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The rapid development of machine learning (ML) techniques has opened up 
the data-dense field of microbiome research for novel therapeutic, diagnostic, 
and prognostic applications targeting a wide range of disorders, which could 
substantially improve healthcare practices in the era of precision medicine. 
However, several challenges must be addressed to exploit the benefits of ML in 
this field fully. In particular, there is a need to establish “gold standard” protocols 
for conducting ML analysis experiments and improve interactions between 
microbiome researchers and ML experts. The Machine Learning Techniques 
in Human Microbiome Studies (ML4Microbiome) COST Action CA18131 is a 
European network established in 2019 to promote collaboration between 
discovery-oriented microbiome researchers and data-driven ML experts 
to optimize and standardize ML approaches for microbiome analysis. This 
perspective paper presents the key achievements of ML4Microbiome, which 
include identifying predictive and discriminatory ‘omics’ features, improving 
repeatability and comparability, developing automation procedures, and 
defining priority areas for the novel development of ML methods targeting the 
microbiome. The insights gained from ML4Microbiome will help to maximize 
the potential of ML in microbiome research and pave the way for new and 
improved healthcare practices.

KEYWORDS

microbiome, machine learning, artificial intelligence, standards, best practices

1. Introduction

In the recent decade, the human microbiome has been 
characterized in great detail in several large-scale studies as a 
critical player in many human diseases and conditions. As more 
associations between the microbiome and disease phenotypes are 
elucidated, the research focus is expected to shift towards 
identifying the microbiome-related biomarkers for disease 
diagnostics, prognostics, and therapeutics (Manor et al., 2020). 
Nevertheless, microbiome data analysis is challenging due to its 
intrinsic characteristics like compositional nature, high 
dimensionality (often more features than samples), technical 
variability, missing data, and integration needs. Another challenge 
in microbiome data analysis is the interpretation of statistical 
models, as microbiome data often contains many highly correlated 
variables. Machine Learning (ML) methods offer great potential 
to further progress microbiome science, but these obstacles first 
need to be  mitigated. Thus, a dynamic collaboration between 
microbiome and ML researchers is pivotal. Some initiatives have 
made more general efforts to provide ML guidelines and standard 
recommendations for data management, preprocessing, analysis 

and integration, like the ELIXIR Machine Learning Focus Group1 
(Walsh et  al., 2021) or the ISO committees (ISO/TC 276 
Biotechnology; ISO/IEC JTC 1/SC 42 Artificial intelligence; ISO/
IEC TS 4213:2022 Assessment of Machine Learning Classification 
Performance).2

Moreover, while not explicitly focused on ML, the ongoing 
International Human Microbiome Coordination and Support Action 
(IHMCSA3) maps the necessary steps for innovation and builds consensus 
on priorities and means for the future of microbiome science and its 
translation. This includes standardization of microbiome analysis methods, 
which in its extension, also includes ML. The adoption of FAIR principles 
(Findable, Accessible, Interoperable, Reproducible) by ML tools and 

1 https://elixir-europe.org/focus-groups/machine-learning

2 https://standards.globalspec.com/std/14568212/ISO/IEC%20TS%20

4213#:~:text=ISO%2FIEC%20TS%204213%20October%201%2C%202022%20

Information%20technology,performance%20of%20machine%20learning%20

models%2C%20systems%20and%20algorithms

3 https://humanmicrobiomeaction.eu/
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models is also being approached by FAIR4ML.4 However, these ML-focused 
initiatives are general and do not consider microbiome data or their 
characteristics. Scientific fields for which the study of human microbiota is 
essential, such as health and nutrition, have highlighted the need to join 
forces in the standardization and interoperability to integrate microbiome 
data with ML tools (Walsh et al., 2021; Balech et al., 2022). The European 
Cooperation in Science and Technology (COST) Action 
ML4Microbiome5 - Statistical and machine learning techniques in human 
microbiome studies (CA18131) - started in 2019 to create a productive 
symbiosis between discovery-oriented microbiome researchers and data-
driven ML experts to prompt the optimization and standardization of the 
best practice use of ML techniques for human microbiome research. Up to 
now, ML4Microbiome has gathered researchers from 35 different European 
countries, attracted and trained a large number of young scientists and 
published various scientific articles. The following sections discuss the 
Action’s network research topics, elaborate on their relevance to the 
research challenges, and briefly overview more relevant achievements.

