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ABSTRACT
A recently proposed method for factor analysis of discrete data is extended
to better handle overdispersion. Three empirical examples from veterinary
sciences, musicology and agriculture are investigated, involving true count
data as well as ordinal data. Comparisons are made with results from
related statistical techniques, e.g., principal component analysis.
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1. Introduction

Factor analysis is a statistical technique that can be employed in several fields of application. The
variability among observed correlated variables is described in terms of a lower number of unob-
served variables called factors. Recently, a method for factor analysis of discrete data was pre-
sented (Larsson 2020), along with an empirical example: a seven-dimensional data set of ordinal
data (survey study). In this paper, the main purpose is to illustrate the usefulness of that method
by studying three different empirical examples. In the sequel of this introductory section, we first
review the method from Larsson (2020) and also present an extension for analysis of data with
overdispersion, introducing the negative binomial distribution.

The method is implemented in Matlab, and codes are available upon request.

1.1. Dependent Poisson models

In Larsson (2020), a method of performing factor analysis for discrete data using a dependent
Poisson distribution is presented. A short description of the method is as follows. In the litera-
ture, there are many versions of dependent Poisson models, see Larsson (2020) and the references
therein. The model studied by Larsson (2020) has been proposed by e.g., Karlis (2003). In is sim-
plest form, it is given as a bivariate model

Y1 ¼ U þ X1,

Y2 ¼ U þ X2,

(
(1)

where U, X1 and X2 are independent Poisson variables, with intensities k, l1 and l2 (say),
respectively. Then Y1 and Y2 are also Poisson, but with intensities kþ l1 and kþ l2, respect-
ively. The variables U, X1 and X2 are considered latent, only Y1 and Y2 are observed.
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It is easily seen that

corrðY1,Y2Þ ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkþ l1Þðkþ l2Þ
p : (2)

In particular we see that (as is natural), the correlation is bigger when k is large relative to l1, l2
than otherwise. Another important observation is that the model only allows for a positive
correlation.

Suppose we have observation pairs ðy11, y12Þ, :::, ðyn1, yn2Þ: In Larsson (2020), it is laid out how
the parameters may be estimated numerically by maximum likelihood. Indeed, for the model in
(1), the likelihood takes the form

Lðk,l1,l2Þ ¼
Yn
i¼1

Xminðyi1, yi2Þ

u¼0

f ðu; kÞgðyi1 � u; l1Þgðyi2 � u; l2Þ, (3)

where f and g are Poisson probability functions, e.g.,

f ðu; kÞ ¼ ku

u!
e�k (4)

and we used that Y1 and Y2 are conditionally independent, given U¼ u.
In fact the likelihood only needs to be numerically maximized over k, since it can be proved

that k̂ þ l̂k ¼ �yk for k¼ 1, 2, where k̂ and l̂k are the MLEs and �yk ¼ n�1 P
i yik, cf.

Larsson (2020).
We may view (1) as a simple two-variable factor model, with a common factor U. The idea of

Larsson (2020) is to extend this model to a system with many variables, with different groups of
variables. For each group, the variables are connected to each other through a specific common
factor. For example, a model with five variables and two factors may be constructed as

Y1 ¼ U1 þ X1,

Y2 ¼ U1 þ X2,

Y3 ¼ U1 þ X3,

Y4 ¼ U2 þ X4,

Y5 ¼ U2 þ X5,

8>>>>>><
>>>>>>:

(5)

where U1,U2,X1,X2,X3,X4,X5 are independent.
Here, the variables Y1,Y2,Y3 are connected (correlated) through U1 and Y4, Y5 are connected

through U2. It is clear that any of Y1,Y2,Y3 is uncorrelated to (independent of) any of Y4 and Y5.
The parameters of the model (5) may be estimated by maximum likelihood in much the same
way as for the parameters of (1). In fact, this estimation is quite simple because of the independ-
ence of the two sub systems ðY1,Y2,Y3Þ and (Y4, Y5).

