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Abstract: Colorectal cancer affects the colon or rectum and is a common global health issue, with
1.1 million new cases occurring yearly. The study aimed to identify gene signatures for the early
detection of CRC using machine learning (ML) algorithms utilizing gene expression data. The TCGA-
CRC and GSE50760 datasets were pre-processed and subjected to feature selection using the LASSO
method in combination with five ML algorithms: Adaboost, Random Forest (RF), Logistic Regression
(LR), Gaussian Naive Bayes (GNB), and Support Vector Machine (SVM). The important features were
further analyzed for gene expression, correlation, and survival analyses. Validation of the external
dataset GSE142279 was also performed. The RF model had the best classification accuracy for both
datasets. A feature selection process resulted in the identification of 12 candidate genes, which were
subsequently reduced to 3 (CA2, CA7, and ITM2C) through gene expression and correlation analyses.
These three genes achieved 100% accuracy in an external dataset. The AUC values for these genes
were 99.24%, 100%, and 99.5%, respectively. The survival analysis showed a significant logrank
p-value of 0.044 for the final gene signatures. The analysis of tumor immunocyte infiltration showed
a weak correlation with the expression of the gene signatures. CA2, CA7, and ITM2C can serve as
gene signatures for the early detection of CRC and may provide valuable information for prognostic
and therapeutic decision making. Further research is needed to fully understand the potential of
these genes in the context of CRC.

Keywords: colorectal cancer; feature selection; machine learning; gene expression; gene signatures;
correlation

1. Introduction

Colorectal cancer (CRC) is a type of cancer that affects the colon or rectum, which
are parts of the large intestine. CRC is a prevalent form of cancer globally, with an annual
occurrence of 1.1 million new cases. It also holds the distinction of being the second-largest
contributor to cancer-related mortality [1]. Recent studies have documented a significant
increase in the incidence of CRC among individuals below the age of 50 [2]. Projections
indicate that the incidence of CRC will escalate to 3.2 million new cases and 1.6 million
deaths by 2040. The vast majority of these cases are anticipated to be concentrated in
countries with a high Human Development Index (HDI) [3].

The treatment of CRC imposes a heavy burden on both patients and society. Most CRC
cases are sporadic and arise from colorectal adenocarcinoma (CRA), 80% of which possess
APC mutations [4]. These mutations result in multiple genetic alterations, including p53,
KRAS, and SMAD4 mutations, ultimately leading to malignant transformations [5]. The
availability of CRC gene expression data has grown exponentially over time and enabled
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researchers to analyze these data utilizing multiple Machine Learning (ML) approaches to
find suitable diagnostic biomarkers and gene signatures for CRC [6].

A recent study by Wang et al. identified the core genes that have roles in the de-
velopment and oncogenesis of CRA by utilizing CRC datasets from the gene expression
omnibus (GEO). A variety of analytical techniques were utilized in this study, including
functional pathway enrichment, a protein–protein interaction network analysis, a stem
correlation analysis, a CIBERSORT analysis, and a survival analysis. The findings were
further validated through RT-qPCR and immunohistochemical staining [7]. Fu et al. con-
ducted a study to develop a prognostic model for stomach adenocarcinoma (STAD) based
on tumor mutation burden (TMB). They utilized gene expression data from the TCGA and
GEO databases to identify a set of immune markers responsible for STAD progression.
The resulting immune prognostic model was then used to create a dynamic nomograph
application for clinical use [8]. Su et al. developed an ML model for classifying colon
cancer samples based on gene expression information. These markers can diagnose the
stage of cancer in time and help in improving its prognosis with timely treatment. The RF
model provided the best results for the diagnosis of colon cancer, with an average accuracy
of 99.81%. The study also identified eight genes, including GCNT2, GLDN, SULT1B1,
UGT2B15, PTGDR2, GPR15, BMP5, and CPT2, which were found to be associated with
colon cancer prognosis [9].

This study aims to discover significant gene signatures for CRC using transcriptomic
profiling data from the TCGA and GEO datasets. Machine learning algorithms combined
with feature selection techniques were applied to distinguish between tumor and normal
CRC samples. The significance of the identified genes was evaluated by examining their
biological functions and pathways in the context of CRC sample classification.

