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ABSTrACT

Bioinformatics progresses at an unprecedented pace. At the same time
the software implementing the essential algorithms is often incompat-
ible with each other in terms of data input and output. In consequence
it can require substantial effort to establish a workflow that combines
different programs. Furthermore, the flexibility of such software is
usually limited to a relatively small number of options. These circum-
stances hamper the adaption of these programs to new problems. An
alternative approach to command line programs are programming li-
braries, that enable the user to apply already implemented algorithms
and at the same time to harness the full feature spectrumof a program-
ming language.

In this thesis the Python bioinformatics package Biotite is presented.
It unifies popular algorithms from sequence and structure analysis
into a flexible library, which is applicable to a wide range of biological
questions. Furthermore, new algorithms are presented, enhancing the
bioinformatician’s toolkit with a novel sequence alignment visualiza-
tion approach and universally applicable hydrogen predictionmethod.
Finally, via the application of Biotite this thesis provides new insights
into themolecularmechanismof cation channels and novel evaluation
methods for sequencing data from SELEX experiments.



ZUSAmmEnFASSUnG

Die Bioinformatik verzeichnet Fortschritte in einem noch nie dagewe-
senen Tempo. Gleichzeitig sind die Programme, die die zentralen Al-
gorithmen implementieren, häufig in der Dateneingabe und -ausgabe
miteinander inkompatibel. Infolgedessen kann es einen erheblichen
Mehraufwand erfordern, einen Workflow zu etablieren, der ver-
schiedene Programme kombiniert. Zudem ist die Flexibilität vonKom-
mandozeilenprogrammen in der Regel auf eine übersichtliche Anzahl
von Optionen beschränkt. Diese Umstände erschweren die Anpas-
sung dieser Programme an neue Probleme. Eine Alternative zu Kom-
mandozeilenprogrammen sind Programmbibliotheken, die es demBe-
nutzer ermöglichen, bereits implementierte Algorithmen anzuwen-
denunddabei gleichzeitigdenvollenFunktionsumfangeinerProgram-
miersprache bieten.

In dieser Dissertation wird das Python-Bioinformatik-Paket Biotite
vorgestellt. Es vereint populäre Algorithmen aus der Sequenz-
und Strukturanalyse in einer flexiblen Programmbibliothek, die sich
auf eine Vielzahl von biologischen Fragestellungen anwenden lässt.
Darüber hinaus werden neue Algorithmen vorgestellt, die das Instru-
mentarium des Bioinformatikers um einen neuartigen Ansatz zur
Sequenzalignment-Visualisierung und um eine universelle Methode
zurWasserstoffvorhersage erweitert. Abschließend bietet diese Arbeit
durch die Anwendung von Biotite neue Einblicke in den molekularen
MechanismusvonKationenkanälenundneueAnsätzezurAuswertung
von Sequenzdaten aus SELEX-Experimenten.
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1

Preface

In the history of bioinformatics many algorithms were invented to
generate insight from the increasing wealth of available sequence and
structure data. These algorithms have been casted into dedicated pro-
grams. However, combining multiple programs to solve a certain bi-
ological problem can be challenging as their compatibility with each
other and their flexibility is limited.

Here the programming library Biotite written for the Python program-
ming language is introduced as potential solution to such issues: It of-
fers functionalities for analysis of sequence and molecular structure
data. Itunifieswell-establishedalgorithms inbioinformatics intoa fast
and consistent package, which allows its users flexible combination
of different methods to achieve their desired result. In consequence
this libraryallowsdevelopers to simply reuse commonly required func-
tionalities and focus on unique aspects of their software. Furthermore,
scientists can use the package to answer their biological questions us-
ing the full repertoire of a programming language without the need to
write interfaces between different programs.

THESIS OUTLInE

Part I of this thesis will introduce the reader into the current bioin-
formatics ecosystem for sequence and structure analysis and presents
the design principles behind Biotite. Then Part II elaborates on the
new methods and algorithms that were implemented in Biotite and its
extensions during the creation of this work, combined with respec-
tive application examples. Beyond established methods, these include
novel algorithms that enhance the analysis of sequence and structure
data. This part first describes data visualization techniques, proceeds
with sequence analysismethods and concludeswith structure analysis
methods. In Part III Biotite is used to provide insights into current bi-
ological questions in the domains of ion channel research and in vitro
aptamer selection. Finally, the work is summarized in Part IV.

REPrODUCTIOn

Figures in this thesiswere createdwithPyMOL,Matplotlib1 and Inkscape. 1 Schrödinger (2017); Hunter (2007).

To support reproducibility of the results shown in this thesis, the com-
plete source code for generation of this dissertation is available as an
archive2. Additional data required in Chapter 16 is available upon re- 2 Kunzmann (2022).

quest.
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Background
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CHAPTEr 1

The bioinformatics ecosystem

Bioinformatics is the discipline of applying “computational techniques
to understand and organize the information associated with biological macro-
molecules.”1. Depending on definition of the term, bioinformatics also 1 Luscombe, Greenbaum, and Gerstein

(2001).extends into the fields of gene expression analysis, systems biology
and evenmicroscopy image analysis. However, for the purpose of this
thesis the term is restricted to the sequence and structure analysis of
biomacromolecules, such as nucleic acids and proteins. In the past
decades an ever increasing amount of sequence and structure data has
been deposited in public databases. As example for this trend Figure 1.1
shows the annual releases of structures in the ProteinData Bank (PDB) 2. 2 Berman et al. (2000).

In order to cope with these data and gain new insights from them, re-
searchershavedeveloped a large variety of algorithmsand correspond-
ing software - from sequence alignments to structure prediction. The
entirety of available bioinformatics software and the interoperability
between themwill be termed herein the bioinformatics ecosystem.
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Figure 1.1: Annual releases of PDB
structures. The plot was created based
onmetadata from the entirety of PDBen-
tries.

1.1 STAnDALOnE SOFTWArE VS. PrOGrAmmInG LI-
BrArIES

Two types of software should be distinguished here. On the one hand,
there is standalone software, called tool herein, made for end users to
solve one or different problems based on given data. These are usually
command line based3: They take given input files and other options

3 Programs that require user input via
a graphical user interface are not dis-
cussed here, as they cannot be integrated
into automatized analysis workflows.

andwrite the result or ‘solution’ into the specified output file. An exam-
plewould be amultiple sequence alignment (MSA) tool that takes a file
containing input sequences and optionally a scoring scheme to write
the aligned sequences into a new file. Second, there are programming
libraries, thatprovidepredefined functionalities forotherprogrammers
to facilitatewriting their own tools in a certain programming language.
For example, the library SeqAn4 provides a set of functions for sequence 4 Reinert et al. (2017).

analysis in the programming language C++. To use the library for ac-
tual problem solving, a tool needs to be written, that combines and ap-
plies these offered functionalities for some kind of input data.

The ‘Small tools manifesto for bioinformatics’5 advocates a bioinformatics 5 Prins (2014).

ecosystem which is made up of small tools, where each one is spe-
cialized for a single focused task. These tools should be “modular and
pluggable” to allow building workflows upon a combination of them to
solve the respective scientific question. However, the combination of
pure tools has several shortcomings. Although nowadays the bioinfor-
matics community has settled to a relatively small set of file formats
for one type of data, there are still incompatibilities, especially if old
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tools are involved. For instance, while mmCIF is now the standard for-
mat for storing macromolecular structure data in the PDB6, the depre-6 Westbrook et al. (2022).

catedPDB format prevails as primary input andoutput format inmany
even modern tools7. Furthermore, tools have limited flexibility, as the7 Das and Baker (2008); Li, Roy, and

Zhang (2009); Lindahl et al. (2021). customization is restricted to a number of command line arguments.
Therefore, output data from one tool often needs to be edited before it
can be given as input to the following tool. This raises the need for a
script that performs this editing and conversion (Figure 1.2A). Here the
notion of script is used to describe a custom tool that is tailored to the
specific use case and that can not be easily generalized. To facilitate
programming such scripts, a library can be used, i.e. the provided gen-
eral functionalities are combined and extended with new source code
tofit the specific use case. A secondapplication scenario of libraries are
the tools itself: Many different tools have common subtasks that need
to be performed. For example, independent from the actual structure
analysis a toolmight perform, all structure analysis tools need to parse
structure data from files. Instead of rewriting such common function-
ality for every new tool, the same library can be used for this subtask
bymany tools (Figure 1.2B). Finally, the required analysis might be too
custom, so no tools fits the purpose, or most tasks in a workflow are
relatively simple, so concatenating multiple tools would significantly
inflate the runtime due to repeated file input and output. The second
point is especially true in structure analysis, as the file formats for
structure data are relatively complex compared to the character string-
basedsequencefile formats. In these casesacustomscript for theentire
analysis or part of it may be a viable option (Figure 1.2C).

Script

A

B

C

Tool 1Data Tool 2 DataScript

Library

ToolData Data

Library

Data Data

Library

Figure 1.2: Use cases for program-
ming libraries in data analysis work-
flows. AUsage in a script to prepare out-
put fromone tool as input of another tool.
BUsageasbasis forwritinga tool itself. C
Usage for complete data analysis.

1.2 THE PYTHOn PrOGrAmmInG LAnGUAGE AnD ITS
SCIEnTIFIC COmPUTInG ECOSYSTEm

In recent years the general purpose programming language Pythonma-
tured into a preferred language for scientific computing8. In contrast

8 Pérez, Granger, and Hunter (2011).

to compiled programming languages as C/C++, the source code is exe-
cuted by the Python interpreter skipping the time required for compila-
tion. In combinationwith dynamic typing9 and omittedmanualmem-

9 A variable may change its type at run-
time. ory management, programming in Python allows the programmer to

focus on the actual program logic. The standard library shipped with
the Python interpreter already provides a number of functionalities for
general purposes. Additional third-party libraries, that can be option-
ally installed, are called packages. To date amyriad of open-source pack-
ages for scientific computinghave emerged. This sectionhighlights the
pillars of the scientific computing ecosystem in Python as well as some
prominent programming libraries for tasks in bioinformatics.

1.2.1 Efficient vectorized computation with NumPy

TheNumPy package10 is at the core of scientific computing in Python, as10 Harris et al. (2020).

it solves the arguably greatest disadvantage of Python: The simplicity
of the language comes at the cost of a lot of internal overhead in the
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Python interpreter, leading to orders ofmagnitude higher computation
times compared to equivalent implementations in compiled program-
ming languages.

Basically NumPy provides the ndarray data structure: a fixed size ar-
ray for numerical data11 that may span multiple dimensions. For ex- 11 This includes: booleans, integers, float-

ing point numbers, complex numbers
and fixed size character strings.

ample a (3 × 3) rotation matrix may be represented as ndarray con-
taining floating point values with 2 dimensions and a size of 3 in each
dimension. The ndarray will be called NumPy array or array through-
out this thesis. NumPy overcomes the lacking performance of Python
by vectorization: An arithmetic operation can be applied to the entire
NumPy array using a single instruction in Python. This includes oper-
ations involving two arrays, e.g. addition (Figure 1.3), one array and a
scalar value, e.g. scalar multiplication, or only a single array, e.g. the
sumof its elements. The instruction is dispatched to efficient compiled
routines that apply the respective operation to each element of the ar-
ray(s). This way a performance close to compiled programming lan-
guages can be achieved, while the simplicity of Python is preserved. For
example, the computation of the dot product between two arraysa and
b representingvectorsof equal lengthn couldbewrittenas ‘sum(a*b)’.
Here only two functions are called from Python: themultiplication and
the sum. The n arithmetic operations, required for each of these two
functions, run in compiled routines. In addition to arithmetic, NumPy
provides a comprehensive set of linear algebraic operations and other
basic functionalities such as sorting or finding the maximum value of
an array.

a1 a2 ... an

b1 b2 ... bn

a1 a2 ... an+ + +b1 b2 bn

+

Figure 1.3: Vectorized addition of two
arrays. The addition of two arrays a and
b is schematically depicted.

Assessinganelement inanarray is called indexing, which is donebypro-
viding a position (the index) of the element in the array (Figure 1.4A).
Alternatively, entire subarrays can be obtained by providing a range
(Figure 1.4B) or array (Figure 1.4C) of indices. In addition an array can
be filtered based on one or multiple conditions (Figure 1.4D): The con-
dition is expressed as boolean mask, an array of boolean values with the
same size as the array to be filtered. When the boolean mask is used for
indexing, all elements where the mask is true are part of the resulting
subarray. Since a boolean mask is a NumPy array itself, logical operators
can be a applied to it, allowing for complex conditions.

array = [4,5,6,7,8]

array[0] array[0:3]

array[[2,4,1]] array[array > 5]

A
4 [4,5,6]

[6,8,5] [6,7,8]

C

B

D
Figure 1.4: Ways to index a NumPy ar-
ray. The elements of the example ar-
ray are shown at the top. The respec-
tive index is shown in red. The result-
ing value(s) are shown next to the arrow.
Note that indexing is 0-based, i.e. the
first element has the index 0. A Integer.
B Slice. C Index array. D Booleanmask.
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1.2.2 Cython allows writing easily maintainable C-extensions

Vectorized arithmetic operations are limited to scenarios, wheremany
values can be processed independent of each other. Fortunately, the
Python interpreter exposesanapplicationprogramming interface (API),
that allowswriting functions in the compiled languageC, which can be
later used in Python code. Those functions are called C-extensions. This
API is also used by NumPy to call the optimized routines mentioned
above. However, writing such extensions requires much effort to inte-
grate functions and objects written in C properly into Python. Cython1212 Behnel et al. (2011).

is a Python dialect for writing C-extensions, that conceals most of this
complexity. Although the general syntax is similar or even equal to
Python itself, a higher performance can be achieved by enforcing static
typingorpureC-operations inperformance-critical parts of the source
code.

1.2.3 SciPy and its SciKits

WhileNumPyprovides basic functionality for vectorizeddatahandling,
SciPy offers “fundamental algorithms for scientific computing in Python”13.13 Virtanen et al. (2020).

These include methods that are commonly used in different fields of
science, such as statisticmethods or commonoptimization algorithms.
SciPy can be supplemented by additional packages specialized for a cer-
tain scientific domain, so called SciKits. One of the most famous SciK-
its is Scikit-learn14, which provides functionalities formachine learning.14 Pedregosa et al. (2011).

Scikit-bio, which offers analyses for sequence bioinformatics, is another
example.

1.2.4 Data visualization withMatplotlib

Matplotlib15 is the de facto standard library for creating 2D and, in a lim-15 Hunter (2007).

ited manner, 3D graphics in Python. Although many of its capabili-
ties focus on plots, the high flexibility of the package allows scripted
creation of vector graphics in general. To facilitate the production of
publication-readyplots, the Seaborn libraryoffers a “high-level interface to
Matplotlib”16, i.e. it provides convenience functions for common types16 Waskom (2021).

of plots, hidingmuch ofMatplotlib’s flexibility but also complexity.

1.2.5 Analysis of molecular molecular dynamics simulations

Molecular dynamics (MD) simulate themovement of atoms in amolec-
ular system17 over time. The resulting trajectories contain time series17 such as a solvated protein

of atom coordinates. Popular packages for the analysis of these trajec-
tories include MDAnalysis and MDTraj18. Both packages make use of18 Gowers et al. (2016); McGibbon et al.

(2015). NumPy to enable efficient analysis of the large number of models in a
typical trajectory.
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1.2.6 Biopython as pioneer of bioinformatics in Python

Biopython is a bioinformatics library that focuses on analysis of se-
quence and structure data. Its advent dates back to 199919, whenNumPy 19 Cock et al. (2009).

andmost of the current scientific computing ecosystemwas not estab-
lished, yet. In consequence, the package rarely uses NumPy arrays for
data representation. Hence, the implemented as well as custom analy-
ses on these data have limited performance. Furthermore, the data rep-
resentation is partly inconsistent: For example structure superimposi-
tion requires conversion of a Structure object to a list of Atom ob-
jects. Nevertheless, Biopython is established in the bioinformatics com-
munity and is primarily used as “glue between themultiple different data for-
mats”20. Although packages with similar scope have also been devel- 20 taken from ‘Podcast.__init__’ podcast

episode 125with threemaintainersof the
Biopython project (accessed 2022-10-06)

oped for other programming languages aswell21,Biopython is by far the
21 Stajichet al. (2002); Grantet al. (2006);
Goto et al. (2010); Lafita et al. (2019).

most popular one22.

22 based on number of citations and
GitHub ‘stars’ on 2022-11-26

https://www.pythonpodcast.com/biopython-with-peter-cock-wibowo-andrarto-and-tiago-antao-episode-125/
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CHAPTEr 2

Preliminary work

The high popularity of Biopython indicates the usefulness of a Python
package for general sequence and structure analysis for the bioinfor-
matics community. However, especially its low performance limits its
potential. Therefore an endeavor was started to build the package Bi-
otite as modern alternative to Biopython. It places the usage of NumPy
arrays at its core to harness the performance of vectorized operations
and to achieve interoperabilitywith other packages in the Python scien-
tific computing ecosystem. It aims to implement algorithms and sup-
port file formats that make up the ‘backbone’ of sequence and structure
bioinformatics. The Biotite Python package was initially created as part
of a Master’s thesis1. The general structure of the Python package is de- 1 Kunzmann (2018).

scribed and its previous scope of functionalities is outlined in this chap-
ter.

2.1 PACKAGE OrGAnISATIOn d
a
t
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b
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e Databases
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Structure
files

Sequence
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Sequence Structure

filter
translate

write
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read

align
visualize

evaluaterun
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Figure 2.1: Overview of the Biotite
package organization. The database
subpackage allows searching in biolog-
ical databases and fetching files from
these online resources. The structure
and sequence files can be loaded into
the internal data representation us-
ing the sequence and structure
subpackage, respectively. While these
subpackages offer a multitude of data
analysis and editing functionalities, the
application subpackage provides
seamless interfaces to commonly used
software and web services for further
analysis.

The Biotite package is divided into four interconnected subpackages
(Figure 2.1) that are able to handle amajor part of the typical data anal-
ysis workflow in bioinformatics. Using the biotite.database sub-
package data entries can be searched in and selected files can be down-
loaded from biological databases such as NCBI Entrez and RCSB PDB2.

2 Sayers et al. (2022); Burley et al. (2021).

Sequence and structure files can be read for further analysis with the
biotite.sequence and biotite.structure subpackage. These
implemented functionalities include a variety of data analysis, editing
and visualization capabilities which are further outlined in the follow-
ing sections. Where the functionalities implemented into Biotite do not
reach far enough, biotite.application provides interfaces to ex-
ternal applications, including locally installed softwareorwebservices.
These interfaces are seamless: Invocations of the application and any
necessary output evaluation are handled internally.

2.2 DATA rEPrESEnTATIOn

A distinguishing point of Biotite to comparable packages like Biopython
is its NumPy array based data representation whenever possible. This
increases the performance of most operations to a level comparable to
compiled programming languages and allows implementation of cus-
tom analyses in a simple way by using the already existing algorithms
in NumPy, SciPy and other packages in the scientific computing ecosys-
tem.
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2.2.1 Sequences

The twomost common types of sequences inbiologyarenucleotide and
amino acid sequences. While these are typically represented as charac-
ter strings as for example in FASTA files, Biotite uses a different repre-
sentation: When a Sequence object is created, it maps each symbol 33 i.e. the character

in the sequence into an integer, the so called symbol code, using an as-
sociated Alphabet object, that defines the allowed symbols for that
sequence type (Figure 2.2). The symbol code is simply the index of the
respective symbol in the list of allowed symbols. The resulting symbol
codes for theentire sequenceare stored inaNumPyarrayas thesocalled
sequence code.

Alphabet

Sequence

CodeSymbols encode

ACATTG 010332

A C G T
0 1 2 3

decode

takes has stores

Figure 2.2: Sequence encoding in Bi-
otite. When a Sequence is instanti-
ated, the input symbols are converted
into a sequence code using an associ-
ated Alphabet and stored inside the
Sequence. Adapted from Kunzmann
and Hamacher (2018) (CC BY 4.0).

Although this encoding requires additional computation time, it has
multiple advantages compared to the string representation:

• More exotic sequence types like pharmacophores or structure em-
beddings can be represented, even if the number of symbols in the
alphabet exceed the 95 printable ASCII characters.

• Most functionalities for sequence data in Biotite are agnostic with re-
spect to the sequence type, since they operate completely on the se-
quence code.

• For alignment purposes the sequence code can be directly used as
index to substitutionmatrices (see Section 2.4.2). This saves compu-
tation time since no additional conversion is necessary.

• The calculation of k-mers is fast (see Section 6.2.1). This has implica-
tions on the speed of nucleotide sequence translation and alignment
searches.

2.2.2 Sequence annotations

Sequence annotations describe the functions of regions within a se-
quence, for example the location and product of a gene. Biotite repre-
sents these as Annotation objects, which are collections of Feature
objects, that, in turn, describe the location and functionality of such a
sequence region. Annotation objects are one of the few objects in Bi-
otite that do not internally use a NumPy to store the data: As each se-
quence position may have an arbitrary number of associated features,
no meaningful way to save the data in a vectorized manner was found.
However, the amount of annotation data is usually relatively small
compared to the sequence data itself. Thus, the performance impact
of annotation data handling is minor inmost cases.

2.2.3 Structuremodels

Molecular structure models require a combination of different data
types. While most importantly each atom is described by its coordi-
nates in the three spatial dimensions, other annotations like its con-
taining peptide/nucleotide chain, the residue and the atom name are
crucial to distinguish the atoms from each other. One possible data

https://creativecommons.org/licenses/by/4.0/
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A B C D E

1 1 3
4321

Indexing
[1,2,3]

Indexing
[1,2,3]

B C D

0 0
21

BondList

AtomArray

0 Figure 2.3: BondList indexing behav-
ior. An example BondList with refer-
ence AtomArray including the atoms A-
E is shown. The bond type is not dis-
played. TheBondList contains0-based
indices pointing to bonded atoms in the
referenceAtomArray, signified by color
coding. After applying an index to both,
the BondList and the AtomArray, the
indices in the BondList still correctly
depict the bonds of the remaining atoms.
The removed atoms are shown in gray.

representation for a structure model containing n atoms could have
been a list of length n, where each list element describes the coor-
dinates and further annotations of a single atom. However, this ap-
proach would prevent vectorized computing using NumPy and thus
negatively impact the computation performance. Instead, a structure
is represented by multiple NumPy arrays of length n, where each ar-
ray contains an annotation type or the coordinates. The arrays are
bundled into an AtomArray object for single-model structures or an
AtomArrayStack for multi-model structures, such as NMR models
or frames from a MD simulation. The key difference between an
AtomArray and AtomArrayStack is the number of dimensions in
the coordinate array: While anAtomArrayuses an (n×3)-dimensional
array, an AtomArrayStack requires (m×n× 3) dimensions to rep-
resent the coordinates in m different models. These two types of
objects are the universal structure representations used throughout
the structure subpackage. In contrast to MDAnalysis and MDTraj4, 4 Gowers et al. (2016); McGibbon et al.

(2015).which both use a string-based atom selection algebra, atom selections
in Biotite use NumPy-based indexing (see Section 1.2.1). Thus, the user
can take advantage of utilities from NumPy and other packages as
means to customize the selection.

2.2.4 Covalent bonds

Covalent bonds between atoms in an AtomArray5 are represented by 5 Bonds work in the same way for
AtomArrayStack objects and are
omitted in this section for brevity.

BondList objects. A BondList stores indices that point to bonded
atoms in a reference AtomArray as (k×3)-dimensional NumPy array.
Each of the k elements represents a bond, specified by three values: the
index to the first atom i involved in the bond, the index to the second
atom j (j > i), and an integer representing the type of the bond 6. 6 single, double, aromatic, etc.

When indexinganAtomArray, i.e. selectingatoms, the index is simply
propagated to the underlying arrays containing coordinates and anno-
tations. However, when applying the same index to the corresponding
BondList, the index is not directly forwarded to the internal array of
bonds. Instead the internal array is adjusted, so that the atom indices
still point to the same atoms in the filtered AtomArray (Figure 2.3):
Atom indices are shifted accordingly and bonds involving atoms, that
were filtered out, are removed.
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2.3 FILE FOrmATS

The support for a wide range of different data file formats is key for
bioinformatics libraries to enable handling of data from many differ-
ent sources and to make edited data available to a wide range of tools
for downstreamanalysis. Prior to theworkon this thesisBiotite already
supported several sequence and structure file formats. Sequences can
be read from and written to FASTA files or, if sequence annotations are
required,GenBankfiles. For structuresBiotite supports thePDBx/mmCIF
format, which is the standard format of the PDB7. However, as many7 Adams et al. (2019).

programs still require the legacy PDB format, it is also supported. For
fast file loading and transmission, theMMTF format8 is available. For8 Bradley et al. (2017).

the purpose of MD simulation analysis various trajectory formats are
also supported via theMDTraj package9.9 McGibbon et al. (2015).

2.4 SEqUEnCE AnALYSIS

2.4.1 Sequence types

Inheriting from the Sequence superclass, NucleotideSequence
and ProteinSequence represent the most common sequence types.
NucleotideSequence objects can form their reverse complement
counterparts or can be translated into a ProteinSequence using a
given codon table. Note that NucleotideSequence represents both,
DNA andRNA sequences, although the corresponding Alphabet con-
tains the symbols ‘A’, ‘C’, ‘G’ and ‘T’. The reason is, that DNA and RNA
sequences convey the same information. Only the corresponding char-
acter stringwould be different 10, which can be easily substituted using10 ‘T’ replaced by ‘U’ for RNA

standard Python functionality.

2.4.2 Pairwise alignment
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Figure 2.4: Sequence alignment us-
ing dynamic programming. The fig-
ure shows the aligned sequences along-
side the dynamic programming table
containing the scores. The arrows depict
thealignment trace, i.e. thepath through
the table that maximizes the score.

Homology between two sequences can be investigated using pair-
wise sequence alignments. Optimal alignments can be achieved us-
ing dynamic programming11 requiring two scoring schemes: the gap

11 Needlemanand Wunsch (1970); Smith
and Waterman (1981).

penalty relating to the evolutionary probability of insertions or dele-
tions, and a substitution matrix providing the log-odds of substitu-
tions for each pair of symbols12,13. The latter one is represented

12 e.g. amino acids or nucleobases
13 Henikoff and Henikoff (1992); Keul et
al. (2017).

by a SubstitutionMatrix object, which stores log-odds scores in
an (m × n)-dimensional NumPy array and contains two Alphabet
objects with m and n symbols, respectively. The Alphabet ob-
jects define the types of Sequence that can be aligned using this
SubstitutionMatrix. Usually, both alphabets are identical, since
typically nucleotide sequences are aligned with nucleotide sequences
and amino acids sequences with amino acids sequences. However, the
possibility to supply two different alphabets allows formore exotic ap-
plications, like the alignment of aminoacid sequenceswith a structural
alphabet. Since sequences are stored as sequence code, i.e. the indices
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Figure 2.5: Sequence visualizations
available in Biotite. A selection of
trypsin inhibitor sequenceswas taken as
example. The sequences including anno-
tation data were downloaded from the
UniProt database. A Feature map of the
EETI-II secondary structure. α-helices
are shown in blue, β-strands in red. B+C
MSA of trypsin inhibitor sequences. The
coloring is either based on sequence con-
servation in an alignment column (B) or
based on the type of symbol (C).

of symbols in the alphabet, the (m× n) score matrix can be directly
indexed with two symbol codes to obtain the corresponding substitu-
tion score for the respective two symbols. In the course of the sequence
alignment, a dynamic programming table is filled (Figure 2.4). The
aligned symbols correspond to the path through the table that maxi-
mizes the score. The result is one or multiple14 Alignment objects 14 Multiple solutions that maximize the

score may exist. To avoid long run
times the maximum number of com-
puted paths can be limited.

that stores the aligned sequences as well as indices that point to their
aligned symbols: the trace.

2.4.3 Visualization

Figure 2.6: Finding atoms within
cutoff distance using a cell list. For
visualization purposes only a two-
dimensional cell list is depicted. The
atom positions are marked by dots, the
position of interest is highlighted with
a cross. First, all atoms in the cell of the
position of interest and its adjacent cells
are filtered (blue square). Second, atoms
within cutoff distance (red circle) are
identified by measuring the Euclidean
distance to the filtered atoms only.

For visual analysis Biotite provides different visualization functionali-
ties using the Matplotlib plotting library. These include feature maps
(Figure2.5A) and sequence alignments (Figure2.5B+C).Alignments can
be colored either by similarity in the alignment columns (Figure 2.5B)
or by type of the symbol (Figure 2.5C). For this purpose different color
schemes are available15.

15 Larkin et al. (2007); Waterhouse et al.
(2009).

2.5 STrUCTUrE AnALYSIS

2.5.1 Cell list

Finding atoms in vicinity of a given position, defined by a cutoff dis-
tance, is a common task for various structure analysis methods such
as partial charge estimation or surface area measurement16. The most

16 Rappe and Goddard (1991); Shrake
and Rupley (1973).

simple way to achieve this aim is checking the distance of each atom
to the position of interest. However, this procedure requiresO(n) run
time for an AtomArray with n atoms. If this needs to be performed
for many positions, for example to find all pairs of nearby atoms, this
approach quickly becomes too expensive for larger structures. Biotite
provides a cell list as alternative (Figure 2.6): It divides the three-
dimensional space into cells, where the atoms are sorted in according
to their positions. To filter atoms that are guaranteed within the cutoff
distance of a position of interest only adjacent cells17 need to be consid- 17 This is only true, if the cutoff distance

is equal to or lower than the cell size, oth-
erwisemore cells need to be checked.

ered, reducing the time complexity toO(1). Then only the distances to
the filtered atoms need to be calculated. The CellList implementa-
tion is a versatile functionality used throughout theBiotitestructure
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subpackage for efficient computation of vicinity.

2.5.2 Measurements

Based on atom coordinates, a variety of measurements can be per-
formed for an AtomArray or AtomArrayStack. These range from
measurements of distances, angles and dihedrals to more complex
measures such as the solvent accessible surface area18 and secondary18 Shrake and Rupley (1973).

structure elements19. Specifically for the multiple models of an19 Labesse et al. (1997).

AtomArrayStack the root mean square deviation (RMSD) and root
mean square fluctuation (RMSF) with respect to a referencemodel can
be calculated. These are defined as

RMSD(i) =

√√√√ 1

n

n∑
j=1

(x⃗ij − x⃗ref,ij)2,

RMSF(j) =

√√√√ 1

m

m∑
i=1

(x⃗ij − x⃗ref,ij)2.

(2.1)

x⃗ are the atom coordinates, where the index i specifies the model and
j values from the flattened atom coordinates 20 within a model. x⃗ref20 [x1, y1, z1, x2, y2, z2, ...]

are the corresponding coordinates of the reference model. For RMSF
calculation the time average of x⃗ over allmodels is usually taken as x⃗ref.

2.5.3 Transformations

Biotite offers functionalities for structure transformations including
simple rotations and translations as well as superimposition of one
structure model onto another model minimizing their RMSD21. Be-21 Kabsch (1976); Kabsch (1978).

sides, custom structure editing is also possible, as the coordinates in
AtomArray and AtomArrayStack objects are accessible to the user.

2.6 InTErFACES TO EXTErnAL APPLICATIOnS

As at the time of the preliminary work only pairwise sequence align-
ments were directly implemented in Biotite, interfaces to widespread
softwarewere created toenable theuser toalsoperformMSAs22. Other22 Edgar (2004); Katoh et al. (2002);

Sievers et al. (2011). application interfaces include an interface to the BLAST23 web service,
23 Altschul et al. (1990). allowing automation of alignment searches, and DSSP24 to measure
24 Kabsch and Sander (1983).

secondary structure elements in molecular models. These interfaces
are implemented as subclasses of the Biotite Application superclass.
They feature seamless interaction with the respective software, as the
complexity of communicating with the software is handled internally:
For local tools, data input/output uses temporary files and the respec-
tive tool is called as separate process. In the case of BLAST, the REST
API of the web service is used.



17

2.7 SOFTWArE ACCESSIBILITY

General accessibility of software including its source code is
paramount for reproducibility of scientific results25 and widespread 25 Ivie and Thain (2018).

usage of a software. Therefore, Biotite is devised as open source project.
The source code is hosted at GitHub26 under the 3-Clause BSD License. 26 https://github.com/

biotite-dev/biotiteTo facilitate usage and reproduction, binaries of the Biotite library are
available via both, the standard Python package manager pip as well
as the general scientific software package manager Conda forWindows,
Linux and MacOS. The API of the library is extensively documented
including tutorials and examples to increase the accessibility for
novices 27. 27 https://www.biotite-python.

org/

https://github.com/biotite-dev/biotite
https://github.com/biotite-dev/biotite
https://www.biotite-python.org/
https://www.biotite-python.org/
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This part of the thesis covers the continuation of the development of
Biotite after the initial publication outlined in Chapter 2. Instead of
describing incremental improvements of existing functionalities intro-
duced in the course of this work, this part of the thesis illuminates ma-
jor novel functionalities and their underlying algorithms. For a more
detailed listing of all changes, the reader can review the changelog of
the library starting fromversion0.8.0. Whilemost of these new com-
ponents were directly incorporated into the Biotite package, some of
them were too specialized for a specific task or use novel algorithms.
Adding these to Biotite directly would arguably clutter the package.
Therefore, these functionalities were packaged into separate extension
packages that build upon Biotite. This will be explicitly stated in the re-
spective chapter, if this is the case. The URL of the code repositories
and documentation for Biotite and its extension packages is listed in Ta-
ble A.1.

To illustrate the potential applications of the new features, each of the
following chapters is accompanied by an ‘Application example’ section.
Thesedepict theuse of the respective functionality to solve adistinct bi-
ological problem. Although the presented specific problems are purely
artificial, the functionalities can be easily adapted and combined with
further analyses to answer actual current biological questions. While
these sections roughly describe the analysismethod and present its re-
sults, the detailed source code to reproduce the results is included in
the examples directory of the published companion workflow28. The28 Kunzmann (2022).

specific script file name for an application example is given in the be-
ginning of the respective section as shown on the left.Companion source code:

<script_name>.py
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CHAPTEr 3

Alignment color scheme generation

This chapter builds upon ideas and figures from a published journal ar-
ticle1. The content is licensed under the CC BY 4.0 license. Changes 1 Kunzmann, Mayer, and Hamacher

(2020).weremade on size and arrangement of figure elements.

