5.3).

• The WSS@95 score shows more stability throughout the simulations.

• Due to the minimal differences between the models, it is challenging to determine if the

data processed by MARGOT (AM data) performs better on this dataset or not. However,

although the best model from the first simulation was LR-SBERT, better performance is

now achieved on average by using RF-SBERT on the AM data. The second best combi-

nation is LR-SBERT on the full-abstracts version of the data.

Figure 5.3 illustrates the performance of the best model during the 15 simulations. Due to the

different prior knowledge selected across runs, noticeable fluctuations can be seen between the

recall values, with model performance reaching 50% in some simulations and dropping to 0%

in others.
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5.3 Stability of Antihistamines

Model
Dataset

Recall@10 WSS@95
Classifier Features Extractor Recall Mean Std WSS Mean Std

LR Doc2Vec
ANT 0.27 0.16 0.114 0.15 0.24 0.057
AM-ANT 0.13 0.12 0.11 0.12 0.11 0.037

LR SBERT
ANT 0.40 0.24 0.179 0.22 0.18 0.047
AM-ANT 0.47 0.17 0.161 0.21 0.27 0.048

LR TFIDF
ANT 0.33 0.19 0.165 0.10 0.18 0.107
AM-ANT 0.40 0.19 0.144 0.33 0.24 0.063

NB TFIDF
ANT 0.47 0.22 0.149 0.14 0.20 0.147
AM-ANT 0.40 0.23 0.168 0.20 0.24 0.040

RF Doc2Vec
ANT 0.33 0.16 0.15 0.21 0.30 0.078
AM-ANT 0.20 0.12 0.132 0.19 0.17 0.079

RF SBERT
ANT 0.33 0.18 0.161 0.11 0.23 0.050
AM-ANT 0.27 0.24 0.18 0.29 0.28 0.054

RF TFIDF
ANT 0.40 0.21 0.134 0.13 0.21 0.084
AM-ANT 0.07 0.11 0.09 0.02 0.07 0.10

SVM Doc2Vec
ANT 0.27 0.13 0.114 0.33 0.31 0.044
AM-ANT 0.20 0.11 0.108 0.20 0.10 0.045

SVM SBERT
ANT 0.40 0.20 0.153 0.22 0.23 0.072
AM-ANT 0.20 0.20 0.155 0.33 0.29 0.040

SVM TFIDF
ANT 0.40 0.17 0.119 0.18 0.25 0.099
AM-ANT 0.33 0.18 0.145 0.26 0.27 0.046

Table 5.3: Analysis of model stability on Antihistamines
The Recall and WSS columns stand for the result obtained from the initial simulation in terms
of Recall@10 and WSS@95, while the mean and standard deviation are derived to verify the

stability of Recall@10 and WSS@95 based on 15 simulations.

Figure 5.3: Stability of the best model of AM-Antihistamines
This figure illustrates the sability of the best model, RF-SBERT, for the AM version of

Antihistamines across 15 simulations
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Check the Stability of the Results Obtained

5.4 Stability of Urinary Incontinence

Considering the fact that the maximum Recall@10 level of Urinary Incontinence could be ≈

59% this dataset achieves fairly high performance.

• On average, NB-TFIDF is the top-perfroming model and the second best is LR-TFIDF.

• The most unstable model is RF-SBERT with the full-abstracts data but in any case the

standard deviation is not too high.

Urinary Incontinence performs very well in terms of both Recall@10 and WSS@95 and the

results are quite stable across runs, even if some seeds lead to a deterioration in performance.

Figure 5.4 shows the stability across runs of the top-performing model, i.e NB-TFIDF with the

full-abstracts version of Urinary Incontinence.

Model
Dataset

Recall@10 WSS@95
Classifier Features Extractor Recall Mean Std WSS Mean Std

LR Doc2Vec
UR 0.23 0.22 0.046 0.32 0.29 0.09
UR-Margot 0.28 0.22 0.053 0.48 0.42 0.040

LR SBERT
UR 0.13 0.22 0.093 0.36 0.37 0.047
UR-Margot 0.21 0.22 0.084 0.40 0.40 0.043

LR TFIDF
UR 0.44 0.42 0.046 0.46 0.49 0.026
UR-Margot 0.38 0.35 0.069 0.43 0.42 0.021

NB TFIDF
UR 0.46 0.46 0.041 0.42 0.41 0.035
UR-Margot 0.41 0.40 0.062 0.38 0.41 0.013

