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Abstract

Estimating accurate NOx emissions is essential to monitor pollution and health condition
of a turbo machine. We use a virtual sensor to correctly estimate the particle pollution
value in real-time, leveraging modern machine learning approaches. It is well known
that machine learning heavily relies on data, but real-world applications encounter data-
related issues. In this work, we address the cited business use case scenario where limited
data hamper an optimal regression quality. We investigate the application of time series
generative models, with a particular emphasis on evaluating their performance using
a comprehensive set of quantitative and qualitative metrics. We also conduct a critical
analysis of the evaluation metrics commonly employed in the literature for validating and
assessing the effectiveness of generative models. The analysis highlights the limitations
of these metrics, as they do not take into account the temporal dependencies present in
time series data and rely heavily on the specific implementation of the evaluation model.
Finally, task-specific metrics are proposed to assess the effectiveness of generated data
in supporting an industrial application. By delving into those pillars, this work aims
to contribute to the advancement of knowledge on temporal synthetic data generation,

showing how it can impact environmental care.
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Chapter 1

Introduction

1.1 Business Use Case: turbo machines and gas turbines

This thesis represents the culmination of my internship experience at Baker Hughes, a
cutting-edge energy technology firm specializing in the field of turbomachinery. Simply
put, a turbomachine is a mechanical device that transfers energy between a fluid (such as
gas or liquid) and a rotor. Baker Hughes is dedicated to producing turbine technologies
for mechanical drive and power generation applications and we design a wide range of
gas turbines for oil and gas and other industrial applications. A gas turbine is a type of
internal combustion engine that converts the energy from the combustion of fuel into me-
chanical energy. Gas turbines typically consist of three main components: a compressor,
a combustor, and a turbine. The compressor draws in and compresses air, which is then
mixed with fuel in the combustor and ignited. The hot combustion gases expand through
the turbine, causing it to rotate and generate mechanical power. Gas turbines rely on
a multitude of sensors, numbering in the thousands, to enable robust monitoring and
precise control of their operational parameters. Some common types of sensors found
in gas turbines include temperature sensors, pressure sensors, flow sensors, vibration

sensors, speed sensors, gas composition sensors.

1.2 The issue of NOx emissions: CEMS and PEMS

Numerous modeling techniques have been explored for virtual sensing, For instance,

Korpela et al. [22] proposes a comparison study including linear (ARX and ARMAX)
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CHAPTER 1. INTRODUCTION

and nonlinear (NN and SVR) modelling approaches. Instead, Lv et al. [26] proposes a
novel least squares support vector machine (LSSVM)-based ensemble learning paradigm
to predict NOx emission of a coal-fired boiler using real operation data. Among these,
NNs have emerged as a highly effective approach for predictive emission monitoring
systems, demonstrating strong capabilities for estimating pollutants such as nitrogen ox-
ides (NOx), as stated in Radl [28]. Recurrent NNs, which can capture dynamic tempo-
ral behavior, have been specifically recommended for estimating carbon dioxide (CO2)
emissions in Ciri¢ et al. [39], demonstrating their efficiency for air quality estimation
applications that require modeling time-series data. Long short-term memory (LSTM)
neural networks (introduced in Hochreiter and Schmidhuber [17]) have emerged as a
promising architecture for estimating industrial emissions, as demonstrated in Xie et al.

[34], Yang et al. [36].

1.3 Our proposal: Time Series Generation

Accurate monitoring of NOx emissions is essential in our business case, and this poses a
significant challenge in an industrial setting, where dealing with small datasets is very
common. The performance of our initial regression model based on Long Short-Term
Memory (LSTM) was suboptimal according to various regression metrics, as discussed in
Section 4.1. After experimenting with different model architectures and hyperparameter
configurations, we determined the underperformance was likely due to limitations in the
training data rather than the model itself. Specifically, we hypothesize that the available
data may have been insufficient in quantity, did not encompass all relevant operating
conditions of the machine. In general, large datasets are an important requirement to
achieve high performance, accuracy, and generalization for any machine learning task,
such as prediction or anomaly detection. While further data collection focusing on un-
derrepresented conditions could help address the potential data issues limiting model
performance, obtaining additional real-world data is currently infeasible within the spe-
cific context of this project due to constraints in cost and time. Therefore, our proposed
solution to get more data is to generate synthetic data, that, according to our expecta-
tion, should increase the generalization ability of trained models by reducing overfitting.

In this work, we tested three generative approaches, Gaussian Mixture modeling (GM)

2



CHAPTER 1. INTRODUCTION

(Reynolds [29]), Variational Autoencoders (VAEs) (Kingma and Welling [21]), Genera-
tive Adversarial Networks (GANs) (Goodfellow et al. [13]), and we compared them to a
simple baseline model, which creates synthetic data adding random noise to the mean
sensor value. We conduct experiments on two datasets - one commonly used in previ-
ous research, as described in Section 3.1, and another from our industrial application,
which we also characterize in Section 3.1. We further investigate the metrics generally
applied in research for evaluating time series generation (as surveyed in Yadav et al.
[35], Arnout et al. [1]), with a focus on their explanatory power regarding the genera-
tion model. Specifically, for instance, we examine whether these metrics can elucidate
the model’s capacity to produce coherent samples over time or generate samples within
the appropriate value range. Moreover, we demonstrate that these metrics can be inade-
quate for evaluating the overall performance of our models, as our investigation revealed
that some of these metrics, such as visual and statistical metrics, do not take into account
the temporal dependencies present in time series data. On the other hand, other metrics,
based on the predictions of classification and regression models, may rely on the specific
implementation of the evaluation model. To address these limitations, we introduced
task-specific metrics that assess whether the generated data can effectively support our
industrial task and provide insights into how time series generation models can meet the
needs of real-world applications.

Thus, the main contributions of this work are two-fold. First, it demonstrates the po-
tential of time series generation models for practical industrial applications. Second, it
highlights the importance of using appropriate evaluation metrics when assessing time
series models. Determining suitable evaluation metrics poses intrinsic challenges due to
the temporal nature of time series data. Past literature has not extensively examined
evaluation methodologies for these models. The inherent difficulties in evaluating time
series generation models are discussed in more detail in the following paragraph, as

evaluating them presents challenges given their characteristics of time series data.

1.4 Challenges

As stated in Brophy et al. [2], unlike static data, as images for instance, research on gen-

erative models for time series is still in an embryonic stage and dealing with time series
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CHAPTER 1. INTRODUCTION

implies the additional issue of properly modeling the variables temporal evolution under
observation. To model successfully time-series data means that a model must, not only
capture the datasets features distributions within each time-point but also, it should be
able to capture the complex dynamics of those features across time. We must not for-
get also that each time sequence as a variable length associated. Capturing the intricate
temporal dependencies and ensuring scalability and efficiency are crucial challenges.

Furthermore, another big deal is the evaluation of the fake samples. While visual in-
spection can often suffice for static data like images, it proves inadequate for time series
analysis. Even in the case of univariate time series, it is difficult to determine if the
generated samples accurately represent the real data distribution by solely examining
the plots and the common metrics. This difficulty further intensifies when dealing with

multivariate time series.

1.4.1 Goals and Motivation: Addressing Privacy Risks

In addition to the challenges posed by privacy concerns and the scarcity of large and
balanced time series datasets, there is another important motivation driving the use of
generative models for time series: they might mitigate privacy risks associated with sen-
sitive time series data. Accessing datasets in the time series domain is often challenging
due to privacy concerns and the difficulty of obtaining sufficiently large and balanced
datasets, as highlighted in Brophy et al. [2]. To address these challenges, synthetic data
generation has gained significant attention as it offers an effective solution for preserving
data privacy while maintaining key statistical properties. In this context, time series gen-
erative models play a crucial role by generating differentially private datasets, thereby
eliminating the risk of linkage between the source and generated data. A wide range of
methods have been used to asses the privacy risk associated with synthetic data. Choi
et al. [6] performed tests for presence disclosure and attribute disclosure. In contrast,
other studies (Choi et al. [6], Esteban et al. [11]) utilized a three-sample test, compar-
ing the training, test, and synthetic data, to identify potential overfitting of the synthetic

data to the training data.



