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ABSTRACT 

Operations of the offshore systems in harsh environments require better understanding, precise 

assessment, and effective management of risks. The harsh environmental conditions, such as 

strong ocean currents, extreme wave conditions, complex subsurface geology, frigid temperatures, 

and icebergs, exert extreme load on the offshore systems. Environmental factors are 

interconnected, and when they occur at a higher rate or in extreme conditions, they are likely to 

cause a catastrophic event. Such scenarios are prone to occur in the current changing conditions of 

climate. Assessment of extreme loads that may cause a rare event situation is critical to define risk 

scenarios. This study focuses on the assessment of these extreme event risk scenarios. By 

integrating extreme load and its likelihood of occurring, this research investigates the current state 

of knowledge in extreme event risk analysis. The extreme load consideration task considers three 

dominating aspects: stationary and non-stationary conditions; univariate and multivariate analysis; 

and dependence of the variables. This study also focuses on the flexible risk-based design 

methodology that integrates the traditional Extreme Value Theory (EVT) with climate change. 

The key environmental parameters considered in this study are iceberg speed, wind speed, and 

wave height. The developed methodologies use the above parameters from the Atlantic 

Continental Shelf, specifically the Flemish Pass basin, Grand Bank, and the Jeanne d’Arc basin. 

Due to limited data for certain environmental phenomena, such as large iceberg data in the Flemish 

Pass basin, the iceberg load assessment problem is treated as a rare event scenario. Traditional 

methods, including Peak Over Threshold (POT) based Generalized Pareto Distribution (GPD) and 

Block Maxima (BM) based Generalized Extreme Value (GEV), were found to be inadequate to 

capture the present-day extreme characteristics in the rare event cases. As an alternative, this study 

proposes and validates the use of POT-based Heavy Right Tail Distribution (HRTD) for iceberg 
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load analysis at the Flemish Pass basin. The research also observes that Maximum Likelihood 

Estimator (MLE) provides a biased estimate for model parameter estimation in rare event 

scenarios, whereas the Hill, SmooHill, and Bayesian approaches offer better estimates. The 

methodology is extended to multivariate settings to capture extreme dependencies using extreme 

value copula function for investigating rare event risk profiles. The proposed low-resolution risk 

profile methodology offers a more efficient and cost-effective alternative to computationally 

expensive numerical models in the offshore domain. Climate change is observed to have an impact 

on the correlation between various environmental factors, including wind speed and wave height. 

Because of climate change, 100-year events are becoming more frequent. Consequently, the study 

adopts a 1000-year time frame to adjust for the increasing frequency of 100-year events under the 

influence of climate change, enabling predictions beyond standard lifetimes. The conditional 

return level function is utilized to construct rare events return level predictions under climate 

change threats. Finally, a non-stationary process is considered to generate a dynamic risk profile. 

Outcomes of this research provide a clear understanding of how climate change affects the 

Newfoundland offshore region. By incorporating predicted extreme loads and their likelihood of 

occurring, the traditional EVT-based methodologies are combined with adaptable risk-based 

design methodologies. The proposed dynamic, flexible, and small-scale (0.10 × 0.10 

latitude/longitude grid) risk assessment methodology aids in offshore design decision-making for 

safer design and operation. 
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1. INTRODUCTION 

1.1 Research Context     

Extreme climatic conditions, such as strong winds, high waves, ocean currents, icebergs, and low 

temperatures, significantly influence the design, operation, maintenance, and risk management of 

offshore systems and marine activities. These conditions can lead to challenging offshore 

environments where unexpected or unpredictable climatic loads may damage the integrity and 

functionality of offshore systems. Such extreme and infrequent events have been characterized in 

past research by various names, including "extreme events" (Castillo et al., 2005), "black swan 

events" (Taleb, 2007), "rare events" (Rubino and Tuffin, 2009), and "heavy tail events" (Resnick, 

2007). Despite the different names, they all refer to infrequent events with potentially significant 

impacts or consequences. These events are characterized by their exceptional intensity, duration, 

or magnitude, surpassing what is typically observed in the given domain. Their manifestations 

span various fields, including health science (as seen with the COVID-19 pandemic), weather and 

climate (hurricanes, heatwaves, extreme winds, low temperatures, etc.), natural disasters (such as 

earthquakes and tsunamis), financial markets (like stock market crashes), accidental events at 

offshore engineering domain (Deepwater Horizon disaster, Gulf of Mexico, 2010; Ocean Ranger 

oil rig disaster, Canadian Atlantic Ocean, 1982 etc.) and other complex systems. The 

understanding and management of these extreme events are crucial for ensuring the safety and 

resilience of offshore systems and marine activities, as they pose unique challenges due to their 

infrequency and severity. Proper risk assessment and preparedness strategies are vital to mitigate 

the potential impacts of such extreme events across different domains. Handling such extreme 
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events is extremely challenging, especially in the offshore domain, where operations take place in 

remote and harsh environments characterized by strong currents, uneven surfaces, freezing 

temperatures, and icebergs. Different offshore regions also present unique challenges. For 

instance, the Newfoundland offshore region, including areas like the Grand Bank or Flemish Pass 

basin, may have less extreme wind and wave conditions but poses challenges with icing and 

iceberg hazards (MANICE Canadian Ice Service, 2005). Icebergs typically follow 

predictable/usual paths, but under extreme environmental loads/harsh environment, unexpected 

changes in their trajectory can result in significant impacts when they collide with engineering 

systems. Natural incidents like these are beyond control and cannot be prevented. Nevertheless, 

understanding current extreme events is crucial for risk assessment, planning, and decision-making 

to ensure safer offshore operations. Offshore operators can optimize design costs and achieve 

process safety by adopting modeling outputs that offer precise predictions of environmental event 

loads and their occurrence probabilities through improved modeling approaches that incorporate 

climate change trends and current extremeness. Most of the exsiting approaches for extreme event 

modeling are based on Extreme Value Theory (EVT); using a 100-year return level is a common 

practice to estimate design environmental parameters (e.g., Castillo et al., 2005; Levine, 2009; Das 

et al., 2016, etc.). However, it is essential to question whether the existing EVT/100-year return 

level-based methodologies are sufficient to capture the current extremeness. If not, what 

alternative approaches or return levels are more suitable for determining the engineering design 

criteria for safer offshore operations? Furthermore, how can modeling results be effectively 

utilized in offshore risk assessments plans? This research was conducted in response to these 

challenges. It placed significant emphasis on extreme event modeling and integrated the modeling 
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outcomes into a risk-based framework. Towards this objective, the primary challenges lie in three 

key areas: 

• Formulating a robust mathematical representation of extreme event scenarios. This 

involves developing a comprehensive framework to accurately describe a extreme event 

for the offshore engineering domain.   

• Conducting extreme event modeling, which encompasses precise load estimation and 

accurate estimation of occurrence probabilities. This step is crucial for understanding the 

magnitude and likelihood of extreme events to enhance risk assessments. 

• Integrating the impact of regional climate change into the modeling process. Recognizing 

the evolving nature of climate patterns and their influence on extreme events is essential to 

ensure that the risk assessment methodologies are up-to-date and capable of accounting for 

changing environmental conditions. 

By addressing these challenges, this research endeavors to establish an effective risk-based 

approach that captures the complexities of extreme events in the offshore engineering domain, 

ultimately leading to enhanced safety, resilience, and decision-making in offshore operations. 

1.2 Research problem and opportunity  

Testing in extreme conditions is recommended for developing any engineering system. Designing 

an extreme state and considering it in the design of a system or its operation is not a straightforward 

task. Below are few key challenges in this area in the prospect of extreme event modeling and risk 

assessment methodology:  
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• Data availability: Obtaining reliable and sufficient data for risk analysis in offshore 

engineering is challenging. Limited operational history of offshore structure and scarcity 

of observed extreme events make it difficult to gather comprehensive data for accurate risk 

assessment.  

• Uncertainty and variability: Offshore engineering involves dealing with uncertainties and 

variability associated with environmental conditions. In addition, in the modeling prospect, 

there are uncertainties in the input parameters, and data variability. Quantifying and 

managing those uncertainties is crucial for reliable risk analysis.   

• Computational complexity: Due to low probability, extreme event modeling needs an 

efficient computational methodology. Offshore engineering risk analysis often requires 

computationally intensive modeling approach, due to low probability of occurrence; 

traditional simulation technique might be time consuming and may not be feasible for long-

scale offshore system.  

• Non-stationary: The statistical properties of environmental conditions or other risk factors 

may change over time due to climate variability; so, accounting for non-stationarity is 

essential for risk analysis. Identifying and incorporating these changes into the models pose 

additional challenges.    

• Multivariate dependencies: Offshore systems are subject to complex dependencies and 

interactions among various factors, such as environmental conditions, structural integrity 

and operational factors.  Developing multivariate models by capturing the dependencies in 

different variables is a significant research challenge.  

• Validation and verifications: validating and verifying extreme event model can be 

challenging due to data scarcity.  
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• Risk assessment and decision making: Incorporating extreme event modeling into risk 

assessment and decision-making process is an ongoing challenge. Quantifying the 

probabilities and consequences of extreme events and integrating them into risk analysis 

framework is essential for making an adequate decision regarding the design, operation, 

and maintenance of offshore structure.  

All the above challenges are more complicated when modeling extreme events in the offshore 

engineering domain (compared to other domains, for example onshore engineering, or financial 

domain). The strong currents, uneven surfaces, extremely low temperatures, staggering depths, 

and iceberg threats are making offshore engineering systems/equipment operations more 

complicated. In addition, climate change/global warming issues make the task to be further 

complicated. We cannot ignore the recent patterns in weather related phenomena.  For example: 

the recent European heat wave (Climate signal beta, European heat wave, 2019; repeating in 2023),  

the global sea level was 3.2 inches in 2018 above the 1993 average (NOAA, 2019), Greenland’s 

loss of 532 billion tons of ice in a record melt in 2019 (CBC report, 2020); and global temperature 

prediction between 2030 and 2052, expected to rise by 1.5°C, compared to the pre-industry era, if 

it continues to rise at the current rate (Ogunbode et al., 2020). This being the case, then what will 

future Newfoundland offshore domain look like? The above poses significant challenges to 

researchers interested in relevant fields. However, the existing literature does not adequately 

address many research questions necessary to develop a framework to model extreme events 

considering the recent phenomena. This work is an attempt to answer a list of questions focusing 

on the following:  



 

6 
 

• Is the existing EVT approach applicable/capable to capture present extreme 

characteristics in extreme event modeling contexts under climate change for offshore 

engineering domain?  

• Which return level adaptation is more appropriate for monitoring and managing offshore 

system design/upgrading existing facilities?   

• Does climate change have any impact on the correlation in environmental parameters? If 

this is the case, then how to deal with bivariate or multivariate cases in the extreme load 

analysis?   

• How to generate a computationally efficient “small-scale risk profile, say (0.10 × 0.10 

latitude/longitude grid)” for offshore operations safer?     

 

This research takes the opportunity to address the above concerns and challenges. It seeks to 

provide valuable insights into improving the modeling of extreme events in offshore engineering, 

incorporating the effects of climate change. By answering these critical questions, the research 

aims to contribute to the development of more reliable risk assessment and management strategies, 

ultimately enhancing the safety and resilience of offshore operations. 

 

1.3 Research Objective  

The extreme load assessment problem is considered in several sub problems in the prospect of 

offshore engineering domain. To meet the research objectives, the following tasks are listed in 

Figure. 1.1 are in consideration.   
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The study achieves its objective of enhancing the understanding and prediction of extreme events 

in the offshore engineering domain, contributing to more effective risk assessment and decision-

making for safer offshore operations. 

 

 

 

 

 

 

 

 

 

Figure 1.1. Proposed Extreme load assessment methodology divided into four tasks for offshore 

Engineering domain.  

1.4 Contribution and Novelty 

This section provides a detailed overview of the findings, challenges, and contributions of this 

research work. Notably, the distinctiveness of this study lies in its development of a mathematical 

representation for extreme events in the offshore engineering domain, incorporating heavy tail 

modeling concepts to address climate change issues, and employing an appropriate return level 

Extreme load  

evaluation problem 

Stationary  

Stationary and 

Non-Stationary  

Task 1: Univariate (Tail based 

frequentist approach) POT based HRTD.  

Iceberg extreme load assessment at 

Flemish Pass basin. 

Task 3: Multivariate approach.  Extreme 

value copula models.  Joint extreme load 

(wind speed and wave height at Flemish 

Pass basin) estimate and generate finer 

scale risk profile.  

Task 4: Univariate approach. Dynamic 

risk profile, BM based GEV (Max-

stability process). Extreme wind load 

and risk estimate at Grand Bank. 

Task 2: Univariate (Tail based Bayesian 

approach) POT based HRTD.  For 

example, Iceberg extreme load 

assessment at Jeanne d’Arc basin. 
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function. By adopting a risk-based framework, the research proposes a flexible risk profile tailored 

for safer offshore operations, setting it apart from existing methodologies. Extensive investigation 

into extreme modeling literature across various fields, including engineering, finance, economics, 

and hydrology, has enabled the development of an appropriate methodology/model capable of 

capturing present-day extremeness. The research diligently explores each identified contribution 

in the relevant chapters of the thesis, presenting a comprehensive understanding of the novel 

approaches and their applications. Key contributions and novelties of this study are briefly 

summarized as follows: 

• Mathematical representation for extreme events: The research establishes a robust 

mathematical framework for characterizing extreme events in the offshore engineering 

domain. This provides a solid foundation for accurate modeling and analysis of extreme 

events. 

• Heavy tail modeling and climate change: By incorporating heavy tail modeling concepts, 

the study addresses the challenges posed by climate change and its impact on extreme 

events, and uncertainty estimate.  This allows for a more nuanced understanding of extreme 

event occurrences in a changing climate. 

• Appropriate return level function: The research proposes an appropriate return level 

function for estimating extreme event probabilities. This selection ensures the reliability 

and accuracy of risk assessments. 

• Adoption of risk-based framework: By adopting a risk-based approach, the research offers 

a comprehensive and practical methodology for assessing offshore risks. The framework 

facilitates informed decision-making and proactive risk management. 
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Through a review of literature in various disciplines, this research successfully develops a 

methodology that effectively captures and quantifies present-day extremeness, providing valuable 

insights into risk assessment and management in the offshore engineering domain. Each 

contribution is expanded upon in the relevant chapters, showcasing the exploration and innovative 

solutions presented in this study. 

1.4.1 Task 1: Univariate extreme event model (frequentist approach) and iceberg collision 

risk analysis 

Developed a flexible risk analysis approach, and implemented at the Flemish Pass basin for iceberg 

collision risk analysis, yielding several notable findings and contributions: 

• Mathematical representation of extreme events: This research adopts Devore's (Devore, 

2011) definition of "outliers" and "extreme outliers" to provide a precise mathematical 

representation of extreme events; originally proposed by Tukey’s (Tukey, 1977). The 

“Extreme outliers” criterion is considered as a “Extreme event” criterion for the offshore 

engineering domain.  

• Tail-based approach: While outlier-based Generalized Extreme Value (GEV) or 

Generalized Pareto Distribution (GPD) methods are popular in extreme event analysis 

across various domains, this study reveals their limitations in capturing present extreme 

characteristics when dealing with small data sets (as is the case with extreme events). As 

an alternative, a tail-based approach is proposed to overcome these limitations. 

• Distribution parameter estimation: To address the challenges of small data sets, the Hill 

and SmooHll estimators are utilized for the estimation of distribution parameters. These 

estimators serve as alternatives to the commonly used Maximum Likelihood Estimator 

(MLE) for cases with limited data. 
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• Threshold selection and model validation: Threshold selection is a critical step in extreme 

event modeling. Mean residual life plot, Normal Q-Q plot, and parameter stability plot are 

employed to guide threshold determination. Model validation is performed using various 

numerical and graphical evidence, including log-likelihood values, Akaike Information 

Criterion (AIC), Bayesian Information Criteria (BIC), Q-Q plot, and return levels plot. 

• Uncertainty estimation: A method for uncertainty estimation is proposed for model 

parameters and return levels, akin to the concept of parametric bootstrap. This allows for a 

more comprehensive understanding of the uncertainties associated with the extreme event 

model.  

Finally, this research offers valuable insights and innovative methodologies to improve the 

analysis and modeling of extreme events, particularly in the context of iceberg risk collision at the 

Flemish Pass basin. By addressing the challenges specific to small data sets and providing robust 

model validation and uncertainty estimation techniques, this study significantly contributes to the 

field of extreme event analysis in offshore engineering. 

1.4.2 Task 2: Climate change and a tail based univariate extreme event model (Bayesian 

approach) 

The study developed a univariate risk-based extreme modeling (Bayesian) approach and applied 

it to Iceberg risk analysis in the Jeanne d’Arc basin. The key findings and contributions of the 

research are outlined as follows:  

• Implementation of Peak Over Threshold (POT) based Heavy Right Tail Distribution 

(HRTD): The study utilized a POT-based HRTD, like the POT-based Generalized Pareto 

Distribution (GPD), for modeling extreme events. 
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• Utilization of Bayesian approach for tail index estimation: Bayesian techniques were 

employed to estimate the tail index, providing a more robust parameter estimation process 

to capture extreme events effectively. 

• Application of Hill and SmooHill Estimators for parameter range estimation: The Hill and 

SmooHill estimators were used to determine parameter ranges, facilitating the Bayesian 

process and ensuring an accurate fit and return level estimate. 

• Incorporation of climate change impact into risk analysis: The research integrated the 

impact of climate change into the risk analysis methodology, enabling a comprehensive 

assessment of risks under changing environmental conditions. 

• Generation of risk profiles with multiple threshold Values: Rather than using a fixed 

threshold, the study generated risk profiles for three different threshold values, allowing 

for a more flexible and comprehensive analysis of extreme events. 

• Justification of threshold selection: The selection of thresholds was justified using various 

plots, including Normal Q-Q plot, Mean residual plot, and parameters stability plot. 

Additionally, the distribution CDF was directly compared with data CDF to validate the 

appropriateness of the proposed distribution. 

By implementing this novel approach and providing justifications for its key components, the 

research contributes to a deeper understanding of extreme event modeling and risk analysis in the 

offshore domain. 

1.4.3 Task 3: Bivarite extreme load model: its impact analysis on offshore system design 

This research proposes a bivariate extreme model for estimating the joint wind and wave height 

risks at Flemish Pass basin. The key findings and contributions of the study are outlined below: 
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• Examination of climate change effects: The research investigates the impact of climate 

change on the extreme behavior of wind and wave height, as well as their correlation. This 

analysis provides valuable insights into how climate change influences extreme events in 

the offshore environment. 

• Small-scale risk profile generation: The research introduces a unique approach to risk 

profile generation on a small scale, using a (0.10 × 0.10) latitude/longitude grid. This 

method sets it apart from traditional offshore extreme load analysis methods (references 

43-45). The small-scale grid allows for a more localized and detailed assessment of risks. 

• Innovative distribution selection: Traditional goodness-of-fit tests, such as AIC, BIC, and 

correlation map plot, are complemented by the application of the Max stable process 

theorem and extreme value copula for distribution selection. This novel approach enhances 

the accuracy and reliability of the chosen distributions. 

• Risk assessment at Flemish pass basin: The research findings reveal that the smaller grid 

areas at Flemish Pass basin exhibit lower risks compared to higher grid areas. Additionally, 

climate change has led to approximately 30% less correlation between wind speed and 

wave height. Over the past three decades, wind speed has increased by approximately 19%, 

and wave height has increased by about 8%. 

By presenting these contributions, the research significantly advances the understanding of 

bivariate extreme modeling for risk estimation and provides valuable insights into the impact of 

climate change on extreme events in the Flemish Pass basin area. The innovative methods and 

localized risk profile generation make this study distinct from traditional offshore extreme load 

analyses. 
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1.4.4 Task 4: Risk-based non-stationary approach (univariate). 

This research introduces and applies a dynamic risk profile for extreme wind risk analysis in the 

Grand Banks region. The key findings and contributions of the study are outlined below: 

• Comparison of stationary and non-stationary extreme predictions: The research conducts a 

comparative analysis of stationary and non-stationary extreme predictions. By examining 

both scenarios, the study gains insights into the influence of temporal variations on extreme 

wind events. 

• Incorporation of climate change impact in return levels: The research incorporates 

meaningful considerations of climate change in return levels. This integration enables a 

more accurate assessment of extreme wind risks considering changing environmental 

conditions. 

• Use of observational wind speed data: The study utilizes observational wind speed data, 

which exhibits a similar trend to Hindcast model data. This data comparison enhances the 

reliability and validity of the risk analysis. 

• Similar increasing data trends in non-stationary return levels: The non-stationary return 

levels demonstrate consistent increasing trends across different levels. This observation 

further supports the understanding of the impact of temporal changes on extreme wind 

events. 

By proposing and implementing a dynamic risk profile, this research advances the understanding 

of extreme wind risk analysis in the Grand Banks region. The comparative analysis between 

stationary and non-stationary predictions, coupled with the consideration of climate change 

impact, provides valuable insights into the dynamic nature of extreme wind events. The use of 
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observational wind speed data and the consistent trends observed in non-stationary return levels 

contribute to the robustness and relevance of the risk assessment methodology. 

1.5 Research Outcomes:  

The research conducted in this thesis has resulted in the publication of four papers in peer reviewed 

journals: 

• Task 1: Rare event risk analysis – application to iceberg collision. M. Arif, F. Khan, S. 

Ahmed, S. Imtiaz, Journal of Loss Prevention in the Process Industries, 66 (July, 2020) 

104199. https://doi.org/10.1016/j.jlp.2020.104199 

• Task 2: Evolving extreme events caused by climate change: A tail-based Bayesian approach 

for extreme event risk analysis. M. Arif and F. Khan, S. Ahmed, S. Imtiaz. Institution of 

Mechanical Engineers, Part O: Journal of Risk and Reliability (February 2021). 

https://doi.org/10.1177/1748006X21991036 

• Task 3: A generalized framework for risk based extreme load analysis in offshore system 

design. M. Arif and F. Khan, S. Ahmed, S. Imtiaz. Journal of offshore mechanics and Arctic 

engineering. 145(2): 021701, 2022. DOI: https://doi.org/10.1115/1.4055553 

• Task 4: Extreme wind load analysis using non-stationary risk-based approach. M. Arif and 

F. Khan, S. Ahmed, S. Imtiaz. Journal of Safety in Extreme Environments, 4, 247–255, 

2022. DOI:10.1007/s42797-022-00064-2 

1.6 Thesis overview 

This thesis is presented in manuscript format and consists of seven chapters. The research findings 

are reported in four chapters, namely Chapter 3 to Chapter 6, and have been published in peer-

reviewed journals. The introductory aspects, literature review, and conclusive remarks are covered 

in Chapters 1, 2, and 7, respectively. The current chapter provides a comprehensive overview of 

https://doi.org/10.1016/j.jlp.2020.104199
https://doi.org/10.1177%2F1748006X21991036
http://dx.doi.org/10.1007/s42797-022-00064-2
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the research scope, background, and contributions. The remaining chapters of this thesis 

encompass the following contents: 

Chapter 2  

This chapter serves as a comprehensive review and analysis of existing research in the areas of 

extreme event modeling, offshore engineering, and risk assessment. It carefully evaluates the 

strengths and weaknesses of the current literature, providing valuable insights into the state of the 

field. Through this assessment, gaps in past research are identified, highlighting areas that require 

further exploration and providing opportunities for current research to make significant 

contributions to the domain. By synthesizing and critically examining the existing body of 

knowledge, this chapter lays the foundation for advancing the understanding and application of 

extreme event modeling in the context of offshore engineering and risk assessment. 

Chapter 3 

This chapter introduces a novel heavy right tail modeling approach designed to effectively capture 

current extreme characteristics in a univariate context. Unlike traditional extreme value theory-

based techniques that struggle to capture present-day extremeness, this approach proves to be more 

suitable. The Hill and SmooHill-estimators are employed for precise parameter estimation, 

enhancing the accuracy of the model. The modeling outcomes are subsequently integrated into a 

risk assessment methodology specifically tailored for offshore engineering. This innovative 

methodology offers flexibility and adaptability, providing valuable insights for risk assessment. 

This chapter's significant contributions were recognized and resulted in its publication in the 

Journal of Loss Prevention in the Process Industries in July 2020. By addressing the limitations of 

existing techniques and proposing a more effective approach, this research makes a noteworthy 

advancement in the field of risk assessment for offshore engineering.  
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Chapter 4  

This chapter introduces an innovative univariate flexible risk-based methodology that incorporates 

a Bayesian approach for model parameter estimation. By utilizing Bayesian techniques, the model 

parameter estimation process becomes more robust and reliable, leading to improved risk 

assessments for offshore engineering. Furthermore, the methodology considers the issue of climate 

change and its impact on risk assessment. By integrating climate change considerations, the risk 

assessment becomes more comprehensive and adaptive to changing environmental conditions. 

 

The significance of this research was recognized, and the chapter was published in the Journal of 

Risk and Reliability in February 2021. Through its novel approach and inclusion of climate change 

factors, this chapter makes a valuable contribution to the field of risk assessment for offshore 

engineering. 

Chapter 5  

This chapter introduces a novel multivariate methodology that encompasses risk-based approaches 

presented in Chapter 3 and Chapter 4. The research delves into the examination of correlations and 

dependencies between extreme events, considering the impact of current climate change. Joint 

modeling of extreme events is a key feature of this methodology, which enhances the accuracy 

and comprehensiveness of risk assessments. One distinct aspect of this research lies in the 

proposition of a low-resolution risk profile concept and the adaptation of bivariate modeling 

outcomes in the risk assessment methodology. By incorporating these innovative ideas, the study 

introduces a unique perspective to risk assessment in the offshore domain. The chapter's 

significance was recognized, leading to its publication in the Journal of Offshore Mechanics and 

Arctic Engineering in October 2022. Through its multivariate approach and incorporation of 
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climate change impact, this research makes a noteworthy contribution to advancing risk-based 

methodologies for offshore engineering. 

Chapter 6  

This chapter introduces a dynamic risk profile methodology achieved through the adoption of the 

Max-stable process for extreme modeling. The methodology provides a comprehensive and 

detailed risk profile that adapts to changing environmental conditions and offers valuable insights 

for offshore safety. By utilizing the Max-stable process the method enhances the accuracy and 

reliability of extreme modeling. The focus of this method is to investigate potential inter-period 

trends in extreme wind loads, spanning from historical periods to future projections. By analyzing 

and comparing data from various time frames, the study focuses on identifying significant changes 

in the occurrence and intensity of extreme wind events in the offshore environment. This chapter's 

significance and contributions were acknowledged, leading to its publication in the Journal of 

Safety in Extreme Environments in September 2022. Through its dynamic approach and utilization 

of the Max-stable process, this research advances the understanding of extreme wind events and 

their implications in offshore engineering. 

Chapter 7  

This chapter provides a comprehensive overview of the contributions and conclusions derived 

from the thesis. The key findings and insights from the research are summarized, highlighting the 

significance of the study's outcomes in the field of offshore engineering and risk assessment. 