Now, it is quite obvious how to go on to form many other systems in the style of (5), see fur-
ther Larsson (2020) for a general formulation of the model.

The next question is how to find the dependent Poisson model that best fits the observed
data. Larsson (2020) suggests that the model giving the smallest value on the Akaike information
criteria (AIC) should be selected. An obstacle is that, in systems with many variables, there are a
lot of possible models to go through. To alleviate this, a kind of forward search algorithm is pro-
posed, starting with the simple independence model and then successively moving to models of
higher complexity. This is also the approach that we will adapt in the present paper.

Larsson (2020) also extends the model to deal with truncated Poisson distributions (which is
suitable in presence of ordinal data). Another extension is the so-called mixed model, where it is
allowed that the same factor can ’load’ on more than one group of variables. This gives the same
kind of flexibility as in traditional factor analysis models. However, in order to be able to
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compare to cluster analysis (’kmeans’) and principal component analysis, we will not consider
mixed discrete factor models in this paper.

In Larsson (2020), empirical data from a questionnaire is analyzed. This data is ordinal, and it
is modeled by dependent truncated Poisson distributions. The results from this exercise are
shown to very much agree with the outcomes of the traditional factor analysis performed by
J€oreskog, Olsson, and Wallentin (2016).

1.2. Dependent negative binomial models

Many empirical count data sets are subject to overdispersion, i.e., the variances of the variables are
much larger than their means, making Poisson modeling insufficient. To alleviate this, we suggest in
the present paper to extend the models in Larsson (2020), simply by replacing the Poisson distribu-
tion with the negative binomial. For this, we replace the probability functions in e.g., (4) by

f ðu; r, pÞ ¼ r þ u� 1
u

� �
prð1� pÞu: (6)

There are many different parametrisations, see e.g., Hilbe (2011), but we choose this one for con-
venience, since this is the one implemented in Matlab. This parametrisation has the property that
the expectation is rð1� pÞ=p and the variance is rð1� pÞ=p2: Moreover, the correlations are given
by the formula (cf. (2))

corrðYi,YjÞ ¼ v0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðv0 þ viÞðv0 þ vjÞ
p , (7)

where v0 is the variance of the factor (U) and vi is the variance of Xi.
For r large and p close to one, the distribution is close to a Poisson with parameter rð1� pÞ,

while for small p, the Poisson approximation breaks down and there is a considerable overdispersion.
Observe that, when going from Poisson to negative binomial, the number of parameters to

estimate in our models such as in (1) and (5) is doubled. This is expected to cause numerical
problems for systems of large dimensions. However, so far it seems from our calculations that,
analogous to the Poisson case, the number of parameters that need to be estimated is reduced by
the fact that the empirical means equal the estimated expectations under the model. To our best
knowledge, this is a fact that remains to be proved.

In the remainder of the article, three examples of data analysis follow in Secs. 2–4. In Sec. 5, a
concluding discussion is provided.

2. Example: veterinary science, rearing of broilers

2.1. Background

We study data from organic rearing of broilers in Sweden, more precisely data concerning the
welfare of chickens. Data from eight farms in Sweden were investigated. From visual inspections,
various signs of injury to the chickens had been registred, with the value 0 meaning no injury,
and with numbers on an ordinal scale to indicate the degree of worsened injury. The scope of
the initial study was to gather new information regarding health and other welfare aspects, hous-
ing and management routines in order to describe the present situation on organic broiler farms
in Sweden (G€oransson, Yngvesson, and Gunnarsson 2020).

After initial cleaning of the data set, disregarding some missing values, measurements of 300
individuals remained. For the analysis below, we chose to study four variables. In the table below,
these variables are stated along with short descriptions and the values taken by each variable
(ordinal scales):
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Recall that 0 means no injury at all and observed increased injury on a bird means higher levels
on the ordinal scale. Actually, the values taken by variables were x1 : ð0� 2Þ, x2 : ð0� 4Þ, x3 :
ð0� 4Þ, x4 : ð0� 3Þ, but in the table above are listed the levels where counts actually occurred
in the data set.