CHAPTER 1. INTRODUCTION

1.5 Outline

Chapter 2 presents the theoretical background required to understand and conduct this
thesis, including a discussion of generative models and evaluation metrics. Chapter 3 de-
scribes the datasets and implementation details of the model used in this study. Chapter
4 presents and discusses the results obtained in this thesis. Finally, Chapter 5 concludes
the research by summarizing the key findings and offering suggestions for further im-

provements and future work.



Chapter 2

Background

2.1 Time Series Generation: problem formulation

The data we are analyzing is collected from multiple sensors attached to machines on a
manufacturing production line. These sensors capture readings over time from various
variables such as temperature, vibration, pressure and speed. As the measurements are
recorded sequentially at intervals during ongoing machine operations, we have a mul-
tivariate time series dataset. A multivariate time series is a time series that consists of
multiple variables observed simultaneously over discrete points in time. In our case, each
time point consists of a vector of sensor values - one for each measured variable.

Let’s assume we have a set of real time series data X = { X },c;. Each X; is a multivariate
time series X; = {z; :}jcster Where i indexes the individual time series, j indexes the
variable measured and ¢ indexes the time step. Each z; ;, is a bi-dimensional vector in
RP*T with D € N, T € R.

Assuming that the real data follow from an underlying distribution p,..;, the generative
model task is to learn a probability distribution ps,,., which approximates p,.,. Then,

Psynth 1S Used to generate a new dataset of fake time series, namely S = {S;},c; with

S; = {Si,j,t}jeJ,tET-

2.2 A Brief Background of Generative Models

Historically, time series generation has roots in regression and initially focused on fore-

casting individual time steps rather than generating entire sequences. Autoregressive
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CHAPTER 2. BACKGROUND

(AR) models are commonly used for time series forecasting as they consider a time series
to be correlated with its own lagged values. Specifically, simple AR models assume the
output variable is linearly regressed on its own previous values. While AR models were
widely adopted in the past, they are inherently deterministic in that future states are cal-
culated deterministically based on past values, without accounting for any randomness.
More precisely, an AR model predicts the current value based on a linear combination
of the previous n timesteps’ values, plus an error term. This error term represents the
unpredictable or stochastic part of the time series and allows the model to incorporate
some randomness. However, the random variations are assumed to be independent and
identically distributed over time.

In the context of time series generation, two main families of approaches exist: statisti-
cal methods and deep learning methods (Iwana and Uchida [18]). Statistical methods
explicitly model the probability distribution and dynamics of time series, often making
strong assumptions about their conditional distribution. On the other hand, deep learn-
ing methods, approximate the probability distribution without relying on strong prior
assumptions (Gatta et al. [12]). Neural networks, in general, have the advantage of be-
ing universal approximators and can learn various types of distributions, as stated in Lu
and Lu [25]. For this reason, neural networks serve as a strong foundation for building
more advanced generative models.

Various deep learning generative models have been used for synthetic data generation,
from variational autoencoders (VAEs) and recurrent neural network (RNN) variants to
GAN:Ss, all of which have their pros and cons (Brophy et al. [3]).

In this study, we explore three models for time series generation: Gaussian Mixture (sta-
tistical model), TimeGAN, and TimeVAE (deep learning models). Brief descriptions of

these models are provided in Subsections 2.2.1, 2.2.2, and 2.2.3.

2.2.1 Gaussian Mixture Models

Gaussian Mixture Models (GMMs) are statistical models that represents a dataset as a
combination of Gaussian distributions and allow to generate synthetic data by sampling
from the learned distribution. This is achieved by randomly selecting a component based
on the mixing weights and sampling from the corresponding Gaussian distribution. It

is important to note that GMMs make the assumption that a mixture of Gaussians can
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CHAPTER 2. BACKGROUND

effectively represent the underlying data and this assumption may not hold true for many
real-world datasets, as they often have more complex distributions. The choice of the
number of Gaussian components is also an important hyperparameter that can greatly
affect model performance if not selected appropriately based on the data. Typically, the
optimal number of components is determined through empirical evaluation of model

likelihood on a validation set for different numbers of Gaussians.

2.2.2 Generative Adversarial Networks

GANSs are networks consisting of a generator and a discriminator which compete with
each other in a min-max game in order to learn. The discriminator tries to separate real
data from fake data and the generator tries to fool the discriminator by creating increas-
ingly realistic synthetic data. By competing against each other they both try to improve
and this can result in an optimised generator that can create very realistic looking syn-
thetic data. The discriminator has to provide the probability that a real/fake sample
belongs to the real dataset, the generator really learns an approximation of the original
distribution (Goodfellow et al. [13]).

There exist numerous variations of GANs, which vary in terms of network structures, loss
functions, and specific design choices. Among these frameworks, the authors of Esteban
et al. [10] propose a Recurrent GAN (RGAN) and Recurrent Conditional GAN (RCGAN)
to produce realistic real-valued multi-dimensional time series, with an emphasis on their
application to medical data. RGANs make use of recurrent neural networks in the gener-
ator and the discriminator. In the case of RCGANSs, both of these RNNs are conditioned
on auxiliary information. Authors of Mogren [27] propose C-RNN-GAN, a generative
adversarial model that works on continuous sequential data, and apply it by training
it on a collection of classical music. It is noteworthy to citet also Srinivasan and Knot-
tenbelt [30], a new kind of time series-based GAN, namely the Time-series Transformer
GAN, which combine adversarial training with the cutting-edge idea of transformer net-
works. Instead, Sumiya et al. [31] proposes the Noise Reduction GAN, focused on noise
reduction for medical signals, a CNN GAN with a penalization term in the Generator
loss which forces the generated sample to be closer to the original data than the stan-
dard GAN. Another work is Hazra and Byun [16], the Synthetic biomedical Signals GAN,

which combines CNN in the Discriminator and RNN in the Generator. Another inter-
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CHAPTER 2. BACKGROUND

esting work is Jeha et al. [19] which proposes PSA-GAN, a GAN-based approach that
exploits self-attention mechanisms to identify temporal patterns in the series.

For all of the benefits that come with GANs, they are not without their own downsides,
as described in Brophy et al. [2]. One of the significant challenges of GANs lies in their
inherent instability, which makes them difficult to train. GAN models suffer from issues
such as non-convergence, diminishing/vanishing gradients, and mode collapse. A non-
converging model does not stabilize and continuously oscillates, causing it to diverge.
Diminishing gradients prevent the generator from learning anything, as the discrimina-
tor becomes too successful. Mode collapse is when the generator collapses, producing

only uniform samples with little to no variety, as described in Brophy et al. [3]

2.2.2.1 TimeGAN

Reconstructions Classifications Unsupervised

eSx[L, X €0,1] x... Loss

Learn distribution
ﬁ(S, Xl:T) directly

Supervised
Loss

Learn conditionals

P(XeS, Xiz-1)

Reconstruction
Real Sequences Random Vectors Loss

eSxIL,X € Zs x 1, 2

Provide Latent
Embedding Space

Figure 2.1: Block diagram of component functions of TimeGAN model. Reprinted from Yoon
et al.

A good generative model for time-series data should preserve temporal dynamics, in
the sense that new sequences respect the original relationships between variables across
time. TimeGAN model (Yoon et al. [38]) was proposed as a GAN based framework that
is able to generate realistic time-series data. In addition to the unsupervised adversarial
loss on both real and synthetic sequences, it introduces a supervised loss using the origi-

nal data as supervision, thereby explicitly encouraging the model to capture the stepwise
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CHAPTER 2. BACKGROUND

conditional distributions in the data. Moreover, it introduces an embedding network to
provide a reversible mapping between features and latent representations, thereby re-
ducing the high-dimensionality of the adversarial learning space. Figure 2.1 depicts the
key components of the TimeGAN model. It shows real time series sequences used to train
the model, random vectors that serve as input to the generator, classifications produced
by the discriminator, and reconstructed generator outputs. The figure also illustrates the
losses related to the inputs, showing the unsupervised loss on discriminator classifica-
tions, supervised loss on embedded data, and reconstruction loss on the reconstructed
outputs.

