
Computer Science
Department
Intelligente Autonome
Systeme

Reinforcement Learning
Curricula as Interpolations
between Task Distributions
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
Vorgelegte Dissertation von Pascal Klink aus Weinheim
Tag der Einreichung: 22.09.2023, Tag der Prüfung: 07.11.2023

1. Gutachten: Prof. Jan Peters, Ph. D.
2. Gutachten: Prof. Peter Stone, Ph. D.
3. Gutachten: Asst. Prof. Dr. Joni Pajarinen
Darmstadt – D17

Reinforcement Learning Curricula as Interpolations between Task Distributions

Submitted doctoral thesis by Pascal Klink

Date of submission: 22.09.2023
Date of thesis defense: 07.11.2023

Darmstadt – D17

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-247829
URL: http://tuprints.ulb.tu-darmstadt.de/24782

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/
This work is licensed under a Creative Commons License:
Attribution–ShareAlike 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/

http://tuprints.ulb.tu-darmstadt.de/24782
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Erklärungen laut Promotionsordnung

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftli-
chen Version übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht
wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthe-
ma und Ergebnis dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter
Verwendung der angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 22.09.2023
P. Klink

iii

Abstract

In the last decade, the increased availability of powerful computing machinery has led to
an increasingly widespread application of machine learning methods. Machine learning
has been particularly successful when large models, typically neural networks with an
ever-increasing number of parameters, can leverage vast data to make predictions.

While reinforcement learning (RL) has been no exception from this development, a distin-
guishing feature of RL is its well-known exploration-exploitation trade-off, whose optimal
solution – while possible to model as a partially observable Markov decision process –
evades computation in all but the simplest problems. Consequently, it seems unsurprising
that notable demonstrations of reinforcement learning, such as an RL-based Go agent
(AlphaGo) by Deepmind beating the professional Go player Lee Sedol, relied both on the
availability of massive computing capabilities and specific forms of regularization that
facilitate learning. In the case of AlphaGo, this regularization came in the form of self-play,
enabling learning by interacting with gradually more proficient opponents.

In this thesis, we develop techniques that, similarly to the concept of self-play of Al-
phaGo, improve the learning performance of RL agents by training on sequences of
increasingly complex tasks. These task sequences are typically called curricula and are
known to side-step problems such as slow learning or convergence to poor behavior that
may occur when directly learning in complicated tasks. The algorithms we develop in
this thesis create curricula by minimizing distances or divergences between probability
distributions of learning tasks, generating interpolations between an initial distribution
of easy learning tasks and a target task distribution. Apart from improving the learning
performance of RL agents in experiments, developing methods that realize curricula as
interpolations between task distributions results in a nuanced picture of key aspects of
successful reinforcement learning curricula.

In Chapter 1, we start this thesis by introducing required reinforcement learning no-
tation and then motivating curriculum reinforcement learning from the perspective of
continuation methods for non-linear optimization. Similar to curricula for reinforcement

v

learning agents, continuation methods have been used in non-linear optimization to solve
challenging optimization problems. This similarity provides an intuition about the effect
of the curricula we aim to generate and their limits.

In Chapter 2, we transfer the concept of self-paced learning, initially proposed in the super-
vised learning community, to the problem of RL, showing that an automated curriculum
generation for RL agents can be motivated by a regularized RL objective. This regularized
RL objective implies generating a curriculum as a sequence of task distributions that trade
off the expected agent performance against similarity to a specified distribution of target
tasks. This view on curriculum RL contrasts existing approaches, as it motivates curricula
via a regularized RL objective instead of generating them from a set of assumptions about
an optimal curriculum. In experiments, we show that an approximate implementation
of the aforementioned curriculum – that restricts the interpolating task distribution to a
Gaussian – results in improved learning performance compared to regular reinforcement
learning, matching or surpassing the performance of existing curriculum-based methods.

Subsequently, Chapter 3 builds up on the intuition of curricula as sequences of inter-
polating task distributions established in Chapter 2. Motivated by using more flexible task
distribution representations, we show how parametric assumptions play a crucial role in
the empirical success of the previous approach and subsequently uncover key ingredients
that enable the generation of meaningful curricula without assuming a parametric model
of the task distributions. One major ingredient is an explicit notion of task similarity via a
distance function of two Markov Decision Processes. We turn towards optimal transport
theory, allowing for flexible particle-based representations of the task distributions while
properly considering the newly introduced metric structure of the task space. Combined
with other improvements to our first method, such as a more aggressive restriction of the
curriculum to tasks that are not too hard for the agent, the resulting approach delivers
consistently high learning performance in multiple experiments.

In the final Chapter 4, we apply the refined method of Chapter 3 to a trajectory-tracking
task, in which we task an RL agent to follow a three-dimensional reference trajectory
with the tip of an inverted pendulum mounted on a Barrett Whole Arm Manipulator.
The access to only positional information results in a partially observable system that,
paired with its inherent instability, underactuation, and non-trivial kinematic structure,
presents a challenge for modern reinforcement learning algorithms, which we tackle via
curricula. The technically infinite-dimensional task space of target trajectories allows us
to probe the developed curriculum learning method for flaws that have not surfaced in
the rather low-dimensional experiments of the previous chapters. Through an improved

vi

optimization scheme that better respects the non-Euclidean structure of target trajectories,
we reliably generate curricula of trajectories to be tracked, resulting in faster and more
robust learning compared to an RL baseline that does not exploit this form of structured
learning. The learned policy matches the performance of an optimal control baseline on
the real system, demonstrating the potential of curriculum RL to learn state estimation
and control for non-linear tracking tasks jointly.

In summary, this thesis introduces a perspective on reinforcement learning curricula
as interpolations between task distributions. The methods developed under this perspec-
tive enjoy a precise formulation as optimization problems and deliver empirical benefits
throughout experiments. Building upon this precise formulation may allow future work to
advance the formal understanding of reinforcement learning curricula and, with that, en-
able the solution of challenging decision-making and control problems with reinforcement
learning.

vii

Kurzfassung

In den letzten zehn Jahren hat die zunehmende Verfügbarkeit leistungsstarker Computer
zu einer immer breiteren Anwendung von Methoden des maschinellen Lernens geführt.
Das maschinelle Lernen ist besonders erfolgreich, wenn große Modelle, in der Regel
neuronale Netze mit einer immer größer werdenden Anzahl von Parametern, große Da-
tenmengen nutzen können, um Vorhersagen zu treffen.

Während das Verstärkungslernen (Reinforcement Learning, RL) keine Ausnahme von
dieser Entwicklung darstellt, ist der bekannte “Exploration-Exploitation Trade-Off” ein
entscheidendes Merkmal von RL, dessen optimale Lösung - obwohl sie als teilweise beob-
achtbarer Markov-Entscheidungsprozess modelliert werden kann - sich der Berechnung bei
allen außer den einfachsten Problemen entzieht. Daher scheint es nicht überraschend, dass
bemerkenswerte Demonstrationen des Reinforcement Learnings, wie z.B. der RL-basierte
Go-Agent AlphaGo von Deepmind, der den professionellen Go-Spieler Lee Sedol besiegte,
sowohl auf die Verfügbarkeit massiver Rechenkapazitäten als auch auf spezifische Formen
der Regularisierung, die das Lernen erleichtern, angewiesen war. Im Fall von AlphaGo
kam diese Regularisierung in Form von Selbstspiel, welches das Lernen durch Interaktion
mit allmählich besser werdenden Gegnern ermöglicht.