1.1. The ML4Microbiome action plan and 
challenges

To accomplish its goals, the ML4Microbiome network has designed 
an operational plan based on the coordinated and integrated work of four 
working groups (WGs), each addressing specific objectives (Figure 1). 
Several specific technical challenges have been identified (Moreno-Indias 
et al., 2021). Sequence-based microbiome studies use different types of 
data (16S rRNA gene or ITS amplicons/shotgun metagenomics or 
metatranscriptomics). Due to their different origin and types, separate 
modeling approaches are required. Moreover, microbiome data have 
large inter-individual variability and elevated noise levels, which Gaussian 
or log-normal models do not approximate well, providing challenges for 

4 https://www.rd-alliance.org/groups/fair-machine-learning-fair4ml-ig

5 https://www.ml4microbiome.eu/

traditional statistical methodologies (Voigt et al., 2015). There are more 
features than samples/observations (e.g., 100 studied humans may each 
have 1,000 microbial species and 1,000,000 microbial genes). This makes 
the application of ML methods challenging due to the curse of 
dimensionality, whereby huge data sparseness compromises the 
identification of data patterns or rules. Microbiome features often exhibit 
a complex dependency structure (taxonomic hierarchy or genes 
co-varying in abundance as encoded on the same genome, plasmid or 
phage). The relative abundance of each taxon is inherently related to the 
abundance of all other taxa, making it difficult to identify differentially 
abundant taxa (Weiss et al., 2017).

Microbial communities are also highly diverse, with many 
low-abundance taxa present only in a few samples. This can lead to high 
sparsity levels in the data, making it difficult to estimate the abundance of 
rare taxa accurately. Microbiome data is often compositional because most 
current studies have access only to the relative abundance of one microbial 
taxon (Gloor et al., 2017). In such cases, the abundance of one taxonomic 
group is constrained by the abundance of other taxonomic groups in the 
sample. Analyzing microbiome data as compositional data requires 
specific statistical approaches that account for this characteristic and 
address its unique challenges. Class sizes may be imbalanced (e.g., fewer 
disease samples than controls) (Ahlawat et al., 2021). An imbalanced class 
distribution coupled with high dimensional data poses a significant 
drawback for applying ML algorithms and results (Kim and Kim, 2018).

1.2. The current state of ML applications for 
microbiome data analysis

To assess the state-of-the-art of ML applications in microbiome 
data analysis, Working Group 1 (WG1) conducted a literature review 
accessible across the web application Machine Learning meTagenomic 
REsearch Scraper (MoLTRES6). The main aim of the tool is to provide 

6 http://imdeafoodcompubio.com/index.php/moltres/

FIGURE 1

ML4Microbiome COST Action’s Working Groups. The figure shows the organization of the COST Action ML4Microbiome in four Working Groups (WGs), each 
committed to specific objectives. WG1 evaluated the state-of-the-art ML methods and software applied in human microbiome studies to define priority areas 
for novel machine learning and statistics applications that better address the specific challenges of human microbiome analysis. WG2 aimed to collect (from 
external projects and repositories) datasets describing microbiomes and characteristics of the underlying cohorts to test which ML methods are most robust 
and comparable, to provide more optimized parameters for the use of these methods, to develop novel ML methodologies and to implement a DREAM 
Challange on clinical data. WG3 investigated opportunities for automating the established Standard Operating Procedures (SOPs) into pipelines for translational 
use by clinicians and non-experts. WG4 goal was to bridge existing gaps between ML (bioinformaticians, statisticians, computer-science scientists) and 
microbiome experts through the organization of meetings, workshops, conferences, training schools, dissemination and communication activities.
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a user-friendly interface for centralized searching and storing ML 
studies on human microbiome data, encompassing feature selection, 
biomarker identification, disease prediction and treatment. The review 
highlighted a steady increase in the utilization of ML methods for 
human microbiome analysis in recent years. Most studies (>70%) 
using ML employed 16S rRNA gene amplicon sequencing data as the 
input data type, while 27% used only shotgun metagenome data. The 
most frequently used ML methods were random forest, logistic 
regression, and support vector machines. While the former method 
remained the most popular, the use of logistic regression and support 
vector machine algorithms has increased. These results were published 
by ML4Microbiome (Marcos-Zambrano et al., 2021), and subsequent 
updates by WG1 members were incorporated into MoLTRES.