The GAN has a three phase training process. First, the autoencoder, comprising the
Encoder and Decoder, is pre-trained on the provided sequential data to optimize recon-
struction. Next, the Generator and Discriminator are trained together to capture the
temporal behavior and patterns in the historical data, with the Generator trying to fool
the Discriminator. Finally, all four components - the autoencoder, Generator, and Dis-

criminator - are jointly trained.

2.2.3 Variational Autoencoder

A Variational Autoencoder (VAE) (Kingma and Welling [20]) learns to encode an input
data into a lower-dimensional latent representation. Unlike traditional auto-encoders,
the encoder in a VAE outputs the distribution of the embedding instead of a point es-
timate. Let us consider some dataset X = {2}Y  consisting of N i.i.d. samples of
some continuous or discrete variable x. The VAE presented by Kingma and Welling [21]
assumes that the data are generated by some random process, involving an unobserved
continuous random variable z. The process consists of two steps: (1) a value z( is
generated from some prior distribution py(z), (2) a value 2 is generated from some
conditional distribution py(x|z). The encoder models the probabilistic posterior distri-
bution ¢y(z|x), while the decoder models the conditional likelihood py(z|z). The VAE
is trained to minimize the reconstruction error between the input data and the recon-
structed output while also maximizing the likelihood of the learned probability distribu-
tion. As stated in Brophy et al. [3], VAEs use learned approximate inference to produce
synthetic samples efficiently. An inference problem is simply using the value of some

variables or probability distributions to predict other values or probability distributions.
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CHAPTER 2. BACKGROUND

Approximate inference is when we seek to approximate a true distribution, say p(y|z),
by seeking an approximate distribution ¢(y|x). However, this network approximation
conducted by VAEs means that their generated data quality can be degraded compared

to samples generated by GANs.

2.2.3.1 TimeVAE

Encoder (Base) ] Decoder (Base)

o A
k

N(u,62) —» 2

multi-variate  (sample)
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>
1]
ConvlD
Y
ConvlD
Flatten
Y
Dense
\ )
Dense
Reshape
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©
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=
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—
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|Dense| |Dense|

Figure 2.2: Block diagram of component functions of TimeVAE model. Reprinted from Desai
et al.

Figure 2.2 shows a block diagram of component functions of TimeVAE model (Desai
et al.). The encoder takes input sequences X and applies a series of convolutional lay-
ers, utilizing ReLU activation as used by the authors of TimeVAE, to extract features
and reduce dimensionality. Next, the data are flattened before passing through a fully-
connected (dense) linear layer. The outputs are fed into two dense layers the produce
two vectors of means and variances ;. and o to parameterize the latent space. If m is
the number of chosen latent dimensions, representing dimensions of the multi-variate
Gaussian, then this last dense layer has 2m number of neurons. The size of latent space
m is a key model hyper-parameter.

In the generation phase, a vector Z of length m is sampled from a learned multivariate
Gaussian distribution and then fed into the decoder, which processes it through a fully
connected linear layer. Then the data are reshaped into 3-dimensional array before pass-
ing through a series of transposed convolutional layers with ReLU activation. Finally, the
data is forwarded through a time-distributed fully connected layer with dimensions de-
signed to match the shape of the original signal X. The purpose of the time-distributed
layer is to independently apply a dense layer to each time step of the output generated
by the convolutional layers. This mechanism ensures that the previous layer returns se-

quences, preserving the temporal information of the data.
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CHAPTER 2. BACKGROUND

2.3 Evaluation

It is important to note that within the research community, there is currently no consen-
sus on standardized evaluation metrics for assessing the quality of generated time series
data. To assess the effectiveness of our proposed models in generating synthetic time
series data, we employed various techniques commonly used in the literature (see Yadav
et al. [35], Arnout et al. [1]). These techniques involve both standard metrics that are
used for other tasks, as well as ad hoc metrics that have been specifically developed for

the time series generation task.

2.3.1 Standard metrics

To measure the dissimilarity between the probability distribution of generated data and
that of the real data, we employ a statistical measure known as the Maximum Mean
Discrepancy (MMD). This kernel-based test, introduced in the referenced paper Gretton
et al. [15] can be used as a loss/cost function in generative models as shown in Dziu-
gaite et al. [9] For a comprehensive definition of this metric, we refer the reader to the
original work in Gretton et al. [15] In addition, visual evaluation techniques were also
employed. Given that we are dealing with multivariate time series data, we utilized Prin-
cipal Component Analysis (PCA) (Bryant and Yarnold [4]) and t-Distributed Stochastic
Neighbor Embedding (t-SNE) (van der Maaten and Hinton [33]) to reduce the data into
two dimensions. This reduction allows us to plot the data in a two-dimensional space,
facilitating visual exploration and interpretation. Unlike the MMD, which provides a nu-
meric evaluation of similarity, these techniques allow for a more intuitive understanding

of the similarity between the two distributions.

2.3.2 Ad-hoc metrics

The work by Esteban et al. [10] introduced two evaluation techniques, namely Train
on Synthetic Test on Real (TSTR) and Train on Real Test on Synthetic (TRTS). These
approaches involve training a regression model using synthetic data generated by the
model and evaluating its performance on real data, as well as training the same regres-

sion model on real data and assessing its performance on synthetic data. The authors in
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Yoon et al. [38] devised a discriminative score (DS) by training a post-hoc time-series
classification model to differentiate between sequences from the original and generated
datasets. Additionally, they computed a predictive score (PS) by training a post-hoc
sequence-prediction model on the generated data and evaluating its ability to predict
next-step temporal vectors for each input sequence in the real data. It is important to
note that lower values of these scores (TRTS, TSTR, DS, and PS) indicate a higher level
of similarity between real and synthetic data, as they are directly related to the amount

of error the classification/regression models produce.

2.3.3 Regression metrics

We use four metrics to evaluate the performance of regression models: Mean Squared
Error (MSE), Mean Absolute Percentage Error (MAPE), 90th percentile error value, and
Maximum error value (which we will refer to as Max Error). The MSE measures the aver-
age of the squared errors between predicted and actual values. If Y is an n-dimensional
vector of observed values and Y is an n-dimensional vector of predicted values, then the

Mean Squared Error (MSE) is computed as:
MSE(Y. ) = -3~ 1o

The MAPE measures the average size of errors as a percentage, showing the average
percentage difference between forecasts and actual outcomes. The MAPE is computed

as:
. ] —
MAPE(Y,Y) = =)

n

Y- Y,
Y

1=

The 90th percentile error value (also called p90) represents the error threshold below
which 90% of predictions fall. This provides insight into the tail of the error distribution.
The Maximum error value is the single largest deviation observed across all predictions.
While not a robust standalone metric, it offers context regarding the scale of potential
outliers. Collectively, these metrics evaluate the model from multiple angles - how close
predictions align with actuals on average (MSE, MAPE), where most errors tend to lie
(p90), and the degree of potential outliers (maximum error). Lower values across all

metrics demonstrate enhanced regression performance.
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Chapter 3

Methodology

In the upcoming paragraphs, we discuss the datasets used for our experiments and the
preprocessing phase in Sections 3.1, 3.2. Furthermore, we provide insights into the
implementation details of both the regression model and generative models, as outlined

in Section 3.3. All the experiments have been done with a GPU Tesla V100-SXM2-32GB.

