
Electrical Engineering and
Information Technology
Department
Technology and Economics
of Multimodal Energy
Systems

Sustainable Design of Industrial
Energy Supply Systems
Development of a model-based decision support framework
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
Genehmigte Dissertation von Lukas Höttecke aus Paderborn, Deutschland
Tag der Einreichung: 27. März 2023, Tag der Prüfung: 06. Oktober 2023

1. Gutachten: Prof. Dr.-Ing. Stefan Niessen, MBA
2. Gutachten: Prof. Dr. rer. nat. Florian Steinke
Darmstadt – D17, Technische Universität Darmstadt



Sustainable Design of Industrial Energy Supply Systems
Development of a model-based decision support framework

Accepted doctoral thesis by Lukas Höttecke

Date of submission: 27. März 2023
Date of thesis defense: 06. Oktober 2023

Darmstadt – D17, Technische Universität Darmstadt

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-247857
URL: http://tuprints.ulb.tu-darmstadt.de/24785
Jahr der Veröffentlichung auf TUprints: 2023

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/
This work is licensed under a Creative Commons License:
Attribution-ShareAlike 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/





Acknowledgements

This Thesis is the final result of my work as a doctoral student in the Siemens Technology Center
Erlangen. My PhD journey has been a marathon with both stimulating growth phases and enduring
dry spells. I was accompanied by numerous creative and supportive people on this journey. I would
like to take this opportunity to thank them all for their contributions to the success of this Thesis
in the past four years.
First and foremost, I express my deepest gratitude to my university supervisor Professor Stefan
Niessen for arranging the cooperation between Siemens and the Technical University of Darmstadt
and offering me his encouraging feedback, support and enriching discussions throughout the PhD
journey. In addition, I thank my co-supervisor Professor Florian Steinke for his co-supervision of
this Thesis, in particular his very valuable comments to the manuscript of this Thesis.
The work was carried out in the research and pre-development department of Siemens, where I
received extensive support from many technology and businuess experts. First, I thank my group
leaders Jochen, Sebastian and Hans Jörg for their proactive feedback and growth culture. In
particular, I wish to highlight Sebastian’s contributions who has facilitated the start of my PhD
journey as my supervisor and shaped the relevance of my work in countless hours. Moreover, his
trust offered me the opportunity to build a growing user community for the prototype tool mm.esd.
A big thanks to all who contributed to the mm.esd community, especially to Florian, Martin, Peter,
Dominik, Paul, Sissi and Dieter. I highly appreciated not only the time and patience while fixing
bugs and testing new features, but also the fruitful discussions in numerous consulting projects.
During my PhD journey, I enjoyed working with brite and inspiring people. I wish to thank my office
mates and colleagues Oliver, Sebastian, Thanh, Robin and Thomas for their openess, delightful
conversations, and enlightening suggestions through the past four years. Next to my colleagues, I
was delighted to supervise great students who have brought their own ideas and mastered various
challenges of my research. Thank you Cyril, Ariane, Lola, Kris, Quentin, Paul, Flore and David.
This Thesis would have not been possible without the help of all these people.
Finally, I wish to express my special thanks to all friends from Greven, Dortmund, and Erlangen as
well as my family. My parents Maria and Martin as well as my sister Lara have supported me in
particular also during the challenging parts of this PhD journey and the Covid pandemic. Last and
most important, I need to express my deepest gratitude to Nina for the trust and loving support
during the creation of this Thesis.

v





Abstract

Energy and media supply systems and related infrastructure at industrial sites have grown histori-
cally and is largely dependent on the use of fossil fuels. High fuel prices and the emission reduction
targets of companies challenge existing supply concepts. Supply concepts usually remain in place
for decades due to the long-lived nature of generation technologies and distribution systems.
Today’s investment decisions are therefore confronted with a changing environment in which the
share of volatile renewables from solar and wind is continuously increasing. The long planning
horizons make design decisions very complex. Optimization-based design approaches automatically
derive cost- or carbon-optimal selections of generation technologies and procurement tariffs. Thus,
they enable faster and more accurate planning decisions in techno-economic feasibility studies.
In this work, a novel optimization model for techno-economic feasibility studies in industrial sites
is developed. The optimization model uses a generic technology formulation with base classes,
which takes into account the large variety of technologies and procurement tariffs at industrial
sites. The optimization model also includes two reserve concepts: an operating reserve concept for
short-term disruptions and a redundancy concept for long-term plant failures. The two concepts
ensure security of supply for production-related energy requirements and thereby contributes to
avoidance of costly production outages.
The optimization model is integrated into an optimization framework to effectively calculate de-
carbonization strategies. The framework uses time series aggregation and heuristic decomposition
techniques. Time series aggregation is performed by an integer program and results in a robust
selection of representative days. The selection of representative days is used in a multi-year plan-
ning model to derive transformation roadmaps. Transformation roadmaps analyze the evolution of
energy supply systems to long-term trends and consider adaptive investment decisions. A transfor-
mation strategy with myopic foresight (MYOP) solves the multi-year planning problem sequentially
and is solved up to 98 % faster than a transformation approach with perfect foresight (PERF). The
high uncertainties in early planning phases and the resulting need for detailed sensitivity analysis
make this approach the preferred choice for many feasibility studies.
The newly developed optimization framework is used in numerous research and consulting projects
for urban districts, microgrids and factories. In this work, the capabilities of the framework are
demonstrated for three use cases (automotive, pharmaceutical, dairy) of factory sites in southern
Germany. In the use cases, decarbonization strategies for electricity, steam, heating and cooling
supply are analyzed. Simulation evaluations identify changing operating patterns of combined
heat and power (CHP) plants along the 15-year planning horizon. In addition, electrification of
heating demand leads to a significant increase of total electricity demands. The results derived
with the framework provide decision makers in industrial companies a clear view of the long-term
impact of their investment decisions on decarbonization strategies.
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Zusammenfassung

Die Energie- und Medienversorgung sowie die dafür notwendige Infrastruktur an Industriestand-
orten ist häufig historisch gewachsen und hängt maßgeblich vom Einsatz fossiler Brennstoffe ab.
Hohe Brennstoffpreise und die Emissionsminderungsziele der Unternehmen stellen bestehende
Versorgungskonzepte in Frage. Aufgrund des langlebigen Charakters der Anlagentechnik und
der Verteilsysteme bleiben Versorgungskonzepte meist über Jahrzehnte bestehen. Heutige Inves-
titionsentscheidungen werden daher mit einem sich verändernden Umfeld konfrontiert, in der
der Anteil der volatilen erneuerbaren Energien aus Sonne und Wind kontinuierlich zunimmt.
Optimierungsbasierte Auslegungsansätze leiten automatisch eine kostenoptimale Auswahl der
Anlagentechnik und Beschaffungstarifen ab. Dadurch ermöglichen sie schnellere und genauere
Planungsentscheidungen in techno-ökonomischen Machbarkeitsstudien.
In dieser Arbeit wird ein neuartiges Planungsmodell für Machbarkeitsstudien an Industriestand-
orten entwickelt. Das Planungsmodell verwendet eine generische Technologieformulierung mit
Basisklassen, die der großen Vielfalt an Technologien und Beschaffungstarifen an Industriestand-
orten Rechnung trägt. Das Planungsmodell beinhaltet darüber hinaus zwei Reservekonzepte: ein
Betriebsreservekonzept für kurzfristige Störungen und ein Redundanzkonzept für langfristige
Anlagenausfälle. Die beiden Konzepte gewährleisten die Versorgungssicherheit des produktionsbe-
dingten Energiebedarfs und vermeiden so kostspielige Produktionsausfälle.
Das Planungsmodell wird in einen Optimierungsframework integriert, um effektiv Dekarboni-
sierungsstrategien zu berechnen. Die Aggregation von Zeitreihen wird in dem Framework als
mathematisches Optimierungsproblem formuliert und führt auf eine robusten Auswahl reprä-
sentativer Tage. Diese robuste Auswahl wird in einem Planungsmodell mit mehreren Ausbau-
stufen zur Ableitung von Transformationsplänen verwendet. Transformationsplänen analysieren
die Anpassungsfähigkeit von Energieversorgungssystemen an langfristige Entwicklungen. Eine
Transformations-Strategie mit einer kurzfristigen Vorausschau löst das Planungsmodell sequentiell
und wird bis zu 98 % schneller gelöst als ein Ansatz mit perfekter Vorausschau auf zukünftige
Entwicklungen. Die hohen Unsicherheiten in frühen Planungsphasen und der daraus resultierende
Bedarf an umfassenden Sensitivitätsanalysen machen diesen Ansatz zur bevorzugten Wahl für
viele Machbarkeitsstudien.
Die Fähigkeiten des Frameworks werden anhand von drei Anwendungsbeispiele von Industriestand-
orten (Automobil, Pharma, Molkerei) aufgezeigt. In den Anwendungsbeispielen werden Strategien
für die Strom-, Dampf-, Wärme- und Kälteversorgung analysiert. Simulationsauswertungen identi-
fizieren veränderte Betriebsweisen von Anlagen zur Kraft-Wärme-Kopplung (KWK) entlang des
15-jährigen Planungshorizonts. Darüber hinaus führt die Elektrifizierung des Wärmebedarfs zu
einer signifikanten Erhöhung des gesamten Strombedarfs. Die mit dem Framework abgeleiteten
Ergebnisse geben Entscheidungsträgern in Industrieunternehmen einen klaren Überblick über die
langfristigen Auswirkungen heutiger Investitionsentscheidungen auf Dekarbonisierungsstrategien.
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1. Introduction

1.1. Motivation

Energy supply concepts in industrial sites are fundamentally challenged by the on-going energy
transition. Whereas traditional concepts have been based on fossil fuels, future energy supply
systems will integrate volatile renewable energy sources. The integration of renewables adds
significant complexity to planning processes. At the same time, continuous progress in digital
technologies opens up new opportunities for optimization-based design approaches. Optimization-
based design approaches automatically determine a technology selection, equipment sizing, and
dispatch strategy by means of mathematical optimization. These approaches assist energy system
planners and consultants in computing design variants and thereby enhance quality and speed of
planning processes [1]–[3]. The following section outlines four major trends in energy and digital
transformation which support and enable the application of optimization-based design approaches.

Decarbonization initiatives from governments and companies
Climate change is widely acknowledged as a key challenge of the 21st century. The Paris Agreement
has internationally manifested the long-term goal of holding the global temperature rise below
2 °C of the pre-industrial level. The European Union has announced the target of climate neutrality
till 2050, while the German government recently updated their target to 2045 [4]. Industrial sites
account for one third of the global energy demand and are thus a crucial element of decarbonization
strategies. The European Commission plans a 55 % reduction of greenhouse gases by 2030 and
seeks to achieve net-zero by 2050 for all European industrial sites [5]. Climate neutrality requires
fundamental changes in energy supply to reduce the use of fossil fuels. Latest developments in
the Ukraine conflict in 2022 have led to a significant increase of fuel prices and raised concerns
about security of natural gas supply. These developments can accelerate the transition process
to alternative renewable sources [6]. The challenge of decarbonization has been recognized by
industrial companies [7]: Siemens has announced to reach carbon neutrality for its production
sites by 2030 [8]. Similar corporate targets have been announced by the electricity supplier RWE
for 2040 [9], the steel manufacturer thyssenkrupp Steel for 2045 [10] and the food processing
company Nestlé for 2050 [11]. Both national and corporate initiatives underline a growing
recognition that on-site energy supply concepts will face a transformation process with tightened
policies towards renewable sources.

Flexibility requirements from volatile renewable generation
Wind farms and photovoltaic plants are widely accepted as key technologies in the energy transition
[12]–[14]. These renewable technologies have shown significant learning rates in the past decade:
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The installation costs have declined by 81 % for utility-scale photovoltaic and by 31 % for on-
shore wind from 2010 to 2020 [15]. Decreases in costs accelerate the wide spread application
of these technologies. However, solar and wind generation is not dispatchable and thus requires
sources of flexibility [16]: End users can profit from cheap electricity prices, e.g., by optimized
control of existing on-site power plants or the integration of storage technologies. The flexible
operation adds significant complexity to planning processes. Traditional planning processes based
on spreadsheet solutions estimate demands and costs on monthly or annual values [17]. These
approaches cannot handle time varying attributes introduced by intermittent renewable generation.
In contrast, optimization-based design approaches enable efficient simulation in (sub-)hourly
resolution. Thereby, they help to integrate storage technologies and account for inherent flexibility
options from industrial energy supply systems.

Availability of consistent data from energy monitoring
A key challenge for optimization-based design approaches is the availability of consistent data
in adequate time resolution [18]. Environmental and energy management standards such as
ISO 14001 and ISO 50001 recommend the deployment of energy monitoring systems to gain
transparency of energy use. The number of sites with energy management systems has increased
in last years: 6,500 sites were certified according to ISO 50001 standard in Germany in 2020 [19].
Cloud-based monitoring systems continuously document the on-site energy demands. Sub-meters
for individual processes help to gain additional transparency over energy demands. The data from
the monitoring systems is available for optimization-based design approaches and thereby can
improve the accuracy of design decisions.

Enhancements of computer hardware and software
Optimization-based design approaches require large computational resources to solve the underly-
ing mathematical models. The available computational resources have significantly increased in
recent years due to both hardware and software enhancements. Advances in silicon lithography
have enabled an extension of Moore’s law: The performance of digital electronics has roughly
doubled in every two years with huge improvements in computational power [20]. Simultaneously,
algorithms for solving optimization models have improved, both in speed and in robustness. Com-
mercial software providers such as Gurobi and CPLEX report speed-ups by orders of magnitudes in
the last two decades [21], [22]. The number of unsolvable models has decreased by more than 90
% [21]. Enhancements in hardware and software enable more complex optimization models to be
solved within practical computation times.

Optimization-based design approaches help to identify sustainable design concepts with reasonable
efforts. These approaches have been demonstrated in various use cases, including the design of
microgrids [23], [24], buildings [25], [26], infrastructures [27], city districts [28], [29] and
industrial sites [18], [30]. This Thesis extends existing work on optimization-based design for
distributed energy system. The newly developed optimization framework has been successfully
applied in all described use cases during energy consultancy activities. The following work will
focus on the application in industrial sites.
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Figure 1.1.: Types of energy use in German industrial sites for 2015 [36]

1.2. Background and context

Integration of renewable sources in industrial sites has gained little attention in the past [31].
Stakeholder attention has mostly focused on energy efficiency measures instead. These measures
reduce process demands, e.g., by use of efficient light sources or speed-regulated drives, through
avoidance of compressed air leaks and with heat recovery strategies. The impact and costs of energy
efficiency measures is thus generally well understood today [32], [33]. An impressive example is
the De-risking Energy Efficiency Platform (DEEP). The platform summarizes experiences from more
than 12,000 efficiency measures in industrial sites across Europe [34]. It finds a median payback
period of 2.8 years. Efficiency measures allow a cost-effective reduction of energy demands and
thus reduce the dependency on fossil fuels. However, efficiency measures alone are not sufficient
to reach the described decarbonization targets [5]. The full replacement of fossil fuels requires
changes in energy supply concepts. Optimization-based design approaches help to find the most
effective options to meet decarbonization targets for industrial energy supply.

Industrial sites combine high on-site electrical and thermal demands. Statistics on types of energy
end use in German industry are shown in Figure 1.2. Thermal demands are needed mostly for
process heating and in smaller amounts also for space heating. Process heating requirements are
highly diverse: Temperature requirements range from below 80 °C for tempering and washing in
the food and beverage sector to above 1000 °C for metal melting. Low temperatures can be supplied
by heat pump and solar technologies, whereas high temperature processes often require the use of
burners based on fossil or renewable fuels. A detailed analysis on process heating requirements is
provided by Lauterbach [35]. The share of thermal demands varies significantly across sectors:
Industrial sites in the basic material sector comprise high shares of process heating, e.g., 90 % in
the metal production. Sites in manufacturing sector account for higher shares of electricity. For
instance, machine drives account for 38 % of energy use in automotive industry.

The simultaneous demand of electricity and thermal demands favours the integration of energy
supply systems: Co-generation plants generate electricity for machine drives, lighting and IT. The
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waste heat from co-generation is effectively used for process steam demands or recovered by
absorption chillers to deliver cooling [32], [33]. In Germany, the deployment of co-generation
plants has been supported by favorable electricity-to-gas price ratios and governmental subsidies.
Figure 1.2 shows the number of industrial sites with large scale co-generation plants in 2019.
Co-generation is intensively used in sectors with high heating or steam demands such as the food
and beverage, pulp and paper, automotive or chemical industry. These sectors account for 60 % of
the sites with large-scale co-generation plants. Several studies have successfully demonstrated the
capabilities of optimization-based design approaches for complex energy supply systems including
co-generation plants [37]–[39].

Equipment in industrial energy supply systems typically has long depreciation periods: Boilers
and co-generation plants are replaced after 12 to 25 years. Distribution systems for heating and
cooling have even longer lifetimes of 30 to 50 years [41]. The economic and regulatory conditions
are projected to change significantly during these depreciation periods, as outlined in Section 1.1.
Decision makers in industrial companies are becoming increasingly aware that their long-lived
equipment might be stranded with increasing shares of renewables [42]. In particular, the role of
co-generation plants is expected to change with ongoing decarbonization initiatives [43], [44].
Renewable generation from wind and solar could be integrated by heat pumps to meet process and
space heating demands. Fossil fuels might also be replaced by biomass or synthetic fuels [45]–[47].
In this challenging context, energy system planners and consultants need to find sustainable design
concepts for complex industrial energy supply systems. Optimization-based design approaches
help to gain clarity on design trade-offs and thereby identify non-regret decisions considering
financial and climate targets.

4



1.3. Objective, contributions and structure

The trends described favor the use of optimization-based design approaches for the investment
planning of industrial energy supply systems. The benefits of these approaches have been high-
lighted by various authors [18], [27], [29], [30], [48]. Major advantages compared to existing
spreadsheet solutions are threefold. First, optimization-based design approaches require no manual
pre-selection of technologies based on planners’ individual experiences. They are thus more time
efficient, particularly if extensive scenario analysis in multi-year concepts is required. Simulation of
multiple scenarios provides a solid information basis for decision-makeres, resulting in non-regret
investment decisions. Second, optimization-based design approaches automate parts of the decision
process. Automation leads to more reproducible results across project development teams and
production sites. Experience from similar projects is available in a standardized format and can be
easily used to refine estimations for new projects. Third, optimization-based design approaches
enable enhanced visualization techniques, in particular for complex energy supply concepts with
high shares of volatile renewable generation. Interactive visualization techniques help to explain
stakeholders with different levels of technical understanding complex design decisions.

Optimization-based design approaches thus have the potential to assist energy system planners and
consultants in their daily work and thereby lead to faster and more accurate planning decisions for
industrial energy supply infrastructure. The main research topic of this Thesis is defined as follows:

How can sustainable transformation concepts for the complex energy and media supply at
industrial sites be efficiently determined?

This work extends existing work for practical applications. The major contributions of this Thesis
are related to four focus research questions:

1. Which modeling approaches are suitable to represent the multitude of technologies and
regulatory frameworks at industrial sites?

2. What methods help to guarantee security of supply during grid outages and component
failures and avoid costly production interruptions?

3. Which temporal aggregation is possible to obtain highly accurate design concepts from an
efficient and robust solving process of the underlying mathematical models?

4. How can long-term developments in technologies, energy prices and demands be taken into
account in the decision-making process for todays investments?

This Thesis develops a novel optimization framework to answer the above mentioned focus research
questions. It is divided into six main chapters. This chapter has outlined the motivation and back-
ground for optimization-based planning approaches in industrial energy supply systems. Chapter
2 derives the mathematical planning problem for interlinked and heterogeneous infrastructure
requirements typically found at industrial sites. A review of academic work reveals limitations of
existing modeling approaches. Chapter 3 introduces the techno-economic model which handles
the described complexity accounting for both security of supply requirements [49] and long-term
trends of energy prices and demands [50]. The techno-economic model is integrated in a newly
developed optimization framework described in Chapter 4. The framework presents modeling
techniques to reduce computational complexity of the optimization model [51]. Thereby, it ensures
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realistic solving times for practical applications. Chapter 5 provides numerical simulation results for
three examplary production sites from automotive, food, and pharmaceutical industry in Southern
Germany. Results highlight the suitability of the proposed framework to identify decarbonization
measures for highly complex industrial energy supply systems. Finally, Chapter 6 summarizes the
relevant findings and gives outlook on future research opportunities.

Chapter 2: Analysis

Chapter 6: Conclusion and outlook

Chapter 5: Results

Chapter 3: Model Chapter 4: Optimization framework
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Figure 1.3.: Structure of this Thesis
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2. Analysis

This chapter reviews state-of-the-art approaches to design highly complex energy supply systems
in industrial sites. Section 2.1 introduces the context of on-site energy supply systems found in
industrial sites. The planning process is a complex task and thus typically divided into multiple
stages. Feasibility studies are conducted at the beginning of a planning process and determine
a pre-liminary design concept from multiple design variants, as outlined in Section 2.2. Section
2.3 highlights how mixed-integer linear programming (MILP) can enhance this decision process
during feasibility studies. Section 2.4 reviews existing research and their limitations in the field
of distributed energy systems. Practical applications require high computational efficiency of
optimizationmodels. Existing techniques to improvemodel performance are reviewed in Section 2.5.
Section 2.6 summarizes the requirements for a method to design sustainable energy supply systems
for industrial sites.

2.1. Energy supply systems in industrial sites

Energy supply systems describe the on-site infrastructure which is necessary to meet various types
of on-site energy demands from production processes. The demands typically exceed the on-site
generation potential in industrial sites. Therefore, energy carriers need to be procured from energy
markets. The system boundaries are illustrated in Figure 2.1. Energy supply systems are often
highly integrated to capture benefits from multi-modal coupling. Moreover, they comprise a variety
of general purpose and sector specific technologies. The interlinking and heterogeneity of these
systems makes design decisions highly challenging, in particular for the integration of renewable
energies in brownfield sites with historically grown infrastructure.

Interface to production processes
Energy demands in industrial sites include electricity, thermal demands at different temperature
levels, compressed and fresh air as well as sector specific process gases. These demands are
determined by the requirements of the production processes [32]. The consumption patterns
of processes are typically described by hourly average values over one representative year [52].
Thereby, daily patterns of shift operations as well as seasonal variations in demands are adequately
captured. Some energy intensive production processes generate waste heat. Waste heat can be fed
as a low-grade heat source into the energy supply system.
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Figure 2.1.: System boundary of industrial energy supply systems (adapted from [18])

Energy supply infrastructure
The energy supply system comprises conversion technologies, storage facilities, renewable gen-
eration as well as distribution systems. Energy supply equipment is typically installed in one
technical center which supplies the demands of all production facilities throughout the site. Larger
sites might comprise several technical centers. Conversion technologies are placed within these
technical centers. Typical conversion technologies are boilers and thermal engines which feed
a local heat network. Industrial heat pumps use waste heat from processes and provide a low
carbon alternative [53]. If waste heat is not available as a heat source, ambient heat from adjacent
waters or geothermal sources might be used. Engines, boilers, and heat pumps are general-purpose
technologies which are employed in multiple industrial sectors. General-purpose technologies
are complemented by sector specific technologies. These technologies are closely linked to the
production processes and their requirements, such as air separation units or electric arc furnaces in
the non-ferrous metal industry [49]. Solar power systems can be installed on roofs of administrative
buildings, parking places or production halls in most industrial sites. Other renewable generation
such as wind turbines or ground-mounted photovoltaic panels might be installed in neighboring
areas of the production plant depending on the local conditions. The increasing share of volatile
renewable generation enforces more flexible operation modes of cogeneration systems with lower
total utilization rates [4]. Flexible operation concepts might be complemented by storage tech-
nologies such as hot water tanks or batteries. Hot water tanks decouple peak demands and heat
generation. Among others, this enables a flexible operation of cogeneration plants during times
with low renewable generation. Use cases for battery energy storages are today mostly limited to
reduction of peak purchase from power grid [54], [55]. However, investment costs for batteries
are projected to significantly decline in the next decade [56]. Energy supply systems comprise a
large variety of long-living technologies. The assets which are installed today will remain for the
upcoming decades [41] and thus see the continuous integration of renewables in energy markets.

Interface to energy markets
Industrial energy supply systems are connected to energy markets, e.g., via the public power grid or
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the natural gas grid. Tariffs for electricity purchase typically include various components. Energy
related components of tariffs comprise long-term contracts with fixed prices and volumes as well
as time of use (ToU) pricing or real time pricing schemas [57], [58]. Demand charges for network
usage are calculated from the peak purchase. This incentivizes active peak load management and
requires high temporal granularity of planning approaches. Approaches with hourly resolutions
are widely accepted for these types of simulation [59]. Some industrial sites have access to district
heating and cooling networks. The energy supply system in these sites acts either as a supplier
[60] or a consumer [47]. Beyond energy procurement from networks, other fossil or renewable
fuels might be delivered via trucks or trains, e.g., heating oil, wood pellets, hydrogen, or propane.
After delivery, these fuels are temporarily stored in on-site tanks [49].

Energy supply systems in industrial sites comprise a variety of conversion, storage, and distribution
technologies as well as complex energy procurement tariffs. Integration of volatile renewable
generation challenges existing energy supply concepts. The heterogeneity and interlinking of
the various options make the design and operation of industrial energy supply systems a highly
complex task.

2.2. Strategic planning of energy supply systems

Design of industrial energy supply systems is a highly complex task. Therefore, planning processes
are divided in different stages. One of these stages are feasibility studies to determine preliminary
design concepts and define a strategic vision. Requirements for feasibility studies are derived and
compared to established software solutions for simulation.

Stages of planning process
Planning processes in energy consultancy projects are typically divided in several stages. Figure 2.2
illustrates a sequence based on the German standard VDI 3922. The sequence defines six stages
from project definition to operation. A project starts with the definition of targets and boundary
conditions. Moreover, stakeholders agree on a set of key performance indicators. Typical indicators
are linked to the economic efficiency, energetic performance, and ecological impact of energy
supply. The set of indicators is used in the following feasibility study to quantitatively compare
multiple preliminary design variants. This comparison is based on first estimations which include
the relevant techno-economic characteristics for the decision process. Different design variants are
presented to and discussed with all relevant stakeholders. Feasibility studies result in a selection
of one design concept from the analyzed design variants. The selected design concept is refined in
the detailed engineering stage. The detailed engineering stage is followed by a specification stage
which plans the implementation of the design concept. The commissioning of new plants and
systems defines the transition from the implementation to the operation stage. The operational
data is usually monitored to optimize planning decisions.