In dieser Arbeit entwickeln wir Techniken, die, ähnlich wie das Konzept des Selbstspiels
von AlphaGo, die Lernleistung von RL-Agenten durch das Training auf Sequenzen von
zunehmend komplexen Aufgaben verbessern. Diese Aufgabensequenzen werden typi-
scherweise als Curricula bezeichnet und sind dafür bekannt, Probleme wie langsames
Lernen oder Konvergenz zu schlechtem Verhalten zu umgehen, die beim direkten Ler-
nen in komplizierten Aufgaben auftreten können. Die Algorithmen, die wir in dieser
Arbeit entwickeln, erstellen Curricula, indem sie Abstände oder Divergenzen zwischen
Wahrscheinlichkeitsverteilungen von Lernaufgaben minimieren. Dabei erzeugen sie In-
terpolationen zwischen einer Anfangsverteilung von einfachen Lernaufgaben und einer
Zielaufgabenverteilung. Neben der Verbesserung der Lernleistung von RL-Agenten in
Experimenten führt die Entwicklung von Methoden, die Curricula als Interpolationen
zwischen Aufgabenverteilungen realisieren, zu einem differenzierteren Bild von Schlüsse-
laspekten erfolgreicher Reinforcement Learning Curricula.

ix

In Kapitel 1 beginnen wir diese Arbeit mit einer Einführung in die erforderliche No-
tation des Reinforcement Learnings und motivieren dann das Reinforcement Learning mit
Curricula aus der Perspektive von Continuation Methods in der nichtlinearen Optimierung.
Ähnlich wie bei Curricula für das Verstärkungslernen werden Continuation Methods in
der nichtlinearen Optimierung verwendet, um schwierige Optimierungsprobleme zu lösen.
Diese Ähnlichkeit vermittelt eine Intuition über den Effekt und die Grenzen der Curricula,
die wir erstellen wollen.

In Kapitel 2 übertragen wir das Konzept des Self-Paced Learnings, das ursprünglich
im Bereich des Supervised Learnings vorgeschlagen wurde, auf das Problem des RL,
indem wir zeigen, dass eine automatisierte Curriculumerstellung für RL-Agenten durch
ein regularisiertes RL Problem motiviert werden kann. Dieses regularisierte RL Problem
impliziert die Generierung eines Curriculums als eine Sequenz von Aufgabenverteilungen,
die die erwartete Agentenleistung gegen die Ähnlichkeit mit einer spezifizierten Verteilung
von Zielaufgaben abwägen. Diese Sichtweise auf das Curriculum Reinforcement Learning
steht im Gegensatz zu bestehenden Ansätzen, da sie Curricula über ein regularisiertes
RL Problem motiviert, anstatt diese aus einer Reihe von Annahmen über einen optimalen
Lehrplan zu generieren. In Experimenten zeigen wir, dass eine approximative Implemen-
tierung des oben erwähnten Curriculums - die die interpolierende Aufgabenverteilung
auf eine Gauß-Verteilung beschränkt - zu einer verbesserten Lernleistung im Vergleich
zu regulärem Reinforcement Learning führt und die Leistung bestehender curriculum-
basierter Methoden erreicht oder übertrifft.

Anschließend baut Kapitel 3 auf der in Kapitel 2 entwickelten Intuition von Lehrplänen als
Sequenzen interpolierender Aufgabenverteilungen auf. Motiviert durch die Verwendung
flexiblerer Repräsentationen von Aufgabenverteilungen zeigen wir, wie parametrische
Annahmen eine entscheidende Rolle für den empirischen Erfolg des vorherigen Ansat-
zes spielen, und decken anschließend Schlüsselbestandteile für die Erstellung sinnvoller
Curricula ohne Annahmen über parametrische Modelle der Aufgabenverteilungen auf.
Ein wichtiger Bestandteil ist ein expliziter Begriff der Aufgabenähnlichkeit über eine
Distanzfunktion zweier Markov-Entscheidungsprozesse. Wir wenden uns der Theorie
des optimalen Transports zu, die flexible partikelbasierte Darstellungen der Aufgaben-
verteilungen ermöglicht und gleichzeitig die neu eingeführte metrische Struktur des
Aufgabenraums angemessen berücksichtigt. In Kombination mit anderen Verbesserun-
gen unserer ersten Methode, wie einer aggressiveren Beschränkung des Lehrplans auf
Aufgaben, die für den Agenten nicht zu schwer sind, liefert der resultierende Ansatz in
mehreren Experimenten eine konstant hohe Lernleistung.

x

Im abschließenden Kapitel 4 wenden wir die verfeinerte Methode aus Kapitel 3 auf
eine Bahnverfolgungsaufgabe an, bei der wir einen RL-Agenten damit beauftragen, einer
dreidimensionalen Referenztrajektorie mit der Spitze eines, auf einem Barrett-Wholearm-
Manipulator montierten, sphärischen Pendels zu folgen. Die partielle Beobachtbarkeit
des Systems durch das Fehlen von Geschwindigkeitsinformationen, gepaart mit einem
inhärent instabilen, unteraktuierten System und einer nicht-trivialen Kinematik, stellt eine
Herausforderung für moderne Reinforcement-Learning-Algorithmen dar, die wir mit Hilfe
von Curricula angehen. Der technisch unendlich-dimensionale Aufgabenraum der Ziel-
trajektorien erlaubt es uns, die entwickelte Curriculum-Lernmethode auf Schwächen zu
untersuchen, die in den eher niedrig-dimensionalen Experimenten der vorherigen Kapitel
nicht auftraten. Durch ein verbessertes Optimierungsschema, das die nicht-euklidische
Struktur der Zieltrajektorien besser berücksichtigt, generieren wir zuverlässig Curricula
über zu verfolgende Trajektorien. Das Training auf diesen Trajektorien führt zu schnelle-
rem und robusterem Lernen als direktes Training auf den Zieltrajektorien. Das erlernte
Verhalten erreicht auf dem realen System die Leistung eines Reglers, der mit Hilfe von
Ansätzen der Optimalen Steuerung entworfen wurde, was das Potenzial von Curriculum-
RL für das gemeinsame Erlernen von Zustandsschätzung und Regelung für nichtlineare
Bahnverfolgungsaufgaben demonstriert.