RF Doc2Vec
UR 0.28 0.30 0.101 0.44 0.42 0.024
UR-Margot 0.28 0.31 0.125 0.42 0.43 0.032

RF SBERT
UR 0.28 0.27 0.108 0.31 0.37 0.062
UR-Margot 0.15 0.21 0.081 0.46 0.38 0.041

RF TFIDF
UR 0.38 0.41 0.055 0.46 0.39 0.077
UR-Margot 0.41 0.36 0.057 0.42 0.45 0.024

SVM Doc2Vec
UR 0.23 0.19 0.041 0.16 0.27 0.033
UR-Margot 0.21 0.20 0.050 0.46 0.40 0.032

SVM SBERT
UR 0.21 0.19 0.077 0.36 0.33 0.059
UR-Margot 0.08 0.20 0.062 0.45 0.42 0.049

SVM TFIDF
UR 0.10 0.38 0.040 0.48 0.44 0.038
UR-Margot 0.38 0.33 0.073 0.43 0.43 0.029

Table 5.4: Analysis of model stability on Urinary Incontinence
The Recall and WSS columns stand for the result obtained from the initial simulation in terms
of Recall@10 and WSS@95, while the mean and standard deviation are derived to verify the

stability of Recall@10 and WSS@95 based on 15 simulations.
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5.4 Stability of Urinary Incontinence

Figure 5.4: Stability of the best model of Urinary Incontinence
This figure illustrates the stability of the best model, NB-TFIDF, for the full-abstracts version

of Urinary Incontinence across 15 simulations
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Check the Stability of the Results Obtained

5.5 Stability of Opioids

To check stability, I consider the best performing version of this dataset: the one where the

mislabelled relevant records as well as the missing abstracts and the records with the negative

ERF score are removed.

• RF-Doc2Vec is top performing model with the AM data and it remains as such across

simulations. The second best model is now SVM-TFIDF with the full-abstracts version

of the data.

• The dataset shows excellent performance with very low values of standard deviation both

in term of Recall@10 and WSS@95.

Model
Dataset

Recall@10 WSS@95
Classifier Features Extractor Recall Mean Std WSS Mean Std

LR Doc2Vec
OP 0.82 0.78 0.056 0.76 0.72 0.025
AM-OP 0.91 0.88 0.070 0.78 0.77 0.011

LR SBERT
OP 0.64 0.69 0.093 0.65 0.67 0.034
AM-OP 0.64 0.59 0.099 0.72 0.69 0.037

LR TFIDF
OP 1.0 0.98 0.062 0.78 0.77 0.01
AM-OP 0.82 0.83 0.031 0.73 0.73 0.023

NB TFIDF
OP 0.82 0.84 0.062 0.75 0.76 0.02
AM-OP 0.82 0.84 0.049 0.74 0.73 0.025

RF Doc2Vec
OP 0.73 0.73 0.179 0.73 0.74 0.018
AM-OP 1.0 0.99 0.045 0.82 0.80 0.017

RF SBERT
OP 0.73 0.58 0.199 0.71 0.60 0.056
AM-OP 0.73 0.67 0.159 0.75 0.67 0.061

RF TFIDF
OP 0.82 0.88 0.052 0.71 0.77 0.023
AM-OP 0.73 0.78 0.087 0.74 0.74 0.030

SVM Doc2Vec
OP 0.82 0.78 0.056 0.74 0.74 0.018
AM-OP 0.82 0.81 0.07 0.74 0.75 0.018

SVM SBERT
OP 0.82 0.74 0.093 0.64 0.65 0.06
AM-OP 0.73 0.77 0.056 0.76 0.73 0.029

SVM TFIDF
OP 1.0 0.98 0.062 0.77 0.78 0.02
AM-OP 0.82 0.84 0.059 0.74 0.76 0.016

Table 5.5: Analysis of model stability on Opioids
The Recall and WSS columns stand for the result obtained from the initial simulation in terms
of Recall@10 and WSS@95, while the mean and standard deviation are derived to verify the

stability of Recall@10 and WSS@95 based on 15 simulations.

Figure 5.5 displays the stability of the top-performing models combination. There’s almost

perfect stability in terms of Recall@10, with an exception during run 3, meaning that the se-
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5.5 Stability of Opioids

lected prior knowledge might not be as meaningful as in the other runs.