Feasibility studies illustrate the benefits and drawbacks of different design variants in early project
phases. Providing clear understanding of business and engineering requirements, feasibility studies
increase stakeholders confidence and consequently the chances of realization. Major design changes
become practically infeasible with increasing level of detail being added in the course of a project.
The selection of a robust design variant avoids time consuming replanning in later project stages.
Therefore, feasibility studies are an established element in the planning process for sustainable
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tainty. Data accuracy is continuously increased in the following stages by adding
technical details (adapted from [3]).

energy supply systems. This Thesis develops an optimization-based decision support framework
for feasibility studies.

Challenges during feasibility studies
Feasibility studies target at preliminary design variants with a selection and sizing of technologies
as well as decisions for procurement options. Decision-making requires a clear understanding
of the implications which results from a comparison of multiple design variants and can be
communicated across all stakeholders. Design variants are analyzed regarding their cost structure
and economic robustness over the entire project horizon. The project horizon covers several
decades due to the long-living character of energy supply equipment. The analysis is typically
conducted based on normative standards such as VDI 2067 [41] and VDI 6025 [61]. It includes
an economic assessment of annualized capital-related costs, demand-related costs for commodity
procurements and operational-related costs for maintenance and servicing. Parameters for this
economic assessment are generally not known exactly during feasibility studies. Thus, they need to
be estimated based on available knowledge. The estimations introduce significant uncertainty to
the planning process. A good summary on this topic is given by Mavromatidis in [62]. Three major
sources of uncertainty are technology characteristics, energy demands and energy procurement
costs.

• Technology characteristics: Investment costs, efficiencies, and degradation for all technology
options need to be estimated. Detailed information of on-site conditions for installations
is generally not available during feasibility studies. Therefore, cost estimations are limited
to preliminary rule of thumb estimations. Figure 2.3 shows an example of investment cost
estimations for a CHP plant.

• Energy demand forecasts: Energy demands are taken either from measurements of pro-
duction processes or from profile generators based on corporate and normative standards.
The use of production facilities and its related energy demands is likely to change during the
lifetime of energy supply equipment, e.g., by process innovation or market changes.

• Energy procurement projections: Procurement costs for electricity and fuels are esti-
mated for the entire multi-decade project horizons. Recent political developments in the
global energy markets have highlighted the high uncertainty of medium- to long-term cost
projections.
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Two types of parameter uncertainty are distinguished: epistemic and aleatoric uncertainties [63],
[64]. Epistemic uncertainty reduces with increasing knowledge and data during later stages of
energy consultancy projects. For instance, binding offers with costs and performance guarantees
are aligned with vendors in the specification phase reducing the uncertainty in technology charac-
teristics. Additional simulation techniques help to enhance transparency on input parameters, e.g.,
shading simulations for roof-top PV installations. In contrast, aleatoric uncertainty results from
various random or political prosses and cannot be significantly reduced with additional efforts for
data acquisition. For instance, tariffs for electricity procurement are highly impacted by changes
in the regulatory framework and developments on fuel markets. These uncertainties are not
adequately described by stochastic processes or probability functions [63], [65]. Consequently, the
risks arising from uncertainties need to be evaluated by rigorous scenario analysis or parameter
variations. These approaches allow to identify tipping points where investments turn to be not
economically viable [52]. Thereby, the robustness of the design concept is approved leading to
no-regret investment decisions.

Requirements for industrial energy supply systems
Feasibility studies prove the technical and economic robustness of a preliminary design concept
and support stakeholders in making non-regret investment decisions. Therefore, approaches
to support feasibility studies need to meet certain requirements. These requirements serve as
criteria to analyze existing solutions and mathematical modeling approaches. Following the
recommendations in VDI 3922 [52], the requirements are defined as follows:

1. Evaluation of economic, ecological and energetic performance: Methods supporting
feasibility studies derive key indicators to compare multiple design variants regarding their
economic, ecological and energetic performance. The comparison of design variants depicts
all technical solutions available in the market. The method thus needs to be vendor neutral,
e.g., not limiting itself to the offerings of a single manufacturer. Assessments of economic and
ecological performance shall consider the long-living character of energy supply equipment
and associated impact of long-term trends.

2. Multi-modal coupling and heterogenity of energy supply: Sector-coupling technologies
such as CHPs and HPs interlink energy supply systems for electricity, steam, heating and
cooling. The method thus captures the interaction between the various on-site energy
supply systems. Requirements for industrial energy supply are highly application specific. A
method shall thus be adaptable to sector-specific technologies and consider value of storage
technologies.

3. Adequate technology and load models: Characteristics of energy supply equipment and
energy demands are reflected as far as they are known during a feasibility study. Charac-
teristics of conversion technologies might include temperature and part-load dependent
behavior [18]. Demand representation depends on the availability and granularity of on-site
measurements. Changes in energy demands occur due to continuous implementations of
efficiency measures or expected expansions of on-site production facilities. These changes
need to be captured by a methodology.

4. Complex procurement tariffs: The method accounts for complex energy procurement
tariffs. Increasing penetration of renewable energy leads to more volatility of spot market
prices. Electricity generation from roof-top photovoltaic might exceed on-site demand during
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noon in the summer. Both spot market prices and on-site photovoltaic installations promote
a more flexible operation of energy supply equipment. Moreover, active management of
peak loads can reduce network charges. Storage technologies and advanced control schemes
enable cost savings and reduce carbon footprints [66].

5. Applicability in consultancy projects: The method leads to reproduceable and comprehen-
sible results. Dynamic changes in customer requirements can be included during the course
of a consultancy project. Therefore, results from the method are available in an adequate
time frame, e.g., in minutes to hours. Moreover, results need to be comprehensible for all
relevant stakeholders. Relevant stakeholders in factories have different levels of technical
understanding, e.g., factory management, procurement, production planning and energy
management [67].

Established solutions for feasibility studies
Established design approaches are often based on simplified calculations conducted in spreadsheet
solutions [68]. These calculations typically rely on normative standards, such as DIN 18599 [17].
They enable first and quick estimations from monthly or yearly values. Spreadsheet approaches
do not provide the temporal granularity to reflect complex procurement tariffs which become
more viable with increasing penetration of renewables. Moreover, technology models are strongly
simplified. This drawback is overcome by commercial simulation tools. Notable simulation tools
are energyPRO [69], HomerPro® [70] and TOP-Energy® [71]. These tools simulate optimal
dispatch strategies for pre-defined configurations. Simulations allow to derive key performance
indicator (KPI) that can be studied within a graphical user interface. The dispatch strategies are
determined in a rolling horizon approach, either by means of heuristics (energyPro and HomerPro®)
or by mathematical optimization (energyPro and TopEnergy®). Modeling approaches applied
by these tools require high manual efforts and experience to manually define configurations for
multiple design variants. Efforts further increase if transformation roadmaps include long-term
climate targets. Time coupling constraints such as constraints on annual full load hours cannot be
adequately reflected by existing simulation approaches. Moreover, the selection of technologies is
often limited to a pre-defined selection. For instance, HomerPro® does not include heat pumps or
thermal storage technologies. Therefore, the applicability of these simulation tools is limited for
the highly complex design of industrial energy supply system. Various researchers have identified
mathematical optimization as a promising alternative to design industrial energy systems [18],
[27], [30].

2.3. Mathematical optimization

Feasibility studies target at the definition of preliminary design concepts for industrial energy supply
systems. Optimization-based design approaches allow to formulate the described domain specific
planning problem as a mathematical optimization problem. Solving the mathematical problem
provides a design variant for a defined set of input parameters. Possible solutions are restricted
by constraints which represent the technical and economical boundary conditions. Optimization
models are typically divided into linear program (LP), integer program (IP), mixed integer non-
linear program (MINLP) and mixed integer linear program (MILP) depending on the types of
variables and the formulation of the objective and constraints.
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Comparison of LP, IP, MILP and MINLP
Linear programs (LP) enable modelling of continuous properties and scale well on large energy
supply systems. However, typical design problems include non-linear characteristics: Technologies
such as cogeneration plants have lower specific investment costs for larger units due to economies of
scale. Moreover, the behavior in part-load operation is strongly non-linear which cannot be reflected
by a continuous modelling approach [29]. In contrast to linear programs, integer programs include
discrete variables but do not account for continuous design and operating ranges. IPs include
only discrete unit sizes (e.g., modules of a single vendor) and discrete operating states (on and off
states). Given these drawbacks, MINLP approaches have been proposed for energy system design
problems [18], [72]. MINLP enables modelling of a large variety of functions. The major drawback
of MINLP is the solving process: Global optimization strategies are not capable of finding solutions
in adequate solving times [18]. Therefore, metaheuristic solving techniques are proposed such as
evolutionary algorithms. These solving techniques often find local minima instead of the global
optimum [73]. The solution quality cannot be obtained from the solving process. Therefore, solving
processes might converge to suboptimal mathematical solutions [29], [74]. As an alternative,
non-linear functions from MINLP can be approximated by piece-wise linear functions, e.g., by
Glovers linearization scheme ("big-M" method) [75], [76]. The resulting optimization problem is
formulated as a MILP. Therefore, the majority of existing work identifies MILP as the most suitable
choice for techno-economic planning models [29], [74], [77], [78].

An example for a piece-wise linearization of investment costs is provided in Figure 2.3. Investment
costs for a CHP plant have been analyzed in an extensive vendor survey with 295 modules in
[79]. The consideration of all possible modules would reflect the reality on the market exactly.
However, this approach requires enormous knowledge on all vendors and detailed assumptions on
installation and assembly setups. This knowledge is not available in the required level of detail
during feasibility studies [80]. Alternatively, the report of the survey provides piecewise defined
power functions to estimated investment costs. This non-linear behavior is well approximated by a
MILP approach: Smaller CHP module sizes have higher specific investment costs. A LP assumes
investment costs to be independent of the module size. LPs thus cannot reflect the economy of scales
making MILP the preferred choice for on-site energy systems. A detailed analysis of investment
models for other conversion, renewable and storage technologies is provided in [27].

Generic formulation and solving process of MILPs
This Thesis employs a MILP approach to design energy supply systems. A MILP in its generic
formulation is given in Equation 2.1. The variable vectorX comprises both continuous vari-
ablesxCont ∈ R+ and discrete variablesxDisc ∈ {0, 1}. These variables are subjected to boundary
conditions described in the matrixA and penalized with costs cT . The global optimum is derived by
minimizing the costs associated with the solution. The solution vector for X comprises all design
and operational decisions associated with the cost optimal solution. It can therefore be used to
determine the relevant KPIs of the design concept.

min
x∈X

cTx (2.1)

s.t.Ax ≤ b (2.2)
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Figure 2.3.: Comparison of LP, MILP and MINLPmodeling approaches to estimate the investment
costs for the example of a CHP plant with internal combustion engines. Non-linear
cost estimations and uncertainty range is based on a survey for 295 modules from 61
vendors [79]

MILP problems are non-convex problems. However, they can be efficiently solved by branch and
bound (B&B) algorithms [29], [48]. In the first step of a B&B algorithm, all discrete variables
are relaxed to continuous variables. The resulting linear program is solved by simplex or interior
point methods. This step is called root relaxation. The root relaxation defines a first lower bound
for the objective function. The relaxed variables are iteratively fixed to discrete variables. If all
relaxed variables take discrete values, a feasible solution of the optimization problem is found
which defines an upper bound for the objective function. Based on systematic search strategies,
the gap between upper and lower bound is iteratively decreased. For practical applications, this
process is often aborted if a user specified termination criterion ("MIP gap") is met. If a feasible
solution exists, the B&B algorithm converges to the global optimum solution [81]. Commercial and
open-source solvers offer high performance implementations of the Branch-And-Bound algorithm
[21], [22]. This work employs a commercial solving software and focuses on the formulation and
application of optimization models for the sustainable design of industrial energy supply systems.

2.4. Multi-modal energy system design

Techno-economic planning models have intensively applied MILP optimization to determine sustain-
able design conceptsfor multi-modal energy supply systems. A selection of related academic work
is provided in Table 2.1. The use of optimization techniques for energy system design has a long
history: Papoulias and Grossmann are considered as the pioneers in the field of optimization-based
energy system design. They have proposed an optimization model of a utility system for electricity
and steam in 1983 [82]. Their model includes a single time step assuming constant demands
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over the entire planning horizon. With developments in hardware and software, models have
become more complex: Yokoyama et al. have proposed a MILP model to design an energy supply
system for electricity, steam, heating and cooling in 2002 [83]. The proposed model includes three
representative days in different time resolutions. In this study, CPLEX has been employed as a
commercial solving software. The authors find only suboptimal solutions if hourly time steps are
considered. Similar issues have apparently been solved in the later work of the authors published
in 2015 [84]. The authors find for engineering practice acceptable solving times between one
second and 2.5 h depending on the model type and solving strategy. Enhancements in commercial
solvers have enabled the solving of complex MILP for energy system design. MILP is thus frequently
employed by multiple researchers. The following paragraphs summarize research on optimized
design approaches for distributed energy systems and identify gaps in existing work for industrial
energy supply systems.

Application for buildings, urban districts and microgrids
Mancarella have reviewed techno-economic planning approaches for urban energy planning in
2014 [77]. He finds MILP planning approaches being underestimated compared to classical
techniques and sees the role of these models needs to be re-defined in future energy systems
with high shares of volatile renewable generation. This trend in urban energy system planning is
highlighted by a high number of research activities in this field [28], [29], [105], [106]. Various
authors have added additional technology and tariff details to the techno-economic models, e.g., to
consider retrofit measures for building envelopes [29]. Beyond city districts, planning approaches
have been adapted for building energy systems in airports by Thiem [66]. Besides applications
in the area of buildings and city districts, techno-economic planning approaches are applied to
design microgrid solutions for off-grid communities or military sites. Stadler et al. in [88] apply
their approach to 13 microgrid projects. They find their planning model being viable for the design
of energy supply systems with photovoltaic and batteries with Diesel backups. Microgrid planning
approaches strongly focus on the electricity sector and typically omit thermal energy demands. In
contrast, energy supply systems in industrial sites combine on-site electricity and thermal demands.

Application for industrial energy supply systems
Planning models based on MILPs have also been demonstrated for the design of energy supply
infrastructure of industrial sites. Andiappan et al. analyze the impact of reliability on the design of
biomass-fired trigeneration systems [39], [86]. The authors formulate a redundancy allocation
problem for failure of the largest unit. They find redundant equipment to have a great impact on the
unit capacity for each technology. Hollermann et al. [102] integrate redundant equipment in the
energy supply system of a pharmaceutical site. Authors find an increase of 4 % of total annualized
costs for redundant equipment whereas the solving times almost triple by considering redundancy
constraints. Both the work of Andiappan and Hollermann limit themselves to trigeneration systems
without considering heat pumps as a viable alternative. Latest research overcomes this limitation.
Wallerand in 2018 [53] for a dairy site and Urbanucci in 2019 [96] for a pharmaceutical site
discuss the integration of heat pumps in industrial energy supply systems. Wallerand proposes
a methodology to integrate solar energy via heat pumps [30]. Different production processes
in the dairy are analyzed via Pinch analysis. Results of the Pinch analysis are integrated as
steam demands at various temperature levels in the planning model. With the planning model,
Wallerand determines a Pareto trade-off between cost efficiency and environmental impact by
carbon emissions from ten typical days. The work does not consider cogeneration plants. In
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Table 2.1.: Selection of work on MILP design approaches in distributed energy systems

Author Year Description

Papoulias [82] 1983 Structural optimization of a utility system for electricity
and steam at various pressure levels

Yokoyama [83], [84] 2002 Structural design of cogeneration systems considering
decomposition approaches

Voll [18], [85] 2012 Automated optimization of an energy supply system in
pharmaceutical industry

Mancarella [77] 2014 Local emission impact of distributed cogeneration sys-
tems in part-load ratio operation

Andiappan [39], [86] 2016 Redundancy allocation for tri-generation systems in-
cluding seasonality of biomass availability and energy
demand

Stadler [87], [88] 2016 Optimal design in microgrid projects with XENDEE plat-
form

Thiem [27], [66] 2017 Optimal design of energy supply in airports considering
detailed technology models

Gabrielli [89], [90] 2018 Optimal system design with thermal and hydrogen stor-
age technologies

Bahl [91]–[93] 2018 Optimization-based design of manufacturing energy
systems by time-series aggregation

Schütz [29], [80], [94] 2018 Optimal design of city districts with decomposition and
clustering approaches

Wallerand [30], [95] 2018 Integration of solar energy in dairy industry with cou-
pling of pinch analysis and techno-economic optimiza-
tion

Urbanucci [96], [97] 2019 Optimal design and operation of cogeneration-based
distributed energy systems with focus on integration of
heat pumps

Teichgräber [98] 2019 Time series aggregation for optimization of generic
energy systems

Bohlayer [99], [100] 2020 Multi-period transformation roadmaps for distributed
energy systems

Hollermann [101], [102] 2020 Robust optimal design of distributed energy supply sys-
tems

Mavromatidis [63], [103] 2021 Long-term investment planning of building multi-
energy system and envelope retrofits

Richarz [104] 2022 Optimal scheduling of retrofit measures for equipment
and envelope in commercial buildings
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contrast, Urbanucci model formulation focus on the integration of heat pumps in trigeneration
systems with CHP plant and absorption chillers for an entire year with 8760 h. Both authors find
cost and carbon saving potentials from the integration of heat pumps.

Technology pathways in generation expansion planning
The previously described work has determined optimal design concepts for microgrids, urban
districts or industrial sites based on an entire base year or a selection of representative periods from a
base year. Energy supply concepts are expected to evolve over time, as outlined in Section 1.1. Long-
term trends can be integrated into techno-economic planning models by roadmap optimization
considering multiple extension stages. Techno-economic optimization models help to derive
technology pathways. These pathways account for future replacement in aged infrastructure as
well as the ability to delay investment decisions ("wait-and-see"). Moreover, roadmaps ensure non-
regret investment decision as lock-in effects are considered [50]. Technology pathways are widely
employed in generation expansion planning of regions and countries [2], [107], [108]. These
models strongly aggregate demands and simplify technology models. For instance, replacement
decisions before end of technical lifetime are not adequately reflected in the model formulations.
The model formulations from generation expansion planning are thus not directly applicable for
distributed energy systems.

Transformation roadmaps for distributed energy systems
Transformation roadmaps with multiple extension stages describe the evolution of an distributed
energy system. Roadmaps have not been frequently considered in the past. Latest reasearch work
in the last three years have shown significant progress in this field: Pecenak for microgrids in
2019 [109], Bohlayer for an industrial complex in 2021 [99], Mavromatidis for a city district in
2021 [63], [103] and Richarz for non-residential buildings in 2022 [104] have demonstrated the
capabilities of multi-year planning. Pecenak et al. [109] analyze the impact of investment decline
in photovoltaic and batteries as well as the introduction of a carbon tax in a multi-decade planning
horizon. The authors compare a sequential roadmap approach ("adaptive planning model") with
myopic foresight to a strategic roadmap approach ("forward-looking model") with perfect foresight
over the entire planning horizon. The two approaches result in similar design concepts with
1.6 MW photovoltaic installations and 4 MWh battery storage. The authors find the sequential
approach to be more than nine times faster compared to the strategic approach. Bohlayer et al.
[99] apply a multi-year planning approach to various industrial sites. The authors formulate both
stochastic and deterministic multi-year investment models. For the analyzed industrial energy
system, the deterministic formulation is found to be superior in terms of accuracy and solving
time. Mavromatidis et al. introduce the MANGO [63] for multi-stage energy optimization of
campus solutions. Results indicate that the long-term perspective of a growing city district is
well captured by a multi-year planning approach. The authors consider extension of floor area,
varying investment costs for supply technologies and rising energy carrier prices with five years
long extension stages for a 30 year planning horizon. An extension of the MANGO framework
[103] allows to integrate capital intensive retrofit measures in the decision process. Richarz et al.
[104] propose a model formulation for buildings with retrofit measures. The authors consider every
third year as an extension stage with a planning horizon of 30 years. The results indicate significant
potential for carbon and cost savings by an improved schedule of optimization measures. The four
approaches from Pecenak, Bohlayer, Mavromatidis and Richarz have proposed planning models
with multiple extension stages. However, the effect of foresight on investment decisions have been
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Figure 2.4.: Overview on concepts for improving performance of energy system design models

only discussed by Pecenak. Their model approach targets at microgrid designs of photovoltaic and
battery systems with Diesel backup. The effect of multi-modal coupling has thus not been analyzed
in their work. This Thesis will propose a novel framework which captures the impact of long-term
trends for multi-modal energy supply systems.

Summary
MILP-based planning models are well established for design of distributed energy systems. Transfor-
mation roadmaps for sustainable evolution of energy supply systems are not widely applied yet, but
promise a clear strategic view for industrial stakeholders. Integration of multiple extension stages
leads to increased model sizes and computational complexities [109]. However, the computation
of full scale model for a base year with 8760 h can take up to several days [88]. Therefore, full
scale models with multiple extension stages are not applicable for feasibility studies, in particular
if extensive scenarios analysis and dynamic consideration of customer feedback is conducted.
Consequently, techniques for compact model formulations and reduced computation times are
required. The following section will discuss approaches to improve model performance.

2.5. Improvement of model performance

Techno-economic planning models based on MILP are computational complex, in particular if
non-convex characteristics such as economies of scale or part-load capabilities are considered.
Parameters of these models comprise significant uncertainty as outlined in Section 2.2. Near-
optimal solutions are sufficient for practical applications [110], e.g., resulting from minor reduction
of modeling accuracy. An overview of possible strategies to improve model performance is shown
in Figure 2.5. Excellent reviews on this topic are provided by Kotzur et al. for distributed energy
systems [78] and by Cao et al. for regional energy systems [111]. Solver tuning targets at optimized
settings of commercial solvers. Authors of [111] recommend to adapt tolerance settings of the
barrier algorithm and enable multi-threading. Additional performance improvements are achieved
by computing multiple scenarios in parallel. The two strategies are not directly linked to the
formulation of the optimization model. The following analysis will thus focus on the level of
modeling detail, decomposition methods and aggregation strategies.
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Level of modeling detail
Multi-modal energy supply systems in industrial sites comprise a variety of technologies. Discrete
characteristics such as non-linear investment costs or part-load capabilities add high computationally
complexity to the model. The level of detail for investment costs and operational models thus has
a significant impact on model performance.1 Limiting the level of detail is a common approach to
improve model performance [78].

Models of investment costs reflect the sizing characteristics of a technology. Linear approaches
consider constant specific investment costs for all unit sizes. In contrast, intercept slope approaches
consider economies of scale effects as shown in Figure 2.3a. Additional details can be considered
by piece-wise definition of technology models depending on the unit size. Some researchers have
proposed to consider discrete module sizes in their formulations [113], [114]. These approaches
add multiple binaries per technology. Moreover, they require detailed knowledge on module costs.
This level of detail is typically not available for a broad range of technologies during feasibility
studies. Therefore, this work follows the majority of existing research [78] and applies an intercept
slope approach.

Operational characteristics of conversion technologies are typically defined by their ramping, part-
load, and start-up capabilities. Ramping capabilities introduce liner ramp rates constraints to the
model. Part-load capabilities are described by the minimum operating levels as well as part-load
dependent efficiencies. The modeling of part-load capabilities requires binary variables per time
step. Thiem [27] finds an intercept slope formulation of part-load capabilities to be sufficient to
approximate real-world performance curves of multiple technologies. This formulation of part-load
capabilities can be extended to penalize start-up and shut down process in the objective function.
The formulation leads to a coupling of adjacent time steps adding computational complexity [115].
Therefore, part-load capabilities are often replaced by a simplified linear formulations with constant
efficiencies [78]. Additional operational details such as maximum runtimes, minimum downtimes,
maintenance intervals or cold start capabilities couple multiple adjacent binary variables. The
additional computational complexity from these formulations is typically avoided in models for
energy system design [66].

The level of modelling detail has been intensively discussed by various authors [26], [66], [112].
Results indicate that the required level strongly depends on the use case. The newly developed
optimization framework in this work comprises highly detailed model formulations for both
investment and operational details based on work from Thiem [66]. These formulations can be
easily replaced by simplified model formulations within the developed framework.

Decomposition methods
Decomposition approaches divide a complex planning model into several smaller problems which
can be solved more efficiently than the original problem. Decomposition approaches are divided
in exact decomposition approaches and heuristic approaches [111]. Exact approaches divide the
original model into a master problem and several smaller sub-problems. Interlinking variables (Ben-
ders) or constraints (Lagrangian, Danzig-Wolfe) couple master and sub-problems. Identification of
interlinking variables and constraints is tailored to the model formulation and manually conducted
by researchers [78]. Industrial energy systems have various technologies and tariffs with diverse
1The interaction of sizing and operational models is not discussed here, e.g., the dependence of efficiencies on the unit
size. The interested reader is guided to [112] for a detailed discussion.
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regulatory and economic boundary conditions as outlined in Section 2.1. Interlinking variables
and constraints thus strongly differ between projects. The use of exact decomposition approaches
is thus limited for practical application. In contrast to exact decomposition, heuristics target at
near-optimal solutions by simplifying interlinking constraints in the problem formulation. They
sequentially solve part of a complex optimization problem. Heuristic decomposition can be applied
on spatial or temporal coupling constraints. Spatial aggregation is not in focus for industrial sites
as energy supply equipment is typically installed in a single technical center. Therefore, temporal
coupling constraints are highly relevant for design of energy supply equipment in industrial sites.
For dispatch simulations, rolling horizon approaches have been suggested by various authors [116],
[117]. These approaches determine an optimal dispatch sequentially for each day or week of the
year. However, investment planning models typically comprise multiple interlinking constraints
from the equipment and tariff selection on the operational model. These constraints cannot be
omitted. This makes rolling horizon approaches not directly applicable in design models. Required
model extensions have been described by Thiem [66]. The approach separates time scales in
hourly, daily, monthly, and annual time steps. These time scales are solved sequentially with
increasing time step resolution considering model decisions from previous time scales. Each time
scale comprises several subproblems which are solved sequentially and treat installed capacities of
preceding periods as lower bounds. The described decomposition strategies focus on optimizations
of a single year. They are thus not applicable for transformation roadmaps with multiple extension
stages. Heuristic decomposition approaches have also been proposed for planning models with
multiple extension stages. Investment decisions of consecutive extension stages are computed
sequentially. The technology options of the previous periods are fixed for the computation of the
following extension stages. In contrast to the original model, investment decisions in a certain
extension stage are not influenced by long-term projections of energy demands and prices, but
purely based on the input data of this extension stage. The approach is referred to as "myopic"
[2], "adaptive" [109] or "sequential" [50] planning approach. This type of heuristic decomposition
has been analyzed for microgrid systems in [109] and by various authors for expansion planning
models [2], [78]. This work applies the approach to the complex design of multi-modal energy
supply systems in industrial sites. To the best of author’s knowledge, this analysis has not been
conducted by other researchers.