3.1 Datasets description

We conduct experiments on two datasets to evaluate the effectiveness of our proposed
model. The first dataset, the UCI Appliances Energy Prediction Dataset (reference at
Candanedo [5]), which we will refer to as the “Energy Dataset”, is a well-established
resource for constructing regression models that accurately predict the energy usage of
appliances in low-energy buildings. It has gained widespread recognition as a benchmark
dataset for conducting time series generation experiments. The dataset bears significant
resemblance to our own case, as it provides comprehensive measurements of essential
variables like temperatures and pressures.

The second dataset, the “NOx dataset”, was obtained from an industrial setting and con-
tains data from 35 sensors which are monitoring various machine-specific information,
similar to the features in the Energy dataset, but with the addition of emissions values.
Nevertheless, due to intellectual property concerns, we cannot provide further techni-
cal details on our industrial dataset, whose features will be named z, ..., 234, and all
values have been appropriately normalized. The dataset contains 300, 000 sensor value

instances collected over two years from an operating gas turbine.
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Feature Mean Standard Deviation

T 0.590 0.077
T 0.512 0.105
T 0.403 0.154
Z10 0.194 0.085

Table 3.1: Mean and Standard Deviation of Normalized Features w1, zg, xs, 19 in the NOx
Dataset.

x0 x1

e
n

I
S

Feature Value
o
[
Feature Value

0.4

o
N

0.2 4

°
N

T T T T T T 001 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Timestamp Timestamp

x2 x3
0.8 1

o
IS)

o
n
o

0.7 1

<
'S
[l

I

IS

1<)
|

0.6 1

Feature Value
Feature Value

e
w
v

0.5 1

0 20 40 60 80 100 0 20 40 60 80 100
Timestamp Timestamp

Figure 3.1: Temporal Variation of the First Four Sensors in the Energy Dataset over the Previous
100 Time Steps (Plotted on Normalized Data).

3.2 Preprocessing

For the NOx dataset, we resample the samples to have a uniform one-minute interval
between recordings. To identify the most influential features for our model, we employ
the Boruta algorithm, which facilitates feature selection. To gain a comprehensive un-
derstanding of this algorithm, we refer interested readers to the original work in Kursa
and Rudnicki [23]. For all the features in the original dataset, it creates random copies
of them (called shadow features) and train regression models based on this extended
dataset. To understand the importance of a feature, the algorithm compares it to all
the generated shadow features. Only features that are statistically more important than
these synthetic features are retained as they contribute more to model performance. In
our study, we retained 16 out of the original 35 sensors in the dataset. We do not per-

form any of these preprocessing operations on the Energy dataset, as it is a benchmark
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Figure 3.2: Temporal Variation of the First Four Sensors in the NOx Dataset over the Previous
100 Time Steps (Plotted on Normalized Data).

literature dataset that was already prepared and suitable for our experiments.

The two-dimensional datasets are reshaped into three-dimensional data by creating over-
lapping windows of n timestamps. The value of n serves as a hyper-parameter that ne-
cessitates tuning in order to identify the most suitable value. In our specific case, we
have determined that a window size of 24 timestamps provides the desired outcome.
The hold out approach was used to split the data into 80% train and 20% test sets. The
training and test data undergo separate scaling processes using a MinMaxScaler to trans-

form the data to a range of O to 1.

3.3 Models: implementation details

We explore four different models for generating synthetic time series data: Gaussian
mixture modeling, GANs, VAEs and a simple baseline model. In our exploration, we
specifically consider two prominent state-of-the-art generative models for time series
data, namely TimeVAE (Desai et al. [7]) and TimeGAN (Yoon et al. [38]). We utilized
the architecture provided by the original authors of TimeGAN, which can be found in
Yoon [37], to develop our implementation as a starting point for our implementation,
making necessary adaptations and improvements to enhance its functionality and perfor-

mance. We provide an overview of the implementation details for the models considered
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in sections 3.3.1 to 3.3.4.

3.3.1 Baseline

The simple baseline model provides a comparison point for evaluating the performance
of the more complex models. It generates synthetic time series data by adding a random
noise term to the mean of the sensor value in the training data. The noise term is added
with a probability of 10%, and has a value between 0 and the standard deviation of the
sensor measurement for all the training timestamps.

The introduction of this baseline model is necessary due to the prevalent practice in
the literature of comparing different complex architectures without a reference point.
For instance, studies like Yoon et al. [38] compare their architecture with RCGAN (Es-
teban et al. [10]), C-RNN-GAN (Mogren [27]), RNNs trained with teacher-forcing (T-
Forcing) (Graves [14]), professor-forcing (Lamb et al. [24]), WaveNet (van den Oord
et al. [32]), and its GAN counterpart WaveGAN (Donahue et al. [8]). Similarly, the au-
thors of TimeVAE (Desai et al. [7]) compare their architecture against TimeGAN, RNNs
trained with teacher-forcing (T-Forcing), and RCGAN. However, the absence of a baseline
model in these comparisons leaves the evaluation incomplete.

Regarding the definition of the baseline model, we establish it in a specific manner to
ensure that it generates examples that conform to the desired distribution but do not ex-
hibit time correlation. If the baseline model performs favorably based on the evaluation
metrics, it raises concerns that the metrics may not be effectively capturing the desired
characteristics of the time series data. In such a scenario, it indicates a potential limi-
tation or flaw in the selected metrics, as they are unable to distinguish between models
with and without time correlation accurately. Conversely, if the metrics indicate poor
performance for the baseline model, it suggests that the evaluation measures are suc-
cessful in identifying the absence of time correlation. This outcome instills confidence
in the metrics’ ability to evaluate the desired characteristics and differentiate between

models that exhibit time correlation and those that do not.

3.3.2 Gaussian Mixture

To begin, the model employs Principal Component Analysis (PCA) to reduce the dimen-

sionality of the training data. This process involves representing the data using the top
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two principal components. To determine the optimal number of Gaussian to represent
data, a grid search is performed, exploring different configurations. Once the ideal num-
ber is identified, the model proceeds to train the Gaussian Mixture Model (GMM) using
the PCA data, specifically incorporating 30 distributions. The implementation of the
model leverages the Scikit-learn library, specifically the GaussianMixture class, and is
fitted with the default configuration of the hyperparameters. For more information, you
can refer to the documentation provided by the Scikit-learn library. The trained GMM is
then used to randomly generate new synthetic sample points that have similar properties

and cluster patterns to the original training data.

3.3.3 TimeVAE

The Variational Autoencoder (VAE) minimizes the Evidence Lower Bound (ELBO) loss
function, which comprises two components. First, it includes the negative log-likelihood
of the data given the latent variable z, which is sampled from the approximate posterior
distribution ¢4(z|z) (explained in Section 2.2.3). Second, it incorporates the Kullback-
Leibler (KL) Divergence between the encoded latent space distribution and the prior dis-
tribution py(x|z) (described in Section 2.2.3). The negative log-likelihood term measures
the reconstruction error between the input data and the reconstructed output, while the
KL-Divergence term encourages the learned latent representation to be close to the prior
distribution. In summary, the VAE is trained to minimize the reconstruction error and
maximize the likelihood of the learned probability distribution by optimizing the ELBO
loss function.

A grid search was conducted to identify the optimal hyperparameters for implementing
the TimeVAE model. The hyperparameters tuned include latent space dimension, batch
size, early stop patience, number of training epochs, and the reconstruction weight hy-
perparameter. The reconstruction weight controls the weighting of the reconstruction
loss in the ELBO loss function. As explained previously, the ELBO loss is the sum of
the reconstruction loss and the divergence loss. By tuning the reconstruction weight hy-
perparameter, we can optimize the balance between reconstructing the input data and
learning the latent space regularization in the TimeVAE model. The values of the hy-
perparameter that resulted in the best TimeVAE model performance set are reported in

Table 3.2.
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Hyperparameter Value
Latent dimension 8
Reconstruction weight 3.0

Number of training epochs 1000
Early stopping patience 10
Batch size 256

Table 3.2: Hyperparameters of the TimeVAE model.