Zusammenfassend führt diese Arbeit eine Perspektive auf Reinforcement Learning Curri-
cula als Interpolationen zwischen Aufgabenverteilungen ein. Die unter dieser Sichtweise
entwickelten Methoden genießen eine präzise Formulierung als Optimierungsprobleme
und liefern in Experimenten empirische Vorteile. Aufbauend auf dieser präzisen Formulie-
rung können zukünftige Arbeiten das formale Verständnis von Reinforcement Learning
Curricula vorantreiben und damit die Lösung von anspruchsvollen Entscheidungs- und
Kontrollproblemen mit Reinforcement Learning ermöglichen.

xi

Acknowledgement

Looking back at the past years, I want to thank those people who were a part of my
professional and private life throughout this time and have, knowingly or not, contributed
to the appearance of this thesis.
Without the continued support of my supervisors Joni Pajarinen and Jan Peters and their
tremendous experience and valuable advice, I would not have been able to explore my
ideas and, more importantly, carry on with them even in the face of challenges and doubts.
Only through the thorough work of my thesis committee this document becomes more than
a collection of research results. Therefore, I additionally thank Peter Stone for evaluating
my thesis and Max Mühlhäuser, Oskar von Stryk, and Kristian Kersting for their work in
the committee.
The past years would have been even more intimidating and challenging without knowing
a secure place of retreat. Consequently, I am forever indebted to my parents, Anette- and
Thomas Klink, my whole family, my love, Marlene Hecht, and my friends for guiding and
accompanying me to and during this stage of my life.
Apart from my supervisors, my colleagues were essential in creating an inspiring and
friendly environment in which to enjoy my time. I want to thank Hany Abdulsamad and
Boris Belousov for their excellent supervision throughout my Master’s Thesis, which was
an essential part of my decision to continue my path in academia, and their continued
support throughout my years at IAS. Together with Fabio Muratore, João Carvalho, Joseph
Watson, Michael Lutter, Samuele Tosatto, Svenja Stark, and the rest of the IAS lab, they
made my days in the office worthwhile, regardless of the success or failure of experiments
and submissions.
Having learned invaluable lessons during my internship outside of the IAS lab, I want
to thank the team at Amazon Robotics in Berlin, led by Alexander Melkozerov and Can
Erdogan, for the great time I enjoyed there. My mentor, Kiru Park, and the whole team
made this time unforgettable.
Apart from my collaborators, who all except for Carlo D’Eramo, Kai Ploeger, Peter Nickl,
and Tuan Dam have been named above, I want to thank my students for their insightful
work and discussions. I want to particularly thank Haoyi Yang and Florian Wolf, with
whom I worked together on those papers that resulted in Chapters 3 and 4 of this thesis.

xiii

Contents

1. Introduction 1
1.1. A Homotopy Perspective on Curriculum Reinforcement Learning 2

1.1.1. Reinforcement Learning as Optimization 3
1.1.2. Local Optima, Regularization, and Reward Shaping 5
1.1.3. Homotopic-Continuation Methods 8
1.1.4. Homotopies via Changing Task Distributions 9

1.2. Thesis Outline and Contributions . 10
1.3. Common Notation . 12

2. Self-Paced Reinforcement Learning 17
2.1. Introduction . 17
2.2. Related Work . 19
2.3. Preliminaries: Self-Paced Learning . 21
2.4. A Probabilistic Interpretation of Self-Paced Learning 22
2.5. Self-Paced Learning for Reinforcement Learning 25
2.6. Application to Episodic Reinforcement Learning 27

2.6.1. Algorithmic Implementation . 28
2.6.2. Experiments . 30

2.7. Application to Step-Based Reinforcement Learning 35
2.7.1. Algorithmic Implementation . 35
2.7.2. Experiments . 36

2.8. Improved α-Schedule . 42
2.9. An Inference Perspective on Self-Paced Reinforcement Learning 44

2.9.1. RL as Inference . 44
2.9.2. Connection to Self-Paced Reinforcement Learning 46
2.9.3. Self-Paced Learning as Tempering 46

2.10.Conclusion . 48

3. On the Benefit of Optimal Transport for Curriculum Reinforcement Learning 51
3.1. Introduction . 51

xv

3.2. Related Work . 53
3.3. Divergence-Minimizing Curriculum Reinforcement Learning 55
3.4. Curriculum Reinforcement Learning as Constrained Optimal Transport . . 56

3.4.1. Limitations of the KL Divergence 56
3.4.2. Challenges of Expected Performance Constraints 58

3.5. Approximate Algorithms for Discrete- and Continuous Context Spaces . . . 60
3.5.1. Approximate Wasserstein Barycenters 60
3.5.2. Approximate gradient . 61
3.5.3. Approximate currot . 61

3.6. Experiments . 64
3.6.1. E-Maze Environment . 64
3.6.2. Unlock-Pickup Environment . 67
3.6.3. Point-Mass Environment . 69
3.6.4. Sparse Goal-Reaching Environment 70
3.6.5. Teach My Agent . 72

3.7. Conclusion . 74

4. Tracking Control for a Spherical Pendulum via Curriculum Reinforcement
Learning 75
4.1. Introduction . 75
4.2. Related Work . 77
4.3. Reinforcement Learning System . 78

4.3.1. Simulation Environment and Policy Representation 78
4.3.2. Facilitating Sim2Real Transfer . 80
4.3.3. Trajectory Representations . 81
4.3.4. Curriculum Reinforcement Learning 83

4.4. Improved Curriculum Generation . 84
4.4.1. Affine Metrics . 85
4.4.2. Sampling-Based Optimization . 85
4.4.3. Tracking Metrics Other than Reward 86
4.4.4. GPU Implementation . 87

4.5. Experiments . 87
4.5.1. Quantitative Results . 89
4.5.2. Qualitative Analysis of Generated Curricula 90
4.5.3. Alternative Trajectory Representation 92
4.5.4. Real Robot Results . 93

4.6. Conclusion . 96

xvi

5. Conclusion and Future Work 99

6. Contribution Statements 103
6.1. Contributions to Chapter 2 . 103
6.2. Contributions to Chapter 3 . 103
6.3. Contributions to Chapter 4 . 104

A. Appendix to Chapter 1 105

B. Appendix to Chapter 2 107
B.1. Proof of Theorem 1 . 107
B.2. Self-Paced Episodic Reinforcement Learning Derivations 109
B.3. Regularized Policy Updates . 111
B.4. Experimental Details . 112

B.4.1. Episodic Setting . 113
B.4.2. Step-Based Setting . 118

C. Appendix to Chapter 3 127
C.1. Computational Cost of Optimal Transport 127
C.2. currot Search for Feasible Contexts . 128
C.3. Experimental Details . 128

C.3.1. Algorithm Hyperparameters . 129
C.3.2. E-Maze Environment . 131
C.3.3. Unlock-Pickup Environment . 133
C.3.4. Point-Mass Environment . 137
C.3.5. Sparse Goal-Reaching Environment 139
C.3.6. Teach My Agent . 140

D. Appendix to Chapter 4 141
D.1. High-Dimensional Ablations . 141
D.2. Modeling Network Communication Delays 142
D.3. Analytic Solution to the LTI System Equations 143