Moreover, the chapter offers valuable recommendations for future studies, identifying potential 

areas for further exploration and advancement. By proposing future research directions, the study 

aims to inspire and guide researchers in their efforts to build upon the current findings and address 

emerging challenges in offshore engineering. Figure 1.2 illustrates the structure of the thesis,  
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Figure 1.2. Thesis outline. 
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depicting the organization and flow of the various chapters. This visual representation aids in 

understanding the sequential development of the research and how each chapter contributes to the 

overall narrative. 

1.7. Authorship contribution Statement 

The doctoral candidate, Mohammad Arif, is the original author of this thesis, and played a key role 

in the conceptualization, methodology development, formal analysis, investigation, and the writing 

of the original draft as well as the subsequent revisions and editing. The supervisors also made 

significant contributions; the details of which are as follows: 

Faisal Khan (Supervisor): Dr. Khan was involved in the conceptualization of the research, 

contributed to the methodology development, analysis of results, and provided valuable feedback 

during the writing process. Also supervised the research project and was involved in project 

administration and funding acquisition. 

Salim Ahmed (Co-supervisor): Dr. Ahmed participated in refining the methodology, provided 

feedback during the writing phase, and supervised the research. 

Syed Imtiaz (Co-supervisor): Dr. Imtiaz contributed to the methodology development, provided 

valuable feedback during the writing, and editing process, and supervised the research. 
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2. LITERATURE REVIEW  

 

2.1 Introduction 

Extreme event risk assessment is a crucial area of offshore engineering, as it involves identifying 

and evaluating high-impact, low-probability events (with occurrence probability lower than 10-5) 

that can pose significant threats to offshore structures, personnel, and the marine environment. 

This assessment is made more difficult by the problems caused by climate change. The primary 

goal of this study is to identify a suitable modeling approach for capturing current extremes in the 

offshore engineering domain, along with an effective risk assessment methodology and a proper 

framework for incorporating modeling outcomes into risk evaluation. By examining 

methodologies utilized in diverse fields including business, science, and engineering, the review 

seeks to identify best practices and adapt them to the offshore context. Furthermore, it will explore 

the challenges associated with extreme event risk assessment in offshore domain, such as data 

scarcity, uncertainties in climate change projections, and non-stationarity of extreme events. Key 

focus will be given to extreme modeling approaches, risk assessment methodologies, and 

frameworks that can effectively integrate modeling outcomes into a comprehensive risk evaluation 

process. The objective of this study is to offer valuable insights into the effectiveness of past and 

present methodologies in the context of current climate change and global warming issues. 

Specifically, the focus is on assessing how past methodologies can address the challenges posed 

by extreme events and climate change to ensure the safety and resilience of offshore structures and 

operations. Additionally, the research aims to identify prospects for further advancements in this 
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area, with the goal of enhancing the capacity of offshore engineering to cope with evolving 

environmental conditions and potential risks.  

2.2 Bibliometrics Analysis  

This research conducts a bibliometric analysis within the Engineering domain to evaluate the 

current state and potential for modeling extreme events. Initially, the study encompasses various 

domains such as Business, Science, and Engineering. However, it eventually narrows its focus to 

Asset Integrity Management, as indicated in Figure 2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Cone diagram for rare event modeling literature for the period 1968-2018. 

 

The analysis centers on three distinct categories: Operating Environment, Degradation Modeling, 

and Process Accident Events. By thoroughly examining academic research work, the study aims 

to identify prominent authors, institutions, and nations actively engaged in modeling extreme 

events. Moreover, the study highlights leading journals in this field and explores their co-citation 

history, thereby offering valuable insights into the trends and progress within extreme event 
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research, particularly within the offshore engineering domain. Data for the analysis is gathered 

from three different databases, namely Web of Science Core Collection, Scopus, and Google 

Scholar, with access available through Memorial University library database facilities. To obtain 

relevant data, the researchers conducted searches on all three databases using specific, restricted 

keywords, as depicted in Figure 2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Framework for Bibliometric analysis. 
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The data types considered encompass "articles," "proceeding papers," "reviews," "theses," and 

"textbooks." The bibliometric analysis was performed using freely available tools, namely 

VOSviewer (www.vosviewer.com) and CiteSpace (www.citnetexplorer.nl), with the focus 

confined solely to the Engineering domain. The data period considered for analysis spans from 

January 1968 to January 2018, enabling a comprehensive examination of the historical landscape 

and progress in extreme event modeling within the Engineering domain. Figure 2.3 provides a 

geographical overview of some prominent countries worldwide, highlighting their relevance in 

extreme event modeling. The figure offers a clear picture of the global distribution of research 

related to extreme events. In Figure 2.4, the corresponding density plot illustrates the concentration 

of research on extreme event modeling, giving insights into the regions with higher research 

activity and contributions.  

 

Figure 2.3. Modeling of extreme events': sources of contribution across different geographical 

locations and their links. 
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Figure 2.4. Density plot: Extreme events modelling contribution across different geographical 

locations. 

 

Figure 2.5. The cooperation network of notable authors from peer-reviewed publications in the 

field of extreme events. 

 

Figure 2.5 shows the prominent authors in extreme event modeling, emphasizing their significant 

theoretical contributions in different domains as shown in the highlighted sections of the plots. 
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Within the engineering domain, Castillo et al. (2005), Jan Beirlant et al. (2006), and Sidney 

Resnick (2007), and Devore (2011) are identified as key contributors to extreme event modeling 

and its application.  In the context of risk analysis, Figure 2.6 emphasizes the authors’ contributions 

in process accident event risk analysis. Faisal Khan's substantial contribution in this area is 

highlighted, indicating his significant impact on the research.  

 

Figure 2.6. Cooperation network of authors of peer reviewed publications in the domain of process 

accident risk analysis.   
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Figure 2.7. Cooperation network of affiliated institution in the domain of process accident risk 

analysis.   

Figure 2.7 highlights the prominent institutions with noteworthy contributions to risk analysis in 

process accident event modeling. Memorial University is recognized for its substantial research 

output in this field. These figures and density plots offer a comprehensive view of the influential 

researchers and institutions in extreme event modeling and risk analysis, providing valuable 

insights into the distribution of research contributions and the geographical landscape of this 

critical domain. The following sections 2.3 and 2.4, highlight comprehensive findings from the 

literature review, including analyses of past and current research on methodologies, challenges, 

and future directions related to "Extreme Event Modeling" and "Risk Analysis." 
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2.3 Extreme event modeling 

 

• Definition of extreme event: In the literature, occurrences characterized by "low 

probability" and "high impact" are commonly referred to as extreme events or rare events. 

Scholars have used various terms to describe such phenomena, including "extreme events" 

(Castillo et al., 2005), "black swan events" (Taleb, 2007), "heavy tail events" (Resnick, 

2007; Nair et al., 2013 etc.), and "rare events" (Rubino and Tuffin, 2009). These 

terminologies emphasize the infrequent nature of these events and the significant 

consequences they entail when they do occur. Devore (2011) introduced precise 

mathematical definitions for "outliers" and "extreme outliers," making them particularly 

relevant in the context of offshore engineering, especially when dealing with extreme 

events. Researchers for example, (Mcphillips et al., 2018) have emphasized the necessity of 

xestablishing a standardized threshold for rarity to ensure consistency in risk analysis. The 

significance of rare events lies in their potential to cause catastrophic consequences, 

making their comprehensive investigation imperative in design and decision-making 

processes. 

• Probabilistic modeling techniques: Extreme Value Theory (EVT) is a fundamental 

approach in rare event modeling, grounded in the statistical theory of extreme values. It 

provides a means for researchers to model the tail behavior of extreme events, making it 

well-suited for estimating probabilities of extreme occurrences. The use of methodologies 

based on Extreme Value Theory (EVT) is prevalent, as evidenced by the works of scholars 

like Coles, 2001; Agbeyegbe and Leon, 2002; Gilli and Keliezi, 2006; Resnick, 2007; 

Levine, 2009; Scarrott and Macdonald, 2010; Nair et al., 2013; Das et al., 2016; Asadi and 

Melchers, Wang and Li, 2016; Hu and Ayyub, 2017; Pryor and Barthelmie, 2021; Debnath 
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et al., 2021, and others. For a comprehensive theoretical background and its practical 

application in engineering, Castillo et al., 2005 and Beirlant et al., 2006 are highly 

recommended sources. Among the above various methodologies, the Peak Over Threshold 

(POT) based Generalized Pareto Distribution (GPD) and Block maxima (BM) based 

Generalized Extreme Value (GEV) stand out as the most popular and widely used in 

diverse domains. Resnick (2007) presents the concept of Heavy Tail Phenomenon, which 

is more significant in tail probabilistic and statistical modeling approaches under current 

extremeness.  The above methodology offers an advanced statistical technique to model 

tail behavior and estimate probabilities of extreme events. In addition, the Monte Carlo 

simulations are commonly employed to assess structural response under extreme 

conditions (Rubino and Tuffin, 2009; Estecahandy, 2015, etc.). Probabilistic methods are 

favored for their computational efficiency and ease of implementation. 

• Multivariate dependency: Extensive research has been conducted on "Extreme Value 

Theory" in both bivariate and multivariate scenarios (Tawn 1988; Shiau 2003; Goodarzi et 

al., 2012, and others). However, certain methods are stringent when it comes to selecting a 

marginal distribution, as exemplified by studies such as Vanem, 2015; Gaidai et al., 2020; 

Toshkova et al., 2020, among others. To offer greater flexibility in choosing a marginal 

distribution, copula-based methods have emerged as a popular alternative (Candela and 

Aronica, 2017; Manuel et al., 2018; Zhang et al., 2018; Kang, 2019; Hu and Ayyub, 2019; 

Fang et al., 2020; Liu et al., 2020; Ross et al., 2020, Haselsteiner et al., 2021, and others). 

These approaches consider the interdependencies among various environmental variables 

in offshore engineering, a critical factor for accurately modeling the dependency of extreme 

events. 
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• Non-stationary analysis: The attention towards the impact of climate change on extreme 

events in the offshore domain has been considerable. Researchers have extensively utilized 

methods such as non-stationary approaches to investigate changing environmental 

conditions over time (Katz et al., 2002, Panagoulia et al., 2014; Vanem, E. 2015; Wang et 

al., 2017; Paola et al., 2018; Silva and Simonovic, 2020, and others). Moreover, several 

studies, e.g. Zhang et al., 2018, have demonstrated the effectiveness of time-domain 

simulations in capturing the dynamic behavior of offshore structures during extreme 

events. These approaches consider the interplay between climate change and extreme 

events in offshore settings. 

• Numerical simulations: Numerical simulations play a crucial role in understanding the 

behavior of offshore structures under extreme loading conditions. For example, (Moens 

and Vandepitte, 2006) utilized Finite Element Analysis (FEA) and (Rij et al., 2019) 

implemented Computational Fluid Dynamics (CFD) simulations to assess structural 

response and dynamic behavior during extreme events. However, this methodology is 

computationally expensive, and was found to be more complicated for the offshore domain.   

• Machine learning and data-driven approaches: Machine learning techniques have gained 

popularity in extreme event modeling due to their ability to identify patterns and 

relationships in large datasets. For example: (Guth and Sapsis, 2019) have explored the use 

of machine learning algorithms, such as support vector machines, neural networks, and 

random forests, to predict extreme events and improve forecasting accuracy. Liu et al., 

2020 employed artificial intelligence and machine learning algorithms to optimize extreme 

event risk analysis. AI-based methods offer opportunities for pattern recognition, anomaly 

detection, and real-time decision-making, enabling proactive risk management.  
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• Model parameters and uncertainty estimation: Various methods are widely used in extreme 

event modeling, including Maximum Likelihood Estimation (MLE), Method of Moments, 

Probability-Weighted Moments (PWM, Hosking and Wallis, 1987), and L-Moment 

methods. Each method has its own strengths and limitations. For instance, the efficiency 

of MLE relies on the sample size, while Bayesian methods offer an alternative approach 

with wide applicability (Lee, 2007). Additionally, Hill (Hill, 1975) and SmooHill (Resnick, 

1997) methods are commonly employed for tail modeling. Choice of an appropriate 

estimation method depends on data characteristics, modeling assumptions, and the desired 

level of accuracy for the specific application. Incorporating uncertainty quantification 

techniques, such as bootstrapping (Efron, 1979), Bayesian inference, model selection 

(using AIC or BIC), Full sample or subsample bootstraps (Politis et al., 1999), model 

structural uncertainty methods (like Ensemble modeling), Markov Chain Monte Carlo 

(MCMC) simulation, and sensitivity analysis, can enhance the reliability of extreme 

modeling results and support informed decision-making in the face of capturing extremes.  

2.4 Risk analysis 

 

Quantifying risk is a fundamental aspect of decision-making and planning in various domains, 

including finance, insurance, healthcare, and engineering. By assigning numerical values to risks, 

organizations and individuals can better understand potential hazards, make informed choices, and 

develop strategies to mitigate adverse outcomes. In a risk context, two critical elements are 

considered:  

• Probability: This refers to the likelihood of a particular event or scenario occurring. It is 

typically expressed as a numerical value between 0 (indicating no chance of occurrence) 

and 1 (indicating certainty). 
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• Consequence: This represents the potential impact or severity of the event if it were to 

happen. Effects can vary in scope, ranging from minor inconveniences to catastrophic 

outcomes. 

Therefore, assessing and managing risks involves understanding the potential hazards, evaluating 

their likelihood and potential consequences, and implementing measures to reduce their negative 

impacts. (Bedford and Cooke, 2001) provided a comprehensive and in-depth examination of 

Probabilistic Risk Analysis (PRA). Over the years, numerous methodologies have been proposed 

for conducting risk analyses. (Tixier et al. 2002) provided a comprehensive review, encompassing 

62 risk analysis methodologies, which were categorized into four distinct groups: Deterministic, 

probabilistic, qualitative, and quantitative. These approaches are designed to enhance structural 

robustness, optimize emergency response planning, and facilitate the implementation of risk 

mitigation measures. Among all of them Faisal Kahn's research group frequently utilizes the 

quantifying risk-based methodology, which has been applied in various offshore studies, such as 

Sulistiyono et al. (2015), particularly in the context of low-temperature environments. This 

research adopts a similar risk-based methodologies to evaluate and address risks, offering valuable 

insights into quantifying risk and facilitating decision-making processes within the offshore 

domain. 

 

2.5 Research gap/opportunity  

 

Offshore engineering encounters several challenges when it comes to evaluating and handling risks 

associated with extreme events. These low-probability, high-impact occurrences can lead to severe 

consequences for offshore structures, personnel, and the marine environment. Despite considerable 

advancements in extreme event risk analysis, as described in the previous sections, the literature 
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review has revealed specific research gaps in this field within the offshore domain. The identified 

research gaps are as follows: 

• Mathematical representation of an extreme event: Before conducting extreme modeling in 

the offshore domain, it is essential to establish a well-defined criterion for identifying 

which events are considered extreme. This criterion will serve as the basis for selecting and 

analyzing the specific events that fall within the scope of extreme modeling. 

• Data scarcity and quality: One of the primary challenges in extreme event risk analysis is 

the scarcity of data. Offshore structures are designed to withstand low probability, high-

impact events, but historical data may not be sufficient/available to accurately assess the 

risks associated with such rare occurrences. Data collection in offshore environments is 

often expensive and logistically challenging. Research efforts are required to develop 

innovative ways to obtain and validate reliable data for accurate risk analysis. 

• Climate change adaptation: One major research gap is the integration of climate change 

projections into extreme event risk modeling. As climate patterns change, traditional 

historical data may become less relevant in predicting future extreme events. There is a 

need for research that effectively integrates climate change projections to capture potential 

shifts in the frequency, intensity, and occurrence of extreme events in offshore 

environments.  

• Advanced modeling techniques: Extreme Value Theory (EVT) based modeling approaches 

have proven to be effective in extreme modeling across various domains. However, their 

performance under the influence of climate change becomes less clear and needs further 

investigation. If EVT based methodologies fail to adequately capture the current 

extremeness, alternative methodologies/advanced modeling techniques are required. In 
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addition, investigating and incorporating non-linear effects in extreme event modeling 

would provide a more accurate understanding of structural responses and potential failure 

modes under severe conditions.  

• Non-stationarity of extreme events: Traditional statistical models often assume stationarity, 

meaning that the statistical properties of extreme events remain constant over time. 

However, in the context of climate change and changing environmental conditions, 

extreme events may exhibit non-stationarity. Bridging this research gap involves 

developing new approaches that can capture the evolving nature of extreme events and 

their impact on offshore engineering structures. 

• Multi-hazard risk assessment: Offshore structures are vulnerable to multiple hazards, such 

as Icebergs, hurricanes, earthquakes, tsunamis, and more. Currently, most risk assessments 

consider these hazards individually. There is a research gap in developing comprehensive 

multi-hazard risk assessment methodologies to better understand and manage the combined 

effects of different extreme events on offshore structures. 

• Uncertainty quantification: Uncertainty exists in various aspects of extreme events 

modeling, including data, model parameters, and climate change projections. Quantifying 

uncertainties in the risk assessment process and exploring their impacts on the results are 

crucial to provide decision-makers with a more comprehensive understanding of potential 

risks. 

• Validation of model predictions: Validating extreme event risk models using limited real-

world data poses a challenge. Establishing reliable validation processes and assessing the 

robustness of model predictions are crucial to ensure the accuracy and reliability of risk 

assessments. 
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It needs significant research efforts to address the above research gap in offshore engineering risk 

analysis for extreme events modeling for improving the resilience and safety of offshore structures. 

By integrating climate change projections, accounting for non-stationarity, enhancing data quality, 

exploring advanced modeling techniques, and adopting multi-hazard risk assessment, this research 

aims to bridge these gaps and contribute to more accurate and comprehensive extreme event risk 

analysis in the offshore engineering domain. 
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3. RARE EVENT RISK ANALYSIS – 

APPLICATION TO ICEBERG COLLISION 

 

Preface 

This manuscript is based on a previously published version in the Journal of Loss Prevention in 

the Process Industries, and I am the primary author of this research paper. Working under the 

guidance of co-authors Faisal Khan, Salim Ahmed, and Syed Imtiaz, I implemented a statistical 

model to calculate iceberg collision risk assessments at the Flemish Pass basin. Throughout the 

research process, I conducted the literature review, collected the necessary data, developed the 

methodology, and performed the analysis and modeling. The co-authors played crucial roles in the 

project as well, contributing to concept development, writing the methodology, reviewing, and 

editing the manuscript, and validating the modeling outcomes. Initially, I drafted the manuscript, 

and later I incorporated feedback from the other authors and the peer-review process to make 

necessary revisions and improvements. Co-author Faisal Khan was responsible for project 

management and funding acquisition for this research. This collaborative effort allowed us to bring 

together different expertise and insights to produce a comprehensive and robust study on iceberg 

collision risk assessment in the offshore domain. 

Abstract 

 

To design an engineering system, testing in extreme conditions is at least recommended if not 

required. There are ambiguities about how to define an extreme state and how to consider it in the 

design of a system or its operation. The probability estimation of such an event is challenging due 

to data scarcity, especially in many engineering domains, e.g., offshore development. In this study, 
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available techniques for analyzing the probability of extreme events are examined for their 

suitability in engineering applications, and a framework is proposed for rare event risk analysis. 

The framework is comprised of three phases. In the first phase, the outlier based extreme value 

theory is implemented to estimate the rare event probability. The maximum likelihood criterion is 

used to estimate the extreme distribution parameters. In the second phase, the rare event is 

considered as a heavy tail event, and the tail index is estimated through the Hill and the SmooHill 

estimator. In the third phase, the uncertainty analysis is conducted, and the risk is computed. The 

proposed methodology is tested for extreme iceberg risk assessment on large offshore structures 

in the Flemish Pass basin. For this specific case, the estimated design extreme iceberg speed was 

4.31 km/hr, with an occurrence probability of 3.61E-06.   

Keywords: Rare event; Risk; Heavy tail event; SmooHill; Block Maxima; Peak Over Threshold. 

3.1. Introduction  

Rare or infrequent events with high impacts are of great concern in industrial and business 

operations. There is no precise value for the term “rare”, and it depends on the domain of study. 

For example, in the aviation industry, a catastrophic failure may be considered as a rare event, and 

acceptable probability is less than 10−9 for an average flight time (about 8 hours journey) (Rubino 

and Tuffin, 2009). Similarly, in the finance industry, in the case of a stock market crash, the failure 

probability of 10−5 will have a huge impact and may be considered as a rare event (Levine, 2009). 

Modeling of such an event is a key issue and has attracted the attention of engineers and scientists. 

An engineer may have to design a tall structure considering the highest magnitude of earthquake 

in that region over about 100 years. In the offshore domain, the worst hurricane or extreme icebergs 

can be subjects of concern.  
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Towards rare event modeling, Taleb (Taleb, 2007) defined the term “rare event” as a “black swan”. 

There is a growing concern regarding the study of black swan events with insufficient data (Aven, 

2015). For hydrology, the extreme conditions such as extreme wind, extreme wave height, extreme 

floods, and others are generally estimated using the Extreme Value Theory (EVT). The ultimate 

objective of such a study is to prevent and/or to reduce the impact of such potential events. To 

identify the engineering problems related to rare events, the ocean and offshore engineering 

domain is categorized into three subdomains, namely, operating environment, structural 

degradation and process events (accidents). Within the category of operating environment, extreme 

wind, extreme ice load, extreme wave height, extreme meteorological condition and extreme flood 

are the risk sources. Extreme fatigue, the largest pits and the largest concentration of chemical 

agents may contribute to structural degradation. As process events, extreme consequences such as 

a blowout (Yang et al., 2015) or major process accidents (El-Gheriani et al., 2017a) may also be 

considered as rare events. Several theoretical approaches have been proposed to model such an 

event, for example, the Monte Carlo simulation (Rubino and Tuffin, 2009; Estecahandy et al., 

2015; Rocchetta et al., 2015), the Mixer model (Hanum et al., 2015), and the alternative approach 

(Arima et al., 2010). Two practical approaches widely used in the case of extreme analysis are the 

Peak Over Threshold (POT) based Generalised Pareto Distribution (GPD) (for example (Das et 

al., 2016), and the Block Maxima (BM) based Generalized Extreme Value (GEV) (for example, 

see (Levine, 2009; Asadi and Melchers, 2017; Agbeyegbe and Leon, 2002; Gilli and Keliezi, 2006 

). However, questions remain regarding whether all the preceding extreme cases should be 

considered as rare events or not. In the engineering domain, an event occurrence probability less 

than one in hundred thousand is often considered as rare. The study presented here highlights the 

rare event scenario which is unique for ocean engineering and offshore system design (domain 



 

38 
 

specific). It is recognized that classical statistical approaches are not the most effective way of 

modeling rare event. It is therefore in the present study a logic-based approach is considered to 

model a rare event. The logic-based approach provide reasonable source of the data on rare event 

and thus enable use of advanced statistical approach to model rare event frequency and probability. 

For modeling such events, one needs to precisely define the term “rare event”. Devore proposed a 

scale to measure the outliers and extreme outliers in a data set (Devore, 2011). In the present work, 

Devore's concept is adopted to classify an event as rare or not. A data set having extreme outliers 

is considered as rare event data. This paper examines the applicability and efficiency of some well-

established models from other fields of study such as finance, and hydrology, to the offshore 

engineering domain for the purpose of rare event modeling; more specifically, the GPD and the 

GEV are tested. If GPD or GEV are not able to capture extreme characteristics of a rare event, 

then the rare event may be considered as heavy tail events. The tail index is estimated through Hill 

(Hill, 1975) and SmooHill (Resnick and Starica, 1997) estimators.  

In general, rare event modeling suffers from uncertainty to a high degree. Therefore, it leads to 

how engineering design can deal with this vast uncertainty. However, modern engineering designs 

have been used the concept of flexibility to effectively improve the expected performance of a 

system in an uncertain environment (Neufville and Scholtes, 2011). The flexible design risk 

estimation is a common problem in risk analysis. The flexibility concept was applied to design a 

water supply system (Zhang and Babovic, 2011) and a water management system (Deng et al., 

2013; Manocha and Babovic, 2018). However, to develop such an idea for the rare event is 

challenging, and climate changes make this task more complicated in the ocean engineering 

domain. This study implements the flexibility concept in the ocean engineering domain under rare 

event condition for the design purpose. The proposed extreme event risk-based design approach is 
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a flexible engineering design approach. The flexibility is achieved due to adoptable risk acceptance 

criteria in design purpose. For example, in the current case study of the iceberg risk-based design 

approach is explained using minimum acceptable risk criteria. The risk is estimated considering 

impact energy which is a function of iceberg size and speed. This criterion is different compared 

to traditional iceberg analysis (C-CORE, 2015; Husky oil operations limited as operator, 2000). 

This paper is dedicated to the iceberg risk estimate from the prospect of engineering design in the 

Flemish Pass basin. The basin is situated in the North Atlantic Ocean (around 400 km east of St. 

John’s, Newfoundland and Labrador) and might be the site of a new offshore oil bonanza. Offshore 

drilling operators might find the results useful in avoiding any future unwanted situation by 

considering the estimated iceberg risk (through extreme iceberg speed prediction) in the iceberg 

risk management plan for the Flemish Pass basin. The manuscript is structured as follows: 

following the introduction, Section 3.2 defines a rare event and describes the proposed 

methodology to model rare events. Section 3.3 provides an overview of the case studies and 

presents results. Finally, Section 3.4 provides conclusions and recommendations for future works.                                                                                                                                   

3.2 Methodology 

3.2.1 Defining a rare event                                                                                                                                       

A rare event is traditionally defined as an event with a low probability which may have a high 

impact. This research attempts to precisely define the term “rare event” and justify it with a specific 

criterion. To accomplish this, first, the terms “outliers” and “extreme outliers” are defined. 

According to Devore (Devore, 2011), in a data set, any data point greater than Q3+1.5×(Q3-Q1) 

is an outlier, and a data point greater than Q3+3×(Q3-Q1) is an extreme outlier, where Q3 - Q1= 

Interquartile Range (IQR), Q3= third quartile and Q1= first quartile. Therefore, the data sets have 

been classified into three different categories: the sample data set X may be a case of having “no 
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outliers”, “outliers” or “extreme outliers (rare events)” and mathematically expressed (for right 

tail) as 

{

𝑛𝑜 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠𝑖𝑓 𝑥 ≤ (Q3 + 1.5 × IQR) ;  for all x ∈ X 
ℎ𝑎𝑠 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠𝑖𝑓 (Q3 + 1.5 × IQR < x ≤ (𝑄3 + 3 × IQR); 𝑓𝑜𝑟 𝑎𝑛𝑦 x ∈ X

ℎ𝑎𝑠 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 (𝑅𝑎𝑟𝑒 𝑒𝑣𝑒𝑛𝑡)𝑖𝑓 𝑥 > (𝑄3 +  3 × 𝐼𝑄𝑅);  𝑓𝑜𝑟 𝑎𝑛𝑦 x ∈ X
             (3.1) 

This research considers an extreme outlier event as a rare event. Data sets with outliers have tails 

(regular or fat), and these tails become heavier for data sets having “extreme outliers”. Tails may 

be right or left and this classification is equally applicable for data with left tails. If the data sets 

have no outliers, then any classical statistics (the case for central limit theory) may be applied for 

modeling which is not of interest for the present study. The focus here is on rare event cases 

(extreme outliers), where the data sets have a heavy right tail.  