Aggregation strategies
Aggregation strategies reduce the spatial or temporal scope of energy system models and thereby
the number of variables of the optimization model. If the relevant characteristics are captured
by an aggregation approach, the model results in equal or near-optimal solutions with notable
lower solving times. The spatial scope of a design model is pre-defined by the technical centers
of the industrial sites. Spatial aggregation approaches are thus not further discussed here. The
temporal scope describes how the operation of energy supply equipment is reflected. It depends
on the selected temporal resolution. An intuitive way to reduce model size is a decrease of
temporal resolution, either in a regular manner ("down sampling") or with smart approaches
("segmentation"). However, procurement tariffs require high time resolutions with hourly time
steps as outlined in Section 3.1. The design of industrial sites thus requires enhanced approaches.

The most common approach for time series aggregation is the selection of representative periods
[59], [118], [119]. The idea of representative periods relies on repeating patterns in energy
related time series. For instance, energy demand and renewable generation profiles show strong
daily repetitions. Exemplary daily patterns are shown in Figure 2.5. Techno-economic planning
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Figure 2.5.: Examples of daily patterns of electricity demands and solar generation potential [124]
for three days in April

models often consider not all days of an entire base year, but a well selected set of representative
days in the optimization model [119], [120]. Seasonal storages can be considered by advanced
coupling constraints for representative periods [121], [122]. These formulations add additional
computational complexity. Kotzur et al. recommend to use these formulations only for systems that
anticipate seasonal storage technologies to be part of an optimized design concept [122]. The key
issue arising from this aggregation approach is how to derive a reasonable selection of representative
periods from the energy-related time series. Heuristic approaches select representative periods
from simple decision rules based on seasonality, peak demands, or weather conditions. VDI 4655
[120] proposes a methodology for residential buildings with twelve seasonally distributed days.
Other approaches select days with lowest and highest demands as well as days with the largest
demand spread [123]. Heuristic approaches do not account for the statistical characteristics in the
time series. For instance, they do not reflect periods of plant shutdowns due to maintenance and
holidays. Therefore, advanced approaches are required for design of complex industrial energy
supply systems.

Existing literature proposes a variety of algorithms to automatically select representative periods. A
good review of existing work is provided by Hoffmann [119]. Representative periods can be either
newly calculated averaged periods ("centroid") or part of the original time series ("medoid") or.
Algorithms for centroid and medoid based clustering have been intensively evaluated in the field of
building energy systems [80], [118] and city districts [125], [126]. Majority of work applies either
k-means ("centroid") or k-medoids ("medoid") algorithms. Results of [80], [118] show a better
performance of medoid based clustering approaches in comparison to centroid based approaches.
Representative periods from centroid clustering average intradaily variations. This smoothing
effect results in a systematic underestimation of system costs. Therefore, medoid-based algorithms
are clearly the preferred option for design of industrial energy supply systems. Implementations
of k-medoid algorithms are available as pre-implemented packages in Python environment such
as scikit-learn. However, these implementations do not allow to directly include peak periods
in the selection of representative periods. These periods determine the system’s ability to serve
peak demands and thereby the sizing of peak-load technologies. Therefore, complicated post-
processing routines are required to adapt the results of a pre-implemented clustering algorithm
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[118]. Moreover, these implementations are often implemented as greedy algorithms which rapidly
converge to local optima depending on randomly selected starting points [118]. Optimization
results for design concepts can thus become non-deterministic.

This limitation of existing work is overcome by an alternative implementation of the k-medoids
clustering approach. The clustering approach is formulated as an integer program which is
efficiently solved by commercial solving software till global optimality. Approaches have been
demonstrated for a transmission grid expansion model in [123], a university campus in [127] and
a city district with two hotels and four office buildings in [113]. The suitability of aggregation
approaches strongly depends on the number of relevant time-series and their patterns. Results
are thus not directly transferable to industrial energy supply systems [80]. To the best of author’s
knowledge, time series aggregation based on this clustering approach has not yet been validated
for multi-modal energy demands in industrial sites.

2.6. Summary

This chapter has outlined requirements for sustainable design of industrial energy supply systems.
Techno-economic feasibility studies derive preliminary design concepts under various uncertainties.
Optimization-based design approaches can assist energy system planners and consultants to
compare multiple design . Approaches based on MILP automatically derive KPIs, e.g., to study
the trade-off between costs and carbon emissions. Model formulations for distributed energy
system account for detailed technology models and complex procurement tariffs. Existing work
for distributed energy systems typically omits long-term trends, such as projected evolution of
energy carrier prices or expected changes in on-site energy demands [50]. This work considers
these trends in the formulation of the techno-economic planning model. The planning model is
integrated in an optimization framework. The framework efficiently determines sustainable design
variants based on optimized selection of representative periods [51]. The entire functionality of
the optimization framework can be accessed via a desktop application. This approach ensures the
reproducibility of the presented results across multiple energy consultancy projects.
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3. Energy supply system modeling

Existing industrial sites often have historically grown energy supply infrastructure. Energy supply
systems include a large variety of technologies and complex energy procurement tariffs. This chapter
introduces the mathematical optimization model which handles the complexity and diversity of
industrial energy supply systems. First, the overall approach developed in this Thesis is outlined in
Section 3.1. In the following Sections 3.2 to 3.4, the detailed formulation for different technology
base classes including linkage and reserve constraints are derived. An optimal technology sizing
and dispatch strategy is determined by minimizing the objective function defined in Section 3.5.
Finally, Section 3.6 summarizes general assumptions and underlying limitations of the proposed
model formulation.

3.1. Integrated investment planning

Integrated investment planning [128], also referred to as sector-coupled [76], multi-energy [28],
[77] or multi-modal [27] energy system design, derives holistic concepts for all energy related
demands within the system boundaries of an industrial sites. In contrast to traditional separated
approaches, the synergies between the various energy supply systems for electricity, heating and
steam demands, cooling systems, transport, ventilation, compressed air, and process gases are
fully captured by such approaches. The rising complexity is effectively handled by mathematical
optimization. The input data and results of the optimization model are illustrated in Figure 3.1.
The optimization model captures the relevant attributes associated with the design and operational
decisions in the energy supply infrastructure along the entire planning horizon. Consequently, the
input data summarizes technical, economic, and environmental parameters. The input includes
projected cost and footprint developments for electricity and fuel purchase as well as investment
cost and efficiency estimations for all relevant technology options. Demands are represented
by (sub-)hourly load profiles. A design concept including an optimal technology selection and
equipment sizing as well as an optimal dispatch strategy is computed for the specified input data.
The model formulation employed in this work is based on the generic superstructure approach
from Thiem [27] and extended for multi-node, multi-stakeholder and multi-year system analysis
as well as the ability to account for reserve requirements.

The superstructure defines the relevant technologies and spatial granularity of the techno-economic
planning model. It is described by a set K of existing technologies and possible technology
extensions. Technologies are connected via a set of nodes (N). A node (n ∈ N) is defined as a
unique tuple of a location and a commodity. The introduction of the location concept, sometimes
also referred to as "energy hubs" [62], [129], enables the analysis of distribution systems, e.g., for
large industrial facilities with multiple technical centers. A location comprises nodes for multiple
energy commodities (c ∈ C) such as electricity, heating, or cooling. The energy demands for a
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Figure 3.1.: Overview of input and output parameters of the newly developed techno-economic
planning model for energy system design

specified commodity and location are summarized in a set Ln ⊆ L. These demands need to be
served by the technologies of the superstructure. Technologies are divided into five generic base
classes: Grid, renewable, conversion, storage and line technologies. Grid technologies (KG ⊂ K)
describe dispatchable commodity sources and sinks at a node whereas renewable technologies
(KR ⊂ K) provide a non-dispatchable alternative. Conversion technologies (KC ⊂ K) represent
conversion processes from multiple input commodities to multiple output commodities. Storage
technologies (KS ⊂ K) temporarily store energy commodities. An exchange of commodities
between two locations is modelled via line technologies (KL ⊂ K).

The temporal granularity of the model is described by sets for extension stages (Y), representative
periods (D) and time steps (T). Their relation is visualized in Figure 3.2. The proposed concepts
allows to consider adaptations in technology selection and equipment sizing due to demand or
price changes as well as required replacements for aged equipment. The equipment capacities are
thus optimized for a set Y of extension stages. The initial extension stage is referred to by y0. Each
extension stage y ∈ Y comprises a set of representative periods Dy ⊆ D and time steps Ty ⊆ T.
The system operation in y is modelled by a setDy of representative periods. Representative periods
are selected to approximate the annual operation of the energy supply equipment in a typical year
and ensure an efficient solving process. A typical year might be sufficiently represented by 20
representative days [51]. Weight factors (wd) describe how many periods of a typical year are
represented by a representative period (d ⊆ D). Cycling conditions are assumed within each
representative period. This means that all system states, such as energy content in a storage, at the
end of d equal the states at the beginning of d.2 The schedule within a representative period d is
described by a set Td ⊆ T of time steps. Each time step t has a defined time step resolution (∆t).

The optimization variables describe the sizing and power set points of the technologies along
the entire planning horizon. The installation status and rated power capacities are described
by binary variables (BRk,y ∈ {0, 1}) and continuous variables (PRk,y ∈ R+) for each technology
k ∈ K at the extension stage y ∈ Y. Investment decisions for additonal equipment are allowed
2Cycling conditions prohibit energy exchange between adjacent representative periods. The assumption prevents
seasonal storage operation. Details are discussed in Section 4.2.
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Figure 3.2.: Relation of sets for extension stages, representative periods and time steps

in each extension stage. They are represented by additional binary variables (BInvk,y ∈ {0, 1})
and continuous variables (P Invk,y ∈ R+). Latest at the end of technical lifetime, technologiees are
replaced which is represented by continuous variables (PReplk,y ∈ R+). Storage technologies are
characterized by their rated power and storage capacity, e.g. for inverter and cell packages of a
battery energy storage. The rated storage capacities are reflected by additional continuous variables
CRk,y ∈ R+, C Invk,y ∈ R+ and CReplk,y ∈ R+ for k ∈ KS . The generic base classes have a defined
number of inputs and outputs indicated by an additional index i. The operation of each technology
is thus described by continuous variables P Ink,i,t ∈ R+ and POutk,i,t ∈ R+ for each input and output
power flow of a technology k at a time step t. The operational status (on, off) is modelled by
additional binary variables (BOprk,t ∈ {0, 1}).

A setKInn summarizes tuples for technologies k which are connected with the input flow i to node n.
Another set KOutn summarizes tuples for technologies which are connected with the output power
flow to n. The technologies serve time-dependent energy demands. Energy demands are defined
as additional variables (PL

n,i,t ∈ R+) with i being the index of a load connected to node n. The
model aims at identifying a cost-optimal technology selection to meet the time dependent energy
demands along the entire planning horizon. Therefore, power balances at each node (n) and for
each time step (t) need to be fulfilled:

∑︂
(k,i)∈KOutn

POutk,i,t =
∑︂

(k,i)∈KIn
n

P Ink,i,t +
∑︂

i ∈ Ln

P Ln,i,t ∀n ∈ N, t ∈ T (3.1)

3.2. Technology models

Technologies are modelled in a modular approach based on five generic base classes illustrated
in Figure 3.3. The generic base class approach depicts various general purpose technologies,
sector-specific efficiency measures and complex procurement tariffs. Differences between these
technologies are defined by model parameterization. The rated sizing (PRk,y) of a technology is
constraint by a lower bound (PRk,y) and an upper bound (P

R
k,y).

PRk,yB
R
k,y ≤ PRk,y ≤ P

R
k,yB

R
k,y ∀k ∈ K, y ∈ Y (3.2)
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PRk,yB
Inv
k,y ≤ P Invk,y ≤ P

R
k,yB

Inv
k,y ∀k ∈ K, y ∈ Y (3.3)

PRk,y at the extension stage y depends on previous installations and the investment and replacement
decisions of the current extension stage. Equipment needs to be removed latest at the end
of its technical lifetime (yTechk ) which is enforced by Equation 3.6. Existing infrastructure in
brownfield sites is explicitly accounted for by the model formulation: The parameter pInstk denotes
the installed rated power capacity. pInstk requires expenditures for maintenance and operation only.
The Heaviside function H(y ≥ yInstk ) indicates if pInstk needs to have been replaced in the extension
stage y depending on the remaining lifetime yInstk . The remaining lifetime is smaller than or equal
to the technical lifetime yTechk .

PR
k,y0 = pInstk + P Invk,y0 − P

Repl
k,y0

∀k ∈ K (3.4)

PRk,y = PRk,y−1 + P Invk,y − P
Repl
k,y ∀k ∈ K, y > y0 (3.5)

y∑︂
y1=y0

P
Repl
k,y1

≥ pInstk H(y ≥ yInstk ) +

y−yTechk∑︂
y1=y0

PNewk,y1 ∀k ∈ K, y > y0 (3.6)

The power set points Pk,t of grid, renewable and conversion technologies is defined as the first
output power flow as visualized in Figure 3.3. An exceptation are grid sink technologies which will
be outlined in detail within the next paragraph. The operating range is limited by time-dependent
minimum part load ratios (uk,t) and maximum part load ratios (uk,t). uk,t and uk,t are considered
as time-dependent exogenous model variables. Thereby, the model accounts for various (e.g.,
climate-dependent) technology characteristics such as temperature dependence of gas turbines.
Dynamic capabilities are accounted by ramp up rates (rUpk ) and ramp down rates (rDownk ).

uk,tP
R
k,yB

Opr
k,t ≤ Pk,t ≤ uk,tP

R
k,yB

Opr
k,t ∀k ∈ {KG,KR,KC}, y ∈ Y, t ∈ Ty (3.7)

rDownk PRk,y ≤
Pk,t+1 − Pk,t

∆t
≤ r

Up
k PRk,y ∀k ∈ {KG,KR,KC}, y ∈ Y, t ∈ Ty (3.8)

The operational behavior of lines and storage technologies is denoted by two or three continuous
variables per time step respectively. This allows to consider distribution losses of bidirectional lines
and charging behavior of storage technologies. Variables and constraints for lines and storages are
outlined in the corresponding sections.
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Figure 3.3.: Overview of input and output flows of the five generic technology base classes

3.2.1. Grids

Grid technologies describe connections to energy markets and the surrounding environment. Grids
are divided into sinks and sources depending on the flow direction of the connection. Sinks
represent technologies which take energy from the energy supply system such as feed-in tariffs or
cooling vents. In contrast, sources describe options for energy procurement, e.g., for fuels or use
of ambient heat.

Operational costs ζOMk,y for grid technologies comprise fixed annual costs ζ
OM,fix
k,y , energy related costs

ζ
OM,energy
k,y , demand charges ζOM,peakk,y and carbon prices ζOM,Envk,y . Demand charges are approximated
from the maximum annual peak power with the annual demand price cOM,peakk,y > 0.3 Within this
work, costs for fuel and electricity purchase is denoted with positive values for ζOM,energyk,y . Negative
values for ζOM,energyk,y describe revenues from feed-in tariffs.

ζOMk,y = ζOM,fixk,y + ζ
OM,energy
k,y + ζ

OM,peak
k,y + ζOM,CO2k,y ∀k ∈ KG, y ∈ Y (3.9)

ζOM,fixk,y = cOM,fixk,y BRk,y (3.10)

ζ
OM,energy
k,y =

∑︂
d∈Dy

wd

∑︂
t∈Td

c
OM,energy
k,t ∆tPk,t (3.11)

ζ
OM,peak
k,y = c

OM,peak
k,y sup

t∈Ty
Pk,t (3.12)

The environmental impact of energy supply is measured by various key indicators associated
with emissions, primary energy use, noise ratios or freshwater consumption. Emission ratios
3The annual peak power is the supremum of the time-dependent power flow variables and derived with a continous
helper variable. The helper variable is constraint by all power flow variables as lower bounds. The helper variable is
minimized in the solving process as it contributes to the objective function.
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are related to sulfur dioxide, nitrogen dioxide, particulate matter or greenhouse gases [37],
[52]. The developed model formulation accounts for these factors. Due to its prominent role in
decarbonization concepts, this Thesis limits itself to the analysis of carbon dioxide emissions. The
impact of carbon emissions is classified in three scopes according to international standards such
as ISO 14064. Scope 3 emissions from upstream supply chains are not considered within this
work. Scope 1 and Scope 2 describe direct on-site emissions and indirect emissions from energy
procurement. They are included by considering time-dependent emission factors cCO2,energyk,e,t for
grid technologies.

ζCO2k,y =
∑︂
d∈Dy

wd

∑︂
t∈Td

e
CO2,energy
k,t ∆tPk,t (3.13)

Environmental laws and regulations target at minimizing the environmental impact of energy
supply. One incentive for low carbon solutions are carbon pricing systems, e.g., the European
Emission Trading System for large-scale industry (> 20 MW). Therefore, the environmental impact
is included as part of the cost function.

ζOM,CO2k,y = cCO2k,y ζCO2k,y (3.14)

3.2.2. Renewables

Renewable technologies represent non-dispatchable energy sources, in particular solar and wind
plants. The power set point Pk,t = POutk,0,t of a renewable technology is determined by its weather
dependent generation potential ufixk,t. ufixk,t is an exogenous model parameter. For instance, hourly
generation profiles for photovoltaic and wind generation can be estimated from local climate
data and technical parameters based on the models from Pfenninger [124] and Staffel [130].
The difference between Pk,t and the available power ufixk,tPRk,y describes the curtailed power of a
renewable technology at time step t.

Pk,t ≤ ufixk,tP
R
k,y ∀k ∈ KR, y ∈ Y, t ∈ Ty (3.15)

Operational costs ζOMk,y of renewable technologies include fixed and variable expenses for plant
maintenance as well as a cost term ζOM,curtailk,y for renewable curtailment. ζOM,curtailk,y is part of the
objective function. As the objective function is minimized, renewable energy is preferably used in
the energy supply system.

ζOMk,y = ζOM,fixk,y + ζOM,vark,y + ζOM,curtailk,y ∀k ∈ KR, y ∈ Y (3.16)

ζOM,vark,y = cOM,vark,y PRk,y (3.17)

ζOM,curtailk,y = cOM,curtailk,y

∑︂
d∈Dy

wd

∑︂
t∈Td

(ufixk,tP
R
k,y − Pk,t)∆t (3.18)
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Figure 3.4.: Performance curves for conversion technologies based on two sampling points
approach from [66]. The curves show the modelled curves for a minimum part-load
ratio u = 0.3 and various ratios of η50 and η100.

3.2.3. Energy converters

Conversion technologies describe conversion processes between one or multiple input commodities
and one or multiple output commodities. Examples of on-site conversion technologies are gas
turbines and heat pumps. This work proposes a generic modelling approach for energy converters
to account for the variety of general purpose and sector-specific technologies typically found in
industrial energy supply systems. Following the analysis in Section 2.4, feasibility studies need to
account for complex operational characteristics of energy converters such as part-load capabilities
and start-up costs.

Power set points Pk,t = POutk,0,t of conversion technologies are determined by the first output flows,
as illustrated in Figure 3.3. This definition is in accordance with engineering practice for heat
pump and combined heat-and-power plants. The input and remaining output flows are denoted by
the sets NInk and NOutk . These flows are defined as functions of P

Out
k,0,t.

Detailed efficiency models of conversion technologies include performance maps which consider
the impact of both ambient climate conditions (temperature, humidity, pressure) and part-load
behavior. For instance, the electric performance of gas turbines without inlet air cooling increases
with lower ambient air temperatures and substantially reduces in part-load operation. Therefore,
the converter efficiency model is based on the two sampling point approach introduced by Thiem
in [66]. The two sampling points describe the performance characteristics at 50 % and 100 % of
full load at the respective time step. The shape of the performance curve can be adjusted from the
ratio of the two sampling points. Figure 3.4 illustrates six exemplary shapes. The efficiency values
have been normalized to the efficiency η100 at full load. The time dependence of the sampling
points allows to account for highly complex climate influences on technology performance. The
proposed approach matches a variety of technology performance characteristics, such as large-scale
gas turbines [66].

Following the two sampling point approach of Thiem [66], the relation of each input power flow i
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to POutk,0,t is described by two time-dependent parameter vectors η
In,50
k,i,t and ηIn,100k,i,t for efficiencies

at 50 % and 100 % of nominal load respectively. The two parameter vectors are reformulated as
a fixed proportion (hIn,fix) independent of the part-load ratio and a variable proportion (hIn,var)
depending on the part-load ratio.4

P Ink,i,t = (hIn,fixk,i,t P
R
k,y + hIn,vark,i,t POutk,0,t)B

Opr
k,t ∀k ∈ KC , i ∈ NInk , y ∈ Y, t ∈ Ty (3.19)

hIn,fixk,i,t =
1

ηIn,50k,i,t

− 1

ηIn,100k,i,t

(3.20)

hIn,vark,i,t =
2

ηIn,100k,i,t

− 1

ηIn,50k,i,t

(3.21)

The additional output power flows are related to POutk,0,t by two output efficiency vectors η
Out,50
k,i,t and

ηOut,100k,i,t . The efficiencies describe the ratio of the output flow i and the first input flow. For a CHP
plant, ηOut,50k,i,t and ηOut,100k,i,t equal the heat recovery efficiency at 50 % and 100 % of nominal load.
In accordance with the mathematical description in Thiem [27], the parameters are determined as
follows: 4

POutk,i,t = (hOut,fixk,i,t PRk,y + hOut,vark,i,t POutk,0,t)B
Opr
k,t ∀k ∈ KC , i ∈ NOutk , y ∈ Y, t ∈ Ty (3.22)

hOut,fixk,i,t =
2ηIn,50k,0,t

ηOut,50k,i,t

−
ηIn,100k,0,t

ηOut,100k,i,t

(3.23)

hOut,vark,i,t =
ηIn,100k,0,t

ηOut,100k,i,t

−
ηIn,50k,0,t

ηOut,50k,i,t

(3.24)

Startup and shutdown processes of energy converters are associated with accelerated aging and
associated higher maintenance costs. The operational schedule should thus preferably operate
on-site equipment continuously. One approach to facilitate a more continuous operation schedule
is the introduction of minimum runtime and downtime constraints. These approaches couple
multiple time steps and thereby add significant computational complexity to the optimization
problem. The proposed formulation in this work applies an alternative approach based on the
number of startups. The maximum number of annual startups is limited to nStartk . The tracing of
startup occurrence requires one continuous helper variable Hstartk,t ∈ [0, 1] per time step. Hstartk,t is
enforced to be equal to one if a startup happens. In all other cases, the value will become zero
as startup costs are part of the objective function and the solver targets at minimizing the costs
associated with startups.
4The model equations comprise non-linear terms. These terms are linearized in the implemented model formulation.
Section A.1 in the annex of this Thesis outlines the applied linearization approaches.
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∑︂
d∈Dy

wd

∑︂
t∈Td

Hstartk,t ≤ nStartk ∀k ∈ KC , y ∈ Y (3.25)

Hstartk,t ≤ B
Opr
k,t −B

Opr
k,t−1 ∀k ∈ KC , t ∈ T (3.26)

ζOMk,y summarizes operational and maintenance efforts in five generic cost terms. Fixed costs ζ
OM,fix
k,y

and variable costs ζOM,fixk,y depend on the installation status and sizing of a technology. Wear and
tear of a technology depend highly on the utilization. Therefore, maintenance cost may include
energy related costs ζOM,energyk,y , start up costs ζOM,startk,y and runtime costs ζOM,runk,y . Larger sizes of
technologies typically cause higher maintenance efforts. For instance, a larger CHP plant might
comprise additional motors which require regular inspections. ζOM,startk,y is thus divided into a
technology specific fixed proportion cOM,start,fixk,t and a size dependent proportion cOM,start,vark,t . A
similar formulation is chosen for ζOM,runk,y .4

ζOMk,y = ζOM,fixk,y + ζOM,vark,y + ζ
OM,energy
k,y + ζOM,startk,y + ζOM,runk,y ∀k ∈ KC , y ∈ Y (3.27)

ζOM,startk,y =
∑︂
d∈Dy

wd

∑︂
t∈Td

(cOM,start,fixk,y + cOM,start,vark,y PRk,y)H
start
k,t (3.28)

ζOM,runk,y =
∑︂
d∈Dy

wd

∑︂
t∈Td

(cOM,run,fixk,y + cOM,run,vark,y PRk,y)∆tB
Opr
k,t (3.29)

3.2.4. Lines

Line technologies establish connections between two distinct locations l1 and l2 with a distance l1,2.
Lines describe the pipes of water and steam distribution systems as well as cables of the on-site
microgrid. Pipes and cables enable bidirectional energy flows: For instance, a manufacturing hall
may consume electricity from the microgrid during production shifts in the night and feed back
electricity from rooftop photovoltaic during noon in the summer with strong solar irradiation.
Therefore, the operational behavior of line technologies is described by two continuous variables
P Ink,0,t ∈ R+ and P Ink,1,t ∈ R+. Each variable denotes the possible input power flow for the two
interconnected locations. The concept is illustrated in Figure 3.3. The input power flows are limited
by the rated power capacity PRk,y of the line technology. The transmission of energy over a line is
associated with length dependent losses ηLossk .

P Ink,i,t ≤ PRk,yB
Opr
k,t ∀k ∈ KL, i ∈ {0, 1}, y ∈ Y, t ∈ Ty (3.30)

POutk,i,t = (1− ηLossk )l1,2P Ink,i,t ∀k ∈ KL, i ∈ {0, 1}, y ∈ Y, t ∈ Ty (3.31)
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Economic and regulatory conditions can make waste of energy economically beneficial under
certain conditions. For instance, the low-temperature heat from a cogeneration plant might not be
used for space heating demands during the entire year. The introduced formulation would enable
physically infeasible solutions to waste energy by simultaneous power flows in both directions
of line technologies. These model artifacts can be avoided by adding a bilinear equation. The
constraint enforces to be at least one of the two power flow variables to be zero at each time step.
Thereby, it effectively prevents cyclical power flows.4

P Ink,0,tP
In
k,1,t ≤ 0 ∀k ∈ KL, t ∈ T (3.32)

The operational costs ζOMk,y of line technologies comprise a fixed and a variable cost term. The
definition of the cost terms is provided in Equations 3.10 and 3.17.