2.2. Statistical analysis

To check the assumption of Poisson distribution, we simply present empirical means and varian-
ces for all variables. In Table 1, we see that the Poisson assumption is not unreasonable. Note a
slight underdispersion for the fourth variable.

We also give empirical correlations, see Table 2. The method of Larsson (2020) only works when all
variables have non-negative correlation. We here find one negative, but its magnitude is quite small.

2.3. Discrete factor analysis

After using the forward search method, discrete factor analysis proposes as the best model to link
the variables x2 and x4 in one group with the same factor, and then to have the variables x1 and
x3 each in separate groups. The parameter estimates are given in Table 3.

Note that, as we should have, the observed means are obtained as l̂1 and l̂3 for the variables

x1 and x3, while for the variable x2, k̂ þ l̂2 � 0:12, which is the observed mean for x2, and for x4
we similarly have k̂ þ l̂4 � 0:54:

As for estimated correlations from the factor model, we get them as in Table 4. Here, we have
used (2) to calculate the estimated correlation between x2 and x4.

We find that the estimated correlation between x2 and x4 agrees well with the corresponding
sample correlation. Naturally, all the other estimated correlations from the model are zero since
these are between variables that are considered independent. In particular, this means that when
comparing to sample values, we miss out on the correlation between x3 and x4 by some margin.

2.4. Discussion. Other techniques

With cluster analysis on these data, via the procedure kmeans, it was the variables x1 and x2 that fell
into the same cluster when specifying the number of clusters to three. Given the low sample correlation
between x1, and x2, we find this result to be a little surprising. Supposedly, one reason for this result
could be the relative similarity between x1 and x2 in terms of their sample means and sample variances.

Finally, we compare the result with discrete factor analysis to a principal-component analysis
(PCA). Denote by z1, z2, z3 the first three principal components. Usually, cumulative percentage
of the total variance is reported. Here, z1 accounts for 36%, z1 and z2 for 62% and the three first
principal components account for 83%.

In Table 5, we note that the first principal component loads high on variables x2, x3 and x4,
not exactly the result from the discrete factor analysis but somehow pointing in that direction.

We conclude with an interpretation from an etological point of view of the finding that varia-
bles 2 and 4 form a factor. In earlier analyses, researchers have found relationships between hock
burns and plumage cleanliness. The reason could be that birds with hock burns possibly are to a
large extent seated in the litter material, and hence get dirtier (if the litter quality is bad).

x1 Feathers (feather injury) 0, 1, 2
x2 Hock burns (injury marks) 0, 1
x3 FPD (footpad dermatitis) 0, 1, 2
x4 Plumage cleanliness 0, 1, 2
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3. Example: musicology, features of fugue subjects

3.1. Background

Ryd�en (2020) has considered a problem arising in musicology. In the musical art form called
fugue, a so-called subject is first presented. By quantifying a fugue subject, comparisons can be
made on a statistical basis between J.S. Bach and composers from later epochs, a priori dividing
works into three categories depending on the background of the composition in music history.

A subject could be seen as a melody, which needs to be quantified by some numerical meas-
ures. Ryd�en (2020) chose the following integer-valued variables:

Consider for instance, in Figure 1, the following subject by Bach, from Fantasia and Fugue in
C minor (BWV 537):

In this example, we find the following observed values of the variables:

Table 1. Veterinary data, means and variances.

Variable 1 2 3 4

Mean 0.23 0.12 0.26 0.54
Variance 0.18 0.10 0.24 0.36

Table 2. Veterinary data, empirical correlations.

Variable number 1 2 3 4

1 1 0.047 –0.059 0.064
2 . 1 0.107 0.297
3 . . 1 0.224
4 . . . 1

Table 3. Veterinary data, estimated parameters.

k̂ l̂1 l̂2 l̂3 l̂4

0.079 0.230 0.038 0.257 0.458

Table 4. Veterinary data, estimated correlations from the factor model.