Figure 5.5: Stability of the best model of AM-Opioids
This figure illustrates the stability of the best model, RF-Doc2Vec, for the AM version of

Opioids across 15 simulations
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Check the Stability of the Results Obtained

5.6 Stability of ADHD

Also for this dataset, the version considered is the one without wrongly labelled relevant records.

• The LR-TFIDF models performed the best on the original dataset but on average SVM-

TFIDF perform slightly better and has more stability in terms of Recall@10.

• In general, this dataset is quite stable, but some models show more instability than others.

For instance, all models using Doc2Vec as a feature extractor for both data versions,

LR, SVM with SBERT and RF with TFIDF and SBERT for full-abstracts data are more

unstable.

• Overall, the scores are highly satisfactory, and the model performance remained fairly

stable during simulations.

SVM-TFIDF exhibited low standard deviation (especially in terms of Recall@10), confirm-

ing its stability during simulations, as shown in Figure 5.6.

Figure 5.6: Stability of the best model of ADHD
This figure illustrates the stability of the best model, SVM-TFIDF, for the full-abstracts

version of the ADHD dataset across 15 simulations
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5.6 Stability of ADHD

Model
Dataset

Recall@10 WSS@95
Classifier Features Extractor Recall Mean Std WSS Mean Std

LR Doc2Vec
ADHD-C 0.61 0.57 0.172 0.67 0.66 0.036
AM-ADHD-C 0.56 0.43 0.162 0.52 0.53 0.056

LR SBERT
ADHD-C 0.72 0.77 0.106 0.77 0.77 0.025
AM-ADHD-C 0.67 0.66 0.095 0.76 0.77 0.018

LR TFIDF
ADHD-C 0.89 0.85 0.059 0.52 0.54 0.069
AM-ADHD-C 0.78 0.80 0.044 0.60 0.60 0.053

NB TFIDF
ADHD-C 0.83 0.84 0.025 0.47 0.48 0.076
AM-ADHD-C 0.83 0.84 0.019 0.58 0.60 0.053

RF Doc2Vec
ADHD-C 0.67 0.66 0.194 0.76 0.74 0.034
AM-ADHD-C 0.50 0.51 0.139 0.29 0.47 0.088

RF SBERT
ADHD-C 0.72 0.76 0.14 0.77 0.76 0.021
AM-ADHD-C 0.78 0.82 0.059 0.77 0.78 0.027

RF TFIDF
ADHD-C 0.61 0.48 0.121 0.32 0.37 0.132
AM-ADHD-C 0.78 0.65 0.193 0.68 0.63 0.074

SVM Doc2Vec
ADHD-C 0.61 0.58 0.152 0.65 0.65 0.032
AM-ADHD-C 0.50 0.36 0.154 0.50 0.50 0.052

SVM SBERT
ADHD-C 0.72 0.72 0.113 0.78 0.74 0.037
AM-ADHD-C 0.56 0.64 0.078 0.70 0.74 0.052

SVM TFIDF
ADHD-C 0.83 0.86 0.034 0.27 0.31 0.129
AM-ADHD-C 0.83 0.84 0.049 0.54 0.49 0.086

Table 5.6: Analysis of model stability on ADHD
The Recall and WSS columns stand for the result obtained from the initial simulation in terms
of Recall@10 and WSS@95, while the mean and standard deviation are derived to verify the

stability of Recall@10 and WSS@95 based on 15 simulations.
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Check the Stability of the Results Obtained

5.7 Stability of Estrogens

Also for Estrogens, it is considered the version without wrongly labelled records. Considering

the maximum level of Recall@10 attainable for this dataset is approximately 47%, I manage to

achieve pretty good performance.

• The best model is NB-TFIDF and the second best is LR-TFIDF with the original data.

Despite extremely similar performance, the best model combination is more stable in

terms of both Recall@10 and WSS@95.

Figure 5.7 shows the stability of NB-TFIDF on the full-abstracts version of the data.