ζOMk,y = ζOM,fixk,y + ζOM,vark,y ∀k ∈ KL, y ∈ Y (3.33)

3.2.5. Energy storages

Storage technologies decouple generation and demand. They help to integrate time varying waste
heat sources and volatile renewable generation in on-site energy supply systems. Industrial sites can
comprise a variety of storage technologies including batteries, thermal storages and cryogenic tanks
for process gases. In addition to its rated power capacity (PRk,y), the sizing of storage technology
is defined by its rated storage capacity (CRk,y). Boundary and extension constraints for installed
capacity (CRk,y), new installed capacity (CRk,y) and replaced capacity (C

Repl
k,y ) are defined analogous

to Equations 3.2 to 3.6.

The storage operation is described by three continuous variables per time step: the charging power
(P Ink,0,t), the discharging power (POutk,t ) and the energy content (Ek,t). These variables are limited
by the power and capacity sizing of the storage, e.g., the inverter size and the number of racks of a
battery storage. The state of charge (SOC) describes the energy content of the storage related to
its capacity CRk,y. Thereby, the maximum discharge depth is given with SOCk,t.

P Ink,0,t ≤ PRk,y ∀k ∈ KS , y ∈ Y, t ∈ Ty (3.34)

POutk,0,t ≤ PRk,y ∀k ∈ KS , y ∈ Y, t ∈ Ty (3.35)

SOCk,tC
R
k,y ≤ Ek,t ≤ SOCk,tC

R
k,y ∀k ∈ KS , y ∈ Y, t ∈ Ty (3.36)

The operational variables are coupled by the internal energy balance of the storage. Storage
losses are described by the charging efficiency (ηChk,t), the discharge efficiency (ηDchk,t ) and specific
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self-discharge rate (ηSelfk,t ). The energy balance of storage technologies couples adjacent time steps
and thereby adds significant computational complexity to the optimization model.

Ek,t+1 =
(︂
1− ηSelfk,t

)︂
Ek,t +∆t

(︄
ηChk,tP

In
k,0,t +

1

ηDchk,t

POutk,0,t

)︄
∀k ∈ KS , t ∈ T (3.37)

The dynamic capabilities of storage technologies are described by maximum charging (rChk ) and
discharging rates (rDchk ).

rDchk CRk,y ≤
Ek,t+1 − Ek,t

∆t
≤ rChk CRk,y ∀k ∈ KS , y ∈ Y, t ∈ Ty (3.38)

The challenge of simultaneous power flows in both directions of line technologies has been high-
lighted in Section 3.2.4. Similar modelling artifacts can occur for storage technologies. A bilinear
equation is introduced to prohibit simultaneous charging and discharging.4

P Ink,0,tP
Out
k,0,t ≤ 0 ∀k ∈ KS , t ∈ T (3.39)

Batteries are a major type of storage technology for industrial load balancing and peak shaving.
Aging processes of battery technologies are typically divided into calendar and cycling aging.
Calendar aging is described by the technical lifetime yTechk . In contrast, battery manufactures
describe cycling aging impacts by a maximum number of cycles over the entire lifetime. This
specification is considered in the optimization problem: the annual equivalent full cycles are limited
to a maximum number nCycle,maxk .∑︂

d∈Dy

wd

∑︂
t∈Td

∆tPOutk,0,t ≤ n
Cycle,max
k CRk,y ∀k ∈ KS , y ∈ Y (3.40)

The operation and maintenance costs of storage technologies are divided into a fixed proportion
ζOM,fixk,y , a variable part ζOM,vark,y proportional to the rated power, a capacity dependent proportion
ζ
OM,cap
k,y as well as cycle costs ζOM,cyclek,y for each equivalent full cycle.

ζOMk,y = ζOM,fixk,y + ζOM,vark,y + ζ
OM,cap
k,y + ζ

OM,cycle
k,y ∀k ∈ KS , y ∈ Y (3.41)

ζ
OM,cap
k,y = c

OM,cap
k,y CRk,y (3.42)

ζ
OM,cycle
k,y = c

OM,cycle
k,y

∑︂
d∈Dy

wd

∑︂
t∈Td

∆tPOutk,0,t (3.43)
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3.2.6. Energy demands

Energy demands are represented by (sub-)hourly load profiles. The profiles are ideally directly
extracted from monitoring systems in brownfield sites. If measurement data is not available,
demands can be estimated based on synthetic load profile generators [66] or normative references
[17]. Energy demands are defined for each location and each commodity. Thereby, the variety of
electrical, thermal, and material demands found in industrial sites are represented in the techno-
economic model. In contrast to other technology base classes, energy demands are not associated
with sizing parameters. Loads are described by power consumptions PL

n,i,t ∈ R+ at each time
step t. This work distinguishes two types of demands: fixed loads (Lfixed ⊆ L) and interruptible
loads (Lcurtail ⊆ L).

Fixed loads (Lfixed) comprise no flexibility potential. The power demand is exactly met at each
time step. Lfixed are not associated with any costs in the objective function (ζLn,i,y = 0).

P Ln,i,t = P
L
n,i,t ∀n ∈ N, i ∈ Lfixedn , t ∈ T (3.44)

Some energy demands can be reduced for short times, e.g., due to the thermal inertia of an industrial
process. These types of demands are referred to as interruptible loads (Lcurtail). Interruption is
associated with penalty costs cL,curtailn,i,t for load curtailment. The value of cL,curtailn,i,t might be interpreted
as the Value of Lost Load (VoLL).

P Ln,i,t ≤ P
L
n,i,t ∀n ∈ N, i ∈ Lcurtailn , t ∈ T (3.45)

ζLn,i,y =
∑︂
d∈Dy

wd

∑︂
t∈Td

cL,curtailn,i,t (P
L
n,i,t − P Ln,i,t) ∀n ∈ N, i ∈ Lcurtailn , y ∈ Y (3.46)

Energy demands might have additional characteristics which are not covered by the described
features. Charging of electric vehicles might be shifted from peak demand hours. Thermal inertia
of buildings provides another source of flexibility. These types of energy demands are beyond the
scope of this work. However, they can be represented by combination of multiple base technology
classes, e.g., a virtual energy storage and an energy demand. The combination of base technology
classes requires linkages which are introduced in the following.

3.3. Technology linkage

The optimization model comprises a set of technology options derived from five generic base
technology classes. Some technologies and physical processes are not represented adequately by a
single base technology, but require a combination of several technologies. Example of complex
processes are flexible demands which can be represented by a combination of virtual storage and
energy demand. Regulatory constraints add additional interconnections between base technologies,
e.g., high efficiency criterions or self-consumption shares of cogeneration plants. These require-
ments enforce fixed relationships between one or several base technologies. Therefore, this work
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proposes a linkage concept for grid, renewable and conversion technologies. A linkage q ∈ Q cou-
ples one or multiple attributes of two technologies kq,1 ∈ {KG,KR,KC} and kq,2 ∈ {KG,KR,KC}.
Linkages enable to constrain the minimum ratio (hMin ∈ R+) or maximum ratio (hMax ∈ R+) of
rated design (QP R ⊆ Q), the operational behavior (QP ⊆ Q) as well as the annual energy output
(QEnergy ⊆ Q). Linkages of discrete investment decisions (QInv ⊆ Q) and operational decisions
(QOpr ⊆ Q) can be mutually inclusive (h = 1) or exclusive (h = −1).

hP
R,Min

q PRkq,2,y ≤ PRkq,1,y ≤ hP
R,Max

q PRkq,2,y ∀q ∈ QP R , y ∈ Y (3.47)

hP,Minq Pkq,2,t ≤ Pkq,1,t ≤ hP,Maxq Pkq,2,t ∀q ∈ QP, t ∈ T (3.48)

hEnergy,Minq

∑︂
d∈Dy

wd

∑︂
t∈Td

Pkq,2,t ≤
∑︂
d∈Dy

wd

∑︂
t∈Td

Pkq,1,t ≤ hEnergy,Maxq

∑︂
d∈Dy

wd

∑︂
t∈Td

Pkq,2,t ∀q ∈ QEnergy, t ∈ T

(3.49)

BInvkq,1,y = hInvq BInvkq,2,y ∀q ∈ QInv, y ∈ Y (3.50)

B
Opr
kq,1,t

= hOprq B
Opr
kq,2,t

∀q ∈ QOpr, t ∈ T (3.51)

3.4. Reserve concepts

The proposed optimization model targets at minimizing the project costs and the environmental
impact of on-site energy supply for the entire planning horizon. Resulting design concepts might
not be feasible in practical applications due to uncertainty in energy demands and technology
availability. Probabilistic approaches based on Markov chains have been proposed by multiple
researchers [131]–[133] to adress reliability considerations in energy system modeling. However,
the practical application of these models dependent on the availability of sufficient amount of
reliability data in high quality. This data is typically not available in early project phases as outlined
in Section 2.1. Deterministic reserve concepts ensure feasibility of design concepts requiring
less data input. They guarantee a required level of security of supply during grid outages and
equipment failures. In this work, two deterministic reserve concepts are proposed: an operating
reserve concept for short-term events and a redundancy concept for long-term events. Both reserve
concepts are implemented as additional constraints of the optimization model. These constraints
enforce sufficient generation capacities to meet the energy demands in all possible situations and
thus avoid costly production interruptions. Additional equipment capacities lead to additional
investment expenses which are directly included in the model formulation of this work. Therefore,
the proposed reserve concepts enable the computation of more realistic design concepts and
improve the estimation accuracies of total project costs.
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3.4.1. Operating reserve

Operating reserves introduce short-term reserve margins at each time step to balance temporary
power disturbances. Thereby, the supply system can reliably handle short-term imbalances due
to temporary outages of public power grids, intermittent renewable generation or sudden peak
demands. Reserve concepts have been extensively used in security-constraint economic dispatch
models. Research developments in this field have been reviewed in [134] or [135]. In contrast
to the presented work, these types of models account only for a single existing design and target
at an optimal operation. This work integrates the reliability considerations for a dispatch into a
planning model accounting for possible design upgrades.

In the proposed concept, converter, grid, renewable, line, and storage technologies can adapt
their dispatch and thereby contribute to the operating reserve. Contributions are limited by the
rated power and storage capacities and the dynamic capabilities of each technology. Thereby,
sufficient generation and storage capacities are included to meet energy demands during temporary
events. The model is extended by a set of operating reserve provisions (ROR). Following the reserve
concept introduced by Mashayekh [136], each reserve provision (r) is described by five key
parameters: a response time (TOR,Rr ), a duration time (TOR,Dr ), a likelihood of occurrence (ρORr,t ),
time-dependent reserve requirements (aORr,k,t) for conversion, grid or renewable technologies and
reserve requirements (αOR,L) for energy demands. TOR,Rr describes the response time to ramp
up conversion or adapt dispatch of storage units. TOR,Dr defines the maximum duration of the
reserve. The timing assumptions are visualized in Figure 3.5. An operating reserve is activated
if a technology is enforced to change its operating set point, e.g., during an outage. All other
technologies of the energy supply system can change their set points in response to this event
within TOR,Rr . After the response time, all energy demands are supplied for a maximum duration
TOR,Dr . The energy supply system needs to be able to provide operating reserves at each time step
of the entire planning horizon.

Operating reserves are formulated as additional dispatch equations described by continuous
variables PORk,r,i,t ∈ R+ for each reserve provision r and each time step t. Therefore, each operating
reserve provision introduces an additional set of power flow constraints to the optimization model.
These constraints ensure that the system comprises sufficient operating reserve capacities to meet
energy demands during short-term imbalances.

∑︂
(k,i)∈KOutn

POR,Outk,i,r,t ≥
∑︂

(k,i)∈KIn
n

POR,Ink,i,r,t +
∑︂
i∈Ln

POR,Ln,i,r,t ∀n ∈ N, r ∈ ROR, t ∈ T (3.52)

Technical constraints for each technology class are formulated analogously to the model equations
in Section 3.2. The contribution of a conversion or grid technology is limited by its dynamic
capabilities and its availability.5 These technical boundary conditions are considered by two
additional constraints: Dynamic capabilities of conversion technologies are modelled by maximum
5Operating reserves are included in planning models to ensure sufficient equipment capacities for short-term imbalances.
In this context, relevant imbalances particularly refer to negative changes in power dispatch, either from sudden
generation drops or from demand peaks. Positive power imbalances result from generation peaks and demand
drops. They may have a minor impact on dispatch strategies, e.g., due to minimum part-load ratios of conversion
technologies. However, positive imbalances have a negligible impact on strategic design decisions.[102] Consequently,
ramping down and minimum part-load ratios are omitted by the proposed operating reserve concept.
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Figure 3.5.: Timing assumptions for operating reserve concept. The system adapts its dispatch
for an unexpected change at time t0 within a response time TOR,Rr and for a duration
TOR,Dr (a). The reserve constraints are introduced for each time step of the entire
planning horizon (b).

ramping rates (rUpk ) which describe the maximum change of the operating set point within TOR,Rr .
Operating reserve provisions describe contingency events in which only a subset of technologies is
available whereas other technologies cannot contribute, e.g., due to unexpected technical failures
or grid outages. The unavailability is described by discrete factors aORk,r,t ∈ {0, 1} which define if a
grid or conversion technology k at time step t is available (0) or not available (1). Operating reserve
calls are considered as short-term and rarely occurring events. Demand-related costs associated
with the provision of reserve, e.g., for fuel purchase, are thus not included in the formulation of
the optimization model. Integrating temporary unavailability of grid and conversion technologies
enforces the system to provide sufficient backup capacities during these times.

PORk,r,t − Pk,r,t

TOR,Rr

≤ r
Up
k PRk,y ∀k ∈ {KG,KC}, r ∈ ROR, t ∈ T (3.53)

PORk,r,t ≤ (1− aORk,r,t)uk,tP
R
k,yB

Opr
k,t ∀k ∈ {KG,KC}, r ∈ ROR, y ∈ Y, t ∈ Ty (3.54)

Storage technologies contribute as a backup option to operating reserve requirements. Contributions
of storage technologies are limited by their energy content and required duration TOR,Dr of the
reserve provision r. An empty storage cannot contribute to the reserve whereas a fully charged
storage technology can contribute with its rated power (PRk,y). Operating reserve requirements are
considered as short-term events. Therefore, self-discharge losses during the operating reserve and
the recharging process after the operating reserve are not included in the reserve concept.
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(︄
ηChk POR,Ink,0,r,t +

1

ηDchk

POR,Outk,0,r,t

)︄
TOR,Dr ≤ Ek,t − SOCk,tC

R
k,y ∀k ∈ KS , r ∈ ROR, y ∈ Y, t ∈ Ty

(3.55)

Wind turbines and photovoltaic introduce short-time volatility, in particular during cloudy periods
and low wind periods. The energy supply system needs to balance sudden production decreases
from renewable generation. The required reservemargins are thus described by time-dependent and
continuous factors aOR,Renr,k,t ∈ [0, 1]. Higher values for aOR,Renr,k,t lead to higher reserve requirements
and higher backup capacities.

PORk,r,t ≤ (1− aOR,Renk,r,t )ufixk,tP
R
k,y ∀k ∈ KR, r ∈ ROR, y ∈ Y, t ∈ Ty (3.56)

Energy demands are typically represented by load profiles which are derived from on-site monitoring
systems. The representation by measured load profiles typically provides average (hourly) values
which do not account for temporary peak demands, e.g., during process starts. However, energy
supply systems need to reliably serve these intermittent demands. The required reserveis defined
by a time-dependent relative factor αOR,L,relr,n,t ∈ [−1, 1] and an absolute power factor αOR,L,absr,n .
Higher values for αOR,L,rel and αOR,L,abs lead to higher reserve requirements and higher backup
capacities.

POR,Ln,i,r,t ≥ (1 + αOR,L,relr,k,t )PL
n,i,t + αOR,L,absr,n ∀n ∈ N, i ∈ Ln, r ∈ ROR, t ∈ T (3.57)

POR,Ln,i,r,t = P
L
n,i,t ∀n ∈ N, i ∈ Lfixedn , r ∈ ROR, t ∈ T (3.58)

Interruptible loads (Lcurtail) can be reduced for short times, as described in Section 3.2.6. The
reduction of energy demands for reserve provision is associatedwith penalty costs cL,curtailn,i,r,t depending
on the time-dependent likelihood ρORr,t of an activation of the operating reserve.

POR,Ln,i,r,t ≤ P
L
n,i,t ∀n ∈ N, i ∈ Lcurtailn , r ∈ ROR, t ∈ T (3.59)

ζLn,i,y =
∑︂

r∈ROR

∑︂
d∈Dy

wd

∑︂
t∈Td

ρORr,t c
L,curtail
n,i,t (P

L
n,i,t − POR,Ln,i,r,t) ∀n ∈ N, i ∈ Lcurtailn , y ∈ Y (3.60)
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3.4.2. Redundancy allocation

Optimal energy supply concepts comprise sufficient capacities to meet critical energy demands
during long-term equipment unavailabilities. These unavailabilities occur during maintenance
periods and technical malfunctions of equipment and last for several days. They occur only rarely.
Therefore, engineering practice ensures security of supply for the unavailability of one technology
at the same time (N-1 criterion) [102], [136], [137]. Volatile renewable generation and storage
technologies are excluded from this concept due to their intermittent behavior.6 Reserve capacities
thus need to be provided by the remaining conversion, grid, and line technologies. The introduction
of redundancy requirements enforces either technologies with rated sizing larger than their nominal
operating levels or additional backup technologies. Backup technologies can provide additional
benefits during normal operation. For instance, a backup Diesel generator might be effectively
used for peak load management. The integration of redundancy requirements in the optimization
model allows to consider these benefits for the technology selection and sizing.

Introduction of redundancy requirements ensures (N-1) security of energy supply. This work applies
an integrated approach for various energy commodities extending the approach of Hollermann
in [102]. The proposed redundancy concept accounts for unavailabilities for all parts of energy
supply system including electricity, steam, heating, and cooling. The impact of sector-coupling
technologies such as cogeneration plants and heat pumps is directly considered in the techno-
economic optimization model. A redundancy requirement r ∈ RRED is formulated as additional
power flow constraints for each set KRED,Outn,r ⊆ KOutn of conversion, grid and line technologies
with redundancy requirements and identical output commodities. In contrast to the operating
reserve concept, the additional constraints are time independent and formulated for each extension
stage y. The concept introduces a variable for the worst possible loss (PRED,Worstr,y ∈ R+). PRED,Worstr,y

describes the power capacity loss from a failure of the largest unit of a technology. If the optimized
system is able to meet all critical loads under the worst possible loss, it can handle all other possible
failures.

∑︂
(k,i)∈KOutn,r

PRED,Outk,r,i,y − PRED,Worstn,r,y ≥
∑︂

(k,i)∈KInn,r

PRED,Ink,i,r,y + pRED,Ln,y ∀n ∈ N, r ∈ RRED, y ∈ Y (3.61)

PRED,Worstn,r,y ≥ PRED,Outk,i,r,y ∀n ∈ N, r ∈ RRED, (k, i) ∈ KRED,Outn,r , y ∈ Y (3.62)

Constraints for the technology base class are formulated analogously to equations in Section 3.2.
In this context, time-dependent efficiencies are approximated with the minimum value which
corresponds to the worst possible constellation. The proposed concept for redundancy allocation
thus results in conservative design concepts for energy supply systems. Redundancies are allocated
by implementing several smaller and standardized units of conversion technologies rather than
one large unit. Modeling this effect requires the introduction of discrete unit capacities for selected
energy converters KDiscC ⊆ KC . The continuous capacity variable PRk,y is thus enforced to be a
multiple of a defined unit size uDisck by adding an integer variable NRk,y ∈ N to the optimization
problem.
6Storage technologies with long cycles of multiple weeks might be able to provide the required reserve. These types of
storages have not been in the scope of this work as outlined in Section 3.2.
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PRk,y = uDisck NRk,y ∀k ∈ KDiscc , y ∈ Y (3.63)

PREDk,r,y ≤
NRk,y − 1

NRk,y
PRk,y ∀k ∈ KDiscC , y ∈ Y (3.64)

Energy demands are represented as critical demands (pRED,Ln,y ) at each node n in the proposed
redundancy allocation concept. Within this work, pRED,Ln,y are estimated from peak demands of load
profiles in each extension stage y.

The combination of redundancy allocation and operating reserve ensures security of supply under
uncertainty in energy demands, renewable generation, and technology availability. Thereby, the
developed optimization model can derive highly robust design concepts which reliably serve
production processes in industrial sites.

3.5. Objective function

Techno-economic optimization models target at optimal energy supply concepts comprising both
equipment design decisions and an operational schedule. The optimal concept is computed by
minimizing the objective function. The objective function represents the total project costs (TC)
over the entire planning horizon: It summarizes capital expenditures (ζCAPEXs,y ) and operational
expenditures (ζOPEXs,y ) as well as costs for load curtailment (ζLs,y) for each stakeholder s. The
introduction of stakeholders enables the modeling of complex ownership models, in particular
if the site owner is more interested in procuring energy services than investing in energy supply
infrastructure. Beyond the site owner, stakeholders related to industrial energy supply infrastructure
are energy service companies or adjacent facility owners. Stakeholders differ in interest rates is
reflecting costs of capital and margin expectations. The modelling of ownership structures and
service contracts is highly project dependent. A good review is provided in [138]. Therefore,
this work limits itself to single party models where the site owner purchases and operates all
technologies.

min
P R,CR

TC = min
P R,CR

∑︂
s∈S,y∈Y

(︁
ζCAPEXs,y + ζOPEXs,y + ζLs,y

)︁
(3.65)

ζCAPEXs,y are calculated from the annualized investment costs of all assets K(s) ⊆ K belonging to a
stakeholder s. Investment costs are divided into a fixed part (cInv,fixk,y ) and a variable part (cInv,vark,y ).
Storage technologies comprise additional terms cInv,capk,y for capacity related investment costs. The
cost terms are assumed to include all relevant grants and subsidies. Investment costs are annualized
along the entire technical lifetime (yTechk ). The annuity factor (afk) depends on the interest rate
(is) of the stakeholder.
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ζCAPEXs,y =
∑︂

k∈K(s)

ζCAPEXk,y (3.66)

ζCAPEXk,y =

y∑︂
y1=min{y0,y−yTechk }

afk,y1ζ
Inv
k,y1 (3.67)

ζ Invk,y =
(︂
cInv,fixk,y + cInv,vark,y P Invk,y

)︂
BInvk,y ∀k ∈ {KC ,KG,KL,KR}, y ∈ Y (3.68)

ζ Invk,y =
(︂
cInv,fixk,y + cInv,vark,y P Invk,y + c

Inv,cap
k,y C Invk,y

)︂
BInvk,y ∀k ∈ KS , y ∈ Y (3.69)

afk,y1 =
(1 + is)

yTechk is

(1 + is)
yTechk − 1

(3.70)

ζOPEXs,y summarizes the operational expenses of all technologies K(s) ⊆ K belonging to the
stakeholder s. The operational costs have been defined for each technology base class in Section 3.2.
Costs for load curtailment are handled analogously.

ζOPEXs,y =
∑︂

k∈K(s)

ζOMk,y (3.71)

ζLs,y =
∑︂
n ∈ N

∑︂
i ∈ Ln(s)

ζLn,i,y (3.72)

Investment planning for energy supply infrastructure is based on long-term projections of energy
demands, fuel prices and the regulatory framework. These projections introduce significant
uncertainty to the planning process. The presence of uncertainty in decision-making processes
cannot be adequately represented by stochastic attributes, as outlined in Section 2.2. Therefore,
rigorous sensitivity analysis is a widely accepted approach to handle uncertainty. Sensitivities
improve the understanding of uncertainty impact and thus ensure the robustness of the design
concept. A common approach for sensitivity analysis is the computation of trade-offs between
one or several conflicting key performance indicators (KPIs). Typical KPIs in design of energy
supply infrastructure are investment costs, primary energy consumption and carbon footprint.
Trade-off analysis is frequently also referred to as multi-objective optimization [139], [140]. The
computation results of a trade-off analysis can be visualized in Pareto curves.

This work applies a lexicographic optimization approach to compute trade-offs, as suggested by
[29]. The system design is computed from the defined objective function, which represent the
total financial expenses along the planning horizon. The trade-off is determined by adding an
ϵ constraint for the conflicting KPI to the optimization model. This constraint defines an upper
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bound for the KPI. Parametric variations of the upper bound lead to intermediate points. Each
point defines a Pareto optimal trade-off between total project costs and the analyzed KPI. The
most common trade-off in energy system design [29], [141] is the relation of project costs and
carbon emissions. Therefore, the corresponding ϵ constraint is shown in Equation 3.73. Analogous
constraints are added for investment costs and other ecological parameters. ϵCO2y can be interpreted
as the maximum carbon budget within one extension stage. Stepwise adaptation of ϵCO2y in multiple
scenarios enables the computation of transformation concepts to reach various decarbonization
targets.

∑︂
k∈K

ζCO2k,y ≤ ϵCO2y ∀y ∈ Y (3.73)

3.6. General assumptions

The developed techno-economic optimizationmodel enables analyses of multi-year, multi-stakeholder,
multi-location, multi-energy, and multi-objective transformation concepts. KPIs derived from the
model can provide the basis to generate and compare multiple design variants. The proposed
methodology is based on several key assumptions. Feasibility studies are made under significant
uncertainties, as outlined in Section 3.1. Therefore, authors in [27], [48], [78], [142] take the
presented model accuracy as sufficient for techno-economic feasibility studies in distributed energy
systems.

• Linearized power flow: The power flows within the locations of an energy supply system are
based on economic optimization. Properties of the physical power flow such as temperatures,
pressures and voltages cannot be directly accessed within the proposed model formulation.
Technical constraints and optimization potentials, e.g., avoidance of voltage range violations
or savings from lower flow temperatures, cannot be directly determined from the proposed
optimization model. However, the model considers multiple discrete voltage or temperature
levels as commodities to capture the relevant techno-economic implications for strategic
planning. If discretizations are not sufficient, detailed analysis might be conducted with
additional simulation techniques to study voltage bounds and temperature drops. Results
from the detailed analysis can be fed back as operational constraints in the proposed techno-
economic model formulation.