3.1 InTrODUCTIOn

As outlined in Section 2.4.3, Biotite is able to color symbols in sequence
alignment visualizations according to the type of the symbols. This
is especially useful for multiple sequence alignments of amino acid
sequences, where the color may depict physicochemical properties
such as size, charge and hydrophobicity of the respective amino acid.
This representation of alignments is commonly used to allow scien-
tists visual inspection of protein homologies and differences. Beside
Biotite popular programs such as MSAViewer, JalView or ClustalX2 are 2 Yachdav et al. (2016); Waterhouse et al.

(2009); Larkin et al. (2007).able to create these alignment illustrations, often featuring their own
color schemes. Figure 3.1 shows an example alignment using the color
scheme from ClustalX.
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Figure 3.1: Example alignment vi-
sualized using default color scheme
from ClustalX. The underlying align-
ment comprises a selection of trypsin in-
hibitors. The alignment was created us-
ingMAFFT.Gapsare colorless, since they
appear in absence of symbols. Adapted
from Kunzmann, Mayer and Hamacher
(2020) (CC BY 4.0).

Thesecolor schemesare typicallyhandcraftedbyscientists considering
multiple physicochemical properties of the proteinogenic amino acids
in the design. However, this approach is highly subjective: How is the
size of an amino acid defined and how is it weighed compared to for ex-
ample the physiological charge of the amino acid? Even if some prop-
erties could be quantified, the problem of mapping this multitude of
properties into the three-dimensional color space would still persist.

Therefore, an impartial source to highlight similarities and differences
between amino acids, and symbols in general, is sought: the evolution-
ary substitution probabilities in the formof a substitutionmatrix. This
chapter describes an algorithm to compile the substitution scores into
a color scheme,where similar symbolshave similar colors. Themethod
is implemented in the Biotite extension package Gecos, which provides
a simple command-line interface (CLI) as well as a Python interface in-
tended for integration with Biotite.

3.1.1 Color spaces

Technically, colors are described using coordinates in a color space: a
three-dimensional vector space that comprises all colors that canbede-
pictedwithin that space. The arguablymost popular color space is stan-
dardRGB (sRGB)3which is generally used to define colors for display de- 3 CIE (1999).

vices and describes colors as addition of red, green and blue light. How-

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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ever, sRGB is not perceptual uniform4, i.e. the Euclidean distance be-4 Bernard et al. (2015).

tween twopoints in the color space is not proportional to the perceived
color change.

100 0 100
a*

100

50

0

50

100

b*

Figure 3.2: Excerpt of the L*a*b* color
space. The figure shows a cross section
of the three-dimensional color space as
L* = 60. The displayed color is the color
of the respective point in the space. The
gray area represents colors that cannot
be represented in sRGB. Adapted from
Kunzmann,MayerandHamacher (2020)
(CC BY 4.0).

For this reason, color spaces like L*a*b* were conceived5 to achieve

5 CIE (2019).

good perceptual uniformity (Figure 3.2). The L*a*b* spaces comprise
the three dimensions

• the lightness L* ranging from 0 (black) to 100 (white),
• the red-greencomponent a* ranging fromunlimitednegativevalues
(green) to unlimited positive values (red) and

• the blue-yellow component b* ranging from unlimited negative val-
ues (blue) to unlimited positive values (yellow).

Note that while the a* and b* dimensions are not limited, only a finite
subspacecanberepresented in sRGBand thusondisplaydevices. These
conversion limits on a* and b* become more narrow towards the ex-
treme ends of the L* value.

3.2 METHODS

In principle the algorithm of Gecos defines a score function based on
a given substitution matrix that assesses the colors6 for an alphabet6 as they would be used in an alignment

visualization of symbols: The score is better for a set of colors, where the relative
perceptual differences between the colors is closer to the relative evo-
lutionary distances between corresponding symbols. Using this score
function, an optimizer is employed to create a set of colors that fulfills
this criterion as good as possible.

3.2.1 Score function

For a given set of L*a*b* colors for an alphabet of interest7, called color7 e.g. the amino acid alphabet

conformation, the score function computes a score: More negative val-
ues indicate a better color conformation. For the calculation it addi-
tionally requires a symmetric substitution matrixM8, and a contrast8 Matrices with two different alphabets,

as outlined in Section 2.4.2, cannot be
used here.

factor, which is explained later.

Since,M is symmetric, only the lower triangle of the matrix is consid-
ered. Initially,M is converted into a triangular distancematrix

D′
ij =

(Mii +Mjj)

2
−Mij . (3.1)

Since the similarityof a symbol to itself ismaximal,Mii ≥Mij for i ̸= j.
Hence, all entries of D′ are non-negative. Typically, substitution ma-
trices aremultiplied by an arbitrary factor to obtain integer values that
retain sufficient precision. Consequently, a direct usage of D′ in the
score function would also result in an arbitrary scale of the score func-
tion, that would interfere with the later optimization process. There-
fore,D′ is scaled intoD = D′/ ⟨D′⟩, so that the average distance is 1. In
this section the operator ⟨X⟩ gives the arithmetic mean of the entries
in non-zero diagonals of amatrix.

https://creativecommons.org/licenses/by/4.0/
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While Dij gives the ideal distances between two symbols i and j, the
triangular matrixC gives the actual perceptual distances for the given
color conformation. By default, Gecos uses the CIEDE2000 formula9 9 CIE (2001).

for calculation of perceptual differences, which is omitted for the sake
of brevity, but canbeapproximatedby theEuclideandistancesbetween
the colors10. Thus, 10 CIE (2019).

C ′
ij ≈

√
(L∗

i − L∗
j )

2 + (a∗i − a∗j )
2 + (b∗i − b∗j )

2. (3.2)

Analogous toD′,C ′ is scaled to obtainC = C ′/ ⟨C ′⟩.

As the entries of both matricesD and C average 1, the matrices can be
set into direct relation. This is contrasted with D′ and C ′, which use
different scales to quantify their distances and thus cannot be directly
compared. The score function penalizes deviations ofC from the ideal
distancesD using a harmonic potential. Therefore,

SH =
∑
ij

(Cij −Dij)
2
. (3.3)

While the score SH would be sufficient to achieve color conformations
that represent evolutionary distances, the colors might be barely dis-
tinguishable with a large portion of the color space unused, as only
relative distances are considered but not the absolute color distances.
However, for a usable color scheme distinguishable colors are required.
Hence, a second term is added to the score function that penalizes color
conformations with low contrast, i.e. with low average perceptual dif-
ferences:

SC =
fC
⟨C ′⟩

. (3.4)

The contrast factor fC is a parameter supplied by the user11, that bal- 11 Gecos provides a default value of fC =

700. However this default value is based
on subjective visual appeal.

ances contrast and conformity with the substitution matrix: At high
values a high contrast is achieved, by driving symbols to the edges of
the color space, at the cost of worse representation of symbol similar-
ity. Both terms are combined resulting in the score function

S = SH + SC . (3.5)

3.2.2 Optimization

To find a color conformation that minimizes the score function S the
Metropolis-Monte-Carlo algorithm12 is used (Figure 3.3). Starting from 12 Metropolis et al. (1953).

an initially randomized color conformation, the vector representing
the current color conformation is updated by adding a random value
between−α andα to each component of the vector. Hence,α describes
the step size. If S for the new color conformation is lower than S for
the prior conformation, the new conformation is accepted. Otherwise,
it is accepted with a probability that exponentially decreases with in-
creasing score differenceweightedwith the factor β. This process is re-
peated a predefined number of times n, where the color conformation
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Figure 3.3: Pseudocode for simulated
annealingalgorithm. Thefigure shows
the algorithm that optimizes a color con-
formation with respect to the score func-
tion S. X gives the allowed color space
which is restricted to the sRGB convert-
ible colors and may be subject to fur-
ther constraints, e.g. a limited lightness
range. n denotes the number of itera-
tions. α0,α1 andβ0,β1 give the start and
end values for α and β, respectively. In
the actual implementation, arrays con-
taining x⃗ and s of each iteration are also
returned.

procedureOPTImIZE(S,X, n, α0, α1, β0, β1)
x⃗← draw random color conformation fromX

s← S(x⃗)

for i← 1, n do
α← α0 · (α1/α0)

i/n

β ← β0 · (β1/β0)
i/n

repeat
ξ⃗ ← draw uniform random values ∈ [−1, 1]
x⃗new ← x⃗+ αξ⃗

until x⃗new is withinX

snew ← S(x⃗new)

p← draw uniform random value ∈ [0, 1]

if p < e−β(snew−s) then
s← snew

x⃗← x⃗new

end if
end for
return x⃗

end procedure

is replaced with color conformation from the previous step, if it was
accepted. While at low values of β, the algorithm is able to ‘jump over’
localminima in the score landscape, high values steer the color confor-
mation into aminimum. For a successful optimization both properties
are desireable: In the beginning, the color conformation should be able
to leave local score minima and approach the global optimum, where
it should settle in the end of the optimization. Hence, the simulated an-
nealing variant of the algorithm described above is used13. Rather than13 Kirkpatrick, Gelatt, and Vecchi (1983).

keeping α and β constant over the course of optimization, α is slowly
decreased and β increased each step in an exponential manner. In con-
sequence, theoptimizationmethoddependson fourparameters: α and
β at the start and end of the optimization, respectively.

3.2.3 Meta-optimization

To find optimal values for these parameters, a meta-optimization was
performed. As benchmark a color scheme generation for the popu-
lar BLOSUM62matrix in unconstrained L*a*b* space using 10000 opti-
mization steps14 was chosen. Now those parameters were sought, that14 An optimization with 10000 steps can

be run onmodern commodity hardware
within approximately oneminute.

achieve the best scoreS at the end of a corresponding optimization run.
Because the optimization algorithm is stochastic in nature, the gener-
ated color conformations and the corresponding scores are subject to
noise. Therefore, not the score of a single optimization run was taken
as objective for meta-optimization, but themedian from 100 runs.

Note that sampling the optimization parameters is costly, since 100 en-
tire optimization runs are required for each sampled data point. There-
fore, a tree-structured Parzen estimator15 from the hyperparameter opti-15 Bergstra et al. (2011).
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mization libraryOptuna16 is used to obtain awell-performing set of pa- 16 Akiba et al. (2019).

rameters with less sampling compared to simple random sampling. In
short, the algorithmbuilds a probabilisticmodel of the score landscape
from previous samples, to select new samples that are likely to score
better than those previous samples.

Note that thismeta-optimization is not part of theGecos package. How-
ever, the found optimal values are used as default values for both the
CLI and application programming interface (API).

3.2.4 Implementation details

Gecos implements the score function and optimizer as separate objects.
This allows the replacement of the score function via the PythonAPI to
include other aspects of an appealing color scheme not envisioned in
this chapter. Besides a score function, the optimizer requires a color
space as input, that allows the user tomask certain regions of the L*a*b*
space. For example its recommended to restrict L* to a range of ap-
proximately size 15 to obtain a visually appealing result. If L* is un-
constrained, the generated color schemes will inevitably contain very
bright and dark colors that poorly contrast with the background and
symbols, respectively, in an alignment visualization. Furthermore, the
color itself can be optionally constrained for each symbol, to set a color
according to personal flavor or to reuse some colors from a previous
optimization.

The data representation in Gecos integrates into the one used by Biotite:
Substitution matrices are represented by SubstitutionMatrix ob-
jects and the optimized color conformations are NumPy arrays of RGB
values, that can be directly used in Biotite’s functions for alignment vi-
sualization. Multiple pre-generated schemes with different properties
are also available via keyword in Biotite, eliminating the need to install
and run Gecos in many cases. Moreover, Gecos provides also a CLI. In
this case the substitutionmatrices are given as text file inNCBI format.
By default, the CLI runs 16 optimizations in parallel and outputs the
created color scheme in JSON format.

3.3 RESULTS AnDDISCUSSIOn

3.3.1 Optimization

As explained above, the simulated annealingproceduredepends on the
α and β parameters at start and end of the optimization. These param-
eterswere sampled to find a parameter set that gives optimal results in
the benchmark. The samples and associated scores are shown in Fig-
ure 3.4. The results indicate a broad region for each parameter, where
good results can be achieved. The sample with the best results is listed
in Table 3.1. These values were rounded and used henceforth as default
arguments for the optimizer.
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Figure 3.4: Optimization of α and β
range for simulated annealing. The
figure shows the sampled parameters
during meta-optimization and the asso-
ciated score of the color conformation
achieved after optimization using these
parameters. The sample with the lowest
score is indicated with a ‘+’. The density
of the points is higher in areas of lower
score due to the working principle of the
sampler. Note that α and β are not sam-
pled independently, i.e. each point in
one subplot corresponds to a point in the
respective other subplot.

Table 3.1: Optimal parameters for
simulated annealing. The derived de-
fault arguments for the optimizer are
shown in parentheses.

α β

Start 10.5 (10) 1.57 (1)
End 0.20 (0.2) 345 (500)

Based on the determined parameters the effect of the number of opti-
mization steps and the applicability of these parameters on different
substitution matrices was tested (Figure 3.5). The optimization algo-
rithmachieves a clear decrease in score for the popularBLOSUM62 and
PAM250. The fact that the performance for the identity matrix seems
inferior can be attributed to the fact, that this matrix has equal opti-
mal distances for each pair of amino acids which cannot be properly
depicted in a three-dimensional color space. Increasing the number of
steps beyond ∼ 20000 has no considerable effect on the score. There-
fore this value is used as the default number of steps in Gecos. Using
this number. With this number of steps the generation of a new color
scheme typically takes less than twominutes.

The course of an optimization with the found parameters is illustrated
for the BLOSUM62 matrix in Figure 3.6. Although no chemical infor-
mation is directly used by the algorithm, some chemical properties are
implicitly included in the substitution matrix. For example the small
nonpolar amino acids methionine, valine, leucine and isoleucine have
similar assigned colors. However, the scheme also depicts similarities
that may be counterintuitive: Alanine is for instance closer to the po-
lar amino acids serine and threonine than to the other small nonpolar
amino acids.

Figure 3.5: Effect of optimization step
number on score of color conforma-
tion. An optimization of the color con-
formation was performed using default
α and β for BLOSUM62, PAM250 and the
identity substitution matrix. For each
number of steps 100 optimizations were
run and the median of the final scores
were taken. The marker on the y-axis
gives the median score for the initial un-
optimized color conformation.
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B Figure 3.6: Insight into the optimiza-
tion process. For the depicted optimiza-
tion of the color conformation the BLO-
SUM62 matrix was chosen. The color
spacedwas limited to L* = 60 for the sake
of presentability. A Course of the score
during the optimization process. For
clarity a moving average over 100 steps
was applied. B The color conformation
after optimization. Thewhite area repre-
sents the allowed space at L* = 60. The
symbols are colored according to their
position in color space. Adapted from
Kunzmann,MayerandHamacher (2020)
(CC BY 4.0).

3.3.2 Use cases

The presented algorithm has multiple potential use cases. In the most
basic case it allows automatic generation of color schemes that may be
simply more pleasant than existing ones due to individual flavor. Fur-
thermore, the color schemes are able to depict the particularities of dif-
ferent amino acids. Figure 3.7A and 3.7B show an alignment visual-
izedwith a schemegenerated forBLOSUM62 andPAM250, respectively.
Compared toBLOSUM62, PAM250has considerably lower substitution
probabilities for cysteine and tryptophane to other amino acids. This
circumstance is reflected by the PAM250-based color scheme (Figure
3.7B) that emphasizes the color of cysteine and tryptophane. Therefore,
it is beneficial to visualize an alignment with a color scheme based on
the corresponding substitutionmatrix, to give the observer a better un-
derstanding of the alignment.

The ability to constrain the color space allows the user to create a color
scheme with an individual lightness or hue. This option can be espe-
cially useful to create a color scheme that is more friendly to people
with color vision deficiencies. The most frequent deficiency is deuter-
anopia17 that affects∼0.5% of female and∼8% of male humans18. By 17 disability in the red-green color differ-

entiation
18 Al-Aqtum and Al-Qawasmeh (2001);
Kovalev (2004); NIH (2019).

removing the greenpart of the color space (Figure 3.7C) alignments can
bemade visually better accessible for affected people in comparison to
existing color schemes.

Eventually, schemes can be created for more exotic alphabets, where
no color scheme exists, yet, provided there is a substitution matrix.
This includes structural alphabets, such as protein blocks (PB)19, which 19 de Brevern, Etchebest, and Hazout

(2000); Barnoud et al. (2017).encodes three-dimensional protein structures into a sequence based
on backbone dihedral angles. Figure 3.7D shows an alignment of PB
sequences for lysozyme structures from different organisms. In this
case, this allows not only the visual assessment of structural similari-
ties within an alignment column, but also the identification of recur-
ring structural motifs 20. 20 e.g. the recurring ‘fklm’ sequence

https://creativecommons.org/licenses/by/4.0/
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Figure 3.7: Different applications of
Gecos. The displayed alignments are vi-
sualized using color schemes generated
by Gecos. If not stated otherwise, the
schemes were produced using default
parameters based on BLOSUM62 and a
L* range between 60 and 75. A Color
scheme using all parameters described
above. BColor schemebasedonPAM250.
C Color scheme adapted for red-green
color vision deficiency. This is achieved
by removing the green portion of the
color space, i.e. where a* < 0. D Color
scheme based on a substitution matrix
for the PB structural alphabet. The PB
sequences are computed from structures
of different lysozyme variants. Adapted
from Kunzmann, Mayer and Hamacher
(2020) (CC BY 4.0).
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3.3.3 Application exampleCompanion source code:
pfasum_scheme.py

For the purpose of an example a color scheme was generated for the
PFASUM60 amino acid substitution matrix: The PFASUM series of ma-
trices21 is analogous to the BLOSUM matrices, but is computed from21 Keul et al. (2017).

a larger dataset based on structural alignments. In addition to the
proteinogenic amino acids, the matrix includes substitution scores for
symbols indicating amino acid ambiguity. Since these symbols do not
represent actual amino acids, they should not influence the color con-
formation of the symbols representing real amino acids. Hence, the
color scheme generation was separated into two steps. First, a scheme
was generated using default parameters for a truncated substitution
matrix, that contains only scores for substitutions for unambiguous
amino acids. Second, another color schemewas generated for the com-
plete substitution matrix including ambiguity symbols, where the un-
ambiguous amino acids were constrained to the colors of the previ-
ously generated scheme. The resulting scheme is shown in Figure 3.8A.
Furthermore, a dendrogram was created based on a tree computed us-
ing the UPGMA hierarchical clustering method (see Section 5.2.2) (Fig-
ure 3.8B). The pairwise distances between the symbols were calculated
from the substitution matrix as described above. As expected, the col-
ors are generallymore similar the closer two symbols are located in the
tree.
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Figure 3.8: Color scheme for PFA-
SUM60. A Alignment visualization us-
ing the color scheme. B Dendrogram of
PFASUM60. The symbols are colored ac-
cording to the generated scheme.

3.4 COnCLUSIOn

The presentedmethod offers amechanism to generate alignment color
schemes for a variety of purposes that are not covered by conventional
schemes, including different hues, evolutionary models and even un-
derlying alphabets. While the most common application of such color
schemes is alignment visualization, their use case can be extended to
related figure types such as sequence logos.

https://creativecommons.org/licenses/by/4.0/
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Although substitution matrices are used as foundation for color
scheme generation, the resulting colors implicitly also depict chemi-
cal properties of amino acids, like it is intended by conventional color
schemes: Only amino acids with similar chemical characteristics have
a high substitution probability, as substitutions by an amino acid with
significantly different properties often lead to a loss of protein function
and thus vanish in the evolutionary selection process. However, the
presentedmethodsubstantiates chemicalpropertieswithevolutionary
similarity in terms of substitution probabilities.

As a final remark it needs to be noted that colors are neither able to per-
fectly depict evolutionarydistances or a comprehensive set of chemical
properties in most cases: It is not possible to map for example the 20
× 19 different amino acid substitution probabilities to the mere three
dimensions of a color space. Nevertheless, the optimization method
described in this chapter aims to provide a mapping that is as good as
possible.
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CHAPTEr 4

Molecular visualization

4.1 InTrODUCTIOn

A

B

Figure 4.1: Molecular sketches of cor-
tisol. Carbon atoms are shown in dark
gray, oxygen atoms in red and hydrogen
atoms in light gray. A Line model of the
molecule. B Ball-and-stick model of the
molecule.

Images of molecules are commonly one of the final products of stud-
ies in structural biology as well as structural bioinformatics. These pic-
tures are able to give impressions about the shape of macromolecules
and their complexes and allow visual analysis of details such as the po-
tential binding and reactionmechanismwith a substrate. This chapter
presents convenient ways to visualize structural models in Biotite, i.e.
an AtomArray or AtomArrayStack.

4.2 ImPLEmEnTATIOn

4.2.1 Visualization usingMatplotlib

The Python scientific computing ecosystem already provides mature li-
braries for data visualization. The arguablymost popular plotting tool
in the Python community is Matplotlib1. Its versatility is harnessed by

1 Hunter (2007).
Biotite to create simple molecular sketches. Based on the coordinates
and the BondList of an AtomArray, connected atoms can be either de-
picted as lines or as ball-and-stick model in interactive 3D plots (Fig-
ure 4.1). Recent improvements on the 3D plotting functionality ofMat-
plotlib further increase thequality of themolecular visualizationsbyen-
suring the correct render order, i.e. objects that are in the front occlude
objects that are in the background.

This functionality allows simple and fast sketching of molecules for
testing purposes. Matplotlib is usually already part of the computa-
tional scientist’s repertoire, so no additional dependency is required.
However, publication-quality visualizations cannot be produced this
way: The plots do not support lighting, whichmakes visualizations for
large molecular systems incomprehensible. Furthermore, common el-
ements like secondary structures or molecule surfaces cannot be visu-
alized.

4.2.2 Visualization using PyMOL

PyMOL2 is a popular software suite dedicated for creating molecu- 2 Schrödinger (2017).

lar visualizations. While in the base version its source code is freely
available, the binary of the software is also distributed as commer-
cial version. The Biotite extension package Ammolite utilizes its Python
API to transfer an AtomArray or AtomArrayStack to the PyMOL
workspacewithout the need of intermediate files. In addition to saving
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the time for reading andwriting a structure file, this approach ensures
that no information is lost in the transfer process3. For applying com-3 For example mmCIF files do not save

bond information. mands such as coloration to a subset of atoms, PyMOL normally uses a
custom string-based atom selection syntax. To provide an experience
consistent with the NumPy-based selection syntax of Biotite, Ammolite
allows calling these commands using NumPy indices. Internally, the
NumPy-based selection is converted into a PyMOL selection string be-
fore the command is executed. Finally,Ammolitewraps the usage of Py-
MOL’s compiled graphics objects (CGOs) to enable the user to draw cus-
tomshapes in themolecularvisualization, includingspheres, cylinders
and cones. This allows for example the addition of three-dimensional
arrows to depict atom displacements.

To simplify the installation process a compiled PyMOL binary, based
on the open-source variant is provided via theConda packagemanager.
This package is automatically downloaded, when Ammolite is installed
via Conda.

4.3 APPLICATIOn EXAmPLECompanion source code:
hcn4_pore.py

Figure 4.2: Pore radii of the HCN4
channel visualized using Ammolite.
The S4-S6 helices are shown in red. The
pore diameter along the pore is shown in
gray.

Although all molecular visualizations in this thesis are created with
Ammolite, this section presents the visualization of the tetrameric
HCN4 potassium channel as a dedicated example. More specifically,
the transmembrane domain including the pore diameter should be dis-
played. For this purpose the structural model of the presumably open
conformation elucidated via electron microscopy4 was fetched from

4 Saponaro et al. (2021).

the PDB5,6 and loaded asAtomArray. The structurewas filtered to the

5 PDB: 7NP3
6 Saponaro et al. (2021).

helices S4-S6 which make up the central part of the transmembrane
domain.

The diameter of the pore is not constant, but varies along the pore axis.
Therefore, the diameter was measured at multiple positions along the
axis. At eachposition a plane perpendicular to the pore axis is spanned,
whereas the atoms of the protein are represented by spheres with ra-
dius equal to the Van derWaals radius. Since the structure contains no
hydrogen atoms, coarse grained radii7 are used here. The pore radius7 Tsai et al. (1999).

is the minimum distance to a point where the plane intersects any of
these spheres.

For the visualization (Figure 4.2) only two opposing chains of the
tetramer are shown. Thediameters at neighboringheight positions are
shown using CGOs encoding a cone shape. Concatenating these cones
creates the appearance of a continuous shape depicting the pore.
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CHAPTEr 5

Guide trees and multiple sequence align-
ments

5.1 InTrODUCTIOn

Multiple sequence alignments (MSAs) are an invaluable tool in bioin-
formatics: From identification of conserved protein or nucleotide re-
gions over reconstruction of phylogeny1 to de novoprediction of protein 1 Kapli, Yang, and Telford (2020).

structures2, MSAs constitute the data foundation. Although the opti- 2 Jumper et al. (2021).

mal3 alignment of k sequences can be solved using dynamic program- 3 according toagivensubstitutionmatrix
and gap penaltyming4 the time complexity scales with O(

∏k
i=1 ni), where n gives the

4 Needleman and Wunsch (1970).length of the respective sequence. This procedure quickly becomes un-
feasible for even a few sequences.

5.1.1 Progressive Alignment

Hence a technique called progressive alignment5 is commonly employed: 5 Feng and Doolittle (1987).

It begins with two sequences A and B that are aligned pairwise into a
sub-MSAC . Then, another sequenceor sub-MSAD is added to theMSA:
C is alignedpairwisewithD, treatingpreviously introducedgaps inC6 6 and alsoD, ifD is a sub-MSA

as neutral symbols, i.e. they score zero with each other symbol. In con-
sequence, gap positions are not revaluated: Once a gap is introduced in
a sub-MSA, it will persist in higher level sub-MSAs, even if the simi-
larity score could be improved by gap rearrangement7. Thereafter, fur- 7 This principle is often titled ‘Once a gap,

always a gap’.ther sub-MSAs are progressively aggregated into the alignment using
this principle until all sequences are added, resulting in the final MSA.
How a pairwise alignment of two sub-MSAs is scored in detail, varies
in the different implementations of the progressive alignmentmethod.
Commonly, the following scheme is used8: Given that a and b are align- 8 Thompson, Higgins, and Gibson

(1994).ment columnsof twosub-MSAs, containingmandn sequences, respec-
tively, their score

S(a, b) =
1

mn

m∑
i=1

n∑
j=1

S(ai, bj). (5.1)

Inprose,S(a, b) is themeanof the cartesianproductof all pairwise sym-
bol scores between the sub-MSA columns.

5.1.2 Guide trees

(AB)C

AB

A B C

Figure 5.1: Example guide tree. The
figure shows a simple guide tree: First
sequences A and B would be pairwise
aligned and then C would be aligned to
the sub-MSAAB.

The order in which the sequences or sub-MSAs are aligned is deter-
mined by a binary tree9, the guide tree. The leaf nodes in the tree repre-

9 a noncyclic graph, where each non-leaf
node has exactly two child nodes

sent single sequences, intermediate nodes sub-MSAs and the root the
fullMSA.Beginning from the leaf nodes, theprogressive alignment fol-
lows the branches of the tree until the root is reached (Figure 5.1). Based
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on a distancemeasure for each pair of sequences, the guide tree can be
calculatedusinghierarchical clustering. Two commonalgorithmsused
for this task are the unweighted pair groupmethodwith arithmetic mean (UP-
GMA) and neighbor-joining, which should be summarized in the follow-
ing paragraphs.

Let di,j denote the distance between sequences i and j. Starting from
a list of leaf nodes to be connected, UPGMA combines the two nodes
with the minimum di,j , say A and B, into a new node AB. A and B

are removed from the list andAB is added to the list as new node. The
distances ofAB to another nodeX in the list is

dAB,X =
|A|dA,X + |B|dB,X

|A|+ |B|
, (5.2)

where |A| and |B| is the total number of leaf nodes that are combined in
A andB, respectively10. This procedure is repeated until only a single10 in other words: 1 if a single sequence,

> 1 if a sub-MSA node remains in the list, which becomes the root node. UPGMA com-
putes the branch lengths, so that all leaf nodes have the same distance
to the root. Hence, this method implicitly assumes a molecular clock,
meaning that mutation rate would be constant over all species. How-
ever, more distantly related species show variations in the mutation
rate11.11 Bromham and Penny (2003).

Neighbor-joining12 overcomes the molecular clock assumption. In-12 Saitou and Nei (1987); Studier and
Keppler (1988). stead of combining nodes with minimum di,j , those nodes are joined,

where the resulting tree has aminimum total branch length, i.e. where
Si,j is at minimum:

Si,j = (N − 2)di,j −
N∑

k=1

di,k −
N∑

k=1

dj,k, (5.3)

where N gives the number of remaining nodes to be joined. The dis-
tance of the new node to other nodes is

dAB,X =
1

2
(dA,X + dB,X − dA,B) . (5.4)

Neighbor-joining ensures that the traversed distance between two leaf
nodes in the tree is equal to the corresponding di,j value. In contrast
to UPGMA, there is no dedicated root node, any position on a branch
could represent the common ancestor.

Althoughmodern phylogeny reconstruction is superseded bymore ac-
curate methods13, neighbor-joining can still be used to create phyloge-13 Kapli, Yang, and Telford (2020).

netic trees for well-conserved sequences, given a proper distancemea-
sure.

5.2 ImPLEmEnTATIOn

Today numerous programs are available that use different variations
of the guide tree creation and progressive alignment algorithm to im-
prove on the computational performance of MSAs. However, often



35

the flexibility of such software is limited and their availability is con-
strained to Unix-based operating systems. Biotite allows users to per-
form simple14 MSAs on all of its supported platforms and for all types 14 The MSAs from dedicated software

are more accurate for less conserved se-
quences and faster for a large number of
sequences.

of sequences (see Section 2.2.1). For this purpose it implements both
presented hierarchical clustering algorithms to create guide trees and
functionality to use guide trees for progressive alignment.

5.2.1 Tree representation

A tree, such as a guide tree or phylogenetic tree, is represented byTree
objects in Biotite. A Tree contains a root TreeNode, that defines the
tree recursively: Each TreeNode has a parent tree TreeNode and a
distance to it, unless it is the root, and may have a number of child
TreeNodeobjects. If aTreeNodehasnochildren, it is a leafnode. Leaf
nodesmust have a reference index (an integer), that points to elements
in a list of corresponding objects. For example, if a Tree represents
a guide tree, such a list would contain Sequence objects. If the leaf
TreeNode objects with reference index 0 and 1 have a common parent
TreeNode, thefirst and second sequence15 from the list should bepair- 15 0-based indexing

wise aligned. Still, a Treemight refer to any list of objects, enabling a
broad applicability for the user. The usage of a reference index allows
unambiguous mapping of a leaf node to an object, while keeping the
Tree separate from these objects.

In addition to basic traverse through the tree structure, a Tree pro-
vides functionalities for identification of the lowest common ancestor
and distance between two nodes. Furthermore, a Tree can be read
from and written to the Newick format enabling interoperability with
other software such asMSA or phylogeny tools16. 16 Baum (1989); Edgar (2004); Katoh et

al. (2002); Sievers et al. (2011).

5.2.2 Hierarchical clustering

With the upgma() and neighbor_joining() functions objects can
be hierarchically clustered using the aforementioned algorithms. Both
functions require a symmetric pairwise distancematrix. They return a
Treeobject,where the reference indices of then leaf nodes correspond
to the n× n shape of the distancematrix.

5.2.3 Tree display

Using Matplotlib, Tree objects can be displayed as dendrogram, with
plot_dendrogram() (Figure 5.2A). A Tree can also be converted
into a directed graph of theNetworkX Python library17. AsNetworkX pro- 17 Hagberg, Schult, and Swart (2008).

vides graph plotting capabilities on its own, this permits the depiction
of unrooted trees (Figure 5.2B).
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Figure 5.2: Tree visualizations. The
underlying distance matrix is fictive.
A Dendrogram created with plot_-
dendrogram(). The tree was clustered
withUPGMA.BUnrooted tree visualized
with NetworkX. The tree was clustered
with neighbor joining.

Sp. 5 Sp. 4 Sp. 3 Sp. 2 Sp. 1

A
Sp. 1

Sp. 2

Sp. 3

Sp. 4

Sp. 5

B

5.2.4 Multiple sequence alignments

The function align_multiple() uses progressive alignment to cre-
ateMSAs from a list of Sequence objects. By default, the pairwise dis-
tances are inferred from pairwise global alignments (see Section 2.4.2)
of all sequence pairs using the same scoring scheme as given for the
later multiple alignment. The distance D(i, j) is computed from the
similarity score S(i, j) between the two sequences i and j as1818 Feng and Doolittle (1996).

D(i, j) =
S(i, j)− Sr(i, j)

S(i,i)+S(j,j)
2 − Sr(i, j)

. (5.5)

Sr gives the background noise for two aligned random sequences with
same length and symbol composition, estimated with

Sr(i, j) =
1

L(i, j)

∑
a

∑
b

MabNa(i)Nb(j)−Ngg. (5.6)

L(i, j) is the length of the alignment, Mab the similarity score of the
symbols a and b from the substitution matrix, g is the gap penalty,Na,
Nb and Ng are the number of symbols a and b and gaps, respectively.
Based on these distances the guide tree is computed with UPGMA. Al-
ternatively, a customdistancematrix or a guide tree can be provided by
the user.