2. Materials and Methods
2.1. CRC Gene Expression Dataset Collection

The TCGA-CRC mRNA expression dataset was downloaded from NIH-GDC (Ge-
nomic Data Commons DataPortal) https://portal.gdc.cancer.gov-/ (accessed on 2 March
2023) through Bioconductor R package TCGAbiolinks [10]. The mRNA dataset con-
tained 695 samples, including 644 CRC tissue samples and 51 normal tissue samples.
The GEO dataset GSE50760 [11–13] for CRC gene expression data was downloaded from
https://www.ncbi.nlm.nih.gov/geo/ (accessed on 20 March 2023). The GEO dataset had
54 samples, where 18 were normal tissue samples, and the remaining 36 were tumor tissue
samples. All the CRC samples of the current study used to understand and differentiate
the expression patterns between normal and tumor tissues involved samples from normal
colon, primary, and metastasized CRC, ranging from cancer stage I to IV.

2.2. Feature Selection on CRC Gene Expression Datasets

The CRC datasets were initially balanced using a sample resampling technique. The
resampling technique used in our study was the Synthetic Minority Oversampling Tech-
nique (SMOTE), which synthesizes new minority data between existing minority data.
It randomly picks up the minority class and calculates the K-nearest neighbor for that
particular point. Since unbalanced datasets tend to provide biased classification results
for sample classes, this resampling technique helps to reduce the bias of machine learning
algorithms when performing classification against the major class. The feature selection
method LASSO helps to select the best set of features, which helps in providing a better
classification accuracy.

The Least Absolute Shrinkage and Selection Operator (LASSO), a feature selection
algorithm, was used to narrow down the number of genes, as the high dimensionality of
the dataset makes it difficult to classify the data. The LASSO algorithm constructed a linear
model and penalized the regression coefficients with L1 distance. Most coefficients were
reduced to zero, and the remaining inputs were selected.

https://portal.gdc.cancer.gov-/
https://www.ncbi.nlm.nih.gov/geo/
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The ML algorithms adaboost [14], random forest (RF) [15], linear regression (LR) [16],
gaussian naive bayes (GNB) [17], and support vector machine (SVM) [18–21] were imple-
mented on the features obtained from the LASSO. The model accuracies were analyzed for
both CRC datasets. The common features obtained after applying the LASSO on both CRC
datasets were selected for further analysis.

2.3. Cumulative Gene Expression and Correlation Analysis of the Selected Features

The Gene Expression Profiling Interactive Analysis (GEPIA2) online database (http:
//gepia.cancer-pku.cn/) (accessed on 20 March 2023). [22] was used for a cumulative
expression analysis of the selected features by using parameters matching the TCGA
normal data with logFC > |1.5| and a p-value cutoff of 0.01. Multiple gene comparison
was also performed for the selected features through GEPIA2, where they were matched
with normal TCGA data. The gene expression of the selected common genes for both CRC
datasets was analyzed for the count data information.

A correlation analysis was also performed for both CRC datasets utilizing the R package
“GGally”, and genes that had correlation coefficient values of more than 0.5 in both datasets
were selected for further analysis.

2.4. External CRC Dataset Validation and ROC Curve Analysis

The external CRC dataset GSE142279 was used to validate the identified features of
importance by performing classification using an RF-based classification model, and then
the dataset was cross-validated through an ROC curve analysis to check their diagnostic
efficiency. An overall survival analysis was also performed for these significant features of
importance through the GEPIA server.

2.5. Analysis of Association of Final Set of Gene Expression with Tumor-Infiltrating Immunocytes

The TISIDB web portal (http://cis.hku.hk/TISIDB/) (accessed on 20 March 2023). [23]
was utilized to explore the relationship between the expressions of the finalized genes in
our study and tumor-associated infiltrating immunocytes, including CD4+ T-cells, CD8+
T-cells, dendritic cells, macrophages, B-cells, and neutrophils. TISIDB helped to analyze the
clinical and transcriptomics data across 30 cancer types from the TCGA database.

2.6. Biological Function, Literature, and Pathway Analysis of the Selected Gene Signatures

A biological, functional, and literature analysis was performed to validate the gene
signatures obtained from the procedure mentioned above. The pathway associated with
each gene was studied using string Db [24] and the Cytoscape tool.