Bibliography 145

List of Figures 163

List of Algorithms 165

xvii

List of Tables 167

Publication List 169

Curriculum Vitae 171

xviii

1. Introduction

Reinforcement learning (RL) research aims to build and understand agents that leverage
experience to maximize a reward signal using their actions. In the last decade, pairing
this framework for decision-making with advances in neural function approximators has
pushed the boundaries of problems that can be tackled with RL [134, 183, 8, 173, 42],
receiving widespread attention in the scientific community.
For example, the AlphaGo algorithm by Google Deepmind [182, 183] was the first to
beat the professional Go player Lee Sedol in a widely covered match. Apart from the
combination of tree search with value function approximation, a key ingredient in the
algorithm’s success was the concept of self-play, i.e., playing against a previous version of
the learning agent. The use of self-play ensured that the proficiency of the encountered
opponent gradually increased over learning until ultimately reaching and surpassing the
competency of the best human players.
In another work, OpenAI paired function approximation with large-scale reinforcement
learning to learn dexterous robotic in-hand manipulation of a Rubik’s Cube [8]. The
learning agent was trained in simulation, and the transfer of learned behavior to the real
system was enabled by adaptively randomizing aspects of the environment, e.g., surface
friction, such that the agent encountered heavier randomization as it grew more proficient.
Another, more recent, robotics application of RL enabled the locomotion of a quadruped
with a policy learned entirely in simulation via RL [173]. Leveraging recent progress in
GPU-accelerated simulation allowed the researchers to complete the training on a single
GPU in minutes. The final agent could progress through complicated terrain, such as
stairs and cluttered scenes, without requiring traditional foot-planning methods. Training
started with walking in flat terrain and progressed to increasingly challenging scenarios,
such as the stairs shown in Figure 1.1.
All these applications sequentially train the agent on versions of a target learning task
with increasing difficulty. Training starts with easy versions of the task and exposes the
agent to increasingly challenging ones as it gains proficiency. Depending on the learning
task, this form of structured learning can either increase the learning speed or be even
indispensable for learning. Interestingly, these ideas have not only been investigated as
part of increasingly large-scale applications of RL but have been around for decades, albeit

1

(a) AlphaGo (b) OpenAI Rubik’s Cube (c) ANYmal Locomotion

Figure 1.1.: Recent applications of reinforcement learning to solve non-trivial decision
making and control tasks using curricula. In Figure 1.1a, we see AlphaGo [182] playing
against Lee Sedol. Figure 1.1b shows a robot trained with RL manipulating a Rubik’s
cube [8]. Finally, Figure 1.1c shows that ANYmal robot climbing stairs using a control-law
learned with reinforcement learning in simulation [173].

not giving a particular name [181, 11]. Over time, investigations around these concepts
have been carried out under different terms, such as active- [14], transfer- [193], or
curriculum learning [20], depending on their particular focus.
This thesis is driven by the question of how to schedule the complexity of a learning envi-
ronment to improve the learning performance of RL agents, or in simpler words, how to
build curricula for such agents. We provide answers to this question by developing and
benchmarking multiple methods that generate reinforcement learning curricula. All these
methods optimize divergences or distances between distributions of learning tasks, or
more formally, Markov decision processes, to create interpolations between them. Testing
and refining these methods throughout the thesis will result in algorithms that increasingly
account for the nuanced aspects of curriculum generation.
Before outlining these developments, we discuss the connection between the proposed
methods in this thesis and continuation methods for non-linear optimization in the follow-
ing section. This connection allows us to introduce reinforcement learning and obtain an
intuition on the effect and limits of the curricula we aim to generate.

1.1. A Homotopy Perspective on Curriculum Reinforcement
Learning

Aside from the empirically observed benefits of curricula in RL, methods for and inves-
tigations of curriculum reinforcement learning are often motivated by concepts from
psychology or analogies to human learning, such as shaping [184], intrinsic motivation
[15, 14], teacher-student paradigms [162, 90], self-play [182, 186] or the zone of proximal

2

development [199]. Taking a different perspective, Bengio et al. [20] connect curricula to
continuation methods for optimizing non-linear functions and finding roots of systems of
non-linear equations. We detail this connection in the following sections, simultaneously
introducing required reinforcement learning notation.

1.1.1. Reinforcement Learning as Optimization

To develop a more precise connection between curriculum reinforcement learning (CRL)
and continuation methods, we will first introduce the RL objective and policy gradients as
one of the working principles of modern on-policy RL algorithms. Reinforcement Learning
requires a precise definition of an environment, which is given by a so-called Markov
decision process (MDP)M, a quintupleM = ⟨S,A, p, r, p0⟩ that defines the state-space S,
action-space A, dynamics p:S ×A×S ↦→ R≥0, reward function r:S ×A ↦→ R, and initial
state distribution p0:S ↦→ R≥0

1. In this model of an environment, an agent starts in an
initial state s0 ∼ p0(s) sampled from the initial state distribution. Upon observing the first
observation, the agent needs to select an action a0 ∈ A, which then leads to a transition
in the environment s1 ∼ p(s|s0,a0) according to the dynamics. As part of this transition,
the agent receives the reward r(s0,a0). This action-observation cycle repeats indefinitely,
and the process of action selection is modeled by the so-called policy π : S ×A ↦→ R≥0.
We will refer to the space of all possible policies as P.
Using the introduced notation, reinforcement learning can be formalized as finding a policy
π ∈ P that maximizes a γ-discounted expected return

max
π∈P

J(π,M) = max
π∈P

Ep0(s0),p(st+1|st,at),π(at|st)

[︄ ∞∑︂
t=0

γtr(st,at)

]︄
. (1.1)

Objective (1.1) is typically optimized knowing neither the analytic form of the dynamics,
reward, or initial state distribution. The learning agent relies on experience in the form of
transitions (st,at, st+1, rt) arising from environment interactions, with st+1 ∼ p(s|st,at)
and rt = r(st,at). The discount factor γ ∈ [0, 1) is one way of dealing with the – in general
– unbounded sum of rewards arising from the infinite action-observation cycle, and there
is ongoing work on the implications of this choice [107, 143, 4, 179]. Another way of
coping with infinity is to look at the average-reward RL setting, which we omit here.
Stating the RL objective (1.1), we ignored the challenge of its optimization in practice.
An essential part of this optimization is the value function of a policy π

V π(s,M) = Eπ(a|s)
[︁
r(s,a) + γEp(s′|s,a)

[︁
V π(s′,M)

]︁]︁
, (1.2)

1The reward function is often also defined as r : S×A×S ↦→ R. It is also possible to look at state-dependent
action spaces A : S ↦→ P(A), where P(·) denotes the power set.

3

which encodes the expected discounted return obtained by the agent following policy
π from state s. Expanding the recursive definition of the value function, we see that
objective (1.1) maximizes the initial state’s expected value under the policy

max
π∈P

J(π,M) = max
π∈P

Es0∼p0(s) [V
π(s0,M)] .