The progressive alignment proceeds according to the order given by
the guide tree. To align two sub-MSAs (or a sub-MSAs and a single
sequence), their two sequences with the lowest distance are aligned.
The gap positions introduced in this alignment are adopted by the sub-
MSAs and converted into a neutral symbol. This way the already exist-
ing pairwise alignment functionality from Biotite can be fully reused.
To implement the neutral symbol a new Alphabet, that contains a
unique neutral symbol, is created from the original Alphabet of the
sequences to be aligned. In addition a new SubstitutionMatrix
is instantiated using the modified Alphabet that contains scores of
0 in the row and column of the neutral symbol. After the full MSA is
computed, the neutral symbols in the alignment are replaced by actual
gaps.
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Staphylococcus aureus
Staphylococcus carnosus
Geobacillus stearothermophilus
Bacillus licheniformis
Bacillus anthracis
Sporosarcina globispora
Mycoplasma pneumoniae
Mesomycoplasma hyopneumoniae
Micrococcus luteus
Mycobacterium kansasii
Thermus thermophilus
Thermotoga maritima
Rhodobacter capsulatus
Bordetella parapertussis
Bordetella pertussis
Bordetella bronchiseptica
Bordetella avium
Burkholderia cepacia
Neisseria meningitidis
Neisseria gonorrhoeae
Ruminobacter amylophilus
Escherichia coli
Pseudomonas aeruginosa
Pseudomonas stutzeri
Blastopirellula marina
Leptospira interrogans
Synechococcus elongatus
Peptococcus niger
Pectinatus frisingensis
Clostridium botulinum
Lactobacillus delbrueckii
Lactococcus lactis
Streptococcus oralis
Streptococcus thermophilus
Listeria monocytogenes Figure 5.3: Phylogenetic tree of se-

lected bacterial species. Horizontal
branch lengths depict the Jaccard dis-
tance, i.e. the percentage of mutated po-
sitions between the 23s rRNA sequences.
Clustering was performed using neigh-
bor joining.

5.3 APPLICATIOn EXAmPLE Companion source code:
bacterial_phylogeny.py

16s and 23s ribosomal RNA (rRNA) sequences are popular markers
for building phylogenetic trees due to their large size and high con-
servation19. Here, the phylogeny of a selection of different bacterial 19 Ludwig and Schleifer (1994).

species was inferred from 23s rRNA sequences. The sequences were
downloaded from the NCBI Entrez database. The MSA was created
with align_multiple() using nucleotide similarity scores and gap
penalty taken fromMMseqs220. TheMSA served as foundation for phy- 20 Steinegger and Söding (2017).

logeny reconstruction: For each pair of sequences in the MSA the Jac-
card distance21 was calculated, or more precisely the percentage of po- 21 Wolf et al. (2002).

sitions in the shorter sequence, that were substituted or deleted. The
distances were input to neighbor_joining() to obtain the phylo-
genetic tree. Finally, the tree was graphically displayed using plot_-
dendrogram() (Figure 5.3).
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CHAPTEr 6

Heuristic alignment searches

This chapter builds upon ideas and figures from a submitted journal
article1. The content will be licensed under the CC BY 4.0 license. 1 Kunzmann et al. (2022).

Changes were made on size and arrangement of figure elements. The
application example of this chapter was adapted from the example
gallery at the Biotite documentation website (Table A.1).

6.1 InTrODUCTIOn

The progressive alignment algorithm illustrated in the previous chap-
ter introduces a heuristic variation of the original dynamic program-
ming algorithm to solve MSAs in reasonable time. Analogously, other
heuristics can be introduced tomassively increase the performance for
pairwise alignments of large sequences such as genomes or huge se-
quence datasets. This type of method has obtained different names
from the community, here it will be termed alignment search. Originally
such amethodwas implemented in the BLAST software2, which is still 2 Altschul et al. (1990).

popular to date. Since then numerous variations have been published,
withMMseqs23 being amodern representative. 3 Steinegger and Söding (2017).

The underlying concepts are usually quite similar: The alignment
search is separated intomultiple consecutive stages. In the initial stage
similar regions between the two given sequences, so called hits, are
identified very roughly. Each following stage narrows down the hits
from the respective previous stage using a more sensitive4 sequence 4 also weaker sequence similarities can

be detectedcomparison. Hits that do not meet a certain threshold similarity are
filtered out. Although the increasing accuracy with each stage comes
at the cost of longer computations for each hit, the overall time is kept
moderate, as the number of considered hits decreases with each stage.
Since at each each of the stages an heuristic method is used to filter se-
quences, somehomologous regionsmight potentially bemissed in this
process. In the following sections the typical stages are elaborated in
more detail.

6.1.1 Stage 0: Removing low complexity regions

Low-complexity regions, suchas tandemrepeats5,makeupa largepart 5 directly adjacent sequence repetitions,
eg. catcatcatcat...ofgenomic sequences. Suchrepeats are thought toariseprimarily from

replication slippage and gene conversion6. Aligning genomes contain- 6 Richard, Kerrest, and Dujon (2008).

ing suchregions lead tohits that represent spurioushomologies. There-
fore, alignment searchmethods generally filter out these regions prior to
the first stage. Dedicated programs for this purpose includeDUST and
tantan7. 7 Morgulis et al. (2006); Frith (2011).

https://creativecommons.org/licenses/by/4.0/
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Figure 6.1: k-mer matching. AMatch-
ing identical 3-mers between two se-
quences. B Indexing 3-mer positions
in a sequence. The positions are zero-
based. C Identifying spaced 5-mers in
a sequence. The spacing pattern is indi-
cated by the red boxes.
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6.1.2 Stage 1: K-mermatching

Initial hits between twosequencesAandB are foundbymatching iden-
tical short subsequences of length k, so called k-mers, in both sequences
(Figure 6.1A). In a naive approach all overlapping k-mers ofA could be
iterated and for each k-mer in A, the k-mers ofB would be iterated to
findmatching positions. However, the computation time of this proce-
dure would scale linearly with the length of A and B. To improve the
performance the overlapping k-mers ofA are indexed into a lookup ta-
ble that maps a k-mer to the positions in A where this k-mer appears
(Figure 6.1B)8. Hence, only one sequence needs to be iterated: For each8 Someprograms indexA andB, but this

does not give an improvement in time
complexity in comparison to indexing
onlyA though.

position in B, the matching positions in A can be simply looked up in
the table using the k-mer at the respective position as key.

Instead of matching only identical k-mers, some variability can be op-
tionally allowed. If a substitution matrix S is available for the under-
lying alphabet of the sequences, a threshold score T can be used: A
k-mer a matches a k-mer b if

∑k
i Sai,bi ≥ T . This allows for exam-

ple that k-mers with evolutionary similar amino acids can bematched
with each other in protein sequences. Alternatively, a certain number
of mismatches can be allowed if no substitution matrix is available. In
both cases all similar k-mers are enumerated for a k-mer andmatching
positions are obtainedby combining the lookeduppositions for eachof
these k-mers.

As alternative to contiguous subsequences as k-mers, spaced k-mers99 Ma, Tromp, and Li (2002).

have gained increasing popularity due to their higher sensitivity. Here,
a k-mer omits symbols at constant positions relative to the start of the
k-mer, as shown in Figure 6.1C.Which positions are skipped is defined
by the spacing pattern. Several approaches to find patterns for differ-
ent k that optimize sensitivity have been published10. The high sensi-10 Ma, Tromp, and Li (2002); Choi,

Zeng, and Zhang (2004); Hahn et al.
(2016); Noé (2017).

tivity of spaced k-mers can be attributed to a higher probability to find
at least one hit in a large homologous but not necessarily identical re-
gion11.11 Zhang (2007).

6.1.3 Stage 2: Ungapped hit extension

In the following stage each of the obtained hits are extended in both
directions of the respective hit without introducing gaps. Let Ai and
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Bj be the sequence positions of the hit, the so called seed. In the exten-
sion Ai+1 is aligned with Bj+1, Ai+2 with Bj+2, etc. Likewise, Ai−1 is
alignedwithBj−1,Ai−2withBj−2, etc. In each direction the extension
ends when the total alignment score falls a given value X below the
maximum score found. Therefore, this criterion is calledX-drop. The
resulting alignment is truncated to the range, that gave the maximum
score, i.e. the range that decreased the score is removed from each end.
Only those alignments that exceed a certain threshold score are passed
on to the next stage.

The concept behind the hit extension is that it is relatively fast, since
no dynamic programming table needs to be computed, while it is still
more sensitive than k-mer matching, because longer segments can be
aligned, even if some mismatches appear in the aligned segments. Of-
ten a so called double-match strategy is employed12: Not a single k-mer 12 Altschul et al. (1997).

match is sufficient to triggerhit extension, but twomatcheson thesame
diagonal13 within a short distance are required. This reduces the num- 13 Thediagonal refers to thedynamicpro-

gramming table, i.e. for two sequence
positions i and j the diagonal can be de-
fined as j − i.

ber of hit extensions and hence also the computation time.

6.1.4 Stage 3: Gapped alignments

Due to insertions and deletions the introduction of gaps into an align-
ment is usually required to detect longhomologous sequence segments
such as entire genes. In the context of alignment searches the origi-
nal approach for optimal alignments14 is not applicable: The algorithm 14 Needlemanand Wunsch (1970); Smith

and Waterman (1981).searches for the optimal alignment using a dynamic programming ta-
ble spanning the length of both aligned sequences (see Section 2.4.2) as
shown in Figure 6.2A. This would defeat the purpose of the hit-based
approach so far.

Hence, different strategies must be employed to decrease the explored
area15 of the dynamic programming table using the filtered hits from 15 The explored area comprises the cells

of the table that are actually computed.
The computation time roughly scales lin-
early with the number of explored cells.

the previous ungapped alignment stage. The reduction is based on
the assumption that the trace of the optimal local alignment does not
leave the explored area. If this assumption does not hold true, the op-
timal alignment cannot be found by the algorithm and homologous se-
quencesmay bemissed in consequence.

Similar to ungapped alignments, the X-drop strategy can also be
adapted to gapped local alignments16. It is assumed that the score of 16 Altschul et al. (1997); Zhang et al.

(2000).an optimal alignment does not intermediately drop X below the best
alignment already seen and recovers after that. Consequently, the dy-
namic programming table is not explored beyond the area where the
score fallsX below themaximumscore seen so far (Figure 6.2B).Rather
than iterating over rows and columns of the dynamic programming ta-
ble, the iteration is performed over antidiagonals17 and diagonals. 17 Antidiagonals are perpendicular to the

diagonals. Analogous to the diagonals,
they can be defined as j + i.

The banded alignment strategy18makes the assumption, that it is improb- 18 Chao, Pearson, and Miller (1992).
able that in any point in the optimal alignment W more gaps are in-
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Figure 6.2: Comparisonof algorithms
to find gapped local sequence align-
ments. Each plot depicts a schematic dy-
namic programming table, with the axes
indicating the sequence positions. The
gray area shows the portion of the ta-
ble explored by the respective algorithm.
The ‘+’ shows the seed position. The red
line shows the trace of the best align-
ment found. A Original dynamic pro-
gramming algorithm. B X-drop align-
ment algorithm. C Banded alignment al-
gorithm. Adapted from Kunzmann et al.
(2022) (CC BY 4.0).
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serted in sequence A than in sequence B. Therefore the explored area
of the table is reduced to a diagonal band (Figure 6.2C). The center di-
agonal of the band is the respective hit position. The band width is a
parameter of the search method and can be, for example, determined
using statistical considerations19. An advantage of the banded align-19 Gibrat (2018).

ment is that it can also be used to perform global alignments.

6.1.5 Significance evaluation

In the process explained above the large number of initial hits from
the k-mer matching stage are reduced to a relatively low number of
gapped alignments. Although each alignment has an associated simi-
larity score, this absolute value does directly measure the significance
of the alignment - the probability to obtain such sequence similarity
by mere chance. BLAST introduced the notion of the expect value (E-
value). Let s be the score of an alignment of interest. The E-value
gives the number of alignments with a score equal to or higher than s,
that would be expected from alignment of randomized sequences with
equal length and composition. AnE-value close to 1 or even higher in-
dicates that the alignment of interest is not significant.
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Figure 6.3: Extreme value distribu-
tion. The figure shows the probability
density function of the distribution for
λ = 1 and u = 1.

For a gapped local alignment of two random sequences with lengthm

andn, respectively, the score s is approximatedbyanextremevaluedis-
tribution (Figure 6.3), ifm and n are sufficiently large20. Its probability

20 Altschul and Gish (1996). density function

f(s) = λt(s)e−t(s),

t(s) = e−λ(s−u) (6.1)

is governed by the parameters λ and u which need to be determined
from a number of sample alignments for a given combination of
sequence length, symbol composition, substitution matrix and gap
penalty. The dependency on sequence length suggests that resampling
is necessary for each alignment search, since the length of sequence
B may vary, even if A is part of a constant sequence database. This
taskwould be time consuming and detrimental for the performance of
alignment searches.

Luckily, u scales logarithmically with the length of both sequences.

https://creativecommons.org/licenses/by/4.0/
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Hence, it can be substituted with

u =
ln(Kmn)

λ
. (6.2)

λ is approximately constant for sufficiently large subsequences21 (see 21 approximately larger than 100

Section 6.3.1). Therefore, the obtained λ and K from a sampling pro-
cess for a single set of sequence lengths can be generalized to evaluate
alignments using different sequence lengths.

Using 6.2 and the cumulative distribution function of Equation 6.1, the
probability of finding an alignmentwith score equal to or larger than s

using random sequences is

P (S ≥ s) = 1− exp(−Kmne−λs). (6.3)

The correspondingE-value is calculated as22 22 Altschul (1991).

E = Kmne−λs. (6.4)

6.2 ImPLEmEnTATIOn

Since the different alignment searchmethodsmostly differ in nuances,
such as the replacement of one of the presented stages, Biotite im-
plements alignment searches as modular toolkit: For each stage, Bi-
otite provides functionalities that covers common methods for that
stage. These functionalities can be freely combined and parametrized
to obtain a custom alignment search method for the problem at hand.
Since the functionalities presented in this section cannot be computed
in fully vectorized manner, the components of the alignment search
toolkit are implemented in Cython23 to obtain a substantial perfor- 23 Behnel et al. (2011).

mance increase compared to a pure Python implementation. This en-
ables the usage of this toolkit for alignment searches in feasible compu-
tation time in the first place.

6.2.1 K-mer encoding andmatching

In Biotite the list of consecutive k-mers of a sequence is considered it-
self a sequence, whose symbols are governed by a KmerAlphabet. A
KmerAlphabet requires a base Alphabet24, the length k and an op- 24 e.g. the 20 proteinogenic amino acids

tional spacing pattern. The number of symbols in this alphabet is qk

for a base Alphabet with q symbols. Just like a regular Alphabet,
a KmerAlphabet encodes symbols into a symbol code and vice versa
(see Section 2.2.1), with the difference that the symbols are k-mers
in this case. Let c be the sequence of symbol codes representing a k-
mer in the base Alphabet25. The corresponding symbol code in the 25 In consequence the length of c is k.

KmerAlphabet (k-mer code in short) is
∑k−1

i=0 qici. A central function-
ality of the KmerAlphabet is its ability to translate a sequence in the
base alphabet, e.g. a protein sequence, into a sequence of k-mer codes.

Based on this k-mer code sequence, or multiple ones, a KmerTable is
created, inspiredby theMMseqs2design. Thek-mersare indexed in two
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passes. In the first pass the number of occurrences of each k-mer code
in the sequence(s) is counted. Using these counts a position array that
fits the number counts is created for each unique k-mer. Such an ar-
ray contains (sequence ID, position)-tuples as elements. The sequence ID
identifies in which sequence the k-mer appears and the position indi-
cates where the k-mer is located in that sequence. The array of counts
is converted into an array of pointers to these position arrays. Com-
pared to allocating space for an entirely new array, this conversion can
save a lot of memory if k is large, as the size of the pointer array is 8qk

bytes. Finally, finding the positions of a given k-mer is simply accom-
plished by accessing the pointer array with the corresponding k-mer
code. Since eachk-mer is unambiguously associatedwith ak-mer code,
the KmerTable cannot encounter hash collisions26.26 Hash collisions appear, if different val-

ues translate into the same table key.

Low-complexity regions can be omitted from indexing by giving the
KmerTable a boolean mask containing ignored sequence positions.
This mask can be created using the Biotite interface to tantan or can be
provided by any custom source.

k-mer indexing is a time consuming process. Through support of
Python’s standard serialization protocol pickle, a KmerTable for a se-
quence database can be saved to hard drive and reloaded as required.
Thus, repetitive indexing of the same sequence database is not neces-
sary. Furthermore, multiple KmerTable objects can be combined into
a single KmerTable. This allows parallelized indexing of portions of
the sequence database in multiple processes and the final assembly of
this table into a complete table.

For k-mer matching, the k-mer code sequence of a query sequence
is created. For each k-mer in the query sequence the match-
ing positions are accessed as described above and the position in
the query as well as the matching positions are appended to a
list of match positions. To allow matching of similar instead of
identical k-mers a SimilarityRule can be given for the match-
ing process. A SimilarityRule is an object that enumerates
all similar k-mers for a given k-mer. The matching is then per-
formed for all of these similar k-mers. Which k-mers are actually
considered ‘similar’ is subject to the actual implementation of the
SimilarityRule, allowing for a high degree of customization. The
built-in ScoreThresholdRule, for example, outputs all k-mers that
have at least a given threshold similarity score with the input k-mer,
based on a SubstitutionMatrix. This is achieved using a branch-
and-bound algorithm27. The ScoreThresholdRule class can also be27 Hauser, Mayer, and Söding (2013).

used to allow a given number of mismatches in a k-mer, if an identity
matrix is used as substitutionmatrix.
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6.2.2 Gapped and ungapped alignments

The obtained match positions can be used as seed for a local un-
gapped or gapped alignment based onX-drop criterion with the func-
tions align_local_ungapped() and align_local_gapped(),
respectively. A challenge for align_local_gapped() in compari-
son to an optimal alignment is the initially unknown size of the ex-
plored area of the dynamic programming table. Hence, the table is ini-
tialized with a rather small size of 100× 100 cells and its size in the re-
spective dimension is doubled, when amargin of the table is reached.

Alternatively, banded local or global alignments can be performed us-
ing align_banded(). Instead of a seed it requires the lower and up-
per diagonal, that define the boundaries of the dynamic programing ta-
ble. Here the challenge of a partially explored dynamic programming
table is solved by indentation of the table memory layout to obtain a
substantially smaller table size inmost scenarios (Figure 6.4).

Indent

Figure 6.4: Indented memory layout
for banded sequence alignments. The
gray area shows the explored portion of
the table. Adapted from Kunzmann et al.
(2022) (CC BY 4.0).

6.2.3 E-value estimation

The E-value of an Alignment can be estimated using the
EValueEstimator class. Instances of this class are specific for
a combination of λ and K : The parameters can either be sampled, by
supplying a scoring scheme and symbol frequencies, or given directly
upon instantiation28. By default, the parameters are sampled using 28 This is useful, if the parameters are al-

ready known, either from tabulated val-
ues or previous sampling results.

1000 randomized sequence pairs, with each sequence having a length
of 1000. For each pair the optimal local alignment is computed using
the given scoring scheme (see Section 2.4.2). The parameters λ and u

of the extreme value distribution are estimated using the method of
moments29, with 29 Altschul and Erickson (1986).

λ =
π√
6V

,

u = µ− γ

λ
. (6.5)

Here γ is Euler’s constant and µ and V are arithmetic mean and vari-
ance of the sampled alignment scores. K is computed via Equation 6.2.
To compute an E-value, the EValueEstimator then requires only
the similarity score of the alignment of interest and the lengths of the
aligned sequences.

6.3 RESULTS AnDDISCUSSIOn

6.3.1 Parameter sampling

Using the EValueEstimator the generalizability of sampled λ and u
parameters to arbitrary sequence lengths was tested. For this purpose
multiple sequence lengths were evaluated. For each length 1000 pair-
wise alignments were created from two randomized sequences having
that length. For scoring the BLOSUM62matrix with −12 gap opening
and−1 gap extension penalty was used30. Amino acid background fre- 30 Gap penalties were taken from the

MMseqs2 default values.

https://creativecommons.org/licenses/by/4.0/
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Figure 6.5: Sampled distribution
parameters from different sequence
lengths. The sampled λ and u param-
eters of the extreme value distribution
is shown for different sequence lengths
n. The dashed red line shows a lin-
ear regression of u. The dashed blue
line depicts λ determined from this
regression.
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quencies were taken from Robinson et al.31. The results are shown in31 Robinson and Robinson (1991).

Figure 6.5.

As equation 6.2 can be rewritten as

u =
1

λ
lnK +

1

λ
lnn2, (6.6)

if m = n, a linear relation between lnn2 and u is expected. Hence,
a linear regression was performed on u to test this expected behav-
ior. Furthermore, λ can be read from the slope of the fitted function,
to compare it with the points for individual sequence lengths. With
R2 = 0.998 it is clear that u from any sequence length can be used to
determine u for other lengths as well. However, for sequence lengths
n ⪅ 100,λ is considerably higher than estimated fromhigher sequence
lengths or the linear regression. Note, that the extreme value distribu-
tiononlyapproximates accurately scoresof randomalignments for suf-
ficiently large sequence lengths32.32 Altschul and Gish (1996).

6.3.2 Computation time
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Figure 6.6: Run time of different
alignment approaches. The run time
of the alignment search per Synechocys-
tis genome copy is shown. A Align-
ment using original dynamic program-
mingmethod. BAlignment search using
Biotite alignment search toolkit. C Align-
ment search using MMseqs2. D+E Equal
to B+C, but time for k-mer indexing was
not considered.

The main advantage of the illustrated heuristics compared to the sim-
ple dynamic programming approach is the orders of magnitude faster
identification of homologous sequences. The speed makes its applica-
tion feasible for certainapplications suchas searches inentiregenomes.
Therefore, the computation time was evaluated in comparison to the
original dynamic programmingmethod andMMseqs233.

33 Steinegger and Söding (2017).

For the alignment search using the presented toolkit, the same stages
as in Section 6.3.3 were used, with the exception that repeat mask-
ing was omitted34. In the benchmark scenario, the tRNAAla sequence

34 running tantan would have biased the
computation time

fromEscherichia coliwas aligned against 100 copies of the genome of the
cyanobacterium Synechocystis sp. PCC 680335. For comparisonMMseqs2

35 GenBank IDs CP001509 and NC_-
000911, respectively

was executed on a single thread using default parameters, only the re-
peatmasking was omitted and the k-mer spacing pattern was adapted.
For the dynamic programming approach, a local optimal alignment of
the tRNAAla sequence to the genomewas computed 10 times.
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The benchmark results are shown in Figure 6.6. The alignment search
using Biotite (Figure 6.6B) is ∼ 6× faster than pure dynamic program-
ming (Figure 6.6A). However, in most scenarios a sequence database is
only indexed once and thereafter reused for alignment with different
query sequences. Hence, the k-mer indexing time is usually negligible.
However, for a single run indexing takes themajor part of the computa-
tion time: If the indexing step is not included in the run time, the align-
ment search is approximately three orders of magnitude faster (Figure
6.6D).

Biotite does not reach the performance ofMMseqs2 in this benchmark.
This can be expected, as the program is heavily optimized: It uses an
efficient implementation for double hit identification and is able to
computemultiple gapped alignments in parallel using single-instruction-
multiple-data (SIMD) instructions36. Furthermore, it uses multiple 36 Steinegger and Söding (2017).

threads for k-mer indexing by default, which was not tested in this
benchmark. In certain scenarios, this could have significant perfor-
mance advantages compared to a multi-processed setup of Biotite. The
run time gap could vary in other scenarios, since the run time of each
stage is dependent on parameter setting, total sequence database size
and sequence composition.

However, the alignment search implementation inBiotite still has a per-
formance in a similar order of magnitude as MMseqs2, a representa-
tive for modern software dedicated for alignment searches. In appli-
cations where the computation speed is not a bottleneck, Biotite offers
a flexible toolkit that can be relatively easily used to rapidly implement
a solution for a problem where no existing software fits the purpose.
In addition it allows rapid prototyping of new methods for alignment
searches.

6.3.3 Application example Companion source code:
genome_comparison.py

One of the arguably more famous relationships in biology is the one
between chloroplasts and cyanobacteria: The chloroplasts of todays
plants and algae are believed to originate from ancient endosymbio-
sis with cyanobacteria. Hence, chloroplasts and cyanobacteria share
manyhomologous genes. Tofind these homologies, the genomes of the
cyanobacterium Synechocystis sp. PCC 6803 and the A. thaliana chloro-
plasts were compared using the presented alignment search toolkit.

The sequences of both genomes were fetched from the NCBI Entrez
database37. For k-mer matching the bacterial genome and its reverse 37 GenBank accessions NC_000932 and

NC_000911complementwere indexed into aKmerTable. Low complexity regions
were masked using tantan in this process. To increase search sensitiv-
ity spaced k-mers with the spacing pattern 111*1*11*1**11*11138 38 Choi, Zeng, and Zhang (2004).

were used instead of contiguous ones. To significantly reduce the num-
ber of hits for the downstream stages, only matches with at least an-
other match on the same diagonal were filtered39. For each diago- 39 This is the application the double-hit

strategy.
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nal then only the first hit is considered, since multiple hits on the
same diagonal presumably correspond to the same homologous re-
gion. In the following each hit was extended with X-drop criterion
using align_local_ungapped(). As actual alignments were com-
puted later, only similarity scores were calculated here to decrease the
runtime. Based on a fixed score threshold well-performing hits were
filtered. For each remaining hit a local gapped alignment was per-
formed using align_local_gapped(). Again, only the score was
computed, since most resulting alignments were expected to be in-
significant. The substitution matrix and gap penalty were taken from
theMMseqs2 default. Afterwards each score was tested on significance
using an EValueEstimator. For the estimation of the E-value the
length of the bacterial genomewas given as 2-fold as alignment search
was performed against both, the forward and reverse complement se-
quence. AlignmentswithE ≤ 0.01wereconsideredsignificant. For the
significanthits thealignmentwas repeatedwith thealignment trace in-
cluded. Multiple hit positions could result in the samealignment, since
insertions anddeletions in a homologous region result in hits on differ-
ent diagonals. Hence, duplicate alignmentswerefilteredout and the re-
maining alignments were reported. Figure 6.7 shows how the number
of hits decreased with each stage.
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Figure 6.7: Number of remaining hits
after each alignment search stage. A
Initial k-mer matching. B Double hit fil-
tering and aggregation of hits on same
diagonal. C Ungapped hit extension. D
Gapped alignment. E Aggregation of du-
plicate alignments.

For deeper analysis of the found sequence similarities, the genes found
in the homologous regions of the chloroplast genome were identified.
For this purpose the sequence feature table for the chloroplast genome
was downloaded from NCBI Entrez and the gene positions were ex-
tracted. For each homologous region including somemargin the genes
in that region were visualized using Matplotlib (Figure 6.8). The most
significant sequence conservation is found in the 23s and 16s ribosomal
RNA sequences. This is not surprising: Ribosomal RNAs are well con-
served in the evolutionary process. This is one of the reasons the 16s
rRNAand 23s rRNA sequence similarity is a popularmethod for recon-
structing prokaryotic phylogeny40. The following hits include mainly40 Ludwig and Schleifer (1994).

proteins with central functionality for photosynthetic activity, such
as ribulose-1,5-bisphosphate carboxylase-oxygenase and proteins in-
volved in the photosystem complexes. With decreasing sequence sim-
ilarity, the local alignments often cover only a part of a protein. This
issue could be mitigated by performing an alignment search based on
translated nucleotide sequences, since protein sequences are known to
be better conserved than nucleic acid sequences. Strikingly, the homol-
ogous regions rarely extend into non-coding regions. This observation
signifies the strong evolutionary conservation of genes.
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Figure 6.8: Identified homologies be-
tween cyanobacteria and chloroplast
genomes. The figure displays the 36
most significant homologous regions be-
tween the genomes of Synechocystis sp.
PCC 6803 and A. thaliana chloroplasts.
For eachhomologous region the position
in the chloroplast genome is shown (gray
box). The arrowsdepict position and cod-
ing strand of protein coding sequences
(green), rRNAs (red) and tRNAs (blue). If
available, the name of the gene is shown
in the arrow.
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CHAPTEr 7

General structure information

The application example of this chapterwas adapted from the example
gallery at the Biotite documentation website (Table A.1).

7.1 InTrODUCTIOn

ThePDB is a large archive of experimentally determinedmacromolecu-
lar structure models. Detailed interpretation of these structures some-
times requires additional information: For example the PDB format
does only contain 3-letter abbreviations of residues1, while themmCIF 1 Monomers inside larger macro-

molecules as well as small molecules are
termed ‘residues’ here.

format omits information about atom connectivity within a residue.
Hence, the Chemical Component Dictionary (CCD)2 has been made avail- 2 Westbrook et al. (2015).
able as companion catalog for structure analysis. For each residue, that
is part of any PDB structure it lists comprehensive information about
the compound in general and its comprised atoms. Biotite harnesses
this information for a variety of its functionalities, e.g. the identifica-
tionofbonds instructuremodelswithoutbond information, theassem-
bly of structures from scratch or the prediction of hydrogen positions
(see Chapter 14).

7.2 ImPLEmEnTATIOn

7.2.1 Parsing the CCD

TheCCDisprovidedby thePDBas singlemmCIFfile. Each residue isde-
scribed by a data block in this file. This format can be parsed with the
respective parser from Biotite. However, parsing the CCD at demand
of the user would significantly increase run time, as the CCD contains
more information about each residue as requested and parsing themm-
CIF file is relatively slow. Therefore, the Biotite package contains neces-
sary data from the CCD as preprocessed files, separated by data type3. 3 e.g. one file for full residue names, one

file for atom connectivity, etc.The data is stored in the binaryMessagePack format which ismore com-
pact than comparable text formats and can be read relatively fast. If
certain information is demanded by the user, the respective data file is
parsed and the data is cached inmemory.

7.2.2 Bond identification

Biotite stores bonds between atomswithin a residue in a dictionary that
maps the name of a residue and the name of two atoms to a bond type
(see Section 2.2.4). If two atoms are not bonded with each other, no
mapping is available for the combination. The dictionary is accessible
by theuser via thebond_dataset() function, butmainly it is used in-
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Figure 7.1: Linearlyassembledantimi-
crobial peptide. The sequence of the
peptide is WRKFWKYLK.

ternallybyconnect_via_residue_names() to create aBondList
for anAtomArray orAtomArrayStack. This allows accurate compu-
tation of bonds for structure models even from other sources than the
PDB, as the CCD comprises a wide range of residues, including protein
and nucleic acidmonomers, small molecules, saccharides and lipids.

7.2.3 Building residues

The CCD does not only provide name, element and charge for each
atom, but also coordinates, either from an experimentally determined
structure or from computation results. Together with the atom con-
nectivity, Biotite can use this information to build an AtomArray from
residue namewith the residue() function.

7.3 APPLICATIOn EXAmPLECompanion source code:
peptide_assembly.py

A linear peptide can be used as starting conformation for de novo pro-
tein structure prediction4. Since no folding is attempted in this simple4 Le et al. (2020).

approach, knowing the geometric course of the protein backbone and
the atoms of the amino acid side chains is sufficient to build such linear
conformation from sequence only. An antimicrobial peptide against
Mycobacterium tuberculosis5 should serve as example here.5 Ramón-García et al. (2013).

Peptide assembly began with building a backbone structure for all
residues in the sequence. This chain contained the N, Cα and C for each
residue, using backbone dihedral angles of 180◦ resulting in a ‘zigzag’
chain lying in the z-plane. Then, for each amino acid the atoms and
their positions and bondswere obtained viaresidue(). Each residue
was superimposed onto to the respective positions of the backbone and
the atoms that are lost in the peptide condensation6 were removed. A6 namely a hydroxy group of the C-

terminus and a hydrogen atom from the
N-terminus

bond was formed between C and N atoms of subsequent residues. Fi-
nally the geometries of the hydrogen and oxygen atom of the peptide
bond were adjusted. This was achieved by superimposition of known
peptidebond coordinates onto eachpeptide bondof the assembledpep-
tide. The structure of the finished peptide chain is shown in Figure 7.1.
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CHAPTEr 8

Unit cells, simulation boxes and macro-
molecular assemblies

8.1 InTrODUCTIOn

Molecular structures seldomly exist in isolation. In crystals used for X-
ray structure elucidation, macromolecules are densely packed in peri-
odic organization, with one or more copies in each unit cell. Similarly,
molecules in an molecular dynamics (MD) simulation are placed in a
simulation box, which is repeated periodically.

In nature biomacromolecules do not necessarily assemble according to
the conformation suggested by the crystallographic unit cell. Hence,
the actualmacromolecular assembly1 is more important: It describes how 1 also called biological assembly or biological

unitone or multiple copies of the molecules in the structure are spatially
arranged to form a putative functional unit.

In order to analyze structuremodels in context of the unit cell, simula-
tion box or assembly, Biotite provides functions to handle them, which
are covered in this chapter. This enables the application of Biotite to the
domains ofMD simulations and largemacromolecular complexes.

8.2 ImPLEmEnTATIOn

8.2.1 Periodic boxes

Unit cells and simulation boxes can be handled equivalently, as they
describe the same circumstance: For each atomone copy exists one cell
or box length away in each dimension. Therefore, for the purpose of
the implementation in Biotite and the description in this chapter both
are aggregated into the term box. The box attribute of an AtomArray
is a (3 × 3)-dimensional array, where each row is one of the three
box vectors a⃗, b⃗ and c⃗ (Figure 8.1). In an AtomArrayStack each of
the m models can have an individual box, resulting in a (m × 3 × 3)-
dimensional array. While the box can be manually set, it is most com-
monly read from a structure file. The popular PDB andmmCIF formats
store box vectors using the vectors’ lengths |⃗a|, |⃗b| and |⃗c| and the angles
α, β and γ between them (Figure 8.1). These values can be converted to
box vectors using vectors_from_unitcell() and vice versa with
unitcell_from_vectors().

z

xy

ab

c

γ
α β

Figure 8.1: Unit cell or simulation box
vectors. The axes of the coordinate sys-
tem are shown in gray. In the case of unit
cells a⃗ lies on the x-axis and b⃗ on the xy-
plane.