3.3.4 TimeGAN

The Generator, Discriminator, Encoder and Decoder components are implemented as
deep recurrent neural networks with multiple LSTM layers to model temporal behavior.
Specifically, each network consist of 3 LSTM layers followed by a dense layer. In the
Generator, the final LSTM layer is connected to a dense sigmoid output layer that gen-
erates the synthetic time-series data. In the Discriminator, the last LSTM layer outputs
to a dense sigmoid layer to predict the probability that the input is real versus fake. In
the Encoder, the final LSTM layer is connected to a dense sigmoid layer that condenses
the temporal information into a fixed-length embedding vector for each time-series. The
length of this embedding vector is a hyperparameter, defaulted to 24. The Decoder mir-
rors the Encoder with 3 LSTM layers to reconstruct the original time-series from the
embedding. Its final layer is a dense output layer with linear activation to recover the
original input dimensions.

A grid search was conducted to identify the optimal hyperparameters for training the
TimeGAN model. The hyperparameters tuned include the hidden dimension size of the
RNN layers, batch size, number of joint training epochs, and the optimizer. The combi-
nation of hyperparameters that resulted in the best TimeGAN performance are reported

in Table 3.3.

Hyperparameter Value
Hidden dimension 24
Gamma 1
Batch size 256
Epochs (joint training) 1000
Optimizer Adam

Table 3.3: Hyperparameters of the TimeGAN model.
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Hyperparameter Value

Learning rate 0.0001

Optimizer Adam
Loss Mean Square Error

Table 3.4: Hyperparameters of the LSTM Model.

3.3.5 LSTM Regression model

We develop virtual sensor aims to predict NOx emissions through a regression model
based on a LSTM model [17]. The input to the model is a sequence of n data points,
each data point consists of more features. The model architecture is described in Figure

3.3. The LSTM model consists of three LSTM layers followed by one dense layer. The

Istm_1 input | input: | [(None, 24, 36)]

InputLayer | output: | [(None, 24, 36)]

'

Istm_1 | input: | (None, 24, 36)
LSTM | output: | (None, 24, 32)

\ J
Istm_2 | input: | (None, 24, 32)

LSTM | output: (None, 32)

) J
dense | input: | (None, 32)

Dense | output: | (None, 1)

Figure 3.3: Block diagram of LSTM model

hyperparameters of the LSTM regression model are reported in Table 3.4.

3.4 Metrics: implementation details

MMD To compute MMD between the synthetic samples X and the real samples Y, we
first calculate the kernel matrices K xx, Kyy, K xy, for the synthetic-synthetic, real-real,
and synthetic-real sample pairs using a radial basis function (RBF) kernel. This is done
with the pairwise kernels function from Scikit-learn library. Given the means of these

kernel matrices - uxy for Kxx, uxy for Kxy, and pyy for Kyy - the MMD is computed

as puxx — 2% uxy + pyy-
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DS-PS DS and PS metrics were introduced by the authors of the TimeGAN architecture
Yoon et al. [38], who also provided a public implementation. However, due to com-
patibility issues with previous versions of the TensorFlow libraries, we reengineered the
models, striving to adhere as closely as possible to the original designs.

The DS is calculated using a RNN trained to distinguish between real and generated data.
The model consists of a Gated Recurrent Unit (GRU) network with a fully connected layer
for binary classification, where the two classes in consideration are real data and non-
real data. The DS metric, as defined by the authors, is computed by subtracting 0.5 from
the model’s accuracy. This computation aligns with the official implementation of the
TimeGAN model Yoon [37], where the DS metric is utilized.

The PS measures one-step ahead prediction performance. The model is trained on the
generated data to predict the next time step of the target feature given n-1 input feature
timestamps, and then evaluated on real data. The PS is the Mean Absolute Error between

the predicted and actual target values, with lower values indicating better predictions.

TRTS-TSTR The generated samples are used to train and test an external regression
model for predicting for predicting the specified target features (i.e. nox emission for
nox and temperature value for energy). The model has the same architecture and hy-

perparameters as the model described in Figure 3.3 and Table 3.4 in Subsection 3.3.5.
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Results

We present the results of our analysis of nitrogen oxides (NOx) levels using regression
in Section 4.1. Next, in Sections 4.2 and 4.3, we evaluate our generative pipelines using
two datasets: the Energy Dataset is covered in Section 4.2, while the NOx Dataset is
covered in Section 4.3. Finally, in Section 4.5 we assess the generated data through task-
related metrics, specifically focused on its ability to perform downstream NOx-related

tasks.

4.1 Results of the regression model

We show the regression model’s performance on predicting NOx emission. Table 4.1
shows the evaluation metrics, while Figure 4.1 visualizes predictions over the first 100
test time steps. As seen in Figure 4.1, the model (orange line) captures the overall trend
in the ground truth NOx emission (blue line), though it struggles with some of the minor

fluctuations. Table 4.1 reports the performance metrics from attempting NOx regression

Performance Metric Value
Mean Squared Error (MSE) 0.018
Mean Absolute Percentage Error (MAPE) 0.547
90th percentile (p90) 0.198
Max Error 0.605

Table 4.1: Mean metrics Mean Squared Error (MSE) and Mean Absolute Percentage Error
(MAPE) for NOx regression on the original scaled dataset over three attempts.

on the original scaled dataset over three tries. The resulting metrics are generally satis-
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fying as the average error, with an MSE of 0.02 and MAPE of 0.55, is well below require-
ments. However, the maximum error of 0.60 and P90 percentile error of 0.20 indicate

outliers account for more variation than desired.
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Figure 4.1: Example of Predictions of Scaled NOx Emissions over the First 100 Test Time Steps.

4.2 Results on the Energy Dataset

To compare the performance of the evaluated models with the results reported in liter-
ature, we show the selected evaluation metrics computed on the Energy Dataset. It is
important to note that these results may be difficult to compare across studies, as the
values of the DS, PS, and TSTR/TRTS metrics may depend on the specific definition of the
model and the training procedure used. Therefore, our findings should be interpreted
in the context of our specific model definitions and training procedures, and may not be
directly comparable to the results reported in other studies.

We present the findings of our qualitative evaluation in Subsection 4.2.1 and the results

of our quantitative evaluation of the models in Subsection 4.2.2.

4.2.1 Qualitative evaluation

Figure 4.2 presents t-SNE and PCA visualizations for both real and synthetic data gen-
erated by the Baseline (top left), GM (top right), TimeVAE (bottom left), and TimeGAN
(bottom right) models, specifically applied to the Energy Dataset. In the visualizations,
the color red represents the original data, while black represents the synthetic data. As
shown in Figure 4.2, drawing definitive conclusions based solely on visual inspection can

be challenging. Figure 4.2a indicates that the baseline model can only generate values
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Figure 4.2: t-SNE and PCA visualization for the Baseline (top left), GM (top right), TimeVAE
(bottom left), and TimeGAN (bottom right) models for Energy Dataset. Red denotes original
data, and black denotes synthetic.

within a narrow range centered around the mean, with some variability from random
noise. This suggests the baseline model fails to accurately capture the full complexity of
the underlying distribution exhibited by the real data. A visual comparison of subfigures
4.2b-4.2d suggests that the GM model may provide the closest approximation of the un-

derlying data distributions, relative to the other models shown.