More importantly, it can be shown that the value function corresponding to the optimal
policy π∗, which maximizes the expected discounted return in a given MDPM, adheres
to the following recursive definition

V ∗(s,M) = max
a∈A

r(s,a) + γEp(s′|s,a)
[︁
V ∗(s′,M)

]︁
= max

a∈A
Q∗(s,a,M),

where we have introduced the so-called (optimal) state-action value function Q∗(s,a,M),
also called Q-function. For a given policy π, the Q-function Qπ(s,a,M) encodes, similarly
to the value function, the expected discounted return of the agent performing action a in
state s and then following π. Initial work on dynamic programming focused on estimating
V ∗ and Q∗ from full process knowledge [17, 75]. Temporal difference (TD) methods
[188, 207] have enabled the estimation using online samples only. These approaches have
been highly successful for discrete state-action spaces since TD methods are guaranteed
to converge to Q∗. Furthermore, Q∗ fully encodes the optimal policy π∗. For large
or continuous state-action spaces, it is, however, inevitable to resort to some form of
function approximation to represent either policy, value-, or Q-function. The necessary
introduction of function approximation and the accompanying errors are hard to specify
precisely in general settings, and hence, proofs of convergence for approximate dynamic
programming or -temporal difference learning rely on assumptions on the MDP and/or
function approximator [198, 141, 129].
Opposed to viewing RL as the problem of estimating and approximating the value function,
policy-gradient methods [217, 190, 125] allow us to compute the gradient of the RL
objective from samples collected by executing the agent’s policy. Starting from a policy πθ
that is parameterized by θ ∈ Θ and differentiable everywhere w.r.t. θ, the policy-gradient
theorem by Sutton et al. [190] shows that the gradient of the agent performance w.r.t. the
policy parameters can be computed as

∇θJ(πθ,M) = Edπθ (s)

[︄∑︂
a∈A
∇θπθ(s,a)Q

πθ(s,a,M)

]︄
, (1.3)

with dπ(s) = (1− γ)Es0∼p0(·)
[︁∑︁∞

t=0 γ
tp(st|s0, π)

]︁ representing the (discounted) distribu-
tion of states visited under the current policy π2.
2Note that the original paper only looked at the case of a designated state s0 but that given the form of the
policy gradient, it is easy to just pull the extra expectation over s0 ∼ p0(s) into dπ.

4

The gradient (1.3) has found widespread application in practice since it does not require
computing derivatives of the long-term environment dynamics dπθ(s) w.r.t. θ explicitly.
Instead, the Q-function values implicitly capture this interdependence, allowing to ap-
proximate the expectation w.r.t. dπ(s) from samples collected during policy execution.
The Q-values that weigh the individual gradients of the policy w.r.t. the parameters θ
can, in the simplest form, be approximated from a single rollout {(st,at, rt, st+1)|t ≥ 0},
yielding an approximate gradient [6, Lemma 4.10]
∇θJ

1− γ
≈

∞∑︂
t=0

γt∇θ log(πθ(st,at))Q
πθ(st,at,M)≈

∞∑︂
t=0

γt

(︄
∇θ log(πθ(st,at))

∞∑︂
k=0

γkrt+k

)︄
.

(1.4)
In practice, the effect of diminishing returns modeled by γt allows practitioners to estimate
a finite time-horizon T , after which the contributions of rewards are negligible, and hence,
the simulation or experiment can be reset, leading to a practical algorithm. 3
In this simplest form, the sample approximation of the outer expectation in the policy
gradient (1.3) and the approximation of the Q-values introduce significant variance in
the gradients. Williams [217] discussed variance-reduction techniques by subtracting
a (possibly state-dependent) baseline. Indeed, variance reduction is an essential part
of modern policy-gradient RL algorithms that are, e.g., based on the concept of an ad-
vantage function Aπ(s,a,M) = Qπ(s,a,M)− V π(s,M) [178, 177]. Regardless of the
specific instantiation of the policy gradient theorem (1.3), it provides intuition of RL as
an ordinary gradient-based optimization of the non-linear RL objective J(πθ,M), where
the optimization is complicated by having only access to gradients ∇θJ(πθ,M) that are
corrupted by noise.

1.1.2. Local Optima, Regularization, and Reward Shaping

Reducing RL to an ordinary non-linear optimization problem over policy parameters θ
(with typically noisy gradient observations) highlights its susceptibility to challenging loss
functions f(θ) whose local optima or flat regions can lead to sub-optimal optimization
outcomes or slow optimization progress.
Figure 1.2a shows an example of a reward function r(s0, a) for an arbitrary but fixed state
s0 ∈ S containing a local optimum. The red line in Figure 1.2a highlights the basin of
attraction of the global optimum if we were to optimize r(s0, a) over the action a ∈ A with
gradient-based methods. We can construct a minimal MDPM to formulate the gradient-
based optimization of r(s0, a) w.r.t. a as an RL problem by picturing an MDP in which the
3This truncation is subject to significant discussion and can have significant impact on the quality of the
policy [143].

5

(a) Function r(s, a) with two Optima (b) Function J(πθ,M) for a Gaussian Policy

(c) Function J10−4(πθ,M) (d) Function J10−2(πθ,M)

Figure 1.2.: (a) A reward function r(s, a) with a local- (cross) and global (circled cross)
optimum. (b) The loss landscape of J(πθ,M) (Obj. 1.5). We see that the optima coincide
with those of r(s, a), since J(πθ,M) = r(s, a) for σ=0. The orange shaded region high-
lights the basin of attraction of the global optimum. (c+d) Loss landscapes of Jλ(πθ,M)
for varying entropy regularization λ. The new optima and the corresponding basins of
attraction of the global optima are shown in red and violet. We also visualize the basin of
attraction of the unregularized objective for comparison.

agent executes a single step obtaining r(s0, a), after which the execution terminates 4. We
define the policy πθ to be a Gaussian πθ(a|s0) = N (a|µ, σ) with parameters θ = [µ σ], as
is typical for RL algorithms in continuous spaces [157, 177, 66]. Given this policy choice,
the RL objective (1.1) corresponds to the expected function value

J(πθ,M) = EN (a|µ,σ) [r(s0, a)] . (1.5)

Figure 1.2b visualizes the function values and the basin of attraction of the global optimum
of J(πθ,M) over the parameter space θ. Not surprisingly, an optimum a∗ ∈ A of r(s0, a)
can be translated into an optimum θ∗ = [a∗ 0] of J(πθ,M). More interestingly, we can
4We show the formal definition of the corresponding MDP in the infinite horizon case in Appendix A.

6

see that the basin of attraction to the global optimum widens with increasing values of
σ, i.e., with increasing initial explorative behavior. Nonetheless, a large set of initial
policy parameter values still converge to the local optimum, even for larger values of the
parameter σ. A common way of improving the explorative behavior of RL agents is through
promoting higher-entropy policies in the loss function [218, 228, 66], i.e., modifying the
optimization objective to

max
θ

Jλ(πθ,M) = max
θ

J(πθ,M) + λH(πθ), H(p) = −
∫︂
X
p(x) log(p(x))dx.