Model
Dataset

Recall@10 WSS@95
Classifier Features Extractor Recall Mean Std WSS Mean Std

LR Doc2Vec
ES-C 0.11 0.13 0.042 0.17 0.20 0.051
AM-ES-C 0.14 0.15 0.034 0.26 0.26 0.025

LR SBERT
ES-C 0.21 0.21 0.044 0.40 0.41 0.021
AM-ES-C 0.20 0.21 0.058 0.42 0.42 0.016

LR TFIDF
ES-C 0.26 0.28 0.040 0.43 0.42 0.030
AM-ES-C 0.18 0.23 0.036 0.33 0.37 0.030

NB TFIDF
ES-C 0.29 0.28 0.037 0.44 0.43 0.013
AM-ES-C 0.16 0.24 0.035 0.40 0.35 0.017

RF Doc2Vec
ES-C 0.26 0.20 0.050 0.35 0.30 0.039
AM-ES-C 0.12 0.19 0.037 0.29 0.26 0.051

RF SBERT
ES-C 0.21 0.23 0.028 0.52 0.49 0.024
AM-ES-C 0.20 0.23 0.036 0.50 0.47 0.032

RF TFIDF
ES-C 0.25 0.24 0.042 0.41 0.38 0.035
AM-ES-C 0.22 0.21 0.021 0.35 0.34 0.030

SVM Doc2Vec
ES-C 0.09 0.12 0.021 0.18 0.15 0.056
AM-ES-C 0.12 0.13 0.025 0.25 0.24 0.023

SVM SBERT
ES-C 0.20 0.18 0.032 0.40 0.35 0.041
AM-ES-C 0.12 0.17 0.042 0.36 0.35 0.026

SVM TFIDF
ES-C 0.22 0.25 0.035 0.45 0.40 0.038
AM-ES-C 0.13 0.23 0.037 0.33 0.36 0.025

Table 5.7: Analysis of model stability on Estrogens
The Recall and WSS columns stand for the result obtained from the initial simulation in terms
of Recall@10 and WSS@95, while the mean and standard deviation are derived to verify the

stability of Recall@10 and WSS@95 based on 15 simulations.
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5.7 Stability of Estrogens

Figure 5.7: Stability of the best model of Estrogens
This figure illustrates the stability of the best model, NB-TFIDF, for the full-abstracts version

of Estrogens across 15 simulations
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6. Results Across the Simulations

Figure 6.1 shows, for each dataset, the best overall average performance across 15 simulations.

It is worth to notice that MARGOT improves the overall performance for three different set of

data, out of a total of seven.

Figure 6.1: Best overall performance of the systematic review for each dataset

Table 6.1 gives a detailed analysis of the average performance of Recall@10 and WSS@95

for each model across all datasets based on the 15 simulations. The accompanying confi-

dence intervals shed light on the stability and reliability of each model’s performance. The

model that uses LR as classifier and TFIDF as feature extractor achieves the highest Recall@10

when trained on the original data. This is the best performance across all models in terms of

Recall@10. Meanwhile, Table 6.2 aggregates the results derived from the models presented

in Table 6.1, showing their averaged outcomes (including also the ATD). This facilitates a

more straightforward comparison between the overall performance derived from AM and full-

abstracts data. On average, the use of full-abstracts is slightly better than that of AM abstracts

in terms of Recall@10 (+ 4.77%), but for WSS@95 it is exactly the same.
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Data
Model Mean Metrics Confidence Interval

Classifier Features Extractor Recall@10 WSS@95 Recall@10 WSS@95
Full-Abs.

LR Doc2Vec
0.51 0.52 (0.45, 0.58) (0.47, 0.57)

AM-Abs. 0.48 0.52 (0.42, 0.55) (0.47, 0.57)
Full-Abs.

LR SBERT
0.56 0.58 (0.50, 0.63) (0.53, 0.62)

AM-Abs. 0.53 0.60 (0.46, 0.59) (0.56, 0.64)
Full-Abs

LR TFIDF
0.65 0.58 (0.59, 0.71) (0.54, 0.63)

AM-Abs. 0.60 0.57 (0.54, 0.66) (0.52, 0.61)
Full-Abs

NB TFIDF
0.64 0.57 (0.58, 0.70) (0.52, 0.61)

AM-Abs. 0.62 0.56 (0.56, 0.68) (0.52, 0.60)
Full-Abs

RF Doc2Vec
0.55 0.56 (0.48, 0.61) (0.52, 0.60)

AM-Abs. 0.55 0.53 (0.49, 0.62) (0.48, 0.58)
Full-Abs

RF TFIDF
0.58 0.54 (0.52, 0.64) (0.50, 0.59)

AM-Abs. 0.54 0.53 (0.48, 0.59) (0.48, 0.57)
Full-Abs

RF SBERT
0.54 0.58 (0.48, 0.60) (0.54, 0.62)