3. Results
3.1. Dataset Overview and Its Preprocessing

A total of 695 and 54 CRC samples were collected from the TCGA and GEO repositories,
respectively, and are described in Table 1, while a workflow of the study is shown in
Figure 1. The distribution of the CRC samples in each dataset based on the tumor and
normal classes shown in Figure 2. The normalized TCGA-CRC mRNA data were obtained
using the following parameters: data type—Gene Expression Quantification, workflow
type—HTSeq-Counts, and a correlation cut-off of 0.6 for genes. The TCGA-CRC dataset
comprised 23,187 features, while the GSE50760 dataset initially had 35,238 features. It was
filtered for low gene counts using the criteria of “data.sum(axis = 0) > 500”, resulting in
17,300 features.

3.2. Feature Selection and Machine Learning Model Implementation

The CRC datasets’ (TCGA-CRC and GSE50760) gene expression dataset was balanced
using a resampling technique before implementing the LASSO, as shown in Figure 3,
because unbalanced datasets tend to provide biased classification results for sample classes.

http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
http://cis.hku.hk/TISIDB/
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The feature selection method LASSO helped to select the best set of features, which helped
in providing a better classification accuracy.
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Figure 1. Workflow for the identification of gene signatures for colorectal cancer through feature
selection approach with different machine learning algorithms. TCGA: The Cancer Genome Atlas;
CRC: Colorectal cancer; LASSO: Least Absolute Shrinkage and Selection Operator; RF: Random
Forest; LR: Linear Regression; GNB: Gaussian Naive Bayes; SVM: Support Vector Machine; and ROC:
Receiver operating characteristics.

Table 1. Sample distribution for normal and tumor classes with feature information.

Sample Groups Number of
Normal Samples

Number of
CRC Samples Total Samples Number of Genes

(Features)

TCGA-CRC 51 644 695 23,187

GSE50760 18 36 54 35,238

For the CGA-CRC and GSE50760 datasets, the LASSO provided 314 and 503 features,
respectively. These sets of features were utilized by different ML models (adaboost, RF,
LR, GNB, and SVM) to analyze the classification accuracy, as described in Table 2. The RF
gave maximum classification accuracies of 100% with the TCGA-CRC dataset and 94.44%
with the GSE50760 dataset. A total of 12 common genes, namely CA7, KRT19, A2M, EIF3C,
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OLFM4, CA2, CEACAM5, GAPDH, MT2A, ASS1, MYH11, and ITM2C, were found from
both CRC datasets, as shown in Figure 4.
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balanced dataset.
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Figure 4. List of 12 common genes (CA7, KRT19, A2M, EIF3C, OLFM4, CA2, CEACAM5, GAPDH,
MT2A, ASS1, MYH11, and ITM2C) identified after feature selection technique LASSO analysis from
TCGA-CRC and GSE50760 CRC datasets.

Table 2. Accuracy of different ML algorithms after feature selection through LASSO.

Sample
Groups

ML Algorithms Accuracy with LASSO (%)

Adaboost Random Forest Gaussian
Naive Bayes

Support Vector
Machine (SVM)

Linear
Regression

TCGA-CRC 99.94 100 99.93 100 100

GSE50760 94.16 94.44 93.21 93.40 92.12

3.3. Cumulative Gene Expression and Correlation Analysis of the Selected Features

A cumulative gene expression analysis for the final 12 genes showed a significant
downregulation when compared to the normal TCGA-CRC samples, as shown in Figure 5a.
A multiple gene comparison analysis also proved the downregulation of the final obtained
12 genes through a heatmap shown in Figure 5b. It is evident through the heatmap that
maximum downregulation was observed with CA7 and minimum downregulation was
observed with GAPDH when compared to the TCGA-CRC (tumor and normal) samples.

The gene expression analysis for the TCGA-CRC and GSE50760 datasets shown
in Figure 6 also proved a similar downregulation trend to that observed through the
GEPIA2 server.

The correlation analysis for the final set of 12 genes showed a strong correlation for
the genes that were significantly downregulated when compared to the normal samples
for both CRC datasets, as shown in Figure 7. A list of three genes (CA7, CA2, and ITM2C)
were shortlisted based on the gene expression and correlation analyses. The TCGA-CRC
dataset showed a significant positive correlation value between CA7 and CA2, which was
0.8, while CA7–ITM2C was 0.72 and CA2−ITM2C was 0.79. A similar positive correlation
was observed for the CRC dataset GSE50760, where the correlation value between CA7 and
CA2 was 0.8, while CA7−ITM2C was 0.73 and CA2−ITM2C was 0.88.