1.3. Benchmark datasets and online 
repositories

When analyzing microbiome data, it is often helpful to create 
reference datasets to test existing or new ML tools, whether separate 
or combined. The importance of validation sets and gold standards is 
largely discussed in Papoutsoglou et al. (2023). Pasolli et al. (2016) 
have demonstrated that the performance of ML models may vary 
substantially depending on the disease addressed in the dataset. For 
this reason, Working Group 2 (WG2) and Working Group 3 (WG3) 
decided to establish a benchmark dataset based on a single disease for 
which a reasonable amount of public data was available. The choice 
has been made on colorectal cancer, for which 2090 human stool 
samples have been characterized by shotgun metagenomic sequencing 
from 13 public cohorts spanning nine countries. This data provides 
the gut microbiota composition in healthy controls and patients with 
adenoma or colorectal cancer. The shotgun dataset is publicly available 
(Barbet et al., 2022). To complement the shotgun-based benchmark 
dataset, a 16S rRNA gene sequencing dataset of samples from 
colorectal cancer patients and available metadata was curated by WG3 
members, including n = 709 samples from previous studies (Zackular 
et al., 2014; Zeller et al., 2014; Baxter et al., 2016). The final curated 
dataset is available in the Zenodo repository (Marcos-Zambrano 
Judith, 2022). WG2 was also responsible for defining and evaluating 
the ML4Microbiome DREAM Challenge.7 The challenge was designed 
to predict incident heart failure risk in a large population-based study 
of Finnish adults, FINRISK 2002 (Salosensaari et al., 2021), using a 
combination of gut microbiome data and clinical variables. The results 
of this DREAM Challenge, completed by 32 participants (seven 
teams), will be published separately (manuscript in preparation).

1.4. Optimization and standardization of 
machine learning methods - challenges 
and solutions

For the optimization and standardization of ML methods, WG3 
considered a typical ML workflow that starts after microbiome-related 
profiles are organized in a two-dimensional table format of features, 

7 https://www.synapse.org/#!Synapse:syn27130803/wiki/616705

such as MSP (Metagenomic Species) or Amplicon Sequence Variants 
(ASV) tables for shotgun or 16S rRNA amplicon data, respectively. 
This process involves the following steps, (a) data preprocessing (e.g., 
normalization, filtering), (b) feature selection, (c) predictive modeling, 
and (d) performance estimation. Our objective was to address the 
challenges associated with each of these steps considering diverse 
algorithms, their combinations, and our capacity to interpret and 
explain their results. Although computational simulations may help 
estimate expectations and variability under uncertain situations (see, 
e.g., Gao et al., 2023), we explored benchmark data from the public 
domain spanning 16 different cohorts from nine countries and 
derived several noteworthy conclusions.

In data preprocessing, a major challenge lies in selecting the 
appropriate approaches due to variations in sampling depth, data 
sparsity (represented by an excess of zeros in the tables) and data 
compositionality. To first mitigate sampling variability, rarefaction is 
sometimes used to remove samples. However, this has remained a 
controversial practice since rarefaction reduces statistical power 
(McMurdie and Holmes, 2014), but it also provides the means to deal 
with uncertainties related to variations in read counts that are otherwise 
challenging to control (Schloss, 2023). Alternatively, researchers 
incorporate the differences in library size (number of reads per sample) 
as covariates in the models designed to consider offsets. Sparsity further 
hampers models that rely on Gaussian assumptions (e.g., linear models), 
while other models do not have distributional assumptions (e.g., 
Random Forests, Boosting models). In addition, this sparsity can lead 
to near-zero variance predictors that turn out to be  zero variance 
predictors during the cross-validation process. Our results indicated 
that filtering out rare features and removing near-zero variance ones is 
a successful strategy, outperforming imputation methods in logarithmic 
transformations. Moreover, standard sequencing techniques cannot 
capture the total number of bacterial species but only their proportions. 
For this reason, compositional analysis is the appropriate mathematical 
framework (Gloor et al., 2017), but its application and impact on ML 
models are still actively investigated (Greenacre and Blasco, 2021). For 
example, we found that the CLR transformation can be useful; however, 
its generalizability to other data sets should be investigated. Therefore, 
due to the huge variability of approaches and frequently evolving 
methodologies, we  are against giving precise and definitive  
recommendations.