Generated Time Series Comparison for Specific Features To develop an intuitive
understanding of the data windows generated by the models, we present random win-
dows of original and generated data in Figure 4.3 for two specific features. The Baseline
model’s generated data for two features are depicted in Figure 4.3a and 4.3b. It is evi-
dent that the Baseline model generates synthetic data with a mean value and standard
noise. We observe two distinct situations: in the first case (as shown in Figure 4.3a),
the mean value of the sensor differs from the training set, resulting in a noticeable de-
viation between the two plots. In contrast, in the second case (Figure 4.3b), the mean
values appear to be similar, and the synthetic data closely resemble the real data. The
GM model’s generated data for the same features are shown in Figure 4.3c and 4.3d. It

is evident that the model successfully generates data within the correct range in Figure
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4.3c, while in Figure 4.3d the generated data deviate from the desired range. Indeed, in
Figure 4.3d, the generated data oscillates around 0.6, deviating from the original data
clustered around 0.2. Overall, a notable difference between the generated and real data
is the presence of increased fluctuations in the generated samples compared to the rela-
tively flatter nature of the real data. Additionally, the TimeVAE model’s generated data
for the two features can be observed in Figure 4.3e and 4.3f present examples of gener-
ated data by the TimeVAE model for two other features. Notably, the synthetic data in
these examples do not exhibit fluctuations. Nevertheless, it is evident that the ranges of
the generated data differ from those of the original data. Figures 4.3g and 4.3h depict
examples of data generated by the TimeGAN model for two sensor features. Compared to
the other models, TimeGAN appears to more effectively capture the temporal dynamics
of the data, producing coherent samples over successive time steps without anomalous
fluctuations. The generated time-series patterns closely mimic those of the real data,
indicating TimeGAN is better able to learn the underlying relationships governing how

the feature values evolve sequentially over time.

4.2.2 Quantitative evaluation

We report the quantitative evaluation metrics for the four models in Table 4.2, 4.3 and

4.4. Results in Table 4.2,4.3 and 4.4 reveal that different metrics may suggest different

Performance Metrics

Model
DS PS MMD
Baseline 0.50 0.13 0.00
GM 0.50 0.09 0.00
TimeVAE 0.33 0.09 0.06
TimeGAN 0.32 0.16 0.03

Table 4.2: Quantitative evaluation metrics of generated data for Baseline, GM, TimeGAN,
TimeVAE models for Energy Dataset. Metrics are Computed on Scaled Data. Lower values for all
metrics indicate better model performance. Bold indicates best performance.

models as the best performer. For instance, TimeGAN achieves the best results in terms
of DS, which is a measure of the classification model’s ability to differentiate between
real and generated data. This result is consistent with the fact that GANs are designed to

train the generator to produce synthetic data that closely resembles real data, "cheating"
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TSTR
Model
MSE Max Error P90 MAPE
Baseline 0.03 0.65 0.28 0.83
GM 0.01 0.46 0.37 0.51
TimeVAE | 0.17 0.60 0.56 0.88
TimeGAN | 0.03 0.49 0.38 1.61

Table 4.3: Comparison of TSTR metrics for generated data from the Baseline, GM, TimeGAN, and
TimeVAE models on the Energy dataset. Metrics are Computed on Scaled Data. For all metrics,
lower values indicate better model performance. The best performing model for each metric is

highlighted in bold.
TRTS

Model
MSE Max Error P90 MAPE
Baseline 0.004 0.59 0.05 0.08
GM 0.003 0.51 0.32 0.07
TimeVAE | 0.065 0.54 0.40 0.40
TimeGAN | 0.016 0.18 0.25 0.16

Table 4.4: Comparison of TRTS metrics for generated data from the Baseline, GM, TimeGAN, and
TimeVAE models on the Energy dataset. Metrics are Computed on Scaled Data. For all metrics,
lower values indicate better model performance. The best performing model for each metric is

highlighted in bold.
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therefore the discriminator Goodfellow et al. [13].

As the DS measures how good the synthetically created data are, it can be used in theory
to evaluate the performance of any generation model (not only time series generative
models). Instead, the PS is particular to time-series data, as it should demonstrate the
ability of a generative model to accurately predict the next time step in a sequence based
on the previous observed time steps. According to the evaluation results, both the GM
model and TimeVAE model achieved the best performance in terms of predictive score
(PS).

The MMD scores indicate that, from the perspective of measuring the discrepancy be-
tween distributions, all models achieved relatively low values. However, the Baseline
and GM models exhibited the smallest discrepancies, reaching the lowest MMD scores
of all the evaluated approaches. One possible explanation for this phenomenon is that
the Baseline model’s good performance may be attributed to its ability to produce a re-
alistic distribution by relying on the mean of sensor values from the training dataset,
augmented with additional noise.

TRTS should evaluate how realistic the generated data are, in other words how well the
distributions within the real data were learnt, while TSTR should evaluate the diversity
of the synthetic data and how well the variations in the real data are captured Yadav
et al. [35]. Based on the evaluation results of the TSTR, the TimeVAE model achieved
the best scores on all metrics except for the p90 metric. Based on the evaluation results
of the TSTR, the best models are TimeGAN and GM. Across all models, the mean error
metrics for regression were consistently lower when training on real data and testing on
synthetic data, compared to training on synthetic and testing on real data. This result is
plausible, as models generally perform best when both their training and test data are
drawn from the same underlying distribution. By training exclusively on real data, the
models may have been better able to learn representations tailored to the true statistical
patterns and relationships present in the real-world sample, rather than having to gen-
eralize across domains.

Upon evaluating generative models using all the previously presented metrics, the Base-
line model’s performance was found to be comparable to, or only slightly worse than,
more complex models. This result is somewhat surprising since more complex models

are generally expected to outperform simpler models. Therefore, we can conclude that
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Figure 4.4: t-SNE and PCA visualization for the Baseline (top left), GM (top right), TimeVAE
(bottom left), and TimeGAN (bottom right) models for Energy Dataset. Red denotes original
data, and black denotes synthetic.

these metrics can be helpful in measuring certain aspects of a generative model’s perfor-
mance, but they may not always be reliable indicators of the overall power of a model.
Moreover, we emphasize that the results of metrics such as PS, DS, TSTR, and TRTS de-
pend on the specific definition of the classification/regression model, and this fact makes

these metrics even less reliable.

4.3 Results on the Nox Dataset

We present the findings of our qualitative evaluation in Subsection 4.3.1 and the results
of our quantitative evaluation of the models in Subsection 4.3.2. Furthermore, we intro-
duce a novel analysis that deviates from the existing literature. In Subsection 4.3.3, we

compare the statistical information of the generated data with respect to the real dataset.

4.3.1 Qualitative evaluation

A quantitative evaluation was performed for the NOx dataset, similar to what was done
for the Energy dataset. The results of this evaluation are reported in Figure 4.4. Figure
4.4a shows that the baseline model used for the NOx dataset faced similar challenges as

it did for the energy dataset. It fails to accurately capture the complexity of the underly-
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ing distribution observed in the real data. Instead, it only produced an approximation of
the mean value along with some random noise. Furthermore, upon analyzing Figure4.4b
and 4.4d, it becomes evident that both TimeGAN and GM faced greater challenges in
generating synthetic data for the NOx dataset compared to the Energy dataset. In con-

trast, the TimeVAE model exhibited notably better performance in this evaluation.

Generated Time Series Comparison for Specific Features Similar to the approach
used for the Energy Dataset, we have randomly chosen windows of original and gener-
ated data for two specific features from the Nox Dataset. These selected windows are
visualized in Figure 4.5. However, in the case of the Nox Dataset, the insights we can
derive from these random plots are relatively limited compared to the Energy dataset.
We can observe that the real data exhibits more fluctuations compared to the synthetic
data. This is consistent with the fact that the NOx dataset is more irregular and noisy
with respect to the energy consumption data, as we can see in Figures 3.1 and 3.2. These
variations over time are difficult to accurately capture and replicate in synthetically gen-
erated data, and the generative models tend to smooth out the fluctuations present in

the real-world data.

4.3.2 Quantitative evaluation

We report the quantitative evaluation metrics for the four models in Tables 4.5, 4.6 and

4.7. According to PS and DS we can say that with the NOx dataset the performance of

Performance Metrics

Model
DS PS MMD
Baseline 0.50 0.04 0.00
GM 0.16 0.04 0.00
TimeVAE 0.01 0.13 0.00
TimeGAN 0.44 0.03 0.00

Table 4.5: Comparison of predictive score (PS), discriminative score (DS), and maximum mean
discrepancy (MMD) metrics for generated data from the Baseline, GM, TimeGAN, and TimeVAE
models on the NOx dataset. Metrics are Computed on Scaled Data. For all metrics, lower values
indicate better model performance. The best performing model for each metric is highlighted in
bold.