3.2.2 The Proposed framework 

A heavy right tail describes a system behaviour that is driven by the large values or, in extreme 

cases, by a single large value. The tail index is characterized using two well-known methods,  

namely, the Hill estimator and the SmooHill estimator. Using this tail index, the Heavy Right Tail 

Distribution (HRTD) is implemented and the return levels are estimated. The 100-year return 

periods are most common in extreme analysis e.g. (Das et al., 2016; Sulistiyono et al., 2015) and 

in rare event modeling context, 100 years are not the most extreme. Therefore, a 1000-year aim is 

considered to adjust the time window of a rarest event and predictability of the event beyond a 

typical lifetime. In addition to this principal aim, the framework attempts to implement “EVT” as 

a part of outlier-based approach. This gives an opportunity to compare the results and check the 

efficiency of the conventional approaches in the case of rare event modeling with limited sample 

size. The proposed framework to analyze rare events is presented in Figure 3.1. 
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Figure 3.1. The proposed framework for risk analysis. 

3.2.2.1 Phase 1: Outlier based approach (traditional)                          

The EVT is implemented under two fundamental concepts: the BM and POT. The POT approach 

uses all significant observations, while BM misses some significant observations which may fall 

beyond the block. For that reason, in extreme value statistics, most researchers prefer the POT 
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method over the BM method. However, in the case of independent and identical distribution (IID) 

assumption, the convergence rates of the two ways are comparable (Bucher and Zhou, 2021). The 

Generalized Extreme Value (GEV) is the standard form of three distributions; namely Gumbel, 

Frechet, and Weibull distributions (Castillo et al., 2005). The Frechet distribution has a long tail 

compared to the Weibull and Gumbel. On the other hand, according to the Pickand theorem 

(Pickands, 1975), for any extreme analysis, the distribution of extreme events above a high 

threshold is a Generalised Pareto Distribution (GPD). The Cumulative Distribution Function 

(CDF) of GPD is defined as (Castillo et al., 2005):  

𝐹(𝑥) = {
1 − [1 − 𝑘 (

𝑥−𝜇

𝜎
)]

1

𝑘
                  𝑖𝑓 𝑘 ≠ 0,

1 − 𝑒−(
𝑥−𝜇

𝜎
)                   𝑖𝑓 𝑘 =  0, 𝑥 ≥ 0,  

                                                                    (3.2) 

where 𝜎 > 0, and stands for the scale parameter;  𝑘 is the shape parameter and 𝜇 is the location 

parameter. For a random variable X, (in the case of POT approach) the excess distribution over a 

threshold u is defined as:   

𝐹𝑢(𝑥) = 𝑃(𝑋 −  𝑢 ≤  𝑥 | 𝑥 > 𝑢).                                                                                              (3.3)   

The expected return level in the annual scale is denoted by 𝑥𝑚 (the likelihood of extreme events 

and m-year return level stands for the level expected once in every m-year), and is determined as 

(Das et al., 2016; Castillo et al., 2005): 

 𝑥𝑚 = {
𝑢 + (

𝜎

𝑘
) [(𝑚 × 𝑛𝑒 ×  𝑝𝑢)𝑘 − 1]      𝑓𝑜𝑟 𝑘 ≠ 0,

𝑢 + 𝜎𝑙𝑜𝑔(𝑚 × 𝑛𝑒 × 𝑝𝑢)                  𝑓𝑜𝑟 𝑘 = 0,
                                                             (3.4) 

where 𝑢 is the threshold, 𝑛𝑒 is the number of mean events per year, 𝑝𝑢 is the probability (exceed 

rate) and computed as P(𝑋 > 𝑢). The BM approach deals with all maximum observations from 

several blocks and the GEV family is appropriate to model the data set consisting of all maximum 



 

43 
 

observations. The CDF of Generalized Extreme Value Distribution (GEV) is given as (Castillo et 

al., 2005):   

𝐹(𝑥) = {
𝑒𝑥𝑝 {− [1 − 𝑘 (

𝑥−𝜇

𝜎
)]

1

𝑘
 }        𝑖𝑓 𝑘 ≠ 0,

𝑒𝑥𝑝 {−
(𝑥−𝜇)

𝜎
}                            𝑖𝑓 𝑘 = 0.

                                                                    (3.5) 

The case of interest here is only when 𝑘 > 0, which is bounded and approaches to Pareto 

distribution in the right tail. The return level of the GEV is defined as (Castillo et al., 2005): 

𝑥𝑚 = {
𝜇 +

𝜎

𝑘
[1 − (− log  (1 − 𝑝)𝑘 ]                   𝑓𝑜𝑟 𝑘 ≠ 0,

𝜇 − 𝜎 log{− log(1 − 𝑝)}                           𝑓𝑜𝑟 𝑘 = 0.
                                                      (3.6) 

The occurrence probability p is related to m-return level as 
1

𝑚
. The POT and the BM approaches 

have merits and demerits based on implementation, sample size and the case of study. This 

research implements both methods as part of an outlier-based approach, to check their capabilities 

of identifying a rare event. This study uses Maximum Likelihood Estimation (MLE) method to 

estimate the distribution parameters. In MLE, the likelihood function of independent observations 

𝑥1, 𝑥2, … , 𝑥𝑛 is defined as:  

𝐿(𝑥𝑖;  𝜃) = ∏ 𝑓(𝑥𝑖; 𝜃)𝑛
𝑖=1 ,                                                                                                            (3.7) 

where 𝑓 =
𝑑𝐹

𝑑𝑥
, and 𝜃 represents the distribution parameters. For the case of GPD, 𝜃 = 𝜎, 𝑘 and in 

the case of GEV, 𝜃 = 𝜇, 𝜎 and 𝑘. The efficiency of the MLE depends on the sample size and its 

shape parameter. If the sample size is not sufficient to fulfill the convergence criteria of the MLE 

method, then the Probability Weighted Moment (PWM) (Hosking and Wallis, 1987); is an 

alternative. However, if 𝑘 < 0, PWM performances become a little worse than with MLE, 

otherwise, these two methods are comparable at 𝑘 ≈ 0.2 (Deidda and Puliga, 2009).  
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 3.2.2.2 Phase 2: Tail based (Non-traditional) approach  

In the case of “extreme outliers” or a rare event, the tail must be heavier than for the case of 

“outliers”. From the rare event prospect, this work focuses on the extreme of extremes. More 

precisely, the fundamental interest is in heavy tail, which is heavier than the exponential 

distribution and the regular extreme distribution (GPD or GEV). However, there are limited data 

for rare event scenarios in engineering. The rare event characteristic is examined as a heavy tail 

event (Resnick, 2007), and (Nair et al., 2013). The objective here is to focus on the tail instead of 

looking at full distribution. More precisely, the focus is on the shape parameter instead of the scale 

parameter as a part of the semiparametric modeling approach. In such situations, finding the tail 

index (exact position where the tail starts) and how this tail index is used for rare event prediction 

will be vital. To estimate tail index, several methods are proposed in the literature e.g. (Resnick, 

2007). Among them, the Hill estimator (Hill, 1975) is widely used to estimate the tail index; 

however, it has two difficulties. If the distribution is far from the Pareto, then the estimates can be 

biased (Resnick, 2007); also, the Hill estimator is highly sensitive to the choice of the higher order 

statistics (Resnick and Starica, 1997). To minimize this sensitivity issue, the SmooHill estimator 

was proposed by Resnick and Starica, 1997. The bias issue has less relevance in the present study, 

as the purpose is to model rare events, where the sample distribution is likely to be of Pareto type. 

Besides those methods, the weighted Hill estimator, the qq estimator, and the moment estimator 

described in (Resnick, 2007) are also applicable, however, are not considered in the present study.  

Let X be a heavy tail random variable. The Heavy Right Tail Distribution (HRTD) is 

mathematically defined as (Resnick, 2007):  

𝑃[𝑋 >  𝑥]~𝑓(𝑥) = 𝛼𝑥−𝛼−1;  𝑓𝑜𝑟 𝛼 > 0, 𝑥 > 0,                                                                      (3.8) 

the probability, 𝑋 ≤ 𝑥, is defined as (Resnick, 2007):  



 

45 
 

 𝑃[𝑋 ≤  𝑥]~𝐹(𝑥) = 1 − 𝑥−𝛼;  𝑓𝑜𝑟 𝛼 > 0, 𝑥 > 1,                                                                    (3.9) 

where α is the tail index of the heavy right tail distributions. Equations 3.8 and 3.9 are also known 

as pdf and cdf of the special case of Pareto distribution with a scale parameter of one and tail index 

of α considered as its shape parameter. The expected return level of HRTD is defiend as:  

𝑥𝑚 =  𝑢 + 𝛼[(𝑚 × 𝑛𝑒 ×  𝑝𝑢)
1

𝛼 − 1] 𝑓𝑜𝑟 𝛼 ≠ 0,                                                                       (3.10) 

where 𝑢 is the threshold (considered as the location parameter), m is the return period, 𝑛𝑒 is the 

number of mean events per year, 𝑝𝑢 is the probability (exceed rate) and computed as P(𝑋 > 𝑢) and 

𝛼 is the tail index. The Equation 3.10 is equivalent to Equation 3.4 with assumptions, GPD scale 

parameter, 𝜎 = 1 and shape parameter, 𝑘 =
1

𝛼
, where 𝛼 is the tail index. Considering that 

𝑥1, 𝑥2, … , 𝑥𝑛 are independent and identically distributed with order 𝑥1 > 𝑥2 > ⋯ > 𝑥𝑛, then the 

Hill estimator of α is defined as (Hill, 1975): 

𝐻𝑟,𝑛 =
1

𝑟
∑ 𝑙𝑛 (

𝑥(𝑖)

𝑥(𝑟+1)
)𝑟

1 ,                                                                                                         (3.11) 

where 𝑟 stands for the order of higher order statistics. The computation process is the same as that 

of MLE, except 𝑟 top order statistics must be considered. In practice, the Hill plot is a plot of 𝐻𝑟,𝑛 

against the values r (1 ≤ 𝑟 ≤ 𝑛). The SmooHill estimator is defined as (Resnick, 1997):  

𝑆𝑚𝑜𝑜𝐻𝑟,𝑛 =
1

(𝑣−1)𝑟
∑ 𝐻𝑗,𝑛

𝑣𝑟
𝑗=𝑟+1 ,                                                                                             (3.12) 

 where v is an integer (greater than one) and 𝑣𝑟 < 𝑛, where n is the sample size.    

3.2.3 Uncertainty estimate for model parameters and return level  

Efron introduced the term Bootstrap in 1979 (Efron, 1979). The proposed method is applicable for 

parametric and non-parametric estimation of the uncertainty. Full sample or subsample bootstraps 

(Politis et al., 1999) may give biased estimates for a small data set and more so in the case of 

extreme events. A parametric bootstrap is used and integrated with the MLE to avid the bias issue. 
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Bootstrap data sets are generated randomly from the fitted distribution instead of being sampled 

from the original data. More precisely, in the case of GPD, from the original data, GPD distribution 

parameters {σ, 𝑘} are estimated. Using the estimated parameters, a random sample (bootstrap data 

set) generated from the GPD distribution. The length of the random sample as the same length as 

the original data set. Then the GPD is fitted on the bootstrap dataset and update the values of the 

parameters and return level calculated for any specific year (e.g., 100 years). This process is 

repeated, e.g., 1000 times, which gives 1000 different parameter sets  

[{𝜎1, 𝑘1}, {𝜎2, 𝑘2} … , {𝜎1000, 𝑘1000}], and “100 year return level” [𝑥1, 𝑥1, … , 𝑥1000]. According to 

the central limit theory, the distributions of these parameters and return levels are normally 

distributed. Finally, the mean value and a 95% confidence interval for the model parameters and 

return level for different time periods are computed. In the full repetition process, the thresholds 

are fixed as estimated from the original data.         

The proposed approach has the following steps: 

1. Generate a bootstrap data set: for the outliers-based method, use a GPD (GEV) to generate 

a random sample with estimated model parameters. In the case of a tail-based approach, 

the random samples are generated through the HRTD (more precisely, a random Pareto 

distribution is generated with a scale parameter assumed one and shape parameter as the 

tail index). The sample size and threshold are considered to be the same as for the original 

data sets.  

2. Fit GPD (GEV) on the bootstrap dataset and update model parameters with a fixed 

threshold (block size). For the case of tail-based approach, fit a Pareto distribution on 

bootstrap data sets and update the shape parameter.         

3. Determine the return level using the new estimated parameters.   
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4. Repeat these steps 1000 times and obtain 1000 values for model parameters and 1000 

values for each return period, m.  

5. Determine the mean value and a 95% confidence interval for the model parameters and 

return level for different periods. 

3.2.4 Risk analysis 

The risk estimation process follows a similar approach as in (Sulistiyono, et al., 2015) with some 

modifications. The iceberg collision risk is denoted as R(iceberg) and defined as:  

𝑅(𝑖𝑐𝑒𝑏𝑒𝑟𝑔) = 𝑃(𝑂) × 𝐶,                                                                                                       (3.13) 

where 𝑃(𝑂) is occurrence (extreme iceberg speed) probability and C is the iceberg consequence 

(impact). The occurrence probability is defined as:  

𝑃(𝑂) = (𝑅𝑃)−1,                                                                                                                        (3.14) 

where RP is the return period. In the present study, predictions are conditioned on certain threshold 

values. Therefore, to make the probability unconditional, i.e. using all past history data the 

Equation 3.14 is modified as: 

 𝑃(𝑂) = 𝑝𝑒 × 𝑝𝑢 × (𝑅𝑃)−1,                                                                                                      (3.15) 

where 𝑝𝑒 is the probability of the event that is more extreme being more likely to occur than the 

estimated extreme event for a given return period. 𝑝𝑢 is the exceed rate (Pr [X > u], where u is the 

threshold). As a part of consequence (C) or impact, this research considered the kinetic energy of 

the iceberg. The Kinetic Energy is denoted by KE, and defined as (Husky oil operations limited as 

operator, 2000): 

KE =
1

2
𝑀𝛽𝑣2,                                                                                                                            3.16 

where M is the iceberg mass, v is the iceberg speed (calculated by model prediction) and 𝛽 is a 

constant (added mass coefficient). The mass coefficient (𝛽) is added to find the entrained mass of 



 

48 
 

water surrounding the iceberg, and its value is chosen as 1.2 (Husky oil operations limited as 

operator, 2000). To estimate an acceptable extreme design load of iceberg impact (considering 

iceberg size and extreme speed), operators need to define an acceptable risk level. The risk level 

might vary considering the region of operation, regulatory requirement, technology maturity as 

well as environmental factors. As Low As Reasonably Practicable (ALARP) framework is often 

used to define the acceptable risk (Pike et al., 2020). In the present case study, an acceptable risk 

level is defined as 0.001 MJ/year. This acceptable risk is derived from past studies related to 

offshore structure design (Sulistiyono et al., 2015). The risk is estimated considering the size of 

the iceberg, iceberg speed and the exceedance probability. The maximum Iceberg speed 

(corresponds to all identified acceptable risk values) is selected as the design iceberg's extreme 

speed. This approach avoids hardening against every possible scenario and thus simplifies the 

choice of design criterion. For example, to assess the risk of wind load in a specific region, a set 

of four extreme wind speeds (25 m/s, 29 m/s, 32 m/s, 35m/s and 39 m/s) are considered. The wind 

speeds exceedance probabilities (0.045, 0.0046, 0.001, 0.00032, and 0.000041), wind loads (as 

impact energy; 379 N, 522 N, 614 N, 682N, 901N) are the return periods 5, 20, 50, 100 and 1000 

years are used to estimate risk. Here the risk (due to extreme wind speed) is defined as a 

combination of the likelihood of extreme wind and its impact energy (may be referred to as 

consequences, and for design, purposes computed as load in N). The likelihood is the measure of 

the probability of occurrence for a return period (/yr). Therefore, multiplying the corresponding 

likelihood with impact energy, the risk values are estimated as 17.1, 2.3, 0.61, 0.22, 0.04 N/year, 

respectively. Based on an acceptable risk level (say 0.61 N/year), the design extreme wind speed 

is then obtained as 32 m/s.  
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3.3 Case Study (Iceberg extreme speed estimation for the Flemish Pass basin) 

The proposed framework is implemented to estimate the iceberg risk to an offshore structure. The 

iceberg risk is evaluated considering the probability of iceberg collision with the structure and its 

impact. The impact energy of the iceberg collision is dependent on iceberg speed and size. The 

present study focuses on estimating extreme iceberg speed in three different categories (based on 

iceberg size), namely small, medium, and large icebergs. There is no direct data sources for iceberg 

speed. Iceberg speed mainly depends on size, shape, currents, wind speed and wave height; here, 

iceberg speed was computed through the generic method (distance/time). Iceberg sight locations 

and corresponding times were taken from the International Ice Patrol (IIP) iceberg sighting 

database (International Ice Patrol, 1998). Most iceberg speed analysis (for example (Husky oil 

operations limited as operator, 2000; King et al., 2015) focuses on the average iceberg speed over 

space. However, here single iceberg speed was computed in a specific region. The primary study 

region of interest is the Flemish Pass basin (470 N to 480 N, 460 W to 47.30 W) for the period 2002 

to 2015. Two random areas are considered to compute the average iceberg speed. Finally, our 

computed average speed is compared with C-CORE. (2015).  to check the accuracy of the speed 

computations. For both areas, computed speeds are comparable. More precisely, the iceberg speed 

listed in (C-CORE, 2015) versus estimated average speed in this study is 0.88 km/hr versus 1.02 

km/hr in the areas 460 N to 500 N and 450 W to 500 W and 0.9 km/hr versus 1.15 km/hr in the 

regions 470 N to 480 N and 460 W to 480 W. Although this study is focused on single iceberg speed, 

this average speed comparison gives confidence that the computed iceberg speed in this study is 

acceptable. Moreover, the validation of these two different areas gives confidence for iceberg 

speed computation in the primary study area, i.e., the Flemish Pass basin (470 N to 480 N and 460 

W to 47.30 W). The present study uses open-source platform R (freely available at 
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https://www.rstudio.com) with extreme R packages such as POT, extRemes, evmix, ismev, 

EnvStats and fExtremes. Minitab is used for the descriptive statistical analysis. 

 

3.3.1 Descriptive statistics 

Icebergs pose serious concerns for offshore drilling and marine facilities. This work focusses on 

specific iceberg speed instead of average speed. Every year around 20,000 to 40,000 icebergs move 

across the Baffin Bay from west Greenland, and the Labrador current transports some of them to 

the Flemish Pass basin. Icebergs are of different sizes and shapes. According to the descriptive 

statistical analysis on iceberg data from the Flemish Pass basin, medium (MED) size icebergs were 

found to be more frequent (548) during the period from 2002 to 2015, which is about 51% of total  

 

Figure 3.2. Iceberg frequency distribution at Flemish Pass basin (2002-2015). 

icebergs sighted in that area (Figure 3.2). As shown in Figure 3.2, 279 small (26%) and 146 (13%) 

large icebergs were also sighted. This study only focusses on small (SM), medium (MED) and 

large (LG) icebergs. There are other icebergs such as (10%) growlers (GR), bergy bits (BB), very 

large (VLG), and radian (RAD). The size of radian (RAD) icebers are not determined. The very 

large icebergs are not considered in this study because of their very low speed (maximum speed 

https://www.rstudio.com/
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computed 1.1 km/hr) compared to other sizes; also, their sizes are not precise. Moreover, VLG, 

GR and BB icebergs are easily manageable using an existing offshore iceberg risk protection plan.  

 

Figure 3.3. Iceberg temporal (2002 to 2015) distribution (small, medium and large). 

The temporal iceberg distribution (2002-2015) is illustrated in Figure 3.3. In all three cases, the 

number of icebergs has an increasing trend during the period 2012 to 2015. Iceberg sight location 

and time are recorded to compute iceberg speed. In Figure 3.4, the calculated iceberg speeds 

display maximum and average iceberg speeds. The highest maximum iceberg speed is 5.78 km/hr, 

and the lowest maximum is  

 

Figure 3.4. Iceberg speed distribution (maximum vs average) over the period 2002 to 2015 (merge 

small, medium and large iceberg). 
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1.44 km/hr. However, average maximum speed is only 1.12 km/hr during the study period. The 

average speed is listed as lower than the lowest single iceberg speed and compared to extreme 

individual speed, it is about one fifth. Therefore, instead of the average iceberg speed, the 

individual extreme iceberg speed needs to be considered as a part of an ice management plan. 

Table 3.1 presents the statistics of the iceberg data in the study region. In the case of the small 

iceberg, seven observations were identified as outliers, and two of them are extreme outliers (data 

> 3.08). For the medium size, five views are listed as outliers, and among them, only one is an 

extreme outlier (data > 2.97). Finally, for the large iceberg, there are three outliers, and one is an 

extreme outlier (data > 2.33), also clearly visible in the boxplot Figure 3.5 (extreme outliers are 

highlighted with cyan circles). For the small iceberg data in Table 3.1, skewness (3.37) and kurtosis 

(19.7) indicate that this data set does not follow the normal distribution. The positive value of  

Table 3.1. Descriptive statistics: Flemish Pass basin iceberg data (2002-2015) categorize in three 

different size (Small, medium and large). 
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Small 0.134 0.497 0.764 1.14 5.78 0.645 2.11 -0.470 3.08 3.37 19.7 

Mediu

m 

0.0140 0.460 0.704 1.09 3.45 0.628 2.03 -0.483 2.97 1.38 3.10 

Large 0.0566 0.444 0.671 0.915 2.58 0.471 1.62 -0.261 2.33 1.33 3.66 

 

skewness indicates that the size of the right-handed tail is larger than the left-handed tail. The 

positive Kurtosis also implies that the data set has a heavy tail. The distributions of medium and 

large icebergs also have heavy tails (medium: skewness 1.39, kurtosis 3.10 and large: skewness 
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Figure 3.5. Box plot for the small, medium, and large iceberg. The highlighted cyan circles 

represent rare events (extreme outliers).   

1.33 and kurtosis 3.66.). Moreover, for all the three cases in Table 3.1, Q1-1.5IQR gives negative 

values, and all observed values are positive; this indicates that none of the data sets have a left-tail 

(Myriam and Pascal, 2013), and visible in Figure 3.6.  

 

Figure 3.6. Speed distributions for different size of icebergs (2002 -2015). The iceberg sizes are 

labeled on the top right corner of the plot. 



 

54 
 

So, in all the three cases means and variances become irrelevant because they fail to explain the 

tail of the distribution. Data sets for all three iceberg cases include extreme outliers and represent 

rare events. Therefore, according to the proposed methodology, the classical statistic is not 

sufficient to model them and, either an outlier or a tail-based approach is required.  

3.3.2 Result and Discussion 

3.3.2.1 Threshold and Block maxima  

The thresholds are chosen using the mean residual life plot, the threshold versus parameter plot, 

and the Hill plot (Scarrott and MacDonald, 2012). In the mean residual life plot, mean excesses 

are plotted against the thresholds, and a value is chosen from the threshold range (where the plot 

shows linearity). A low threshold leads to bias and a high threshold causes high variance, so the 

threshold is chosen as a trade-off between bias and variance. In the case of the small iceberg, as 

seen in Figure 3.7, linear behaviour is observed above 1.4 km/hr. The right side of the plot shows 

high variability due to limited data above such a high threshold, and a confidence interval is not 

visible for the case  

 

Figure 3.7. Mean residual life plot. The vertical dotted blue line indicates the chosen threshold in 

all three cases. The units of X-axis and Y-axis are km/hr.  
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of fewer than five exceedances. The selected threshold is validated through the threshold versus 

parameter plot. Using similar analyses, the thresholds chosen for the case of medium and large 

icebergs are 1.5 and 1.2, respectively. In this research, in all three cases, the block size is chosen 

as equivalent to the number of exceed observations considered in the GPD case. This assumption 

provides a better comparison framework for comparing the GEV outputs with GPD, instead of 

splitting the full data sets into annual scales. The maximum value from each block was extracted, 

and the GEV was fitted on the new data set, which contained only all block maxima.  

3.3.2.2 Distributions parameters estimate 

The GPD parameters are computed using the MLE. In all three cases, for higher threshold values, 

the standard error has an increasing trend, and for the lower threshold values, the error has a 

decreasing trend. Beside MLE, the GPD parameters are estimated with PWM and found the MLE  

Table 3.2. Distribution parameters estimate. Corresponding 95% confidence intervals for model 

parameters are in parenthesis.  

Distrib

ution 

Name 

             

        

Method  

                

Distribution 

Parameters 

 

                                                  Iceberg size 

Small Medium Large 

 

GEV 

 

MLE 
Location, 𝜇 1.32 

(1.31, 1.33) 

1.43 

(1.42, 1.44) 

1.14 

(1.13, 1.15) 

Scale, 𝜎 0.548 

(0.546,0.550) 

0.367 

(0.365,0.368) 

0.365 

(0.363, 0.367) 

Shape, 𝑘 0.230 

(0.227,0.233) 

0.216 

(0.213,0.218) 

0.01 (0.005, 

0.015) 

GPD MLE Scale, 𝜎 0.354 

(0.351,0.357) 

0.318 

(0.317,0.319) 

0.454 

(0.450,0.458) 

Shape, 𝑘 0.613 

(0.606,0.620) 

0.199 

(0.198,0.200) 

-0.119 

(-0.126,-0.112) 

HRTD Hill 

 
Tail index, 𝛼 2.60 

(2.59, 2.61) 

4.70 

(4.68, 4.72) 

3.80 

(3.78, 3.82) 

HRTD SmooHill Tail index, 𝛼 3.10 

(3.09, 3.11) 

4.00 

(3.99, 4.01) 

3.60 

(3.58, 3.62) 
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provides a smaller error compared to the PWM estimates in the case of the small and large  

icebergs. For the medium iceberg, PWM has a marginally better estimate (minimum uncertainty), 

but this does not have any significant impact on the return level estimates. Therefore, for this study 

in all three cases, MLE estimates are chosen to estimate return levels. Since MLE was found to 

give a better fit for GPD, the GEV parameters were estimated using the MLE approach. The 

parameters values are listed in Table 3.2. In the tail based approach, the tail indices are estimated 

using the Hill estimator and the SmooHill estimator and listed in Table 3.2. In all cases, the 

parameter uncertainty is estimated through the proposed method as explained in section 3.4 and 

placed in Table 3.2. 

3.3.2.3 Return level estimate                                                                                                                        

Compared to GPD, the GEV return level is more robust with data statistics. However, the GPD 

took a longer time to capture the most extreme outliers in all three cases. The Hill and SmooHill  

Figure 3.8. The return levels (GPD, GEV, Hill, and SmooHill) plot for three different iceberg 

cases. The dotted horizontal lines indicate the most extreme outliers.  Data tables (return periods, 

extreme iceberg speed, km/hr) added. 
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return levels are comparable and have significant differences with GPD and GEV estimate. The 

return levels are computed (attached in Figure 3.8) by using Equation 3.4 for GPD, Equation 3.6 

for GEV and Equation 3.10 for Hill and SmooHill.  

3.3.2.4 Goodness of fit test                                                       

To choose a best-fitted distribution among Hill and SmooHill, this study considered the tail index. 