Based on the box attribute, a number of manipulations can be per-
formed. Most prominently, structuremodels, that are fragmented due
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to theperiodic boundary, canbe reattachedwithremove_pbc()orpe-
riodic copies of a structure can be addedwith repeat_box() to study
their interaction with each other. Furthermore geometric properties,
such as distances and angles between atoms, can be measured taking
periodic boundary conditions into account. Geometric measurements
rely ononeormultiple displacement vectors betweenatoms. For exam-
ple, for a distance the displacement between two atoms is required and
for the angle between atomsABC, the displacementAB andBC is re-
quired. Let x⃗ be such a displacement vector that is simply calculated us-
ing position vector difference. However, in the periodic case x⃗may not
represent the shortest line, between the atoms, since a periodic copy
might be closer. The aim is to find a vector y⃗ from x⃗ thatminimizes the
displacement vector length by adding a multiple of each vector in the
boxmatrixB. Thus,

B =

ax ay az

bx by bz

cx cy cz

 ,

y⃗ = argmin |u⃗|
s.t. u⃗ =

(
x⃗+ BT · p⃗

)
, p⃗ ∈ Z3. (8.1)

To find y⃗ the approach from the MDTraj package2 was adapted. x⃗′ is2 McGibbon et al. (2015).

computed, which describes x⃗ as fraction of the box vectors:

x⃗ = BT · x⃗′

x⃗′ = BT−1 · x⃗. (8.2)

Substituting Equation 8.2 in Equation 8.1,

u⃗ = BT · (x⃗′ + p⃗) . (8.3)

In orthorhombic boxes the box vectors are orthogonal to each other. In
this case determining y⃗ becomes the problem of finding the minimum
absolute value for each vector component of (x⃗′ + p⃗). This is simply

(x⃗′ + p⃗)i =

x⃗′
i % 1, if x⃗′

i % 1 ≤ 0.5

(x⃗′
i % 1)− 1, if x⃗′

i % 1 > 0.5
, (8.4)

where % denotes the modulo operator. Intuitively, this means that
for each dimension the displacement vector is moved within one box
length and then the direction with theminimum length is chosen (Fig-
ure 8.2).

Move inside
box length

Select shorter
direction

Figure 8.2: Displacement vector calcu-
lation in a orthorhombic box. The fig-
ure shows the calculation of y⃗ (blue ar-
row) from x⃗ (upper gray arrow) accord-
ing to Equation 8.4. The two points,
whose displacement is measured are
shown in red and in gray, including the
periodic copies of the latter one.

For triclinic boxes a more time consuming approach is required, since
theproblemcannot be simplified toEquation 8.4. Instead, the displace-
ment vector is moved inside the box (x⃗′ % 1) and the directly adjacent
periodic copywith the lowestdistance is chosen, bycheckingall33 = 27

possibilities in a vectorizedmanner:

u⃗ = BT · ((x⃗′ % 1) + p⃗) , p⃗i ∈ {−1, 0, 1}. (8.5)
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Tohandleperiodic boundaries in aCellList, adjacentperiodic copies
of the structure are also added to it. With a total of 27 copies in the
CellList, its creation is clearly slowed down. However, to find atoms
in vicinity of given coordinates is now simply a lookup in the relevant
cells, as it is done for the non-periodic case. Note that for heavily
skewed boxes the periodic copy with the lowest distancemay not be in
the directly adjacent box and the correct solution might not be found
in this rare case (Figure 8.3).

Figure 8.3: Minimum distance in a
heavily skewed box. Theminimum dis-
tance between the red and the gray point
is sought. As the box is heavily skewed,
the periodic copywith theminimumdis-
tance is found not within the same (red)
or directly adjacent (black) boxes, but
outside of the searched boxes (arrow).

These functionalities are especially important for analyses onMD sim-
ulation trajectories, as macromolecular chains usually move beyond
the periodic boundary and reenter the box from the other side during
the course of the simulation.

8.2.2 Macromolecular assemblies

The coordinates given by a structure file from the PDB refer to the
method,whichwas used to resolve the structure. For example, inX-ray
crystal structures they represent the asymmetric unit. The PDBx/mm-
CIF format provides instructions on how to obtain a certain macro-
molecular assembly from these coordinates. The file can define multi-
ple assemblies, each one identified by a unique assembly ID. Thepdbx_-
struct_assembly category lists these IDs together with a short
description. The pdbx_struct_assembly_gen category describes
which combination of transformations need to be applied to which
chains3 to obtain the assembly. Finally, pdbx_struct_oper_list 3 A chain comprises atoms with the re-

spective chain ID.gives the rotation matrix and translation vector for each operation. In
Biotite the get_assembly() function parses these fields to obtain the
necessary transformations to obtain the assembly for a given assembly
ID. These instructions are applied to the AtomArray parsed from the
asymmetricunit tobuild andreturnanAtomArray that represents the
chosen assembly. This procedure can be likewise used formulti-model
structures to obtain an AtomArrayStack.

8.3 APPLICATIOn EXAmPLE Companion source code:
phage_capsid.py

In this example the macromolecular assembly for the capsid of the λ-
phage4 was extracted from the PDB entry 7VII and visualized. The 4 Wang, Zeng, and Wang (2022).

structure file was downloaded in PDBx/mmCIF format. The structure
model contains two different proteins, identified by unique entity IDs
(Table 8.1 top). Furthermore, multiple assemblies are available (Table
8.1 bottom), from which the ‘complete icosahedral assembly’ was chosen.
The assembly listed first5 typically corresponds to the most relevant 5 usually assembly with ID ‘1’

one, which is the reasonwhy the first assembly ID is used by default in
get_assembly(), if no explicit ID is given. get_assembly() was
used to create an AtomArray for the chosen assembly ID. The entity
IDwas included in thecreationasadditional atomannotation, todistin-
guish between the two types of protein in the visualization, as shown
in Figure 8.4.
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Figure 8.4: Structure of the bacterio-
phage λ capsid. The major capsid pro-
tein and capsid decoration protein are
shown in gray and red, respectively.

Table 8.1: Entities and assemblies.

Entities

ID Description

1 Major capsid protein
2 Capsid decoration protein

Assemblies

ID Description

1 complete icosahedral assembly
2 icosahedral asymmetric unit
3 icosahedral pentamer
4 icosahedral 23 hexamer
5 icosahedral asymmetric unit, std point frame
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CHAPTEr 9

Partial charge estimation

The implementation of the functionality presented in this chapter was
produced in collaboration in the course of a Bachelor’s thesis1. 1 Anter (2021).

9.1 InTrODUCTIOn

In the classical mechanical view of a molecule partial charges arise
when the location of an electron is shared among multiple atoms. Al-
though quantum mechanics rejects the underlying concept of point
charges and substitutes it with a continuous electron density distri-
bution, the partial charge is still a useful quantity to derive a number
of physical properties of a molecule, such as acidity2. Furthermore, 2 Gasteiger and Marsili (1980).

molecular modelling often resorts to a classical mechanical system to
describe amolecular system. This allows computations in a reasonable
time scale, that is not achievable with the rigorous incorporation of
quantummechanics. In consequence, techniques like MD simulations
ormolecular docking3 need to assign partial charges to the point parti- 3 Oostenbrink et al. (2004); Trott and Ol-

son (2010).cles, the atoms, in order to calculate electrostatic interactions between
them.

Although the partial charges of atoms in amolecular system can be ac-
curately calculated using the mathematics provided by quantum me-
chanics, this is again computationally too costly for applications to
biomacromolecules. An alternative is the tabulation of partial charges
for a range of single residues calculated this way4, and picking the 4 Cieplak et al. (1995).

charges for the required residues. However, this approach is still not
completely accurate, as the partial charges shift in the context of the
largermolecular system. More importantly this approach limits theap-
plicable systems to ones that contains only the tabulated residues. As
theBiotite package strives to be generally applicable, irrespective of the
molecularmodel at hand, amore universal method to compute partial
charges is desired.

The partial equalization of orbital electronegativity (PEOE) method5 dis- 5 Gasteiger and Marsili (1980).

tributes charges between directly bonded atoms solely based on the
chemical elements and the number of bonds of each atom: In a bond
between two atoms themore electronegative atom attracts the binding
electrons attaining a negative partial charge in this process, while the
other atom obtains a positive partial charge with the same magnitude.
The electronegativity can be defined as

χ =
EI + EA

2
, (9.1)

whereEI is the ionization energy andEA is the electron affinity of the
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valence state of the atom6. The electronegativity is furthermore de-6 Mulliken (1934).

pendent on the charge Q of the atom, for instance already negatively
charged atoms exert less attraction to electrons due to electrostatic re-
pulsion. The PEOE method approximates the electronegativity of an
atom iwith

χi(Q) = ai + biQ+ ciQ
2, (9.2)

where a, b and c are tabulated values dependent on element and num-
ber of bonded atoms. The partial charges are now distributed within
a network of bonded atoms in an iterative manner. Starting from the
formal atom charges Q0, the charge of each atom i is updated in each
iteration step nwith

Qn+1
i = Qn

i +

(
1

2

)n+1

·
∑
j

χj(Q
n
j )− χi(Q

n
i )

χ+
,

χ+ =

χi(1), if χj(Q
n
j ) > χi(Q

n
i )

χj(1), otherwise
. (9.3)

Here j iterates over the atoms directly bonded to atom i. In the stud-
ies conducted for the original PEOE description n = 6 iterations were
sufficient to achieve convergence in any case7.7 Gasteiger and Marsili (1980).

Anotherpopular approach to theproblemof estimatingpartial charges
are the charge equilibration8 (Qeq) and its derived methods. However,8 Rappe and Goddard (1991).

Qeq requires pairwise atom distances, which change dependent on the
molecular conformation. Hence, a proper application of this method
would require periodic recalculation during a molecular simulation.
Furthermore, usage of PEOE is consistent with the data preparation
procedure for molecular docking tools of the AutoDock software fam-
ily9.9 Goodsell and Olson (1990).

9.2 ImPLEmEnTATIOn

The PEOE algorithm was implemented in the partial_charges()
function written in Cython. As required input it takes an AtomArray,
representing the molecular system to calculate the partial charges for.
The chemical elements and formal charges are taken from the annota-
tions of theAtomArray. Optionally, the initial chargesQ0 canbe given
separately, for example to handle the delocalized electrons of depro-
tonated carboxy groups. The bonds are taken from a BondList asso-
ciated to the AtomArray. By default the function uses 6 iterations as
proposed in the original paper.

Although thedescribedalgorithmisbasically straightforward to imple-
ment, some special cases need to be considered. First, hydrogen atoms
only have one electron. In consequence a hydrogen atomwith a charge
of 1 cannot be ionized, which poses a problem for calculating χ+ in
Equation 9.3. For hydrogen atoms χ+ = 20.02 eV was employed here
in accordance with the original article 10. The second problem are ele-10 Gasteiger and Marsili (1980).
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Figure 9.1: Partial charge distribu-
tionof penicillinGaccording toPEOE
method. plot_ball_and_stick_-
model()was used for visualization.

ments forwhich the parameters a, b and c are not tabulated. Sincemost
elements occurring inorganicmolecules arepresent, itwouldbeunrea-
sonable to reject partial charge calculation for largemolecular systems,
ifparametersweremissing foronlya fewatoms. Instead the implemen-
tation completely ignores suchatoms, i.e. no charge is transferred from
or to anatomwithmissingparameters. In the returnvalue their partial
charge is given as not-a-number. This way partial charges can be calcu-
lated for all organic molecules at the cost of inaccuracies in vicinity of
non parametrized atoms.

9.3 APPLICATIOn EXAmPLE Companion source code:
penicillin_charges.py

To demonstrate the implemented algorithm, PEOE is applied to the β-
lactam antibiotic penicillin G. The calculated charges for each atom af-
ter the default number of iterations are shown in Figure 9.1. To support
the decision for 6 iterations, the partial charges were calculated with
different number of iterations and compared to 10 iterations as the ‘cor-
rect’ reference. Asmeasure of error the

RMSDCharge(n) =
√
⟨(Qn

i −Q10
i )2⟩ (9.4)

was calculated (Figure 9.2). After 6 iterations the RMSDCharge was
merely 0.0007 e with respect to the result after 10 iterations.

2 4 6 8 10
Iteration

0.000

0.005

0.010

0.015

0.020

0.025

0.030

RM
SD

 (e
)

Figure 9.2: Partial chargeRMSD inde-
pendence of iteration step. The default
number of iterations is marked with the
dashed line.
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CHAPTEr 10

Molecular docking with AutoDock

The application example of this chapterwas adapted from the example
gallery at the Biotite documentation website (Table A.1).

10.1 InTrODUCTIOn

Molecular docking is the process of finding the conformation that a re-
ceptor and ligand molecule have in complex with each other, the so
called binding mode. In computer-aided drug design, docking of small
molecules to biomacromolecules is of particular interest. Docking
methods can be separated into three categories1: 1 Fan, Fu, and Zhang (2019).

• rigid docking, where the individual conformation of receptor and lig-
and is fixed and only the relative positioning is searched,

• flexible docking, where conformation of receptor and ligand can adapt
in the binding process, and

• flexible-rigid docking, where only the conformation of the small
molecule can adapt.

While flexible docking givesmost accurate results, especially since it is
able to simulate an induced fit, rigid docking allows fast computation.
Flexible-rigid docking offers a tradeoff between accuracy and perfor-
mance.

TheAutoDock software family2 is a representative of the latter category, 2 Goodsell and Olson (1990).

though selected receptor side chains can be optionally handled as flex-
ible. Although MD simulations and deep learning3 have become in- 3 Amaro et al. (2018); Gawehn, Hiss, and

Schneider (2016).creasingly promising approaches for drug design, the force-field based
AutoDock has still a high popularity due to its relatively fast computa-
tion. Themostmodern iteration of this family isAutoDockVina4, which 4 Trott and Olson (2010).

uses a Metropolis-Monte-Carlo algorithm in combination with local
optimization to find conformations thatminimize the energy function.
Vina proposesmultiple such candidates for the bindingmode, so called
poses, and rates each one with the estimated free energy of the binding
process.

Since Vina achieves reasonable docking results but requires a complex
setup, Biotite provides a simple interface to this software, that hides
most of the complexity and does not require additional dependencies,
to allow fast and simple docking.

10.2 ImPLEmEnTATIOn

Docking withVina in principle requires only a single command line in-
vocation, which is encapsulated by the VinaApp class (see Section 2.6)
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in Biotite. The VinaApp governs the creation of input files for docking
and parsing of the resulting output files. Furthermore, it provides op-
tions to customize other parameters of the docking procedure such as
its exhaustiveness. However, the main challenge of interfacing Vina is
the data preparation: The program uses the custom PDBQT format for
structure input and output. The format makes alterations to the PDB
format, which are discussed in the following subsections. The authors
of the AutoDock software family provide the MGLTools software pack-
age for PDBQT file preparation. However, the license of the software
restricts is usage to academic applications and the package requires
Python 2.7, which is no longer supported. Therefore,Biotiteprovides the
PDBQTFile class for reading andwriting structure data in this format
as alternative.

10.2.1 Partial charges

The charge column of PDBQT files contains partial charges instead of
formal charges. By default they are calculated using the PEOEmethod
implemented in partial_charges() (see Chapter 9).

10.2.2 Atom types

Instead of the element of an atom, the AutoDock atom type is given, that
incorporates information about the direct chemical environment of
the atom. For example aliphatic and aromatic carbon atoms are dis-
tinguished. PDBQTFile uses the BondList associated to the input
AtomArray to determine the environment and select the correct atom
type. Non-polar hydrogen atoms are removed entirely in PDBQT files.

10.2.3 Rotatable bonds

To definewhich bonds in the ligandmolecule are rotatable, the PDBQT
format represents a molecule in a tree-like manner: A group of con-
nected atoms, that are rotated collectivelywhen the dihedral angle of a
rotatable bond is altered, is a node in this tree. Because such a group
of atoms may contain rotatable bonds itself, a node may have child
nodes. In the PDBQT format each group of atoms is wrapped by a
‘BRANCH’ and an ‘ENDBRANCH’ record, which also comprise the index
of the atoms connected by the rotatable bond. A child node is described
by a ‘BRANCH’/‘ENDBRANCH’ block nested within a group. The ‘ROOT’
record defines the root of this tree. The resulting number of torsional
degreesof freedomiswritten intoa ‘TORSDOF’ record. Biotiteagainuses
the BondList to identify rotatable bonds and groups of atoms con-
nected by them. A bond is considered rotatable, if it is a single bond,
it does not lead to a terminal atom5 and the two connected atoms are5 Rotation about a terminal bond would

have no effect on the coordinates of the
affected atom.

not within the same ring. If two atoms are still connected via a ‘path’
through the BondList ignoring the rotatable bonds, they belong to
the same node. By default, the node, where the first atom in the struc-
ture belongs to, is taken as root of the tree. Child nodes of the root are
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Figure 10.2: Putative and reference
binding mode of the strepatividin-
biotin complex. The surface of the
streptavidin binding pocket with the
dockedbiotinmolecule is shown. Theref-
erence binding mode from the original
structure is shown in transparent blue.

wrapped by a ‘BRANCH’ and ‘ENDBRANCH’ record. This procedure is re-
peated recursively for each child node until all nodeswere added to the
PDBQT file.

10.3 APPLICATIOn EXAmPLE Companion source code:
biotin_docking.py

As example docking application the ligand biotinwas docked to a struc-
ture model of the receptor streptavidin (PDB: 2RTG)6. This structure 6 Katz (1997).

was chosen, as hydrogen atoms are resolved in the model, which is re-
quired for the docking setup. Furthermore, it already includes bound
biotin. However, for the purpose of this example it was assumed that
the bindingmode is unknown.

In the first step a single streptavidin monomer is extracted from the
dimeric asymmetric unit. The existing (reference) biotinmolecule is re-
moved and a newbiotinmodel is taken from theCCD (see Chapter 7) as
ligand. Docking between receptor and ligand was performed in a 20Å
radius of the reference ligand centroid using VinaApp. The returned
number ofmodels and themaximum free-energywas not restricted to
obtain a larger number of poses. Finally, the structure models and cor-
responding predicted free energy values were obtained from the dock-
ing results.

7 6 5 4
Free energy (kcal/mol)
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10
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Figure 10.1: Accuracy of predicted
binding poses. For each binding pose
predicted by Vina, the predicted free en-
ergyand theRMSDto the referencebind-
ing mode is shown. The minimum free
energy pose is marked in red.

Whenmeasuring the docking accuracy in terms of the RMSD between
each pose and the reference ligand, the pose with the lowest free en-
ergy was also the closest to the reference (Figure 10.1). This indicates a
good accuracy, as the binding mode with the lowest energy is theoreti-
cally also the most prevalent one and is therefore found in experimen-
tal data. Theminimum free energy pose is shown in Figure 10.2, which
demonstrates againhowclose the predicted bindingmode is compared
to the referencemode.
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CHAPTEr 11

Elastic networkmodels

The implementation of the functionality presented in this chapter was
produced in collaboration with coworkers1. 1 Krumbach, J. H. and Islam, F., TUDarm-

stadt

11.1 InTrODUCTIOn

While experimentally determined structures only give static images of
a givenmacromolecular system, in-depth insights often require knowl-
edge about motions of atoms, residues and entire domains. An MD
simulationgenerates atomistic trajectories2 that allowanalysesof such 2 a time series of atom coordinates

motions. Based on an interatomic potential V (r⃗), where r⃗ are the atom
coordinates, it calculates the interatomic forces F (r⃗) = −∇pV (r⃗) and
integrates themover small time steps. However, bond vibrations occur
in the rangeof femtosecondsanddictate the integrationstepsize,while
global conformational changes may take milliseconds or longer3. In 3 Bahar et al. (2010).

consequence theMDsimulationof time scales for observationof global
movements is computationally unfeasible due to the large number of
required steps.

Elastic network models (ENMs) offer a fast but coarse-grained alter-
native to assess global dynamics of a molecular system. First, con-
sider thepotential functionV asdependent onpairwise atomdistances
sij = |r⃗i−r⃗j | insteadof r⃗directly. ByexpandingV (r) intoaTaylor series
around the input atomcoordinates r⃗ 0 and the corresponding distances
s0, it becomes

V (r) =
∑
ij

[V (s0ij)

+
∂V

∂sij

∣∣∣∣
s0ij

(
sij − s0ij

)
+

1

2

∂2V

(∂sij)
2

∣∣∣∣∣
s0ij

(
sij − s0ij

)2
+ ... ]. (11.1)

Themodel assumes that the input structure4 is at energyminimum for 4 usually determined from an experi-
mentall pairs of atoms5. The first term of the series is constant and repre- 5 Bahar et al. (2010).

sents the potential at energy minimum. Hence it can be set w.l.o.g. to
zero. ∂V /∂sij vanishes at energyminimumand in consequence the en-
tire second term. Terms after the third one are omitted, leading to

V (r) =
∑
ij

1
2

∂2V

(∂sij)
2

∣∣∣∣∣
s0ij

(
sij − s0ij

)2 . (11.2)

Consequently, ENMs describe the energy landscape in vicinity of the
energy minimum. Equation 11.2 simplifies the ENM to a system of
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Hookean springs (Figure 11.1),

V (r) =
∑
ij

1

2
γij
(
sij − s0ij

)2
, (11.3)

where γij is the force constant of the virtual ‘spring’ between atom i and
j.

Figure 11.1: Schematic depiction of
an ENM. The atoms are connected by
springs with two different force con-
stants.

Typically, not all atoms of a molecular system are included in an ENM.
For protein structures generally only Cα atoms are used. Different ap-
proaches can be used to calculate γij for each pair of residues based on
the input structure. In themost basic case a simple cutoffdistance is de-
fined, within which two residues are considered to interact with each
other: If two Cα atoms have distance below this cutoff, their γ is set to
a constant value, otherwise to 0. More modern models offer a contin-
uous distance-dependent behavior6, consider the type of interacting6 Hinsen et al. (2000); Yang, Song, and

Jernigan (2009). residues7 or include both of these information8. However, the choice
7 Miyazawa and Jernigan (1996); Keskin
et al. (1998); Hamacher and McCammon
(2006).
8 Dehouck and Mikhailov (2013).

of themodel has often only little impact on the insights obtained from
theENM, as globalmovementsmostly result from the overall 3D shape
of the system9.

9 Bahar et al. (2010).

Due to the representation as spring network, an ENM can be subjected
to normal mode analysis (NMA). Each normal mode is a collective os-
cillation of all atoms at the same frequency and phase. The superim-
position of all normal modes gives the entirety of movements in the
molecular systemwithin the assumptions of the ENM. If the direction
of these movements is irrelevant for the use case, a Gaussian network
model (GNM) 10 can be employed, defined by the Kirchhoffmatrix10 Bahar, Atilgan, and Erman (1997).

Γij =

−γij , if i ̸= j∑
i,i ̸=j γij , if i = j

. (11.4)

Each eigenvalue-eigenvector pair of Γ corresponds to one normal
mode, where the eigenvalue λk ∝ ω2

k, the frequency of the oscilla-
tion11. The corresponding eigenvector quantifies the contribution of11 Bahar et al. (2010).

each atom in this oscillation. Modes with λk = 0 represent rotations
and translations of the entire molecular system12. Otherwise, the am-12 a GNMhas only a single zero-mode

plitudeof amodek is proportional to1/λk, as onaverageeachmodehas
the same vibrational energy, which is proportional to13 ω2

k. In conse-13 Bahar et al. (2010).

quence, the slowmodeswith small λk represent the globalmovements
sought after. The pseudoinverse of Γ, Γ−1, is the covariance matrix
which gives the correlation between the atomicmovements.

In contrast to GNMs, anisotropic network models (ANMs)14 take the14 Atilgan et al. (2001).

directionof oscillations into account. Its analog of theKirchhoffmatrix
is the HessianmatrixH. Each element of thematrix is a submatrix

Hij =


−γij

s2ij


x2
ij xijyij xijzij

yijxij y2ij yijzij

zijxij zijyij z2ij

 , if i ̸= j

∑
i,i ̸=j Hij , if i = j

, (11.5)
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where (xyz)ij is the displacement vector between the atoms i and j15. 15 inotherwords, using thenotation from
the start of the chapter, r⃗ 0

j − r⃗ 0
iThe eigenvectors of H not only comprise the contribution of an atom

to the oscillation, but also resolve the direction. This allows the spatial
analysis andvisualizationofnormalmodes. Furthermore, it allows the
application of linear response theory (LRT)16:Within the framework of 16 Ikeguchi et al. (2005).

an ANM, if a force vector F⃗ is applied on the network model, the equi-
librium atom positions are displaced by

∆r⃗ = H−1F⃗ . (11.6)

Note that a ‘flattened’ version of H, F⃗ and r⃗ is used in Equation 11.6, i.e.
H is a matrix of shape (3N × 3N) and F⃗ and r⃗ are vectors in the form
(x1, y1, z1, x2, ...).

The functionalities available inBiotitealongwith its designuponNumPy
and its optimized linear algebra operations make the package predes-
tined for application to ENMs. Hence, the presentedmethodology was
implemented in the extension package Springcraft to assess global dy-
namics of a givenmolecular structure.

11.2 ImPLEmEnTATIOn

The basis for an ENM is the force field that defines the force constants
γ for each pair of atoms. In Springcraft γ calculation is governed by the
abstract ForceField superclass. Subclasses of ForceField imple-
ment specific force fields, including

• InvariantForceField, that assigns the same γ to all pairs of
atoms within a given cutoff distance,

• ParameterFreeForceField, where γ scales continuously with
the inverse of the squared distance instead of using a cutoff17, 17 Yang, Song, and Jernigan (2009).

• HinsenForceField, which uses a higher order polynomial func-
tion of the distance to calculate18 γ, 18 Hinsen et al. (2000).

• TabulatedForceField, that selects tabulated γ values based on
amino acid type and/or distance19, and 19 Hamacher and McCammon (2006);

Dehouck and Mikhailov (2013).• PatchedForceField, that allowsenforcing, severingandoverrid-
ing chosen contacts of another ForceField.

Note that while a ForceField may define a cutoff distance, the cut-
off is not considered yet at this point of the ENM calculation: The
ForceField computes γ for given pairs of atoms and their respective
distances. How the pairs of atoms within a cutoff distance are identi-
fied, is explained in the section below. The separation of ForceField
from the rest of the ENM logic20 allows the user to provide a custom 20 Hessian/Kirchhoff calculation, NMA,

etc.implementation for calculating γ by themeans of choice.

TheGNM andANM classes are used to computeGNMsandANMs, respec-
tively and include basic functionalities for analysis of these. Given the
atom coordinates and a chosen ForceField, Γ or H is calculated, re-
spectively. For this purpose, a cell list is created for the coordinates and
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Figure 11.3: Flap oscillation of HIV-
1 protease. The two HIV-1 protease
monomers are shown in red and blue, re-
spectively. The flaps are highlighted in
darker colors. The normal mode from
the ANM showing the experimentally
found flap movement is depicted by ar-
rows.

an adjacencymatrixA using the cutoff distance sc is calculated:

Aij =

1 if sij ≤ sc

0 if sij > sc
. (11.7)

Those pairs of atoms where Aij = 1 are given to the chosen
ForceField to calculate γij for them. Where Aij = 0, γij is 0. If in-
stead no cutoff is given, all possible pairs are considered. Using all γij ,
Γ orH are computed according to Equation 11.4 or 11.5, respectively. In
more detail, the n pairs of adjacent atoms are represented by indices to
the underlying AtomArray. The ForceField receives the pairs and
distances as NumPy arrays of shape (n, 2) and (n) respectively. This al-
lows fully vectorized computation of the entire EMM creation.
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Figure 11.2: Normal modes of HIV-1
protease. Modes corresponding to
translation and rotation are omit-
ted. The eigenvalues and oscillation
amplitudes were normalized.

For further analysis based on Γ or H, respectively, such as covariance
computation and NMA, Springcraftmakes intensive use of the linear al-
gebra operations implemented in NumPy. Furthermore, the NumPy ar-
rays representing Γ andH can be obtained and edited directly, encour-
aging the user to apply custom analyses on GNM and ANM objects.

11.3 APPLICATIOn EXAmPLECompanion source code:
normal_modes.py

It has been experimentally shown that the HIV-1 protease dimer dis-
plays a functionally important movement21 of its β-hairpins termed21 Hornak et al. (2006).

‘flaps’. This movement is also visible as normal mode of an ANM22.22 Hamacher and McCammon (2006).

To reproduce these findings, an ANM with the extended ANM force field
(TabulatedForceField.e_anm()) was computed based on a crys-
tal structure of the dimer23,24. The eigenvalues and corresponding23 Hodge et al. (1996).

24 PDB: 1DMP oscillation amplitudes are shown in Figure 11.2. The first ten normal
modeswere visually scanned for amode that resembles the experimen-
tal results, by adding eigenvectors as arrows to the 3D visualization.
The thirdmode showed the expected flap oscillation (Figure 11.3).
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CHAPTEr 12

Hydrogen bondmeasurement

The implementation of the functionality presented in this chapter was
produced in collaboration with a coworker1. 1 Bauer, D., TU Darmstadt

12.1 InTrODUCTIOn

Hydrogen bonds are non-covalent electrostatic interactions involving
three atoms. The hydrogen bond donor D is a relatively strong elec-
tronegative atom compared to the hydrogen atomH covalently bound
to it2. Thus theDH pair forms a dipole with a partially positive charge 2 Dmight be bound tomultipleH .

onH , which attracts a lone electron pair of the acceptor atomA, form-
ing the hydrogen bond (Figure 12.1). Hydrogen bonds play a crucial
role in folding and stabilizing the native conformations of biomacro-
molecules: In proteins they particularly drive the formation of sec-
ondary structure elements3, in nucleic acids they partake in base pair- 3 Hubbard and Kamran Haider (2010).

ing. Furthermore, they determine selectivity in ligand binding4. 4 Hubbard and Kamran Haider (2010).

D

H A
θ

d

Figure 12.1: Geometry of a hydrogen
bond. The involved atoms are shown as
circles. The dashed line represents the
hydrogen bond.

To detect hydrogen bonds in structure models, geometric criteria can
be applied5: A hydrogen bond is assumed, if the angle between DHA

5 Baker and Hubbard (1984).

θ ≥ 120◦ and HA distance d ≤ 2.5Å. Furthermore, atoms D and A

must be of appropriate chemical elements.

12.2 ImPLEmEnTATIOn

These criteria are implemented the hbond() function. It takes an
AtomArray or AtomArrayStack as input structure model(s) to find
hydrogen bonds in. Furthermore, the search can be optionally re-
stricted to a given part of the structure or to certain elements forD and
A. By default, oxygen, nitrogen and sulfur are applicable elements.

For all potential donor atomsD selected this way, boundH are sought.
If bond information is available,DH pairs are found by creating a dic-
tionary from the BondList, that maps each atom to its bound atoms6 6 Each atom is represented by

the index in the AtomArray (or
AtomArrayStack).

and simply accessing this dictionary forD. If bonds are not available,
allH within 1.5Å distance ofD in the same residue are assumed to be
bound.

Then all potential A for each DH pair are searched. For this purpose
a cell list with cell size d is created containing the coordinates for all
identifiedH from the previous step. For each potential acceptor atom
A, allH in the same and all directly adjacent cells are listed. Note that
at this point thedistance for suchanHApairmight still be greater than
d (see Section 2.5.1). Finally, the correspondingDH andHA pairs are
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Figure 12.2: Hydrogen bonds between
lac repressor and O1 operator. The
number of hydrogen bonds between a
amino acid residue and the bound DNA
is shown by color intensity.

combined to DHA triplets in form of a (k, 3)-dimensional NumPy ar-
ray, where k is the number of found triplets. For each triplet θ and d is
measuredand triplets that donotmeet thegeometric criteria forhydro-
gen bonds are filtered out. Finally, the triplets are returned. Thiswhole
procedure also supports periodic boundary conditions (see Chapter 8).

If an AtomArrayStack, i.e. multiple modelsm, are used as input, the
cell list creation and geometric condition check is performed for each
model. In addition to the triplets a boolean mask with shape (m, k) is
returned, that indicates in which model a given triplet forms a hydro-
gen bond.

12.3 APPLICATIOn EXAmPLECompanion source code:
repressor_hbonds.py

The lac operon is one of the most prominent examples for gene reg-
ulation in procaryotes. It is a DNA region comprising genes for lac-
tose catabolism, as well as promoter and repressor binding regions up-
streamof thesegenes. The lac repressorbindingregionsare called opera-
tors. The lacoperoncontains threeoperators invicinity of thepromoter:
O1,O2 andO3, showing small sequence variations to each other7.7 Lewis (2005).

Based on the solutionNMRstructures8 of the complex between each of8 PDB: 2KEI, 2KEJ and 2KEK

the three operators to the DNA binding domain dimer of the lac repres-
sor9, the hydrogen bonds between DNA and protein were analyzed-9 Romanuka et al. (2009).

for this chapter. After fetching and loading the structure models, the
hydrogen bonds were measured with hbond(). The hydrogen bond
searchwas restricted to bondsbetweenDNAandprotein, bondswithin
the operator or the repressor were ignored. The NMR structures con-
tainmultiplemodels and somehydrogenbonds exist only inpart of the
models. Hence, the relative frequency of each hydrogen bond was cal-
culated. Cases, where one hydrogen atom hasmultiple hydrogen bond
acceptors according to the geometric conditions, were counted as sep-
arate hydrogen bonds. The frequencies for hydrogen bonds belonging
to the same amino acid residue were summed.
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The location of amino acid residues in the repressor forming hydrogen
bonds with the O1 DNA is shown in Figure 12.2. The majority of hy-
drogen bonds is located at the second helix of a helix-turn-helix mo-
tif, situated in the major groove of the bound DNA. The number of hy-
drogen bonds between repressor and operator decreases fromO1 toO3.
This trend fits the declining affinity between repressor and operator10 10 Romanuka et al. (2009).

well (Table 12.1), though presumably other factors, such as differences
in contact area, also have an effect. Table 12.1: Total number of hydro-

gen bonds between lac repressor and
operator. The measured Kd from Ro-
manuka et al. is listed for comparison.

Operator # H-bonds Kd (nM)

O1 32.4 0.05
O2 28.6 0.1
O3 22.9 100
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CHAPTEr 13

Nucleic acid structure analysis

The implementation of the functionality presented in this chapter was
produced in collaboration in the course of a Bachelor’s thesis1. 1 Müller (2021).

13.1 InTrODUCTIOn

The secondary structure of anucleic acidmolecule canbedefinedas the
entirety of its base pairs. Typically base pairs form between purines (G
and A) and pyrimidines (C, T and U). Preferably theWatson-Crick pairs
AT,AUandGCareobserved. Thesecanonicalbasepairs are composedof
hydrogen bonds between atoms at theWatson-Crick edge (Figure 13.1). In
addition to these widely known base pairing geometries, complex nu-
cleic acid structures allow hydrogen bonds to form also between other
atoms in nucleotide residues as well. This gives rise to so called non-
canonical base paring geometries that may include the Hoogsteen and
Sugar edge as well2 (Figure 13.1). 2 Leontis and Westhof (2001).