Figure 1.2c shows the benefit of this promotion of explorative behavior via an entropy
bonus in our simple example problem, with moderate values of λ increasing the basin of
attraction to the global optimum of Jλ(πθ,M). However, Figure 1.2d also demonstrates
a trade-off when using entropy promotion for optimization problems via a fixed value
of λ, as both the global optimum of the (now regularized) objective Jλ(πθ,M) changes
with λ and, additionally, a too-large entropy regularization can promote convergence to a
sub-optimal high-entropy solution rather than the desired behavior.
This observation is a stereotypical challenge of reward shaping in reinforcement learning,
i.e., optimizing a “shaped” reward r̃(s, a) instead of the nominal one r(s, a) to obtain a
more robust convergence to optimal behavior. While the well-known result by Ng, Harada,
and Russell [149] shows that there at least exist reward transformations that leave the
optimal policy π∗ unchanged, the, in practice, more common trial-and-error approach
to reward-shaping can easily lead to invalid task specifications [26]. Examples of such
invalid task specifications include agents that learn to circle a target instead of reaching it
[166] or agents that are hesitant to stack objects to a tower to accumulate intermediate
rewards designed to speed up initial exploration [161].
Such perils of reward shaping are one motivation for investigating curricula in reinforce-
ment learning. By not restricting ourselves to training on one reward function r(s, a),
we can leverage a sequence of reward functions (ri(s, a))i∈[1,N] to train the agent. In
this sequence, the function r1(s, a) leads to learning a coarse solution of the target task,
which is then iteratively refined by subsequent reward functions ri(s, a) with i > 1. In our
example of entropy regularization, this corresponds to annealing the value of λ to zero as
the optimization progresses. Looking back at Figure 1.2d, we can see that first optimizing
Jλ(πθ,M) with an entropy regularization of λ=10−2 and, after convergence, setting λ=0
would have enabled robust convergence to the global optimum of J since both optima of
J10−2 are in the basin of attraction of the global optimum of J0 = J . In the next section,
we connect this idea of training on sequences of reward functions, or more generally on
sequences of MDPs, to continuation methods in non-linear optimization.

7

(a) Continuation to a Global Optimum (b) Continuation to a Local Optimum

Figure 1.3.: Visualizations of Gaussian continuations on two different functions. (a) shows
a Gaussian continuation applied to the function r(s0, a) from Figure 1.2a. (b) shows a
slight variation of r(s0, a) for which the Gaussian continuation does not lead to the global
optima. Bright colors indicate large standard deviation of the Gaussian kernel.

1.1.3. Homotopic-Continuation Methods

Treating the RL objective J(πθ,M) in Figure 1.2b as a regular function f ([µ σ]), we
can re-interpret the function as being a single argument function fσ(µ) with an external
parameter σ. In this case, the function fσ(µ) is obtained from r(s0, a) via a convolution
with a Gaussian kernel of standard deviation σ
fσ(µ) = EN (a|µ,σ) [r(s0, a)]

=

∫︂
A
r(s0, a)N (a|µ, σ)da

=

∫︂
A
r(s0, a)kσ(µ− a)da = (kσ∗r(s0, ·))(µ), kσ(x) =

1√
2πσ2

exp

(︃
− 1

2σ2
x2
)︃
.

As shown in Figure 1.3a, this family of functions spanned by the parameter σ smoothly
deforms the original objective function r(s0, a) = f0(µ) with its two local optima into a
function f1(µ)with only one global optimum. In mathematical terms, we call such a family
of functions that smoothly interpolates between a function f and g via a parameter σ∈[0, 1]
a homotopy hσ. Formally, we require that h0 = f , h1 = g, and the map (x, σ) ↦→ hσ(x) is
continuous.
Such homotopies are exploited in continuation- and homotopy methods [211, 214, 9] to
solve general systems of non-linear equations. The central idea of continuation methods via
homotopies is to solve an “easy” system of non-linear equations and to follow the solution
of this easy problem while gradually changing it using the homotopy. This approach
traces paths of solutions to the individual problems along the interpolation spanned by

8

the parameter σ. For our example problem, the corresponding solution path for varying
values of σ is highlighted in red in Figure 1.3a.
Recasting optimization as constraint satisfaction of, e.g., Karush-Kuhn-Tucker conditions
[212], homotopy methods have also been applied to general non-linear programming
[213, 5, 135] and control problems [59, 78, 37, 172, 139]. The homotopy fσ used in the
preceding example is a form of continuation via Gaussian smoothing [135], which has,
e.g., been successfully applied in the context of image alignment [136].
While the behavior of solution paths, as shown in Figure 1.3a, is theoretically well-
understood [35, 211, 212, 140] and conditions for the existence of paths from a solution
at σ=0 to a solution at σ=1 exist [35], it is, in general, not possible to predict which
particular solution will be obtained at σ=1 by the continuation method. Consequently,
these methods cannot guarantee convergence to the global optimum but only a stationary
point in non-linear optimization. Indeed, a slight change of our example function r(s0, a)
in Figure 1.3b reminds us of this lack of guarantee.

1.1.4. Homotopies via Changing Task Distributions

The minimal RL problem (1.5) allowed us to connect the idea of training on reward
function sequences to continuation methods in non-linear optimization, which smoothly
deform a challenging objective function via homotopies to avoid convergence to one of
its local optima. In this thesis, we build upon this intuition but allow to schedule other
aspects of a Markov decision process than the reward function, for which we require a
contextual version of the Markov decision process [67]

M(c) = ⟨S,A, pc, rc, p0,c⟩. (1.6)

In this contextual MDP, the transition dynamics pc, reward function rc, and initial state
distribution p0,c depend on the parameter c ∈ C, which we will refer to as context.
This formulation allows for more options to regularize the RL problem, e.g., initializing
the agent close to desirable states via p0,c, or providing guidance to such states via the
dynamics pc. Based on these contextual MDPs, we can define an “extended” RL objective

max
π∈P

Eµ(c) [J(π,M(c))] (1.7)

where J(π,M(c)) is the “default” RL objective (1.1) and µ(c) is a distribution of learning
tasks. This “extended” RL objective is just a reformulation of the original RL objective to
highlight the role of the parameter c. With these definitions in place, curricula for RL can
be defined as interpolations in the space of probability distributions that ideally guide the
learning agent to well-performing solutions on a target distribution µ(c).

9

This formulation is general enough to accommodate the examples presented in Section 1.
For AlphaGo, the idea of self-play leads to a change in the MDP dynamics with each policy
change. The robotic examples of in-hand manipulation and quadruped locomotion can
also be readily modeled by distributions over dynamics parameters, such as friction or
gravity in [8] or the floor surface in [173].
To conclude this discussion of homotopies and curricula, we wish to state the limitations
of the works presented in this thesis from the perspective of continuation methods. We
present no guarantees that the RL problems on a sequence of smoothly changing task
distributions p(c) have a connected solution path, i.e., a connected path as in Figure 1.3a,
from the initial- to the target distribution. Furthermore, our way of updating the task
distribution p(c) during agent training is another break with continuation methods, which
trace the solution path by, e.g., numerically simulating an ordinary differential equation.
We do not follow such an approach as the approximate nature of modern RL, with its
heavy use of function approximation, renders the idea of tracking solution paths with even
moderate precision challenging to guarantee or achieve in practice. Finally, we already
discussed that continuation methods cannot guarantee convergence to good or global
optima, and the same holds for the methods developed in this thesis. We will show an
example of such a failed interpolation or continuation resulting from the misspecification
of the encountered task structure in Chapter 3.