Variable number 1 2 3 4

variable 1 1 0 0 0
variable 2 � 1 0 0.31
variable 3 � � 1 0
variable 4 � � � 1

Table 5. Veterinary data, estimated principal components.

x1 x2 x3 x4
z1 0.097 0.580 0.471 0.658
z2 –0.868 –0.170 0.464 –0.055
z3 0.470 –0.586 0.659 –0.025

x1 Length, expressed in number of notes written
x2 Range (in semitones)
x3 Number of unique pitch classes
x4 Initial interval (in semitones)
x5 Number of unique intervals between successive notes
x6 Maximum interval between successive notes (in semitones)
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Note that the tied note in bar 2 implies one single count of the note (A flat).
For details on the data collection, see Ryd�en (2020). In all, 238 fugue subjects were collected

and features compiled.

3.2. Statistical analysis: prerequisites

In our analysis, it feels natural to subtract the respective minima (over individuals i) and consider
the so transformed data yj ¼ xj �minxij:

We start by performing some descriptive analysis of the data. The means and variances are
given in Table 6.

We find signs of overdispersion for y1 in particular, and also for y2 and y4. The large variance
in y1 is due to some outliers.

Next, we give the empirical Pearson correlations in Table 7. We find one negative correlation
(between y3 and y4), but this one is so close to zero that we consider it to be a minor problem.
This might well be a zero correlation that has been estimated negative by pure chance.

3.3. Statistical analysis: discrete factor analysis

Next, we go on to search for the ’best’ discrete factor analysis model, by seeking the one with the
smallest possible AIC using the forward search method of Larsson (2020).

We find a model where variables 1,2,5,6 have a common factor, while variables 3 and 4 turn
out as independent of the others, as well as of each other. This is also in accord with Table 7,
where we see that the estimated correlation between y3 and y4 is very close to zero (as already
mentioned), and also that y3 and y4 are the variables that correlate the least with all the
other variables.

The parameter estimates for the model are given in Table 8. In particular, note that for varia-

bles yj with a common factor, k̂ þ l̂j equals the observed mean of yj, and that for unrelated varia-
bles (like y4), l̂j equals the observed mean.

In order to validate the model, we also give the estimated correlations from the models in
Table 9, cf Eq. (2). Comparing to Table 7, we see that in almost all cases, the model estimates of
correlations are lower than the corresponding empirical ones.

To account for the overdispersion that is present for some of the variables, we also fitted a
negative binomial factor model to the group ðy1, y2, y5, y6Þ as well as to y4. (The variable y3 did
not show signs of over dispersion, so it was left as it is.) The corresponding parameter estimates
are given in Table 10.

Observe that, for the underdispersed variable y5, the estimated r is very large and the estimated
p is extremely close to one. This is because for large r and p close to one, the negative binomial
distribution is close to Poisson. Also, for y6, which is close to being underdispersed, we have a
large estimated r and an estimated p fairly close to one.

A model check of negative binomial may be done both for variances and correlations. (As for
Poisson, the expectations are estimated without errors.) Estimated variances are given in Table 11,

Figure 1. J.S. Bach: subject from Fugue in C minor (BWV 537).

x1 x2 x3 x4 x5 x6
17 9 7 7 7 9
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and estimated correlations are in Table 12. Comparing to Table 6, the agreement of variances is not
too bad, with exceptions for variables 5 and 6, where the model over-estimates by some margin. As
for correlations, they fit better to the empirical ones than for Poisson as long as variable 1 is not
involved. The correlations between variable 1 and other variables are more under-estimated here
than in the Poisson case.

Table 6. Music data, means and variances.

Variable number 1 2 3 4 5 6

Mean 15.9 6.9 3.6 2.9 5.0 7.3
Variance 143.5 10.3 2.6 6.4 4.2 7.7

Table 7. Music data, empirical correlations.