While base pairs determine the secondary structure, the dominating
factor for structure stability is π-π stacking between the aromatic rings
of consecutive bases. The impact of stacking interactions becomes
more clear with a look at the free energy of DNA double helix forma-
tion from separate DNA strands: At 15mM Na+ and 37◦ C the contri-
bution of a single stacking interaction between two bases amounts to
∆G ≈ −4 kJ/mol to −6 kJ/mol in comparison to the ∆G ≈ 2.6 kJ/mol
and 0.04 kJ/mol of a canonicalAT andGCbasepair, respectively3. These 3 Yakovchuk, Protozanova, and Frank-

Kamenetskii (2006).numbers shows that due to the decreasing entropy of a structured nu-
cleic acid, energy contributions from base pairing alone would not be
sufficient to form a stable conformation.
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Figure 13.1: Base pair edges. The inter-
action edges for purines, exemplified by
adenosine (A), and pyrimidines, exem-
plified by cytosine (B), are outlined. The
atoms that are included in an edge are
shown in the respective color. Non-polar
hydrogen atoms are omitted.
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Figure 13.2: Secondary structure ele-
ments in nucleic acids. The secondary
structure elements are schematically de-
picted by color. Each circle represents a
single nucleotide. The solid lines depict
the nucleic acid backbone, dashed lines
show base pairs.

Buldge Internal loop

Hairpin loop

Junction

13.1.1 Elements in nucleic acid secondary structure

Especially RNA is able to form complex secondary and consequently
tertiary structures due to intramolecular base pairs. In consequence, a
variety of structure elements emerge4 (Figure 13.2). Sections of consec-4 Tinoco and Bustamante (1999).

utive base parings give rise to a double helix, comparable to the typical
DNA helix with the difference that RNA creates a helix inA- instead of
B-form. If one strand in such a helix is continuously base-pairedwhile
the other strand contains a span of one or multiple unpaired bases, a
bulge arises in the helix on the side of the additional base(s)5. If instead5 Hermann and Patel (2000).

the helix is interrupted by a region where both strands are not paired,
the structure element is called an internal loop. A loop at the tip of a helix
is a hairpin loop. An internal loop, where three or more helices meet is
termed junction.

Usually themajority of base pairs in an RNA structure is nested. To un-
derstand what this means, let the span of a base pair be the sequence
position range from the first to the second base in the pair. The RNA
secondary structure is completelynested, if for any combinationof two
base pairs, one span lieswithin the other span or the spans do not over-
lap at all. Base pairs that donot suffice this condition are called pseudo-
knots (Figure 13.3). Note that the distinction between nested base pairs
andpseudoknots is purely arbitrary in termsofphysical properties. Of-
ten, the largest setofbasepairs that isnestedwithin itself is takenas the
regular structure,while the remainingbasepairs aredefinedaspseudo-
knots. The set of pseudoknotted base pairs itself may also not be com-
pletely nested, resulting in pseudoknots within the pseudoknots. As
such description would quickly become cumbersome, the term of pseu-
doknot orderwas introduced6: The original pseudoknots would have an6 Antczak et al. (2014).

order of 1, the pseudoknotswithin pseudoknotswould have an order of
2, etc.
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13.1.2 Geometric measurement A

B

Sequence position

Figure 13.3: Schematic depiction of a
pseudoknot. A The shown secondary
structure comprises two helical regions
that are pseudoknotted with each other,
highlighted in blue and red, respectively.
Usually, the section containing more
base pairs (blue) would be defined as the
regular structure, while the other region
(red) would be termed pseudoknots. B
The spans show that the helical regions
are pseudoknotted. Each arc represents
a base pair. While each helical region is
nested within itself, the spans between
both regions overlap.

If a structure model of the nucleic acid of interest is available, the task
of finding the secondary structure is simplified to measuring whether
two proximate bases form a base pair. For this purpose a number of
conditions can be stated that two bases need to suffice in order to be
recognized as base pair. Depending on base pair definition, these crite-
riamay include the distance between the bases, the relative orientation
of the base planes and the presence of hydrogen bonds7. Analogously,

7 Lu, Bussemaker, and Olson (2015).

geometric criteria can also be defined to identify stacking interactions
between bases8.

8 Gabb et al. (1996).

13.1.3 Secondary structure prediction

If no tertiary structure information exists, one needs to resort to sec-
ondary structure prediction based on sequence. If a larger number of
homologous sequences are available, co-evolving sequence positions
in an alignment can be used as hint to infer base pairs9: Especially if

9 Gesteland (1998).

two positions, that could potentially form a canonical base pair, gen-
erally mutated in concert into another canonical pair, such positions
often form a pair also in reality.

In nucleic acids the major part of folding energy is contributed by the
sum of base pairs10. This contrasts with proteins where each amino

10 Mathews (2006).

acid may interact with multiple residues and geometric arrangement
is a determining factor. This fact is exploited by algorithms that evalu-
ate the free energy merely based on a base pairing graph, without the
need to build a 3D structural model of the molecule. Finding the min-
imum free energy (MFE) structure is reduced to the task of finding a
graph where the sum of free energy contributions of base pairs, stack-
ing interactions and loops isminimal11. Under the assumption that po- 11 Tinoco et al. (1973); Pipas and McMa-

hon (1975).tential pseudoknots have no impact on the remaining secondary struc-
ture, this can be achieved by means of dynamic programming12, sim- 12 Zuker and Stiegler (1981).

plifying the hard combinatorial task into a problem solvable in polyno-
mial time.

ViennaRNA13 is a popular collection of command-line tools that use 13 Lorenz et al. (2011).

thedynamicprogrammingprinciple topredict the secondary structure
fromRNAsequence. Furthermore, it includes tools for secondarystruc-
ture comparison and visualization.

13.2 ImPLEmEnTATIOn

13.2.1 Base pair measurement

Biotite provides the base_pairs() function to identify base pairs
in an AtomArray. First all atoms that belong to nucleotides are fil-
tered. To takealsonon-canonicalbases14 intoaccount, all residueswith 14 other than A, C, G, T, U

names that aremarkedwith ‘DNA/RNA-linking’ in the CCD (see Chap-
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ter 7) are included. Pairs of nucleotides that are in vicinity of each other
are efficiently retrieved using a cell list. A distance of 3.6Å was taken
as cutoff that must be satisfied by at least one pair of atoms, so that
the corresponding nucleotides are considered near to each other. The
cutoff was chosen, as at higher distances hydrogen bonds between nu-
cleotides are implausible15,16.15 maximum hydrogen bond distance

(2.5Å) + donor-hydrogen distance (1.0Å)
+ buffer (0.1 Å)
16 Baker and Hubbard (1984); Allen et al.
(1987).

For all potential base pairs filtered thisway, the base pair identification
algorithm from the DSSR software17 was adapted. First, it is decided

17 Lu, Bussemaker, and Olson (2015). which canonical nucleotide the nucleotide at hand matches best. This
is done based on the number ofmatching atom names and congruence
between each canonical nucleotide and the present nucleotide. Second,
a standard reference frame of the chosen nucleotide18 is assigned to18 Olson et al. (2001).

each nucleotide in the potential pair: The reference frame defines for
each canonical base atom positions lying in the xy-plane that is used
later for checking base pairing geometry. The assignment is performed
by superimposing the atoms of the reference base onto the nucleotide
and applying the same transformation to the principal axes of the cor-
responding reference frame. Finally, if all of the following criteria are
fulfilled, the pair of nucleotides is considered to be an actual base pair:

1. The distance between the origins of the transformed reference
framesmust be≤ 15Å.

2. The vertical separation between the base planes must be ≤ 2.5Å.
This is the distance between the reference frame origins projected
along the averaged z-axes19 of both reference frames19 The z-axis is equal to thenormal vector

of the base plane.
3. The angle between the z-axes of both reference frames must be ≤

65◦.

4. Theremust not be base stacking between both bases. The details are
explained below.

5. At least one hydrogen bond between both nucleotides must be
present. If hydrogen atoms are present, hydrogen bonds are iden-
tified using the algorithm described in Chapter 12. Otherwise
the identification falls back to a simple and potentially inaccurate
distance measurement between potential hydrogen bond donor-
acceptor pairs.

The functions returns the base pairs as (n × 2)-dimensional NumPy
array of indices that point to the respective first atom of the paired
residues.

If additional informationabout the interactionedgesof thebasepairs is
desired, the array of base pairs can be fed into base_pairs_edge().
For each base pairs and edge it counts the number of hydrogen bonds
that includes atomscorresponding to that edge. If anatomcorresponds
to two edges, the hydrogen bond is counted for both of them. For each
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base pair the edgewith themost hydrogen bonds is selected. Again, an
(n × 2)-dimensional array of integers is returned. These integers are
members of the Edge enumeration type20. 20 For example, 1 represents the Watson

crick edge.

13.2.2 Base stackingmeasurement

Finding stacking interactions is similar to finding base pairs. Merely
the geometric criteria change21: 21 Gabb et al. (1996).

1. The distance between the aromatic ring centers must be≤ 15Å.

2. The angle between the z-axes of both reference frames must be ≤
23◦.

3. Let d⃗denote the displacement vector between any two aromatic ring
centers and n⃗ the z-axis of any reference frame. The angle between
any pair of d⃗ and n⃗must not be> 40◦

Asbase stackingdoesnot involvehydrogenbonds, the cutoff for the cell
list tofindnearbynucleotides is substitutedwith 15Å.Nucleotideswith
distances larger than this values cannotmeet the first criterion.

13.2.3 Conversion into dot-bracket notation

A popular notation for storing the secondary structure is the so called
dot-bracket string. Each character in the string corresponds to the base
at the respective sequence position. Anunpaired base is represented as
‘.’. A base pair is depicted by ‘(’ and ‘)’ at the position of the first and
second base, respectively22. In Biotite the function dot_bracket() 22 For example, the string

‘(((.(((((....))))))))’ would
represent a helix with a bulge and a
hairpin loop.

generates a dot-bracket string from a (n × 2)-dimensional array of
base pairing positions. The major drawback of this notation is that it
cannot represent pseudoknots, as they would create situations, where
opening brackets cannot be unambiguously assigned to closing brack-
ets. This issue is remedied with the dot-bracket-letter notation23, which 23 Antczak et al. (2018).

uses a unique pair of characters for each pseudoknot order (Table 13.1).
Table 13.1: Dot-bracket-letter nota-
tion.

Pseudoknot order character

0 ()
1 []
2 {}
3 <>
4 Aa
5 Bb

…

In order for dot_bracket() to support this notation, its needs a way
to identify pseudoknots. As mentioned earlier, there is no intrinsic
property of a base pair thatmakes it a pseudoknot, but its rather depen-
dent on conventionwhich nested set of base pairs depicts the regular24

24 as opposed to ‘pseudoknotted’

pairs. A typical definition defines the set of regular pairs as the com-
pletely nested set, that contains the maximum number of base pairs
possible. The functionpseudoknots() solves this optimizationprob-
lemvia a dynamic programming algorithm25. A pseudoknot order of 0

25 Smit et al. (2008).
is assigned to the regular base pairs and the method is executed again
on the remaining pseudoknotted pairs. This process is repeated until
no pseudoknots remain. With each iteration the pseudoknot order is
incremented. After theprocess hasfinished,pseudoknots() returns
the pseudoknot order for each base pair. By default, pseudoknots()
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assigns a score of 1 to each base pair, which mirrors the stated goal of
maximizing the number of regular base pairs. However, an individual
score can be given for each base pair to customize the optimization ob-
jective. For example, GC pairs can be weighted more strongly than AT
pairs to take the strength of the interaction into account.

Finally, dot_bracket_from_structure() takes pairs of atom in-
dices, e.g. output from base_pairs(), to map them to sequence po-
sitions and creating the dot-bracket-letter string. The conversion from
atom indices to dot-bracket notation bridges the gap between nucleic
acid tertiary structure analysis in Biotite and external secondary struc-
ture prediction tools, which typically output dot-bracket strings.

13.2.4 Interfacing ViennaRNA for base pair prediction

For convenience the tools RNAfold, RNAalifold and RNAplot from Vien-
naRNAaredirectly interfacedasApplication classes (seeSection2.6)
in Biotite. RNAfold accomplishes the most basic task in RNA secondary
structure prediction: the prediction of the MFE secondary structure
and its associated free energy fromsequence. In contrast,RNAalifold in-
forms the structurepredictionwithanadditional artificial energy term
based on co-evolving sequence positions from an alignment26. The26 Hofacker, Fekete, and Stadler (2002).

added value of the RNAfoldApp and RNAalifoldApp interfaces in
Biotite is the handling of file input/output and the conversion of the re-
sulting dot-bracket string into positions in the input sequence.

13.2.5 Secondary structure visualization

The interface to RNAplot (RNAplotApp) converts the output coordi-
nates of each base in the 2D secondary structure plots into a NumPy
array. Although RNAplot itself is able to directly output secondary
structure plots as image file, there are little customization capabili-
ties. Therefore, the interface class RNAplotApp does not use RNAplot
to create a secondary structure image, but instead to output the coordi-
nates of each base in the hypothetical 2D plot instead. The coordinates
are read and converted into a NumPy array. The obtained coordinates
from RNAplotApp are used in in the function plot_nucleotide_-
secondary_structure() to create a highly adjustable secondary
structureplotwithMatplotlib. For instance, in contrast to the imageout-
put of RNAplot, custom symbols for a base and coloring for these sym-
bols aswell as for the lines depicting pairing canbe chosen. In addition,
the sequence position of bases can be annotated and pseudoknots can
be depicted, which is not possible in the image output of RNAplot.

13.3 APPLICATIOn EXAmPLECompanion source code:
trna_structure.py

The prediction accuracy of the native free energy minimization algo-
rithm of RNAfold was compared to the alignment-assisted method of
RNAalifold. As test case the structure of the E. coli Asp-tRNA27 was27 PDB: 6UGG
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analyzed. The base pairs in the molecular model were taken as ref-
erence for the later comparison. The base pairs were identified in
the structure with base_pairs(). Only canonical base pairing ge-
ometries should be considered here, so the interacting edges were
analyzed with base_pairs_edge() and only bases with Watson-
Crick/Watson-Crick edge interaction were filtered. Since the dynamic
programming algorithm employed by RNAfold and RNAalifold is not
able to identify pseudoknots, such base pairs were also removed to en-
sure fair comparison. The pseudoknot order for each base in the se-
quencewas computedwithpseudoknots() andbasepairswithpseu-
doknot order greater than 0were filtered out.

To generate the input MSA for RNAalifold a dataset of 1110 tRNA se-
quences were downloaded from the T-psi-C tRNA sequence database28. 28 Sajek et al. (2020).

The sequences of tRNAs carrying aspartate were filtered, resulting in
a final dataset of 32 sequences. The sequences were aligned withMus-
cle29. RNAfold and RNAalifold were run using the RNAfoldApp and 29 Edgar (2004).

RNAalifoldApp interfaces.
Table 13.2: Prediction accuracy.

Sensitivity PPV

RNAfold 30.4% 28.0%
RNAalifold 91.3% 100.0%

Toassess theprediction accuracy, the sensitivity andpositive predicted
value (PPV) were calculated based on the set of known base pairs mea-
sured in the X-ray structure (K) and the set of predicted base pairs
(P )30:

30 Mathews (2006).
Sensitivity =

|P ∩K|
|K|

,

PPV =
|P ∩K|
|P |

. (13.1)

The results are shown in Table 13.2. Both the sensitivity and PPV are
considerably higher, when the coevolution information from the align-
ment is added to the structure prediction. The disparity ismore clearly
localized with a closer look at the secondary structure created with
plot_nucleotide_secondary_structure() and shown in Fig-
ure 13.4. Without the evolutionary information RNAfold does not find
the typical cloverleaf conformation of the tRNA, but instead combines
three of the knownhairpins into twohairpins (Figure 13.4B).RNAalifold
identified almost all base pairs correctly, with the exception of one pair
at the central junction and one pair at one of the hairpin loops (Figure
13.4C).
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Figure 13.4: PredictedE. coliAsp-tRNA
secondary structure. The predicted
base pairs are compared with the refer-
ence base pairs measured in the corre-
sponding X-ray crystal structure. Cor-
rectly predicted pairs are shown in blue,
incorrect ones in red. A Reference sec-
ondary structure measured in crystal
structure. B Prediction from sequence
with RNAfold. C Prediction from align-
ment of multiple Asp-tRNA sequences
with RNAalifold.
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CHAPTEr 14

Hydrogen addition

This chapter builds upon ideas and figures from a published journal ar-
ticle1. The content is licensed under the CC BY 4.0 license. Changes 1 Kunzmann, Anter, and Hamacher

(2022).weremade on size and arrangement of figure elements.

14.1 InTrODUCTIOn

Some of the aforementionedmethods, like themeasurement of hydro-
gen bonds or the accurate identification of base pairs, and many other
analysis and simulation applications require complete structural mod-
els including hydrogen atoms. However, due to their small size and
electron density especially hydrogen atoms elude the structural inves-
tigation via crystallographic methods or electron microscopy. In con-
sequence, only ∼ 16% of structure models deposited in the PDB have
annotated hydrogen atoms. Furthermore, even some MD simulation
and docking tools do not include hydrogen atoms in their output files2. 2 Trott and Olson (2010); Brooks et al.

(1983); Webb and Sali (2016).

To mitigate this problem most MD simulation packages contain pro-
grams that add hydrogen atoms to structures as preparation for the
downstream simulations. These include pdb2gmx from Gromacs and
HBUILD fromCHARMM3. Furthermore, also standaloneprograms like 3 Lindahl et al. (2021); Brooks et al.

(2009).REDUCE, OpenBabel or HAAD4 exist for solving this problem. However,
4 Word et al. (1999); O’Boyle et al. (2011);
Li, Roy, and Zhang (2009).most of these programs use molecule-specific force fields to predict

hydrogen positions. This characteristic limits the application of these
programs to structures containing exclusively these parametrized
molecules. An exception is OpenBabel5, though it focuses on small 5 O’Boyle et al. (2011).

molecules.

Therefore an alternative approach is presented in this work: Instead of
requiring complex force fields for each type of molecule, the positions
of hydrogen atoms are inferred from a library of molecular fragments
compiled from a large catalog of referencemolecules. Hence, this algo-
rithm is able to accurately predict hydrogen positions formost organic
compounds including small molecules and large biomacromolecules.
This algorithm is bundled in the Biotite extension packageHydride.

14.2 METHODS

Theconceptof thealgorithmis thathydrogenpositions fromcomplete6 6 containing all atoms, including hydro-
genmolecular models, called reference molecules, are used to predict the hy-

drogenpositions for a targetmolecule, where themodelmisses hydrogen
atoms. Nevertheless, the algorithm expects that the heavy atoms7 are 7 all atoms except hydrogen

accurately positioned in the target molecule. The definition of target

https://creativecommons.org/licenses/by/4.0/
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molecule is not limited to a single molecule, but extends to structural
models containingmultiple molecules.

14.2.1 Hydrogen addition
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Figure 14.1: Pairs of cyclic molecules
containing a fragments with differ-
ent geometry but equal library keys.
Each pair has the same library key for
the fragment containing the hydrogen
atom depicted in red. However, the
shown bond angles are different. A α-D-
Glucopyranose and α-D-Glucofuranose.
BBenzene and Cyclobutadiene. Adapted
from Kunzmann, Anter and Hamacher
(2022) (CC BY 4.0).

First, each molecular model from a catalog of reference molecules is frag-
mented (Figure 14.2A): One fragment is created for each heavy atom in
themolecule. A fragment contains information about

• the position, element and formal charge of the respective heavy
atom,

• the position of covalently bonded hydrogen atoms,
• the position and connecting bond order of covalently bonded heavy
atoms and

• the enantiomer, if the respective heavy atom is a stereocenter.

The fragments of the referencemolecules are stored in a fragment library,
which maps the combined element, charge, bond order and stereocen-
ter information of a fragment (the library key) to its position of bonded
heavy and hydrogen atoms. The fragments stored in the library are re-
ferred to as library fragments. Note that the position of the central heavy
atom is not stored in the fragment library, as the positions of the atoms
in a library fragment are translated to place its central heavy atom in
the coordinate origin. Library keys are unambiguous: If multiple frag-
ments have the same key, only one of these fragments is added to the
library, since both fragments ideally convey sufficiently similar geo-
metric information. A case where two fragments with equal library
keys display different geometries are cyclic compounds (Figure 14.1).
However, the geometric differences do not considerably affect the ac-
curacy of hydrogen positioning (see Section 14.3.2) to justify an addi-
tional computationally expensive step to select the library fragment
with the optimal heavy atom geometry. Nitrogen as the central atom
poses an additional challenge: Using its lone electron pair nitrogen is
able to form a partial double bond to atoms, that are formally bonded
with a single bond. However, the partial double bond induces a planar
instead of a tetragonal conformation. To distinguish fragments with
tetragonal geometry from the ones with planar geometry, partial dou-
ble bonds are depicted by an additional bond order. If nitrogen forms a
single bond to a heavy atom, that itself forms a double bond to another
heavy atom, that single bond is considered as partial double bond.

The target molecule is fragmented in the same way, with the excep-
tion that the resulting fragments do not contain hydrogen atoms (Fig-
ure 14.2B). Then, for each of these fragments (called target fragments)
the library key can be computed, as library keys do not require infor-
mation about hydrogen atoms (see above). The fragment library is ac-
cessed with these library keys to obtain thematching library fragment
for each of the target fragments. If no entry is found the library for a
given key, the hydrogen positions cannot be computed for the respec-
tive heavy atom. Hence, this algorithm relies on a comprehensive frag-

https://creativecommons.org/licenses/by/4.0/
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A

B

C

D

Create fragment library

Split target molecule into fragments

Superimpose matching fragments

Adopt hydrogen positions

For each :

Figure 14.2: Summary of the hydro-
gen addition algorithm. The figure ex-
emplarily depicts how hydrogen atoms
are added to the target toluene (red)
from geometric information of the ref-
erence molecules benzene and isobuty-
lene (blue). A The reference molecules
are fragmented. Each fragment com-
prises the respective central atom (blue),
bonded heavy atoms (gray) and bonded
hydrogen atoms (white). The fragments
are stored in the fragment library. Frag-
ments with duplicate library keys are
ignored (transparent). B The target
molecule is fragmented. The central
atom is shown in red, hydrogen atoms
are missing. C The matching library
fragment is selected for each target frag-
ment and superimposed onto it. The
position of the target fragment’s central
heavy atom is translated into the coor-
dinate origin, the library fragment is ro-
tated to achieve maximum congruence
and the library fragment is translated to
the original position of the target frag-
ment. The resulting hydrogen coordi-
nates of the transformed library frag-
ment (encircled) are the desired hydro-
gen coordinates for the target fragment.
D The calculated hydrogen positions for
each target fragment are adopted for the
target molecule. Adapted from Kunz-
mann, Anter and Hamacher (2022) (CC
BY 4.0).

ment library that is created from awide range of referencemolecules.

For each pair of target and library fragment, the library fragment is
superimposed onto the target fragment (Figure 14.2C): The target frag-
ment is translated to move its central heavy atom into the coordinate
origin8 and then the library fragment is rotated to achieve optimum 8 The library fragment is already located

in the origin.congruencewith the target fragment, i.e. the RMSD of the correspond-
ing atoms is minimized9. Finally, the library fragment is translated 9 Kabsch (1976); Kabsch (1978).

to the original position of the target fragment by subtracting the same
translationvector from thepositionof the library fragment. The result-
ing hydrogen position(s) of the transformed library fragment are the
required hydrogen coordinates for the target molecule (Figure 14.2D).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


84 HYDrOGEn ADDITIOn

14.2.2 Hydrogen relaxation

The described algorithm should accurately place hydrogen atomswith
respect to bond lengths andangles. Formostheavyatomsno rotational
freedom exists, since they are constrained by bonded heavy atoms,
whose positions are considered constant in the scope of this algorithm.
However, terminal groups that are connected to the rest of themolecule
with a single bond10 still have rotational freedom. Thus, their hydro-10 for examplemethyl or hydroxy groups

gen positions are ambiguous and need to be optimized, with respect to
non-bonded interactions with nearby atoms.

The non-bonded interactions, i.e. the Lennard-Jones (VLJ) and electro-
static (Vel) potentials, are modeled using the Universal force field (UFF)11.11 Rappe et al. (1992).

The energy function for the interaction of two atoms i and j is

V(r⃗i, r⃗j) = Vel(r⃗i, r⃗j) + VLJ(r⃗i, r⃗j)

Vel(r⃗i, r⃗j) = 332.064
qiqj
|r⃗j − r⃗i|

VLJ(r⃗i, r⃗j) = ϵij

((
δij

|r⃗j − r⃗i|

)12

− 2

(
δij

|r⃗j − r⃗i|

)6
)
, (14.1)

where r⃗i gives the position vector and qi gives the partial charge of the
respective atom i 12. ϵij is the well depth and δij gives the optimal dis-12 The factor 332.064 includes NA

e2/4π ϵ0
and the conversion factors from J→kcal
andm→Å

tance. They are computed as the geometric and arithmetic mean from
the parameters ϵi and δj , taken from the UFF:

ϵij =
√
ϵiϵj ,

δij =
δi + δj

2
. (14.2)

If i and j are a potential hydrogen bond donor-acceptor pair, δj is mul-
tiplied with 0.79 to better reproduce physical distances in hydrogen
bonds13. To reduce computation time, interactions are only calculated13 Ogawa and Nakano (2010).

for pairs of atoms within a predefined cutoff distance14. Furthermore,14 10 Å by default

only interactions that involve at least one hydrogen atom are consid-
ered, as distances between heavy atoms are constant during the course
of the energyminimization.

Using this energy function new conformations of themolecularmodel
can be assessed. Let ϕk be the torsion angle of the rotatable bond con-
nected to the terminalheavyatomk. ϕk determines thepositions r⃗p...r⃗q
of hydrogen atoms bonded to k. In each iteration of the relaxation al-
gorithm each ϕ is altered by an angle increment to obtain the updated
angle ϕ∗

k = ϕ + ∆ϕ and hydrogen positions r⃗∗p...r⃗∗q . Special considera-
tions need to be taken for imine groups, since two diastereomers exist
with respect to the hydrogen position, but free rotation is not possible.
Hence ∆ϕ = 180◦ for imine groups and alternately ∆ϕ = ±10◦ for
other heavy atoms15. For each k, the energy difference with respect to15 This is the default value. It can be de-

creased to get more precise results at the
cost of computation speed.

ϕk,∆V ∗, is calculated with

∆V ∗(k) =

q∑
a=p

all∑
b

[V (r⃗∗a, r⃗b)− V (r⃗a, r⃗b)] . (14.3)
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In prose, the angle update of a single heavy atom k is treated as iso-
lated, i.e. only the position update for hydrogen atoms bonded to k is
applied. Then the energy difference is calculated for all interactions,
where these hydrogen atoms are involved. If the new conformation
for hydrogen atoms bonded to k is more energetically preferable, i.e.
∆V ∗(k) < 0, ϕ∗

k is accepted for the next iteration (ϕk ← ϕ∗
k). Other-

wise ϕ∗
k is rejected and the original ϕk is used again. If∆V ∗(k) ≥ 0 for

each k in two subsequent iterations, the relaxation terminates - a local
minimumhas been reached.

14.2.3 Charge calculation

The partial charges required for Vel are calculated using the PEOE
method16 (seeChapter 9). Both, thepartial charge calculationandselec- 16 Gasteiger and Marsili (1980).

tion of library fragments, require physiological formal charges for all
heavy atoms in themolecularmodel. Otherwise, the conformationwill
not be correctly relaxed and, evenworse, wrong protonation stateswill
be assumed. Unfortunately, a large number of structure models in the
PDB provides the formal charge for acidic and basic groups as neutral.
To circumvent this issue,Hydride optionally calculates the expected for-
mal charge for heavy atoms in amino acids based on tabulated pKa val-
ues17 and a user-provided pH value. 17 Lide (2003).

14.2.4 Atom order and naming

Although the number and position of hydrogen atoms is a paramount
information, a structuralmodel in context of anAtomArray or a struc-
ture file requires also names for the added hydrogen atoms and a rea-
sonable atom ordering. Hydride places hydrogen atoms behind the
heavy atoms of the respective residue in the order of the heavy atoms
within the residue. For atom namingHydride uses an atom name library:
If a residue is part of the library, it provides canonical names for added
hydrogen atoms. By default, the library contains atom names for all
proteinogenic aminoacids andcanonicalnucleotides. If a residue isnot
part of this library, unambiguous hydrogen atom names are generated
based on the name of the bonded heavy atom.

14.2.5 Implementation details

In accordancewithBiotite, easyusage, flexibility andperformancewere
key points in the design of the implementation. Thus,Hydride provides
both, a simple CLI for standard use cases and a more flexible Python
API that is embedded into the Biotite environment - molecular struc-
tures are represented by AtomArray objects and NumPy arrays are
used as container for numeric values. Where possible, functionalities
from Biotite where reused, ranging from file input and output to geo-
metric measurements and partial charge calculations.

To optimize the performance of the algorithm,most computation time
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bottlenecks are either computed vectorized or implemented in Cython.
To find atompairswithin cutoff distance for the hydrogen relaxation, a
cell list is employed.

By default, Hydride uses all molecules from the CCD18 (See Chapter 7)18 Westbrook et al. (2015).

to compile the fragment library, though the user can decide to use an-
other catalog ofmolecules, such as PubChem19. This ensures that hydro-19 Kim et al. (2021).

genaddition is supported forat least all structuresdeposited in thePDB.
However, since themolecules in the CCD comprise a wide range of dif-
ferentorganicmoieties, hydrogenpositionscanbepredicted foralmost
any organic targetmolecule. In edge cases, where the fragment library
does not contain a fitting fragment for a given heavy atom, a complete
structural model of the respective molecule can be added to the frag-
ment library to solve this issue. As mentioned in Section 14.2.1, dupli-
cate library keys are ignored. Practically, this means that only the last
added fragment for the same key is stored in the library.

In the Python API, hydrogen addition and relaxation are bundled by
the separate functions add_hydrogen() and relax_hydrogen():
If energy-minimized conformations are not necessary for the use case,
relaxation can be omitted to notably save computation time. Alterna-
tively, if a complete structural model already exists, only a relaxation
needs to be conducted. Furthermore, individual heavy atoms, whose
hydrogen positions should be predicted, can be selected. This enables
for example the application ofHydride to partially complete structures.

Since, also the atom charges can be supplied separately, other meth-
ods to calculate these can be integrated: For example charges con-
sidering the spatial arrangement of amino acids could be computed
using PROPKA20. The built-in formal charge calculation is called via20 Olsson et al. (2011).

estimate_amino_acid_charges().

14.3 RESULTS AnDDISCUSSIOn

14.3.1 Prediction accuracy

The presented hydrogen addition algorithm was evaluated on three
structure datasets for proteins, nucleic acids and small molecules. The
structure models in the datasets are complete and contain hydrogen
atoms. For the validation the hydrogen atoms in the structures in each
dataset were removed. Then hydrogen atoms were assigned to these
structures with the Hydride CLI using default values21. The distances21 including the default fragment library

based on reference molecules from the
CCD

between the assigned and original hydrogen positions were measured
and classified based onwhether the hydrogen atomwas fixed22 or part22 no relaxation required due to con-

strained rotational freedom of rotatable polar or nonpolar groups (Figure 14.3). The RMSD of these
distanceswas takenas indicator for theprediction accuracy (Table 14.1).

For theproteindataset, the samestructureswere selected fromthePDB
as in theHAAD study23 to enable direct comparison withHBUILD, RE-23 Li, Roy, and Zhang (2009).
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Figure 14.3: Accuracy of predicted hy-
drogen positions. The figure shows a
histogram of distances between the pre-
diction and reference hydrogen atom po-
sition for each dataset and class. All his-
tograms are normed and do not reflect
relative frequencies when compared to
each other. Adapted from Kunzmann,
Anter and Hamacher (2022) (CC BY 4.0).

DUCE andHAAD.Hydride achieved an average RMSD = 0.25Å, similar
to RMSD = 0.28Å, 0.23Å, 0.21Å in the compared programs, respec-
tively. The slightly lower accuracy compared to REDUCE and HAAD
may be caused by the decision for a element-specific in contrast to a
molecule-specific force field. However, the usage of UFF is paramount
to generalize the hydrogen assignment to all organic molecules.

To test Hydride on nucleic acids, all pure nucleic acid X-ray structures
with a resolution ≤ 1.0Å were fetched from the PDB, resulting in 29
structures. While for fixed hydrogen atoms the accuracy is close to the
value for protein structures (RMSD = 0.13Å), the distances are notice-
ably increased for freely rotatable groups: For nonpolar and polar hy-
drogen atoms an RMSD = 0.71Å and RMSD = 1.20Åwasmeasured, re-
spectively. In nucleic acids, the nonpolar hydrogen atoms are located
in the C7-methyl groups of thymine. Here two distinctive rotamers are
possible: Onehydrogenatomin themethyl grouporients either toward
the C4 or the C6 atom. In the evaluated crystal structures one of the
hydrogen atoms in each group orients towards the C4 atom, whereas

fixed nonpolar polar total

protein 0.12 0.30 0.90 0.25
nucleotide 0.13 0.71 1.20 0.31

small molecule 0.13 0.24 1.03 0.21

Table 14.1: RMSD of predicted hydro-
gen positions. The RMSD in Å between
the predicted position and the position
in the reference structure was measured
for all hydrogen atoms in the respective
dataset and class.

https://creativecommons.org/licenses/by/4.0/
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quantum mechanics calculations favor the orientation toward the C6
atomwith an energy difference of24 1.1 kcal /mol. However, due to the24 Mastryukov, Fan, and Boggs (1995).

rather low barrier both rotamers are physically plausible. The relax-
ation with Hydride creates different conformations based on the envi-
ronment in vicinity. Polar rotatable hydrogen atoms are nearly exclu-
sively bonded to O2′ atoms. In crystallographic studies it commonly
orients towards theO3′ orO4′ atomof the sameresidueor theO4′ atom
of the successive nucleotide, while the relaxation only yields the latter
orientation. Overall, the freely rotatable groups make upmerely 6.7%
of hydrogen atoms in the evaluated nucleic acid molecules. Hence, the
total RMSD = 0.31Å.