• Perfect foresight: The model formulation assumes perfect foresight for demands, solar irradi-
ation and wind velocities along the entire planning horizon. However, real-world controllers
have limited foresight on demand peaks and the short-term variability of photovoltaic. There-
fore, realistic control strategies are suboptimal. The impact of suboptimal strategies can be
considered as operating reserve requirements based on an additional analysis of forecasting
errors and dynamic capabilities of supply equipment in the proposed methodology.

• Deterministic price and demand projections: Prices and demands are assumed to be
known along the entire planning horizon. Macroeconomic coupling effects, e.g., learning
curves for novel technologies, are considered as exogenous variables inside the planning
model. The stakeholder model represents a basic ownership structure. This approach does

42



not fully reflect complex financing and stakeholder models. However, these details might be
defined in later stages of an energy consultancy project.

• Minimized lifecycle costs: Investment and operational decisions are made by minimizing
the lifecycle costs along the entire planning horizon. Other intangible aspects in planning
processes such as ease of permitting or technology experience of the staff are not directly
addressed within the proposed methodology. Moreover, all technologies are assumed to be
available at the beginning of an extension stage. Delays in project development, e.g., due to
shortage of skilled workers or approval processes by regulatory authorities, can be addressed
via sizing constraints. These constraints are highly stakeholder specific and thus not further
discussed here.
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4. Optimization framework

The proposed model formulation from Chapter 3 is integrated in an optimization framework. The
framework ensures an effective solving process to determine multiple design variants in practical
times. An overview of the framework components is provided in Figure 4.1. The components
include strategies for time series aggregation outlined in Section 4.2 and a heuristic decomposition
approach for transformation roadmaps described in Section 4.3. The optimization functionality is
implemented as a sizing service in .NET Standard 2.0. Thereby, the optimization functionality of
the framework can be accessed both via a newly developed desktop application for expert users
and in customized cloud applications for enlarged user groups.

4.1. Concept overview

Techno-economic planning models support energy system planners and consultants to compare
multiple design variants and finally select a sustainable design concept, as outlined in Chapter 2.
Therefore, the optimization model introduced in Chapter 3 is integrated into an optimization
framework. The framework implements a sizing service which allows to solve optimization models
computationally effective. The sizing service comprises three aggregation strategies for time series
and four investment strategies for multi-year transformation roadmaps. These strategies allow
reducing computational complexity with limited impact on the solution accuracy. Details on
these strategies are provided in the following sections. The optimization framework supports
computation of multiple design variants via scenario and sensitivity analysis. Scenario analyses
enable a variety of adaptations such as changes of weather years, available technologies or solving
strategies. In contrast, sensitivity analyses focus on design trade-offs and apply changes to a
single parameter such as the carbon budget, gas prices or photovoltaic investment costs. The
underlying optimization models for both scenarios and sensitivities are sequentially computed.
The optimization model is formulated in the mathematical programing language AMPL [143].
and translated into auto-generated C# code with AutoLP [144]. The model is solved either by the
open-source solver SCIP 7.0.1 [145] or the commercial solver Gurobi 9.1.0 [21]. Results presented
in this work are based on computations with Gurobi. The deterministic nature of the optimization
framework ensures comprehensibility and reproducibility of results. All computations presented in
this Thesis have been computed on a 2.2 GHz and 256 GB RAM machine with 24 physical processor
cores employing up to 7 threads.
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Figure 4.1.: Overview on components of the mm.esd sizing service

4.2. Aggregation approaches

Optimization models for industrial energy supply systems are computationally demanding, particu-
larly if multiple technology and tariff options with discrete characteristics are included. Commercial
solvers have improved in recent years, as outlined in Section 1.1. However, solving of complex
models for an entire year (8760 h) for each extension stage y takes up to several days computation
time [88]. This is impractical for daily applications of energy system planners and consultants.
Therefore, the complexity needs to be effectively reduced. A widely accepted technique for com-
plexity reduction is time series aggregation [80], [118], [119]. Time series aggregation targets at
reducing the number of time steps in the optimization model. Instead of modeling the dispatch in
each hour of a year, the operational statistics are approximated from a set of representative days
or weeks, as outlined in Section 2.5. If these representative periods capture all relevant statistical
information of the entire year, the model is solved faster without significant loss of modeling
accuracy [51]. Time series aggregation requires approaches to derive these representative periods
from the relevant time dependent attributes of the optimization model. This work proposes a
newly developed medoid-based clustering algorithm.

This Thesis compares three strategies for time series aggregation: a full-scale problem (FSP),
a seasonal period selection (SPS) and an optimized period selection (OPS). The strategies are
sequentially applied to each extension stage of the optimization model. The FSP approach describes
the baseline with operational variables and constraints for an entire year with 8760 h. For the
SPS, all time series for the entire year are divided into a set D of candidate representative periods
depending on a pre-defined length. Typical industrial energy supply systems include daily patterns
for operation. Within this work, the length of representative periods is defined as 24 h.7 The
7The proposed approach can be applied to energy systems with short-term storages with daily or weekly storage cycles.
Energy supply systems with strong seasonal dependence might anticipate solutions with mid- to long-term storage
technologies as part of an optimal solution. These technologies require advanced modeling techniques which are
described in [122].
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SPS approach selects a pre-defined number of seasonally distributed periods DRepr. Correlations
between the attributes are preserved as the representative periods are directly extracted from
DRepr ⊂ D. However, the SPS approach omits statistical information of the time series attributes.
The weight factor wd is thus equal for all representative periods derived by SPS.

Statistical information of the relevant time series is used in the optimized period selection (OPS).
The relevant time series are referred as a set of attributes A in the following. Attributes are related
to time varying energy demands, renewable generation profiles and market price signals within this
work. The proposed algorithm derives an optimal selection DRepr of nRepr representative periods
from n candidate periods based on information in A. The selection of time periods is purely driven
from the input data of the planning model which is available in early planning stages. Additional
information is not considered, e.g., the share of renewables to weight the impact of renewable time
series. OPS is based on a five-step procedure illustrated in Figure 4.2. In a first step, all relevant
time dependent attributes are divided into candidate periods D. Periods with peak demands are
assigned to a set of extreme periods. These are enforced to be included in DRepr. Afterwards, all
attributes are normalized. A distance matrix L is computed describing the similarity of candidate
periods. The integer program (IP) model is formulated based on L and solved by the commercial
solver Gurobi. The last step assigns the representative periods based on the solution of IP. The
IP derives weight factors for each representative period. These factors are directly included in
the optimization model. The methodology is repeated for the time depending attributes of each
extension stage sequentially.

Time-varying attributes have different numerical ranges. A generation profile for photovoltaic is
typically normalized to values between 0 and 1 whereas load profiles might comprise five-digit
peak demands. Clustering these attributes would result in a bias with a preference to attributes
with larger numerical values. The impact can be limited by normalization techniques. Therefore,
all attributes xa,d,t are scaled to mean zero and standard deviation one ("z-normalization").
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x̃a,d,t =
xa,d,t − µa

σa
(4.1)

The normalized attributes x̃a,d,t allow the computation of the distance matrix L. L describes the
dissimilarity of a period and its representative period. This work employs the Euclidean distance
to compare values of attributes a and time steps t between two candidate periods i and j. The
matrix is symmetric (li,j = lj,i). This characteristic is used to simplify the calculation of L.

li,j =

√︄∑︂
a∈A

∑︂
t∈Ti

(x̃a,i,t − x̃a,j,t)2 (4.2)

L =

⎡⎢⎢⎢⎢⎣
0 l1,2 . . . l1,n

l1,2
. . . l2,n−1

...
... l2,n−1

. . . ln,n−1

l1,n . . . ln,n−1 0

⎤⎥⎥⎥⎥⎦ (4.3)

L summarizes the parameters for the formulation of the IP. The formulation of the IP is given in
Equations 4.4. Binary variables Bi,j ∈ {0, 1} indicate whether the period i of the original attribute
is represented by a period j in the aggregated set. The objective function targets at minimizing
the sum of dissimilarities indicated by the elements in L. Each period needs to be assigned to
exactly one representative period (Bj,j = 1). The operation during peak periods typically defines
the capacity for peak technologies. Therefore, candidate periods DPeak with peak demands are
enforced to be included in the set DRepr of representative periods.

min
B

∑︂
i∈D

∑︂
j∈D

li,jBi,j (4.4)

∑︂
j∈D

Bj,j ≤ nRepr (4.5)

∑︂
j∈D

Bi,j = 1 ∀i ∈ D (4.6)

Bi,j ≤ Bj,j ∀i, j ∈ D (4.7)
Bj,j = 1 ∀j ∈ DPeak (4.8)

The integer program is solved till optimality by one of the solvers denoted in the previous section.
This approach guarantees deterministic and robust results. Solving times are below 10 seconds [51]
and thus not further discussed in this work. The set DRepr comprises those periods j with Bj,j = 1.
Both regular and extreme periods are included in DRepr. In contrast to regular periods, extreme
periods occur only rarely. The operation during extreme periods thus has a smaller influence on
annual operational expenses such as fuel costs. The optimization model accounts for this fact by
weight factors wj =

∑︁
i∈D(Bi,j) introduced in Chapter 3. This approach helps to preserve annual

statistics of energy demands, market prices and renewable generation. The proposed algorithm is
applied to each extension stage before solving the multi-year system model.
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4.3. Roadmap strategies

The multi-year model determines transformation roadmaps including multiple extension stages.
Transformation roadmaps comprise recommendations for the evolution of an energy supply system:
Capital intensive investment decisions might be delayed in a "wait-and-see" strategy. Recourse
actions can be taken in case of unfavorable developments. Existing equipment is replaced after the
end of its lifetime [50]. This gives decision makers additional transparency but adds additional
computational complexity to the system model. This work proposes four strategies for roadmap
computation. The strategies are illustrated in Figure 4.3.

Integration of long-term trends in planningmodels requires projections of all future on-site demands,
energy procurement prices and technology developments as well as corporate policies such as
decarbonization targets. These projections can be directly applied to optimize investment decisions
using the model from Chapter 3. All extension stages are integrated in a single optimization model
(Y = Y′) assuming perfect knowledge on future developments. The described approach is referred
to as the roadmap approach with perfect foresight (PERF) in the following. PERF determines a
cost-optimal transformation strategy over the entire planning horizon. Consequently, the approach
comprises adaptive investment decisions and thus enhances robustness of energy supply concepts
to projected long-term trends. However, the recommended decisions are highly dependent on the
accuracy of input data. For example, an investment for a cogeneration plant might be based on the
assumption of future rising electricity market prices. Input data is based on long-term projections
of economic, political, and technological developments. These projections are known to comprise
significant uncertainty. Therefore, three alternative strategies are introduced in this work. The
reference (REF) strategy describes a strategy with minimal investments. Existing equipment is
replaced by identical equipment at the end of its technical lifetime. The strategy is implemented
by adding two constraints to the optimization model: The design remains constant over the entire
project lifetime (4.9). No new equipment is added in first extension stage y0 (4.10). The models
for each extension stage are thus decoupled and are solved independently.
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PRk,y = PRk,y0 ∀k ∈ K, y > y0 (4.9)

PRk,y0 = P Instk ∀k ∈ K (4.10)

In contrast, the forward-looking design approach (FLA) optimizes a design concept over the entire
planning horizon. Therefore, the installed capacities of all technologies remain constant over the
extension stages (4.9). However, investment decisions can be made in the first extension stages
impacting the design and operation in all future extension stages. The planning philosophy in FLA
assumes perfect knowledge on all future developments and thus results in a cost-optimal solution.
However, the value of adaptive decisions, e.g., the delayed installation of battery storages, is not
included in the FLA. This limitation is overcome by the roadmap approach with myopic foresight
(MYOP). MYOP optimizes equipment and dispatch strategy in each extension stage starting with
the first extension stage y0. The optimizations for the following extension stages allows for new
investment and replacement decisions considering previously installed equipment with respect to
its end of lifetime and adapt the energy supply system to changing boundary conditions. MYOP
is based on myopic foresight. Long-term trends evolve in a rolling horizon schema: Therefore,
all decisions are not based on projected long-term trends, but rely on on-site demands, energy
procurement prices and regulatory framework of the respective extension stage.

4.4. Software architecture

The described optimization model is the core of the newly developed prototype expert tool mm.esd
for multi-modal energy system design. The functionality of the framework has been successfully
benchmarked to a model of Thiem [27] for case studies of an office building, a city district and an
airport. Reliability of novel features is ensured by automatic software unit tests. The described
framework depicts the sizing service in the server application which enables users to compute
multiple projects on a well-equipped remote machine with 24 physical processor cores in parallel.
The remote service makes computation of complex projects practically feasible for energy planners
and consultants.

The sizing service on the remote machine can be accessed via a newly developed desktop application.
Users can analyze both input and result data in this desktop application. The user interface of
the desktop application is shown in Figure 4.4. The application allows to define all relevant
project information. The characteristics of input time series is displayed in a statistics table and
in various plotting formats. In a second step, the user selects assets and determines the relevant
techno-economic parameters. The user interface supports the import of models from an extensive
internal database and the formulation of custom models for sector-specific technologies. In a
third step, scenarios are defined. Each scenario can comprise a sensitivity analysis. The available
technology set in each scenario is visualized in automatically generated topology graphs. A selection
of scenarios is sent to the server for computation. After completion of the solving process, the
optimization results can be directly analyzed in 18 result categories with up to six different
subgraph types. The interactive visualization capabilities include pie charts, heatmaps and Sankey
diagrams which are created with the JavaScript libraries D3.js and Plotly.js and rendered in an
embedded Chromium browser. All numerical data can be easily imported and exported to Excel
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Figure 4.4.: Client application of the newly developed prototype tool mm.esd for multi-modal
energy system design

worksheets for exchange with customers and other researchers. Moreover, technology and scenario
names as well as colors can be dynamically updated. Input and result data are saved in a dedicated
format. The optimization results for different projects can be merged. This enables a comparison
of key performance indicators across multiple energy consultancy projects.

The introduced optimization framework is actively employed in commercial consultancy projects
for more than two years. The user community counts for 30 energy experts in December 2022.
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5. Results

Optimization-based design approaches enable energy system planners and consultants to make
faster and more accurate decisions for sustainable industrial energy supply systems. This chapter
highlights selected features of the newly developed optimization framework for three use cases
derived from German industry. Energy supply systems of the brownfield sites are introduced in
Section 5.1. Potential cost and carbon savings by optimization measures are calculated from an
entire representative base year in Section 5.2. Calculations based on an entire representative year
introduce significant computational complexity. Therefore, time series aggregation is applied in
Section 5.3. Section 5.4 analyzes the robustness of the identified saving potentials to long-term
changes in prices and demands. A detailed technical analysis including security of supply constraints
for maintenance periods and unit failures is provided in Section 5.5. Finally, opportunities and
limitations of the exemplary use cases are summarized in Section 5.6.

5.1. Use case descriptions

The suitability of the proposed methodology is highlighted by simulative evaluations of three use
cases. The use cases illustrate production facilities from automotive, pharmaceutical and dairy
industry in Southern Germany.8 The use cases comprise multi-modal energy demands, which
are supplied by existing gas-fired boilers and compression chillers. Existing supply concepts are
optimized by investment in new supply equipment and adaptation of procurement tariffs. All
optimization measures are summarized in a technical superstructure. The relevant input data
for roadmap optimization is provided for the milestone years from 2023 to 2035. The design is
optimized in each extension stage considering installed equipment from previous periods. The
required investments are associated with an interest rate r of 7 %.

5.1.1. Energy demands

Industrial energy systems need to meet both production and building energy demands. These
demands comprise electricity for drives and lightning, steam for sector specific processes, space
heating in factory halls as well as cooling for building ventilation and process cooling. All energy
demands in the three sites are represented by hourly load profiles. Temperature and pressure
levels for steam, heating and cooling are assumed to be identical in all simulative evaluations. An
exemplary weekly pattern of electricity demand is visualized in Figure 5.1. The production starts
on Monday at 6 am and then continues till Friday 8 pm. Peak demands occur between 7 am and 4
8Case studies are derived from real-world sites in Germany. Energy demands and tariff details of the sites have been
simplified and anonymized for the illustrative purpose of this work.
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Figure 5.1.: Weekly pattern of electricity demand for automotive site in 2023

Table 5.1.: Multi-modal energy demands and projections for three industrial sites in Germany

Site Electricity Steam Heating Cooling Change 2030
GWh/a GWh/a GWh/a GWh/a %

Automotive 12.7 - 2.0 3.6 -13.5
Pharma 14.9 9.0 0.7 7.8 - 3.2
Dairy 15.8 50.4 - 27.0 -2.0

pm. The electricity demand is significantly lower during the weekend. Production interruptions,
e.g., due to plant holidays, occur only rarely for this site. The production is interrupted for two
weeks in December only.

Total annual energy demands for the three sites are summarized in Table 5.1. Electricity demands
range from 12 GWh/a to 16 GWh/a. Moreover, all sites comprise demands for process cooling
which are not included in the electricity demands. The automotive and pharmaceutical site
comprise additional demands for space heating with a seasonal pattern. The pharmaceutical and
dairy sites require significant amounts of steam for production. Demand changes till 2030 are
employed for roadmap optimization. Production volumes are assumed to remain constant along
the planning horizon. Demand developments reflect the continuous implementation of energy
efficiency measures based on the analysis in [146]. The automotive site is assumed to follow
a progressive implementation of efficiency measures whereas the pharmaceutical site follows a
moderate and the dairy a conservative implementation strategy.

5.1.2. Energy procurement

Industrial sites have typically higher on-site energy demands than on-site potential for renewable
generation. Therefore, energy needs to be procured from energy markets. Energy procurement is
technically feasible via the public power and natural gas grid connection. Solid fuels such as wood
pellets are supplied via trucks. Different sources of energy procurement are implemented as grid
technologies introduced in Section 3.2. The assumptions for costs and emission factors including
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Table 5.2.: Price and carbon footprint projections for energy procurement based on [148]–[150]
and own assumptions

Carrier Unit 2023 2026 2029 2032 2035

Electricity €/MWh (avr) 170 190 220 250 280
€/kWp/a 97 100 103 106 110
kgCO2/MWh 323 263 203 143 110

Natural gas €/MWh 75 120 130 140 150
kgCO2/MWh 210 210 210 210 210

Biomethan €/MWh 105 150 165 180 195
Wood pellets €/MWh 100 145 155 175 185
Carbon price €/tCO2 70 90 120 170 200

long-term evolution are summarized in Table 5.2. Electricity procurement is based on an energy
related Time of Use (ToU) tariff and a demand charge. Table 5.2 shows yearly average procurement
costs. Following the approach of Bahl [92], the tariff is determined from a fixed proportion and
the German spot market price. Spot market prices are extracted from the SMARD platform for
2020 [147] and adapted to projected increases in price levels. Periods with negative spot markt
prices are set to zero to avoid strong incentives to waste electricity in the planning model. Demand
charges reflect network costs and are calculated from the maximum power purchase. The German
regulatory framework derives network charges depending on grid utilization [148]. Network
charges for sites with constant grid utilization (> 2,500 h/a) are mostly based on demand charges.
Demand charges are reduced by 87 % for low grid utilization (< 2,500 h/a) and replaced by energy
related costs of 34 €/MWh. This regulatory framework condition is reflected by implementation of
two tariffs which are mutually exclusive via the technology link concept introduced in Section 3.3.
On-site generated electricity can be fed in the power grid and is rewarded by the hourly spot
market price. Both power and natural gas procurement are associated with carbon footprints. A
carbon price is considered for all on-site emissions from natural gas. The projected development is
taken from the analysis in [149]. Biomethane and wood pellets can be procured at significantly
higher costs. Their on-site use is not associated with carbon emissions.

5.1.3. Technical superstructure

The interface between energy procurement and energy demands is the on-site infrastructure
for electricity, steam, heating, and cooling supply. Figure 5.2 shows the technical superstructure
comprising the existing infrastructure equipment and possible technology extension options. The
superstructure assumes that all equipment is installed in a central technical center which supplies
the production facilities of the site. The existing energy supply concept of the three sites is based
on central gas-fired boilers and compression chillers. These boilers and chillers are assumed to be
at the end of lifetime and need to be replaced in three years. Steam and hot water systems are
connected via local heat exchangers. A connection to the power grid ensures a secure supply with
electricity.

The existing energy supply system can be extended by a set of possible technology options. Detailed
assumptions for the technology extension options are summarized in the annex in Tables A.1 to A.3.

55



Existing 
system

Technology
options

Cooling demand

Power gridNatural gas Biomethan

Electricity 
demand

Steam demand

Cold water tank

Compression chiller

Boiler (gas)

Battery

Process cooling

Electricity

Natural gas

Process steam

Space heating

Heat pump 
(air source)

Boiler (electric)

Absorption chiller

CHP (ICE)

PhotovoltaicWood pellets

Biomass

Boiler (biomass)

Heat pump 
(waste heat)

Hot water tankHeating demand

CHP (GT)

Figure 5.2.: Technical superstructure of multi-modal energy supply system. The existing equip-
ment meets electricity, steam, heating, and cooling demands. The energy supply
system can be extended by a variety of technology options.

New conversion and storage technologies are modeled with non-linear investment cost models.
Delays for construction are not considered for the simulative evaluations in this work. Therefore,
all options are immediately feasible. One technology option is the installation of a new combined
heat-and-power (CHP) plant. The CHP can be installed with internal combustion engines (ICE) for
small installations or with gas turbines (GT) for larger installations. Estimations for investment
and maintenance costs are size dependent following the intercept-slope approach described in
Section 2.3. Moreover, technology-specific minimum part-load ratios are considered. Simulative
evaluations are conducted in hourly time steps. All technologies are assumed to ramp up and
down significitantly faster. Therefore, ramping capabilities are not considered for this use case.
The high-grade waste heat from the flue gases is integrated into the steam supply system. Low
grade waste heat from engine cooling is used for space heating or process cooling by means of
absorption chillers. Steam can be alternatively generated from boilers. Fuel for CHP and boilers
can be selected from two gas tariffs with different costs and carbon emission factors.

Photovoltaic (PV) panels provide a renewable alternative for on-site electricity generation: Roof-top
PV panels can be installed on production or logistic halls, on administrative buildings or in parking
areas. Ground-mounted installations are built in the neighboring open spaces. Industrial sites
are often historically grown. Space restrictions limit on-site installation of PV. These limitations
require detailed on-site assessments and are not discussed in this Thesis. Consequently, potential
for roof-top and ground-mounted PV is assumed to be unlimited for the conducted simulative
evaluations. Hourly PV generation potentials are estimated based on the NASA climate reanalysis
(MERRA-2) [151]. The employed photovoltaic model from Pfenninger [124] considers azimuth and
tilt angle as well as system losses. The model has been validated for multiple sites. The time series is
shown in Figure 5.3. Electricity from photovoltaic is available in particular during noon in summer.
Generated electricity might exceed the demand of the factory during these times. Lithium-ion
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Figure 5.3.: Solar generation potential for a location in Southern Germany based on [124]

batteries help to increase the self-consumption rate of PV: They temporarily store excess electricity
for use during evening and night hours. Beyond optimization of self-consumption, value streams
for batteries include arbitrage trading and peak load management. Cost estimation for batteries
comprise fixed proportions for planning and installation, power-related proportions for the inverter
and capacity-related proportions for battery cells. Both investment and maintenance costs for
photovoltaic and batteries are assumed to decline in the next years. The detailed assumptions for
these trends are summarized in the annex in Table A.2.

Batteries are one technology option to decouple renewable generation and volatile demand. Hot
and chilled water tanks are alternative sources for flexibility: They act as buffers to meet peak
demands and integrate renewable excess energy. Power-to-heat technologies such as electric boilers
and heat pumps are options to integrate renewable electricity in thermal supply systems. The
coefficient of performance (COP) of the heat pumps is derived from the Carnot efficiency (ηCarnot)
with an effective efficiency (ηHP) rate of 0.5 [152]: The COP is depending on the temperature
(ϑSource) of the heat source and the flow temperature (ϑSupply) of the heating system.9

ηCarnot = ηHP
ϑSupply

ϑSupply − ϑSource
(5.1)

The heating system is assumed to be operated at constant flow temperatures ϑSupply = 75 ◦C
throughout the year. Low grade waste heat with ϑSource = 40 ◦C is available during working shifts.
Air source heat pumps use ambient air with varying temperatures as a heat source and thus have a
seasonal depending COP. Energy efficiency ratios (EER) of the compression and absorption chillers
are taken from the normative standard DIN 18599-7 [153].
9Temperatures ϑ for Carnot efficiencies refer to absolute temperatures in Kelvin.
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5.2. Optimized energy supply

The proposed methodology derives key performance indicators for preliminary design variants
of multi-modal coupled supply systems for electricity, steam, heating, and cooling. The following
section shows exemplary results for the automotive site in the base year 2023. This discussion shall
illustrate possible results during an early phase of a consultancy project. Moreover, it highlights the
correct implementation of energy balances and technology models. The evaluation is conducted
in three scenarios: a baseline scenario, a cost optimal scenario and carbon optimal scenario. The
baseline scenario describes the existing concept for energy supply with a gas fired boiler for heating
and a compression chiller for cooling demands. This concept is optimized in the cost optimal
scenario by minimizing the total project costs. The carbon optimal scenario also minimizes total
project costs while avoiding any emissions in Scope 1. The resulting design concept thus determines
an optimal setup without on-site use of natural gas.

Key indicators for economic, ecological and energetic performance
Key performance indicators (KPIs) for the three scenarios are shown in Figure 5.4. The existing
supply concept costs 2.8 M€/a and causes 4.9 kt/a of carbon emissions. An upgrade of the energy
supply infrastructure significantly reduces both costs and emissions: The cost optimal scenario
results in 6.4 % lower costs and 21 % lower carbon emissions. The carbon optimal scenario avoids
any on-site use of fossil fuels and leads to even higher reductions of carbon emissions (26 %)
compared to the baseline scenario. The upgrade of the energy supply concept requires investments
which are estimated with 4.2 M€ and 5.1 M€ for the cost and carbon optimal scenario respectively.