For feature selection and predictive modeling, the primary 
challenges revolve around the high dimensionality of the data and the 
complex interactions inherent to microbial species, including 
co-occurrence and partial correlation. Building models that 
incorporate the thousands of microbiome features in a multivariate 
manner (e.g., principal component regression, partial least squares 
models) while maintaining predictive performance is undeniably 
challenging. Boosting or Random Forest models often provided the 
best performances. Interestingly, using the JADBio autoML approach, 
we  observed that multivariate feature selection through the 
Statistically Equivalent Signatures algorithm combined with Random 
Forests could yield an optimal balance between performance and 
results interpretability and explainability (Tsamardinos et al., 2022). 
We  also emphasize that appropriate performance estimation 
protocols are crucial to avoid overestimated conclusions and 
misleading insights. A summary of methods that can be used for each 
one of the steps of the ML workflow is reported in Table  2 of 
Papoutsoglou et al. (2023).
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A novel multi-view learning method was developed based on 
boosting and multi-armed bandits. The goal was to simultaneously 
exploit (possibly incomplete) 16S and shotgun data about the same 
individuals, as well as the features identified through multiple 
preprocessing pipelines. The obtained results showed significant 
benefits towards an automated selection and exploitation of multiple 
views/pipelines for the analysis of microbiome data 
(manuscript submitted).

1.5. Community building, networking and 
training: the three key to success

The specific commitments of Working Group 4 (WG4) were to 
bring networking and training opportunities for emerging talents and 
thereby strengthen and build up an excellent scientific and 
technological community, including both ML and microbiome 
researchers. Providing people with opportunities (internal meetings, 
conferences and workshops) to discuss and present ideas and 
experiences was pivotal for establishing collaborations, developing 
new multidisciplinary interactions, attracting young researchers and 
providing them with opportunities for their scientific and professional 
career growth. Thanks to these activities, and despite the interference 
of the COVID-19 pandemic, the ML4Microbiome network expanded 
from the initial 24 member countries to 35 (55% from COST 
Inclusiveness Target Countries), and participants from 57 to 169, 
among which 48% represented by Young Researchers and Innovators 
(<40 years). Some could benefit from Short Term Scientific Mission 
(STMS) grants (16 in total) to work with research teams in different 
countries on ML4Microbiome-related projects with the view to 
publish the results of their activities in peer-reviewed journals.8

In terms of publication output, to date ML4Microbiome members 
have published work on specific ML applications for particular 
diseases, such as Cancer Diagnostics and Therapeutics (Cekikj et al., 
2022), classification of patients with Celiac Disease (Arcila-Galvis 
et al., 2022), Coronary Artery Disease Risk Prediction (Vilne et al., 
2022), novel paradigms in human gut microbiome metabolism 
(Bidkhori et al., 2021), Parkinson’s disease (Rosario et al., 2021), Type 
2 Diabetes (Ruuskanen et al., 2022), oral and related gut diseases (Di 
Stefano et al., 2023), along with systematic or scoping reviews on ML 
applications on microbiome data (Tonkovic et  al., 2020; Marcos-
Zambrano et al., 2021) and its challenges and solutions (Moreno-
Indias et al., 2021) of which all are available from the complete list of 
the Action’s publications on the ML4Microbiome website.

Training schools (TSs) were organized to provide young 
researchers with the proper background knowledge and hands-on 
training in MLs techniques applied to microbiome data. Four Training 
Schools were organized in four different countries, in which 19 
trainers and 125 attendants participated over three-five days. Plenary 
blended learning sessions with keynote speakers were offered, along 
with high-level lectures covering specific ML-microbiome topics 
complemented by practical sessions and workshops. The different 
scientific and geographical backgrounds enhanced multidisciplinary 
discussions and promoted knowledge exchange between academics 

8 https://www.ml4microbiome.eu/research-updates/publications-outputs/

and industry participants, leading to scientific publications (Deutsch 
et al., 2021; Deutsch and Stres, 2021; Deutsch et al., 2022). This also 
helped trainers learn more about the real needs of young researchers 
in such a complex multidisciplinary research field, further sharpening 
the training methods for subsequent TSs. As a result, a syllabus was 
created, funded by one of Action’s STMS, to incorporate ML for 
microbiome analysis into microbiome MSc courses at various 
institutes,9 which previously only addressed read processing, clustering 
methods, diversity analysis and statistical analysis (manuscript in 
preparation). All the training material produced by ML4Microbiome, 
STMS reports, and presentations are freely available from the Action’s 
website (see Footnote 5).