To test the ability of Hydride to assign hydrogen atoms to molecules
that are not part of the fragment library, a randomized dataset of
5000 small molecules was downloaded from the PubChem database25.25 Kim et al. (2021).

Matching fragments were found for 99.98% of hydrogen atoms in this
dataset. Consequently, Hydride was able to successfully assign all hy-
drogen atoms to 99.8% of the testedmolecules. For hydrogen atoms in
the ‘fixed’ (RMSD = 0.13Å) and ‘nonpolar’ (RMSD = 0.24Å) class the
accuracy is similar to the measured values from the protein dataset.
However polar hydrogen atoms show a considerably higher deviation
(RMSD = 1.03Å). A possible explanation for this discrepancy are the
missing ambient atoms in the small molecule dataset: In the protein
dataset polar groups have electrostatic interactions with nearby polar
atoms from other residues, restraining the rotatable bond to a favor-
able conformation. In order to substantiate this hypothesis we com-
pared the hydrogen assignment accuracy for polar hydrogen atoms in
free α-D-glucopyranose and in a α-cyclodextrin-receptor complex2626 α-cyclodextrin comprises six α-D-

glucopyranosemonomers. (PDB: 5MTU). In the bound form the accuracy increased to RMSD =
1.15Å fromRMSD = 1.35Å in the free state, verifying the assumption.

14.3.2 Fragment compatibility

As mentioned in Section 14.2.1, the fragment library does not distin-
guish between different molecular geometries for the same library
key. However, especially cyclic compounds may exhibit different ge-
ometries based on the ring size. To assess whether this circumstance
poses an issue for accurate hydrogen positioning, two pairs of cyclic
molecules were tested:

• α-D-glucopyranose and α-D-glucofuranose and
• benzene and cyclobutadiene

(Figure 14.1). Themolecularmodelswere taken fromPubChem. For each
pair, a fragment library from one molecule was compiled and used to
predict the hydrogen positions for the respective other molecule and
vice versa. This way a deviation of 0.025Å and 0.070Å to the original
position was achieved for the C3 atom in the glucose isomers. For the
planarbenzeneandcyclobutadienemolecules thedistancewas0.006Å
in both predictions. Since the mean amplitude of molecular vibration
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in a C-H bond27 (≈ 0.08Å) is larger than the observed deviations, these 27 Bartell, Kuchitsu, and deNeui (1961);
Cyvin et al. (1979); Tanimoto, Kuchitsu,
and Morino (1971).

inaccuracies can be neglected.

14.3.3 Application example Companion source code:
cytochrome_hbonds.py

Figure 14.4: Overview of the cy-
tochrome C structure. The apoprotein
is shown in transparent. Heme is shown
in dark gray.

Usage ofHydride is demonstrated on the electron transporter in themi-
tochondrial intermembrane space cytochromeC (PDB:1HRC)28 shown

28 Bushnell, Louie, and Brayer (1990).

in Figure 14.4. Cytochrome C contains heme C as prosthetic group
which is connected to the apoprotein via two thioester bonds to cys-
teine residues. This section examines the hydrogen bonds between the
apoproteinand thehemegroup in the structuralmodel. Since the struc-
ture was resolved at 1.90Å, no hydrogen atoms are annotated in the
model. Hence,Hydride’s PythonAPI is used first to add hydrogen atoms
to the structure to enable subsequent analysis of hydrogen bonds.

First, the structure was fetched from PDB and loaded inMMTF format.
Thenthe formal chargeswererecalculated, as thestructuralmodeldoes
not provide physiological charges. The charges of the protein residues
were computed with estimate_amino_acid_charges() at pH =
6.9 of the intermembrane space29, with special handling of His18, that 29 Porcelli et al. (2005).

is involved in Fe2+ complexation. Furthermore, the charge of the heme
carboxy groups was adjusted to represent a deprotonated state. Then
hydrogen atoms were added with add_hydrogen() and their posi-
tions were relaxed with relax_hydrogen(), using default param-
eters. hbond() (see Chapter 12) was used to measure the hydrogen
bonds given in Table 14.2. The positions of these hydrogen bonds is
shown in Figure 14.5.

Table 14.2: Predicted hydrogen bonds
between cytochrome C apoprotein
and heme. The table gives the amino
acid and heavy atom involved in each
measured hydrogen bond. ‘N’ refers to
the backbone nitrogen atom.

residue atom

G41 N
Y48 Oη
T49 N, Oγ
N52 Nδ
W59 Nε
K79 N

14.4 COnCLUSIOn

Completemolecularmodels are required for awide range of structural
analyses. For some functionalities in Biotite complete structural mod-
els aremandatory, which limits the analysis capabilities for a high per-
centage of structures. Hydride closes this gap: Now any AtomArray
without hydrogen atoms can be converted into an AtomArray with
hydrogen atoms in a simple way. On the other side Hydride exempli-
fies how Biotite can be used as programming library to simplify the de-
velopment of more specialized software: A large portion of required
functionalitieswhere not specifically implemented forHydride but sim-
ply reused from Biotite. As Biotite supports multiple structure file for-
mats, this flexibility is passed on toHydride, which allows structure in-
put and output in the CLI in most commonly used file formats. This
is a significant advantage compared to most of the other presented hy-
drogenadditionprograms30, whichonly support either thedeprecated 30 except OpenBabel, which also supports

a wide range of structure file formatsPDB format31 or software specific formats. The specialization of spe-
31 Adams et al. (2019).cific types of molecules is another important limitation of these pro-

grams. Even though for most structures simply the appropriate pro-
gram can be chosen for hydrogen addition32, the procedure becomes 32 i.e. theprogramwhose forcefields sup-

ports all residues in said structurenontrivial for certain mixed molecular models, e.g. a protein-ligand
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Figure 14.5: Predicted hydrogens
bonds between cytochrome C apopro-
tein and heme. The atoms are colored
as following: Carbon in gray, nitrogen
in blue, oxygen in red, iron in violet,
hydrogen in blue. The relevant amino
acid residues of the apoprotein are
shown in transparent. The measured
hydrogen bonds are shown as dashed
lines in the color of the hydrogen bond
donor. The labels give the amino acids
that either form hydrogen or thioether
bonds to the prosthetic group.

complex, sincenoneof theseprograms isable toassignhydrogenatoms
to both, the protein and the ligand, and to take the interaction between
each other into account. As a tradeoff,Hydride achieves a slightly lower
accuracy, but offers a straightforwardusage - also for caseswhereother
software is not applicable.



Part III

Application on biological
questions
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In the following chapters, Biotite and its extension packages are used to
tackle current biological questions. In contrast to the application ex-
amples of the previous chapters, which demonstrated the capabilities
ofBiotite, but otherwise showedwell-knownresults, here two topics are
thoroughly analyzed and novel insights are presented.

The source code for the data analysis workflow used for these chapters
is available as an archive33. The relevant source code resides in the33 Kunzmann (2022).

networks and aptamers directory, respectively.
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CHAPTEr 15

Ligand induced conformational changes
in the HCN4 channel

15.1 InTrODUCTIOn

15.1.1 Hyperpolarization-activated cyclic nucleotide-gated channels

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels
are a family of tetrameric transmembrane protein complexes that al-
low passive flow of cations through the plasma membrane. The chan-
nels are selective for monovalent cations, primarily K+ and Na+ at a
ratio of approximately 4:11. In contrast to most other cation channels, 1 Wahl-Schott and Biel (2008).

that open upon depolarization of the membrane potential, HCN chan-
nels open at hyperpolarization voltage at about2 -70mV to -100mV.Al- 2 Wahl-Schott and Biel (2008).

though HCN channels are weakly selective for K+ ions, under physio-
logical conditions Na+ influx dominates, depolarizing the membrane.
The consequence are periodically firing action potentials as required
by a number of rhythmic processes from sleep-wake cycle to the heart
beat3. 3 McCormick and Bal (1997);

DiFrancesco (1993).

HCN channels are allosterically regulated by cyclic adenosine
monophosphate (cAMP). Upon cAMP binding half activation voltage
is shifted by about4 10mV to 25mV, increasing the open probability of 4 Wahl-Schott and Biel (2008).

the channel. By regulating the activity of adenylyl cyclase responsible
for cAMP formation, the frequency of action potential firing can be
decreased (lowered cAMP concentrations) or increased (raised cAMP
concentration)5. Patch-clamp fluorometry experiments suggest that 5 Biel, Schneider, and Wahl (2002); Be-

har et al. (2016).cAMP binding not only allosterically regulates channel opening, but
also influences the affinity of the remaining cAMP binding sites in
the tetramer, resulting in a cooperative binding behavior6. However, 6 Kusch et al. (2010); Kusch et al. (2012).

whether ligand binding cooperativity truly exists inHCN channels has
been challenged7. 7 White et al. (2021).

Mammalians have four homologous HCN variants, HCN1-4, that are
differentially expressed in a wide range of tissues8. The central func- 8 Benzoni et al. (2021).

tionality is equal for all variants, namely the hyperpolarization acti-
vated and cAMP modulated cation conductance. However, they vary
in a number of parameters, including the hyperpolarization voltage as
well as affinity, specificity and response to cAMP binding9. The most 9 Wahl-Schott and Biel (2008).

prominent process involving HCN channels is probably the ‘pacemaker
current’ of the heart run by sinoatrial nodal cells. This periodic current
is primarily driven by HCN410. 10 DiFrancesco (2020).
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Figure 15.1: Overview of HCN4
tetramer structure. The domains of a
single monomer are highlighted. From
N- to C-terminus: HCN domain (violet),
voltage sensor domain (blue), pore
domain (red), C-linker (green), CNBD
(gray). The bound ligand cAMP is shown
in yellow, the putative Mg2+-binding
sites of the tetrads aremarked with a ‘+’.

15.1.2 Structure of the HCN4 channel

The structure of the rabbit HCN4 channel tetramer was only recently
elucidated by cryogenic electron microscopy (cryo-EM)11 at a resolu-11 Saponaro et al. (2021).

tion of 3.3Å (Figure 15.1). Both a structure model without ligand (apo)
and with bound ligand (holo) were obtained.

The general domain organization is conserved within the HCN fam-
ily12. At the cytosolic C-terminus of HCN channels the cyclic nu-12 Jackson, Marshall, and Accili (2007).

cleotide binding domain (CNBD) is located, containing the cAMP bind-
ing pocket. Upon ligand binding, conformation changes are communi-
cated via the C-linker to the transmembrane region. This region con-
tains six transmembrane helices (S1-6) per subunit (Figure 15.2). Here
the pore domain is situated, controlling the selective flow of ions via a
loop between the S5 and S6 helix. This pore domain is flanked by the
voltage sensor domain, whose S4 helix responds to voltage via nine
positively charged and evenly spaced amino acids13. The N-terminal13 Wahl-Schott and Biel (2008).

HCN domain is crucial for correct channel assembly in the plasma
membrane, voltage dependence in channel opening and coupling the
C-linker to the voltage sensor domain14.14 Porro et al. (2019).

In contrast to the likewise structurally resolved HCN1 channel, HCN4
contains a tetrameric arrangement of four amino acids15 termed tetrad15 H407, D411, H553 and E557

between the S4-5 linker and theC-linker of the proximate subunit, that
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putatively binds16 Mg2+ as marked in Figure 15.1. Depletion of Mg2+ or 16 Saponaro et al. (2021).

removal of the tetrad leads to decreased stability and halved response
to cAMP binding in terms of of half activation voltage.

Figure 15.2: View on HCN4 transmem-
brane region. The voltage sensor do-
main (blue) andpore domain (red) are de-
picted. Only two oppositemonomers are
shown for clarity.

15.1.3 Objective

Using the tool of the anisotropic networkmodel (ANM) (see Chapter 11)
andwith structuremodels for both, apo and holoHCN4, at hand the lin-
ear response induced by cAMP binding is investigated in this chapter.
First, the signal transduction from the CNBD to the C-linker and trans-
membranedomains aswell as the role of the tetrad is analyzed. Second,
potential cooperative behavior in the cAMP binding process is studied.

15.2 METHODS

15.2.1 Networkmodel of HCN4 channel

AnANMof theHCN4 channelwas created based on the cryo-EMof apo
HCN417 using Springcraft. Force constants between residues were ob- 17 PDB: 7NP3

tained from the sdENM force field18. To investigate the effects of Mg2+- 18 Dehouck and Mikhailov (2013).

binding in the tetrad, a variant of this ANMwas created where in each
tetrad the four involved residues received force constants equivalent to
a covalent bond. This alteration should depict a strong stabilization of
the tetrad due to the bound ion.

Figure 15.3: Forces used for linear re-
sponse calculation. An apo CNBD and
the holo cAMP position (gray) are shown.
The residues in vicinity of cAMP are col-
ored blue. The red arrows depict the
displacement these residues perform in
transition from apo to holo conforma-
tion. The displacement is equivalent to
the force vector used in LRT. The arrow
lengths are magnified by a factor of two
for better visibility.

15.2.2 Linear response induced by cAMP binding

cAMP binding is accompanied by a conformation change in the CNBD
that corresponds to the transition from the apo to the holo19 structure

19 PDB: 7NP4

model, assuming that the experimental structure models display the
behavior under physiological conditions. In this work the displace-
ment of the cAMP-binding residues in the apo-holo transition is inter-
preted as force vector in the framework of linear response theory (LRT).
The relevant residues were chosen in the holomodel based on a cutoff
distance using a cell list: A residue is in vicinity of the ligand, if any
of its heavy atoms is within 5Å of any cAMP atom20. For each HCN4

20 The identifed residues are I624, V643,
T645, T651, Y658, F659, G660, E661, I662,
C663, L664, R670, T671, A672 and V674.

monomer the CNBD21 of the holo structure is superimposed upon the

21 residue 593 – 715

apo CNBD. The force vector F⃗ was defined as the displacement vector
∆r⃗bind between the apo and holo positions of the Cα atoms in the chosen
residues (Figure 15.3). The linear response of the ANM, i.e. atom dis-
placement, induced by F⃗ was computed. For analysis of effects on the
transmembrane region, simultaneousbindingof cAMPtoall fourbind-
ing sites was simulated this way. For cooperativity analysis F⃗ was split
into four force vectors f⃗i, each one containing the forces on atoms in a
single CNBD monomer. For each f⃗i the induced displacement ∆r⃗ind,i
was obtained via LRT calculations. Binding of cAMP to any combina-
tion of the four binding sites can be simulated by summing the respec-
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tive∆r⃗ind,i, since
F⃗ =

∑
i

f⃗i,

∆r⃗ind = H−1F⃗

∆r⃗ind = H−1
∑
i

f⃗i

∆r⃗ind =
∑
i

(
H−1f⃗i

)
∆r⃗ind =

∑
i

∆r⃗ind,i. (15.1)

15.2.3 Displacement overlapmeasurement

To compare the induced displacements ∆r⃗ind according to LRT with
the experimental displacements∆r⃗bind between apo and holo conforma-
tions, the displacement overlap2222 Tama and Sanejouand (2001).

O =
∆r⃗ind ·∆r⃗bind
|∆r⃗ind| · |∆r⃗bind|

(15.2)

was calculated (Figure 15.4). O has a maximum value of 1, if the two
vectors point in the same direction, and aminimumvalue of−1 if they
point in opposite directions. r⃗ind and r⃗bind do not necessarily represent
a single position but comprise all atoms of interest as a ‘flattened’ vec-
tor. Note that in Equation 15.2 in contrast to Tama and Sanejouand
the absolute of the numerator is not taken: While in that work normal
modes were discussed, which by nature describe displacements in for-
ward and opposite direction, the LRTmodel used here gives actual dis-
placements in a single direction.

Figure 15.4: Overlap in two dimen-
sions. TheoverlapO is equal to the cosα
between two vectors. Since for the actual
application n 3D vectors are combined
into a flattened 3n-dimensional vector,
the term overlap is used for distinction.

15.3 RESULTS AnDDISCUSSIOn

15.3.1 Signal transduction to transmembrane region

cAMP binding is known to lower the hyperpolarization voltage re-
quired for opening and increases the open probability of HCN chan-
nels23. The effect is enhanced when Mg2+is bound to the tetrad24.23 Wahl-Schott and Biel (2008).

24 Saponaro et al. (2021). As cAMP is bound in the CNBD, the resulting conformational change
needs to be communicated through the C-linker to the pore or voltage
sensor domain in order to enable channel opening. TheANM in combi-
nationwith LRT gives an estimate how the conformation change in the
CNBDmay affect the conformation in those domains.

The induced displacement in the C-linker upon full ligation of all four
CNBDs is shown inFigure 15.5. It canbeobserved that induceddisplace-
ment does not resemble the displacement from apo to holo conforma-
tion observed in the experimentally determined structure. As quanti-
tative measure the overlap O between the induced and experimental
displacementvector, i.e. the congruenceof vectordirections,was calcu-
lated. With a value ofO = 0.073 there is no considerable connectionbe-
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Figure 15.5: Computed and experi-
mental C-linker displacement upon
cAMP binding. The HCN4 C-linker do-
main in apo conformation is shown to-
gether with the displacement between
the experimental apo and holo structure
(red arrows) and the cAMP-induced dis-
placement according to LRT (gray ar-
rows). The arrows are magnified for the
sake of clarity. A View into channel axis
on C-linker tetramer. B Rotated view on
a single C-linker domain. The bottom
points toward the intracellular side, the
top points toward the extracellular side.

tween both vectors. However, the induced displacement indicates a ro-
tational movement of the C-linker disk, as seen in HCN125, though the 25 Lee and MacKinnon (2017).

direction of the rotation is opposite to the expected one. Whether the
discrepancy between experiments and the simulation originates from
artifacts in structure determination or the inaccuracies of theANM, re-
mains eluded.

In the next step the linear response of cAMP binding in the transmem-
brane region was analyzed. Similar to the C-linker, the induced move-
ment in the transmembrane region does not fit the shift of S5 seen in
the structure (Figure 15.6). The displacement overlap for the Cα atoms
in helices S4-6 amounts merely to O = 0.003. Furthermore, the dif-
ferences between the computed displacements with or without tetrad
stabilization are small (O = −0.045). This supports observations that
ENMs largely depend on global 3D shape26 and in consequence are not 26 Bahar et al. (2010).

suitable to resolve differences in only few residue contacts.

15.3.2 Ligand binding cooperativity

Though HCN2 cooperativity in binding cAMP was experimentally
shown27, this finding has also been challenged28. Furthermore, it is 27 Kusch et al. (2012).

28 White et al. (2021).unknown to date whether such behavior also applies to HCN4 and in
which order cAMP binds to the four CNBDmonomers. In an endeavor
to answer these two questions, binding of the ligand to a single HCN4
CNBD was simulated via LRT. The effect on the remaining three bind-
ing sites was evaluated in terms of overlap between the required dis-
placement for cAMP binding29 and the induced displacement accord- 29 displacement of apo-holo transition

ing to LRT. A positive overlap would indicate positive cooperativity:
The equilibrium position of the relevant residues are forced into the
direction that is necessary for binding cAMP, facilitating ligand bind-
ing according to the ‘lock-and-key’ principle. In consequence a negative
overlap suggests negative cooperativity.
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Figure 15.6: Computed and exper-
imental transmembrane displace-
ment upon cAMP binding. The
helices S4-6 of a HCN4 monomer in apo
conformation are shown. Red arrows
depict the displacement between the
experimental apo and holo structure.
Gray and blue arrows show cAMP-
induced displacement according to LRT
without and with tetrad stabilization,
respectively. The arrows are magnified
for the sake of clarity. The residues
involved in the tetrad are shown in stick
representation (green).
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Figure 15.7: Overlap between induced
and required displacement for cAMP
binding. The overlap for the binding
sites proximate (red, blue) and opposite
(green) to the first cAMP binding site
(gray) is shown. Theviewon thedomains
is from intracellular to extracellular side.

The calculated overlap indicates that the CNBD on the opposite of the
first cAMP binding position shows positive cooperativity while the
two proximate CNBDs show negative cooperativity (Figure 15.7). The
induced and required displacements in the proximate and opposite
CNBDs are visualized as arrows in Figure 15.8A and 15.8B, respectively.
As the tetramer has almost rotational symmetry, the observed cooper-
ativity should be independent of which CNBD is populated first. This
circumstance is reflected by the overlap, which was found nearly iden-
tical in all four cases. In order to test whether the findings are an ar-
tifact of the ANM parameters, the computations were repeated using
different force fields. All tested force fields showed qualitatively simi-
lar results (Table A.2). The results suggest, that on average the opposite
position is populated second, as binding affinity is increased due to the
cooperative behavior. This is followed by population of the proximate
binding sites for the third and fourth binding.

Following this proposed binding order, the cooperativity pattern as
shown in Figure 15.9 arises: As already pointed out the second binding
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Figure 15.8: Induced and required dis-
placement for cAMP binding. The
residues in vicinity of cAMP are colored
blue. The required (red) and induced
(gray) displacements are shown as ar-
rows. The arrow lengths are magnified
by a factor of two for better visibility. A
Proximate CNBD.BOpposite CNBD.

shows cooperative behavior. The two populated binding sites on the
opposite of each other both induce negative cooperativity to the two
empty proximate binding sites. Conversely, the third binding facili-
tatesbindingof cAMPto theremainingbindingsiteon theoppositeof it
again. The overlap curve is consistent with to the experimentally mea-
sured binding affinity of cAMP toHCN2 (Figure 15.9), that also showed
a positive-negative-positive cooperativity pattern30. 30 Kusch et al. (2012).

The data shown in this work suggest that the binding affinity for the
fourth cAMP binding event is lower than for the first binding, as the
corresponding overlap is smaller than 0. This observation resembles
themeasured affinity for the open HCN2 channel more closely (Figure
15.9 red line), which shows a higher cAMP affinity for the first than for
the fourth binding event. However, this interpretation has to be taken
with caution, aswith increasing number of bound cAMPmolecules the
actual HCN4 structure deviates more from the apo structure, which it-
self also has only limited accuracy. However, other experiments31 also 31 Saponaro et al. (2021).

indicate that the apo structureofHCN4,whichwas takenasANMinput,
is in an open state.

In the past mutational studies on HCN2 CNBD have shown that cAMP
binding to subunits on opposite positions has a greater impact on a
positive shift of the activation voltage than binding on proximate posi-
tions32. Assuming that the opposite CNBD is also populated second as 32 Ulens and Siegelbaum (2003).

proposed by LRT in this thesis, this observationfits the finding that the
equilibrium constant between open and closed state is increased more
by the second (presumably opposite) binding, than by the third (pre-
sumably proximate) binding33. 33 Kusch et al. (2012).

15.4 COnCLUSIOn

The presented analyses demonstrate limitations and possibilities of
ENMs. The simple ‘ball-and-spring’ model of the protein complex was
unable to distinguish between the Mg2+-bound and unbound tetrad,
probably due to the very local change. Furthermore, the simulated
movement in the C-linker and transmembrane region did not match
theapo-holo transitionobserved in thecryo-EMstructuresofHCN4. On
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Figure 15.9: Overlap for successive
cAMP binding. The figure shows the
displacement overlap for the nth bind-
ing of cAMP to HCN4, based on the com-
bined induced displacement from the
previous n − 1 binding steps. The pic-
tograms below the x-axis depict the po-
sition of the acute cAMP binding site
(red) as well as already populated bind-
ing sites (blue). The experimentally mea-
sured HCN2 affinity for cAMP at each
binding step is shown for reference.

the other hand, LRT revealed a plausible mechanism for cooperativity
in HCN channels. It shows that the second cAMP binding likely occurs
in theCNBDon theopposite of thefirst binding site. Thismethod could
not be applied to HCN2 for direct comparison with the experimental
results, as neither an aponor a holo structure is available forHCN2. Fur-
thermore, experimental validation of cooperative behavior in HCN4,
that would also give information about magnitude of cooperativity, is
still missing. However, due to the strong conservation within the HCN
family34, a similar behavior as in HCN2 is expectable.34 Jackson, Marshall, and Accili (2007).

Cooperative behavior may have biological relevance: As shown for
HCN235, cooperativity alters the channel’s open probability as func-35 Kusch et al. (2010).

tion of ligand concentration from a hyperbolic to a sigmoidal curve. In
the popular cooperativity example of hemoglobin36, the sigmoidal be-36 Ackers and Holt (2006).

havior leads to a stronger differentiation between low andhigh oxygen
environments and in consequence to better oxygen loading at high oxy-
gen concentrations and unloading at low oxygen concentrations. In
context of HCN channels, cooperativity could improve switching be-
havior. Instead of the open probability slowly increasing with cAMP
concentration, the responsewould become closer to binarywhen bind-
ing is cooperative: Above a threshold cAMP concentration the open
probability would quickly reach the maximum value. Hence, coopera-
tivity could result in a clearer response ofHCNchannels to signal trans-
duction cascades altering cAMP concentration.



101

CHAPTEr 16

Analysis of HT-SELEX experiments

16.1 InTrODUCTIOn

Aptamers receive increasing attention for their sensoric and therapeu-
tic capabilities and their opportunities in synthetic biology. Novel
high-throughput sequencing (HTS) technologies allow researches to
look into the process of in vitro selection of aptamers. In this chapter
Biotite is used for thoroughanalysisof sequencingdata fromthose selec-
tions. The results demonstrate howHTS can be harnessed to accelerate
the time consuming selection process. Furthermore, the insights from
sequencing data reveal issues in the SELEX protocol, that lead to devia-
tions froman establishedmathematical description based on chemical
equilibria. However, this work also proposes how these issues can be
mitigated and elaborates how the mathematical foundation could be
used to estimate the binding affinity for individual nucleic acid (NA)
species from these data. Furthermore, this chapter suggests how the
computed dissociation constants can be used to predict optimal selec-
tion rounds and high affinity aptamer sequences.

16.1.1 Aptamers bind target molecules with high affinity

Aptamers are single-stranded RNA or DNA molecules that bind a re-
spective target compound. They can be seen as an NA analog to the
protein-based antibodies, as they typically bind their target molecule
with both, high affinity1 and specificity2. Similar to their protein coun- 1 often in nanomolar range

2 Li et al. (2021).terparts, aptamers are often structurally complex, frequently form-
ing stem-loops and pseudoknots. A significant advantage of NAs over
proteins from a technological point of view are the easy possibilities
to synthesize, manipulate and sequence NAs. These properties al-
low aptamers to be artificially manufactured, in contrast to antibod-
ies which need to be produced in vivo3, and facilitate chemical modi- 3 Li et al. (2021).

fication. Furthermore, this enables the development of aptamers via
high-throughput in vitro selection techniques, explained later in Sec-
tion 16.1.3. This makes aptamers very versatile with respect to their
molecular targets.

Aptamers for a multitude of target molecules have been published,
ranging fromlargemolecules likehumanactivatedproteinC (APC)4, to 4 Gal et al. (1998).

small targets like adenosine5. Figure 16.1 exemplarily shows the struc- 5 Huizenga and Szostak (1995).

ture of a flavin mononucleotide (FMN) RNA aptamer6. Similar to tar- 6 Fan et al. (1996).

gets of other aptamers7, FMNbinding is stabilized via hydrogen bonds 7 Peselis and Serganov (2014).

to the opposing nucleobase aswell as π-π stacking interactionswith ad-
jacent nucleotides8. 8 Fan et al. (1996).
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Figure 16.1: Structure of a flavin
mononucleotide aptamer. The figure
shows the structure of an artificial RNA
aptamer that binds FMN (PDB: 1FMN).
A Tertiary structure of the aptamer.
FMN is shown in blue. B Secondary
structure of the aptamer. Base pairs and
the hydrogen bonds between FMN and
the RNA are shown as dotted lines.

A B

The high binding affinity of aptamers to their target molecule can be
harnessed fordifferentkindsof applications. These includefluorescent
RNA aptamers acting as RNA counterpart to fluorescent proteins. In
contrast to those proteinswith inherent fluorescence, fluorescentRNA
aptamers require an additional fluorescent dye, which the aptamer
bindswithhighaffinityandwhosefluorescence is enhanceduponbind-
ing. Such aptamers can be used to localize RNAs in living cells by fu-
sion of the RNA of interest and the fluorescent aptamer on the genetic
level. This methodology can be extended to detect in vivo RNA-RNA
interaction, by introduction of a second fluorescent aptamer andmea-
surement of Förster resonance energy transfer (FRET)9.9 Neubacher and Hennig (2019).

Aptamers are also used in sensor devices to detect specific small
molecules in the environment. After binding of the aptamer to the tar-
get molecule, the bound conformation can bemeasured

• colorimetrically, e.g. via gold nanoparticles,
• electrochemically, by attaching a redox reporter to the aptamer or
• via fluorescence of an attached dye.

However, these types of reporters typically require conformational
change of the aptamer upon binding. Colorimetric measurement via
nanoparticles requires assembly or disassembly of nanoparticle net-
works, electrochemical detection requires that the distance of the re-
porter moiety to the electrode changes and fluorescence detection re-
quires quenching of the fluorophore. An exception are for example ap-
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tamers thatwork via the principle of fluorophore displacement, where
the target molecule replaces the fluorophore in the binding pocket10. 10 Yu et al. (2021).

To enforce conformational changes, special in vitro selection methods
canbe employed (seeSection 16.1.3) or the aptamer sequences canbe en-
gineered after selection by truncating stabilizing stem regions or even
split the aptamer into two separate molecules11. Aptamer-based sen- 11 Yu et al. (2021).

sors allowdiagnostic applications including diagnosis of infectious dis-
eases and early detection of cancer cells12. 12 Kumar Kulabhusan, Hussain, and

Yüce (2020).

Beside their sensing functionality, the binding properties of aptamers
can also be exploited for therapeutic uses. It can be used for targeted
delivery of a conjugated drug or for blocking protein function13. To 13 Kumar Kulabhusan, Hussain, and

Yüce (2020).date the only FDA and EMA approved aptamer-based drug isMacugen
for treatment of age-related macular degeneration14. This aptamer- 14 Li et al. (2021).

based drug specifically binds to anti-vascular endothelial growth fac-
tor (VEGF) inhibiting its signal transduction. However, Macugen was
superseded by an antibody-based drug15. Nevertheless, the increasing 15 Zhou and Rossi (2017).

number of clinical trials for aptamer-based drugs16 signifies their rele- 16 Kumar Kulabhusan, Hussain, and
Yüce (2020).vance in therapeutic applications.

16.1.2 Riboswitches regulate gene expression

Riboswitches are specialized RNA aptamers that are able to regulate
synthesis of gene products in vivo: In presence of the respective target
molecule, the gene expression is either ‘switched’ on or off. Although ri-
boswitcheshavealsobeen foundvia in vitro selection, similar topureap-
tamers17, numerous natural riboswitches appear in a range of species, 17 Etzel and Mörl (2017).

that utilize these molecular devices to adapt to different environment
conditions.

Figure 16.2 exemplarily shows the work principle of the guanine ri-
boswitch from Bacillus subtilis that regulates the gene expression of
the xpt gene, which is involved in purine metabolism18. A usual ri- 18 Serganov et al. (2004); Peselis and

Serganov (2014).boswitch consists of two structural domains: an aptamer and an ex-
pression platform. The aptamer is responsible for binding the target

5' 3' 3'5'
Aptamer Expression

platform

A B

Terminator

Antiterminator

off on
Figure 16.2: Operating principle of
the guanine riboswitch. The figure
schematically shows the secondary
structure of the natural guanine-binding
riboswitchupstreamof the xpt gene from
Bacillus subtilis. The ribsowitch regulates
gene expression on the transcriptional
level. A target-bound conformation of
the riboswitch. The target guanine is
shown inblue. BUnbound conformation
of the riboswitch.
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molecule, which is guanine in this case. The expression platform trans-
lates the binding by the adjacent aptamer into a signal for the gene
expression machinery to turn the expression of the downstream gene
on or off. In detail, the bound molecule stabilizes a certain confor-
mation in the aptamer. The conformation influences the folding of
the proximate expression platform in consequence. In case of the gua-
nine riboswitch thismeans, that the expressionplatformrefolds froma
conformation sequestering an antiterminator signal into a terminator
stem-loop upon binding guanine. In consequence the transcription of
the downstream xpt gene is prematurely terminated: the gene expres-
sion is turned off.

While this guanine riboswitch regulates expression on a transcrip-
tional level, the switching mechanisms observed in nature are diverse.
Overall, these include1919 Peselis and Serganov (2014).

• ρ-factor dependent or independent premature transcription termi-
nation,

• alternative splicing by binding to splicing sites of pre-mRNA,

• inhibition of translation by concealing the ribosome binding site,

• self-degradation by forming an RNA cleaving ribozymewith bound
target as cofactor,

• exposition of an RNase cleavage site and

• hybridization with an antisensemRNA to terminate transcription.

The ability to detect molecules with high affinity without the need for
an additional protein20, that would increase complexity of the regula-20 e.g. a repressor

tion, makes riboswitches interesting building blocks for synthetic bio-
logical circuits21.21 Etzel and Mörl (2017).

16.1.3 In vitro selection of aptamers and riboswitches

Aptamers or synthetic riboswitches that bind a given target molecule
are usually obtained in vitro via SELEX22. The individual steps of a SE-22 Ellington and Szostak (1990); Tuerk

and Gold (1990). LEX experiment are shown in Figure 16.3A. The process begins with an
initial library of∼ 1015 different NA species23. Whether DNA or RNA23 ‘Species’ is used in a chemical sense

here: Two NA molecules with equal
sequence are considered as the same
species.

molecules are used, depends on the type of aptamer that should be ob-
tained24. The corresponding sequences are randomized in the middle,

24 Riboswitches always require an RNA
library.

flanked by constant primer binding regions on both ends. Optionally,
the central regionmay include an additional constant sequence that is
prone to form a stem-loop structure to increase the chance for a suc-
cessful aptamer selection25. This pool of different species is incubated25 Davis and Szostak (2002).

on a columnwith substrate that is coated with the target molecule. NA
molecules bind to the target molecules according to their affinity to
that molecule. Afterwards the column is washed to remove unbound
NA molecules. Then the bound NA is eluted from the column and
amplified via polymerase chain reaction (PCR). For RNA additionally
reverse transcription prior to PCR and transcription after PCR is re-
quired. Since non-binding molecules were removed in the washing
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GGGTTA...
AGCGAT...
GGGTTA...
GGGTTA...