TimeVAE and GM improves, while the performance of TimeGAN decreases. Moreover,
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the MMD metric alone cannot adequately discriminate between the models. Asshown in

TSTR
MSE Max Error P90 MAPE

Model

Baseline | 0.023 0.610 0.204 0.677

GM 0.022 0.600 0.202 0.667
TimeVAE | 0.079 0.341 0.315 1.648
TimeGAN | 0.063 0.513 0.306 1.124

Table 4.6: Comparison of TSTR metrics for generated data from the Baseline, GM, TimeGAN,
and TimeVAE models on the NOx dataset. Metrics are Computed on Scaled Data. For all metrics,
lower values indicate better model performance. The best performing model for each metric is
highlighted in bold.

TRTS
MSE Max Error P90 MAPE

Model

Baseline | 0.018 0.402 0.135 0.344
GM 0.016 0.140 0.138 0.325
TimeVAE | 0.074 0.510 0.349 0.675
TimeGAN | 0.056 0.238 0.238 0.489

Table 4.7: Comparison of TRTS metrics for generated data from the Baseline, GM, TimeGAN,
and TimeVAE models on the NOx dataset.Metrics are Computed on Scaled Data. For all metrics,

lower values indicate better model performance. The best performing model for each metric is
highlighted in bold.

Tables 4.6 and 4.7, also the TSTR and TRTS metrics identified different best-performing
models when evaluating performance on the NOx and energy datasets. When evaluating
the models on the NOx dataset, the TRTS metric scores tended to be lower than the

corresponding TSTR metric scores, as was also seen with the Energy dataset.

4.3.3 Comparing statistics

To evaluate how well the generative models capture the distribution of the real data,
we compared the mean and standard deviation statistics between the real and synthetic
datasets. The mean and standard deviation provide a simple summary of the central
tendency and spread of the data distributions. By comparing these statistics, we can

assess whether the generative models are able to match these basic properties of the real
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data distribution. The mean and standard deviation comparisons between the real and

synthetic datasets are shown in Tables 4.8 and 4.9, respectively.

Feature | Real | Baseline GM TimeVAE TimeGAN
Ty 0.590 0.589 0.588 0.590 0.570
T 0.512 | 0.515 0.514 0.512 0.438
xs 0.403 | 0.396 0.396 0.403 0.397
Z10 0.194 | 0.195 0.195 0.194 0.162

Table 4.8: Comparison of Mean for Normalized Features x1, x4, -s, 10 in the NOx Dataset: Real
vs Synthetic Data Generated by Baseline, GM, TimeVAE, and TimeGAN Models.

Feature | Real | Baseline GM TimeVAE TimeGAN
T, 0.077 | 0.097 0.020 0.077 0.005
T 0.105| 0.127 0.069 0.105 0.027
g 0.154 | 0.176 0.129 0.154 0.012
Z10 0.085 | 0.094 0.040 0.085 0.004

Table 4.9: Comparison of Standard Deviation for Normalized Features x1, xg, s, 210 in the NOx
Dataset: Real vs Synthetic Data Generated by Baseline, GM, TimeVAE, and TimeGAN Models.

The analysis of correlation between NOX emissions (represented by feature x35) and the
other features in the dataset, as well as its preservation in synthetic data, reveals inter-
esting insights. In Figure 4.6, we present the correlations observed in real data, while
Figures 4.7, 4.8, and 4.10 illustrate the correlations in synthetic data generated by the

Baseline, GM, and TimeGAN models, respectively. In Figure 4.7, it is clear that the cor-

Correlation Heatmap with NOx emissions

-1
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Figure 4.6: Correlation between Each Feature and the NOx Emission Feature x35; in the Real
Dataset (Normalized Data).

relation values for the data generated by the Baseline model are all zero. This indicates
the absence of a linear association between the variables being compared, specifically
between NOX emissions and the other features in the dataset. The lack of significant
linear correlation suggests that the Baseline model fails to capture and reproduce the
same relationships observed in the real data. Therefore, the synthetic data generated by
the Baseline model does not accurately reflect the underlying correlations present in the

original dataset. In Figure 4.9 and 4.10, we can observe that the GM and TimeVAE mod-
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Correlation Heatmap with NOx emissions
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Figure 4.7: Correlation between Each Feature and the NOx Emission Feature z3; in the Synthetic
Dataset generated by the Baseline model.

els exhibit a higher degree of correlation preservation compared to the Baseline model.
Specifically, the highest correlation values consistently appear in the same three variables
asin the real data: x1g, x11, x13.This finding suggests that both the GM and TimeVAE mod-
els have a better ability to capture and preserve the underlying relationships between
these specific variables and NOX emissions compared to the Baseline model. The fact
that the highest correlation values align with those in the real data indicates a stronger

fidelity in reproducing the correlations between these variables. These findings suggest

Correlation Heatmap with NOx emissions
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Figure 4.8: Correlation between Each Feature and the NOx Emission Feature x35 in the Synthetic
Dataset generated by the GM model.
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Figure 4.9: Correlation between Each Feature and the NOx Emission Feature x35 in the Synthetic
Dataset generated by the TimeVAE model.

that the TimeVAE model outperforms the other models in capturing the underlying re-
lationship between these specific variables and NOX emissions. While all models exhibit
a modest capture of the correlation between NOX emissions and x10, the GM, Baseline,
and GAN models fail to capture the correlation for features such as x17, x19, and x24,
which reaches approximately -1.

We present autocorrelation and partial autocorrelation plots for each feature in the
dataset in Figure 4.11. In Figure 4.11, it can be observed that the autocorrelation values

in the real dataset consistently hover around 1 for all lags. This high autocorrelation sug-
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3 0.23 1045 -0.59 JOR:[CAR-aN0R:tH 0.12 0.10

x1 x6 x8 x10 x11 x13 x14 x16 x17 x19 x24 x26 x28 x30 x31 x35

cop
SCouwo

0.15 0.32 0.37 0.34 0.11 -0.05 -0.09 g¥ee] [ '

Figure 4.10: Correlation between Each Feature and the NOx Emission Feature x3;5 in the Syn-
thetic Dataset generated by the TimeGAN model.
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Figure 4.11: Autocorrelation and Partial Autocorrelation Plots for Four Normalized Features (x1,
x6, X8, and x10) in the Real Dataset.

gests a strong dependence of the variable’s values on their own past values, indicating a

consistent pattern of increase or decrease.
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We present the autocorrelation plots for synthetic data generated by the Baseline, GM,
TimeVAE, and TimeGAN models in Figures 4.12, 4.13, 4.14, and 4.15, respectively. No-
tably, there is a significant difference observed between the complex models (TimeVAE
and TimeGAN, as shown in Figures 4.14 and 4.15) and the simpler ones (the Baseline

and GM models, depicted in Figures 4.12 and 4.13). For TimeVAE and TimeGAN, the
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Figure 4.12: Autocorrelation and Partial Autocorrelation Plots for Four Metrics are Computed on
Scaled Data. Features (x1, x6, x8, and x10) in the Synthetic Dataset Generated by the Baseline
Model.

autocorrelation values are initially high and gradually decrease with increasing lags until

reaching zero for the last lags within the selected window length (24 timestamps). On
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Figure 4.13: Autocorrelation and Partial Autocorrelation Plots for Four Normalized Features (x1,
x6, x8, and x10) in the Synthetic Dataset Generated by the GM Model.

the other hand, the simpler models exhibit almost zero autocorrelation throughout.
We present the histograms depicting NOx emissions in both real data and the synthetic

data generated by the four considered models, as shown in Figure 4.16.