2. Discussion

Currently, microbiome research faces a new bottleneck: its 
translation into a clinical context, addressing risk, diagnosis/
prognosis, and monitoring the effectiveness of therapy. The benefits of 
such applications involve better methodologies for current 
bioinformatics challenges, such as species identification from 
microbiome sequencing data, robust methods for microbiome-
derived predictive models or statistical causal inference, and 
integration of microbiome data with other omics (Feldner-Busztin 
et al., 2023), among many others (and the possible impact of such 
applications in the clinic). Statistical modelling and analysis of 
microbiome-related omics data involve applying various techniques 
and ML algorithms, which ultimately aim to identify associations (and 
ideally causality) between microbial taxa, functional genes, 
metabolites, and host factors (e.g., omics and biochemical variables) 
with health and disease outcomes. We have outlined the challenges of 
such analysis and highlighted the importance of developing and 
optimizing statistical methods and pipelines to handle microbiome 
data’s unique properties for accurate and reproducible 
microbiome research.

Somewhat disappointingly, albeit not unexpected, there is no 
unique ML approach to extract the hidden meaningful information 
beyond the massive microbiome data. Instead, combinations of ML 
tools seem to be  the most promising approach coupled with 
knowledge of the parameters that need tuning. As we advance, the 
application of deep learning (DL), a particular component of ML, to 
microbiome analysis holds significant promise in understanding the 
intricate relationships between microbial communities and their 
functions, as well as their links to various diseases and phenotypes 
(Hernández Medina et al., 2022). We have, however, identified several 
challenges with implementing DL methods for microbiome data 
analysis, which can be extended to any ML model, that first need to 
be  addressed. Firstly, the availability (abundance) and quality of 
microbiome samples and metadata currently limit the collection of 
large and diverse datasets for the training and validation of DL 
models, which are even more dependent on large sample sizes. 
Additionally, there is the issue of interpretability and explainability 
of DL models, which can restrict the biological insights and 
hypotheses that can be derived from them. Since many microbiome 

9 https://microbiome.github.io/OMA/
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analysis applications are related to healthcare, the interpretation of 
the ML models becomes a priority issue, especially for non-ML 
experts. Without understanding how the decision was made and the 
specific reasons for the outcome, many physicians would hesitate to 
trust the ML results, which could have ethical or legal consequences. 
In response, Explainable AI (XAI) methods such as SHAP (Shapley 
Additive exPlanations), DeepSHAP, DeepLIFT, CXplain, and LIME 
(Lipton, 2016; Chen et al., 2022; Molnar, 2022) have been widely used 
in recent years. Analysis of microbiome data, such as personalized 
biomarker identification (Rynazal et  al., 2023) and accurate 
predictions of phenotypes (Carrieri et al., 2021), have also been used 
to improve the understanding of disease mechanisms and 
microbiome associations. Nevertheless, XAI has some limitations as 
many of its models are highly complex and possess many parameters, 
making it difficult to define the factors that affect the explanation. A 
tradeoff between explainability and accuracy, which depends on the 
application area, within which it is determined how critical the 
accuracy of the model is for the end user.

As ML advances, it is also crucial to consider its ethical 
implications, particularly its use in clinical practice. One significant 
ethical consideration in ML and microbiome research is the potential 
for biased or discriminatory algorithms. It is imperative to ensure 
that the data sets used to train ML models are diverse and 
representative of the studied population (Mehrabi et  al., 2021). 
Additionally, the sensitive nature of microbiome data, including 
health and genetic information and their associated metadata, raises 
privacy concerns and the need for informed consent (Shabani and 
Borry, 2018). Therefore, ethical guidelines for data collection, storage, 
and usage must be  implemented to protect individual rights and 
maintain the integrity and validity of the research (Knoppers and 
Chadwick, 2005). As such, ML-enabled microbiome research must 
be conducted responsibly and ethically to ensure that the benefits are 
equitable, sustainable, and safe (Anomaly, 2017). The outcomes 
generated by numerous studies have already impacted the 
microbiome research community. Nevertheless, further advancing 
the field requires increasing collaborative efforts between 
microbiologists and ML experts, including stakeholders in 
non-governmental organizations, health sectors and industry once 
more standardized ML-microbiome applications start to become 
available. The main objective of the COST Action ML4Microbiome 
has significantly improved these opportunities. Thanks to this 
initiative, we have sown the seeds for a dynamic, interconnected, 
cross-disciplinary community that has already contributed to 
advancing research in the field, but with more to come.
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