A

B

1. Binding

2. Washing3. Elution

4. Amplification

5. Sequencing

1. Binding
+ Washing

2. Incubation
3. Elution

4. Amplification

GGGTTA...
AGCGAT...
GGGTTA...
GGGTTA...

5. Sequencing

Figure 16.3: HT-SELEX experiment in
a nutshell. A Traditional SELEX. The
different NA species are depicted by dif-
ferent colors. The target molecules are
shown as squares. Starting from the
second iteration, the cyclic process be-
gins with the amplified pool from the
previous iteration. B Capture-SELEX.
The common capture region in the NA
species is highlighted by color intensity
and the complementary capture oligonu-
cleotide is shown in gray.
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step(s), the newly obtained pool is enriched with NA species that ex-
hibit at least some affinity to the target. To further enrich the poolwith
affine species, the selection round is repeated with the new pool, op-
tionally with a lower target concentration to increase selection strin-
gency. In order to avoid that NA species with affinity for the substrate
also enrich, a negative selection round with pure substrate can be con-
ducted prior to the actual SELEX.

The increasing collective affinity of the NA pool to the target can be
tracked over the selection rounds by measuring the ratio between the
eluted and input amount of NA. After a sufficient number of selection
rounds, the enrichedpool can be processed in further experiments: For
example the pool can be cloned into the target organism for in vivo stud-
ies or it can be sequenced to obtain the aptamer sequence.

Since its invention, many variants of the SELEX protocol emerged.
One of these developments is the capture-SELEX, in which not the tar-
get, but the nucleotide library is immobilized on the substrate (Figure
16.3B)26. This is achieved by placing a constant so called capture region26 Stoltenburg, Nikolaus, and Strehlitz

(2012). inside the randomized sequence of the library. The substrate is coated
with an oligonucleotide complementary to the capture region via a
biotin-linker. Upon incubation of the substrate with the library, a part
of the NA molecules hybridizes with the immobilized oligonucleotide
molecules. UnboundNAarewashed off. Thereafter, the target is added
to the mixture. To be released from the substrate in this step not only
target binding is required, but also a conformation change upon bind-
ing, that occludes the capture region. Similar to the protocol described
above, these NA molecules are eluted and amplified, forming the new
pool for following selection rounds. The circumstance that the capture-
SELEX selects also for conformational changes is a major advantage
of the method compared to the traditional SELEX, as such refolding is
essential for the operating principle of riboswitches and sensoric ap-
tamers. In addition, it does not require the target to be chemicallymod-
ified for immobilization which can be technically complex and influ-
ences the physical interaction of the molecule with the NAs: An ap-
tamerwith affinity to the immobilized targetmay not bind the free tar-
get very well in the actual application scenario. Furthermore, counter
selection against another, often similar compound, which should not
be bound by the aptamer, is facilitated: Prior to elution with the target
molecule,NAspecieswithunspecificbindingproperties arewashedoff
using the counter target.

With the use of HTS, deep insights into the SELEX experiment can be
gained. In high-throughput SELEX (HT-SELEX) the NA pool obtained
after each selection round is sequenced27. In this process ideally the27 Zimmermann et al. (2010); Cho et al.

(2010). sequence for each NAmolecule in the pool sample is obtained. Hence,
the NA species composition after each selection round can be observed
in a detailedmanner allowing the observation of sequence enrichment
in earlier selection rounds.
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16.1.4 Objective

How sequencing data from HT-SELEX experiments can be used to ob-
tain useful information about the progress of the SELEX experiment is
laidout in this chapter. Theanalysis proceeds fromquality control over
data preparation to analysis of the overall sequence enrichment. This
is exemplified for multiple previously generated HT-SELEX datasets.
In contrast to using existing software for this analysis such as tools
from the Galaxy project28, Biotite is used here to gain additional flexi- 28 Thiel and Giangrande (2016).

bility for the analysis and to demonstrate fields of application for this
library. Then this work applies an established mathematical founda-
tion29 to these datasets to reveal issues in the application of this theory 29 Levine and Nilsen-Hamilton (2007).

to the actual SELEX experiment. Furthermore, this work presents an
approach toestimate thedissociationconstantof individualNAspecies
from sequence counts. Based on the computed affinities methods are
proposed to select ideal NA pools for further experiments and to im-
prove aptamer affinity via predictions from a neural network.

16.2 METHODS

16.2.1 HT-SELEX datasets

For the following studies HT-SELEX datasets from the working group
for Synthetic RNA biology were analyzed. These data comprise exper-
iments for RNA aptamer and riboswitch selection against different
small molecules as target molecule.

For selection against ciprofloxacin (CX) a classic SELEX approach was
used30. The initial RNA library comprises a mixture of two designs: 30 Groher et al. (2018).

First, a completely randomized sequence, and second, a short fixed se-
quence flanked by two randomized regions. In both designs, the se-
quence is surrounded by 5’ and 3’ primer binding regions. Prior to se-
quencing, DNA barcodes of length four were attached to the 3’-end to
assign sequences to their corresponding selection round after multi-
plexed sequencing. SELEX was conducted for ten rounds, where the
selection pressurewas increased in round 5, 6 and 10 by decreasing the
concentration of the column bound CX, switching to elution with the
target molecule and increasing the number of washes.

For SELEX against paramomycin (PM)31 and all following targets a 31 Boussebayle et al. (2019).

capture-SELEX was conducted instead. The RNA library consists of
a fixed capture oligonucleotide flanked by randomized regions and,
again, by primer binding regions. Barcodes of length seven were at-
tached to the 5’-end for sequencing. The first seven selection rounds
elution was conducted with 1mM PM. In selection rounds 8 and 9 the
PM concentration was reduced to 0.1mM. In rounds 10 and 11 an ad-
ditional counter elution with 0.1mM neomycin (NM) was performed
prior to elution.
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While in the previously presented SELEX experiments the aim was
achievement of a riboswitch, the purpose of the following selections
was identification of RNA aptamers for the respective targets. For in-
creased stability the RNA contained 2’-deoxy-2’-fluorocytidine and 2’-
deoxy-2’-fluorouridine as nucleosides.

The SELEX experiments for selection against levofloxacin (LX) and
chloroquine (CQ)32 were sequenced together using multiplexing. The32 Suess et al. (unpublished data).

library and barcode design is identical to the selection against PM. For
each of these experiments eleven selection rounds were run. While in
the first nine rounds elution was performed with 1mM target, five dif-
ferent conditionswere tested for round10, asdiscussed inSection 16.3.3.
In round 11 a counter selectionwith 1mMCXor amodiaquine (AQ)was
performed, respectively, followed by an elution with 1mM target.

For selection against cortisol (CL)33 27 SELEX rounds were run. Up to33 Suess et al. (unpublished data).

round 22 elution was performed with 1mM target. In the remaining
five rounds two conditions were tested: In one approach elution was
performedwith0.1mMtarget, in the second approach counter-elution
wasperformedwith 1mMcortisone (CN) prior to elutionwith 1mMCL.
Since sequencing was not multiplexed, no barcodes were used.

The sequences of the library designs are shown in Figure 16.4. The se-
quences of the PM riboswitch candidate and the CL aptamer candidate
are shown in Figure A.1. In the following, datasets are usually abbrevi-
ated by their respective target name for the sake of brevity. For a clear
distinction between the dataset and the target itself, the datasets are
highlighted in italics.

16.2.2 Sequencing quality assessment

It is goodpractice to assess the quality ofHTSdata before using thedata
for further analysis. In this initial quality control the researcher can
verify that the sequencing output fulfills the expected parameters and
has an appropriate confidence of the base calls34.34 Base calls are the assignment of nucle-

obases to raw signals from the sequenc-
ing device

The confidence for each base call is usually expressed as Phred quality
score

Q = −10 log10 perr, (16.1)

that is based on the error probability perr35,36. Tools like FastQC37 offer35 the probability of an incorrect base call
36 Ewing and Green (1998).
37 Andrews (2010).

Figure 16.4: Library designs for SE-
LEX experiments. RNA sequences are
given from 5’-end to 3’-end. ‘Nxx’ indi-
cates a randomized regionwith thegiven
length. Barcodes are excluded.

CX partially randomized:
GGGAGACGCAACUGAAUGAA N26 CUGCUUCGGCAG N26 UCCGUAACUAGUCGCGUCAC

CX fully randomized:
GGGAGACGCAACUGAAUGAA N64 UCCGUAACUAGUCGCGUCAC

PM, LX, CQ and CL:
GGGCAACUCCAAGCUAGAUCUACCGGU N40 CUACUGGCUUCUA N10

AAAAUGGCUAGCAAAGGAGAAGAACUUUUCACU
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a user-friendly way to visualize the sequencing quality by providing a
multitude of different plots. In this work customizable scripts using
Biotitewere used for quality analysis instead.

A challenge in the analysis of HTS data is its usual size: A single FASTQ
file may reach a file size of multiple gigabytes. Hence, especially com-
modity hardware is not able to load an entire file into memory. This
circumstance prevents usage of vectorized operations to the full ex-
tent. Instead, the employed scripts read the sequences consecutively
and only the relevant data, for example its average Phred score, was ex-
tracted from each read. This condensed data was then used for further
analysis.

For analysis of the sequence composition reverse complement se-
quences were corrected. If the first six nucleotides of a readwere equal
to the reverse complement of the final six nucleotides at the 3’-end of
the designed library (see Section 16.2.1), the sequence was considered a
reverse complement.

16.2.3 Demultiplexing and aggregation

For the underlying SELEX datasets sequencing was multiplexed38: All 38 with the exception of the CL dataset

selection rounds from one SELEX experiment were pooled and se-
quenced simultaneously. To keep the output reads unambiguously
assignable to the selection round they originate from, each read has a
short39 barcode sequence at the 5’ or 3’ end, that was attached to the 39 4 to 7 bases, depending on the dataset

DNA prior to pooling. The barcodes for each selection round were se-
lected in a way that at least two substitutions are necessary to trans-
form the barcode of one selection round to the barcode of any other se-
lection round. This measure ensures correct round assignment in the
presence of sequencing errors.

For further data analysis the sequencing datasets were demultiplexed
by comparing thebarcode regionof each read to theusedbarcodes: The
round where the corresponding barcode has the lowest Hamming dis-
tance40 to the barcode region of a read was chosen as the round of that 40 i.e. the lowest number of base substitu-

tionsread. If multiple barcodes had the same distance, no unambiguous as-
signment was possible and the sequence was ignored in consequence.
Reverse complement sequences were corrected prior to round assign-
ment.

In the next step, equal sequences from the same selection round were
aggregated into a single entry and the number of their occurrenceswas
counted. Special measures to mitigate sequence errors were not em-
ployed due to the low sequencing error probability that was observed
in the datasets. The unique sequences were sorted by their frequency
in descending order. Their position in the sorted list is called rank.
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16.2.4 Analysis of sequence enrichment

The aim of a SELEX experiment is the enrichment of NA species with
good binding properties to a defined target molecule from an initially
randomized pool. HT-SELEX allows the condensation of this pool en-
richment into a single value for each selection round, though no uni-
versal standard has been established, yet. Instead, multiple measures
have emerged41, fromwhich the following are used in this work.41 Thiel et al. (2012); Groher et al. (2018);

Boussebayle et al. (2019).

For calculation of the metrics, a list of all unique NA species (1, ..., N)

observed in a selection round is required. The list is sorted by relative
frequency pi or absolute frequency ni of the unique sequences in de-
scending order. Onemetric is the percentage of orphans

pOrphans =

N∑
i=1

pi, if ni = 1

0, otherwise
, (16.2)

that declines with increasing enrichment. On the other side the per-
centage of the 100most abundant sequences

pΣ Top 100 =

100∑
i=1

pi (16.3)

is expected to increase with the number of selection rounds. The ad-
vantage of these two percentages is their value range between 0 and 1.
However, both measures only take the least or most enriched part of
species into account, respectively.0% 100%

Relative Rank

0%

100%

CD
F

Figure 16.5: Visualization of the Gini
index. The red line represents the cumu-
lative distribution function (CDF) of in-
terest, while the gray line is the cumula-
tiveuniformdistribution. TheGini index
is the ratio between the area hatched in
red and the area hatched in gray.

One quantity that remedies this shortcoming is the entropy

H = −
N∑
i=1

pi log2 pi, (16.4)

that originates from information theory42, though it lacks an upper

42 Shannon (1948).
limit.

Instead the Gini index

G = 2

 1

N

N∑
i=1

i∑
j=1

pj

− 1

2

 , (16.5)

provides both, a value range between 0 and 1 and a consideration of all
sequences in the selection round. Originating from economics, it de-
scribes the area difference between a cumulative distribution function
of interest and a uniform distribution43 (Figure 16.5).43 Farris (2010).

16.2.5 Estimation of dissociation constant

The knowledge about the relative frequency of NA species after each
round of selection creates the possibility to estimate their dissociation
constants, as elaborated in the following section.
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Previously, Levine and Nilsen-Hamilton described a mathematical
model for the SELEX process based on chemical equilibria44. The equi- 44 Levine and Nilsen-Hamilton (2007).

librium of a binding process can be expressed via its dissociation con-
stant

Kd =
[R][T ]

[C]
,

(16.6)

where [R], [T ] and [C] are the concentrations of free receptor (the NA),
free target and their complex in the solution, respectively. In context
of a conventional SELEX this equilibrium describes the incubation of
an NA pool with the target-coated substrate. For a capture-SELEX it
means the elution of NA from the substrate with the target. Analo-
gously, [R]tot and [T ]tot describe total concentrations of receptor and
target in the solution, i.e. the sumof both free receptor/target and com-
plex. Hence, one can also write

Kd =
([R]tot − [C])[T ]

[C]
. (16.7)

In the context of a SELEX, there is no single receptor species but amix-
ture of different NA species. Hence,Kd refers to the collective affinity
of the NA pool and is calledKd,coll from now on. Furthermore, one can
define θ = [C]/[R]tot. In the context of a SELEX round θ describes the
percentage ofNA, that is eluted from the columnrelative to the amount
of input NA initially given onto the column. This quantity is usually
tracked in SELEX experiments. Thus,

Kd,coll =
(1− θ)[T ]

θ
.

(16.8)

Solving Equation 16.7 for the formed complex gives

Kd,coll =
([R]tot − [C])[T ]

[C]

Kd,coll =

(
[R]tot
[C]

− 1

)
[T ]

Kd,coll =
[R]tot[T ]

[C]
− [T ]

[C] =
[R]tot[T ]

Kd,coll + [T ]
.

(16.9)

One can also define the individual dissociation constantKd,i for a sin-
gle NA species with the free and total concentration [Ri] and [Ri]tot re-
spectively. Analogous to Equation 16.9, the Equation 16.6 can be solved
for the concentration of the complex [Ci], that this species forms with
the target in equilibrium:

Kd,i =
[Ri][T ]

[Ci]

[Ci] =
[Ri]tot[T ]

Kd,i + [T ]
.

(16.10)

Using the relative frequency of an NA species within a pool pi =

[Ri]tot/[R]tot, one obtains

[Ci] =
pi[R]tot [T ]

Kd,i + [T ]
,

(16.11)
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where ∑
i

pi = 1.

(16.12)

Thus, using Equations 16.9, 16.11 and 16.12

[R]tot[T ]

Kd,coll + [T ]
= [C]

[R]tot[T ]

Kd,coll + [T ]
=
∑
i

[Ci]

[R]tot[T ]

Kd,coll + [T ]
= [R]tot[T ]

∑
i

pi
Kd,i + [T ]

1

Kd,coll + [T ]
=
∑
i

pi
Kd,i + [T ]

.

(16.13)

Figuratively speaking, Equation 16.13 shows that at low target concen-
trations [T ] ≪ Kd,i the association constantKa = 1/Kd of the pool is
the average of the association constants of the individualNAmolecules.

The eluted NA [Ci] of one selection round is the basis of the input NA
pool [R′

i]tot of the next round. The amplification process between the
rounds may change the absolute NA concentrations, but in theory it
does not alter the relative frequencies of the NA species. Thus, [Ci] and
[R′

i]tot have a proportional relation with a constant factor a:

[R′
i]tot = a[Ci]. (16.14)

With Equation 16.11 this equation can be rewritten as

p′i[R
′]tot = a

pi[R]tot [T ]

Kd,i + [T ]
.

(16.15)

By setting the relative frequencies of two different NA species into re-
lation, most parameters, including the unknown a, are removed from
this equation:

p′i
p′j

[R′]tot
[R′]tot

=
pi[R]tot [T ]

Kd,i + [T ]

Kd,j + [T ]

pj [R]tot [T ]

p′i
p′j

=
pi
pj

Kd,j + [T ]

Kd,i + [T ]
.

(16.16)

Based on the knowledge about the relative frequencies of each NA
species in thepool after each selection round, thisworkuses thismodel
byLevineandNilsen-Hamilton to calculate the individualKdi

value for
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each NA species. Based on Equations 16.8, 16.13 and 16.16 the relation
1

Kd,coll + [T ]
=
∑
i

pi
Kd,i + [T ]

1

Kd,coll + [T ]
=
∑
i

pj
Kd,j + [T ]

p′i
p′j

1

Kd,coll + [T ]
=

pj
p′j

1

Kd,j + [T ]

∑
i

p′i

Kd,j + [T ] =
pj
p′j

(Kd,coll + [T ])

Kd,j =
pj
p′j

(
(1− θ)[T ]

θ
+ [T ]

)
− [T ]

Kd,j =

pj

p′
j
− θ

θ
[T ]

(16.17)

can be given. Hence, only the relative frequencies of the respective NA
species before and after a round of selection, θ and the concentration of
the free target are required. In case of a capture-SELEX [T ] canbe easily
substituted by [T ]tot as approximation, if an excess amount of target is
used for elution. Furthermore, a precise value of [T ] is not important
for the relative comparison ofKd for different NA species, as it merely
representsaproportionality factor. In contrast, aprecisemeasurement
of θ is essential to obtain sensibleKd values, even if the species are only
compared relatively.

If θ is larger than pj/p
′
j , Equation 16.17 gives nonphysical negative val-

ues for Kd,j . In the context of the model employed here, this cannot
happen as illustrated by the following extreme case: Let theNA species
j be a perfect binder that represents only a small proportion of the en-
tire NA pool, i.e. Kd,j → 0 and pj → 0. After elution, all molecules
from species j are still present in the pool due to its high affinity, but
only θ of all other species remain. Consequently, in this case the rel-
ative frequency of species j in the new pool is increased by the factor
1/θ, i.e. pj/p′j = θ. In all less extreme cases45, this amplification factor 45 largerKd,j , larger pj
is smaller, i.e. pj/p′j > θ. Hence, negativeKd values may not appear, if
the assumptions of this model uphold.

These assumptions include the following:

1. The incubation times are long enough for binding processes to
reach equilibrium. If not stated otherwise, the NAmolecules were
incubated with the target solution for at least 5 minutes for the SE-
LEX datasets used in this work.

2. Each NA molecule can only bind to a single target molecule.
Finding an aptamer with two binding sites for the same target from
a pool of randomized NA molecules is improbable. Furthermore,
calorimetric measurements performed on aptamers obtained from
the SELEX experiments discussed in this chapters show, that these
aptamers have indeed only one binding site.
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3. There isneitherunspecificbindingnor lossof theNAmolecules
to the support. Unspecific binding is usually impeded by an initial
counter selection against the support alone.

4. The reverse transcription, amplification and transcription do
not change the composition of the NA pool, i.e. the relative
frequency of each NA species does not change in this process.
Since the sequence regions responsible for these steps are constant
across all NA species, there is ideally no bias, that would favor cer-
tain species. However, laboratory experiments suggest that such bi-
ases exist nevertheless46.46 Thiel et al. (2011); Tsuji et al. (2009);

Takahashi et al. (2016).
5. There are no stochastic effects, i.e. for the entire selection and

amplificationprocess always the expected value is assumed for
eachNA species. At least for the later rounds, the basic idea behind
SELEX is that the relevant NA species47 appear a large number of47 the ones with a lowKd

times in theNApool. Due to the lawof largenumbers, a convergence
of the concentrations to the expected value is assumed. However, at
low species number, mathematical modelling has shown dramatic
stochastic effects48.48 Spill et al. (2016).

16.2.6 Calculation of library score

In the SELEX projects whose datasets were used in this work, a central
purpose of sequencing the NApools was the identification of an appro-
priate pool for in vivo studies49. First, a high enrichment of well per-49 Groher et al. (2018); Boussebayle et al.

(2019). forming aptamers in the NA pool is desired to gain a high probability
that these aptamers are picked by chance, when the NA pool is cloned
into the respective expression system. Second, a reasonable sequence
diversity is also essential, to be able to testmultiple different aptamers
in the in vivo assays. This is especially necessary for riboswitches, since
an aptamer with a high affinity to the target does not necessarily have
good switching capabilities in the context of anmRNA.However, these
objectives are conflicting: The highest enrichment is obtained, when
only a single NA species remains in the pool, i.e. the diversity is mini-
mal. The establishedmetrics, including the ones introduced inChapter
16.2.450 are optimal51 when the sequence enrichment is at maximum.50 entropy, Gini index, Σ Top 100, or-

phans
51 either at minimum or at maximum

To date, there is no indicator published that also takes the sequence di-
versity into account as well.

Hence, a novel pool score for aNApool q is introduced in thiswork: The
score takes the probabilityP q

i , that aNA species i is randomlypicked at
leastonceas sample forane.g. invivoassay, andweights thisprobability
with the association constantKa = 1/Kd, representing the ‘importance’
of the species. Therefore the pool score Spool is defined as

Spool(q) =
∑
i

1

Kd,i
P q
i (X ≥ 1)

Spool(q) =
∑
i

1

Kd,i
(1− P q

i (X = 0)).

(16.18)
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The Kd for an NA species can be estimated via equation 16.17. Draw-
ing the same NA species more than once is considered redundant, so
it would not positively contribute to the score. Quite the contrary, hav-
ingahighprobability fora singleNAspecies tobedrawnmultiple times
would consequently lead to a lower probability for every other species
to be drawn even once. Hence, a high enrichment of a single species
would be penalized.

WhenanNAmolecule ispicked fromthepoolasa sample, thismolecule
is then missing in the pool. Therefore, a hypergeometric distribution
would accurately model this behavior. However, this distribution re-
quires knowledge about the absolute number ofmolecules for each NA
species in the pool to be sampled from. Since the sample used for se-
quencing comprises only a small fraction of the original pool and at the
same time also only a fraction of the pool is used for picking samples,
using a hypergeometric distribution for P q

i would require a lot of ex-
perimental details. However, for a high number of the respective NA
species in the pool and a relatively small number of samples, the hy-
pergeometric distribution can be approximated by a binomial distribu-
tion52 B(n, p, k), which only requires the relative frequency pqi of each 52 College ofWilliam&Mary (2010).

NA species i instead of the total number. Thus,

Spool =
∑
i

1

Kd,i
(1−B(λ, pqi , 0)),

(16.19)

where λ is the number of samples picked. For example, if downstream
in vivo assays are performed using a 96-well plate, λwould be 96 in this
case. Eventually, using the Spool as metric, the optimal NA pool qopt for
such assays would be the one withmaximum Spool. Hence,

qopt = argmax
q

Spool.
(16.20)

16.2.7 Machine learning

Machine learning algorithms are able to automatically detect patterns
in given data. Supervised learning is the subfield in machine learning,
where the algorithm learns patterns on curated training data to apply
the ‘knowledge’ on unknown data of the same type. More specifically
in the training phase the algorithm obtains pairs of input data (e.g. the
pixels of an image) andoutput data (e.g. the label'cat'). Since the out-
put data is known, the data is called labeled. Thereafter, the algorithm is
tasked with predicting the corresponding output data for comparable
unlabeled input data 53. Two types of output data can be distinguished 53 data with unkown output

here: If the possible output is one of multiple qualitative classes (e.g.
'cat' or 'dog'), the problem is called a classification problem. If the
output is a quantity (e.g. the number ofwhiskers), the problem is called
a regression problem.

The perceptron54 is such a supervised learning algorithm: The percep- 54 Rosenblatt (1958).
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tron represents a node that accepts input data and returns a linear func-
tion of these data. The weights of the linear function are adapted in
the training phase to match the labels as optimally as possible. For
prediction of unlabeled data the linear function is applied to the input
with theweights obtained from training phase. A neural network (NN)
is an extension of this concept to multiple layers and multiple nodes
per layer: The output of one node is the input to the nodes of the fol-
lowing layer. If more than one layer is used, the model design is of-
ten called deep NN, hence the name deep learning. In order to be able
to learn non-linear relations between input and output data, usually a
non-linear activation function is applied to the output of each node. Mul-
tiple variants of NN emerged to increase their performance for certain
classes of learning tasks. One prominent variation is the convolutional
neural network (CNN): While originally all features in the input data
are treated as independent and no vicinity can be represented between
them, a CNN convolutes filters55 with overlapping frames of an input55 Filters are adapted in the training pro-

cess, similar to the weights of regular
NNs.

sequence of values. Since adjacent data points in the input sequence
are used to compute an output value, the vicinity of data points can be
recognized with this method. CNNs have been proven very successful
in image analysis and have also shown promising results in the appli-
cation on biological sequence data56.56 Alipanahi et al. (2015).

In recent years, numerous deep learning approaches have been estab-
lished to predict NAbinding specificities from experimental data, such
as chromatin immunoprecipitation and HT-SELEX57. The underlying57 Trabelsi, Chaabane, and Ben-Hur

(2019). idea is that well-binding sequences have common motifs that can be
learned by an NN. The sequence of a respective NA species is the input
to the NN, while an experimentally determined value, e.g. whether the
sequence is enriched after anumber of rounds58, serves as output value58 Alipanahi et al. (2015); Asif and Oren-

stein (2020). for training the NN. Including RNA secondary structure information
from minimum free energy (MFE) computations in the NN input was
also explored in recent yearsbutdidnot lead to a considerable improve-
ment of prediction accuracy59.59 Trabelsi, Chaabane, and Ben-Hur

(2019).

Previous work has focused on predicting an experimental value from
sequence, for example, whether an NA species is enriched in the final
SELEX round60. The predicted classification itself is usually not of in-60 Alipanahi et al. (2015); Yuan et al.

(2019); Asif and Orenstein (2020). terest, since it is specific to the experiment and no intrinsic property of
the NA. Consequently, such classification is mainly used to identify se-
quencemotifs or predictmutations that optimize the respective exper-
imental value. However, the dissociation constant of a binding process
between an aptamer and its target, as computed according to Section
16.2.5, is a fundamental quantity.

Hence, in the context of this work the established practices for predict-
ingbindingspecificities fromsequencewereapplied toestimate thedis-
sociation constant of an NA species to the target, even if that species
did not appear during the SELEX experiment. Consequently, the objec-
tive was shifted from a classification problem to a regression problem.
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These predictions should be used to propose beneficial mutations for
already performant aptamers.

Note that if the absoluteKd was used as NN output, the prediction ac-
curacy would not match the scientist’s intuition: NA species with poor
bindingproperties typicallyhaveaKd ordersofmagnitudehigher than
affine aptamers. Hence, NN training would be biased to minimize the
prediction error for those poorly binding species with a high absolute
Kd, while any value close to zerowould already have a small difference
to theKd of well binding species. In contrast to that, a high prediction
accuracy for species with particularly low Kd is important for in silico
mutation scanning. Consequently, the correct order of magnitude of
the dissociation constant is themore relevantmetric here. Hence,

pKd = − log10 Kd, (16.21)

is definedhere, analogous to e.g. pH and pKa, andused as output of the
NN.
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Figure 16.6: Layers of the NN for pKd
prediction. The figure depicts the data
flow through the network based on a hy-
pothetical RNA sequence. An exemplary
convolution kernel and its output value
is depicted in blue.

A challenge for the training task was the low number of NA species
for which a pKd can be calculated: Although thousands of different se-
quences appear in the dataset of a single selection round, only a small
fraction of them appear in sufficient numbers as explained in the fol-
lowingSection 16.2.8. Filtering reduces thenumberof training samples
to only a few hundred. Furthermore, the aptamer candidate used for in
silicomutation studieswas excluded from the training set to avoid over-
fitting to this specific sequence of high interest. The sequences used
for training exhibit at least some affinity to the target, since they still
appear after selection. Hence, an equal number of decoy sequences was
added to the training set: For each decoy a randomized sequence was
generated with the same constant regions as the initial pool used for
SELEX. A pKd = 0 was arbitrarily assigned to each decoy, represent-
ing a low affinity ofKd = 1M.

Finally, each sequence was one-hot encoded61 into a feature vector of 61 InOne-hot encoding an array is created
for each symbol with the same length as
the underlying alphabet. Then the posi-
tion corresponding to the symbol is set to
1, while the other elements are set to 0.
For example the encoding for ‘G’ would
be ‘0010’.

shape (k, 4), where k is the sequence length of the initial SELEX pool,
excluding the constant 5’ and 3’ primer binding sites. Due to insertions
and deletions some sequences are slightly longer or shorter. To keep
the feature vector at constant size, those sequences were truncated or
extended into the constant region, respectively. The feature vectorwas
used as input for the NN, while the calculated62 pKd was the expected 62 constant value for decoys

output.

Due to the small number of training samples, a relatively simple NN
design based onDeepBind63 was chosen to avoid overfitting. It contains 63 Alipanahi et al. (2015).

1. a one dimensional convolutional layer,
2. a global maximum and average pooling layer,
3. a fully connected layer and
4. an output node
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(Figure 16.6). A rectified linear unit was used as activation function after
each layer except the pooling layer. As the NN performs a regression,
themean squared error (MSE) between the predicted and expected out-
put was used as loss function. The NN was implemented using the Py-
Torch library64 and theAdamoptimizer65wasused forweight optimiza-64 Paszke et al. (2019).

65 Kingma and Ba (2017). tion in the training process.

In order to increase the prediction accuracy, the hyperparameters

• batch size,

• learning rate,

• weight decay,

• convolution kernel size,

• number of convolution channels and

• number of fully connected nodes

were optimized using random sampling implemented via the Optuna
library66.66 Akiba et al. (2019).

For training the CL data was randomly separated into three sets: 80%
of the data (694 sequences) was used for training, i.e. for optimization
of theweights in theNN, 10%(86 sequences)wereusedasvalidation set
for hyperparameter optimization and 10% (86 sequences)were used as
test set for the resulting NN.

16.2.8 Mitigating experimental deviations from theory

Equation 16.19 sumsover allNA species that exist in the respective pool.
However, as discussed later in Section 16.3.4, especiallyNA species that
appear in small numbers tend to have erratic amplification factors67.67 defined as

p′j
pj

Hence, the implementationofSpool in thisworkdeviates fromEquation
16.19 by adding a relative frequency threshold of 0.01 %. The Kd was
not calculated forNA species that fall below this threshold68 andhence68 either before or after the respective

round of selection were excluded fromSpool calculation. In theory, NA species that appear
with a low frequency have a low Ka and low P q

i (X ≥ 1). Thus, they
would onlyminimally contribute to Spool. In addition, NA species with
apparent nonphysical69 Kd values got the minimum positiveKd from69 negative

the pool assigned instead.

This measure also influenced the NN training, since the number of
training sampleswasdrastically reduced thisway. This lackofdata lim-
its the complexity the model is able to learn. However, the aim was to
still achieve a higher prediction accuracy, as theNA species filtered out
would add substantial noise to the training data.

Furthermore, theKd values were calculated from a single NA pool, i.e.
theSpool for eachSELEXroundwould relyonKd values fromacommon
pool, preferablyoneobtainedaftermultiple selection rounds, to reduce
stochastic effects.
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16.3 RESULTS AnDDISCUSSIOn

16.3.1 Quality control

The quality of the sequencing data from the HT-SELEX experiments
was controlled prior to further analysis. Only the quality control re-
sults for the PM dataset is exemplarily presented here. However, the
observations are similar to the other datasets used in thiswork (see Sec-
tion16.2.1). Hence, the followingdiscussioncanbeapplied to theseones
as well.

Although the SELEX employs no explicit sequence mutation step,
28.5% of sequence reads deviates from the expected length70 of 130 70 length of designed NA including bar-

code(Figure 16.7A). This observation is probably not caused by sequencing
errors since overall sequencing quality is very high: The mean Phred
score is consistently above 30 over all sequence positions (Figure 16.7B).
A Phred score of 30 corresponds to a base call error probability of 0.1%.
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Figure 16.7: Quality control of se-
quence reads from PM dataset. A His-
togram of read lengths. The expected
length is marked in blue. B Positional
Phred score distribution. For each read
position themean,median and quartiles
are calculated over all reads. The dis-
played positions include the range of the
expected sequence length. C Histogram
of mean Phred scores. The Phred scores
are averaged for each read.
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Figure 16.8: Nucleotide composition
in sequence reads from PM dataset.
For each nucleotide the relative fre-
quency at the respective read position is
shown. The vertical dashed lines depict
transitions from a constant to a variable
region and vice versa. Non-resolved
nucleotides are depicted as ‘N’.
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The distribution of the average Phred score for each read (Figure 16.7C)
is also regular and shows no additional peaks that would indicate erro-
neous sequencing. Hence, the significant number of deviations from
the ideal sequence lengths are most likely caused by the SELEX itself
during sequence amplification.

To evaluate the integrity of the NA library the sequence composition
was analyzed (Figure 16.8). Since the sequencing data also includes re-
verse complement sequences, these were corrected first. The data con-
tains almost no non-resolved nucleotides (‘N’). The sequence composi-
tion clearly highlights the different sequence regions of theNA library:
While most sequence reads are identical at positions corresponding to
the constant parts, the variable regions show only a slight preference
for certainnucleotides. Thedistribution in these randomized regions is
still not uniform, as all selection rounds are incorporated in thedataset.
Consequently, the nucleotides of enriched sequences appear more fre-
quently.