The higher tail index implies a better fit with tail events. In all three iceberg cases, the Hill and 

Smoohill return level estimates are comparable; however, the highest tail index captures the most 

extreme event in the early time (Figure 3.8). This study found, in all three cases, based on 

numerical evidence, the GPD has higher log-likelihood values, and lower Akaike information 

criterion (AIC) and Bayesian Information Criteria (BIC) which imply a better fit by GPD 

compared to GEV. However, according to Q-Q (Quantile-Quantile) plot, both GPD and GEV 

failed to capture the most tail event. The GPD and GEV return levels take a longer time to capture 

the most extreme events (Figure 3.8), compared to Hill and SmooHill. The SmooHill is more 

robust, based on data statistics (the most extreme outliers) for the case of the small iceberg; for all 

other cases, the Hill is more robust. Therefore, in the present study, the iceberg speed estimated by 

the SmooHill has been chosen to compute the iceberg risk for the case of the small iceberg, and 

the Hill used for the two other cases. 

 

3.3.2.5 Risk estimation   

The iceberg risk is estimated in all three cases by Equation 3.13 and presented in Table 3.3. The 

occurrence probabilities for different icebergs are computed by Equation 3.15 and summarized in 

Table 3.3. For example, if the iceberg speed (small) is 1.33 km/hr once in every five years, the  
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Table 3.3. Iceberg exceedance occurrence probability, extreme speed (km/hr), Kinetic Energy 

(KE) in Mega Joules (MJ) and Risk (MJ/year) corresponding to the three different icebergs’ weight 

(Megatons, MT). Corresponding 95% confidence intervals for return periods are in parenthesis 

(Lower Limit, Upper Limit).  
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T
) 
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Probability 
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1.33                 
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(3.04, 3.06) 

4.67       

(4.66, 4.68) 

6.27         
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KE, MJ         

(LL, 

UL)                              

8.33                
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8.60E-02         

(8.47E-02, 

8.73E-02) 

8.63E-03         

(8.57E-03, 

8.69E-03) 

2.17E-03     

(2.15E-03, 

2.19E-03) 
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(1.71, 1.72) 

3.41           

(3.40, 3.42) 

4.83         

(4.82, 4.84) 
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(6.10, 6.12) 
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48900) 
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probability of an iceberg speed less than or equal to 1.33 km/hr is 0.587 (for the small iceberg, 𝛼 

= 3.1). Therefore, the probability of iceberg speed being greater than 1.33 km/hr is 0.413. This is 

a conditional probability; for unconditional probability, 0.413 should be multiplied with 𝑝𝑢(0.125). 

Finally, the occurrence probability of the iceberg speed of more than 1.33 km/hr is 0.0103. The 

threshold’s exceedance rate, 𝑝𝑢, is computed by finding the data percentile from raw data. This 

study uses R package “ismev” to find the exceedance rate. Estimated iceberg speed and kinetic 

energy computed by Equation 3.16 are presented in Table 3.3. Iceberg weights are considered as 

0.1, 2 and 10 megatons for the small, medium and large iceberg, respectively (MANICE, 2005). 

As shown in Table 3.3, in the case of the small iceberg, for a 100 years return level is 6.27 km/hr, 

which means that in the Flemish Pass basin, once in every 100 years, the iceberg speed may be 

higher than 6.27 km/hr (with KE 185 MJ). For the case of the medium and large icebergs, it is 6.11 

km/hr (with KE 3510 MJ) and 4.31 km/hr (with KE 8740 MJ), respectively. If the average speed 

is considered over the years (for the period 2002 to 2015) for small, medium and large icebergs 

speeds are 0.914 km/hr, 0.822 km/hr, and 0.726 km/hr and the corresponding KE are 3.94 MJ, 

3.18 MJ, and 2.48 MJ. If a large iceberg collides with a structure in the Flemish Pass basin, the 

computed KE 480 MJ (as a 5-year return level) is more likely to create a more severe unwanted 

situation compared to KE 2.48 MJ (computed based on average large iceberg speed). The risk is 

estimated by assuming iceberg speed exceeds the estimated speeds and that the iceberg collides in 

the study area. In Table 3.3, the extreme risk is highlighted in bold (3.15E-02 MJ/year). The 

corresponding speed is selected as the extreme iceberg speed for the design purpose, which is 

estimated as 4.31 km/hr. 

3.4. Conclusions                                          

Rare event risk analysis is a critical exercise to design and operate engineering systems in harsh 

and remote environments. The traditional risk analysis approaches (based on classical statistics or 
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extreme value theory) fail to capture the extreme characteristics of rare events and, therefore, are 

unable to provide accurate outcomes. This study proposes a simple yet rigorous framework to 

categorize the existing extreme theories for rare event risk analysis for engineering design 

perspective. The methodology is new, while models used in the methodology are well known and 

practiced models.  The proposed methodology, based on the flexibility concept, provides a 

transparent, auditable and flexible means to quantify risk and its use in design consideration. The 

framework comprises three phases: outlier-based analysis, tail-based analysis and risk estimation. 

The framework is applied to a natural hazard (iceberg collision) scenario associated with an 

offshore facility. The extreme iceberg speed is estimated using the rare event modeling framework, 

where the rare event (extreme outlier event) is considered as a heavy tail event. The tail index is 

estimated through the Hill estimator and the SmooHill estimator. An uncertainty quantification 

approach is introduced for model parameters, return levels and iceberg risk. The proposed 

methodology has been applied in three cases for three different sizes of icebergs (small, medium 

and large icebergs). Although the POT based GPD and the BM based GEV are frequently used in 

various fields for extreme analysis, both were found to be not adequate for the case study. The tail-

based approaches predict the most extreme outliers in shorter time periods compared to the outlier-

based approach. The SmooHill is more robust compared to the Hill in the case of the small iceberg; 

for the other two cases, the Hill is more robust. Finally, if an iceberg collides with a structure in 

the Flemish Pass basin area, the estimated risk provides a more accurate indication of damage 

compared to that obtained using average iceberg speed. Uncertainty analysis is also considered 

that provide certain confidence on the analysis and robustness. The result from the case study 

shows that the estimated iceberg risk associated with individual extreme iceberg speed is more 

significant compare to the traditional iceberg risk analysis (predicated on average iceberg speed). 
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Therefore, to avoid any unwanted situation (for drilling or engineering facilities) or designing a 

system flexible under rare event scenario, the estimated risk must be considered in the iceberg risk 

management plan at the Flemish Pass basin. For future studies, a non-stationary approach will be 

implemented for different natural hazards (for example, wind speed, wave height etc.) relevant to 

the Flemish Pass Basin.         
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4. EVOLVING EXTREME EVENTS CAUSED BY 

CLIMATE CHANGE: A TAIL-BASED BAYESIAN APPROACH FOR 

EXTREME EVENT RISK ANALYSIS 

Preface 

A version of this manuscript has already been published by the Journal of Risk and Reliability. 

This research paper was primarily written by me. Under the supervision of co-authors Faisal Khan, 

Salim Ahmed, and Syed Imtiaz, a heavy right tail model (Bayesian inference) is implemented to 

compute iceberg collision risk assessments at the Jeanne d’Arc basin by incorporating climate 

change issue. I conducted the research review, collected the data, developed methodology, and 

carried out the analysis and modelling. The co-authors contributed to concept development, 

methodology writing, review & editing, and verified modeling outcomes. The initial draught of 

the manuscript was written by myself, and I later made changes considering feedback from the 

other authors and the peer-review process. Project management and funding acquisition came 

within the responsibility of co-author Faisal Khan. This collaborative effort allowed us to bring 

together different expertise and insights to produce a comprehensive and robust study on iceberg 

collision risk assessment at the Jeanne d’Arc basin, considering the complexities of climate 

change.  

Abstract 

Natural hazards are of significant concern for engineering development in the offshore 

environment. Climate change phenomena are making these concerns even greater. The frequency 

and extent of natural hazards are undesirably evolving over time; so risk estimation for such events 
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require special consideration. In most cases the existing extreme models (based on the extreme 

value theory) are unable to capture the changing frequency and extreme characteristics of natural 

hazards. To capture the evolving frequency and extreme characteristics of natural hazards and their 

effects on offshore process operations, an advanced probabilistic approach is proposed in this 

paper. The approach considers a heavy right tail probability model. The model parameter is 

estimated through the Bayesian inference. Hill and the SmooHill estimators are used to evaluate 

the lowest and highest exponent of the probability model. The application of the approach is 

demonstrated through extreme iceberg risk analysis for the Jeanne d’Arc basin. This study shows 

climate change or global warming is causing to appear a significant number of icebergs every year 

in the study area. Offshore structures are often designed to withstand the impact of 1 MT icebergs 

weight; however, the study observes large icebergs (10 MT weight) are sighted in recent years 

(14% of the total number of cited icebergs for the period of 2002-2017). As a result, the design 

philosophy needs to be revised. The proposed risk-based approach provides a robust design 

criterion for offshore structures.  

Keywords: Climate change, rare event, iceberg risk, Heavy tail, Bayesian inference, Hill, 

SmooHill estimator.  

4.1. Introduction                                                                                                            

Offshore development and existing offshore facilities face several risk factors; the “natural hazard” 

is one of them. Depending upon the region, this may include hurricanes, earthquakes, icebergs, sea 

ice, extreme waves or combinations of different hazards. The catastrophic behaviour of these 

hazards is hard to predict and extremely challenging to control (e.g. Hurricane Katrina; August 

2005, Gulf of Mexico, extreme wind speed was recorded as 280 km/hr). Currently, the climate 

change is treated as the prime factor for all the extreme effects of such natural hazards. For this 
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reason, "climate change" or "global warming" issues are the priority for most research. The 

Intergovernmental Panel on Climate Change IPCC report (IPCC, 2014) states the global 

temperature increased 1.2 degrees Celsius, compared to the pre-industry era. As a direct 

consequence, the global mean sea level rose by 17 to 21 cm during the period from 1901 to 2010 

(Castillo et al., 2005). In particular, global warming or extreme heat waves lead to ice sheets 

melting, increase the frequency of icebergs, and cause the sea level to rise. Scientists around the 

globe have a concern regarding the rising sea level. To monitor or mitigate the effects of such 

natural threats, a list of recent works offer alternative ideas for the production/development 

flexibility of offshore fields to ensure higher degree of protection in a harsh environment. For 

example, in the case of offshore facilities, please refer to the Deepwater Artificial Seabed system 

(Zhen et al., 2020a), the Offshore Resource Centre (Rahman et al., 2020) and Quantitative Risk 

Analysis approach (Zhen et al., 2020b),. The focus of this study is, however, risks from floating 

icebergs. Every year a significant number of icebergs come across Baffin Bay from west Greenland 

and include some from east Greenland. The Labrador current transports some of the icebergs to 

Newfoundland oil drilling zone (e.g. Jeanne d'Arc basin). Such a natural hazard cannot be ignored, 

due to the iceberg alley. Climate change causes, the present day extreme characteristics of natural 

hazards to have more impact, compared to the pre-industrial time. For example, ocean waves and 

wind have been getting higher and stronger in the past 30 years (Young and Ribal, 2019a). This 

has a direct impact on iceberg speed and direction. Moreover, the recent European heat wave 

(Climate signal beta, 2019) cannot be ignored and might dangerously increase iceberg frequency 

and size in the near future. In an extremely harsh environment, some icebergs might have a chance 

to move with enormous kinetic energy and cause damage or create an unwanted situation for 
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offshore engineering facilities. Therefore, integrating climate change into the iceberg risk 

estimation by incorporating iceberg extreme speed is necessary.  

In an average (say wind speed 6 to 10 m/s and current speed 0.1 to 0.5 m/s) weather conditions, 

icebergs move at a certain average speed, following a regular path. For this reason, average iceberg 

speed is used in traditional iceberg risk analysis (King et al., 2015; Husky energy, 2000). However, 

how do icebergs react in extreme weather conditions? There is no precise answer to this question 

because the weather has a chaotic nature, and climate change is causing the increasing likelihood 

and intensity of extreme events. In the present climate change scenario, it is likely that an iceberg 

moving with unexpected speed in an irregular direction or path could collide with any offshore 

facilities. In this research, such an extreme scenario (iceberg collision) is treated as a rare event. 

The iceberg risk estimation problem is considered as a heavy tail event problem: a most extreme 

iceberg speed and its occurrence probability prediction are the key focus. There is no database for 

iceberg speed which makes extreme iceberg speed estimation and its risk analysis more 

complicated. 

In most fields, the well-established Extreme Value Theory (EVT) based models are applied to 

model such an extreme event (Castillo, 2005; Das et al., 2016; Damon, 2009; Scarrott and 

Macdonald, 2010; Asadi, and Melchers, 2017). The Peak Over Threshold (POT) based 

Generalized Pareto Distribution (GPD) and Block maxima (BM) based Generalized Extreme 

Value (GEV) are frequently used in all domains. Some present real-life rare phenomena such as 

the 9/11 terrorist attack, blowout events like the Macondo blowout accident in the Gulf of Mexico, 

hurricane Katrina make the implementation of the EVT questionable. Insufficient data is a major 

issue when modelling a rare event. In the engineering domain it is more complicated (Rocchetta 

et al., 2015; Yang et al., 2015; Rathnayaka et al., 2013; Sulistiyono et al., 2015; El-Gheriani et al., 
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2017b). In such cases, the EVT based methodology fails to capture most extreme events, and as 

an alternative, a rare event is considered as a heavy tail event. A tail-based approach has been 

proposed by (Arif et al., 2020), and considered the 1000 year return period to capture most extreme 

scenarios. A similar approach was also proposed by (Clauset et al., 2013), The Monte Carlo 

method (Rubino and Tuffin, 2009; Estecahandy, 2015) and the Mixer model (Hanum et al., 2015) 

have been considered in past research for rare event modelling. Model parameter estimation in the 

case of an unusual event may not be straightforward. For example, the maximum likelihood 

estimator may result in a biased estimate if the sample space is small (Deidda and Puliga, 2009). 

The Probability Weighted Moment (PWM) also gives a poor estimate compared to MLE if shape 

parameter values are less than zero (Pham et al., 2019). To address this issue the Hill (Hill, 1975) 

and SmooHill (Resnick et al., 1997) estimator are implemented to estimate the tail index (Arifa et 

al., 2020). However, all point-based methods does not provide a probability distribution over the 

possible range of the model’s parameter and does not incorporate prior information (Deidda and 

Puliga, 2009). To overcome this issue, Bayesian inference has shown some potential in recent 

research (Deidda and Puliga, 2009; Pham et al., 2019). The main objective of the present work is 

to model heavy tail events (e.g. extreme iceberg speed, process accident, terrorist act, etc.) that 

have taken place in recent times. In this paper, a most extreme event is considered as a heavy tail 

event (Resnick, 2007), and a POT based Heavy Right Tail distribution (HRTD) is implemented 

similar to (Arif et al., 2020a; Clauset et al., 2013). Bayesian inference is used to estimate the 

distribution parameter, and finally, the extreme risk is estimated by using the model’s prediction 

of extreme iceberg speed.   
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The remainder of the paper is structured as follows: Section 4.2 describes the proposed 

methodology to model most extreme events. Section 4.3 provides an overview of the case studies 

and presents results. Section 4.4 provides conclusions and recommendations for future works. 

4.2. Methodology 

4.2.1 The proposed framework  

Finding a best-fitted probabilistic distribution is a straightforward task in some cases. However, a 

heavy tail event has two characteristics: data are scarce and the system’s behaviour is highly 

influenced by one or more than one large data value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. The proposed framework for heavy tail event risk analysis 
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Those two characteristics making the modeling approach complicated. In this research, a Bayesian 

framework is proposed for the HRTD parameter estimation. The parameter is examined for three 

different threshold values instead of for a fixed threshold. These three different estimates allow 

comparing the model prediction capability. The Hill (Hill, 1975) and the SmooHill (Resnick and 

Starica, 1997) estimators are used to evaluate the possible parameter range of HRTD to execute 

Bayesian inference. This also gives a frame of reference to justify the Bayesian estimate. Finally, 

the tail event occurrence probability and its impact are used to compute risk. The occurrence 

probability is computed directly from the probability distribution function of HRTD. The impact 

is calculated as far interest through estimated return levels. In the present study, iceberg kinetic 

energy is computed as iceberg impact. The proposed framework to study the rare event is presented 

in Figure 4.1 and assumes data are Independent and Identically Distributed (IID).  

4.2.2 Heavy Right Tail Distribution (HRTD)   

Let X be a heavy tail random variable. The HRTD is mathematically defined as (Clauset et al., 

2009):    

𝑃[𝑋 >  𝑥]~𝑓(𝑥) =
𝛼−1

𝑥_𝑚𝑖𝑛
(

𝑥

𝑥_𝑚𝑖𝑛
)

−𝛼

,                                                                                          (4.1)                  

for the probability, 𝑋 ≤ 𝑥, HRTD is defined as (Clauset et al., 2009):    

𝑃[𝑋 ≤  𝑥]~𝐹(𝑥) = 1 − (
𝑥

𝑥_𝑚𝑖𝑛
)

−𝛼+1

,                                                                                      (4.2) 

where 𝑥_𝑚𝑖𝑛 > 0 is the scaling factor, 𝛼 > 1 is the shape parameter (tail index) and 𝑥 > 0. In this 

research we assume the scaling factor (𝑥_𝑚𝑖𝑛) to be the same as the threshold value (𝑢), as the 

proposed rare event modeling approach keeps the large values separate from the bulk of 

distributions, similar to the aspect of the Peak Over Threshold (POT) approach (Das et al., 2016). 

Equations 4.1 and 4.2 give a clear indication that, as the tail index goes higher, the distribution has 

a more massive tail. In this research, return value function is derived with a similar approach as in 
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the work of (Bommier, 2014). Consider that 𝑝𝑢 is the probability of occurrence of an exceedance 

of a high threshold 𝑢. Mathematically, it is expressed as 𝑝𝑢 = 𝑃(𝑋 > 𝑢). Therefore, by 

considering 𝑥𝑚𝑖𝑛 = threshold, 𝑢 from Equation 4.1,  

𝑃[𝑋 >  𝑥] = 𝑝𝑢 [
𝛼−1

𝑢
(

𝑥

𝑢
)

−𝛼

].                                                                                                                                             

Then the return level 𝑥𝑚 that is expected on an average, once every 𝑚 observation is obtained by 

solving:   

𝑝𝑢 [
𝛼−1

𝑢
(

𝑥

𝑢
)

−𝛼

] =
1

𝑚
 ,                                                                                                                                                                                                             

which implies (replace 𝑥 by 𝑥𝑚), 

𝑥𝑚 = 𝑢(1−
 1

 𝛼
)[𝑝𝑢 × 𝑚 × (𝛼 − 1)]

1

𝛼.                                                                                           (4.3)                                                                 

The N-year return level is defined as 𝑚 = 𝑁 × 𝑛𝑦, where 𝑛𝑦is the number of events per year.  

Therefore Equation 4.3 can be rewritten as 

𝑥𝑚 = 𝑢(1−
 1

 𝛼
) × [𝑝𝑢 × 𝑁 × 𝑛𝑦 × (𝛼 − 1)]

1

𝛼                                                                               (4.4)               

Equation 4.4 gives the N-year return level and is called the return level function of HRTD. In order 

to determine N-year return level, four parameters, namely, threshold 𝑢, the exceedance rate 𝑝𝑢, the 

number of events per year, 𝑛𝑦 and the HRTD parameter (α) need to be determined. This research 

computes the exceedance rate (𝑝𝑢) as a ratio of the number of events exceeding the threshold to 

the total number of observations. Finally, the HRTD parameter 𝛼 is estimated through Bayesian 

inference.  

4.2.3 Bayesian inference  

To sufficiently estimate uncertainty, a large sample size is a prerequisite for the case of a Maximum 

Likelihood Estimator (MLE). In the Bayesian approach, a prediction consists of an expected value 

together with an associated uncertainty (Lee, 2007) and there is no need for a separate step for 
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uncertainty analysis because the Bayesian framework derives a full posterior distribution of the 

parameters.  The posterior distribution 𝑓(𝛼|𝑋) of the exponent variable 𝛼 given the observed data, 

𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛, can be written as: 

                                                       𝑓(𝛼|𝑋) =
𝑓(𝑋|𝛼)𝑓(𝛼)

𝑓(𝑋)
  ,                                                        (4.5)                        

because the data are conditionally independent, and the likelihood function can be written as 

                                                             𝑓(𝑋|𝛼) = ∏ 𝑓(𝑥𝑖|𝛼)𝑛
𝑖=1  .                                                     (4.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Bayesian inference flow chart (MCMC, Metropolis-Hasting algorithm). 
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(Estecahandy et al., 2015) is implemented to approximate the desired distribution. The Metropolis-

Hastings algorithm needs a proposal distribution such as 𝑄(𝛼′|𝛼), from which samples can be 

drawn. This proposal distribution is used to do a random walk (Markov chain) in the distribution 

space, by accepting or rejecting samples on the basis of how well the parameter fits the distribution 

𝑓(𝑋|𝛼). At each iteration the new parameter 𝛼′ drawn from 𝑄(𝛼′|𝛼) is conditioned on the current 

sample 𝛼. To decide whether to accept or reject the new value 𝛼′, the following ratio needs to be 

computed for each new proposed 𝛼′: 
𝑓(𝛼′

|𝑋)

𝑓(𝛼|𝑋)
 Using Equation 4.6, this expression can be expressed 

as: 
𝑓(𝑋|𝛼′

)𝑓(𝛼′)

𝑓(𝑋|𝛼)𝑓(𝛼)
, and is equivalent to 

∏ 𝑓(𝑥𝑖|𝛼′
)𝑓(𝛼′)𝑛

𝑖=1

∏ 𝑓(𝑥𝑖|𝛼)𝑓(𝛼)𝑛
𝑖=1

 , where 𝑓 is the PDF of the distribution to 

the sample as expressed in (4.1). The rules for acceptance can be formulated as (Foreman-Mackey 

et al., 2013):  

𝑓(𝑎𝑐𝑐𝑒𝑝𝑡) = 𝑚𝑖𝑛 (1,
∏ 𝑓(𝑥𝑖|𝛼′

)𝑓(𝛼′)𝑛
𝑖=1

∏ 𝑓(𝑥𝑖|𝛼)𝑓(𝛼)𝑛
𝑖=1

) .                                                                                   (4.7) 

Therefore, if 𝛼′ is more likely than the current 𝛼, it is accepted. A plausible starting point is always 

demanding for convergence to the target distribution. However, in the case of rare event modelling, 

one or few data points lead the distributions and cause a heavy tail. For focus on the tail event, 

instead of using any random values, the Hill and the SmooHill estimators have been used to 

estimate the possible parameter range. The 95% confidence interval is estimated for both the Hill 

and the SmooHill estimate, as explained in (Arif et al., 2020a); and it has following steps: 

1 Generate a bootstrap data set: Use HRID to generate a random sample with estimated 

model parameter.  

2 Fit a HRTD on bootstrap data set, update model parameter and estimate return levels.   
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3 Repeat steps 1 and 2 say 1000 times and obtain 1000 values for model parameter and 

1000 values for each return period, m.  

Determine the mean value and a 95% confidence interval for the model parameter and return level 

for different time periods. The 95% confidence interval is computed as (mean ±1.96×standard 

error), where 1.96 = significance level and standard error = s/√1000, and s is the standard deviation.   

4.2.4 Risk estimation  

The iceberg risk estimation process follows the same as those in (Sulistiyono et al., 2015) and 

(Arifa, 2020). The risk is defined as:  

𝑅(𝑖𝑐𝑒𝑏𝑒𝑟𝑔) = 𝑃(𝑂) × 𝐶,                                                                                                            (4.8)                                                                       

where 𝑃(𝑂) 𝑖𝑠 occurrence probability and C is the event consequences (impact). The event 

occurrence probability is defined as:  

𝑃(𝑂) = 𝑝𝑒 × 𝑝𝑢 × (𝑅𝑃)−1,                                                                                                         (4.9)                                                                                     

where 𝑝𝑒 is the probability of the estimated event, 𝑝𝑢 is the exceedance rate (Pr [𝑋 > 𝑢], where 𝑢 

is the threshold) and RP is the return period. The terms 𝑝𝑒 and 𝑝𝑢 are used to get the unconditional 

probability estimate. As a part of the consequences (C) or impact, this research considered the 

kinetic energy of the iceberg. The Kinetic energy is denoted by KE, and defined as (Husky energy, 

2000):                  

KE =
1

2
𝑀𝛽𝑣2,                                                                                                                                  (4.10)  

where M is the iceberg mass, v is the iceberg speed, and 𝛽 is a constant (added mass coefficient). 

The extreme impact and corresponding occurrence probability might be used to generate extreme 

risk scenarios for different return periods. The risk-based design is proposed considering 

appropriate risk guidelines. The offshore operator needs to select acceptable risk criteria. The 

acceptance criteria are influenced by the regulatory regime, corporate culture of the operator as 
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well as operating conditions. As Low As Reasonably Practicable (ALARP) risk acceptance 

framework is often used to determine the acceptable risk level (Pike et al., 2020). This study 

considered an acceptable risk value of 0.5 MJ/year as a guiding example on how iceberg extreme 

design speed might be chosen. For a specific operation, the acceptable value can be significantly 

different. For example, under rare event conditions, a risk engineer has a plan to estimate extreme 

wave height risk in any specific region, and estimates several risk levels 3.1E-01, 4.2E-02, 5.2E-

03, and 5.9E-05 kw/m for different return periods: 5, 20, 50 and 100 years respectively. Therefore, 

by incorporating an acceptable risk (say 3E-03 kw/m) for a specific engineering system, a proposed 

design risk might be 4.2E-02 kw/m. This design risk is associated with the corresponding extreme 

wave height, its occurrence probability and wave power (impact).  

 4.3. Case Study  

The proposed methodology is implemented for a large iceberg collision risk estimate,  

incorporating estimated extreme iceberg speed and its occurrence probability for the Jeanne d'Arc 

basin. This area is an offshore sedimentary basin located about 340 kilometers from the basin 

centre, east-southeast of St. John's, Newfoundland and Labrador. The Hibernia, Terra Nova and 

the White Rose oil drilling operations are making Jeanne d'Arc basin an important oil drilling zone. 

However, through the iceberg alley, every year a significant number of icebergs arrive at the 

Jeanne d'Arc basin from west Greenland. Between iceberg formations and the melting process, in 

extreme weather conditions, the icebergs might have a chance of moving with a heavy kinetic 

energy, the key focus of this study. The iceberg risk is evaluated considering the probability of 

iceberg collision with the structure and its impact on the study area. In this research, the iceberg 

speed was estimated through the generic method (distance/time). Iceberg sight locations and 

corresponding times were taken from the International Ice Patrol (IIP) iceberg sighting database 
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(International Ice Patrol, 1995). The primary study region of interest is the Jeanne d'Arc basin (460 

N to 47.50 N, 470 W to 500 W) for the period 2002 to 2017. In this study period, the average iceberg 

speed was computed as 0.91 km/hr through the study area, which is equivalent to the average 

iceberg speed listed for the same area, of 1.07 km/hr (King et al., 2015). The average value 

computation is not of interest. Instead of average speed, this research focuses on extreme 

individual iceberg speed, which is listed as 8.48 km/hr for the period 2002 to 2017 at Jeanne d'Arc 

basin. The open-source platform Python (freely available at www.python.org) and R (freely 

available at www.r-project.org) are used to do the data modeling.  