AM-Abs. 0.55 0.60 (0.49, 0.62) (0.56, 0.64)
Full-Abs

SVM Doc2Vec
0.50 0.52 (0.43, 0.56) (0.47, 0.57)

AM-Abs. 0.45 0.50 (0.39, 0.51) (0.45, 0.55)
Full-Abs

SVM SBERT
0.54 0.55 (0.48, 0.61) (0.51, 0.60)

AM-Abs. 0.53 0.59 (0.47, 0.59) (0.55, 0.63)
Full-Abs

SVM TFIDF
0.64 0.55 (0.58, 0.71) (0.50, 0.60)

AM-Abs. 0.60 0.54 (0.54, 0.66) (0.50, 0.58)

Table 6.1: Performance metrics of the model combinations
This table is based on 15 simulations. It differentiates between ’Full-Abs’ (full-abstracts data)

and ’AM-Abs’ (AM abstracts data). Metrics include the mean values of Recall@10 and
WSS@95, alongside their respective confidence intervals for assessing stability and reliability.

Data Recall@10 WSS@95 ATD.
Original 0.571 0.55 118.14

MARGOT 0.545 0.55 125.07

Table 6.2: Overall average of among models
This table shows the overall average among all models calculated from the 15 simulations, in

terms of Recall, WSS@95 and ATD.

The minimal difference between AM abstracts and full-text abstracts, underscores their

comparable efficacy when employed in systematic reviews using active learning. Although

the information is approximately halved, MARGOT demonstrates its ability to retain only the

relevant content. In addition, feature extractors like SBERT can only process a maximum of

number of tokens (512) [46], thereby truncating any additional information. MARGOT mit-

igates this limitation by preserving the most pertinent information. Moreover, these findings

demonstrate that the differences in performance between the models highlight the importance
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Results Across the Simulations

of selecting the right combination of classifier and feature extractors and, this choice, depends

primarily on the data at hand. The Figures below show a detailed graphical overview of the

obtained outcomes.

Figure 6.2: Average Recall@10 for each dataset across the 15 simulations

Figure 6.3: Average Recall@10 of each model for each dataset across the 15 simulations.
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Figure 6.4: Average Recall@10 for each model of each dataset across the 15 simulations

Figure 6.5: Average WSS@95 for each dataset across the 15 simulations

Figure 6.6: Average WSS@95 of each model for each dataset across the 15 simulations
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Figure 6.7: Average WSS@95 for each model of each dataset across the 15 simulations
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6.1 Wilcoxon Signed-Rank Test

6.1 Wilcoxon Signed-Rank Test

The Wilcoxon Signed-Rank Test is applied to the Recall@10 values from the MARGOT data

and the Recall@10 values from the original data, gathered over 15 simulations. The test is

equally applied to the WSS@95.

A key assumption underlying this test is that the differences between paired observations are

symmetrically distributed [54].

For the Recall@10 paired samples between MARGOT and the original data, the results are:

V = 115680, p-value < 2.2e-16 alternative hypothesis: true location shift

is not equal to 0

The V value represents the sum of the ranks of the positive differences between paired observa-

tions [57]. The further the V-value is from zero, the greater the divergence between the medians

[54]. In this case, the p-value is essentially zero, thereby providing a strong evidence against the

null hypothesis. In the context of the Wilcoxon Signed-Rank Test, the null hypothesis typically

posits that the median difference between paired observations is zero, implying no significant

distinction between the samples [58]. Therefore, the results suggest a significant median differ-

ence, or ”location shift,” between the two samples that is not equal to zero.

For the paired WSS@95 samples, the results were: V = 263781, p-value = 0.3058 alternative

hypothesis: true location shift is not equal to 0

The comparatively high p-value in this test indicates that the distinction between the WSS@95

samples — whether using MARGOT or not — is not statistically meaningful, at least not at the

conventional alpha level of 0.05. In conclusion, even if the alternative hypothesis for both tests

is the same, the main distinctions lie in the data being tested and the results obtained. In sum-

mary, the first Wilcoxon Signed-Rank Test with the Recall@10 samples provides very strong

evidence that there is a significant difference between the paired samples whereas the second

test with the WSS@95 samples doesn’t provide enough evidence to say there’s a significant

difference between the paired samples.
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7. Discussion