1.2. Thesis Outline and Contributions

This thesis proposes and benchmarks interpolations p(c) between task distributions such
that training on these interpolations improves the learning behavior of RL agents, similar
in spirit to continuation methods for solving non-linear systems of equations. The thesis
consists of three chapters that present methods for generating task distributions p(c) for
reinforcement learning agents and benchmark them in different reinforcement learning
tasks. Although the chapters build up on each other, they can be read independently.

Self-Paced Reinforcement Learning

In Chapter 2, we propose an interpolation between an initial- and target task distribution
based on the Kullback-Leibler divergence. We connect this interpolation to the self-paced
learning framework initially developed by Kumar, Packer, and Koller [105] for supervised
learning problems. The intuition of self-paced learning to learn on easy tasks first, where
the easiness of a task is measured w.r.t. the obtained agent reward, has already been
connected to a majorization minimization scheme on a parameterized implicit objective
[131], resulting in a connection between our approximate curriculum RL methods and

10

homotopy methods. We propose approximate methods for generating the interpolation
in an episodic- and step-based RL setting, showing improved performance on different
learning tasks. The chapter was published in the Journal of Machine Learning Research
[93], summarizing two previous conference papers presented at the Conference on Robot
Learning [97] and at Advances in Neural Information Processing Systems [98].

On the Benefit of Optimal Transport for Curriculum Reinforcement Learning

Chapter 3 results from an effort to obtain approximate task distribution interpolations
with fewer restrictions on the parametric form of the interpolating distributions p(c).
During this pursuit, we realized that the approximate formulations presented in Chapter 2
heavily rely on those parametric forms to regularize the interpolation p(c). To combine
a flexible representation of p(c) with well-behaving interpolations, we turn to optimal
transport, allowing us to lift a ground metric defined on the context space C into the space
of probability distributions on C. This change in methodology highlights the critical role
of a metric d(c1, c2) measuring the similarity between two tasks, c1 ∈ C and c2 ∈ C, when
generating curricula for reinforcement learning agents. The optimal transport formula-
tion has the additional benefit of allowing for conceptually straightforward approximate
implementations via particles. In experiments, we highlight the role of the task space
metric d and further show that approximate implementations of our approach lead to
good empirical performance in different benchmark tasks. The chapter is based on a
preprint currently under review by the IEEE Transactions on Pattern Analysis and Machine
Intelligence and extends upon a conference paper at the International Conference on
Machine Learning [95].

Tracking Control for a Spherical Pendulum via Curriculum Reinforcement
Learning

The final Chapter 4 tests the behavior of our optimal transport formulation in higher-
dimensional task spaces C. We focus on the task of learning tracking control of a spherical
pendulum that is attached to a four degrees-of-freedom (DoF) Barrett Whole Arm Manip-
ulator (WAM), where we build the curriculum directly over the trajectories that are to be
followed by the pendulum. Our efforts in building such curricula highlight the importance
of the task space metric d(c1, c2) and an appropriate sampling scheme for updating the
distribution p(c) when building curricula in high-dimensional spaces. Ultimately, an im-
proved version of the method developed in Chapter 3 can reliably learn tracking control
that transfers to reality, allowing for successful task completion on the real robot without
fine-tuning. This work is currently under review by the IEEE Transactions on Robotics.

11

1.3. Common Notation

To ease the understanding of the following chapters and prevent the repetitive introduction
of shared notation, we wish to repeat the most important concepts and their symbols in
this section. Most of this notation has already been covered in the previous sections, and
only a few additional concepts need to be introduced.

Reinforcement Learning

We have already introduced the reinforcement learning objective (1.1) as part of the
introduction. Sometimes, we will focus on the trajectories τ that are generated by the
policy π ∈ P, resulting in the following (equivalent) definition of the RL objective given a
Markov decision process (MDP)M = ⟨S,A, p, r, p0⟩

max
π∈P

J(π,M) = max
π∈P

Ep(τ |π,M)

[︄ ∞∑︂
t=0

γtr(st,at)

]︄
, γ ∈ [0, 1) (1.8)

τ = {(st,at)|t = 0, . . .} , p(τ |π,M) = p0(s0)

∞∏︂
t=1

p(st|st−1,at−1)π(at−1|st−1).

We emphasize the importance of the MDPM in the RL objective by using it as an argu-
ment to the objective J(π,M). This additional emphasis enables a more straightforward
extension to the contextual case, where we encounter RL objectives for multiple MDPs. As
we saw already, another equivalent formulation of the RL objective is given via the value
function

max
π∈P

J(π,M) = max
π∈P

Ep0(s0) [V
π(s0,M)] (1.9)

V π(s,M) = Eπ(a|s)
[︁
r(s,a) + γEp(s′|s,a)

[︁
V π(s′,M)

]︁]︁
.

For experiments, we inevitably need to make use of parameterized policies π(a|s,θ) with
θ ∈ Θ. We will alternatively denote such policies as πθ(a|s). When using a parameterized
policy, we replace the parameterized policy symbol πθ(a|s) with its parameters θ to
shorten notation, e.g., writing
max
θ∈Θ

J(θ,M) = max
θ∈Θ

J(πθ,M), V θ(s,M) = V πθ(s,M), p(τ |θ,M) = p(τ |πθ,M).

Contextual Reinforcement Learning

The subsequent chapters will build up on the idea of a contextual Markov decision
processM(c) = ⟨S,A, pc, rc, p0,c⟩ defined over a set of contextual parameters, or contexts,

12

c ∈ C [67]. This contextual model of optimal decision-making has been investigated by
multiple works from different perspectives [148, 175, 137] and is well-suited for learning
in multiple related tasks as is the case in multi-task [219], goal-conditioned [175] or
curriculum RL [146]. Instead of the word context, we also use the word task to refer to
c orM(c). We denote the distribution of tasks that the agent is expected to master as
µ(c). Overloading the function J(·, ·) with different meanings depending on the given
argument, the contextual RL objective is then given by

max
π∈P

J(π, µ) = max
π∈P

Eµ(c) [J(π,M(c))] . (1.10)

At this point, we see how emphasizing the MDP in the single-task RL objective J(π,M)
pays off and allows for a simple extension to the contextual setting. Put in words, the agent
is now required to perform well on those tasks that are likely under µ(c). The structure
of the policy π requires additional discussion in the contextual setting. Depending on
the particular application, the policy may or may not observe the context, i.e., π(s|a, c)
or π(s|a). The former case is preferable when, e.g., encoding a goal state to be reached
via the context c. If c models disturbances in the environment dynamics, it may be
preferable not to provide information about c to the policy to enforce robustness to
unknown disturbances.
As for the policy, we replaceM(c) simply by c when used as a function argument. The
same procedure applies when dealing with parameterized task distributions p(s|ν) = pν(s)
with ν∈N , resulting in the following abbreviated notations

J(θ, c) = J(πθ,M(c)), J(θ,ν) = J(πθ, pν), p(τ |θ, c) = p(τ |πθ,M(c)).