Variable number 1 2 3 4 5 6

variable 1 1 0.55 0.35 0.12 0.67 0.40
variable 2 � 1 0.41 0.21 0.58 0.59
variable 3 � � 1 �0.004 0.34 0.28
variable 4 � � � 1 0.20 0.31
variable 5 � � � � 1 0.68
variable 6 � � � � � 1

Table 8. Music data, estimated parameters, Poisson model.

k̂ l̂1 l̂2 l̂3 l̂4 l̂5 l̂6

2.7 13.2 4.2 3.6 2.9 2.3 4.6

Table 9. Music data, estimated correlations from the Poisson factor model.

Variable number 1 2 3 4 5 6

variable 1 1 0.26 0 0 0.30 0.25
variable 2 � 1 0 0 0.46 0.38
variable 3 � � 1 0 0 0
variable 4 � � � 1 0 0
variable 5 � � � � 1 0.44
variable 6 � � � � � 1

Table 10. Music data, estimated parameters, negative binomial model.

r̂0 2.5 p̂0 0.44
r̂1 1.5 p̂1 0.11
r̂2 9.2 p̂2 0.71
r̂4 4.7 p̂4 0.57
r̂5 1:4 � 107 p̂5 0.99999986
r̂6 273 p̂6 0.985

Table 11. Music data, estimated variances from the negative binomial model.

Variable number 1 2 3 4 5 6

Variance 127.4 12.3 3.6 5.9 9.0 11.3

Table 12. Music data, estimated correlations from the negative binomial model.

Variable number 1 2 3 4 5 6

variable 1 1 0.18 0 0 0.21 0.19
variable 2 � 1 0 0 0.68 0.60
variable 3 � � 1 0 0 0
variable 4 � � � 1 0 0
variable 5 � � � � 1 0.71
variable 6 � � � � � 1
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3.4. Discussion. Other techniques

It might be interesting to compare with the result given by PCA. Concerning the cumulative per-
centage of the total variance, for this data set, the first principal component accounts for 51%,
the first two principal components 68% and the first three 80%. An interpretation of the coeffi-
cients could be made (see Table 13); the first is essentially a weighted linear combination of the
variables, with positive weights. Less weight is put on x4, initial interval in semitones. Turning to
the second principal component, we find a contrast between variables x1 and x3 (length and num-
ber of pitch classes, in a sense overall measures of the subject) against x4 and x6 (interval features,
inner construction of subject).

In addition, a conventional factor analysis with two factors was carried out. The first factor
put less weight on variable x4 (cf. the discrete factor analysis).

Finally in this section, we want to mention that we have also tried traditional cluster analysis on
these data, using the procedure kmeans in Matlab. As an initial normalization (after possible trans-
formation), we divided the variables by their respective means. Then, instructing kmeans to form two
clusters on the original data, we got one cluster with the variables 1,2,3,5,6 and one with variable 4
only. For transformed data and with three clusters, we got 1,2,5,6, then 3 alone and 4 alone. The lat-
ter result exactly agrees with what we got from our discrete factor analysis procedure.

4. Example: Agriculture, damage to potato tubers

4.1. Background

When harvesting, potatoes can be damaged by the lifter device. In experiments performed at
Wageningen, the Netherlands, eight types of lifting rods were compared (Keen and Engel 1997).
Two energy levels, six genotypes/varieties and three weight classes were used. Most combinations
of treatments involved about 20 potato tubers. Tubers were rated as undamaged to severely dam-
aged. Data are found in the R package agridat (Wright 2018). In the following, we will only con-
sider the four variables in the dataset that are either ordinal or counts.

In all, we consider a controlled experiment and face a data frame with 1152 observations on
4 variables:

Here, variables x1–x3 are ordinal and we present them simply as integers.

4.2. Statistical analysis

In order to adapt to the Poisson distribution (or negative binomial), and to get positive correla-
tions, we transformed the original variables, x1, :::, x4 according to y1 ¼ x1 �minxi1 and yj ¼
maxxij � xj for j¼ 2, 3, while y4 ¼ x4 was left untransformed.