The percentage of relevant records, as well as the size of the data, have no influence on the

systematic reviews. On the other hand, the presence or absence of abstracts distinctly affected

the outcomes. For instance, while Opioids exhibits enhanced performance upon eliminating

missing abstracts, PTSD displays an opposite trend. This discrepancy may be topic-related as

for certain topics titles may be more informative than abstracts and vice versa. Extension of

this study could be consider also different topics, domains and delve into the missingness of

abstracts. This dissertation has also shown that even with approximately halved data, the results

remain commendably close to their full-text counterparts. Therefore, a major influence in the

process of systematic review seems to be the representativeness of the text. That is, the content

present in the text and the actual relevance and irrelevance of the records in the data. MAR-

GOT have proven to be particularly good at capturing the most important information in the

text. This result can have promising implications for large-scale data processing in systematic

reviews. Hence, it would be beneficial to explore and evaluate the merits of AM processing on

longer texts beyond traditional abstracts. To conclude, future research should focus on lever-

aging richer datasets to improve performance and further investigate the potential broad-scale

replacement of traditional abstracts with their AM counterpart.
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8. Conclusion

Systematic reviews play a key role in synthesising a large amount of literature. Through the

integration of Argument Mining into systematic reviews using AL, the aim is to refine the

screening process across different scenarios. This research analyses how the AM text affects

the dynamics of ASReview LAB, an AL tool designed for systematic reviews. Furthermore, I

investigated the potential of AM abstracts to replace traditional ones across various topics and

domains, offering a multi-faceted perspective to this study. Argument Mining recognises the

challenges of information loss and missing content, reinforcing the importance of optimal text

representation and data quality. The results demonstrated that the inclusion of AM abstracts

can positively influence AL systematic reviews, as they improved the overall performance in

several scenarios. In a general overview, as Table 6.2 shows, full-text abstracts still maintain a

slight edge. Yet, when directly compared across datasets, AM data outperform the original ones

in three out of seven datasets. Thus, neither method dominates consistently in efficacy.

These findings emphasise the effectiveness of MARGOT in distilling pertinent information from

abstracts. Also, considering that the content of each abstracts is approximately halved, remark-

able results are obtained. It is worth observing that there’s a statistically significant difference

between the Recall@10 values of MARGOT and the original data. In contrast, there is no sig-

nificant difference in terms of WSS@95 between the two pairs of samples. These distinctions

further shed light on the different impacts of using MARGOT versus traditional data in different

contexts.

Additionally, the performance of a systematic review appears to be influenced by multiple fac-

tors, from data characteristics to technical challenges, including missing data or inconsistent

labels, as highlighted in [33]. While longer texts might introduce more noise, the observa-

tions made indicate that full-abstracts aren’t necessarily always superior to their AM counter-

parts. Consequently, future performance gains are likely to be based on the acquisition of richer

datasets, rather than trying to optimise them to reduce noise. I also explored the erroneous

labelling of relevant records. Noticeable improvements were observed when removing misla-
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Conclusion

belled records from the data that had at least one. The impact of missing abstract fields was also

explored: while PTSD faltered in the absence of missing abstracts, Opioids thrived. This di-

vergence could be attributed to the inherent domain differences: abstracts may hold paramount

significance in PTSD, whereas in Opioids, the titles might be of greater relevance. This finding

highlights that, the complexities of labelling, the correlation between relevant study as well as

text representation play a determining role in the reliability of the data. An added advantage of

AM abstracts lies in their lower memory requirements, making them more suitable for certain

simulations. In this specific context, integrating SBERT with the AM abstract vector within the

32 GB memory was feasible, whereas this was not achievable with the full-abstracts as, having

≈ 2 GB of memory for loading the vector and SBERT, caused some simulations to fail. This

proves MARGOT’s value, especially when working with BERT-based models that have token

limitations. In conclusion, it would be an oversimplification to declare a definitive ”best” model

as the models are highly data-dependent and, vice versa, the data are highly model-dependent.

Moreover, the merit of AM abstracts is not confined to performance metrics alone, but present

practical advantages. Their streamlined processing and scalability make them a viable option

for researchers dealing with long text data. Hence, AM abstracts can potentially offer less

dependence on full-text sources and simplify information management. Even if the universal

replacement of full-text abstracts with AM abstracts isn’t imminent, MARGOT has proven its

effectiveness in certain scenarios, making the systematic review process more efficient.
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