3.4. External CRC Dataset Validation and ROC Curve Analysis

The external CRC dataset GSE142279 (40 CRC sample size) was classified utilizing
three significant gene expression count data with an RF-based ML model and provided
a classification accuracy of 100%. The performance metrics of the validation dataset are
described in Table 3, which clearly shows the performance of the ML model. The confusion
matrix shown in Figure 8a displays the distribution of six samples in each class, i.e., the
tumor and normal classes. The ROC curve analysis indicated that the AUC values for



Genes 2023, 14, 1836 7 of 15

the CA7, CA2, and ITM2C genes were 1.0, 0.992, and 0.995, respectively, as shown in
Figure 8b. The overall survival analysis plot, obtained through the GEPIA2 server, showed
a statistically significant logrank p-value of 0.044 for all three gene signatures (CA7, CA2,
and ITM2C), as shown in Figure 8c.
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Figure 5. Cumulative gene expression analysis of 12 genes (CA7, KRT19, A2M, EIF3C, OLFM4, CA2,
CEACAM5, GAPDH, MT2A, ASS1, MYH11, and ITM2C) from TCGA-CRC dataset through GEPIA2
server. (a) Box-plot for TCGA-CRC dataset between tumor (Green) and normal (Brown) samples
with the asterisk mark showing statistical significance, and (b) comparative gene expression heatmap
between tumor and normal samples (Green: high expression, cream: medium expression, and red:
low expression).

3.5. Analysis of Association of Final Set of Gene Expression with Tumor Infiltrating Immunocytes

The TISIDB web server was utilized for exploring the relationship between the gene
signatures’ (CA7, CA2, and ITM2C) expression levels and the immunocyte infiltration
level in the CRC samples. The gene expressions of CA2, CA7, and ITM2C showed a weak
correlation with immunocyte infiltration, as shown in Figure 9. CA2 expression exhibited
a strong correlation with the Act_B (rho = 0.3, p = 6.68 × 10−11), Act_DC (rho = 0.356,
p = 4.43 × 10−15), and Neutrophils (0.329, p = 6.04 × 10−13) levels in colon cancer and
with the Act_B (rho = 0.362, p = 1.86 × 10−6), Act_DC (rho = 0.38, p = 3.92 × 10−7), and
Neutrophils (rho = 0.359, p = 2.21 × 10−6) levels in rectal cancer. CA7 expression exhibited
a strong correlation with the Act_B (rho = 0.199, p = 1.82 × 10−5) and Neutrophils (0.263,
p = 1.28 × 10−8) levels in colon cancer and with the Act_B (rho = 0.127, p = 0.102) and
Neutrophils (rho = 0.259, p = 0.000739) levels in rectal cancer. ITM2C expression exhibited
a strong correlation with the Act_B (rho = 0.146, p = 0.00172) and Neutrophils (rho = 0.126,
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p = 0.00692) levels in colon cancer and with the Act_B (rho = 0.329, p = 1.58 × 10−5) and
Neutrophils (rho = 0.27, p = 0.000433) levels in rectal cancer.
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(b) GSE50760 dataset. Green color denotes tumor (0 class code) samples and brown color denotes
normal (1 class code) samples.
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Figure 8. The external dataset (GSE142279) performance validation of RF-based ML model for CRC
classification with CA7, CA2, and ITM2C gene expression count data. (a) Confusion matrix between
truth and predicted classes, where 0 is for tumor sample and 1 is for normal sample, (b) ROC curve
analysis with AUC > 0.99, and (c) overall survival analysis with logrank p = 0.044 for gene signatures.

Table 3. Classification performance report of external validation dataset GSE142279 through RF-based
ML model for CRC classification.

Sample Class Number of CRC
Samples

Precision
(PPV)

Recall
(Sensitivity) f1-Score

0 (Tumor) 6 100% 100% 100%
1 (Normal) 6 100% 100% 100%

PPV—positive predictive value.

3.6. Biological Function and Pathway Analysis

The biological functions of the final gene signatures of CA2, CA7, and ITM2C were
studied and are described in Table 4. Carbonic anhydrase 2 and Carbonic anhydrase 7
(CA2 and CA7) belong to the CA family isozymes, which catalyze the reversible hydration
of carbon dioxide. CA2 is involved in many critical physiological or biochemical processes
based on ion transport and pH balance, such as respiration, digestion, bone resorption,
and renal acidification [25]. The CA2 Gene Ontology (GO) annotations related to this gene
include arylesterase activity and carbonate dehydratase activity. CA7 shows extensive
diversity in tissue distribution and in their subcellular localization. The cytosolic protein
encoded by this gene is predominantly expressed in the brain and the colon and contributes
to bicarbonate-driven GABAergic neuron excitation. The integral membrane protein 2C
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(ITM2C) is broadly expressed in the colon and brain. The Gene Ontology (GO) annotations
related to this gene include amyloid β binding.