Rated power and storage capacities are summarized in Table 5.3. The annual energy and peak
flows of the cost optimal scenario are visualized in Figure 5.5. Storage losses and ambient heat
sources or sinks are not shown in the Sankey diagram to enhance clarity of the economic relevant
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Figure 5.4.: Key performance indicators (KPIs) for three exemplary scenarios of a German auto-
motive site
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flows. The design of the baseline scenario is limited to installed equipment capacities with a
950 kW compression chiller and 1500 kW gas-fired boiler. The power grid provides electricity for
on-site demands including compression chillers. The heating supply system is based on gas-fired
boilers and meets the on-site heating demands. Auxiliary demands for boilers are not considered
within this work. Therefore, the electricity and heating system are decoupled. In contrast, the
energy supply systems for electricity, heating and cooling are strongly coupled in the optimized
design scenario: The gas-fired boilers are only used as backup equipment in the optimized scenario:
The utilization is reduced from 2.0 GWh/a to 0.1 GWh/a. Heat is generated by a newly installed
CHP plant with internal combustion engine (ICE). Hot and cold water tanks provide sources of
flexibility: Cold water tanks of 1.97 MWh enable a flexible operation of compression chillers during
low electricity prices. Hot water tanks of 3.07 MWh balance waste heat from the CHP plant and
heating demand. A photovoltaic plant of 2.3 MW provides renewable electricity to the system.
The carbon optimal design comprises a slightly larger photovoltaic installation of 2.4 MW. The
CHP plant is not part of the carbon optimal design concept. Heating demand is met by a 508 kW
heat pump which uses the on-site waste heat potential. A biomass boiler with 637 kW capacity is
used during cold periods with peaks in space heating demands. Additional details on the carbon
optimal scenario are provided in Figure A.1. The optimization framework is able to automatically
derive the economic, ecological and energetic KPIs for different design variants. Economic and
ecological KPIs are directly visualized in bar charts enabling easy comparison of multiple scenarios.
Sankey charts depict the energetic KPIs in hourly, monthly or annual aggregation. The developed
visualizations clarify the value of multi-modal coupling in industrial energy supply systems for
relevant stakeholders, e.g., factory management.

Table 5.3.: Rated power and storage capacities for the automotive site in three scenarios for the
base year 2023

Technology Unit Baseline Cost optimal Carbon optimal

Photovoltaic kW - 2307 2353
CHP (ICE) kW - 632 0
Boiler (gas) kW 1500 308 0

Boiler (biomass) kW - 0 637
Compression chiller kW 950 744 786

Heat pump (waste heat) kW - 0 508
Hot water tank kWh - 3066 4152

Chilled water tank kWh - 1972 2486

Intradaily and seasonal dependence of energy demands and renewable generation
Industrial energy systems comprise intradaily and seasonal demand patterns as well as complex
procurement tariffs. The following section highlights how these requirements are considered in
the optimization for the example of the cost optimal scenario.

Solar generation from photovoltaic and space heating demands show a strong seasonal dependence.
Heating demand accounts for 361 MWh in December compared to 36 MWh in July. In contrast,
the solar plant generates only 2.5 % of its annual yield in December, but 13.4 % in July. The
seasonal dependence is captured in the proposed optimization approach: The monthly energy
balances for generation and supply with electricity, heating and cooling is shown in Figure 5.6
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Figure 5.5.: Sankey charts for the cost optimal scenario of automotive site. The Sankey chart
provides an overview of annual energy flows and peak utilization in a multi-modal
coupled energy supply system.

for the optimized design scenario. The cooling demand is almost fully supplied by compression
chillers. The compression chillers account for 9.0 % of electricity consumption. This share remains
roughly constant throughout the year as the cooling demand is related to production processes.
In contrast, the share of solar generation shows a yearly pattern: The photovoltaic plant delivers
32 % of electricity during July, but only for 8.2 % during December. The solar generation is thus
complemented by the CHP plant which is almost not used during the summer months and generates
26 % of electricity in December. Waste heat from the CHP is sufficient to meet almost the entire
heating demand during the winter season. Peak periods are supported by the existing gas-fired
boilers. Understanding of seasonal variations in energy supply systems is crucial, in particular with
increasing shares of renewable energy. The developed methodology helps to quantify the impact
for energy system planners and consultants.

The cost optimal energy supply concept integrates renewable excess energy from photovoltaic
and interacts with the energy markets via complex procurement tariffs. This requires a high
temporal granularity with hourly time steps. Dispatch for electricity is shown in Figure 5.7 for
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Figure 5.6.: Monthly energy statistics for cost optimal design scenario of automotive site

an exemplary summer and winter week. To illustrate the impact of complex tariffs, the graph
comprises the dynamic component of the ToU tariff which is based on German spot market prices.
The electricity supply during noon in the summer week is dominated by solar generation. The
generation correlates with peak demands during work days leading to high self-consumption rates.
The generation exceeds the demand during weekends. The excess electricity is fed in the power
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(b) Electricity dispatch during a winter week

Figure 5.7.: Hourly generation (positive) and use (negative) of electricity in cost optimal scenario
of automotive site

grid. However, potential revenues from feed-in are comparatively low during noon. Therefore, the
excess electricity is used by compression chillers to meet cooling demand. In order to balance,
generation and demand the installation of a tank for chilled water is required. In the winter
week, solar generation is significantly lower. The CHP plant produces electricity during periods
with both high spot market prices and sufficient on-site heating demands. The CHP generation is
stopped during periods of extremely low spot market prices. Periods with low spot market prices
are typically characterized by high shares of non-dispatchable renewable generation, e.g., from
wind parks. The energy supply system adapts by advanced control schemas to market signals and
procures its electricity from the power grid.

Compression chillers and cogeneration plants couple the on-site thermal supply systems with the
electricity supply. Therefore, Figure 5.8 shows the heating and cooling dispatch for the summer
and winter week. The compression chillers are preferably operated during periods with low
electricity prices. This is obvious for those periods with excess electricity from on-site photovoltaic
installations. Excess electricity is used to load chilled water tanks which serve cooling demands
during peak periods. The flexible operation of CHP is enabled by a hot water tank. The storage
ensures the supply of space heating demands when the operation of the CHP is not economically
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Figure 5.8.: Hourly generation (positive) and on-site use (negative) of heating and cooling in cost
optimal scenario of automotive site

feasible due to low procurement prices. The value of flexibility from flexible operation of conversion
and storage technologies is thus fully considered in the proposed modeling approach. Thereby, the
methodology helps to integrate volatile generation in planning process of sustainable industrial
energy supply systems.

Summary
The results highlight the suitability of the proposed modeling framework to design complex
industrial energy supply systems. The model derives key performance indicators considering
multi-modal coupling of energy supply systems and complex procurement tariffs for electricity.
Thereby, the proposed methodology meets the requirements derived in Section 2.2. The presented
optimization results have been computed based on an entire year with 8760 h. The computation
of each scenario takes up to 71 minutes. The scenarios give a first understanding of the key
performance indicators. During a course of an energy consultancy project, additional modeling
details might be added to the problem formulation such as start-up costs, multi-year roadmaps or
security of supply constraints. Solving times significantly increase with these modeling details.
Higher solving times make it impossible to conduct extensive sensitivity analysis and identify
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Figure 5.9.: Computation times for models with different aggregation levels. Representative days
have been selected with OPS.

tipping points. Therefore, the following section discuss an efficient and robust approach to reduce
computational complexity while maintaining the relevant characteristics of an full scale approach.

5.3. Time series aggregation

Time series aggregation reduces the number of time steps and thus the complexity of optimization
models. Consequently, optimization models are more efficiently solved making them applicable in
daily application of energy system planners and consultants. Figure 5.9 shows the computation
time to build and solve the optimization model. The computational complexity strongly correlates
with the number of representative periods in all examined use cases. Selection of representative
periods reduces computation times by two orders of magnitudes. Full-scale models of an entire
year take several hours to derive an optimized design concept. These model formulations are
hardly applicable for extensive scenario analysis and dynamic integration of customer requirements
in real-world projects. In contrast, planning models with less than 20 days are efficiently computed
in less than 10 minutes.

Aggregation approaches need to capture the relevant statistical attributes of the full scale problem:
Each time step in a representative period represents multiple time steps of the full scale problem.
The representative periods need to be carefully selected in order to preserve the annual energy
statistics and peak demands. Thereby, aggregation approaches lead to robust design concepts
with significantly reduced computational effort. The two aggregation approaches introduced in
Section 4.2 are benchmarked to the full scale problem with 8,760 h. The following section analyzes
the required number of days to represent the on-site energy demands and to result in robust energy
supply concepts.
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Evaluation metrics
The two aggregation approaches SPS and OPS are evaluated regarding their suitability for design
optimization of highly complex energy supply systems in industrial sites. Approaches are compared
regarding two accuracy metrics: The first metric ∆ELn evaluates the accuracy of the approach to
maintain the annual statistics of energy demands. It is derived for electricity, steam, heating, and
cooling depending on the industrial site. Weight factors wd for each representative period d are
used to derive ∆ELn:

∆ELn =

∑︁
d∈DRepr,t∈Td

(wdP
L
n,t∆t)−

∑︁
t∈T

(P Ln,t∆t)∑︁
t∈T

(P Ln,t∆t)
· 100 % (5.2)

The second metric ∆TC analyzes the impact of time series aggregation on the optimization results:
The total project costs (TC) indicate the economic feasibility of a design variant and are thus used
to compare the optimization results of a full-scale problem (FSP) to those results obtained from
SPS and OPS strategies.

∆TC i =
TC i − TCFSP

TCFSP
· 100 % i = {OPS,SPS} (5.3)

The robustness of the two aggregation approaches is analyzed in the following: The two strategies
are applied to the three use cases with various patterns and demand relations. Moreover, the
number of representative periods nRepr is varied to determine the required temporal granularity to
design highly complex industrial energy supply systems.

Aggregation results for 12 representative days
An adequate aggregation approach captures the relevant statistical attributes of the relevant time
series. For instance, the energy demands are represented by hourly load profiles defining the
required peak capacities and annual utilization of energy supply equipment. These static attributes
are represented by the duration curves. The duration curves derived from the aggregated time
series are thus compared to the duration curve of the FSP with 8760 steps. Figure 5.10 shows the
curves for a selection of 12 representative days from SPS and OPS. The duration curve derived from
the heuristic SPS approach shows significant deviations to the original load profiles. The annual
heating demand is underestimated by 15 %, whereas the annual electricity and cooling demands
are overestimated by 15 % and 8 % respectively. Moreover, peak demands are not included in the
SPS approach. In contrast, the OPS strategy derives a set of representative periods which captures
the relevant statistical attributes. The deviation in electricity, heating and cooling demand is below
3 %. Given the multi-year climate variability and uncertainty of long-term production forecasts,
this small deviation appears clearly acceptable. Peak periods are enforced to be included in the
approach ensuring feasibility of the design concept during the entire base year.

The OPS approach considers weight factors wd for each selected representative period. Table 5.4
shows the selected representative periods including values of wd for a selection of twelve represen-
tative periods. Periods with peak demands are highlighted in bold. These periods are enforced to
be included in the optimized period set as demand peaks define the required maximum capacity,
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(b) Optimized period selection (OPS)

Figure 5.10.: Duration curves of multi-modal energy demands based on annual load profile (FSP)
and for twelve representative days based on seasonal and optimized period selection
for the automotive site

which an energy supply system needs to provide. The pharmaceutical site comprises load profiles
for electricity, steam, heating, and cooling. Therefore, four days are enforced to be included for the
pharmaceutical site, whereas the models for automotive and dairy site include three periods with
peak demands. The derived weight factors wd vary between 1 and 51. This highlights that certain
combinations of demands and renewable penetration occur more often than others. Representative
periods with peak demands tend to have lower weight factors wd. The operational costs during
this period are thus less weighted in the objective function.

The number nRepr of representative periods is a central parameter for practical application of
aggregation strategies. A higher number of nRepr can lead to higher modeling accuracies but results
in higher computational complexity. Therefore, the trade-off between modeling accuracy and
complexity is discussed in the following. The annual energy demands obtained from the aggregated
time series with SPS and OPS are compared to the annual demands for 4 to 25 representative
periods. The relative deviation∆EL of energy demands for electricity, steam, heating, and cooling is
computed for the three industrial sites. The values obtained by OPS for pharmaceutical site are not
shown for a selection of 4 representative days. In this case, the selection of days is not determined
by the algorithm, but fully pre-defined by the periods with peak demands. Consequently, energy
demands are strongly overestimated.

Representation of on-site energy demands in aggregated time series
The obtained deviations are summarized in Figure 5.11. The SPS approach leads to significant
deviations in energy demands of up to 40 %. Energy demands are underestimated in some cases
and overestimated in other cases. Moreover, the aggregation errors do not constantly reduce with
increasing nRepr: For more than 10 representative days, the average absolute deviation is 6.9 %
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Table 5.4.: Selection of 12 representative days with OPS and derived weight factors wd for three
industrial sites. Periods with peak demands are highlighted in bold.

Automotive Dairy Pharma
Date wd Date wd Date wd

17/01/2023 32 19/02/2023 34 20/01/2023 6
04/02/2023 28 08/03/2023 38 04/02/2023 48
10/04/2023 34 26/03/2023 1 06/03/2023 42
13/04/2023 35 20/04/2023 42 10/04/2023 30
10/05/2023 45 13/06/2023 69 04/05/2023 46
18/06/2023 42 26/07/2023 7 08/06/2023 19
23/06/2023 51 20/08/2023 55 17/06/2023 49
08/08/2023 24 23/08/2023 4 24/07/2023 50
29/09/2023 16 01/11/2023 42 02/08/2023 14
21/11/2023 22 21/11/2023 60 25/08/2023 13
25/11/2023 30 11/12/2023 6 25/11/2023 43
30/12/2023 6 30/12/2023 7 05/12/2023 5

for the automotive site, 3.1 % for the pharmaceutical site and 2.0 % for the dairy site. The OPS
leads to significantly lower deviations of 2.2 %, 1.7 % and 0.8 % for the same range of nRepr. A
selection of more than 10 representative days with OPS results in deviations below 6 % for all
use cases and energy demands. The OPS considers the hourly demand profiles in its selection of
representative periods resulting in good approximations of regular operation and sporadic events
such as plant shutdowns or extreme weather events. Energy demands are partly well captured by
the SPS. However, certain values of nRepr lead to inconvenient selections of representative periods.
Such inconvenient selections estimate frequency of plant shutdowns or cold periods strongly wrong
leading to significant deviations of more than 20 % in all energy demands. The analysis clearly
highlights the robustness of the OPS aggregation approach compared to a heuristic approach with
SPS: The newly developed aggregation strategy captures the annual statistics and peak values of
load profiles.

The deviations obtained for the heating demands of the automotive and pharmaceutical sites show
higher absolute deviations in the OPS than the other energy demands. In contrast to the other
demands, the two load profiles show a strong seasonal dependence with demand peaks during
the winter months and almost no demand in the summer. This behavior is difficult to obtain
from a low number of representative periods. Deviations for energy demands of the dairy site are
comparatively low. The production of the dairy is based on a three-shift operation for seven days a
week. Consequently, the volatility of energy demands is lower than for the other two sites making
it easier to be captured by an aggregation approach.

Accuracy of design concepts based on aggregated time series
Representative periods obtained on the SPS and OPS approaches are applied to the energy system
design model. The weight factors wd are included in the objective function of the optimization
model to reflect the frequency of the operational conditions described by each period. The obtained
values for the objective function are compared to the optimal solution of the FSP with 8760 h. The
results are illustrated in Figure 5.12. The OPS strategy with more than 10 representative days
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Figure 5.11.: Relative deviation∆EL of energy demands by time series aggregation with SPS (left)
and OPS (right) depending on the number nRepr of representative periods and three
use cases

leads to highly accurate estimations of the objective with errors below 3 % for all three sites. In
contrast, the optimization results obtained from SPS show significant deviations of up to 28 %.
The average absolut deviation is also reduced by the optimized strategy for time series aggregation:
from 5.4 % to 1.9 % for the automotive site, from 2.6 % to 0.8 % for the pharmaceutical site and
from 1.9 % to 0.4 % for the dairy site. Like the demand analysis, deviations in total costs for the
dairy use case are smaller than the other two cases.

Summary
An optimized strategy for the selection of representative periods has been developed in this Thesis.
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Figure 5.12.: Relative error of total costs (TC) depending on the number nRepr of representative
periods and the aggregation strategy for the three industrial sites

The suitability for complex energy supply systems is demonstrated for use cases of three industrial
sites: The aggregation approach captures the annual statistics and peaks of energy demands and
provides adequate estimations of the financial expenses. Simultaneously, the aggregation strategy
leads to a reduction of solving times from more than 71 minutes for an entire year to below 30 s for
12 optimized days. Thereby, the developed model becomes applicable for computation of multiple
design variants and extensive sensitivity analysis. The reduced computational complexity is now
used to determine sustainable transformation roadmaps considering long-term trends in energy
procurement and on-site demands.
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5.4. Transformation roadmaps

Long-living character of energy supply equipment enforces an assessment of multi-decade project
horizons to evaluate lifecycle costs of energy supply. Transformation roadmaps are a modeling
technique to analyze the long-term evolution of an energy supply concept during these long
planning horizons. Thereby, stakeholders gain clarity of cost and carbon saving potentials and the
associated risks of their investments. Roadmaps enable the consideration of projected technology
and price developments as well as the system’s ability to adapt to these changes. The following
case study applies a 15-year planning horizon to the three use cases. Energy supply concepts
are optimized in each of the five extension stages considering investment decision from previous
extension stages. Based on the results from the case studies, the value of foresight and adaptivity
is analyzed. Moreover, the computational complexity is evaluated for the design of highly complex
energy supply systems in industrial sites.

5.4.1. Roadmaps with perfect foresight

Transformation roadmaps can be derived from a single optimization run assuming perfect foresight
on future developments and adaptive investment decisions at each extension stage. This approach
is referred to as roadmap approach with perfect foresight (PERF) and has been introduced in
Section 4.3. The following paragraph shows transformation roadmaps for the three use cases of
industrial sites located in Southern Germany. Numerical values for KPIs, rated equipment capacities
and tariff selection are summarized in Table 5.5. The following sections analyze the evolution of
electricity supply concept with focus on the role of cogeneration plants. The optimized roadmaps
for the three use cases are evaluated regarding their economic and ecological performance.

Evolution of electricity supply
Figure 5.13 shows the generation and use of electricity along the planning horizon. Continuous
implementations of efficiency measures lead to a slight decrease in production related demands of
6 % for the dairy, 3 % for the pharmaceutical and 23 % for the automotive site till 2035. These
effects are fully offset by electrification of process heating demands for the dairy and pharmaceutical
use cases: The projected on-site use of electricity rises by 81 % to 43 GWh/a for the dairy and
26 % to 26 GWh/a for the pharmaceutical site. The automotive site does not comprise significant
shares of thermal demands. The total electricity use thus slightly decreases.

Increasing energy carrier costs and a further decline in installation costs leads to a continuous
expansion of PV from 2023 for the automotive and from 2026 for the two other use cases: Capacity
expansions are conducted in each expansion stage. At the end of the planning horizon, share of PV
in electricity mix accounts for 55 % for the automotive use case to 81 % for the dairy use case in
2035. The generated electricity is mostly directly consumed on-site: Self-consumption rates are
above 65 % for the automotive site, above 75 % for the pharmaceutical site and above 85 % for the
dairy site towards the end of the planning horizon. Remaining excess electricity is fed back to the
power grid. High rates of self-consumption are effectively realized by power-to-heat technologies.
Electric boilers with capacities of up to 6.8 MW serve on-site thermal demands for space heating
and production during times of high PV generation. Thereby, they decarbonize thermal demands
with low carbon electricity. Electric boilers account for 26 % and 21 % of steam generation for the
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Figure 5.13.: Evolution of annual electricity generation (positive) and on-site use (negative) for
three industrial sites based on the PERF strategy

dairy and pharmaceutical use case respectively. Additional tanks for hot and chilled water enable a
flexible operation of boilers and chillers. The effective use of multi-modal coupling technologies
makes battery storage technologies not economically viable for the examined use cases: Despite
a significant decline in projected installation costs, the model recommends the installation of
batteries only towards the end of the planning horizon for the pharmaceutical and dairy site with
2.2 MWh and 5.1 MWh capacity respectively. The proposed model considers value streams from
both arbitrage and peak shaving. However, batteries can contribute also to short-term balancing
services, which have not been included in this analysis. The influence will be discussed separately
in Section 5.5.
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Table 5.5.: Key performance indicators, equipment rated capacities and tariff selection derived by the roadmap approach with perfect
foresight (PERF)

Dairy Pharma Automotive
Unit 2023 2026 2029 2032 2035 2023 2026 2029 2032 2035 2023 2026 2029 2032 2035

TOTEX M€/a 8.40 11.4 12.0 12.8 13.2 4.21 4.83 5.09 5.51 5.79 2.65 2.78 2.76 2.80 2.82
Investment M€ 2.00 18.8 4.60 10.1 11.7 0.33 5.67 4.27 3.04 5.71 1.53 2.04 2.62 0.95 0.41
OPEX M€/a 8.21 9.41 9.58 9.36 8.50 4.18 4.26 4.12 4.25 3.92 2.51 2.44 2.17 2.12 2.10
CO2 kt/a 18.4 13.6 9.77 6.74 1.40 7.80 5.66 2.52 1.42 0.63 4.39 3.05 1.73 1.03 0.71

CHP (ICE) MW 0.0 0.0 0.0 0.0 0.0 0.26 0.26 0.26 0.26 0.26 0.37 0.37 0.37 0.37 0.37
CHP (GT) MW 2.65 2.65 2.65 2.65 2.65 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GB MW 12.0 4.82 4.82 4.82 4.82 2.50 1.34 1.34 1.34 1.34 1.50 0.17 0.17 0.17 0.17
BB MW 0.0 0.0 1.58 2.17 5.07 0.0 0.0 0.85 0.93 1.04 0.0 0.0 0.0 0.0 0.0
EB MW 0.0 6.81 6.81 6.81 6.81 0.0 1.55 1.55 1.55 1.55 0.0 0.0 0.63 0.63 0.63
CC MW 7.20 4.26 4.26 8.36 8.36 2.50 1.62 1.62 2.13 2.13 0.95 0.70 0.70 0.70 0.70
PV MWp 0.0 13.1 16.6 24.1 29.8 0.0 3.59 7.18 9.83 13.6 0.77 2.10 4.34 5.36 5.81
BAT MW 0.0 0.0 0.0 0.0 5.08 0.0 0.0 0.0 0.0 2.20 0.0 0.0 0.0 0.0 0.0
BAT MWh 0.0 0.0 0.0 0.0 5.08 0.0 0.0 0.0 0.0 2.20 0.0 0.0 0.0 0.0 0.0
HWS MWh 0.0 0.0 0.0 0.0 0.0 0.29 0.29 0.29 0.29 0.29 0.50 0.50 0.50 0.50 0.50
CWS MWh 0.0 0.88 0.88 5.40 5.97 0.0 0.45 0.60 1.36 1.48 0.0 0.28 0.28 0.31 0.33

Power A a GWh/a 1.18 0.64 0.53 0.18 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Power B b GWh/a 0.0 0.0 0.0 0.0 0.0 16.35 13.16 10.57 9.45 6.26 11.3 9.36 7.10 6.12 5.46
Natural gas GWh/a 85.7 64.1 47.5 35.9 9.9 12.0 10.6 3.19 2.50 1.91 3.56 3.16 2.42 2.08 1.86
Wood pellets GWh/a 0.0 0.0 11.1 14.8 30.4 0.0 0.0 6.19 6.30 6.67 0.0 0.0 0.0 0.0 0.0
a Electricity procurement from power grid with < 2,500 h/a
b Electricity procurement from power grid with > 2,500 h/a
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Figure 5.14.: Equivalent full load hours for CHP systems along the planning horizon derived by
PERF strategy

Increasing shares of photovoltaic are integrated in industrial energy supply systems in all three
examined use cases. However, additional sources for electricity generation are required to meet
demands during days with low PV generation. For the pharmaceutical and automotive use case,
the remaining electricity is mostly procured from the power grid. On-site generation from CHP
accounts for 5 % (pharmaceutical) and 9 % (automotive) of total electricity use. The high utilization
(> 2,500 h/a) of the power grid leads to a procurement tariff with high demand charges as outlined
in Section 5.1. The cogeneration plant contributes to the active management of peak loads and
thereby a reduction of these demand charges. In contrast, electricity generated by cogeneration
plants makes 95 % of the on-site use in the dairy case. The power grid helps to meet peak demands.
The selected procurement tariff for electricity (< 2,500 h/a) comprises reduced demand charges
as outlined in Section 5.1. Therefore, the value of peak load management is limited in this use case.
The example shows how the interaction of complex procurement tariffs and on-site equipment
needs to be considered for design of industrial energy supply systems. Cogeneration plants are
a central element in energy supply systems of many industrial sites as outlined in Section 2.1.
Therefore, the role of CHP plants in the optimized technology roadmaps is analyzed in the following.

Role of cogeneration plants
Cogeneration plants are identified as part of an optimized design concept in all three examined
cases. The model for the dairy site proposes a 2.6 MW gas turbine (GT). High temperature waste
heat of the GT is effectively used for steam supply throughout the year. The CHP provides 95 % of
electricity consumed in the simulative evaluations of the dairy use case. Practical shares might be
slightly lower as maintenance periods for the GT have not been considered in the simulation. A
secure supply with electricity and steam during maintenance periods is granted by the existing
power grid connection and the gas-fired boilers. The impact of maintenance periods on system
design is further discussed in Section 5.5. Use cases of pharmaceutical and automotive site comprise
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significant lower thermal demands: In these use cases, the installation of a CHP plant with internal
combustion engines and capacities of 370 kW and 260 kW are identified as possible extension
options. Low temperature waste heat serves as a source for space heating during winter. During
these times, CHP plants can effectively generate electricity. The installation of the CHP plants is
projected to remain along the entire planning horizon. The newly installed CHP plants will face
changing boundary conditions during their technical lifetimes. Figure 5.14 shows the equivalent
annual full load operating hours for the CHP units for the three examined use cases. The largest
decline in utilization is observed in the use case for a dairy site: The projected full load hours
decrease from 8,410 h/a in 2023 to 970 h/a in 2035. Among others, the decline is influenced
by the limited part-load capabilities of the installed gas turbine: the gas turbine is assumed to
be installed as a single module and cannot be operated below 50 % part-load. This operational
constraint has been considered in the optimization. The part-load constraint prevents the operation
at low load levels which occur more frequently with integration of photovoltaic and power-to-heat
technologies. Similar declines of 40 % and 47 % are seen in the use cases of pharmaceutical and
automotive sites.