 

4.3.1 Descriptive statistics 

Every year a significant number of icebergs are sighted in the Jeanne d'Arc basin area. The only 

source of icebergs is the Greenland ice sheet, melting as a direct consequence of climate change.  

According to data statistics, during the period 2002 to 2017, in Jeanne d'Arc basin, medium (MED) 

size icebergs were found to be more frequent (3167), which is about 45% of total icebergs sighted 

in that area (Figure 4.3). As shown in Figure 4.3, 1992 small (29%) and 988 (14%) large icebergs 

were sighted. Other icebergs, Growlers (GR), Bergy Bits (BB), very large (VLG) and Radian (Rad) 

were also sighted in this area, and together, their number is 834 (12%). Here, the large iceberg is 

taken into consideration to implement the proposed methodology. Large iceberg weight is listed 

as 10 MT (MANICE, 2005) (megatons) and this moves with huge kinetic energy. In general, the 

iceberg frequency distribution has followed a sine wave in the full study period, and the highest 

peak was recorded in 2015, and after that, there is a clear decreasing trend (except for small 

icebergs). In the case of large icebergs, the highest frequency is 225 in 2015, and 13 large icebergs  

http://www.r-project.org/
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Figure 4.3. Iceberg frequency distribution at the Jeanne d'Arc basin (2002-2017). 

are listed in 2017. (Figure 4.4). In Figure 4.5, yearly maximum iceberg speed is displayed along 

with yearly average iceberg speed. The highest maximum iceberg speed is 8.48 km/hr (in 2002), 

and the lowest is 1.35 km/hr (in 2007). However, the maximum average speed is only 1.28 km/hr 

(in 2002), which is around one- sixth of the maximum highest speed (1.28 vs. 8.48 km/hr).  

 

Figure 4.4. Iceberg (Small, Medium and Large) temporal (2002 to 2017) distribution. 

Table 4.1 presents the large iceberg speed data statistics. According to the definition of a rare 

event in Arif et al., 2020a, five observations are considered as rare events (data > 3 km/hr), 

which are also 
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Figure 4.5. Large Iceberg speed (maximum vs. average) over the period 2002 to 2017. 

displayed in the boxplot Figure 4.6. The rare events are separated from the regular outliers by the 

horizontal red line.  However, skewness (4.080) and kurtosis (39.10) indicate that this data set does  

not follow the normal distribution, as the skewness and kurtosis of the data are far from 0. The 

positive skewness indicates that the size of the right tail is larger than the left tail. The kurtosis > 

3; implies the data set has a heavy tail, which is also displayed in Figure 4.6 and Figure 4.7. These 

statistics provide clear evidence that the Greenland ice sheet is melting, and forming icebergs, 

which may create an unwanted situation in the study area for marine facilities. Moreover, the 

climate is changing, and the recent European heat wave (Climate signal beta, 2019) also might 

cause increasing iceberg frequency and intensity in the near future.   

Table 4.1. Descriptive statistics: Jeanne d'Arc basin iceberg speed data (2002-2017). 

Large Iceberg data Statistics (Iceberg speed, km/hr) 

Minimum Q1 Median Q3 Maximum IQR Q3+3IQR Skewness Kurtosis 

0.0270 0.4105 0.6692 1.058 8.483 0.6475 3.000 4.080 39.10 
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Figure 4.6. Box plot for the large iceberg. All data points above the red line are rare events 

(extreme outliers).  

 

Figure 4.7. Histogram: The large iceberg speed distribution (2002 -2017). 

4.3.2. Result and Discussion 

4.3.2.1 Threshold selection  

The thresholds are chosen using the Normal Q-Q plot (Figure 4.8) and mean residual life plot 

(Figure 4.9). The thresholds values are also justified with a parameter stability plot. A low 

threshold leads 
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Figure 4.8. Normal Q-Q plot. The red vertical lines are showing the threshold range. 

to bias and a high threshold causes high variance (Scarrott and MacDonald, 2012). Therfore, the 

threshold is chosen as a tradeoff between bias and variance. In the Normal Q-Q plot (Figure 4.8), 

the extreme values start to deviate in the range of 1.4 to 2.2, and above the threshold points, the 

mean residual life plot (Figure 4.9) has reasonable linearity; however, below this level, the curve 

shows biased curvature.  

 

Figure 4.9. Threshold selection procedure (mean excess vs iceberg speed). The number of 

excesses is labeled at the top of the plots. Threshold values are highlighted with vertical lines. 
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The model parameter stability plots have a similar trend. Instead of a fixed threshold, finally, three 

thresholds (1.4, 1.8, and 2.2) are chosen, and the HRTD parameter is estimated for their 

corresponding threshold values.  

4.3.2.2 Parameter estimate (Bayesian inference)                                                                                               

To estimate the HRTD parameter, this research used Bayespowerlaw.bayes function of the Python 

BayesPowerlaw package. This function fits the data to HRTD and determines its parameter by 

using Bayesian inference (MCMC, Metropolis-Hastings algorithm). To execute this function 

requires several initial setups.   

• Parameter range estimate: The HRTD parameter range is estimated through the Hill (Hill, 

1975) and SmooHill (Resnick and Starica, 1997) estimators, and estimated values are listed 

in Table 4.2. The details of the implementation of the Hill and SmooHill estimators are 

described in (Arif et al., 2020a). Table 4.2 gives an estimate of the minimum and maximum 

values of the parameters of the HRTD.  

•  The thresholds values are used as the lowest value from the data to fit HRTD.  

• Number of MCMC iterations as set as 10000. 

• Standard deviation of the sampling step size during MCMC for both gamma (first value) 

and weight (second value) are estimated from the Standard Deviation (SD) of the data set. 

More precisely, for the threshold 1.4, SD is estimated as 0.96 (1.37 for the threshold 1.8 

and 1.96 for the threshold 2.2)   

• A Jeffrey prior is used for the prior estimate.   

In practice, this study uses Python package BayesPowerlaw with a Metropolis Hastings algorithm, 

as explained earlier, to estimate parameters. The Python package uses HRTD parameter range 

values between 1.1 to 6. The parameter range for the corresponding threshold values are listed in 
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Table 4.2. This research found that if default values are used, then the estimated parameter value 

fails to capture the most extreme event.  

Table 4.2. HRTD parameter (𝛼) and its range range estimate through Hill and SmooHill estimator.  

 

                       

Threshold, km/hr 

 

 

 

Methods                                         

Parameter range 
    Hill estimator   SmooHill estimator 

1.4 3.524 (3.519, 3.529) 3.323 (3.318, 3.327) [3.318, 3.529] 

1.8 2.814 (2.811, 2.818) 3.221 (3.217, 3.225) [2.811, 3.225] 

2.2 2.628 (2.624, 2.632) 2.932 (2.928, 2.936) [2.624, 2.936] 

 

The HRTD parameter is estimated for three different threshold values using Bayesian inference.  

Among all 10000 posterior values, the parameter values which are convergent in the MCMC 

(Metropolis-Hasting) algorithm are considered in the final posterior distribution. The mean and 

standard errors are computed and presented in Table 4.3. The mean of all accepted posterior values 

is used for the HRTD parameter estimate. The posterior distribution for the HRTD fit is placed in 

Figure 4.10. In the case of threshold 1.8, the standard error is a little high (as the parameter range 

is high), but all three are reasonable.   

 

Figure 4.10. The posterior distribution for the HRTD fit for three different threshold values. The 

threshold values are leveled on top of each plot.  
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The fitted model (for different threshold values) directly compare with data CDF in Figure 4.11 as 

a part of model validation. 

Table 4.3. HRTD parameter (𝛼) and Standard error (Bayesian inference).  

 

Threshold, u                        

Threshold (u) 

HRTD parameter Standard error 

1.4 3.429 

3.518 (3.515, 2.521)   [0.003] 

0.0005 

1.8 3.028 

3.586 (3.581, 3.591)    [0.005] 

0.0011 

2.2 2.843 

3.216 (3.211, 3.221)    [0.005] 

0.0005 

 

The study findings demonstrate that the Bayesian inference estimate provides a superior fit 

compared to the Hill and SmooHill estimators across all three different threshold values. This 

conclusion is based on the comparison of cumulative distribution functions (CDFs) and parameter 

error estimates. Notably, Figure 4.11 showcases the remarkable fit achieved by the Bayesian 

inference method, supporting its effectiveness in accurately capturing the extreme characteristics 

of the data.  A higher threshold value leads the more extreme values to fit the distribution line. 

 

Figure 4.11. Bayesian inference: The cumulative distribution function fit comparison for three 

different thresholds. The threshold values are labelled on top of each plot.       
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4.3.2.3 Return level and Risk estimate 

In this section, model return levels, i.e. the extreme iceberg speed (by the Equation 4.4) and 

corresponding KE (by Equation 4.10) are estimated for three different threshold values, and are  

Table 4.4 Iceberg exceedance occurrence probability, extreme speed (km/hr), Kinetic Energy 

(KE) in Megajoules (MJ) and Risk (MJ/year) corresponding to the three different thresholds 

(km/hr). 

Threshold, 

(u, km/hr) 

Risk factor                                                     Return periods    

 5 years  20 years      50 

years 

100 years 1000 years  

 

1.4 

Exceedance 

Probability 1.603E-03 1.511E-04 3.165E-05 9.680E-06 1.887E-07 

Speed, km/hr       

       

 

4.217E+00 6.318E+00 8.254E+00 1.010E+01 1.977E+01 

KE, MJ                                  
4.910E+03 1.080E+04 1.830E+04 2.720E+04 1.020E+05 

Risk MJ/year       
7.869E+00 1.638E+00 5.797E-01 2.637E-01 1.925E-02 

      

1.8 

Exceedance 

Probability 1.728E-03 1.707E-04 3.702E-05 1.148E-05 2.483E-07 

Speed, km/hr      
3.769E+00 5.957E+00 8.063E+00 1.013E+01 2.168E+01 

KE, MJ                 
3.780E+03 8.450E+03 1.440E+04 2.150E+04 8.210E+04 

Risk, MJ/year                 

6.539E+00 1.442E+00 5.323E-01 2.469E-01 2.040E-02 

           

  

2.2 

Exceedance 

Probability 1.745E-03 1.779E-04 3.920E-05 1.252E-05 2.814E-07 

Speed, km/hr            
3.459E+00 5.632E+00 7.775E+00 9.924E+00 2.230E+01 

KE, MJ                    
2.260E+03 5.390E+03 9.600E+03 1.490E+04 6.370E+04 

Risk,MJ/year               
3.947E+00 9.593E-01 3.761E-01 1.860E-01 1.792E-02 
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presented in Table 4.4. According to Table 4.4, in the case of threshold 1.4, for 100 years, the 

return level is 10.10 km/hr (KE 27200 MJ), which means that once every 100 years, the extreme 

iceberg speed will be 10.10 km/hr. For the case of thresholds 1.8 and 2.2, it is 10.13 km/hr (21500 

MJ) and 9.92 km/hr (14900 MJ) respectively. The occurrence probabilities are computed by 

Equation 4.9 for different return periods with corresponding threshold values and presented in 

Table 4.4. In the case of threshold 1.4, iceberg speed is 4.217 km/hr once every five years (Table 

4.4), so the probability of iceberg speed being less than or equal to 4.217 km/hr is 0.9318 (Equation 

4.2). Therefore, the probabilities for iceberg speed to be more than 4.217 km/hr is 0.0682. This is 

a conditional probability; for the unconditional probability, 0.2094 is multiplied with 𝑝𝑢= 0.1176. 

The occurrence probability (once every 5 years) of an iceberg speed more than 4.217 km/hr is 

0.0016 (Table 4.4). A similar procedure has been used for the case of thresholds 1.8 and 2.2. 

Finally, the risk is estimated using Equation 4.8, and is presented in Table 4.4, and based on 

acceptable risk criteria, a reasonable design risk is proposed. Data scarcity for extreme conditions 

is one of the reasons for uncertainty in risk calculation. At threshold 1.4, there are 70 data points 

used; however, in the case of 2.2, it is only the case of 12 data points. This causes significant 

variation in the extreme iceberg speed prediction for the three cases, and thus the risk estimate.  

Most engineering offshore facilities have been designed to withstand the impact between the small 

and medium iceberg weights. For example, the Terra Nova FPSO has been designed to withstand 

the impact of a 0.1 MT iceberg (Husky energy, 2000) and the Hibernia oil drilling platform can 

withstand a direct collision with a 1 MT iceberg (Kennedy, 2014). The FPSO can move off the 

station if an iceberg of greater size threatens the platform; however, the other offshore facility like 

Hibernia faces challenges. According to the descriptive statistics (Figure 4.3), every year a 

significant number of large icebergs are sighted in the study area (14% of the total number of 
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icebergs listed for the period 2002 to 2017) and moving with 10 MT impacts (only its weight 

(Toshkova et al., 2020)) in normal weather conditions. Moreover, according to the observational 

data, during the study period the maximum individual iceberg speed is listed as 8.48 km/hr (Figure 

4.5), which is also nine times higher than the average iceberg speed (0.91 km/hr) for the period 

2002-2017. The computed risk based on average iceberg speed (0.91 km/hr) has ~70 times less 

compared to extreme individual iceberg risk for the period of 100 years (389.8 MJ vs 27200 MJ). 

Therefore, extreme iceberg speed is more significant compared to the average iceberg speed. In a 

harsh environment, if a large iceberg collides with a structure in Jeanne d'Arc basin, the estimated 

iceberg impact energy is good enough to lead any catastrophic scenario. This gives a clear 

justification for the primary goal of this research. The design risk considered as 3.761E-01 

MJ/year, and the corresponding iceberg speed is proposed for the design purpose, which is 

estimated as 7.78 km/hr (exceed occurrence probability 3.920E-05). 

4.4. Conclusions 

Capturing the extreme characteristics of natural hazards which are the direct consequences of 

climate change, and their risk estimations is a challenging and time demanding agenda. To address 

this, a tail-based Bayesian approach is proposed and implemented in an extreme event scenario 

(iceberg collision). The methodology is new; however, model is well known. The extreme 

computed risk (based on iceberg size and speed) is an outcome of climate change. The Hill and 

SmooHill estimators are used to estimate parameter range to start the Bayesian process, which 

allows a robust parameter to estimate to capture the most extremeness, a reasonable fit, and a return 

level estimate. In all three threshold cases, especially in the case of the smallest sample, the 

proposed methodology shows a consistent fit to capture the extremeness. The 1000-year return 

period helped to achieve more extreme projection. The estimated design risk (based on extreme 
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individual iceberg speed) shows a significant impact compared to the average iceberg speed (the 

impact due to average iceberg speed is only about 4% of the impact of extreme iceberg speed). 

Therefore, the calculated risk needs to be considered in the iceberg risk management plan for the 

Jeanne d'Arc basin to avoid any unwanted situation. As a next step, a non-stationary approach for 

iceberg risk analysis for the different natural hazards (for example, wind speed, wave height, etc.) 

will be considered. 
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5. A GENERALIZED FRAMEWORK FOR RISK-BASED 

EXTREME LOAD ANALYSIS IN OFFSHORE SYSTEM DESIGN 
 

Preface 

This manuscript is based on a previously published version in the journal of Offshore Mechanics 

and Arctic Engineering, and I am the primary author of this research paper. Working under the 

supervision of co-authors, the study focuses on jointly investigating two crucial environmental 

parameters: wind speed and wave height. As part of the multivariate methodology development, a 

bivariate extreme joint model was developed and implemented to compute risk assessments for 

extreme wind and wave height at the Flemish Pass basin. Throughout the research process, I 

conducted an extensive literature review, collected, and analyzed the necessary data, and 

developed the methodology for the joint modeling. The analysis and modeling tasks were also 

carried out by me. The co-authors made significant contributions to the project, including concept 

development, methodology writing, manuscript review, and editing.  

The manuscript underwent modifications based on the valuable feedback received from the co-

authors and the peer-review process, resulting in further improvements and refinements. Co-author 

Faisal Khan was responsible for project management and funding acquisition for this research. 

This collaborative effort has enabled us to present a comprehensive study on joint modeling of 

extreme wind and wave height at the Flemish Pass basin, providing valuable insights for offshore 

engineering in consideration of varying environmental conditions. 

Abstract 

 

The primary aim of this research is to consider the correlation among environmental factors in 

calculating 100 and 1000 years of extreme load design criteria. This is done by considering load 
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as energy transferred from external environment to the offshore system. Also, incorporating spatial 

and temporal dependence of environmental variables in the context of offshore design. A bivariate 

extreme value distribution and a conditional joint return level function are developed using the 

Gumbel- Hougaard copula. The offshore design risk criteria are developed for the finer grid 

locations (0.10 × 0.10 latitude/longitude grid) considering joint extreme wind and wave energy. 

The developed approach is tested using data for the Flemish Pass basin off the east coast of Canada. 

Along with the primary aim, the impact of climate change is investigated (time and space 

variability) by implementing the proposed methodology in two cases: the periods from 1959 to 

1988 and 1989 to 2018. This study observed that climate change has caused 30% less correlation 

between wind speed and wave height in recent years [1989-2018] compared to the period of 1959 

to 1988. The proposed extreme design wind speed is 39.7 m/s, significant wave height is 16.4 m; 

their joint exceeding probability is 5.80E-05 over an annual basis for a scenario of 100- year.                                                                                                                        

Keywords Extreme energy; Copula function; Tail dependence; Max-stable process; Risk-based 

design.  

5.1. Introduction   

Engineering design needs to focus on extreme environmental conditions. Extreme loads due to 

earthquakes, tide, wind, waves etc., often lead to the failure of engineering systems. In addition, 

offshore engineering systems/equipment operates in an environment with strong currents, uneven 

surfaces, extremely low temperatures, and staggering depths. All this cause environmental extreme 

load analysis to be more complicated in the offshore domain. Furthermore, the financial impact of 

downtime and repair work is high. Therefore, proposing adequate or optimal structural design 

parameters value is challenging, and climate change issues make this task more complicated. The 

optimal design parameter estimation process is a case of compromising the safety and cost. It 
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generates the "flexibility" concept adopted in modern engineering designs in an uncertain 

environment (Neufville and Scholtes, 2011). The offshore operator must rely on a flexible risk-

based design approach to optimize cost and achieve desired process safety by adopting the events' 

extreme probability and impact. Towards this, a risk-based flexible design approach is 

implemented for a univariate case (Arif et al., 2020a; Arif et al., 2020b). This could be compared 

to the offshore Accidental Limit State (ALS) design requirement (Paik and Thayamballi, 2007).  

However, environmental variables are correlated; for example, floating offshore structures are 

exposed to wind, wave height, spectral peak periods etc. Therefore, in offshore structural design, 

to make the impact analysis more realistic, the extreme joint conditions and their association needs 

to adopt (RP2A-WSD. 2000).   

Wind and waves are prime factors for offshore engineering design. Being correlated, their joint 

association should be considered for relevant offshore engineering design and operations. 

However, the effect of changing climatic conditions on the correlation between extreme wind 

speed and significant wave height is not well understood. In 2018, global sea level was 3.2 inches 

(81 mm) above the 1993 average, with the highest annual average in the satellite record from 1993-

present (NOAA, 2019). Additionally, the recent European heat wave (Climate signal beta, 

European heat wave, 2019) and the past 30 years of changing patterns of ocean waves and wind 

(Young and Ribal, 2019b) cannot be ignored. There are clear indications of global warming 

(NOAA, 2019; Climate signal beta, European heat wave, 2019, and Ogunbode et al., 2020 etc.) 

and its direct consequences include Greenland’s loss of 532 billion tonnes of ice in a record melt 

in 2019 (CBC report, 2020). Between 2030 and 2052, global temperature is expected to rise by 

1.5°C, compared to the pre-industry era, if it continues to rise at the current rate (Ogunbode et al., 

2020). This being the case, then what will the future climate looks like? There is no exact answer; 

https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=Anil%20Kumar%20Thayamballi&eventCode=SE-AU
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however, the future climate will likely be dominated by more extreme natural events (Wang et al., 

2017). Therefore, changing climate conditions need to be considered in risk assessment approaches 

to manage unexpected extreme impacts.     

Flexibility based risk assessment approaches have been applied in many areas, including iceberg 

collision risk analysis (Arif et al., 2020a; Arif et al., 2020b), extremely low temperatures for 

vessels’ operations (Sulistiyono et al., 2015), design of a water supply system (Zhang et al., 2011) 

and water management system (Deng et al., 2013; Manocha and Babovic, 2015); the met ocean 

study of an offshore Newfoundland and the Labrador basin (C-CORE, 2015), iceberg impact 

analysis (HUSKY oil operations limited as operator, 2000.) and the working stress design 

guidelines (RP2A-WSD, 2000). However, many of these studies were done for a large spatial 

scale, and unable to provide useful information for the design of a structure in a small scale. For 

example, the risk profile generated in (Arif et al., 2020a) failed to provide information on any 

specific grid location in the Flemish Pass basin area. In addition, most of these analyses were done 

for a single variable (Arif et al., 2020a; Arif et al., 2020b; Sulistiyono et al., 2015; Zhang et al., 

2011; Deng et al., 2013; Manocha and Babovic, 2018), or in case of multivariable, without 

considering the correlation (C-CORE, 2015; Lombardo and Ayyub; 2014). Specifically, for the 

Flemish Pass basin, the 100-year annual extreme wind speed and significant wave height are 

predicted as 33.4 m/s and 16.3 m respectively (C-CORE, 2015); however wind and wave 

dependency are ignored. In the context of offshore oil drilling operations/offshore structure design, 

a small scale, for example, (0.10 × 0.10)  latitude/longitude grid and multivariable dependency 

are more appropriate to capture the site specific information. Several approaches have been 

proposed to estimate the extreme joint distribution by considering short term and long-term 

dependency, in the context of offshore design and marine operations (Johannessen et al., 2002; 
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Bay et al., 2013; Elzbieta, 2015; Horn et al., 2018; Lin and Dong, 2019). Moreover, the seasonal 

effect and short-term variability are considered in building the joint met ocean model (Vanem,, 

2016; Lin et al., 2020) and environmental contours are used in the structural analysis of marine 

and coastal structures (Haver and Winterstein, 2009; Ross et al., 2020). The proposed approach is 

different and captures a unique condition of extreme joint maxima of variables. The joint 

occurrence of maxima has a lower probability of occurrence; however, it is the extreme impact 

condition. The authors have used the joint occurrence of maxima as the extreme condition and 

then modelled different load occurrences along with their likelihood of occurrence. The load value 

and its occurrence likelihood are used to estimate risk. Then the risk is used as a guiding parameter. 

The highest risk (based on pre-defined acceptable risk level) is recommended as the design 

criterion. In this study, load is calculated as energy, and an extreme joint distribution of wind speed 

and wave height is created using the extreme value copula technique. The model presents an 

extremely high-resolution flexible risk profile for the Flemish Pass basin. The developed model 

has been used to study the impact of climate change on the dependency between wind speed and 

wave height over the past 60 years. The remainder of the article is organized as follows: section 

5.2 describes the proposed methodology in detail; section 5.3 presents the case study, methodology 

validation and key findings. The concluding remarks of this study are placed in section 5.4.                                                                              

5.2. The Methodology 

The probabilistic approach, with conditional dependence and evidence-based updating, is 

considered to capture the extreme joint scenario and associated uncertainty. The risk depends on 

the severity of the consequences and their likelihood. Therefore, to model an extreme dependency 

structure, the authors focused on developing an extreme joint distribution (to calculate the joint 

occurrence probability) and an efficient way to calculate joint extreme return levels for impact 
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(energy) estimation. Towards construct a joint distribution (bivariate/multivariate cases), the 

models have two components: the marginal distributions and the dependence structure. Univariate 

extreme value-based approaches are appropriate for choosing a marginal distribution (Arif et al, 

2020a; Arif et al., 2020b; Vanem 2015; Staid, 2015; Das et al., 2016; Hu and Ayyub, 2017). 

However, capturing the extreme dependency structure is complicated. To do this, the classical 

approaches, for example, implementing the "Extreme Value Theory" in bivariate/multivariate 

cases are common (Tawn 1988; Shiau 2003; Goodarzi et al., 2012). However, this does not allow 

flexibility in choosing a marginal distribution. For example, two characteristic variables for a flood 

event, flood volume and flood peak, have been modelled, and the marginal distribution is chosen 

as a Gumbel distribution (Shiau, 2003; Goodarzi, 2012).  In reality, all considered variables do not 

always follow the same distribution. For instance, in a rare event (for the case of few data), the 

Gumbel distribution fails to capture the most extreme circumstances (Vanem, 2015; Gaidai, et al., 

2020; Toshkova et al., 2020; Vanem 2020). As an alternative, copula-based approaches are taking 

the lead. The flexibility in marginal distribution choice has made the copula approach a widely 

used tool for modelling extreme random variables' dependency. The extreme dependence may be 

a case of asymptotic dependence (case of max stable models) or asymptotic independence (the 

case for inverted max-stable models) (Coles, et al., 1999; Rodriguez et al., 2007). When variables 

are asymptotically dependent, they tend to have big values at the same time. Large values never 

appear together if they are asymptotically independent. Different copulas have been proposed for 

tail dependencies and implemented in bivariate/multivariate cases (Ross et al., 2020; Candela and 

Aronica, 2017; Zhang et al., 2018; Kang, 2019; fang et al., 2020; Liu et al., 2020; Hu and Ayyub, 

2019). In a similar aspect, the present study takes advantage of the copula-based method to model 

the joint distribution of wind speed and wave height.  
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Return level-based modelling is the most popular method for effect estimation. The return levels 

for extreme events such as floods and storms are standard criteria employed in offshore 

engineering design. They describe the severity and likelihood of an extreme event and use it to 

quantify the risk. For example, in a specific area, a 100-year extreme wind speed of 35 m/s means 

that the 100-year extreme wind speed is expected to exceed 35 m/s average once every 100 years. 

The return period is defined clearly in a univariate context. Its definition is more challenging when 

the problem at hand requires consideration of the dependence between two or more variables in a 

bivariate/multivariate framework. Several ways of defining a multivariate return period have been 

proposed in the literature, all of which rely on different probability concepts. These definitions 

may use conditional probability, joint probability, or can be based on Kendall’s distribution or 

survival function (Toshkova et al., 2020). Here, the conditional return period is considered to 

model extreme dependency. The time scale considered in this current study is years, and extreme 

yearly paired (wind and wave) data is generated from the available hourly data for a specific year. 

The proposed methodology is shown in Figure 5.1.  Each component of the methodology is 

described in the following sections. 

5.2.1 Dependency measure                           

To evaluate the aggregate extreme event risk for offshore environmental risk analysis, a risk 

analyst needs to consider whether the individual risk factors are dependent or independent. Most 

variables associated with natural hazards, for example, icebergs, floods, wind, and waves are 

correlated to some extent. Therefore, instead of calculating the sum of random variables' 

distribution function, their dependence structure needs to be considered to build the joint 

distributions. Dependency structure measured by Pearson’s correlations coefficients is widely used 

because of its simplicity; however, it can only represent linear dependency. Therefore, the rank 
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based correlation coefficient, Kendall’s tau (Kendall, 1938) and Spearman’s rho (Zar, 2005) is 

widely used in calibrating copula. The copula function depends on the rank correlations, not on 

marginal distributions, and is invariant in this case under strictly increasing transformations. 