Despite the low overall base call error probability, on average every
2200th nucleotide is called wrong. Consequently, this leads to ap-
pearance of virtual NA species, that do not reflect actually existing NA
species in the pool, on approximately every 17th read. The reason for
this is that any difference between two sequences means that these
are treated as separate species. These virtual species cannot be distin-
guished from actual NA species: Although an erroneous read only has
a small sequence difference to an existing species, such high similar-
ity between two NA species might also be caused by mutation in the
amplification process or by chance. However, for the sequence analy-
sis discussed in the following sections this effect should be negligible.
For computation of the pool score and pKd prediction such spurious se-
quences are filtered out using the frequency threshold introduced in
Section 16.2.8. For the calculation of the Gini index and the entropy
these sequences only have a small effect due to their low frequency.
Merely the percentage of orphans could be heavily biased by sequenc-
ing errors, because it is likely that one combination of sequencing er-
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rors only occurs once for a species.

16.3.2 Monitoring enrichment in a SELEX experiment

Based on themetrics discussed in Section 16.2.4, the enrichment of cer-
tain NA species71 over the course of the selection rounds can be moni- 71 and consequently depletion of most

other speciestored (Figure 16.9). The four enrichmentmetrics showa clear trenddur-
ing the course of the experiment: While the entropy and percentage of
orphans decrease, there is an increase inΣ Top 100 and the Gini index.
Strikingly, the trend is more clear in PM compared to CX. All metrics
indicate a substantially higher enrichment in the SELEX experiment
conducted with PM, despite a similar number of selection rounds. Fur-
thermore, CX shows a declining enrichment in certain rounds accord-
ing to some of themetrics, compared to the predominantlymonotonic
and consistent curve shape of PM. Apart from a different target, the
two SELEX experiments have a significant difference in the selection
protocol: CX uses a traditional SELEX, while PM employs a capture-
SELEX. The presumption, that the difference in the selection protocol
is paramount, is underpinned by the CQ, LX and CL datasets (Figure
16.10): All three datasets were obtained using capture-SELEX experi-
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Figure 16.9: Sequence enrichment in
PM and CX datasets using different
metrics. The shownmetrics were calcu-
lated from sequenced NA pools obtained
after the displayed selection round.
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ments, and although the targets are different and the experimenter is
not the same as in PM, the degree of enrichment and the shape of the
curve is similar toPM. This suggests that capture-SELEXprovidesmore
consistent results, with less required rounds on average to find an ap-
propriate aptamer. However, for the traditional SELEX only the CX
dataset is available. More such datasets would be necessary to confi-
dently attribute the poor enrichment to the SELEX protocol and to ex-
clude that other experimental parameters are the cause.
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Figure 16.10: Sequence enrichment in
LX, CQ and CL dataset. The labelling
is analogous to Figure 16.9. For rounds
with multiple tested elution conditions,
only the result of the regular elution is
displayed.

An advantage of observing the enrichment directly using HTS addi-
tionally to measuring the percentage of input NA eluted72, is that this

72 equivalent to θ defined in section 16.2.5

method reveals the enrichment of the NA in earlier selection rounds73

73 Groher et al. (2018); Boussebayle et al.
(2019).

and more precisely. Hence, the enrichment metrics could be used to
decide after howmany rounds the SELEX experiment should be termi-
nated, if incorporated into a laboratory workflow.

16.3.3 Comparison of different selection parameters

ForCQ and LX different selection protocolswere applied in round 10 to
test their influence on sequence enrichment as displayed inFigure 16.11.
Curiously, an upstream counter elution (Figure 16.11A) does not clearly
increase the enrichment compared to a run omitting the counter elu-
tion (Figure 16.11B). This result implies that the upstream counter elu-
tion does not apply significant selection pressure, i.e. the NA species
with sufficient affinity for the target do not bind well to the respective
counter target. Consequently, this leads to the assumption that an elu-
tionwith the counter target74 (Figure 16.11D)would enforce a strong se-74 Note that in case of elution the eluate is

collected instead of discarded. lection pressure. However, this is not the case: The enrichment is in a
similar order as the enrichment from the elutionwith the target. Prob-
ably the selection conditions need to be sustained for multiple rounds
of selection to be able to see clear effects of a counter elution.

The enrichment metrics also indicate that elution with a lowered con-
centration of target (Figure 16.11C) and elution over a short amount
of time (Figure 16.11E) lead to a stronger enrichment. The former re-
sult is consistent with the mathematical model of the SELEX75 as seen75 Levine and Nilsen-Hamilton (2007).

in Equation 16.16. The latter observation indicates that kon, the rate
constant of the aptamer-target association, is a discriminating factor
for aptamer affinity in this case. This finding is interesting, since ki-
netic studies on aptamers for other targets indicate in contrast, that ap-
tamers with differing affinity for the same target mostly vary in koff,
while kon is similar between these aptamers76. However, in this case,76 Bao et al. (2011); Chang et al. (2014).

not only affine aptamers compete with each other in the SELEX exper-
iment, but the RNA pool includes also a large percentage of non- or
weakly-binding RNA species. Therefore, kon might substantially differ
between affine and non-affine RNA species, while this value is similar
among the more affine species. Since no sufficiently affine aptamers
from these experiments were obtained and kinetically characterized,
the exact explanation of this finding remains to be answered.
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Figure 16.11: Effect of selection pa-
rameters on sequence enrichment for
LX and CQ. Different selection proto-
cols were applied in round 10 and the se-
quence enrichment was measured from
the resulting RNA pool. The dashed
line depicts the value for the respec-
tive enrichment metric from the previ-
ous round. If not stated otherwise, elu-
tions were conducted over 5min. A
Counter elution with 1mM CX/AQ, elu-
tion with with 1mM LX/CQ. B Elution
with with 1mM LX/CQ. C Elution with
with 100µM LX/CQ. D Elution with
1mM CX/AQ. E Elution with with 1mM
LX/CQ over 10 s.

Nevertheless, it needs to be noted that all tested selection protocols en-
riched the pool in a measurable manner. However, also note that the
enrichment itself does not tell whether the enriched RNA species have
the desired binding behavior. Since the CQ and LX SELEX projects did
not conclude in a satisfactory aptamer, it cannot be investigated under
which selection condition such an aptamer accumulated themost.

16.3.4 Applicability of mathematical model

The mathematical model of the SELEX process77 gives a foundation to 77 Levine and Nilsen-Hamilton (2007).

relate the relative frequencies of NA species to their respective dissoci-
ation constants. Based on an initial pool of species with uniform dis-
tribution, the first selection round would enrich species according to
their individualKd,i (Equation 16.16). Here we denote the relative fre-
quencies after the nth round as pni . Thus,

p1i
p1j

=
Kd,j + [T ]

Kd,i + [T ]
.

(16.22)

The relative frequencies in the following round are calculated as

p2i
p2j

=
p1i
p1j

Kd,j + [T ]

Kd,i + [T ]

p2i
p2j

=

(
Kd,j + [T ]

Kd,i + [T ]

)2

.
(16.23)

Thus, in general
pni
pnj

=

(
Kd,j + [T ]

Kd,i + [T ]

)n

.
(16.24)

Furthermore, one can define the amplification of an NA species Ai =

pn+1
i /pni . Again, using Equation 16.16

Ai

Aj
=

Kd,j + [T ]

Kd,i + [T ]
,

(16.25)

which can be substituted in Equation 16.24 to obtain

pni
pnj

=

(
Ai

Aj

)n

.
(16.26)
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Figure 16.12: Amplification and fre-
quency of RNA species in PM round
9. For each species i with a relative
frequency of at least 0.01%, this figure
shows its amplification Ai in round 9
and its relative frequency after the selec-
tion round. This selection round was the
last roundprior to counter selection. The
riboswitch candidate is marked in red.
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Hence, the amplificationAi of anNAspeciesduringa selection round is
in theory amonotonically increasing function of its relative frequency
pi. This trend is further enhanced by an increased number of selec-
tion rounds n. A change in target concentration for the elution would
merely intensifyorweaken the relative amplificationAi/Aj , themono-
tonicity would still uphold.

However, the sequencing data from the PM SELEX shows substantial
noise in this theoretically monotonic relation as displayed in Figure
16.12. Afternine roundsof selection thecorrelationbetweenAi andpi is
weak (0.35) despite themitigatingmeasures explained in Section 16.2.8.
Since Equation 16.26 does not indicate a linear relation, the Spearman
rank correlation coefficient was employed here.

When taking a closer look at the relative frequency of the riboswitch
candidate for PM over the selection rounds (Figure 16.13), this RNA

Figure 16.13: Enrichment of the PM ri-
boswitch candidate over the course of
selection rounds. The figure shows the
relative frequency of the riboswitch can-
didate in the respective selection round
in red. The corresponding rank is given
as label. For comparison themedian and
quartiles (Q1 - Q4) of the Top 100 se-
quences in the respective round are also
displayed.
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species does not accumulate up to round 4. Only after round 5 the ex-
ponential increase suggested byEquation 16.24 can be assumed. This is
remarkable, since the selection conditions78 do not change until round 78 including the target concentration

7. Hence, the experimental data contradicts the theory: Under constant
target concentration one would expect an initial exponential increase
until the relative frequency levels out due to only similarly affine ap-
tamers remaining in the RNA pool.
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100

2 × 100
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Figure 16.14: Amplification and fre-
quency of RNA species. The labelling
is analogous to Figure 16.12. The follow-
ing roundswere chosen for visualization:
CX round10,LX round9,CQ round9,CQ
round 26.

The large amount of noise in the experiment is not limited to PM but
also appears in all other datasets discussed in this work as seen in Fig-
ure 16.14, with correlations of 0.71, 0.66, 0.56 and 0.17 for CX, LX, CQ
and CL, respectively. The effect extends to other experimental setups:
A large study to determine DNA binding specificities for transcription
factors (TFs) via HT-SELEX 79 yielded 520 HTS datasets80. Based on

79 Jolma et al. (2013).
80 NCBI BioProject ID: PRJEB3289

the respectivefinal selection round for eachTF the correlation between
Ai and pi was calculated. Datasets, where the correlation p-value was
higher than 5% or where the number of data points was less than 200,
were filtered out. The correlations for the remaining 108 HTS datasets
are displayed as histogram in Figure 16.15. From this data three exem-
plary amplification plots, analogous to Figure 16.12, are shown in Fig-
ure A.2. Although with an average correlation of 0.73 the results are
closer to the mathematical description than the other SELEX experi-
ments discussed above, they still clearly deviate from a monotonic re-
lation between Ai and pi. Note that since DNA binding studies were
performed here, no reverse transcription and transcription steps were
employed.

These observations suggest, that the large amount of noise is not due to
experimental deficiencies but is inherent to most SELEX experiments.
A probable reason is that at least one of the assumptions listed in Sec-
tion 16.2.5 is not realistic. One explanation could be stochastic effects
especially in the amplification via PCR: Due to the exponential nature
of this amplification, small stochastic deviations could have a large
effect81. Furthermore, it was previously suggested that different NA 81 Spill et al. (2016).

species might not be equally amplified82 and that also the initial pool 82 Thiel et al. (2011); Tsuji et al. (2009);
Takahashi et al. (2016).might be biased83. By employing SELEX-T or ddPCR84 the bias intro-
83 Takahashi et al. (2016).
84 Tsuji et al. (2009); Takahashi et al.
(2016).

duced in the amplification step can potentially be reduced.

A notable consequence of the deviation from the theory are apparent
negative Kd values. As described in Section 16.2.5, those nonphysical
values may not appear in the ideal model, since there are certain lim-
its to θ and Ai. However, if θ is not measured with perfect accuracy or
Ai deviates due to stochastic effects, such negativeKd values appear as
shown in Table 16.1. Nonphysical values appear most prominently for
sequences with low frequency. Presumably, stochastic effects aremore
dominant for NA species at low numbers. This finding emphasizes the
importance of the frequency threshold described in Section 16.2.8, that
is used to calculate Spool.
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Figure 16.15: Correlation between
amplification and frequency of DNA
species in TF SELEX. The histogram
shows the correlation between Ai and
pi for the last respective selection round
in 108 SELEX experiments with TFs as
target molecule.
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Another striking aspect of the SELEX experiments discussed here are
the dissociation constants of the obtained aptamers in comparison
with the target concentration used for elution: As example, the PM
project resulted in an aptamer withKd = 21nM, while the minimum
target concentration used for elution was 100µM, which was applied
for 4 rounds. However, based on the presented theory an enrichment
of such an affine aptamer should not be possible under the applied se-
lection pressure: All RNA species with a Kd ≪ 100µM should be al-
most completely eluted, so no discrimination between different well-
binding species is gained. As sample calculation, let the aptamer i

with Kd = 21nM be in a pool together with an RNA species j with
Kd = 10µM at equal frequency. According to Equation 16.24 the ra-
tio pi/pj after four rounds of selection with 100µM target would only
be 1.46. In a realistic scenario, where such a affine aptamer does not ap-
pear at equal frequency toworse-binding species, but ismore like a ‘nee-
dle in ahaystack’, an enrichmentbya factor of 1.46 isnegligible. In reality,
a strong enrichment of the discussed aptamer against other species is
clearly visible in the PM dataset. For this reason the estimated dissoci-
ation constant for this aptamer based on selection round 9 using Equa-
tion 16.17 is 78 µM, which is several orders of magnitude higher than
21 nM. It is improbable that inaccuracies in themeasurement of θ alone
cause this difference, though a more precise determination of θ could
give insights into this issue.

Table 16.1: Estimated nonphysicalKd

values in PM. For each selection round
the Kd for each RNA species was esti-
mated based on the sequencing data and
the measured eluted percentage. Only
species whose sequences also appeared
in the previous round were considered.
The number of species where the cal-
culation yields a nonphysical (negative)
Kd value is given, compared to the to-
tal number of species and split by the
threshold value.

Round ≥ 0.01% < 0.01%

nonphysical total nonphysical total
2 0 2 12 563
3 0 3 0 1170
4 0 2 171 7023
5 5 8 3494 81142
6 0 409 896 112519
7 0 794 368 80748
8 0 625 292 62859
9 0 557 1203 48672



127

Despite the disagreements with the mathematical foundation, it is
clear that the SELEX method provides a reasonable enrichment of
affine aptamers, since the PM and CX projects yielded aptamers with
dissociation constants in the nanomolar range85. Hence, this work as- 85 CX: 60 nM (after optimization),

PM: 21 nMsumes that metrics that are drawn from the entirety of a pool, includ-
ing the enrichment metrics and Spool, are still roughly valid at least
for qualitative assessment. Nevertheless, the investigation of the cause
for the presented significant discrepancies between theory and exper-
iment could be worthwhile to better understand and optimize SELEX
processes.

16.3.5 Selection of an appropriate SELEX round for in vivo studies

This work leverages estimated individual Kd values for NA species to
calculate Spool, a metric that should provide decision guidance for the
selectionof anappropriateNApool for further screening, especially for
in vivo studies. Spool depends on a number of parameters that need to
be properly adjusted: Most importantly, the selection round and fre-
quency threshold for Kd calculation need to be chosen. If the experi-
ment would perfectly adhere to the theory elaborated in Section 16.2.5,
the round would not have an impact and a frequency threshold would
not be necessary. However, as Section 16.3.4 showed that there is a
strong deviation between theory and experiment, these two parame-
ters have an impact. The final parameter is the number of samples λ
that are taken for further assays. This value solely depends on the ex-
perimental setup, e.g. if in vivo assays are conducted on a 96-well plate,
λ = 96. To investigate the effect of these parameters onSpool for the PM
dataset, each parameter was scanned across a reasonable range, while
the other parameters were kept constant.

At a high threshold only the most frequent species are considered.
Hence, it is expectable thatSpoolmaximizes atmaximumenrichment86 86 according to the established metrics

from Section 16.2.4at a 10% threshold (Figure 16.16A). At lower threshold values Spool pe-
nalizes the high enrichment of few species, since consequently other
less frequent but still promising species have a lowprobability of being
sampled. Hence, earlier selection rounds that are already sufficiently
enriched become more favorable. This trend continues until a thresh-
old of approximately 0.01%. Below this threshold the Spool curve be-
comes more erratic. This is expected, since NA species with low num-
bers are included, resulting in stochastic effects.

Next, thedifferent rounds forKd calculationwere tested (Figure 16.16B):
All rounds starting from round 2 to 9were included in the range. Using
round 1 was not possible, since no sequencing was performed for the
original pool. Round 10 and 11 included a counter selection, thus they
cannot be soundly described by the theory from Section 16.2.5. Spool
shows a tendency to overestimate the score for the round, where the
Kd values are taken from. The reason for this effect is that species that
were strongly amplified in a round are overall more abundant in this
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Figure 16.16: Effect of parameters
on Spool calculation in PM. Each plot
shows the effect of one parameter for
Spool calculation by scanning the param-
eter over a range of values while keeping
all other parameters constant. For im-
proved comparability, Spool is normal-
ized to the maximum of the respective
curve. If not stated otherwise, Kd val-
ues from PM round 9 with a frequency
threshold of 0.01% and λ = 96 sam-
ples were taken for Spool calculation. A
The threshold for the minimum relative
frequency is scanned, i.e. NA species
with a relative frequency smaller than
the threshold value are not considered
for Spool calculation. B The round from
which the Kd values are calculated is
scanned. C The number of samples λ is
scanned.
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Figure 16.17: Spool for each PM round.
Spool was calculated for each selection
round in thePMdataset, basedonKd val-
ues from round 9 and λ = 96 samples.

round. Still, round 8 or 9 have the highestSpool regardless of the round,
that was taken as basis for calculation. An exception is round 5 that
maximizes Spool for round 7, though Table 16.1 shows that this round
has a high number of species with apparent nonphysical Kd, so their
respective Spool are doubtful. Since stochastic effects onKd are less sig-
nificant for species with larger numbers in a pool, it is suggested to use
a late round forKd calculation, since in these rounds, generally speak-
ing, species with relevantKd appear in high abundance.

Finally, the impact of λ is investigated (Figure 16.16C). The displayed ar-
ray of curves show a clear trend: At an increasing number of samples,
selection rounds with lower enrichment becomemore favorable. How-
ever, even for an unrealistically high number of samples (λ = 10000)
round 9 still clearly provides the optimal pool according to this metric.

As result of these studies, round9witha thresholdof0.01%waschosen
forKd calculation. Consistent with the downstream in vivo studies for
PM,λwas set to 96. Basedon thisparametrization round9provides the
most suitable RNA pool according to Spool as displayed in Figure 16.17.
Interestingly, this result is close to round 8, which Boussebayle et al. in-
tuitively considered as sufficiently enriched based on the established
enrichmentmetrics87. 87 Boussebayle et al. (2019).

With the library score a mathematical foundation is at hand that bal-
ances the two objectives ‘high enrichment’ and ‘still enough diversity’ re-
quired for successful in vivo selection of well performing riboswitches.
However, whether this score is a reasonable decision tool for SELEX
round selection still needs to be evaluated in future laboratory exper-
iments.

16.3.6 Prediction of aptamer sequences

Since a dissociation constant can be calculated for any sufficiently
enriched NA species in the HT-SELEX experiment, these sequence-
affinity pairs can be used as training set for supervised learning to pre-
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Figure 16.18: Conservation of the Top
100 sequences after selection. The se-
quence logo shows the sequence conser-
vation in the variable regions of themost
frequent RNA species in the CL dataset
after the final selection round. The con-
servation is limited to 2 bits at complete
sequence identity. Note that occurrences
of nucleobases were not weighted by the
frequency of the RNA species.
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dict a dissociation constant for unknown sequences.

This approachwas used to conduct in silicomutation scanning on theCL
aptamer candidatewithapreviously in vitromeasured88Kd ≈ 13µMto88 Suess et al. (unpublished data).

improve its binding affinity to the target. Such a prediction necessarily
requires recurring sequence motifs across the affine NA species. The
sequence conservation of the Top 100 NA species after the final selec-
tion round (Figure 16.18) shows that certain nucleobases are position-
ally conserved. In addition, an NN is potentially able to also detect pat-
terns that are hidden from simple positional analysis.10 4 10 3 10 2 10 1

100

Figure 16.19: Amplification and fre-
quency of RNA species in CL round 20.
The labelling is analogous to Figure 16.12.

For the purpose ofKd prediction, the RNA species frequencies from se-
lection round20were chosen, as a largeenrichment changewas still ob-
servable in this round according to the presented enrichment metrics
(Figure 16.10). This ensures the presence of RNA species in sufficient
frequency, while also the binding affinities of the present RNA species,
determined from the species amplification in this round, was expected
to be diverse (Figure 16.19). For each of these RNA species the pKd was
calculated and used as the expected output for NN training.

The NN trainedwith the optimumhyperparameters89 converged to an89 according to theMSE of the validation
set MSE of 0.013 (Figure 16.20). The used hyperparameters are listed in

Table A.3. This high accuracy is not surprising due to the low number
of training samples. Indeed, a slight overfit on the training data is ob-
served, since the MSE is 0.218 on the validation set and even 0.442 on
the final test set. However, theMSE on the test set is still low enough to
assume an accurate prediction of the dissociation constant within the
correct order of magnitude. Despite the candidate aptamer sequence
not being part of the training set, theNNpredicted aKd = 4.22mMfor
this sequence very close to the calculatedKd = 4.17mM.
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Figure 16.20: Course of the MSE loss
during NN training. Amoving average
with a frame of ten batches was applied
for clarity.

Based on the trained NN, the effect of all possible single and double
mutations90 of the aptamer candidate sequence on its binding affinity

90 substitutions and deletions

were tested. The∆pKd gives the difference between the predicted pKd

of themutant and the original sequence, where positive values denotes
an improvement of binding affinity. Figure 16.21 shows the results for
all singlemutations. A ranked list of the doublemutantswith the high-
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Figure 16.21: Effects of single muta-
tions on predicted pKd. The figure
shows the effect of deletion (∆) and sub-
stitutions on predicted affinity for each
sequence position. As primer binding
regions were not part of the NN input,
they are omitted. Beneficial mutations
are highlighted in red, detrimental ones
in blue.

est∆pKd is given in Table A.4.

Twopromising single anddoublemutantswere selected for in vitroanal-
ysis of binding affinity: A61C,∆54,∆54-A61C andG53A-A61C. For this
purpose a selection round was conducted with a single RNA species,
for each of the mutants in duplicate. To measure the elution percent-
age θ the RNA was radiolabelled 91. Figure 16.22 shows the results of 91 Suess et al. (unpublished data).

this measurement. Via equation 16.8 θ can be related to the dissocia-
tion constant of the RNA species. Only theA61Cmutant shows affinity
to cortisol comparable to the original riboswitch candidate. This vari-
antwas the singlemutantwith thehighestpredicted∆pKd = 0.44. The
∆54 variant shows nomeasurable affinity to the target anymore. Con-
sequently, the double mutant∆54-A61C also lost its binding behavior.
The lost binding affinity of the G53A-A61C variant indicates that G53A
is also a loss-of-function mutation, though this single mutation was
not tested.

Although no improvement on the affinity of the aptamer candidate
was achieved, the single mutant with the best predicted affinity per-
formed comparable to the original candidate in the laboratory exper-
iment. Multiple factors may impede the prediction accuracy. First, the
small number of training samples of merely a few hundred NA species
leads to at least slight model overfitting and prevents the employment
ofmore complexNNdesigns. Second, the labels of the training dataset
itself contain substantial noise as explained in Section 16.3.4: Even if
the prediction is accurate within the described framework forKd com-
putation, these computed Kd values may not be underpinned by lab-

Figure 16.22: Elution percentage of
CL aptamer candidate and tested mu-
tants. For each variant the predicted
∆pKd is given. The bar shows the
average of the duplicate measurements,
while the error bar depicts the deviation
to the individualmeasurements. Elution
was performed with 1mM cortisol. The
background is the signal from the third
washing step prior to elution with the
target.
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oratory experiments. Hence, the prediction would benefit from an
increased measurement accuracy for θ and a reduced bias in the en-
richment during the SELEX experiment. With decreased noise the fre-
quency threshold could also be lowered, potentially expanding the size
of the training dataset.

16.4 COnCLUSIOn

Asoundestimationofaffinity to the target forall relevantNAspeciesaf-
ter selection roundsallowsdeeper insights into theprogressof aSELEX
experiment. The dissociation constant is an intrinsic property of an
aptamer-target-complex in contrast to raw sequence counts or the fre-
quency ratio of an NA species between two selection rounds which are
specific to the SELEX experiment. This work presented a method to
calculate such affinities from HTS data and elution percentage, with-
out the need for costly assays such as isothermal titration calorime-
try or fluorescence titration. This method can be possibly extended
to binding studies of protein-DNA complexes92 via HT-SELEX to not92 for example TFs

only identify sequence specificities but also toquantify thedissociation
constant. In addition, this data opens potential opportunities for se-
lection of reasonably enriched NA pools and aptamer optimization, as
this chapter outlined. The prediction of affinities for aptamermutants
can be potentially improved in the future, since the dissociation con-
stants canbe simply integrated intoexistingdeep-learningapproaches,
which are rapidly evolving in the present.

Note that a reliable application of the presented methods ideally re-
quires an accurate data foundation. However, the analyzed HT-SELEX
datasets indicate that typical SELEX experiments contain a substantial
amount of noise in the sequence data and that the measured NA elu-
tion percentage does not match the magnitude expected from the NA
affinities determined by other experiments. Therefore, a thorough in-
vestigation and elimination of the discrepancies between theory and
experiment could enhance the knowledge gained from HT-SELEX ex-
periments and increase the probability of finding a high-performance
aptamer.



Part IV

Conclusion
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The central quest of the Biotite project is to build a easy-to-use library
that can be integrated into tools, scripts and other libraries to solve ac-
tual biological questions. This is supposed to simplify the implemen-
tation of recurrent tasks in bioinformatics and in consequence shorten
the time between a researchers’ idea and the scientific insight. For this
purpose Biotite offers a broad range of functions working on the same
consistent data representation based on thewidely usedNumPy arrays.
This allows an almost infinite number of combinations of these func-
tions to tackle awide range of problems in sequence and structure anal-
ysis. This thesis and by now also other works have demonstrated how
the original vision of Biotite is realized.

Hydride (Chapter 14) extensively usesBiotite in underlying routines, but
itself is a focused command-line tool - in linewith the idea of the ‘Small
tools manifesto for bioinformatics’93. Springcraft (Chapter 11) shows how 93 Prins (2014).

functionality from Biotite in combination with NumPy can be used to
implement the logic of elastic network models (ENMs) in a straight-
forward way, beating even the performance of established software
in this field94. And finally, the analyses presented in Part III show 94 Kunzmann et al. (2022).

how the flexibility of Biotite and its extensions can be used in scripts
tailored to specific biological questions. Since the initial release also
other projects started to use Biotite in the intended way. The TeachOpen-
CADD platform95 teaches computer-aided drug design using Python 95 Sydow et al. (2019).

scripts and incorporates Biotite for part of the analyses. The projects
Foldingdiff and ESM use Biotite for underlying structure representation
and analysis with the aim to generate biologically plausible protein
backbone structures or to solve the inverse protein folding problem, re-
spectively96. 96 Wu et al. (2022); Hsu et al. (2022).

In contrast to tools and libraries that offer a focused set of functions to
solve a certain class of problems, a broad library such as Biotite is able
toutilize synergies between the individual functionalities: A tool based
on Biotite is able to support a wide range of file formats out of the box,
only the unique program logic needs to be implemented. A library that
calculates hydrogen bonds using Biotite (Chapter 12) can enhance the
accuracy by predicting hydrogen positions first (Chapter 14). A script
that calculates normal modes using an ENM (Chapter 11) can visualize
themwithout much further effort withAmmolite (Chapter 4).

In addition to offering the bioinformatics community a versatile pro-
gramming library to address concrete questions, this thesis itself also
presentednovel scientificfindings obtainedby the applicationofBiotite
and its extension packages. As a use case for structural analyses ENMs
implemented with Springcraft were combined with general structure-
related functionalities from Biotite to study conformational changes in
HCN4 upon ligand binding (Chapter 15). The computational investiga-
tions confirmed experimental observations that ligand binding in the
tetrameric HCN channels is cooperative and proposed a putative order
inwhich the ligand binds to the subunits. As a future prospect the abil-
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ity to study binding cooperativity using ENMsmay reveal the essential
regions within the protein that mechanically transmits the conforma-
tion change induced by ligand binding between binding sites.

ThesequenceanalysesofHT-SELEXdata (Chapter 16)harnessed thefile
interfaces and the NumPy-based sequence representation from Biotite.
Itwas shownhowsequencingdata fromaSELEXexperiment canbepo-
tentially used to estimate binding affinities for each species present in
the nucleic acid library. Furthermore, approaches were presented how
this knowledge may allow better selection of SELEX rounds for in vivo
experiments or even the prediction of aptamers with improved bind-
ing affinities. However, it was also shown how in reality SELEX exper-
iments deviate from the idealized theoretical foundation, hampering
those applications. Dedicated laboratory experiments implementing
remedies for these deviations would be needed to investigate whether
the outlined problems can be overcome to unleash the unexploited po-
tential of HT-SELEX data.

Biotite follows goodpractices in software development. Most of its com-
ponents are comprehensively tested to ensure correctness of its func-
tions. Every public function is documented to make the library not
only accessible to its active developers, but to a larger base of users. A
tutorial and application examples on the official documentation web-
site provide an introduction for newcomers. The Biotite package is dis-
tributed for all common operating systems, includingWindows,MacOS
and Linux, via both major package managers Conda and pip. Further-
more, it is developedunder anopen-source license. First, thismakes al-
gorithms, whose initial software implementation is not easily or freely
available, accessible to the public. Second, it encourages external de-
velopers to contribute to the future progression of the project. With
these presentedmeasuresBiotite commits to a sustainable bioinformat-
ics ecosystem leading to reproducible scientific results.
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CHAPTEr A

Supplementary figures and tables

Package Code repository Documentation

Biotite github.com/biotite-dev/biotite www.biotite-python.org

Ammolite github.com/biotite-dev/ammolite ammolite.biotite-python.org

Gecos github.com/biotite-dev/gecos gecos.biotite-python.org

fastpdb github.com/biotite-dev/fastpdb github.com/biotite-dev/fastpdb

Hydride github.com/biotite-dev/hydride hydride.biotite-python.org

Springcraft github.com/biotite-dev/springcraft springcraft.biotite-python.org

Table A.1: Websites for Biotite and its
extension packages.

CNBD position a b c

sdENM -0.65 0.71 -0.66
eANM -0.66 0.71 -0.69

constant γ -0.64 0.71 -0.68

Table A.2: Overlap between induced
and required displacement in HCN4
CNBD. The displacement overlap for
combinations of force field and CNBD
position relative to the first binding is
tabulated.

PM:
GGGCAACUCCAAGCUAGAUCUACCGGUAGAACCCACAGUUCUACAACAAA

CCACCAGAGACAGUCUUCUACUGGCUUCUACUGAGCAGGGAAAAUGGCUA

GCAAAGGAGAAGAACUUUUCACU

CL:
GGGCAACUCCAAGCUAGAUCUACCGGUAAAUGACUGUAUUUUUAUUACAG

UUGAUAAGACAAAAAACACUACUGGCUUCUACGCCUUACCGAAAAUGGCU

AGCAAAGGAGAAGAACUUUUCACU

Figure A.1: Aptamer candidate se-
quences obtained from SELEX exper-
iments. RNA sequences are given from
5’-end to 3’-end.

https://github.com/biotite-dev/biotite
https://www.biotite-python.org
https://github.com/biotite-dev/ammolite
https://ammolite.biotite-python.org
https://github.com/biotite-dev/gecos
https://gecos.biotite-python.org
https://github.com/biotite-dev/fastpdb
https://github.com/biotite-dev/fastpdb
https://github.com/biotite-dev/hydride
https://hydride.biotite-python.org
https://github.com/biotite-dev/springcraft
https://springcraft.biotite-python.org


158 SUPPLEmEnTArY FIGUrES AnD TABLES

Figure A.2: Amplification and fre-
quencyofDNAspecies inTFSELEXex-
periments. For each of the exemplarily
displayed TF the respective last round is
displayed. The Spearman correlation for
each experiment is shown in the bottom
right.
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Table A.3: Optimum hyperparame-
ters for pKd prediction.

Parameter Value

Batch size 100
Learning rate 0.0003
Weight decay 0.0001
Kernel size 7
Number of channels 30
Number of fully connected nodes 15
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Mutations ∆pKd

∆54 A61C 0.75
G53A A61C 0.74
G58C A61C 0.74
∆34 A61C 0.74
T55A A61C 0.73
A54T A61C 0.72
A61C C79A 0.70
C34A A61C 0.70
G53T A61C 0.68
A56T A61C 0.68

Table A.4: Top 10 of CL aptamer can-
didate double mutants. The table de-
picts the double mutants from the in sil-
ico mutation scan with the highest pre-
dicted∆pKd value.
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CHAPTEr B

Abbreviations

ANM Anisotropic networkmodel
APC Activated protein C
API Application programming interface
AQ Amodiaquine
cAMP Cyclic adenosinemonophosphate
CCD Chemical Component Dictionary
CGO Compiled graphics object
CL Cortisol
CLI Command-line interface
CN Cortisone
CNBD Cyclic nucleotide binding domain
CNN Convolutional neural network
CQ Chloroquine
Cryo-EM Cryogenic electronmicroscopy
CX Ciprofloxacin
DNA Deoxyribonucleic acid
E-value Expect value
ENM Elastic networkmodel
FMN Flavinmononucleotide
FRET Förster resonance energy transfer
GNM Gaussian networkmodel
GUI Graphical user interface
HCN Hyperpolarization-activated cyclic nucleotide-

gated channel
HT-SELEX High-throughput SELEX
HTS High-throughput sequencing
LRT Linear response theory
LX Levofloxacin
MD Molecular dynamics
MFE Minimum free energy
mRNA Messenger RNA
MSA Multiple sequence alignment
MSE Mean squared error
NA Nucleic acid
NM Neomycin
NMA Normalmode analysis
NN Neural network
PB Protein blocks
PCR Polymerase chain reaction
PDB Protein Data Bank
PEOE Partial equalization of orbital electronegativity
PM Paramomycin
PPV Positive predicted value



Qeq Charge equilibration
RMSD Rootmean square deviation
RMSF Rootmean square fluctuation
RNA Ribonucleic acid
rRNA Ribosomal RNA
SELEX Systematic evolution of ligands by exponential en-

richment
sRGB Standard RGB
TF Transcription factor
tRNA Transfer-RNA
UFF Universal force field
UPGMA Unweighted pair group method with arithmetic

mean
VEGF anti-vascular endothelial growth factor
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