The observations highlight the suitability of the methodology to analyze changing operating
patterns along a multi-year planning horizon. The projected change in mode of cogeneration
plants have been proposed in several studies, e.g., by Agora Energiewende[43], Fraunhofer ISE
[154] or Prognos [44]. The developed methodology is able to determine the impact of these
long-term developments for the on-site planning of industrial energy supply systems. Based on
today’s framework conditions, CHP plants might be designed for constant operating conditions with
utilization of more than 8,000 h/a. These operating patterns are projected to change significantly
with on-going decarbonization. Cogeneration plants are used less frequently which decreases their
economic efficiency. Knowledge on the projected change in operating patterns can be used in later
planning stages. Detailed specifications for technical capabilities of CHP plants should consider the
projected changes. This example highlights how the proposed methodology enhances the planning
process for the sustainable design of industrial energy supply systems.

Cost structure for energy supply
CHP plants are part of an optimized design concept which has been computed by minimizing the
total project costs over the entire planning horizon. The employed model formulation accounts
for procurement costs for electricity and fuels, costs for installation and maintenance of on-site
equipment as well as capital costs for photovoltaic and battery installations. Progressive installations
of PV plants and declining use of cogeneration change the cost structures for energy supply.
Evolutions of capital and operational expenses are thus shown in Figure 5.15. Costs for energy
supply are dominated by procurement costs for natural gas and electricity. These costs contribute
for more than 92 % of total costs in the first extension stage. Costs for the dairy use case are mostly
determined by natural gas purchase, whereas electricity procurement dominates expenses for
pharmaceutical and automotive use cases. The shares of energy procurement constantly decrease
in the subsequent extension stages with increasing shares of photovoltaic and batteries. All other
supply equipment makes up less than 10 %. It is thus shown as aggregated values.

Capital costs are associated with the installations of PV starting from 2023 for the automotive site
and from 2026 for the other use cases. The investments are depreciated over the entire technical
lifetime of 20 years. Therefore, capital costs of previous installations are reflected in each following
extension stage. The simulative evaluations in this work employ the linear estimation of investment
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Figure 5.15.: Relative cost structure of energy supply for each extension stage in a multi-year
planning horizon derived by PERF strategy

costs from the annual technology baseline (ATB) methodology of the national renewable energy
laboratory (NREL) [155]. In contrast to non-linear investment cost estimations for CHP plants,
PV installations are thus not associated with economies of scale: the specific investment costs are
assumed to be independent of the installed capacity. The proposed model formulation thus tends
to split PV investments in several smaller installations over the entire planning horizon rather than
one large. The total capacity of PV is in the range of 6 MW to 30 MW. The continuous installations
thus might reflect the installation of PV on different buildings of an industrial site. More detailed
cost estimations might be considered in real-world applications with detailed knowledge of site
conditions, planning efforts and risk margins for PV installations. These estimations probably
comprise a fixed share for investments and thereby avoid recurrent planning efforts for PV projects.
The simulative evaluations highlight the importance of adequate investment cost estimations to
derive suitable equipment sizes in multi-year planning models.

Continuous integration of PV leads to significant capital costs and efforts for maintenance. PV
generation exceeds on-site electricity demand during certain periods. Electric boilers use the
renewable excess electricity and consequently reduce utilization of natural gas for steam generation.
This increases the resilience of the energy supply system to increasing fuel and carbon prices.

Natural gas tariffs and carbon prices are projected to increase over the planning horizon. Assump-
tions are summarized in Table 5.1. These trends favor the on-site use of biomass: From 2029,
biomass boilers of 1.6 MW and 0.9 MW generate steam in the dairy and pharmaceutical use cases.
Biomass boilers account for 62 % (dairy) and 70 % (pharma) of total steam generation. The
employment of biomass boilers results in significantly lower costs for natural gas purchase and
increasing shares for procurement of wood pellets. The fuel switch is automatically determined
by the proposed model formulation as a result of the projected price changes. These projections
are known to comprise significant uncertainty, in particular on long time frames. The results of
the optimization model should thus be considered as one possible future rather than a detailed
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working plan for the upcoming decade. Consequently, the replacement of biomass by natural
gas needs to be interpreted as a reasonable option for the energy supply from today’s point of
knowledge. Based on the optimization results, energy system planners and consultants might
evaluate space requirements to ensure that a biomass-based steam generation becomes feasible in
a mid- to long-term future of an industrial site.

Analyzing the evolutions of cost structures helps to identify major drivers of costs and the associated
risks resulting from capital intensive investment decisions. Increasing shares of renewable electricity
from PV plants and renewable heat from biomass decreases dependence on natural gas and
electricity procurement tariffs: Total costs for energy supply become less vulnerable to increases in
tariffs. Beyond economic efficiency, environmental assessments are a central aspect for evaluation of
energy supply concepts. Tightened regulatory framework and corporate decarbonization strategies
encourage an evaluation of carbon footprints. Therefore, a detailed analysis is provided in the
following.

Carbon footprint of optimized design concepts
Environmental assessments of energy supply have gained increasing attention as outlined in
Section 1.1. The proposed optimization model considers carbon footprints from on-site use of
natural gas (Scope 1) and indirect emissions from procurement of electricity (Scope 2). Excess
electricity fed into the grid is remunerated by negative carbon emissions. Annual carbon footprints
for each extension stage are visualized in Figure 5.16. Optimized design concepts have been
determined by minimizing costs for energy supply along the entire project horizon. Optimization
of design concepts does not only result in cost savings but also reduces carbon footprints of energy
supply: projected carbon footprints decrease by 84 % for the automotive and 92 % for the dairy
and pharmaceutical use cases along the planning horizon. The significant decreases are the result
of multiple developments including model exogenous trends and optimization of energy supply
infrastructure.

Declines of carbon emissions in the three use cases are partly caused by model exogenous trends.
Two trends are considered in this work: the continuous implementation of efficiency measures
and the reduction of carbon footprint in the power grid. They reduce the on-site energy demands
for production and the specific emissions associated with electricity procurement. These carbon
savings occur without additional investments in the on-site energy supply infrastructure. The
model exogenous developments account for 69 % of carbon savings for the automotive, 44 % for
the pharmaceutical and 30 % for the dairy use case. The analysis shows the impact of efficiency
measures for decarbonization of energy supply in industrial sites. Low carbon pathways can only
be achieved with adaptation of energy supply infrastructure in industrial sites.

All use cases show substantially higher carbon savings with optimized energy supply infrastructure
derived by the newly developed PERF. Highest reductions are found for the dairy use case: Natural
gas is mostly used for steam generation in this use case. In the base year, steam demand is mostly
served from the CHP plant (76 %) and additional gas-fired boilers (24 %). This development
changes along the planning horizon: 62 % of the steam is generated by biomass, 26 % by electric
boilers in 2035. The change in energy supply infrastructure leads to significant decline in carbon
emissions from 18.4 kt/a to 1.4 kt/a. Similar trends are observed for the pharmaceutical use
case. The automotive use case is dominated by electricity procurement and comprises lower
thermal demands. However, integration of PV reduces emissions from electricity procurement. The
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Figure 5.16.: Evolution of carbon footprint with existing energy supply system (REF) and with
optimized energy supply concept (PERF). Bars indicate the composition of carbon
emissions for the optimized energy supply concept (PERF)

integrated approach to design energy supply systems helps to identify sustainable and cost-efficient
options to meet decarbonization targets.

Summary
Industrial energy supply systems comprise long-living equipment. Assessment of lifetime costs
requires evaluation of multi-decade planning horizons. The proposed methodology accounts for
the projected long-term trends, which are likely to influence the energy supply infrastructure:
evolutions in energy markets (e.g., decline in carbon footprint of electricity procurement), trends
in technology developments (e.g., cost degradation of photovoltaic and batteries) and changes in
demands (e.g., due to implementation of efficiency measures) are fully considered in the proposed
techno-economic planning model. Exemplary use cases from three industrial sectors have shown
multiple benefits of integrating long-term trends in planning process:

• Replacement of existing equipment: The methodology automatically considers the re-
maining lifetime of existing energy supply infrastructure. Roadmap optimization enables to
use the existing equipment till the end of lifetime and accounts for the necessity of replace-
ment. Thereby, the model can be applied to challenging design studies of historically grown
brownfield sites.

• Integration of volatile renewable generation: Decline in investment costs makes on-site
integration of renewables economically more attractive. Integration decreases dependence of
fossil fuels and thereby reduces associated risks. If the integration potential for renewables
exceeds the on-site potential, e.g., due to space limitations, power purchase agreements
(PPA) can be evaluated.
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• Flexibility from power-to-heat: Excess electricity becomes available with continuous expan-
sion of volatile renewable generation. Energy supply systems in industrial sites can effectively
use this excess electricity by power-to-heat technologies such as electric boilers. Thereby, the
use of fossil fired boilers is reduced leading to lower annual carbon emissions.

• Changing role of cogeneration plants: CHP plants have been traditionally designed for
constant operation modes. Provided analysis underlines that the operation strategies might
significantly change towards lower full load hours and increasing shares of part-load operation.
Projected change of operational patterns can be considered in the specification of technical
requirements for newly installed CHP plants.

• Long-term options for fuel switch: The model accounts for fuel switch options, e.g.,
wood pellets for steam generation. Investment decisions are strongly dependent on future
procurement costs and thus cannot be answered based on today’s knowledge. However, the
optimization results provide valuable input for spatial planning within a factory: Energy
system planners can ensure the feasibility of a possible future fuel switch by considering
space requirements for on-site storages of wood pellets.

The above mentioned benefits of transformation roadmaps help decision makers to gain clarity
on the impact of future evolutions on their energy supply infrastructure. Presented results have
been determined with the PERF approach with perfect foresight over entire planning horizon and
adaptive investment decision in each extension stage. This approach determines a transformation
roadmap for the entire planning horizon. However, long-term projections are known to suffer
from uncertainty. Even leading institutions in energy economics cannot reliably forecast trends for
more than five years [109]. Consequently, transformation roadmaps need to be regularly updated
considering the latest developments of energy demands and procurement costs. The PERF adds
computational complexity to the model formulation. Therefore, the following section will discuss
the impact of adaptivity and foresight on accuracy and complexity of techno-economic planning
models.

5.4.2. Adaptivity and foresight

Transformation roadmaps have been determined based on the roadmap approach with perfect
foresight (PERF) on future developments of demands and energy procurements. These projections
are known to comprise uncertainty [109]. Their integration adds computational complexity to
techno-economic optimization models. Therefore, the added value of adaptivity and foresight is
analyzed for the complex design of industrial energy supply systems. Additional transformation
roadmaps for the three use cases are determined with the forward-looking design approach (FLA)
and roadmap approach with myopic foresight (MYOP) introduced in Section 4.3. These strategies
are compared to the reference (REF) roadmap based on the existing energy supply system and
required one-to-one replacements. Optimization results are analyzed regarding three metrics:
First, the total cost over the planning horizon is used to evaluate the global economic performance
of the obtained design concepts. Second, technology selection and sizing in the first extension
stage are analyzed regarding possible lock-in effects. Finally, all strategies are compared regarding
the computational complexity.
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Figure 5.17.: Total costs along 15 year planning horizon derived by FLA, MYOP and PERF strategies

Global economic performance
Figure 5.17 summarizes the total project costs along the 15 years planning horizon. The dairy use
case comprises highest costs due to high thermal demands for production processes. The reference
(REF) case results in total expenses of 209 M€. Existing boilers and chillers are replacement at the
end of their lifetime. The required capital costs of 3.52 M€ for replacements are comparatively
small to the operational expenses of 206 M€. Additional investments are not allowed in the
reference system. In contrast, the design of energy supply system is optimized by the FLA with
perfect knowledge of future energy demands and procurement costs. OPEX are reduced to 137 M€.
The required investments are associated with 45 M€ of capital costs. Thereby, the FLA promise a
sustainable saving potential of 12.5 % compared to the reference roadmap. The PERF optimizes
design decisions at each extension stage and thus account for the value of adaptivity. Thereby, the
approach results in the cost-optimal roadmap with 173 M€ (-16.8 %). The MYOP optimizes each
extension stage sequentially. The investment strategy assumes only limited foresight on future
developments: MYOP considers only those information available in the respective extension stage
to derive investment decisions. However, the total project costs are almost identical with 174 M€.

Similar trends can be observed for the pharmaceutical and automotive use cases: The reference
(REF) system results in a solution with low capital expenditures. Capital intensive investments in
energy supply infrastructure significantly reduces total costs for energy supply by 9 % to 13 % for
the pharmaceutical case and 10 % to 15 % for the automotive case. Highest saving potentials are
identified for the PERF whereas the FLA accounts for lowest saving potentials. Results highlight the
value of adaptive investment decisions: Energy supply systems are likely to change with projected
long-term trends. Simulative evaluations find a fixed design concept over the entire planning
horizon to be not beneficial. Consequently, FLA result in slightly higher costs for energy supply. An
adaptive investment strategy based on MYOP or PERF leads to highest saving potentials.

Relative differences in total project costs are in the same order of magnitude for the three roadmap
strategies. Simulative evaluations have shown that even these small deviations result in additional
savings of several million euros along the planning horizon. Therefore, technology selection and
sizing of the computed design concepts are analyzed in the following.

Equipment selection and sizing
The identified saving potentials are the result of adapted energy supply concepts. These concepts
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comprise an updated set of technologies. The selection and sizing in the first extension stage is
particularly relevant for energy system planners to determine the immediately required measures.
The resulting measures remain in the following extension stages ("lock-in" effect). Figure 5.18
shows the selection and sizing of newly installed equipment for the first extension stage (2023)
in the three use cases. The reference (REF) system is limited to existing boilers and chillers and
thus not discussed here. Technology selection and sizing shows clear differences between the FLA,
MYOP and PERF. These differences are discussed in the following.

All optimized design concepts comprise CHP plants. Sizes for gas turbines range from 2.23 MW to
2.68 MW for the dairy use case. CHPs with ICEs are selected for the pharmaceutical and automotive
use cases. MYOP identifies a trigeneration system with an absorption chiller (AC) as an optimal
supply concept. Consequently, the size of 1.16 MW for the CHP is significant larger than in the
FLA (0.31 MW) and PERF (0.26 MW). For the pharmaceutical site with FLA, heating supply is
supported by an additional heat pump. As a result, the derived CHP size of 0.21 MW is lower than
those obtained with MYOP (0.41 MW) and PERF (0.37 MW). Moreover, the optimized designs
with the FLA comprise additional biomass and electric boilers for the dairy and pharmaceutical
site. Selection and sizing of renewable and storage technologies is also influenced by the selection
of roadmap strategies: Models based on FLA show largest photovoltaic plants with up to 16 MW
capacity. Renewable excess electricity is integrated by chilled water tanks of up to 26 MWh.
Renewable and storage technologies are part of optimized solutions with the MYOP, but sized
significantly smaller. A chilled water tank is not part of the optimized concept. Transformation
roadmaps obtained with PERF comprise smaller PV installations. A PV plant is only selected in the
automotive use case. In this use case, renewable electricity is directly used for own site demands.
Therefore, chilled water storages are not selected in the first extension stage for the PERF.

Selection of roadmap strategies strongly influences the technology selection and sizing. Concepts
derived by FLA strategy target at a single optimized design along the entire planning horizon.
Investment decisions cannot be delayed in this modeling concept. Therefore, design concepts
in the first extension stage comprise more technologies (e.g., biomass boilers and heat pumps)
and larger equipment sizes (e.g., photovoltaic or chilled water tank) than the other roadmap
strategies. Investment decisions are prioritized without urgent need for actions as FLA does not
account for the value of adaptivity in a transformation roadmap. This drawback is overcome by
the MYOP. The approach sequentially derives design decisions based on the respective prices of
the extension stage. Results show many similarities with the PERF, e.g., the selection and sizing
of the CHP plant in the dairy and automotive use cases. However, results substantially differ for
the pharmaceutical use case. Extrapolation of low fuel prices in the first extension stage result
in an investment decision for a trigeneration system with CHP plant and AC. Total investment
efforts are estimated with 1.5 M€. The installation remains in the following extension stages ("lock
in" effect). Changing commodity prices counteract further utilization of the trigeneration system
("stranded investment") in the second extension stage: full load hours of the CHP strongly decrease
by 87 % (5,170 h/a to 738 h/a). Consequently, utilization of the AC declines by 90 % (5380 h/a to
551 h/a). Similar dramatic declines are avoided by the PERF with foresight on the energy carrier
price development. The CHP plant is sized significantly smaller. Waste heat is not integrated to
supply cooling demands. Instead, existing compression chillers meet process demands in the PERF.
Beyond the selection of conversion technologies, the PERF derives a different selection and sizing
of renewable and storage technologies. PERF accounts for the option to delay investment decisions
("wait and see"). For instance, investment costs for PV are projected to decline which favors a
subsequent investment in later extension stages. Thereby, PV capacities are installed with lower

80



FLA  MYOP  PERF  FLA  MYOP  PERF  FLA  MYOP  PERF  
Dairy  Pharma  Automotive  

0

2

4

6

8

10 CHP 
Boiler (biomass) 
Absorption chiller 
Heat pump (waste heat) 
Boiler (electric) 

Ra
te

d 
po

w
er

 [M
W

]

(a) Conversion technologies

FLA  MYOP  PERF  FLA  MYOP  PERF  FLA  MYOP  PERF  
Dairy  Pharma  Automotive  

0

5

10

15 Photovoltaic

Ra
te

d 
po

w
er

 [M
W

]

(b) Renewable technologies

FLA  MYOP  PERF  FLA  MYOP  PERF  FLA  MYOP  PERF  
Dairy  Pharma  Automotive  

0

5

10

15

20

25
Hot water tank
Chilled water tank

Ra
te

d 
ca

pa
ci

ty
 [M

W
h]

(c) Storage technologies

Figure 5.18.: Newly installed equipment capacities in first extension stage (2023) derived by FLA,
MYOP and PERF strategies

specific investment costs. Both example of the CHP and PV highlight the value of foresight for
the complex design of industrial energy supply systems. The knowledge of future trends leads to
lower costs for energy supply as outlined in the previous section. However, formulation of the PERF
enforces complex modeling strategies. The computational complexity added by these strategies is
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Figure 5.19.: Computation times to determine transformation roadmaps derived by FLA, MYOP
and PERF strategies

evaluated in the next section.

Computational complexity
Transformation roadmaps are derived by three modeling strategies. These strategies add different
computational complexity to the proposedmodel formulation. Figure 5.19 summarizes computation
times for all strategies and use cases discussed in the previous paragraphs. Computation times
comprise both time to build and solve the mathematical optimization model with Gurobi. Highest
computation times are observed for the use case of the pharmaceutical site. In contrast to the
automotive and dairy site, four types of energy demands are considered here leading to more
complex interconnections in the on-site energy supply system. The reference approach takes
approximately one second to determine the dispatch for the existing energy supply equipment with
on-site compression chillers and gas-fired boilers. In contrast, the FLA accounts for extension options
from a variety of conversion, storage and renewable technologies. Consequently, computation
times of 33 s (dairy) to 266 s (pharma) are significantly higher. Similar order of magnitude can be
observed for the MYOP which accounts for adaptive investment decisions with myopic foresight.
Computation times range from 30 s (automotive) to 178 s (pharma). The sequential solving process
indicates a linear time increase with increasing number of extension stages. In contrast, the PERF
comprises highest modeling accuracy with adaptive decisions and perfect foresight in all extension
stages. Computation times exceed 1,900 s for the dairy, 2,700 s for the automotive and 4200 s
for the pharmaceutical use case. The MYOP requires more than one order of magnitude more
computation time than the other modeling strategies. This needs to be considered in the right
choice of a modeling strategy for feasibility studies.

Summary
Three pathway strategies have been applied to the complex design of industrial energy supply
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systems. Simulative evaluations highlight the value of adaptivity and foresight to identify non-regret
investment decisions under changing boundary conditions. The forward-looking design approach
(FLA) identifies saving potentials compared to a reference approach. However, investment decisions
are moved up in the planning horizon, e.g., biomass boilers are installed a long time before it
becomes economically attractive to use them. Given the uncertainty of long-term projections in
energy demands and commodity prices, this strategy leads to undesirable design decisions. This
highlights the value of adaptivity in investment decisions which is captured in a transformation
roadmap derived by MYOP and PERF strategies. Commercially available simulation software
includes multi-year simulation models [70]. These modules simulate an initial design over multi-
decade project horizons [109]. The value of adaptivity is omitted in these types of simulations.

Adaptive investment decisions in bothMYOP and PERF have led to several small investment decisions
for those technologies with linear cost estimations, particulary PV investments. For instance, a
continuous expansion of photovoltaic is simulated for all use cases along the planning horizon.
Energy planners typically avoid recurring planning efforts. Non-linear investment estimations
reflect efforts for recurring planning and thereby avoid investment splits. These types of estimations
have been applied for majority of technologies in this work.

The roadmap approach with perfect foresight (PERF) results in a cost optimal roadmap due to
perfect foresight whereas the roadmap approach with myopic foresight (MYOP) derives a near
optimal roadmap in significantly shorter computation times. The near optimal roadmap might
include stranded investment decisions which turn out to be economically unviable with projected
long-term trends. For instance, simulations have shown that investment in trigeneration systems
might be stranded if fuel and carbon prices significantly increase along the project horizon. These
stranded investments need to be identified and ruled out manually by an energy system consultant.
In contrast, the PERF accounts for perfect foresight which targets at non-regret investment decisions
for a given set of input parameters. Consequently, the PERF shows a cost saving potential of up to
1.69 M€ in the pharmaceutical use case compared to MYOP. However, the accuracy of long-term
projections is known to suffer from significant uncertainty. In this light, one might argue that
the MYOP results in more robust design decisions as future projections are omitted for today’s
investment decisions. The choice between MYOP and PERF should thus consider the accuracy of
long-term projections.

All transformation pathways have been derived assuming reliability of all equipment over the
entire planning horizon, e.g., periods of maintenance work for the CHP or short-term balancing
for PV have been omitted. However, unavailabilities occur in practical applications and might lead
to severe interruptions of production processes. Therefore, the following section will evaluate
concepts to guarantee sufficient levels for security of supply.

5.5. Security of supply

Optimization results in the previous sections have indicated high saving potentials to reduce costs
and carbon footprints. The evaluations of these saving potentials have not considered limited
technology availabilities due to maintenance work, equipment failures or short-term fluctuations.
Therefore, three reserve concepts will be discussed in the following. These concepts allow to
include preliminary security of supply considerations in the techno-economic model formulation.
Simulative evaluations are conducted based on the cost optimal scenario of the automotive use case
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for an entire year introduced in Section 5.2. If not explicitly mentioned, technologies which have
not been part of the optimized design concept are excluded from the solution space. The derived
design concept can be extended by additional equipment capacities of selected technologies to
ensure security of supply.10

Maintenance scheduling
Regular maintenance work is required for all on-site equipment. For instance, small CHP plants with
ICE typically require one week of annual maintenance [156]. Costs for equipment maintenance
are considered as part of the objective function as outlined in Section 3.5. Beyond costs, equipment
maintenance causes planned unavailabilities of technologies which have been omitted in the
previous analysis. Planned unavailabilities can be scheduled. Their impact is considered as part
of the optimization formulation by setting the maximum part-load ratio (uCHP,t) to zero for
the scheduled maintenance periods. The following simulations outline impact of maintenance
scheduling for the cost optimal scenario of the automotive use case. Maintenance periods are
defined in spring (11.04. - 17.04), summer (18.07. - 24.07.), autumn (10.10. - 16.10.) and winter
(25.01. - 31.01.). Figure 5.20 shows the impact of maintenance scheduling on the total costs.

The existing energy supply system can meet the energy demands any time. Consequently, no
additional equipment capacities are required to serve energy demands during maintenance work of
the CHP. Costs for planned unavailabilities occur as CHP plant cannot be operated and electricity
needs to be procured during these times. The highest cost increase of 36 k€/a occur if power needs
to be procured in peak periods during winter. Waste heat from CHP plant can be effectively used to
meet space heating demands in this season. During the summer months, the CHP plant is mostly
shut down. Consequently, maintenance scheduling in these periods causes almost no additional
costs (+0.2 k€/a) favoring a scheduling of maintenance work in this season.

The simulation results prove that the proposed methodology can capture the impact of maintenance
scheduling. The examined case study comprises sufficient backup capacities from existing boilers
and chillers. Maintenance scheduling thus results only in incremental increases of up to 1.3 % of
total costs. The impact of maintenance scheduling becomes more relevant for use cases with high
equipment utilization and with longer maintenance periods. The proposed optimization framework
supports evaluation and analysis of maintenance scheduling implications for these types of energy
supply systems.

Maintenance work causes regular and planned unavailabilities of on-site supply equipment. Un-
availabilities can be scheduled in periods with low demands reducing their impact. Equipment
unavailabilities are also caused by technical failures. In contrast to maintenance work, technical
failures can occur any time. Therefore, redundant equipment is required to avoid costly production
interruptions in industrial sites.

Redundancy allocation
Technical failures result in unplanned unavailabilities of on-site equipment. Risks from technical
failures can be mitigated by allocation of redundancies, e.g., backup boilers. Existing approaches
10Integration of outage costs ("Value of Lost Load") is one approach to analyze reinforcement investments in distribution
grids and reduce impact of grid failures. They can be considered as curtailment costs in the objective function of the
proposed model introduced in Section 3.5. Authors work in [49] finds only limited impact of outage costs for sites in
countries with high reliability of power supply. Outage costs are thus not discussed in this Thesis.
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Figure 5.20.: Cost increases from CHP maintenance scheduling in different seasons for the cost-
optimized scenario of the automotive use case

in literature focus either on the electrical supply system [136], [137] or the thermal supply system
[102]. This work proposes a holistic redundancy concept for all energy demands within an industrial
site as introduced in Section 3.4.2. The allocated additional equipment capacities serve as backup
during technical equipment failures of single units of a technology. A comprehensive database
on equipment reliability is provided in IEEE Standard 3006.8 [157]. The database is based on
an extensive survey of nearly 400 sites and evaluates 900,000 technical failure events. Survey
results indicate that failures of compression chillers (0.35/a), steam boilers (0.58/a) and engines
(1.8/a) of CHP plants are likely to occur multiple times during planning horizon. Energy supply
systems need to continue serving the energy demands during these unexpected equipment failures.
Mean time to repair equipment failures is up to 48 hours [157]. Storage technologies with hourly
charging cycles cannot meet these long-term backup requirements. Backup is thus fully provided
by additional capacities of conversion technologies.