However, Pearson’s correlations do not satisfy this property and require the existence of second-

order moments (Joe 2014). The Kendall’s tau dependency measure concept is more robust than  

 

 

 

 

 

 

 

 

                       

 

 

 

 

 

 

 

 

Figure 5.1. The proposed methodology for bivariate extreme event risk analysis 
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Pearson’s correlations coefficients; it is also useful for calibrating copula (Haugh, 2016). Kendall's 

tau is often a good way to characterize the extreme dependence structure of a particular copula.  

For example, the coefficient of tail dependence for some copulas can be expressed as a function 

of Kendall's tau for the copula. This study considered Kendall’s tau to measure the data/model 

dependency. Let (𝑋1, 𝑌1) and  (𝑋2, 𝑌2 ) be an independent random pair with continuous marginal 

distributions, and copula C. The two pairs are concordant if (𝑋1 − 𝑋2)(𝑌1 − 𝑌2) > 0 and 

discordant if(𝑋1 − 𝑋2)(𝑌1 − 𝑌2) < 0. The empirical Kendall’s tau is defined as (Kendall, 1938):  

𝜏 =
𝑛𝑐−𝑛𝑑

1

2
𝑛(𝑛−1)

,                                                                                                                                  (5.1)                               

where 𝑛𝑐 and 𝑛𝑑 are the numbers of concordant and discordant pairs. The total amount of pairing 

is
1

2
𝑛(𝑛 − 1), where n is the sample size.  

5.2.2 Marginal distributions                                                                                                                                                  

In univariate cases, the "Extreme Value Theory (EVT)" based approach is frequently used in 

modeling extreme events. Among all the methods, the Block Maxima (BM) based Generalized 

Extreme Value (GEV) and Peak Over Threshold (POT) based Generalized Pareto Distribution 

(GPD) are the most common. The authors implemented these methods in extreme offshore risk 

analysis in a univariate case (Arif et al., 2020a; Arif et al, 2020b). In this research, BM based GEV 

is considered because GEV is a particular case of max stable distribution. It is also validated 

through the chosen goodness of fit criteria (for example, probability, Q-Q, density, and return level 

plot). The GEV distribution is defined as (Castillo et al., 2005):    

𝐹(𝑧, ; 𝜇, 𝜎, 𝑘 ) = 𝑒𝑥𝑝 {− [1 + 𝑘 (
𝑧−𝜇

𝜎
)]

−
1

𝑘
 } ,                                                                          (5.2) 

where 𝜇 is the location parameter, 𝜎 is the scale and k is the shape parameter (−∞ < 𝜇 < ∞, 𝜎 >

0,  and−∞ < 𝑘 < ∞). The GEV is known as combinations of three extreme value distributions 



 

95 
 

based on its shape parameter values; i.e. if 𝑘 = 0, GEV has Gumbel, if 𝑘 > 0, it has Frechet and 

if 𝑘 < 0, it has Weibull distribution.                                              

5.2.3 The Copula Model                                                                                                                                                                                 

A copula is a function that couples different marginal distributions. Mathematically, a copula is 

defined as a distribution function, 𝐶: [0,1]𝑛 → [0,1], for integer 𝑛 ≥ 2 with marginal distributions. 

Sklar’s theorem (Sklar, 1959) clarifies the concept of the copula in terms of its importance and 

prospects for implementation. According to Sklar’s theorem, a distribution function 𝐹1:𝑛: 𝑅𝑛 → 

[0,1] having univariate marginal distribution 𝐹1, 𝐹2, … , 𝐹𝑛, n ≥ 2, can be written as 

𝐹1:𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛)), where 𝐶 is a copula, and it is unique when all 

𝐹1, 𝐹2, … , 𝐹𝑛 are continuous. The converse is also true, i.e. if 𝐶 is a copula and 𝐹1, 𝐹2, … , 𝐹𝑛  are 

distribution functions, then the function 𝐹1:𝑛 is a multivariate distribution function with marginal 

distributions 𝐹1, 𝐹2, … , 𝐹𝑛 . Therefore, multivariate distributions can be modelled using copulas and 

the well known univariate methods for modeling marginal distributions.  However, multivariate 

extreme-value analysis is concerned with the extremes in a multivariate random sample; that is, at 

least some components have exceptionally large values, and mathematical theory suggests the use 

of max-stable models for univariate and multivariate extremes (Segers, 2012). Therefore, the 

univariate extreme modelling approach (Arif et al, 2020a; Arif et al., 2020b) can be merged with 

a copula if it is an extreme value copula, and max- stable. In addition, a copula is an extreme value 

copula if and only if it is max-stable (Theorem 2.1, Gudendorf et al., 2010). Therefore, a max-

stable copula is also an extreme-value copula, being in its own domain of attraction (GEV families 

are explained in section 5.2). Conversely, each extreme-value copula can be shown to be max-

stable. For example, the Gumbel–Hougaard (GH) copula (Hutchinson and Lai, 1990) is an extreme 
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value copula (Balakrishnan, 2009) and therefore is max stable (Theorem 2.1, Gudendorf et al., 

2010). The Gumbel Hougaard (GH) copula is defined as (Hutchinson, 1990):  

𝐶(𝑢, 𝑣) = exp {−[(− ln 𝑢)θ + (− ln  𝑣)θ]
1

θ}; θ ≥ 1                                                                         (5.3) 

This study focuses on the GH copula to build extreme bivariate models. However, Clayton and 

Joe copulas are considered to determine the best model.  The Clayton copula is defined as 

(Clayton, 1978):  

𝐶(𝑢, 𝑣) = (𝑢−𝜃 + 𝑣−𝜃 − 1)−1/𝜃;  0 < 𝜃 < ∞.                                                                             (5.4) 

The Joe copula is defined as (Hosking et al., 1985):  

𝐶(𝑢, 𝑣) = 1 − [(1 − 𝑢)𝜃 + (1 − 𝑣)𝜃 − (1 − 𝑢)𝜃(1 − 𝑣)𝜃]
1

𝜃; 1 ≤  𝜃 < 1                                  (5.5) 

5.2.4 Goodness of fit test 

In this research, GEV fit is justified with a model versus empirical probability, Q-Q, density, and 

return level plot. With the Q-Q and the P-P plots, the feasibility of capturing tail data is examined. 

On the Q-Q and the P-P plots, most of the points should be located close to the diagonal. Significant 

variations from linearity would mean poor fit of the chosen model or inaccuracy in the parameter 

estimation technique. For more details refer to (Arif et al., 2020a). For the copula, the goodness of 

fit is investigated with the likelihood values (log-lik), Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) are most common. A larger Log-lik and smaller AIC and 

BIC give a better fit. However, in this case, all considered copulas’ have one parameter, so AIC or 

BIC statistics do not provide any additional information. In this research, best fitted copulas are 

justified with log-lik values, P-values and testing null hypothesis (𝐻0: 𝐶 = 𝐶𝜃 against  𝐻1: 𝐶 ≠ 𝐶𝜃 

where 𝐶𝜃 is a specific copula (Genest, 2009). Smaller P-values and higher test statistics provide a 

better fit. Along with the numerical evidence, the fitness of a copula is justified with the correlation 

map plot (empirical vs. model). More precisely, correlation map plot differences (Model - 
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Empirical) less than or equal to ~0.1 are considered benchmarks to justify the captured 

dependency. Finally, the predicted 100-year return levels (wind speed and wave height) are 

compared with the result in (C-CORE, 2015). According to the (C-CORE, 2015) climate study 

analysis, 100-year extreme wind speed listed for the Flemish Pass basin is 33.4 m/s and wave 

height is 16.3 m (Hindcast data; the 60 years from 1954 to 2013). The present study considered 

Hindcast data from 1959 to 2018 in two phases. This direct comparison justifies use of the 

proposed methodology and verifies its prediction.        

5.2.5 Extreme Bivariate Distribution 

Let 𝑥 (wind) and 𝑦 (wave) be two random variables. Assume data are Independent and Identically 

Distributed (IID) and that each variable contains the yearly data maximum value. Then the joint 

cumulative distribution 𝐹(𝑥, 𝑦) of any pair of continuous random variables (𝑥, 𝑦) with marginal 

distributions 𝐹(𝑥) and 𝐹(𝑦)  is given by   

𝐹(𝑥, 𝑦) = 𝐶(𝐹(𝑥), 𝐹(𝑦); 𝜃) = 𝐶(𝑢, 𝑣; 𝜃),                (5.6) 

where 𝐶 represents the copula function, and the dependence structure is defined by the 

parameter(s), 𝜃. The variables 𝑢 and 𝑣 are the normalised ranks between 0 and 1 (transformed 

from the variables x and y). The 𝐹(𝑥) and 𝐹(𝑦) are chosen as GEV distribution (as explained in 

section 5.2). Therefore:  

𝐹(𝑥) = exp [− {1 + 𝑘1 (
𝑥−𝜇1

𝜎1
)}

−
1

𝑘1]                                                                                                     (5.7) 

 𝐹(𝑦) = exp [− {1 + 𝑘2 (
𝑦−𝜇2

𝜎2
)}

−
1

𝑘2]                                                                                              (5.8) 

The Extreme Bivariate Distribution is based on the Gumbel–Hougaard copula (Equation 5.3):  

𝐹(𝑥, 𝑦) = 𝐶(𝑢, 𝑣) =  𝑒𝑥𝑝 − [{1 + 𝑘1 (
𝑥−𝜇1

𝜎1
)}

−
𝜃

𝑘1 + {1 + 𝑘2 (
𝑦−𝜇2

𝜎2
)}

−
𝜃

𝑘2]

1/𝜃

                             (5.9) 
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Similarly, the extreme bivariate distribution can be derived based on the Clayton copula (Equation 

5. 4) and the Joe copula (Equation 5.5).  

5.2.6 Parameter estimation 

The likelihood function of independent observations 𝑥1, 𝑥2, … , 𝑥𝑛 is defined as: 

 𝐿(𝑥𝑖;  𝜃) = ∏ 𝑓(𝑥𝑖; 𝜃)𝑛
𝑖=1 ,                                                             (5.10)                                                                                 

where 𝑓 =
𝑑𝐹

𝑑𝑥
, and 𝜃 represent the distribution parameters. According to (Hosking, 1985), for a 

small size sample, the MLE parameter estimator is unstable (due to the large bias and RMSE in 

extreme upper quantile estimators) and the probability weighted moments estimator is 

recommended (Greenwood, 1979), which is equivalent to the L-moment estimator (Hosking,, 

1990). This study found that the MLE and the Generalized Maximum Likelihood Estimator 

(GMLE) are unstable to estimate GEV parameters for the case of few grid location data. In some 

cases, the GMLE estimator (Martins and Stedinger, 2000) gives negative values for the scale 

parameter and causes a biased estimate in the shape parameter. The marginal GEV parameters are 

estimated independently, assuming data are identical and independently distributed. In this 

research, the GEV parameters are estimated using the L-moment and the copula parameter 𝜃  is 

estimated through MLE. The L-moment estimator for GEV distribution is defined as (Hosking, 

1990): µ = 𝜆1 −
𝜎

𝑘
{1 − Γ(1 + 𝑘)}, 𝜎 =

𝜆2𝑘

(1−2−𝑘)Γ(1+𝑘)
, 𝑘 = 7.8590𝑐 + 2.955𝑐2,  and 𝑐 =

2

3+
𝜆3

𝜆2
⁄

−  
log 2

log 3
, where, 𝜆1 = 𝛽0, 𝜆2 = 2𝛽1 − 𝛽0, 𝜆3 = 6𝛽2 − 6𝛽1 + 𝛽0 and the estimator of 𝛽𝑟 is 

defined as: 𝛽𝑟 = 𝑛−1 ∑
(𝑖−1)(𝑖−2)…(𝑖−𝑟)

𝑛(𝑛−1)(𝑛−2)…(𝑛−𝑟)
𝑥𝑖

𝑛
𝑖=1 , where 𝑟 = 0, 1, 2 and 𝑥𝑖 are the ordered 

observations from a sample size n.  
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5.2.7 Consideration of Return level  

The return level gives the event magnitude for a specific return period. In the univariate context, 

it is straightforward (Arif et al, 2020a; Arif et al, 2020b; Das et al, 2016)  etc. However, the 

bivariate/multivariate framework needs to solve a non-linear system of equations. If only one 

extreme random variable is significant in the design criteria or the two random variables are 

independent or less dependent (dependency less than 2), the return period is defined as (Gaidai, et 

al, 2020): 𝑇𝑋 =
1

1−𝐹(𝑥)
 , and 𝑇𝑌 =

1

1−𝐹(𝑦)
 , where the numerator, 1, indicates that most extreme 

events are considered for every year. In the case of a joint return period, the random variables 𝑥 

and 𝑦 may be considered either jointly or conditionally. The joint return period is defined as:                                                                                                    

𝑇𝑋 𝑜𝑟 𝑌 =
1

𝑃(𝑋≥𝑥 𝑜𝑟 𝑌≥𝑦)
=

1

1−𝐹(𝑥,𝑦)
, and 𝑇𝑋 𝑎𝑛𝑑 𝑌 =

1

𝑃(𝑋≥𝑥 𝑎𝑛𝑑 𝑌≥𝑦)
=

1

1−𝐹(𝑥)−𝐹(𝑦)+𝐹(𝑥,𝑦)
.  

The conditional distribution 𝑌 given 𝑋 ≥ 𝑥 and the conditional distribution of 𝑋 given 𝑌 ≥ 𝑦 can 

be defined as (Shiau et al., 2003): 

𝐹(𝑦|𝑋 ≥ 𝑥) =
𝐹(𝑦)−𝐹(𝑥,𝑦)

1−𝐹(𝑥)
                                                                                                         (5.11) 

𝐹(𝑥|𝑌 ≥ 𝑦) =
𝐹(𝑥)−𝐹(𝑥,𝑦)

1−𝐹(𝑦)
                                                                                                         (5.12) 

As a result, the conditional joint return period is as by using Equation 5.11 and Equation 5.12 as 

follows:  

{
𝑇𝑋|𝑌≥𝑦 =

1−𝐹(𝑦)

1−𝐹(𝑥)−𝐹(𝑦)+𝐹(𝑥,𝑦)

𝑇𝑌|𝑋≥𝑥 =
1−𝐹(𝑥)

1−𝐹(𝑥)−𝐹(𝑦)+𝐹(𝑥,𝑦)

                                                                                                      (5.13) 

 In this study, the authors are interested in the conditional return period defined in Equation 5.13. 

Therefore, to estimate the bivariate conditional return levels, one needs to solve the system of a 

nonlinear equations for 𝑥 and y. The present study used iterative Newton’s method to solve 

systems of nonlinear Equations 5.13.  To do this, here the R package “nleqslv” is used. Details 



 

100 
 

about the algorithm, method and the implementation process for “nleqslv” are available at 

https://www.rdocumentation.org/packages/nleqslv/versions/3.3.2/topics/nleqslv. 

5.2.8 Risk estimation    

The risk is denoted as R and defined as (Arif et al, 2020a; Sulistiyono et al, 2015):  

𝑅 = 𝑃(𝑂) × 𝐶,                                                                                                                            (5.14) 

where 𝑃(𝑂) is occurrence probability (extreme wind speed and significant wave height) and C is 

the extreme wind-wave consequence (impact). Impact and the possibility of an incident are the 

two components of risk (Equation 5.14). As a result, the likelihood represents the possibility of an 

event occurring over a return time (/yr). Therefore, the risk values are estimated by multiplying 

the corresponding likelihood by impact energy. In this study, the impact is considered in terms of 

energy. The occurrence probability is defined as (Arif et al, 2020a):  

𝑃(𝑂) = (𝑅𝑃)−1 × 𝑃𝑒 ,                                                                                                                          (5.15) 

where RP is the return period and 𝑃𝑒 is the joint exceedance probability. The joint exceedance 

probability computed using the joint cumulative distribution function is defined in Equation 5.9. 

The probability of occurrence is calculated considering two elements, one return period (which 

provide scenario in the window of operation), and the second event’s occurrence probability, 

which maybe treated as short-term variability).  For example, for a 100-year return period, the 

probability of the scenario is 1/100. Now, in this scenario, the event’s joint exceedance probability 

𝑃(𝑥 > 32.2 𝑎𝑛𝑑 𝑦 > 15.2) is 0.0016 (Computed through Equation 5.9). Therefore, the 

occurrence probability per year is 0.01*0.0016~1.6E-05. The extreme joint wind-wave 

consequence (impact), C is competed as total energy (MJ) imposed through extreme wind and 

wave profile predicted on section 5.7.  This research, instead of measuring the outcomes of this 

impact, focused on how much total energy (to access load) is available to make any unexpected 
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situation. The total energy, C is competed by incorporating energy created by the wind (𝐸𝑤𝑖𝑛𝑑) 

and energy created by the extreme wave height (𝐸𝑤𝑎𝑣𝑒).  In the current study, wind energy is 

defined as wind moment, which is defined as force times distance in the direction of force (work 

done, which is source of failure and thus considered as load). The design wind force, 𝐹, is defined 

as; 𝐹 =
1

2
× 𝜌 × 𝑢2 × CS × A (Greenwood et al., 1979); Therefore, the wind energy, 𝐸𝑤𝑖𝑛𝑑 is 

computed according to the following formula:   

𝐸𝑤𝑖𝑛𝑑 = 𝐹 × 𝑑 =
1

2
× 𝜌 × 𝑈2 × CS × 𝐴 × 𝑑,                                                                                               (5.16) 

where 𝑈 is proposed extreme wind speed (m/s, predicted return levels), ρ is the density of air 

(1.225 kg/m3), 𝐶𝑆 is the drilling derrick shape coefficient, is considered as 1.25 (Oil and GmbH, 

2013), 𝐴 = wind projected area and d is the distance of wind speed measure (10 m height).  The 

energy created by the extreme wave height (𝐸𝑤𝑎𝑣𝑒), is calculated as (Blackledge et al., 2013):  

𝐸𝑤𝑎𝑣𝑒 =
1

8
× 𝜌 × 𝑔 × 𝐻2 × 𝐴;                                                                                                                                (5.17) 

where 𝜌 the density of the water and is 𝑔 the acceleration of gravity, H is the predicted wave height 

(Concurrent with extreme wind), and 𝐴 is the wave projected area. Present study, the area, 𝐴 is 

considered as 3332 m2 (Hibernia oil drilling platform top side length 98 m and width 34 m 

(HIBERNIA, 1997).  Equation 5.17, provides wave energy, which is the work done on the project 

area by vertical wave force. The present study considered the summation of these two energy terms 

from a failure mode perspective. Different parts of the object will be affected by the wind and 

wave forces, and the impact mechanism will differ. However, in this study, the same area (𝐴) is 

considered for both wind and wave energy computation. We assume that when these two types of 

energy are combined and given to an existing facility (or a floating object), they will have a 

synergistic effect and lead to failure. So, from the perspective of failure load calculation, we have 



 

102 
 

taken the sum of these two energies into joint impact consideration. Additionally, the impact ratio 

of these two energies is presented and employed in the analysis of the consequences. 

5.2.9 Design wind speed and wave height  

What is the highest risk needed to adopt for proposing a design parameter? There is no precise 

answer for this. For example, a 50-year scenario might give us less risk compare to adopting a 

1000 years scenario. In addition, anyone can adopt more years’ scenario and comes off with 

another highest risk value. Towards this, an acceptable risk level needs to be defined by the 

operator (for example, say 10-2 MJ/year). Defining this value is to be a subject of optimizing two 

key factors: safety and cost. This needs to adjust based on an operation’s needs. Based on accepted 

risk value, the corresponding risk components (wind speed, wave height, and occurrence 

probability) are proposed for design purposes.   

5.3. The Case Study 

Wind speed and wave height are significant environmental variables with direct impacts on 

offshore structures and marine facilities. In general, wind speed and wave height show high 

dependency (time and space). The wind speed and wave height hourly data have been collected 

from Hindcast model-simulated data (Swail et al., 2006) for 154 grid locations from 1959 to 2018. 

In this research, the wind is considered the primary variable, then takes the annual maximum of 

this together with concurrent observations of the waves to extract all extreme data sets. The 

proposed methodology is used to assess the extreme risk by incorporating the joint probability of 

extreme wind speed, wave height and their impact energy on an offshore structure in the Flemish 

Pass basin (470 N to 480 N, 460 W to 47.30 W). Topside engineering facilities must take wind load 

effects into account while designing offshore structures. Random topside area data from an oil 

drilling rig are used to estimate the impact of energy. Although the projected area perpendicular 
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to the direction of force is preferred for wind load effects, the authors primarily focus on the 

amount of extreme load that would be put on any platform in an extreme situation rather than 

getting into specifics about platforms.  More specifically, topside area data from the Hibernia oil 

drilling platforms (using top side length 98 m and breadth 34 m; additional information about the 

platform can be obtained at (HIBERNIA, 1997).  

 

Figure 5.2.  A simple topside representation of a random platform. 

Figure 5.2 presents a basic topside layout such a random platform. The data set is segmented to 

formulate two cases. In “Case I”, data from the period 1959 to 1988 are used, and in “Case II”, 

data from 1989 to 2018 are considered. Splitting the time scale allows the examination of climate 

change’s effects on wind and wave extreme behaviour and their correlation. The R (freely available 

at https://www.rstudio.com) packages extRemes, evmix, fExtremes, Copula, Vinecopula, and 

nleqslv are used to implement the methodology and the descriptive statistical data analysis. 

5.3.1 Descriptive statistics 

According to data statistics, for Case I vs. Case II, the most extreme wind speed listed is 30.85 vs. 

36.44 m/s. For wave height, it is 15.54 vs. 15.38 m. Both cases show that the wind speeds have an  
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Table 5.1. Data statistics: Hourly wind speed (m/s) and wave height (m) data for three grid 

locations (with extremes) for the Flemish Pass basin. The most extreme grid locations are 

highlighted as bold.    
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Case I                 

(1959-

1988) 

(470N, 47.30W) 8.06 29.33 5.31 11.25 29.07 0.57 3.14 

(47.40N, 47.30W) 8.17 29.53 5.45 11.37 29.13 0.59 3.06 

(480N, 460W) 8.50 30.85 5.55 11.85 30.75 0.52 3.03 

Case II                  

(1989-

2018) 

(470N, 47.30W) 8.36 31.66 5.56 11.51 29.36 0.56 3.22 

(47.40N, 47.30W) 8.45 32.53 5.7 11.61 29.34 0.58 3.24 

(480N, 460W) 8.84 36.44 5.92 12.18 30.96 0.52 3.14 

W
av

e 
H

ei
g
h
t 

(m
) 

Case I                 

(1959-

1988) 

(470N, 47.30W) 2.53 15.28 1.74 3.62 9.25 1.47 6.74 

(47.40N, 47.30W) 2.53 15.54 1.74 3.63 9.30 1.43 6.61 

(480N, 460W) 2.67 14.89 1.84 3.83 9.80 1.55 6.75 

Case II                  

(1989-

2018) 

(470N, 47.30W) 2.64 14.51 1.85 3.72 9.33 1.38 6.59 

(47.40N, 47.30W) 2.65 14.64 1.85 3.74 9.40 1.36 6.50 

(480N, 460W) 2.81 15.38 1.97 3.96 9.91 1.54 6.80 

 

increasing trend in all considered 154 grid locations; however, wave heights have the opposite 

direction in a few grid locations, for example at (480N, 460W). The median and maxima show 

significant differences for both variables (Table 5.1), so the grid-points data look similar to the 

heavy tail. In Case II, the first quantile, and third quantile values suggest that, for the wind, 25% 

of the values are less than 5.92 m/s and 25% of the data are higher than 12.18 m/s at (480N, 460W). 

Consequently, the Inter Quartile Range, IQR = 𝑄3 − 𝑄1=12.18-5.92 = 6.26, and data values greater 
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than 30.96 m/s (for the case of wind) 9.91 m (for the case of the waves) are considered as extreme 

outliers (Devore, 2011). Similar statistics are found in all grid location data. Therefore, the wind 

and wave data sets have extreme outliers, and their distributions deviate from the normal 

distribution. Besides, all skewness and kurtosis values are positive, so the data are not normally 

distributed, and the right tail is heavier than the left tail. Compared to wind data, the kurtosis values 

of the wave height data are more significant, as the wave height distributions’ tail is larger than 

the wind speed data distribution. Table 5.1 presents information for three grid locations; however, 

all 154 grid locations have similar descriptive statistics.  According to descriptive statistics, this 

seems to capture extremity of all 154 grid locations’ data, so the GEV might be an option.  

5.3.2 Marginal distributions (GEV fit) and Copula function                                                                                                        

In this research, the optimal block size “one year” is chosen as a trade off between the bias and the 

variance. The small block sizes lead to bias, and the large block sizes lead to significant variances. 

The study has found that two years, five years and ten years block data leads to increased error in 

GEV parameters estimation. Therefore, yearly extreme wind data are extracted along with 

concurrent wave data for 154 grid locations. For both cases, for a specific location, 30 most 

extreme data are used to fit GEV distribution. As we are interested in the conditional return level, 

the conditional extreme criteria are chosen as 28 m/s for wind speed and 14 m for wave height. 

For all data sets, the normal Q-Q plot, mean residual life plot, and parameters stability plot are 

used to justify these threshold values. Those threshold values are also verified with historical storm 

behaviour. In Figure 5.3, the correlation plots between wind speed and wave height are presented 

for two grid locations. Figure 5.3 represents pairs of annual extreme value of wind together with 

concurrent value of waves. This representation is also treated as temporal extreme dependency for 

a specific location. When comparing Case II to Case I (Figure 5.3), it is clear that climate change 
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causes an unusual pattern of extreme dependency. To do a spatial causality, a data set is generated 

by considering annual maximum wind and concurrent wave data from all grid locations combined. 

This data set is renamed as the extreme spatial-temporal data set and used for the  

 

Figure 5.3.  Wind and wave correlated distribution for two grid locations. The grid location is 

levelled on top of each plot. The horizontal and vertical black lines indicate the amount of data in 

the area of 𝑥 > 28 𝑚/𝑠, 𝑦 > 14 𝑚. 

remaining analyses (GEV fit, choice of copula, validation and risk estimation). Then all steps are 

repeated for all data sets to generate a small scale joint extreme event risk profile. The GEV model 

parameters are estimated using the L-moment method and are listed in Table 5.2. The MLE and 

GMLE are also used to estimate the distribution parameters. However, unstable estimates result in 

few grid locations data. The GMLE estimator gives negative values for scale parameters and 

causes bias in shape parameters for some grid locations. This issue may be resolved by imposing 

a restriction; however, this study considers the L-moment method for estimating GEV parameters.  
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Table 5.2. Distribution parameter values for Case I and Case II, considering time-space maximum 

data. Corresponding 95% confidence intervals for model parameters are in parenthesis.  