Table 13. Music data, estimated principal components.

x1 x2 x3 x4 x5 x6
z1 0.44 0.47 0.31 0.19 0.49 0.46
z2 –0.19 –0.040 –0.49 0.82 –0.0067 0.22
z3 0.33 –0.055 –0.78 –0.41 0.32 0.08

x1 Energy factor (1, 2)
x2 Weight class (1–3)
x3 Damage category (1–4)
x4 Count of tubers in each combination of categories (integer)
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A preliminary check of means and variances, see Table 14, reveals that variable 4 is overdis-
persed. The other variables are underdispersed.

As for empirical correlations, these are given in Table 15. Because the data stem from a con-
trolled experiment, the empirical correlations between y1, y2, y3 are all zero. The interest is the
empirical correlations of y4 with the other variables. We find that, as accomplished by the initial
transformation, all these are positive. It is also clear that the only correlation that might be of
interest is the one between y4 and y3.

4.3. Discrete factor analysis

We went on to search for the best Poisson factor model. As expected, this model identified a
common factor for variables 3 and 4, while all other variables turned out as independent. For
these variables, as usual the parameter estimates equal their corresponding means. See Table 16.

Moving on to handle the overdispersion, we estimated negative binomial models for the pair
(y3, y4). The results of these estimations are given in Table 17.

Like the music example in Sec. 3, for the underdispersed variable y3, the large estimated r and
the estimated p extremely close to one are striking.

Moreover, just like for the Poisson model, the estimated expectations of the negative binomial
model equal the empirical means. However, the estimated variances are not equal to their sample
counterparts. These are given in Table 18. As expected, the model overestimates the variance for
the underdispersed variable 3. For variable 4, it over estimates, but the estimate may still be con-
sidered better than the corresponding Poisson model variance, which equals the mean and is
much too low.

The estimated correlations for the Poisson model are zero except for the correlation between
y3 and y4, which is 0.24. This is an underestimation of the empirical correlation from Table 15:
0.58. The corresponding number for the negative binomial model is 0.06, an even more severe
underestimation.

4.4. Discussion. Other techniques

As for other methods, kmeans (with two clusters) grouped variables 1-3 together and variable 4
separately. This might be because of the large sample variance of variable 4.

In PCA, the first two principal components are given in Table 19. We find that the first prin-
cipal component mainly loads on variable 4, but it also agrees with our analysis, in the sense that
it also loads a little bit on variable 3. The other components, of which the second one is shown
here, loads heavily on one of the variables each. Given the design of the experiment, this should
be considered natural. Finally, let us remark that The first principal component accounts for 40%
of the variance, while the two first stand for 65%.

Table 14. Potato data, means and variances.

Variable number 1 2 3 4

Mean 0.50 1.00 1.50 4.68
Variance 0.25 0.67 1.25 31.71

Table 15. Potato data, empirical correlations.

Variable number 1 2 3 4

variable 1 1 0 0 0.03
variable 2 � 1 0 0.04
variable 3 � � 1 0.58
variable 4 � � � 1
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Finally, let us mention that for this data set a conventional factor analysis with one factor gives
a factor that loads heavily on y3 and y4 but basically not on any other variable. This is quite in
accord with our results.

5. Discussion

Investigating (possible) relationships between various variables is common in many domains of
science. Factor analysis is then one of the classical tools from multivariate statistical analysis, here
presented in terms of the methodology given by Larsson (2020) suitable for discrete data.

The three data sets considered in this article face different situations from the point of view of
data type. In Sec. 3, all four variables were on the ordinal scale, while the data set in Sec. 4
included exclusively “true” count data. In Sec. 5, the situation with three ordinal variables and
one count variable was investigated (a controlled experiment). Interpreting the results of a factor
analysis from the applied user’s point of view is often not straight-forward, but comparing with
e.g., PCA the results and practical conclusions are valid for the new methodology presented.

In this paper, in order to handle overdispersed data, we have generalized the Poisson assumption
of Larsson (2020) to negative binomial. However, the search algorithm builds on Poisson models, so
bringing in negative binomial here is a generalization that is left to make. Also, one could think of
other models, for example different combinations of the Poisson with other distributions.
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