1 

 

 
Figure 9. Relationship of gene expression of CA2, CA7, and ITM2C with immunocyte infiltration,
including CD4+ T-cells, CD8+ T-cells, dendritic cells, macrophages, B-cells, and neutrophils in CRC.
(a) CA2, (b) CA7, and (c) ITM2C.

Table 4. Biological functions of final CRC gene signatures.

Gene Name Biological Function

Carbonic anhydrase 2 (CA2) Carbonic anhydrases are a large family of zinc metalloenzymes that catalyze
the reversible hydration of carbon dioxideCarbonic anhydrase 7 (CA7)

Integral membrane protein 2C
(ITM2C)

Enables amyloid β binding activity. Involved in negative regulation of neuron
projection development and neuron differentiation.

The string network for the CRC gene signatures is shown in Figure 10. The string
network interactors for CA2 are SLC9A1, SLC4A4, SLC4A1, HSPD1, CDH1, CTNNB1,
CTNND1, RAP1B, CTNNA1, and RAP1A. The disease gene association from the CA2 string
network for colorectal cancer was found to be prominent with the CTNNB1 (Z-score—7.8)
and CDH1 (Z-score—7.2) genes. The string network interactors of CA7 are CYP24A1,
OSGIN2, DECR1, CALB2, C14orf119, GAB3, HEATR3, CALB1, CA3, and CA13. The
string network interactors for ITM2C include TTK, PCSK7, FCAMR, RIT2, FAIM3, KNDC1,
TMEM140, BACE1, GKN2, and GKN1.
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4. Discussion

Advances in colorectal cancer diagnostic technology have ushered in new trends in the
early detection of CRC. The most recent trends include virtual colonoscopy, improved stool-
based tests, and genetic tests. Currently, ML algorithms are also increasingly being used
to help in diagnosing CRC. In particular, they are used to classify normal and malignant
tumorous tissues. In this study, we utilized gene expression count data from the TCGA-CRC
and GSE50760 CRC datasets. The TCGA-CRC dataset was preprocessed with a corr.cutoff
of <0.6 and GSE50760 with data.sum(rows > 500).

The feature selection technique LASSO was implemented with five different ML
algorithms, namely Adaboost, RF, LR, GNB, and SVM. The supervised ML algorithms used
in the current study have certain limitations, such as the adaboost algorithm being sensitive
towards noisy data and vulnerable to overfitting, RF sometimes being biased towards
dominant classes in imbalanced datasets, LR being sensitive towards outliers and unable to
capture complex patterns, GNB not being able to capture complex relationships between
features, which might lead to its suboptimal performance, and SVM being computationally
intensive in nature. Since every ML algorithm has certain limitations, to overcome these
limitations, ML algorithms based on different working principles were selected.

The classification accuracies obtained after feature selection with the TCGA-CRC
dataset were 99.94 (adaboost), 100 (RF), 99.93 (GNB), 100 (LR), and 100 (SVM), and with
the GSE50760 dataset were 94.16 (adaboost), 94.44 (RF), 93.21 (GNB), 93.40 (LR), and 92.12
(SVM). Since the maximum accuracy with LASSO was obtained with the RF ML model in
both the CRC datasets, features of importance were extracted.

The TCGA-CRC dataset had filtered 314 and GSE50760 had 503 features that were
important, and the Venn diagram analysis found 12 common genes. The common genes,
namely, were CA7, KRT19, A2M, EIF3C, OLFM4, CA2, CEACAM5, GAPDH, MT2A, ASS1,
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MYH11, and ITM2C. Gene expression and correlation analyses were performed for both
the CRC datasets, and it was observed that the CA2, CA7, and ITM2C genes had shown
a significant downregulation in the tumor samples when compared to the normal CRC
samples, and they all had a high positive correlation in terms of gene expression.