 GEV Distribution parameters 

Location, 𝜇 Scale, 𝜎 Shape, 𝑘 

Case I 

 

Wind speed 

 

26.38 (25.34, 27.49) 2.71 (1.91, 3.40) -0.44 (-0.76, -0.15) 

Wave height 12.0 (11.52, 12.54) 1.36 (0.94, 1.74) -0.37 (-0.66, -0.08 ) 

Case II Wind speed 

 

27.28 (26.52, 28.13) 2.02 (1.42, 2.62) -0.007 (-0.34, 0.23) 

Wave height 12.33 (11.88, 12.82) 1.22 (0.90, 1.56) -0.19 (-0.48, -0.06) 

 

Table 5.3. Copula parameter value and goodness of fit test statistics for Case I and Case II. 

 

 Copula Parameter Kendall’s tau Log-lik Test-statistic P-value 

Case I 

(1959-1988) 

 

 

Clayton 1.94 0.49 10.14 0.29 0.45 

GH 1.99 0.50 9.17 0.78 0.16 

Joe 2.72 0.48 10.44 0.57 0.19 

Case II 

(1989-2018) 

Clayton 1.15 0.37 5.38 0.02 0.75 

GH 1.59 0.37 5.23 0.33 0.31 

Joe 1.95 0.34 5.55 0.20 0.44 

 

Based on the GEV fit criterion mentioned in Section 5.4, GEV fits are reasonable for spatial-

temporal data sets. Figure 5.4 displays the Q-Q and the density plots for Case II (1989–2018). In 

addition to these two plots, the P-P plot and the return level graph are also used. Most of the points 

on the (Q-Q plot, Figure 5.4) are relatively close to the unit's diagonal, which supports how tail 

events were captured in this study. A similar method is used to confirm the GEV fit in all 154 

extreme grid location data. This study considered three copulas for modeling dependency. The 

copula parameters are estimated through the MLE estimator and listed in Table 5.3. The 

dependence between wind speed and wave height is measured using Kendall’s tau. According to 

the test statistics listed in Table 5.3, the GH copula shows a smaller log-lik value, smaller P-value, 
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and higher test statistics. The GH copula is chosen for this research because for most grid location 

data, GH shows better fit (for some grid locations, the Joe and GH fits were comparable).     

 

Figure 5.4. Q-Q and density plot of wind and wave extreme spatial-temporal distribution 

(empirical vs model).   

 

Extreme Wind speed and significant wave height have a stronger correlation in Case I compared 

to Case II (Figure 5.4). It seems that currently, extreme events show less correlation (Case I vs 

Case II ~ 0.42 to 0.6 vs 0.18 to 0.42). The correlation is better modelled using the GH copula for 

Case I compared to Case II (Figure 5.4 and Figure 5.5). However, in both cases, the GH copula 

shows a reasonable fit (correlation difference plot: Model – Empirical, most grid location areas 

show ~ 0.1). Therefore, the GH copula is used to build joint extreme distribution with GEV 

marginal distribution.   
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Figure 5.5. Correlation map plot (Empirical vs Model): yearly maximum wind speed vs. wave 

height. The bottom plot shows the error (Model-Empirical) correlation.  

5.3.3 Risk estimation                                                                                                                                    

Extreme joint impact energy and its occurrence probability are used to generate risk profile. All 

computed extreme events occurrence probabilities, extreme wind speed, significant wave height, 

and impact energy, for the extreme spatial-temporal data set, are placed in Table 5.4. The energy 

ratios in Table 5.4 show how both trams (wind and wave) dominate one another as well as the 

energy efficiency for various return levels. Higher return levels appear to be dominated by wave 

energy. The joint impact energy is computed by incorporating the wind energy calculated as 

defined in Equation 5.16 and wave energy as described in Equation 5.17. The conditional extreme 

wind speed, u, and the wave height, H, are estimated by solving the system of Equation 5.13. The 
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corresponding joint occurrence probability is computed from Equation 5.9. In both cases, the 

predicted results are comparable with (C-CORE, 2015). For example, for C-CORE (C-core, 2015) 

vs. the author’s predicted output (100-year, listed in Table 5.4) for Case I, wind speed is 33.4 m/s 

vs. 32.2 m/s, and wave height is 16.3 m vs. 15.2 m. However, in Case II, wind speed is 33.4 m/s 

vs. 39.7 m/s and wave height 16.3 m vs. 16.4 m. This comparison indicates that the proposed  

Table 5.4. Joint exceedance occurrence probability, conditional wind speed (m/s) (x|y>14), 

conditional wave height (m) (y | x > 28), and Impact energy (MJ) and Risk (MJ/year).    

 5 years 20 years 50 years 100 years 1000 years 

C
as

e 
I 

Occurrence Probability 7.36E-03 4.30E-04 6.80E-05 1.60E-05 2.00E-07 

Wind speed (m/s) 3.13E+01 3.19E+01 3.21E+01 3.22E+01 3.24E+01 

Wave height (m) 1.42E+01 1.48E+01 1.51E+01 1.52E+01 1.55E+01 

Wind impact energy (MJ) 2.50E+01 2.60E+01 2.63E+00 2.65E+00 2.68E+00 

Wave impact energy (MJ) 8.21E+02 8.94E+02 9.25E+02 9.42E+02 9.76E+02 

Impact energy ratio  3.04E-02 2.91E-02 2.84E-03 2.81E-03 2.75E-03 

Joint Impact energy (MJ) 8.46E+02 9.20E+02 9.27E+02 9.45E+02 9.79E+02 

Risk (MJ/year) 6.23E+00 3.96E-01 6.31E-02 1.51E-02 1.96E-04 

C
as

e 
II

 

Occurrence Probability 2.59E-02 1.50E-03 2.34E-04 5.80E-05 6.00E-07 

Wind speed (m/s) 3.33E+01 3.64E+01 3.83E+01 3.97E+01 4.41E+01 

Wave height (m) 1.45E+01 1.55E+01 1.61E+01 1.64E+01 1.72E+01 

Wind impact energy (MJ) 
2.83E+01 3.38E+01 3.74E+01 4.01E+01 4.96E+01 

Wave impact energy (MJ) 
8.51E+02 9.82E+02 1.05E+03 1.10E+03 1.21E+03 

Impact energy ratio 
3.33E-02 3.44E-02 3.56E-02 3.66E-02 4.10E-02 

Joint Impact energy (MJ) 8.80E+02 1.02E+03 1.09E+03 1.14E+03 1.26E+03 

Risk (MJ/year) 2.28E+01 1.52E+00 2.55E-01 6.59E-02 7.56E-04 
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methodology and prediction listed in Table 5.4 are acceptable. Based on acceptable engineering 

design criterion (annual occurrence failure probability of 10-5 and pre-defined risk level criteria); 

the 100 years’ events are considered in extreme spatial-temporal data for the design purpose. The 

proposed extreme design wind speed and wave height are 39.7 m/s, 16.4 m respectively, and the 

joint event likelihood is 5.80E-05 per year. Case II having a clear indication of climate change 

impact compare to Case I. More precisely, in Case II, 100 years events wind speed increased 7.5  

 
Figure: 5.6. Map plot (50 years vs. 100 years): Predicted extreme joint wind speed, wave height 

and its corresponding risk. 
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m/s and wave height 1.2 m compare to case I. Finally, a 100-years risk profile is generated for all 

154 grid locations; presented using the map plot in Figure 5.6. In addition, a 50-year risk profile 

is added for justification of a 100-year risk profile in Figure 5.6. In Case II, the wind speed and 

wave height are higher in all grid locations compared to Case I (Figure 5.6). More precisely, the 

location (470N, 47.30W) is a better choice compared to (480N, 460W). The climate-changing 

pattern is visible in 5 years extreme events in Case II (Table 5.4). The present study focuses on the 

Case II scenario from a design perspective; the higher grid locations show more extreme events 

and risks. So for safer offshore operations, small grid areas might be a better choice. This 

significant concern needs to adapt to an offshore risk management plan for future designs 

upgrading policies of existing offshore operations as a part of climate change adaptation.   

5.4. Conclusions 

This study proposed a joint extreme event risk assessment methodology for offshore system 

design, which provides a bivariate extreme joint distribution and the conditional joint return level 

function. The Gumbel-Hougaard (GH) copula and the Generalized Extreme Value (GEV) 

marginal distribution are used to build the joint distribution.  The GH copula and GEV are chosen 

as “extreme value copula” and “max stability” concepts. The copula parameters are estimated 

through the Maximum Likelihood Estimator (MLE), and the GEV distribution is determined using 

the L-moment methods. The MLE and GMLE estimators provide biased estimates in GEV 

parameters’ computation (for a few grid locations data). The proposed methodology is validated 

using the Hindcast model simulated data, and an extreme wind speed and a significant wave height 

are proposed for the Flemish Pass basin. The “small scale risk profile” and “climate change impact 

adaptation” make this research distinct. The results are validated against test statistics and direct 

comparison with a published report. The smaller grid locations area was found to yield less risk 
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compared to the higher grid locations area. In addition, climate change was found to cause ~30% 

less correlation between wind speed and wave height. Over the last 30 years, wind speed increased 

~ 19%, and wave height increased ~8%. Therefore, to avoid any unwanted situation for design and 

operation, the corresponding estimated risk must be considered in the offshore risk management 

plan for the Flemish Pass basin. The present study has been done based on the assumption that 

data are independent and identically distributed. Therefore, for future studies, a non-stationary 

multivariate approach, or stationarity with respect to covariates such as wave and wind direction, 

seasonality etc. will be considered for different natural hazards such as icebergs, wind speed, wave 

height, and wave periods relevant to the Flemish Pass Basin.       
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6. Extreme Wind Load Analysis using Non-

stationary Risk-based Approach. 

 

Preface 

This work is a part of my graduate study, and a version of this research has been published in the 

Journal of Safety in Extreme Environments. I am the primary author of this research paper, with 

the guidance and support of co-authors Faisal Khan, Salim Ahmed, and Syed Imtiaz. The main 

objective of this research is to propose a probabilistic approach to effectively capture the uncertain 

nature of the extreme wind trend at the Grand Bank area. The modeling outputs are then 

incorporated to construct a dynamic risk profile. Apart from the main goal, the research also 

involves comparing the results obtained using the proposed non-stationary approach with those 

obtained using a stationary methodology. The comparison highlights that the non-stationary 

approach is more accurate in capturing the high trend variability of extreme winds. This work has 

been modified based on valuable feedback received from the co-authors and peer reviewers during 

the publication process.  

 

Abstract  

Probabilistic approaches under stationary conditions are used to design offshore systems. 

However, the frequency and impact of extremes in offshore environments have been changing. 

The present study investigates whether there are significant inter-period trends in extreme wind 

loads from the historical period to the future. This study comprises two elements. The first element 
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considers the traditional Block Maxima based Generalized Extreme Value (GEV) approach and 

generates different return levels-based risk profiles (under stationary condition). In the second 

element, the GEV location parameters are considered as time-dependent and a dynamic risk profile 

of different returns for wind events is developed. Distribution parameters are computed using the 

well-known Maximum Likelihood Estimate (MLE) method. The proposed methodology is tested 

using data from the Grand Banks region of the east coast of Canada. The study observed a 100-

year extreme wind speed of 33.7 m/s (occurrence probability, 9.99E-05) assuming a stationary 

condition, whereas for the non-stationary model, the predicted extreme wind speed for 2030 is 

41.5 m/s (occurrence probability 2.82E-05) in the Grand Banks region, Canada. The study 

highlights that a 100- year return period is not an adequate design criterion under the current 

situation; one must consider the non-stationary behaviour or a higher return period such as 500 or 

1000 years. 

Keywords: Risk-based design, Return level, Offshore System Extreme value, Wind load 

6.1. Introduction  

The risk associated with an extreme environmental condition is of great interest for the design and 

operation of offshore and coastal installations. Among the climate factors, wind can cause a 

significant threat to such structures and thus has a major influence on their design. Underestimation 

of risk can lead to infrastructure failures, whereas overestimation can lead to expensive 

construction and inefficient resource allocation. As a result, developing a realistic methodology 

for determining an appropriate design wind speed requires striking a balance between safety and 

cost. Existing Extreme Value Theory (EVT) or tail-based probabilistic modelling methodologies 

(Levine, 2009; Das et al., 2016, Wang and Li, 2016; Hu and Ayyub, 2017, Pryor and Barthelmie, 

2021; Debnath et al., 2021. etc.) permit 100 or 500 years of extreme wind speed projection, which 
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the author is interested in. However, choosing an adequate return level for suggesting a design 

wind speed is not easy. The problem of climate change complicates the estimation process further. 

Towards this, the risk-based methodologies have been used to evaluate the design variables in 

offshore engineering facilities (e.g., Sulistiyono et al., 2015; Kang et al., 2017; Hallowell et al., 

2018 etc.). In a similar aspect, the stationary risk-based methodology (Arif et al., 2020a and 2020b) 

was proposed for adopting extreme modelling outputs in order to overcome this problem. 

However, the above works did not consider non-stationary processes. Furthermore, events that 

span a century or a millennium might happen at any time. The possibility of 100/500-year events 

occurring this year or in the future, as well as the risk scenario related to them, when non-stationary 

factors are taken into account, have not been satisfactorily addressed in previous studies. This 

study aims to develop a non-stationary risk-based approach for anticipating extreme design wind 

speed by combining risk factors, event occurrence probability and wind load. If so, finding an 

extreme distribution and formulating adequate return levels in non-stationary conditions will be 

difficult and the main emphasis of this research. 

Towards identify an extreme distribution, the Extreme Value Theory (EVT) based modelling 

approach focuses on the tail of the sample distribution and has been applied successfully in a 

variety of fields, including hydrology (e.g. Paola et al., 2018), coastal engineering (e.g. Leo et al., 

2021), ocean engineering (e.g. Mackay and Jonathan, 2020), offshore load estimate (e.g. 

Ramadhani, 2021) and climate change issues (e.g. Lombardo and Ayyub 2014; Erik Vanem, 2015; 

Hu and Ayyub, 2017 etc.). The Block Maxima-based Generalized Extreme Value (GEV) 

distribution and the Peak Over Threshold (POT)-based Generalized Pareto Distribution (GPD) are 

prevalent among all of them. The POT method employs all significant observations, whereas the 

BM method overlooks some significant observations that may occur outside of the block. In both 
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systems, determining thresholds and the optimal block size is difficult. Aside from that, there are 

several unknowns in the implementation process, such as the size of the data set, its quality, the 

methodology employed, a lack of knowledge, and so on. Higher return levels frequently increase 

the level of risk. Furthermore, it is unknown how to incorporate the climatic trend into an extreme 

value analysis from the standpoint of climate change, which adds to the overall uncertainty. In this 

context, adopting extreme climate trends and capturing uncertainty is challenging. The block 

maxima based GEV distribution was implemented in several fields with parameters (location or 

scale) that changed linearly with time (for example, Vanem, E. 2015; Paola et al., 2018 etc.), or an 

appropriate polynomial (for example, Silva and Simonovic, 2020, Panagoulia et al., 2014 etc.) or 

sinusoidal/log-sinusoidal functions (Katz et al., 2002) to capture the non-stationarity of a process.  

In a similar vein, to adapt the non-linearity extreme behaviours of nature, the authors investigated 

a variety of GEV parameter linear/non-linear trends for the location/scale parameters and their 

varied combinations. In order to predict return levels across several years, the return level function 

is used in the estimation of wind load. The risk factor wind load is expressed in terms of wind 

energy in this study. Finally, a dynamic risk profile is generated by merging extreme modelling 

predictions on the Grand Banks area (Newfoundland offshore area). The current methodology 

differs from Arif et al., 2020a, Arif et al., 2020b, and Arif et al., 2022a in that it constructs a non-

stationary risk profile. The organization of this work is as follows: the suggested methodology is 

described in depth in Section 6.2, and the case study, methodology validation, and major 

conclusions are presented in Section 6.3. Section 6.4 contains the study's concluding remarks.        

6.2. Methodology 

Risk estimation involves estimation of the probability of an event and its impact. In this work, the 

occurrence probability of an extreme event is determined by the best fitted “extreme distribution" 
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and the impact (wind energy) is calculated using the projected "extreme return levels." To 

accomplish this, the current study aims to develop an acceptable EVT-based extreme model to 

reflect the current extreme characteristics of wind speed, the methodology is shown in Figure 6.1. 

6.2.1 Data processing and findings trend  

The random behavior or statistical parameters of a non-stationary stochastic process change with 

time. Wind activity could be considered a non-stationary process with temporal volatility in the 

context of climate change. As a result, distinct data blocks are analyzed with statistical behavior 

(mean and standard deviation) changes during the data processing, and the trend is determined. 

The process is classified as non-stationary if any data trends are found. Finally, various block  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. The proposed framework for extreme wind load risk analysis. 
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maxima data are extracted to suit the extreme model. The goal of this study is to look at extreme 

distributions in both stationary and non-stationary situations. 

 

6.2.2 Extreme Distributions 

Extreme analysis is commonly performed using the Generalized Extreme Value (GEV) 

distributions or the generalized Pareto Distributions (GPD). The GEV is the standard generalized 

form of three different distributions: Gumbel, Frechet, and Weibull. For a brief description and 

their different applications, please refer to Castillo et al., 2005. The GEV and GPD have been used 

to predict extreme wind speed (Liu et al. 2018; Campos and Soares, 2018), wave height (RM 

Campos et al.,2019, V Petrov et al.,2019), and extreme natural hazard estimation (Mazas, 2019) 

and so on. Arif et al. (2020a) proposed a heavy right tail distribution for the condition of data 

scarcity for iceberg extreme risk collision analysis, in addition to GPD and GEV. Appropriate 

distributions can be chosen depending on the study's interest, data statistics, and factors’ suitability.   

Table 6.1. Stationary and non-stationary GEV models.  

Type           Symbol        Model parameter Combinations 

𝑀𝐼 𝐺𝐸𝑉(𝜇, 𝜎, 𝑘) 𝜇(𝑡) = 𝜇, 𝜎(𝑡) = 𝜎 , 𝑘(𝑡) = 𝑘 

𝑀𝐼𝐼 𝐺𝐸𝑉(𝜇(𝑡), 𝜎, 𝑘) 𝜇(𝑡) = 𝜇0 + 𝜇1𝑡, 𝜎(𝑡) = 𝜎 , 𝑘(𝑡) = 𝑘 

𝑀𝐼𝐼𝐼 𝐺𝐸𝑉(𝜇, 𝜎(𝑡), 𝑘) 𝜇(𝑡) =  𝜇, 𝜎(𝑡) = 𝜎0 + 𝜎1𝑡 , 𝑘(𝑡) = 𝑘 

𝑀𝐼𝑉 𝐺𝐸𝑉(𝜇(𝑡), 𝜎(𝑡), 𝑘) 𝜇(𝑡) =  𝜇0 + 𝜇1𝑡, 𝜎(𝑡) = 𝜎0 + 𝜎1𝑡 , 𝑘(𝑡) = 𝑘 

𝑀𝑉 𝐺𝐸𝑉(𝜇(𝑡), 𝜎, 𝑘) 𝜇(𝑡) = 𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2, 𝜎(𝑡) = 𝜎 , 𝑘(𝑡) = 𝑘 

𝑀𝑉𝐼 𝐺𝐸𝑉(𝜇(𝑡), 𝜎(𝑡), 𝑘) 𝜇(𝑡) = 𝜇0 + 𝜇1𝑡 + 𝜇2𝑡2, 𝜎(𝑡) = 𝜎0 + 𝜎1𝑡 , 𝑘(𝑡) = 𝑘 
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In this research, five distinct GEV models (mentioned in Table 6.1) are considered.  The model  

𝑀𝐼 is for stationary circumstances, whereas the remaining models (𝑀𝐼𝐼 to 𝑀𝑉𝐼) are for non-

stationary cases (by making the assumptions that there are linear and quadratic trends to the 

location parameter, linear trends to the scale parameter, and other combinations of these). The 

shape parameter is considered constant because the current study used limited data; however, the 

stability of the shape parameter with temporal change necessitates a substantial amount of data. 

The cumulative distribution function of Generalized Extreme Value (GEV) distribution is given 

(Castillo et al., 2005):   

                        𝐹(𝑥) = {
𝑒𝑥𝑝 {− [1 + 𝑘 (

𝑥−𝜇

𝜎
)]

−
1

𝑘
 }        𝑖𝑓 𝑘 ≠ 0,

𝑒𝑥𝑝 {−
(𝑥−𝜇)

𝜎
}                            𝑖𝑓 𝑘 = 0.

                                           (6.1) 

where 𝜇 is the location parameter, 𝜎 is the scale and k is the shape parameter. The return level of 

the GEV model is defined as for the stationary case (Castillo et al., 2005): 

              𝑥𝑚_𝑠 = {
𝜇 −

𝜎

𝑘
[1 − (− log  (1 − 𝑝)−𝑘 ]                   𝑓𝑜𝑟 𝑘 ≠ 0,

𝜇 − 𝜎 log{− log(1 − 𝑝)}                           𝑓𝑜𝑟 𝑘 = 0.
                                        (6.2) 

The occurrence probability p is proportional to the level of m-return as 1/m. For example, the value 

of p is 0.01 for a 100-year return level. 

 

6.2.3 GEV fit: Optimal block size and parameter estimation  

The best block size is determined by balancing bias and variance. Small block sizes lead to bias, 

whilst large block sizes lead to high variations. The current study looked at different blocks based 

on different time periods, such as yearly, two years, five years, and ten years, and determined the 

best block size to apply GEV. The appropriate block size is determined by the parameter estimates 

with minimal error.  Smaller error in parameter estimate took the priority to choose the optimal 
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block. The most prevalent methods for estimating GEV parameters include Maximum Likelihood 

Estimation (MLE), Probability Weighted Moments (PWM), and Bayesian approaches, with the 

optimum method chosen based on a small error in parameter values. The current investigation 

determined that all of the listed approaches have similar accuracy; lastly, the GEV model 

parameters are calculated using the common MLE in both stationary and non-stationary scenarios.  

6.2.4 Goodness of fit test 

The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are used as 

performance criteria for GEV fit in this study.  

The AIC is defined as (Katz et al., 2013):  

𝐴𝐼𝐶 = 2 ∗ 𝑛𝑙𝑙ℎ + 2𝑛,                                                                                                                (6.3) 

where 𝑛𝑙𝑙ℎ = - log likelihood, and n is the number of parameter of GEV models.  

The BIC is defined as (Katz et al., 2013):  

𝐵𝐼𝐶 = 2 ∗ 𝑛𝑙𝑙ℎ + 𝑛 ∗ ln(𝐿),                                                                                                      (6.4) 

where 𝐿 is the total number of the data points. 

In this study, smaller AIC and smaller BIC provide a better fit since negative log-likelihood is 

taken into account. To see if the non-stationary model is valuable, or if the observed trend is 

significant (in other words, if the non-stationary model is better than the stationary model), a 

simple test was carried out. A deviation statistic is defined as follows with models 𝑀0 ⊂ 𝑀1 (Katz 

et al., 2013):     

𝐷 = 2{𝑛𝑙𝑙ℎ(𝑀1) − 𝑛𝑙𝑙ℎ(𝑀0)}                                                                                                   (6.5) 

The asymptotic distribution of D is given by the 𝜒2 distribution. The calculated values of D can 

be compared to critical values of 𝜒2; large values of D indicate that model 𝑀1  explains 

significantly more variation in the data than model 𝑀0. 
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6.2.5 Risk analysis 

The risk evaluation approach follows the procedure defined in Arif et al. 2020a. The wind risk is 

denoted by 𝑅𝑤𝑖𝑛𝑑, and defined as follows (Sulistiyono et al., 2015):  

                      𝑅𝑤𝑖𝑛𝑑 = 𝑃(𝑂) × 𝐶,                                                                                                                 (6.6)                                                                       

where 𝑃(𝑂) is the wind occurrence probability and C is the wind consequences (impact). The wind 

occurrence probability is defined as:  

                     𝑃(𝑂) = 𝑝𝑒 × (𝑅𝑃)−1                                                                                                                   (6.7)                                                                                     

where 𝑝𝑒 is the event exceedance probability and RP is the return period. The current study 

evaluated wind energy (𝐸𝑤𝑖𝑛𝑑) as a consequence or impact, which is defined as the product of 

wind force on a certain area and the distance at which the wind is measured. As a result, the wind 

energy, 𝐸𝑤𝑖𝑛𝑑 , is calculated using the formula (Germanischer, 2013): 

𝐸𝑤𝑖𝑛𝑑 =
1

2
× 𝜌 × 𝑈2 × CS × A × d,                                                                                                                 (6.8)  

where 𝑈 is proposed extreme wind speed (m/s, predicted return levels), ρ is the density of air 

(1.225 kg/m3), 𝐶𝑆 is the drilling derrick shape coefficient, considered as 1.25 (Germanischer, 

2013), and d is the distance of wind measured from surface (10 m height). The Area A is considered 

as 3332 m2 (the Hibernia oil drilling platform top side length of 98 m and width of 34 m 

(HIBERNIA, 1997)).  

The proposed risk-based methodology offers flexibility in determining the risk of wind load in a 

particular area. More precisely, based on various return levels anticipated by the model, a set of 

extreme wind loads (in terms of energy) is estimated together with associated occurrence 

probability. Finally, the risk values are evaluated by multiplying the associated likelihood and 

impact energy; an appropriate design extreme wind speed is chosen based on offshore operation 

standards for an acceptable risk level. Arif et al. 2020a provides additional details.  
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6.2.6 Uncertainty estimate 

To quantify uncertainty in parameter distributions and return level estimates, a parametric 

bootstrap is used. The steps of the parametric bootstrap are as follows (Arif et al 2020a): 

1. From the fitted GEV model, generate a simulated sample with the same length as the 

actual data. 

2. Fit the GEV model to the simulated sample and record the parameter estimates that 

arise (return levels). 

3. Repeat steps 1 and 2 a thousand times to get 1,000 model parameter values and 1,000 

return period values. 

4. For each time interval, calculate the mean value and a 95% confidence interval for the 

model parameters and return level. The 95% confidence interval is computed as (mean 

±1.96×standard error), where 1.96 = significance level, standard error = s/√1000, and 

s is the standard deviation. 

By using the estimated confidence interval of the return level, the wind energy and finally, risk 

uncertainty, are estimated. 

6.3 Case study  

The study area is located about 340 kilometres east-southeast of St. John's, Newfoundland and 

Labrador. The Grand Banks region (Terra Nova, Hibernia, Hebron, and White Rose fields) 

produces thousands of barrels of oil per day. From an economic standpoint, this is an area of 

significant interest. However, the risk associated with drilling operations resulting from natural 

hazards, e.g. icebergs, wind speed, and wave height, is also significant. The wind is the most 

powerful natural hazard since it influences the effects of other hazards. Hourly wind speed data 

(observation and Hindcast model) are taken into account in this research at (44.250N, 53.620W). 
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The Hindcast model data (Swail et al., 2006) for the period 1988-2015 is compared to the 

observational data (DFO, 2021) for the period 1988-2013. Missing values from one year (2001) 

are analysed using linear interpolation in the observational data. For validation of the approach, 

two current years’ data (2014, 2015) from the Hindcast model are added to the observational data. 