For redundancy allocation, conversion technologies are installed in multiple smaller units rather
than in one large unit. Consequently, models of conversion technologies need to consider the unit
sizing constraints introduced in Section 3.4. For the illustrative purpose of this work, the existing
energy supply system is assumed to comprise 4 units of 240 kW compression chillers and three
units of 500 kW gas boilers. Capacity additions are possible by adding unit capacities, e.g., 240 kW
for a compression chiller. This assumption reflects energy planers policy to reduce maintenance
efforts by standardization of on-site equipment. The effect of redundancy allocation is analyzed in
three scenarios for economic optimal selection, moderate N-1 constraints and conservative N-1
constraints. Parameters for N-1 secured loads are summarized in Table 5.6. The economic scenario
considers no backup requirements whereas the two N-1 scenarios ensure security of supply for
certain critical loads. In contrast, the conservative approach ensures backup even during rarely
occurring demand peaks. Peaks of different demand types (electricity, steam, heating, cooling)
typically occurs during different times. Moreover, storage technologies and thermal inertia from
distribution systems may support remaining conversion technologies to provide a sufficient level
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Table 5.6.: Assumptions for critical load (pRED,L) secured by redundant backup equipment

Mode Unit Economic N-1 (moderate) N-1 (conservative)

Electricity MW - 2.4 2.9
Heating MW - 0.69 1.3
Cooling MW - 0.71 0.92

of energy supply. Therefore, the moderate scenario guarantees energy supply only outside peak
periods. 300 h of each energy demand are thus not secured with backup capacities.

Introducing redundancy requirements causes slightly higher objective values of 0.1 % for the
moderate N-1 scenario and 0.5 % for the conservative N-1 scenario. The impact of redundancy
allocation on the sizing of conversion and storage technologies is summarized in Figure 5.21.
Backup for electricity supply system is provided by the grid connection which is assumed to provide
reliable backup. Therefore, the introduction of redundancy constraints has only minor impact on
the sizing of the CHP plant. Security of supply for heating and cooling demands are ensured by
backup boilers and chillers. In the moderate N-1 scenario, one additional boiler of 0.5 MW and
one additional chiller of 0.24 MW are installed. In contrast, the conservative N-1 scenario results
in two additional units of both gas boilers and chillers. The additional capacities only serve as
backup for rarely occurring peak demands.

Increasing peak-load capacities from boilers and chillers have an impact on the sizing of hot and
chilled water tanks. The computed capacities of the hot water tanks decrease by 10.4 % in the
conservative N-1 scenario. Backup boilers can serve peak demands in this scenario. In contrast,
capacity of the chilled water tank is increased by 38 % (moderate) and 48 % (conservative). The
additional capacities of compression chillers enable a flexible charging during times with low
electricity prices.

The developed redundancy allocation concept enables energy system planners to include site-specific
backup requirements for technical equipment failures. The integration of redundancy constraints
shows only minor impact on total costs for the considered use case. However, consideration of
backup equipment has a clear impact on sizing of peak-load conversion and storage technologies.
Backup equipment capacities in combination with storage technologies allow for a flexible operation
and better integration of renewable energy sources. The proposed model formulation accounts for
discrete unit characteristics for chillers and boilers. Computation times of the resulting combinatoric
optimization model are significantly higher (817 s to 2763 s) than for the model without discrete
unit characteristics (333 s). One might argue that the additional capacities for backup equipment
might be allocated in a post-processing routine rather than in the formulation of the techno-
economic planning model. However, a post-processing routine would omit the impact of backup
equipment on sizing of storages. The proposed formulation accounts for this impact on storage
sizing. Therefore, the optimization framework enables the computation of optimal design concept
which mitigate risks from equipment failures.

Equipment failures cause unavailabilities at any time and remain for hours to days. In contrast to
long-term equipment failures, integration of photovoltaic plants introduces short-term fluctuations.
These short-term fluctuations need to be balanced by the energy supply infrastructure. The
following section applies an operating reserve which considers a reserve margin to mitigate risks
from sudden and temporarily changes in energy demands and renewable generation.
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Figure 5.21.: Conversion and storage capacities for the automotive site considering discrete unit
sizes for boilers and chillers and three types of redundancy requirements

Short-term balancing
Operational reserve margins are required to reliably operate energy supply systems during sudden
drops in renewable generation (e.g., cloud movement over PV plant) or demand peaks (e.g., start-up
demands of large motors). Sustainable design concepts comprise sufficient equipment capacities
to meet the required reserve margins. The following paragraph analyzes the impact of operating
reserves introduced in Section 3.4. Assumptions of reserve margins are based on a conventional
control schema described in [158]:11 margins (aL,OR,relt ) of 10 % for electricity and cooling demands
as well as 80 % of photovoltaic generation are considered as constraints in the dispatch formulation.
The required duration (TOR,D) is selected with 30 minutes. The CHP plant can contribute to the
reserve by adapting its set point if switched on (BOprCHP,t = 1). Temporarily overloading of the
CHP is omitted which limits the contribution of the CHP to its rated capacity. Beyond the CHP,
batteries and the power grid contribute to operating reserve requirements. Table 5.7 summarizes
parameters for operating reserve requirements. The analysis is conducted for a grid-connected and
a self-sufficient scenario. In contrast to the grid-connected scenario, the energy supply system of
the automotive site is operated independently from the power grid in the self-sufficient scenario.
This scenario reflects basic requirements for remote sites which are connected to no or a highly
unreliable power system.

The self-sufficient scenario results in total expenditures between 3.5 M€/a to 3.6 M€/a which is
36 % higher than the grid-connected scenario. Share of PV generation increases from 21 % to
32 %. Moreover, a battery stores excess electricity and provides 3.6 % to the electricity mix. The
remaining electricity is generated by the CHP plant with a rated capacity of 2.1 MW. Figure 5.22
shows the dispatch for a summer week in this scenario. PV generation meets most of the demand
during noon. The CHP plant is shut down during these hours and thus cannot contribute to the

11Required operating reserve margins for PV can be reduced by advanced control schemas with local weather sensors,
particulary during clear-sky conditions. The interested reader is guided to [158] for additional information.
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Table 5.7.: Operating reserve requirements for electric and cooling loads (αOR,L,rel) as well as PV
generation (aOR,Ren)

None Load Load + PV

αOR,L,rel 0 0.1 0.1
aOR,Ren 0 0 0.8
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Figure 5.22.: Electricity dispatch during a summer week in the self-sufficient scenario with oper-
ating reserve for short term fluctuations of load and PV

reserve. The operating reserve during these hours is provided by the battery storage. During the
weekends, the PV generation is partly curtailed as excess electricity can no longer be fed in the
power grid. Curtailment energy accounts for 17 % of annual PV generation.

Figure 5.23 summarizes the electric generation capacities for the conducted analysis. The operating
reserve is provided by the power grid in the grid-connected scenario. Therefore, the introduction
of reserve constraints shows no impact in these scenarios. In contrast, the sizing of the battery
storage is highly dependent on the assumed reserve parameters in the self-sufficient scenario. The
consideration of a load and PV reserve increases the optimized battery capacity from 1.03 MWh
to 1.15 MWh (+ 12 %) and 2.53 MWh (+ 145 %). The battery provides operating reserves
and simultaneously store renewable excess energy. The proposed formulation derives an optimal
capacity sizing considering both revenue streams.

Optimization results highlight the value of a reliable connection to a power system for the energy
supply systems of industrial sites. Design of stand-alone systems requires consideration of short-
term balancing constraints to provide sufficient reserve for sudden and temporary disturbances
of power balances, in particular due to volatile PV generation. The proposed operating reserve
concept enables the computation of self-sufficient design concepts with reliable cost and equipment
estimations. The comparison of the grid-connected and the self-sufficient scenario clearly indicates
that industrial sites profit from a reliable connection to the power grid.

Summary
Security of supply considerations are successfully integrated in the techno-economic planning
model. Their integration strengthens stakeholders’ confidence in the feasibility of the derived
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Figure 5.23.: Dispatchable electricity generation capacities for a grid-connected and a self-
sufficient energy supply system depending on the short term balancing services

preliminary design concepts and thus increase chances of project realization. Simulative evaluations
for the use case of an automotive site underline the ability to account for maintenance scheduling,
redundancy allocation and short-term balancing services.

• Maintenance scheduling: Maintenance periods of equipment are effectively scheduled in
periods of low demands, e.g., during summer time for heating demands. If maintenance
work can be scheduled in these periods, the impact of planned unavailabilities has only minor
impact on the design concept.

• Redundancy allocation: Allocation of redundancies mitigates risks of equipment failures.
Therefore, the model captures discrete unit characteristics of conversion technologies. The
consideration of redundancies is in particular relevant for sizing of peak load technologies
such as backup boilers.

• Short-term balancing: Operating reserves for short-term changes in electric demands and
PV generation require additional equipment installations if short-term balancing needs to
be provided by the on-site energy supply system. However, industrial sites in Europe are
typically connected to reliable power grids which ensure electricity supply at any time.

Feasibility studies select an optimal design concept by comparison of multiple design variants
regarding their economic, ecological and energetic KPIs. Primary objective of techno-economic
planning models is thus the optimization under normal operational conditions [109]. In contrast,
security of supply considerations focus on challenging extreme situations. Energy supply concepts
need to comprise sufficient equipment to handle these extreme situations. The consideration of
security of supply constraints shows only minor impact on the KPIs for the considered use case of a
German industrial site. However, both operating reserves and redundancy allocation significantly
increase model complexity. Therefore, these concepts should be only employed if a use case desires
security of supply considerations. Importance of security of supply rises if sites cannot procure
electricity from a reliable power grid connection, e.g., mining industry in remote locations or sites
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in countries with weak power grids. Similar recommendations are given by the National Renewable
Energy Agency (NREL) in their recently released manual for a design web tool [159].

5.6. Discussion

This section discusses the results of the presented use cases regarding the requirements derived in
Section 2.2 and critically assesses limitations. Suggested improvements for practical applications
and future research can be directly handled within the newly developed optimization framework

Exemplary use cases from three industrial sectors have illustrated multiple features of the newly
developed optimization framework. The proposed model derives economic, ecological and ener-
getic KPIs for multiple scenarios considering non-linear technology models and time-dependent
procurement tariffs in multi-modal coupled energy supply systems. The techno-economic model is
integrated in an optimization framework enabling a computationally effective solving process by
optimized period selection (OPS) and a roadmap approach with myopic foresight (MYOP). Stake-
holders’ confidence in the robustness of the derived design concepts is strengthened by identifying
non-regret decisions in multi-year transformation roadmaps, e.g., to analyze the changing role of
cogeneration plants. Moreover, the framework can derive robust design concepts which guarantee
security of supply during maintenance work, technical failures and short-term imbalances for all
production related energy demands. The newly developed framework provides valuable insights to
identify non-regret design decisions and meet decarbonization targets.

Models for the three examplary use cases have been simplified for the illustrative purpose of this
Thesis. The following four paragraphs give modeling guidance for real-world applications and
future research with the newly developed optimization framework.

Cost estimations and regulatory boundary conditions: Cost estimations for the three use
cases are mostly based on open source databases [155], [156]. Real-world applications should
consider more detailed cost estimations considering planning efforts, assembly costs and risks
margins. Moreover, subsidies and network charges have not been fully reflected in the presented
use cases. The use cases do not included subsidies offered by German local or national authorities.
Practical applications need to account for these subsidies, which make business cases for low carbon
technologies even more viable. For instance, author’s analysis in [50] have discussed full-load
dependent CHP promotions in combination with additional technical constraints for high-efficiency
criterion. Revenue streams from network charge incentives are also simplified. Network charges
are modelled by a composite electricity tariff structure depending on the grid utilization rate.
Reduction of network charges for atypical or intensive grid usage incentivizes a grid friendly
electricity procurement and offers additional saving potentials for industrial stakeholders. The
interested reader is guided to author’s work in [49], which has discussed these options for a real-
world use case from non-ferrous metal industry. Regulatory boundary conditions are continuously
revised by regional and national authorities. The proposed cost parameters and linking concept in
the newly developed optimization framework provide a solid basis to model a variety of existing
and future boundary conditions.

Technology characteristics: The technical superstructure for the presented use cases includes the
most relevant technology options for industrial sites. Practical applications may adapt technology
parameters according to site specific characteristics. Constant temperature and pressure levels
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have been assumed for all three use cases, e.g., 80 °C for space heating. Lower temperatures
for space heating increase COP values of heat pumps and encourage their use. Temperature
levels of waste heat should also be included. Depending on the required temperature levels, free
cooling or reversible heat-pumps may be applicable to reduce use of compression chillers. Beyond
flow temperature dependence, the model of CHP may also account for start-up costs to penalize
wear and tear from frequent start up and shut down processes. Emission factors of electricity
procurement have been considered as constant for the three use cases. Future work might also
consider time dependent emission factors from macro-economic models to reflect the changes in
power grid more accurately. All of the above-mentioned suggestions require only updates of model
parameters and can be handled within the proposed technical superstructure.

Demand-side measures: The three use cases have strongly focused on supply-side decarbonization
measures linked to on-site generation and energy procurement. Demand-side measures have been
accounted for by model exogenous annual changes of load profiles according to analysis in [146].
Data-driven decision support for demand-side measures might become more relevant in the near
future as increasing monitoring of large energy consumers brings additional transparency in energy
use, in contrast to today’s practice to measure only the point of common coupling. Future research
could thus extend the technical superstructure by demand-side measures. Demand-side measures
include capital-intensive measures such as the installation of new highly efficient vents and heat
exchangers in HVAC systems. Other demand-side measures might be linked to employment of
advanced control schemas. Demand-driven controls avoid high standby consumptions of industrial
processes. Other control schemas might exploit flexibility potentials of demands for peak-load
management. Author’s work in [49] has considered flexibility from on-site air separation plants and
electrical furnaces. The mentioned demand-side measures can be formulated with the proposed
generic technology model as a combination of grid, load, and conversion technologies.

Uncertainty handling: The above mentioned suggestions refer to an extension of the technical
superstructure and refinement of techno-economic model parameters. These suggestions assume
that data is available in a sufficient coverage and quality. Input data is known to comprise significant
uncertainty during early project phases, as outlined in Section 3.1. Projected electricity and gas
prices have dynamically evolved during the course of this Thesis. Future work should thus employ
extensive sensitivity analysis and quantify the impact of single measures. Sensitivity analysis allows
to identify tipping points when investments reach the threshold of economic viability. They thus
assess trade-offs between multiple capital-intensive investment decisions. The presented use cases
have compared scenarios which result from multiple measures. Future work should also compute
the impact of each measure seperately, e.g., the payback period of a PV installation. This gives
stakeholders the option to derive action plans with priorities on those measures with the highest
cost and carbon saving potential.
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6. Conclusion and Outlook

Optimization-based design approaches support strategic planning of industrial energy supply
systems. This Thesis has developed a novel optimization framework which effectively generates
transformation roadmaps with non-regret decarbonization measures. The chapter highlights the
main achievements, followed by perspectives for future research.

6.1. Thesis achievements

This work has developed and applied a comprehensive decision support tool to design highly
complex multi-modal energy supply systems in industrial sites. The key contributions regarding
the four focus research questions are summarized in the following.

Energy supply systems define the on-site infrastructure to serve multi-modal demands of buildings
and production processes within industrial sites. Chapter 2 has derived requirements for feasibility
studies and reviewed existing research work. MILP-based optimization models are found to
capture the relevant techno-economic characteristics of on-site infrastructure and procurement
tariffs. The generic formulation with technology base classes of Thiem [27] accounts for the
diverse requirements typically found in industrial sites, e.g., general purpose and sector specific
technologies. The mathematical formulation from Thiem is thus re-implemented and extended
for multi-node, multi-stakeholder and multi-year system analysis. The optimization functionality
of the framework is provided as a scalable sizing service, which can be accessed by several users
simultaneously. Moreover, the framework includes a client application which allows experienced
energy consultants to easily access the sizing service. The client application comprises extensive
functionality for input data checking and immediate result analysis, e.g., an automatic generation
of interactive topology and sankey diagrams. The client application is frequently employed in
research and consulting projects since October 2020.

The techno-economic planning model has been formulated in Chapter 3. The model comprises two
newly developed deterministic reserve concepts to guarantee highly reliable supply of production
related demands in industrial sites. The operating reserve concept ensures system’s ability to
dynamically respond to short-term imbalances resulting from demand peaks, grid failures or
renewable generation drops. These short-term imbalances are handled by a reliable connection
to the power grid or installation of on-site battery storages. The redundancy allocation concept
mitigates risks from technical failures which last for several hours to days. Both concepts allocate
additional equipment capacities which can promote an integration of renewable excess generation.
Security of supply constraints can strengthen stakeholders’ confidence in the feasibility of the
derived transformation roadmaps. However, both reserve concepts add significant complexity to the
model formulation: additional dispatch constraints for each time step are required for the operating
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reserve concept, the redundancy concept enforces a modeling of discrete unit characteristics for
conversion technologies.

Beyond security of supply, the framework allows to compute transformation roadmaps, as described
in Chapter 4. These roadmaps integrate projected long-term trends in decision process and highlight
the evolution of an energy supply system. The computational feasibility is ensured by the newly
developed optimized period selection (OPS) approach for time series aggregation. Based on an
integer program, the OPS approach derives a robust selection of representative days capturing
the multi-modal energy demands of the entire base year. Computation times are reduced from
71 minutes to 30 s for a base year model. Solving times of multi-year models are further reduced
by the roadmap approach with myopic foresight (MYOP). Examined models are solved between
93 % to 98 % faster compared to the roadmap approach with perfect foresight (PERF). The
sequential solving process of MYOP strategy accounts for adaptive decisions along a roadmap
offering stakeholder a clear view on a sustainable evolution of their energy supply systems. However,
the MYOP strategy might identify stranded investments as promising options due to lock-in effects
of long-living energy supply equipment. This drawback is overcome by a strategic planning strategy
with perfect foresight (PERF).

Three exemplary use cases from automotive, pharmaceutical, and dairy industry in Southern
Germany have demonstrated the suitability of the methodology developed in this Thesis. Results
have been presented in Chapter 5. The use cases optimize supply concepts for electricity, steam,
space heating and process cooling. Optimization results indicate that cogeneration plants might
be an attractive investment option if waste heat can be efficiently used within the factory site.
However, the role of CHP plants is projected to change significantly along the 15-year planning
horizon. For instance, the equivalent annual full load hours of a CHP in the dairy use case decrease
from 8,410 h/a to 970 h/a. This long-term development challenges the economic feasibility of an
investment. High carbon and gas prices as well as the availability of renewable excess electricity
from PV favor the electrification of thermal demands. The electrification leads to significant
increases of on-site electricity use despite implementation of efficiency measures. The remaining
steam demands are supplied by biomass in the conducted use case. Optimization results strongly
depend on the projected fuel and electricity price developments. Projected developments have
dynamically evolved during this Thesis, giving the high uncertainty in the European electricity
and gas markets. The proposed setup allows to easily repeat design calculations with updated
projections on procurement costs and energy demands. Thereby, it supports energy system planners
and consultants in identifying non-regret decarbonization strategies for highly complex industrial
sites.

6.2. Future perspectives

Previous chapters have described the newly developed optimization framework to design highly
complex energy supply systems in industrial sites. This section critically assesses limitations of the
derived methodology and provides perspectives for future research. Shortcomings of the three
exemplary use cases have been discussed in Section 5.6. The discussion of this shortcomings
gives clear modeling guidelines for future work within the newly developed framework. The
techno-economic planning model is based on several key assumptions outlined in Section 3.6.
Among others, these key assumptions offer perspectives for future research.
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Control strategies: The results presented have been derived under the assumption of perfect
foresight and full controllability of all assets. However, these assumptions omit limitations of real-
world controllers. Consequently, the proposed methodology overestimates potentials for flexibility.
Realistic control strategies should account for forecasting uncertainties. Modeling of realistic
control strategies might also account for flexibility options from shifting energy-intensive processes
in production planning. An application-oriented summary of experiences from coupling of material
and energy simulations is provided by Köberlein in [67]. Simulations of control strategies enable
more accurate estimations of cost and carbon saving potentials.

Enterprise perspectives: Focus of this Thesis has been the computation of technical energy
supply concepts for single sites. Ownership structures and procurement strategies have been
simplified for the simulative evaluations in this Thesis. Real-world applications should consider
bankability of investments. Bankability poses a major hurdle for practical implementation in
companies [138]. A comprehensive review on this topic is provided by Ioannou in [160]. Beyond
bankability of investments, procurement strategies often include hedging strategies with long-term
supply contracts or power-purchase agreements (PPA). These procurement strategies may also be
optimized across multiple sites of a company to reach corporate decarbonization targets.

Coupling to physical models: Techno-economic planning models are clearly valuable for feasibility
studies, e.g., to engage non-technical management stakeholders. However, these models basically
omit underlying physical properties such as voltages for electrical supply systems and temperatures
for heating networks [74]. These physical properties become more relevant in later project
stages. Therefore, the design concepts derived with the proposed methodology could be refined by
simulation models for building performance [161] and network flows [162]. Network simulations
require detailed knowledge of topology structures which can be generated based on an economic
optimization approach [163].

Comprehensible results: Practical acceptance of the proposed methodology is closely linked to
consultants’ ability to explain the optimization results. This Thesis provides a comprehensive user
interface with interactive visualizations of results. Future work could link input and result data
to create an even deeper understanding of the highly complex interactions in industrial energy
supply systems. Moreover, costs and carbon emissions might be interlinked with energy demands
by tracing algorithms, giving stakeholders additional clarity on the most relevant measures to
transform existing energy supply concepts into sustainable solutions.
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A. Appendix

A.1. Linearization schemas

The model equations introduced in Chapter 3 comprises non-linear constraints to simplify under-
standing of the correlations. The introduction of non-linear constraints adds significant compu-
tational complexity. In the implemented model formulation, the non-linear constraints are thus
reformulated in mixed-integer formulations using two different linearization schemas.

Equations 3.19, 3.22, 3.28 and 3.29 comprise bilinear terms with one factor being a binary variable.
The explanation below applies Glover’s reformulation to Equation 3.29. The approach is applied to
the other equations analogously. Following Glover’s linearization schema, the product of binary
variable (BOprk,t ) and a sum term (ξk,y = cOM,run,fixk,y + cOM,run,vark,y PRk,y) is replaced by a continuous
helper variable Hk,t ∈ R+. The value of this helper variable is constraint by three mixed integer
inequality constraints. The parameter mk describes a sufficiently high number with mk ≫ ξk,y.

Hk,t ≤ ξk,y ∀k ∈ KC , y ∈ Y, t ∈ Ty (A.1)

Hk,t ≤ mk ·BOprk,t ∀k ∈ KC , t ∈ T (A.2)

mk · (BOprk,t − 1) + ξk,y ≤ Hk,t ∀k ∈ KC , y ∈ Y, t ∈ Ty (A.3)

Constraints with products of two continous variables occur in Equations 3.32 and 3.39. The
linearization of these equations requires the introduction of an additional helper binary variable
BH

k,t ∈ {0, 1}. The reformulation is shown for Equation 3.39. The parameter mk describes a
sufficiently high number with mk ≫ P Ink,t and mk ≫ POutk,t . The value of mk is chosen sufficiently
low to keep the optimization model numerically stable. The two inequality constraints ensure that
only one of two continuous variable can take a non-zero value.

P Ink,t ≤ mk ·BH
k,t ∀k ∈ KS , t ∈ T (A.4)

POutk,t ≤ mk · (1−BH
k,t) ∀k ∈ KS , t ∈ T (A.5)
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A.2. Techno-economic assumptions

Table A.1.: Assumptions on technical and economic characteristics of renewable and storage
technologies

Technology Parameter Value Unit Source

Photovoltaic Investment 1448 €/kWp [155]
O&M 17 €/kWp/a [155]

Battery Investment 349 k€ [155]
183 €/kWh [155]
268 €/kW [155]

O&M 40 €/kW/a [155]
Efficiency 85 % [155]
Lifetime 12 a [155]

Hot water tank Investment 10 k€ [27]
20 €/kWh [27]

O&M 0.1025 €/kWh/a [27]
Self-discharge 0.5 %/h [27]
Charging efficiency 98 % [27]
Discharg efficiency 98 % [27]

Chilled water tank Investment 11 k€ [27]
77 €/kWh [27]

O&M 0.1025 €/kWh/a [27]
Self-discharge 0.334 %/h [27]
Charging efficiency 98 % [27]

Table A.2.: Projected evolution of photovoltaic and battery prices based on [155]

Unit 2023 2026 2029 2032 2035

Photovoltaic, Investment €/kWp 1448 1224 1001 905 873
Photovoltaic, O&M €/kW/a 17 14 12 11 11
Battery, Investment k€ 349 318 298 285 274

€/kWh 183 134 115 107 103
€/kW 268 219 196 185 178

Battery, O&M €/kW/a 40 32 29 27 26
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Table A.3.: Assumptions on technical and economic characteristics of conversion technologies

Technology Parameter Value Unit Source

CHP (ICE) Investment 121 k€ [79]
(< 4 MW) 650 €/kW [79]

O&M 8 €/kW/a Assumption
15 €/MWh Assumption

Electric efficiency 36 % [164]
Heat efficiency 22 % [164]
Steam efficiency 32 % [164]
Minimum part load 30 % [156]

CHP (GT) Investment 750 €/kW [156]
(> 2.0 MW) O&M 7 €/kW/a Assumption

8 €/MWh Assumption
Electric efficiency 31 % [113]
Steam efficiency 53 % [113]
Minimum part load 50 % [156]

Boiler (gas) Investment 60 €/kW [156]
O&M 1.1 €/kW/a [156]
Efficiency 90 % Assumption

Boiler (biomass) Investment 690 €/kW [156]
O&M 2.72 €/MWh [156]
Efficiency 97 % Assumption

Boiler (electric) Investment 343 k€ [156]
36 €/kW [156]

O&M 0.9 €/kW/a [156]
Efficiency 98 % [156]

Heat pump Investment 713 k€ [156]
(air source) 714 €/kW [156]

O&M 2.69 €/kW/a [156]
COP 2.2 - [156]

Heat pump Investment 571 k€ [156]
(waste heat) 666 €/kW [156]

O&M 3 €/kW/a [156]
COP 4.5 - [156]

Compression chiller Investment 21 k€ [27]
329 €/kW [27]

O&M 8.8 €/kW/a [27]
EER 3.6 - [153]

Absorption chiller Investment 63 k€ [27]
588 €/kW [27]

O&M 2.5 €/kW/a [27]
EER 0.69 €/kW/a [153]
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A.3. Optimization results
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Figure A.1.: Annual energy flows in carbon optimal scenario of the automotive site
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