Upon observation, it is apparent that the Baseline model fails to capture the variations
present in the real data distribution. The distributions generated by the VAE model ex-
hibit a closer resemblance to the real data distribution, while the GAN model also dis-

plays a notable similarity. On the other hand, the GM model appears to generate values
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Figure 4.14: Autocorrelation and Partial Autocorrelation Plots for Four Normalized Features (x1,
x6, x8, and x10) in the Synthetic Dataset Generated by the TimeVAE Model.

concentrated around two distinct points, specifically 0.375 and 0.395.

4.4 Reliability in visualization results

It is important to consider several factors when using t-SNE and PCA for visualization.
Firstly, t-SNE is a stochastic method, meaning that multiple t-SNE plots generated from

the same dataset can differ. This randomness stems from the algorithm’s random initial-
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Figure 4.15: Autocorrelation and Partial Autocorrelation Plots for Four Normalized Features (x1,
x6, x8, and x10) in the Synthetic Dataset Generated by the TimeGAN Model.

ization. On the other hand, PCA, in contrast, does not involve random initialization or
sampling, and its computations are deterministic mathematical operations. In addition
to the stochastic nature and random initialization, it is crucial to note that visualization
is typically performed on a subset of the data. Since plotting thousands of points can
be impractical, a representative batch of data is selected for visualization. Consequently,
the specific subset chosen for visualization can influence the resulting t-SNE plot. Fur-

thermore, when reducing data to two dimensions for visualization, some information is
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Figure 4.17: t-SNE and PCA Visualization of the NOx Dataset for TimeGAN (top left and top
right) and GM (bottom left and bottom right) models. The visualizations depict two different
experiments conducted with the same generation pipelines. The original data is represented in
red, while the synthetic data is represented in black.

inevitably lost. Time-dependent relationships and other higher-dimensional structures
may not be fully captured in the resulting two-dimensional representation. Based on our
experience, we have observed that results can vary even when the generative procedure
remains unchanged. Figure 4.17 presents an example of t-SNE and PCA visualizations
of the NOx Dataset for TimeGAN (top left and top right) and GM (bottom left and bot-
tom right) models. These visualizations illustrate two different experiments conducted
using the same generation pipelines. Notably, Figure 4.17a and Figure 4.17b, as well as
Figure 4.17c and Figure 4.17d, demonstrate distinct results, highlighting the variability

between the experiments.

4.5 Task related metrics on NOx Dataset

To address the limitations of the evaluation metrics discussed in Sections 4.2 and 4.3,
we decided to move towards a task-related metric that could better capture the perfor-
mance of the evaluated models in our specific application. As we described in Chapter
1, our main goal was to develop time series generation models to improve industrial

models with scarcity of data. Therefore, we integrated the generated data into the NOx
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dataset, and evaluated the resulting performance metrics of our regression model to es-
timate NOx emissions. If the model generates coherent synthetic data, we expect that
the performance of the regression model will improve when trained on both real and
synthetic data. Therefore, the task-related metric will be the performance metrics of the
regression model when trained on the combined set of real and synthetic data.

Table 4.1 presents the performance metrics for our industrial regression task on the scaled
NOx dataset without adding synthetic data.

Tables 4.10, 4.11, 4.12 and 4.13 present the respective metrics (MSE, MAPE, p90, Max-
imum Error) for the Regression Model with the addition of of synthetic data. We show
how the results of the regression change as we progressively add increasing percentages
of synthetic data and we report the mean and the variances of the regression metrics
over 3 attempts. For example, a percentage of 30% means that we add an amount of
synthetic data equal to 30% of the real data size. Moreover, the bottom row shows the

average performance across all percentages of synthetic data.

MSE
Percentage
Baseline GM TimeVAE TimeGAN
30 % 0.023 0.017 0.022 0.014
50 % 0.023 0.019 0.020 0.021
mean 0.023 0.018 0.021 0.016

Table 4.10: Mean Squared Error (MSE) of the Regression Model with varying percentages of
synthetic data added to real data. Metrics are Computed on Scaled Data. Bold results indicate
better performance compared to the results obtained without data augmentation, where the MSE
was 0.018.

Results in Tables 4.10, 4.11, 4.12 and 4.13 indicate that adding synthetic data can lead
to improved performance of the regression model across all the evaluated metrics. No-
tably, the Baseline model consistently yields the poorest results in comparison to the
other evaluation metrics assessed in Section 4.3.2. Interestingly, TimeGAN consistently
outperforms the other models, emerging as the optimal choice for enhancing regression
metrics. Adding data generated by TimeGAN, we alwayis improve the performance of all
the regression metrics. The addition of synthetic data from GM, TimeVAE, and TimeGAN

exhibits minimal adverse effects on model performance, suggesting that the generated
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MAPE
Percentage
Baseline GM TimeVAE TimeGAN
30% 0.636 0.541 0.609 0.485
50% 0.620 0.573 0.612 0.593
mean 0.628 0.557 0.611 0.488

Table 4.11: Mean Absolute Percentage Error (MAPE) of the Regression Model with varying
percentages of synthetic data added to real data. Metrics are Computed on Scaled Data. Bold
results indicate better performance compared to the results obtained without data augmentation,
where the MAPE was 0.540.

920
Percentage P
Baseline GM TimeVAE TimeGAN
30% 0.219 0.197 0.211 0.187
50% 0.218 0.205 0.215 0.211
mean 0.219 0.201 0.213 0.191

Table 4.12: 90th percentile error value (p90) of the Regression Model with varying percentages
of synthetic data added to real data. Metrics are Computed on Scaled Data. Bold results indicate
better performance compared to the results obtained without data augmentation, where the p90
was 0.198.

Max Error
Percentage
Baseline GM TimeVAE TimeGAN
30% 0.588 0.607 0.592 0.617
50% 0.589 0.600 0.592 0.593
mean 0.589 0.604 0.592 0.605

Table 4.13: Max Error of the Regression Model with varying percentages of synthetic data added
to real data. Metrics are Computed on Scaled Data. Bold results indicate better performance
compared to the results obtained without data augmentation, where the Max Error was 0.605.
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data closely aligns with the true distribution of real data. In terms of determining the
appropriate amount of data to add, we conducted experiments with varying percentages
and observed that excessively increasing the amount of added data led to a decrease in
performance. This trend is evident across all the evaluated metrics, as we consistently

obtained inferior results when using 50% of additional data compared to using 30%.
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Chapter 5

Conclusions

We introduce a novel approach for monitoring NOx emissions through the utilization
of generative models, addressing the data scarcity challenge commonly encountered in
industrial settings. Our study encompasses a comprehensive exploration of various gen-
erative techniques, assessing their performance on two distinct datasets: one sourced
from existing literature and another derived from our specific industrial application.

In our analysis, we delve into the complexities associated with evaluating generated time
series data. We highlight the limitations of conventional evaluation methods commonly
employed in the literature, emphasizing that they may not consistently serve as reliable
indicators of overall model performance. To address this issue, we propose the incorpo-
ration of additional, simpler comparison metrics to assess the fidelity of generated data.
These metrics include correlation with NOx emissions, autocorrelation, as well as basic
statistical measures such as mean and standard deviations. Furthermore, we advocate
for the inclusion of visual plots showcasing the generated data over time, providing an
intuitive assessment of the model’s ability to produce coherent data within a given win-
dow.

To cater to the specific needs of industrial applications, we put forth a task-specific evalu-
ation metric. This metric underscores the potential of generative models while emphasiz-
ing the importance of developing evaluation metrics tailored to the unique requirements
of the intended application. Through our comprehensive analysis, we highlight the ne-
cessity of considering multiple evaluation metrics when assessing generated time series
data. Notably, our findings reveal that the incorporation of more complex models yields

superior results, contradicting the outcomes obtained by conventional metrics commonly
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employed in the literature.

In future work, the authors plan to explore the potential of synthetic data to improve
the performance of other industrial models, particularly anomaly detection models, and
explore other evaluation metrics that considers temporal correlation between generated

samples.
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