To justify the results, the external CRC dataset was utilized to observe the gene expres-
sion patterns of the CA2, CA7, and ITM2C genes. The external dataset had 40 samples, in
which there was a 1:1 sample distribution for the tumor and normal CRC samples. The
dataset was divided into training and testing data in a 7:3 ratio and was classified based on
the gene expression of the final gene signatures with the RF model. The dataset achieved
a 100% classification accuracy, and the ROC analysis gave AUC values for the CA2, CA7,
and ITM2C of 99.24%, 100%, and 99.5%, respectively. The overall survival analysis through
the GEPIA2 server for the final CRC gene signatures had a statistically significant logrank
p-value = 0.044. The tumor immunocyte infiltration analysis showed a weak correlation
between the gene signature expression and immunocyte infiltration levels. The most
positive correlation was observed with the CA2 gene expression for Act_DC (rho = 0.356,
p = 4.43 × 10−15) in colon and Act_DC (rho = 0.38, p = 3.92 × 10−7) in rectal cancer.

CA2 is a member of the human Carbonic Anhydrases group of metal enzymes, which
convert carbon dioxide into bicarbonate [7]. CA2 variants have been associated with
various health conditions such as osteoporosis, cancer, ulcers, and obesity [26]. The reduced
expression of CA2 may enhance the stem-cell-like characteristics of adenoma cells in CRC
and could potentially serve as a marker for high-risk CRC adenomas. Recent investigations
have revealed that CA2 exerts a significant inhibitory effect on the proliferation of CRC cells
by inducing cell cycle arrest at both the G0/G1 and G2 phases in a well-established SW480
CRC cell line [27]. Studies have shown that patients with a high CA2 expression have better
disease-free survival and overall survival than those with a low expression in hepatocellular
carcinoma [28]. A low CA2 expression negatively correlates with pathological state, distant
metastasis, and tumor size in gastric cancer [29,30].

The CA7 expression was downregulated in a microarray-based gene expression profil-
ing study, where a prediction was made by ML models, namely a prediction analysis of
microarray, artificial neural network, classification, and regression trees [31]. Another study
identified the downregulation of CA7 in CRC, where it acts as a tumor suppressor gene.
The reduced expression of CA7 in CRC is associated with positive lymph node metastasis
and poor differentiation. The survival analysis results also revealed that patients with a
higher expression of CA7 tended to have a longer disease-specific survival time, compared
to those with a lower expression of CA7 [32].

ITM2C showed downregulation in the CRC datasets explored for the study. Other
members of the ITM protein family, like ITM2A, have been studied, and it was found that it
acts as a tumor suppressor gene in breast cancer. It was observed that high expression levels
of ITM2A are associated with more prolonged overall survival and relapse-free survival in
patients with colorectal cancer. Additionally, the overexpression of ITM2A has been found
to inhibit tumor cell proliferation and reduce their capacity for invasion and migration [33].
Since no research has been reported for the role of ITM2C related to CRC progression,
based on the above evidence, we conclude that ITM2C can act as a tumor suppressor gene,
meaning that it can help in regulating cell growth and division.

The genes CA2, CA7, and ITM2C collectively play critical roles in CRC progression,
with CA2 influencing adenoma characteristics and cell proliferation, CA7 acting as a tumor
suppressor gene, and ITM2C likely sharing similar tumor-suppressive properties with
its family member ITM2A. In summary, we determined that CA2, CA7, and ITM2C can
be utilized as gene signatures for CRC. They can act as potential therapeutic targets for
improved prognoses in CRC patients. However, our work has certain limitations. First,
gene expression validation based on RT-PCR needs to be performed to justify our results.
Second, more datasets need to be tested to validate the accuracy and significance of the
developed ML model. Furthermore, basic research needs to be performed to verify our ML
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model and to understand the basic regulatory mechanism for these gene signatures in vitro
and in vivo.

5. Conclusions

In conclusion, this study showed that the RF model provided the highest accuracy
in classifying normal and malignant tumorous CRC tissues. The LASSO identified 12
common genes (CA2, CA7, and ITM2C, etc.) that were analyzed for their gene expression
and correlation. Further analysis of an external CRC dataset and various literature sources
revealed that CA2, CA7, and ITM2C could act as gene signatures for the early detection
of CRC and showed the potential to regulate cell growth and division in a manner that
could prevent cancer progression. However, further validation through RT-PCR and
additional datasets are needed to strengthen the results and understand the underlying
regulatory mechanisms.
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