Finally, the proposed methodology is tested on data from 1988 to 2015. Minitab is used for 

descriptive data analysis, and the open-source platform R (available at https://www.rstudio.com) 

packages (extRemes, and ismev) are utilised for data modelling.  

6.3.1 Descriptive statistics 

The numerical and graphical representations of the data allow the reader to learn from the past and 

establish a foundation for selecting a better modelling methodology. Table 6.1 shows the statistics 

of the wind speed data in the study region. During the study period, the average wind speed was 

7.3 m/s (computed through data median), with a maximum of 35.2 m/s. The data set does not 

match the normal distribution, since the skewness and kurtosis values are not zero (Table 6.2). 

Furthermore, the positive skewness of 0.4129 shows that the data set has a right tail, while the 

positive kurtosis of 3.0986 suggests that the data has a long tail. Data values between 18.13 and 

26.15 are "outliers," whereas data points larger than 26.15 are "severe outliers," according 

Table 6.2. Descriptive data statistics: hourly wind speed (m/s) data at the Grand Banks (1988-

2015). 

Data Points Max Median Skewness Kurtosis Q3+1.5* IQR Q3+3*IQR 

124,473 35.2 7.3 0.4129 

 

3.0986 

 

18.13 26.15 

 

to the Devore definition (Devore, 2011). According to the aforementioned data statistics, the data 

set has a lengthy right tail, as illustrated in Figure 6.2. The tail's weight was visualised using a 

histogram plot (Figure 6.2 (left)). In Figure 6.3, the hourly wind speed time series plot shows that 
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the majority of the data falls below 16.7 m/s, with a vertical red line separating all the severe 

events. Except for the year 2011, the Hindcast results are shown to be high, when compared to 

observational data. For this location, observation data is available for the years 1988 through 2013, 

with one year missing (2001). The missing data for 2001 is computed using linear interpolation. 

The Hindcast data are listed as high compared to observational data, except for the year of 2011. 

Finally, observational data are combined with simulated data for the years 2014 and 2015. As a 

trade-off between bias and variance, the best block size is set at one year. The present study 

discovered that using blocks of two, five, and ten years to predict GEV parameters caused an 

increase in the error term for the parameters. Finally, the entire data set is divided into 28 blocks 

 

Figure 6.2. (Left) The frequency distribution of wind speed data (1988-2015). (Right) the box 

plot, showing data profile and extreme outliers are separated by the red lines.  

 (1 year block); each block maximum value is computed, and the GEV is fitted to the data set of 

yearly block maxima. 
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Figure 6.3. Annual wind speed distribution. The observational data vs Hindcast model data.  

6.3.2 Fit distributions and model validation 

On the annual block maxima data, various GEV models are fitted. Table 6.3 lists the GEV 

parameter values as well as the accompanying AIC and BIC values. Compared to all other listed  

Table 6.3. Different GEV models are provided, along with parameter values and test statistics. In 

parenthesis, the standard errors are indicated. 

 GEV   

Models  

                       Estimated GEV Model Parameters values (error)  

     Location  Scale Shape AIC BIC 

𝑴𝑰 𝜇 =20.06 (0.739) 

 

𝜎 =3.60(0.495) 

 

𝑘 = -0.087 

(0.10) 

 

162.56 

 

166.56 

 

 𝑴𝑰𝑰 𝝁𝟎 = 𝟏𝟓. 𝟔𝟎(𝟏. 𝟏𝟒) 

    
𝝁𝟏 = 𝟎. 𝟑𝟑(𝟎. 𝟎𝟕) 

𝝈 = 2.59(0.37) 𝒌= -0.06   

(0.10) 

147.38 

 

 

 

 

 

152.71 

 

 

 

 

 

𝑴𝑰𝑰𝑰 𝜇 =19.47 (1.03) 𝜎0 = 2.77 (0.96) 

𝜎1 = 0.08 (0.1) 

𝑘 =-0.19   

(0.15) 

163.86 

 

 

 

169.19 

 

 

 𝑴𝑰𝑽 𝜇0 = 15.58 (1.19) 

𝜇1 = 0.34 (0.07) 

𝜎0 = 2.63 (0.87) 

𝜎1 − 0.01 (0.06) 

𝑘 =-0.05 

(0.13) 

149.38 

 

 

 

156.04 

 

 

 𝑴𝑽 𝜇0 = 16.65 (1.49) 

𝜇1 = 0.12 (0.21) 

𝜇2 = 0.008 (0.01) 

𝜎 =2.55 (0.37) 𝑘 = -0.06  

(0.11) 

148.26 

 

 

154.92 

 

 

 𝑴𝑽𝑰 𝜇0 = 16.89 (1.56) 

𝜇1 = 0.08 (0.22) 

𝜇2=0.009 (0.007) 

𝜎0 = 2.74 (0.74) 

𝜎1

= −0.02 (0.05) 

𝑘 = -0.03 

(0.14) 

 

150.24 

 

 

 

158.23 
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models, GEV model type II (𝑀𝐼𝐼), has the better fit (based on smaller error in GEV parameters 

value, and smaller AIC, BIC values). In addition, the type of GEV model is justified by the 

deviation statistics discussed in section 6.3. For instance, 𝑀𝐼𝐼 ⊂ 𝑀𝑉, the deviation statistics are D 

= 2×(- 69.13 + 69.69) =1.12, and 𝜒2(0.05) = 4.57; hence, the 𝑀𝑉 model should be rejected. 

Except for 𝑀𝐼𝐼𝐼, all models, 𝑀𝐼𝑉  to  𝑀𝑉𝐼 , have similar statistics as the  𝑀𝐼𝐼 model, and all are 

rejected. The 𝑀𝐼𝐼𝐼 model has the same statistics as the model 𝑀𝐼𝐼. Furthermore, in the case of 𝑀𝐼 ⊂

𝑀𝐼𝐼, 𝑀𝐼 is rejected, indicating that the non-stationary model accounts for far more volatility in the 

data. In addition, when compared to all other models, the  𝑀𝐼𝐼 model has a small error. Finally, as 

explained in section 6.5, the 95 percent confidence interval is calculated. In the case of stationary 

model (𝑀𝐼) it is computed as 𝜇 =20.06 [18.61, 21.50], 𝜎 =3.60 [2.63, 4.57] and 𝑘 = - 0.087 [-0.267, 

0.093]. For the case of the non stationary model, 𝜇0 = 15.60 [13.37, 17.83], 𝜇1 = 10.33 [0.19, 

0.47], 𝜎 =2.59 [1.86, 3.32] and 𝑘 =-0.06 [-0.26, 0.14]. Therefore Equation 6.2 is modified for the 

best fitted GEV models (𝑀𝐼𝐼) for the case of non-stationary (𝑓𝑜𝑟 𝑘 ≠ 0):  

𝑥𝑚_𝑛_𝑠 = (15.60 + 0.33𝑡) −
2.59

0.06
[1 − (− log  (1 − 𝑝)0.06 ]                                                      (6.9) 

For t =29, 30, 31, and so on, the wind speed estimates for the years 2016, 2017, 2018 and so on 

are provided with specific 𝑝 values. If an offshore operator is interested in 100-years return levels, 

then 𝑝 value is 0.01; and Equation 6.3 might be treated as the forecast of 100-year return level.  

More precisely, for the year 2022 (t = 35), the (a 100-year return level) predicted wind speed is 

40.87 m/s, and for a 50-year return level, 2022’s wind speed is estimated as 38.54 m/s. In the 

Grand Banks area, the 100-year extreme wind speed was predicted by C-CORE (2015) to be 33 

m/s under stationary conditions, which is comparable to our predicted wind speed (33.7 m/s). Table 

6.5 clearly shows the effects of climate change in comparison to Table 6.4. In more detail, the 
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wind speed was calculated for the stationary scenario at 38.8 m/s (with an occurrence probability 

of 9.95E-07), and the non-stationary case at 39.8 m/s is predicted to occur in 2030 

 
 

Figure 6.4. Different return levels estimate (Stationary vs non-stationary) 

  

(with occurrence probability 9.56E-05). A 1000-year event occurring more frequently in recent 

decades is, therefore, a visible sign of climate change. As a result, the 100-year return period 

mentioned in C-CORE (2015) is no longer extreme according to the criterion of climate change. 

In Figure 6.4, the various return levels for both stationary and non-stationary situations for the next 

five decades are indicated. 

6.3.3 Risk analysis 

Equations 6.7 and 6.8 are used to calculate the event occurrence probability and wind energy, 

respectively. Finally, using equation 6.6, the risk is calculated. Wind energy (based on various 

return levels) and the associated event occurrence probability are both included in Table 6.4 to 

create a flexible risk profile. The offshore operator determines a design wind speed depending on  
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Table 6.4. Stationary risk profile: Different expected return levels are used.    

                                 

Risk factors 

Return levels (stationary) 

5 years 20 years 50 years 100 years 500 years 1000 years 

Probability 4.00E-02 2.49E-03 3.99E-04 9.99E-05 3.98E-06 9.95E-07 

Wind speed (m/s) 2.51E+01 2.95E+01 3.20E+01 3.37E+01 3.74E+01 3.88E+01 

Wind Energy (MJ) 1.61E+01 2.22E+01 2.61E+01 2.90E+01 3.56E+01 3.84E+01 

Risk (MJ/year) 6.43E-01 5.54E-02 1.04E-02 2.89E-03 1.42E-04 3.82E-05 

Table 6.5. Non-stationary risk profile: Risk in a certain year based on different return levels.    

Return 

Levels 

 

 

 

 

 

 

 

 

 

                                

Risk factors 

In a specific Year 

2020 2030 2040 2050 2060 

5
0
 y

ea
rs

 

  

Probability 2.96E-04 9.56E-05 2.85E-05 7.59E-06 1.82E-06 

Wind speed (m/s) 3.65E+01 3.98E+01 4.31E+01 4.64E+01 4.97E+01 

Wind energy  (MJ) 3.39E+01 4.04E+01 4.73E+01 5.49E+01 6.30E+01 

Risk (MJ/year) 1.01E-02 3.86E-03 1.35E-03 4.17E-04 1.15E-04 

1
0
0
 y

ea
rs

 

Probability 9.08E-05 2.82E-05 7.99E-06 2.05E-06 4.64E-07 

Wind speed (m/s) 3.82E+01 4.15E+01 4.48E+01 4.81E+01 5.14E+01 

Wind energy (MJ) 3.73E+01 4.40E+01 5.13E+01 5.91E+01 6.75E+01 

Risk (MJ/year) 3.39E-03 1.24E-03 4.10E-04 1.21E-04 3.13E-05 

5
0
0
 y

ea
rs

 

Probability 8.01E-06 2.34E-06 6.17E-07 1.45E-07 2.97E-08 

Wind speed (m/s) 4.23E+01 4.56E+01 4.89E+01 5.22E+01 5.55E+01 

Wind energy (MJ) 4.56E+01 5.30E+01 6.10E+01 6.95E+01 7.86E+01 

Risk (MJ/year) 3.66E-04 1.24E-04 3.76E-05 1.01E-05 2.34E-06 

1
0
0
0
 y

ea
rs

 

Probability 5.05E-07 1.24E-07 2.68E-08 4.96E-09 7.58E-10 

Wind speed (m/s) 4.40E+01 4.73E+01 5.06E+01 5.39E+01 5.72E+01 

Wind energy (MJ) 4.94E+01 5.71E+01 6.53E+01 7.41E+01 8.35E+01 

Risk (MJ/year) 2.50E-05 7.09E-06 1.75E-06 3.68E-07 6.33E-08 
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the proper risk threshold. In details, Table 6.4. shows that in the event of stationary, the risk level 

of 10-4 arises for the first time in 500 years.  As a result, if offshore operators choose the risk level 

of 10-4, they may choose a design wind speed of 37.4 m/s in the Grand Banks region in the 

stationary case; the event occurrence probability is 3.98E-06. In a non-stationary example, the 

likelihood of 500-year occurrences occurring in 2030 is 42.3 m/s, with an occurrence probability 

of 2.34E-06 (Table 6.5). Additionally, a prediction of a 1000-year risk (stationary case) is more 

common in recent decades when compared to non-stationary. As a result, operators can select a 

standard risk level (depending on their interests), construct a non-stationary risk profile (using 

Equation 6.9), and determine a design wind speed for developing or designing engineering 

facilities for the Grand Banks. 

6.4 Conclusions 

In both stationary and non-stationary scenarios, the BM-based GEV is utilised to forecast 

catastrophic wind speeds in the Grand Banks area. The dynamic behaviour of extreme occurrences 

is examined using a non-stationary GEV distribution. Finally, model projections are used to 

calculate the impact (wind energy) and risk. Non-stationary techniques is found to be useful in 

determining return levels that accurately reflect the current state of nature's extremes. Prior studies 

had utilised the 100-year return time as the most common measure for offshore facilities  (CORE, 

2015); however, the study found that, under the non-stationary scenario, recent decades have 

exceeded the 1000-year extreme (stationary case) due to climate change. As a result, the risk is 

evaluated using a 1000-year return time to approximate the current climatic trend. The data for 

this study come from only one locaion on the Grand Banks. Several areas may need to be added 

in the future to account for geographic differences. The proposed approaches could be used to 

estimate other environmental variables like extreme wave height or iceberg speed. Inaddition, 
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event duration is a significant risk factor because extreme events that last longer have catastrophic 

effects. Auther is interested in a multivariate risk-based approach by combining wave height, wind 

speed, duration, and iceberg speed.  
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7. Contributions, Findings, and Future 

Research Recommendations 

 

Extreme event risk analysis in the offshore engineering domain plays a pivotal role in safeguarding 

critical infrastructure and ensuring the resilience of offshore structures under extreme 

conditions/harsh environment. Through the utilization of sophisticated probabilistic methods and 

advanced modeling techniques, the analyses provided in this thesis are expected to enable 

engineers and offshore operators to identify and address risk of catastrophic events with precision 

and accuracy. By incorporating historical data, simulations, and climate change projections, this 

research gained valuable insights into capturing the nature of extreme events and assessed their 

potential consequences on offshore assets. By implementing both univariate and multivariate 

approaches under stationary and non-stationary conditions, the proposed methods provide deeper 

understanding of the complex interactions among various environmental variables, such as iceberg 

speed, wind speed, wave height, and others; and modeling outcomes incorporated into Risk 

assessment. Despite challenges related to data availability and uncertainties in climate projections, 

this research demonstrates a successful application of the developed frameworks in real-world case 

studies. The proposed methodologies are crucial in guiding risk management strategies, emergency 

response planning, and the implementation of appropriate safety measures in the offshore 

engineering domain. By understanding and mitigating rare event risks, offshore operators can 

ensure the sustainable development of offshore infrastructure and safer offshore operations on 

marine environment. 
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7.1 Novelty and contribution: 

 

This research makes a significant contribution through the development of an innovative 

methodology that better captures current extreme events, estimates extreme occurrence 

probabilities, and evaluates environmental loads. Moreover, this methodology integrates 

modelling outcomes to enhance offshore operation safety through a risk-based approach. By 

combining these elements, the study provides a more robust and reliable framework for mitigating 

risks and ensuring the security of offshore structures in extreme conditions. Furthermore, what sets 

this methodology apart is its utilization of a joint modeling approach, exploring extreme 

correlations and dynamic risk profile methodology, along with uncertainty estimates that 

specifically address climate change concerns. These unique elements collectively strengthen the 

approach and its applicability to address the challenges of today's offshore environments. The 

highlighted contributions are outlined below:  

• A novel mathematical representation for rare events within the offshore engineering 

domain was introduced and proposed (by adopting the definition of outliers and extreme 

outliers as presented by Devore (2011), which was originally introduced by Tukey (Tukey, 

1977). 

• Evaluated climate change’s impact on environmental variables at offshore domain and 

incorporated in offshore risk assessment methodology.    

• Proposed univariate models (frequentist and Bayesian approaches) to capture present day 

extreme characteristics and came up with an uncertainty estimate for flexibility to adopt 

climate change impact and incorporated them in risk methodology.   

• Developed models (bivariate/multivariate) to capture the extreme dependency in 

environmental load and its uncertainty.    
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• This research stands out by incorporating rare event modelling outcomes to estimate 

extreme loads/energy and integrating them into the risk assessment methodology. This 

unique approach enhances the understanding of extreme events and contributes to a more 

comprehensive and accurate evaluation of potential risks. 

• The proposed probabilistic low-resolution risk assessment technique offers a 

computationally efficient and viable alternative to computationally expensive numerical 

models in the offshore domain. Its streamlined approach sets it apart as a practical and 

valuable method for risk assessment.   

• The dynamic risk assessment methodology developed in this study enables the continuous 

monitoring of current risk levels over time. This capability facilitates the timely updating 

of risk policies as required, ensuring a proactive and adaptive approach to risk 

management. 

7.2 Conclusions 

Extreme event risk assessment in offshore engineering is a critical process to ensure safety, 

reliability, and resilience of offshore structures and operations. By carefully studying and 

quantifying low-probability, high-impact events, this analysis allows us to identify potential 

vulnerabilities and develop robust strategies to mitigate their consequences.  

7.2.1 Univariate risk assessment methodology (frequentist modeling approach) 

A univariate methodology is presented for modeling rare events and developed a risk 

assessment framework. The methodology is applied to analyze iceberg collision risk in the 

Flemish Pass basin. During the study, it was observed that popular extreme models such as the 

Generalized Pareto Distribution (GPD) or the Generalized Extreme Value (GEV) failed to 

accurately capture present-day extremeness. The occurrence of 100-year events (return levels) 
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became more frequent due to climate change. To address those issue, the rare event problem 

was considered as a heavy-tailed event and a Heavy Right Tail Model (HRTM) was 

implemented to better capture present-day extremeness. Due to limited data availability, the 

model parameters were estimated using Hill and SmooHill estimators, as the commonly used 

Maximum Likelihood Estimator (MLE) was unsuitable for this case study. Furthermore, 

adopting 1000-year return level window instead of the commonly used 100-year return level, 

resulted in a more suitable estimation of extreme load. Finally, incorporating extreme load and 

its corresponding occurrence probability, a risk profile was proposed, specifying the design 

iceberg speed for future structures, and ensuring safer engineering operations in the existing 

facilities at the Flemish Pass basin. The offshore operators may adopt this risk profile to 

upgrade current iceberg management policies and enhance the safety of current existing 

facilities. Details of these outcomes are listed on Chapter 3.  

7.2.2 Univariate risk assessment methodology (Bayesian modeling approach)  

According to this study, between 2002 and 2017, a limited number of large icebergs (weighing 

10 MT) were observed in the Jeanne d'Arc basin, constituting approximately 14% of all 

icebergs recorded during the study period. Consequently, the estimation of large iceberg speeds 

was deemed a rare event problem in this research. To address the challenge of data scarcity, 

Bayesian inferences were employed for HTRD (Hill Tail Range Distribution) parameter 

estimation in conjunction with the Hill and SmooHill estimator method presented in Chapter 

3. The study found that Bayesian inference yielded a superior estimate for HRTD parameter 

estimation compared to the Hill and SmooHill estimators. This conclusion was supported by 

the Cumulative Distribution Function (CDF) comparison plot (listed as 4.11) and the error 

analysis presented in Table 4.3. The modeling outcomes were then utilized for iceberg risk 
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assessment, culminating in the proposal of a flexible risk profile. This risk-based approach 

offers a dependable design standard for offshore constructions, considering the variability and 

extreme characteristics associated with iceberg events. By incorporating Bayesian inference, 

this methodology contributes to a more accurate and reliable understanding of iceberg risks, 

thereby aiding in effective decision-making for offshore engineering projects. 

7.2.3 Joint extreme events load analysis and risk assessment 

The offshore domain's complexity and the interdependence of environmental variables 

necessitate a multivariate approach to comprehend their interactions. By employing 

multivariate dependence modeling, a more inclusive risk assessment can be achieved, 

considering factors such as wave height, wind speed, ocean currents, and structural response. 

This approach enables a more precise representation of potential hazards, enhancing risk 

evaluation accuracy. In addition, environmental variables naturally exhibit correlations, 

however, under extreme conditions, and climate change impact, these correlations may 

undergo changes, demanding a thorough understanding of their manifestations. In this study, 

extreme wind speed and wave height data in the Flemish Pass basin were jointly analyzed and 

modeled. The outcomes of this joint modeling were then integrated into a risk assessment 

methodology, yielding a flexible risk profile tailored for the Flemish Pass basin. Apart from 

its primary objective, the proposed finer scale risk profile methodology (0.10 × 0.10 

latitude/longitude grid) offers operators a valuable tool for managing offshore operations in 

specific areas, serving as a cost-effective alternative to computationally expensive numerical 

models. The research found due to impact of climate change, revealing a noteworthy 30% 

decrease in the correlation between wind speed and wave height during the recent years [1989-

2018] compared to the earlier period of 1959 to 1988. As a result, the study proposes design 
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wind speed and wave height recommendations to enhance offshore operations' safety in the 

Flemish Pass basin. These research methodologies help to bolster risk management strategies, 

ensuring a safer operating environment in light of changing environmental conditions. 

7.2.4 Extreme event load analysis and a non-stationary risk-based approach 

Environmental variables possess an inherent chaotic nature, necessitating the capturing of their 

variability over time to enable realistic load prediction. In this study, a methodology is 

proposed to establish a dynamic risk profile at the Grand Banks area. The focus of this 

methodology lies in extreme wind load prediction, which is then integrated into the overall risk 

assessment. The Block Maxima-based Generalized Extreme Value (GEV) approach is 

employed to handle both stationary and non-stationary scenarios in the Grand Banks region. 

Six different GEV models (as listed in Table 6.1) are considered to capture linear and nonlinear 

trends. By utilizing metrics like AIC, BIC, and deviation statistic, the most suitable model is 

selected. Wind energy estimation is then conducted, leading to the development of a dynamic 

risk profile for the upcoming five decades (as presented in Table 6.5). Notably, the study 

reveals that in the non-stationary scenario, the extreme wind speeds observed in recent decades 

have surpassed the 1000-year extreme recorded in the stationary case. This non-stationary 

approach proves to be highly valuable for offshore operators as it allows them to update current 

policies based on the latest risk estimates.   

7.3 Future research opportunity  

The current key questions to address: Is the proposed methodology sufficient to fully capture 

and prevent any uncertain events in the future? The answer is NO. While we may not be able 

to entirely prevent unforeseen situations, this research empowers us to be proactive and better 

prepared in safeguarding offshore operations against extreme events. For more realistic 
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modeling outcomes/capturing accurate extreme characteristics over the time, the proposed 

methodology might have opened a door for future research opportunities for rare event risk 

assessment in offshore engineering. It presents exciting avenues for enhancing safety, 

sustainability, and efficiency in the industry. Here are some potential areas for future research: 

• Incorporating climate change projections: As climate change continues to impact 

weather patterns and environmental conditions, it becomes imperative to integrate 

climate change projections into rare event risk assessment models. Proposed 

methodology might improve by focusing on understanding how climate change alters 

the frequency and intensity of extreme events, enabling better anticipation and 

preparation for potential hazards. 

• Data collection and monitoring: This research utilizes data collected from two sources: 

the International Ice Patrol (IIP) iceberg sighting database and Hindcast model-

simulated data as presented by Swail et al. in 2006. However, improving data collection 

methods, including the use of remote sensing technologies, IoT devices, and real-time 

monitoring systems, can provide better data for rare event risk assessment. In addition, 

the proposed methodology can explore innovative ways to collect and integrate data 

from multiple sources to enhance the accuracy and reliability of risk assessment 

methodology. In the present thesis, the influence of environmental controls on extreme 

outliers has not been considered. For instance, during certain storm periods, there could 

be a noteworthy number of extreme outliers, potentially affecting the occurrence of 

typical outliers. Therefore, rather than encompassing all extreme events during a storm, 

considering only the most extreme event may yield more accurate estimates. 
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• Uncertainty quantification: The assessment of rare event risks requires addressing 

uncertainties present in both data and model parameters. The current study emphasizes 

the use of bootstrapping, where bootstrap data sets are randomly generated from the 

fitted distribution instead of directly sampling from the original data. However, there 

remains an opportunity for future research (say for example: machine learning, Monte 

Carlo simulation, Fuzzy logic etc.) to concentrate on developing robust uncertainty 

quantification techniques. Such advanced methods would provide a more 

comprehensive consideration of uncertainties in the analysis, ultimately leading to 

more informed decision-making processes. “Regarding load uncertainty, the current 

study addresses the uncertainty related to wind, waves, and iceberg speed. However, in 

addition to the variables we have considered load uncertainty which may be influenced 

by other factors, such as ocean depth, ocean current, wave periods etc. Therefore, in 

the future, a more comprehensive assessment of load uncertainty may be necessary to 

account for these additional phenomena. By incorporating these techniques, a deeper 

understanding of rare event risks can be achieved, enabling more effective and reliable 

risk management strategies. 

• Multivariate approaches: Enhancing the understanding of the interdependence among 

various offshore engineering parameters and environmental factors can lead to more 

comprehensive multivariate risk assessment methods. Investigating the correlations 

between different variables and their influence on rare event occurrences can improve 

the accuracy of risk models. The current multivariate methodology has been 

successfully implemented in a bivariate case, specifically in Chapter 5, where wind 

speed and wave height estimation at Flemish Pass basin were examined. Chapter 3 and 
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Chapter 4 presented univariate analyses on Iceberg collision risk. However, as a 

potential future study, expanding the scope to jointly analyze iceberg collision risk with 

other variables such as wind speed, wave height, ocean currents, and wave periods 

could present a promising avenue for multivariate approaches, akin to the bivariate 

methodology demonstrated in Chapter 5. Such an extension would provide a more 

holistic understanding of the interplay between multiple factors and their collective 

influence on rare event scenarios, ultimately leading to a more comprehensive risk 

assessment framework. 

• Non-stationary modeling: Environmental parameters are subject to changes over time, 

making it essential for research to explore non-stationary modeling approaches. These 

approaches aim to capture the dynamic nature of rare events while considering the 

evolving environmental conditions and their influence on risk. The univariate non-

stationary methodology introduced in Chapter 6 and the proposed dynamic risk profile 

offer valuable insights that can be easily adapted to bivariate or multivariate scenarios. 

By incorporating multiple environmental variables, a more realistic risk assessment can 

be achieved, enhancing the safety and resilience of offshore operations. 

• New approaches: The current methodology for predicting rare events relies on return 

level functions, which can be further enhanced by the implementation of Artificial 

Intelligence (AI) and Machine Learning (ML) techniques. By utilizing AI and ML 

algorithms, rare event predictions can be optimized and incorporated into the risk 

assessment methodology, leading to a more realistic and accurate risk profile. The 

integration of advanced data-driven approaches enables a deeper understanding of rare 

events, improving the overall effectiveness of risk analysis and ensuring better 
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preparedness for extreme scenarios. AI and machine learning algorithms can provide 

opportunities for automating aspects of rare event risk assessment and optimizing 

decision-making processes. These technologies can help identify patterns and trends in 

large datasets and improve the efficiency of risk analysis. 

In summary, the future of rare event risk assessment in offshore engineering is characterized by 

advancements in data collection, modeling techniques, and interdisciplinary collaboration. By 

embracing these research opportunities, the industry can enhance its ability to anticipate, mitigate, 

and respond to rare events, ultimately ensuring a safer and more sustainable offshore environment.  
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