To finish the introduction of contextual MDPs, we wish to emphasize once more that
they are not a new concept but a specifically structured MDP that emphasizes the role of
the context c. To see this, we assume a contextual MDPM(c) with a given distribution
µ(c). Now, we define an MDPMext with the same action space asM(c) but an extended
state space Sext = S × C with states sext = (s, c). We can then define the initial state
distribution of Mext as p0(sext) = p0,c(s)µ(c), the reward as r(sext,a) = rc(s,a), and
finally, the dynamics as

p(s′ext|sext,a) = δc(c
′)pc(s′|s,a),

where δc(c′) is a Dirac delta distribution centered on c. The resulting single-task RL
objective J(π,Mext) matches precisely the contextual objective J(π, µ). We could, hence,
alternatively frame the idea of learning via curricula as optimizing J(π,Mext) over differing
initial state distributions.

13

Divergences and Distances between Probability Distributions

The final ingredients in the algorithms presented in this thesis are similarity measures
between two task distributions p1(c) and p2(c). In Chapter 2, we will heavily rely on the
Kullback-Leibler (KL) divergence

DKL (p1(c) ∥ p2(c)) =
∫︂
C
p1(c) log

(︃
p1(c)

p2(c)

)︃
dc, (1.11)

a central measure of information in the domain of information theory. As discussed by
Kullback and Leibler [104], the KL Divergence can be seen as a measure of how much
information samples from p1(c) contain for discriminating it from p2(c). Consequently, if
DKL (p1(c) ∥ p2(c))=0, sampling from p1(c) will not yield any discriminative information
w.r.t. p2(c). We want to note that the KL divergence is not a metric, as it is not symmetric
and does not fulfill the triangle inequality. Furthermore, if p1(c) and p2(c) are not
absolutely continuous, i.e., there exist contexts c ∈ C for which p2(c)=0 while p1(c)>0,
we can perfectly discriminate p1(c) and p2(c) from one of those contexts, which is why
Kullback and Leibler [104] required absolute continuity of p2 w.r.t. p1.
Opposed to this information-theoretic measure of similarity, we use concepts from the
field of optimal transport in Chapters 3 and 4. The problem of optimally transporting
density between two distributions has been initially investigated by Monge [138]. As of
today, generalizations established by Kantorovich [86] have led to so-calledWasserstein
distances as metrics between probability distributions defined on a metric spaceM=(d, C)
with metric d : C × C ↦→ R≥0

Wp(p1, p2)=

(︃
inf

ϕ∈Φ(p1,p2)
Eϕ [d(c1, c2)

p]

)︃1/p

, p ≥ 1 (1.12)

Φ(p1, p2)= {ϕ : C×C↦→R≥0|pi=Pi#ϕ, i∈{1, 2}} , (1.13)

where Pi# are the push-forwards of the maps P1(c1, c2)=c1 and P2(c1, c2)=c2. We refer
to [158, Chapter 2] for an excellent and intuitive introduction to these concepts. The
distance between p1 and p2 is obtained via the solution to an optimization problem that
finds a so-called plan, or coupling, ϕ. This coupling encodes how to equalize p1 and p2
considering the cost of moving density between parts of the space C. This cost is encoded
by the metric d. In the following, we will always assume to work with 2-Wasserstein
distances, i.e., p=2, due to their suitedness for the interpolation between measures [see
158, Chapter 6 and Remark 2.24].

14

Similar to how (weighted) means can be defined as solutions to optimization problems
on a metric spaceM=(d, C), Wasserstein distances allow us to define what is referred to
asWasserstein barycenters [7]

B2(W,P) = argmin
p

K∑︂
k=1

wkW2(p, pk), (1.14)

which represent the (weighted) mean of the distributions P={pk|k∈[1,K]} with weights
W={wk|k∈[1,K]}. The Wasserstein distance and the corresponding barycenters will play
a central role in Chapters 3 and 4.

15

2. Self-Paced Reinforcement Learning

Across machine learning, the use of curricula has shown strong empirical potential to im-
prove learning from data by avoiding local optima of training objectives. For reinforcement
learning (RL), curricula are especially interesting, as the underlying optimization has a
strong tendency to get stuck in local optima due to the exploration-exploitation trade-off.
Recently, a number of approaches for an automatic generation of curricula for RL have
been shown to increase performance while requiring less expert knowledge compared to
manually designed curricula. However, these approaches are seldomly investigated from
a theoretical perspective, preventing a deeper understanding of their mechanics. In this
chapter, we present an approach for automated curriculum generation in RL with a clear
theoretical underpinning. More precisely, we formalize the well-known self-paced learning
paradigm as inducing a distribution over training tasks, which trades off between task
complexity and the objective to match a desired task distribution. Experiments show that
training on this induced distribution helps to avoid poor local optima across RL algorithms
in different tasks with uninformative rewards and challenging exploration requirements.

2.1. Introduction

Research on reinforcement learning (RL) [189] has led to recent successes in long-horizon
planning [134, 183] and robot control [101, 110]. A driving factor of these successes has
been the combination of RL paradigms with powerful function approximators, commonly
referred to as deep RL (DRL). While DRL has considerably pushed the boundary w.r.t.
the type and size of tasks that can be tackled, its algorithms suffer from high sample
complexity. This can lead to poor performance in scenarios where the demand for samples
is not satisfied. Furthermore, crucial challenges such as poor exploratory behavior of RL
agents are still far from being solved, resulting in a large body of research that aims to
reduce sample complexity by improving this exploratory behavior of RL agents [121, 191,
16, 74, 180].
Another approach to making more efficient use of samples is to leverage similarities
between learning environments and tasks in the framework of contextual- or multi-task

17

RL. In these frameworks, a shared task structure permits simultaneous optimization of a
policy for multiple tasks via inter- and extrapolation [106, 175, 77], resulting in tangible
speed ups in learning across tasks. Such approaches expose the agent to tasks drawn from
a distribution under which the agent should optimize its behavior. Training on such a fixed
distribution, however, does not fully leverage the contextual RL setting in case there is a
difference in difficulty among tasks. In such a scenario, first training on “easier” tasks and
exploiting the generalizing behavior of the agent to gradually progress to “harder” ones
promises to make more efficient use of environment interaction. This idea is at the heart of
curriculum learning (CL), a term introduced by [20] for supervised learning problems. By
now, applications of CL have increasingly expanded to reinforcement learning problems,
where the aim is to design task sequences that maximally benefit the learning progress of
an RL agent [146].
Recently, an increasing number of algorithms for an automated generation of curricula
have been proposed [15, 57, 10, 170]. While empirically demonstrating their beneficial
effect on the learning performance of RL agents, the heuristics that guide the generation of
the curriculum are, as of now, theoretically not well understood. In contrast, in supervised
learning, self-paced learning [105] is an approach to curriculum generation that enjoys
wide adaptation in practice [187, 51, 79] and has a firm theoretical interpretation as a
majorize-minimize algorithm applied to a regularized objective [131]. In this chapter, we
develop an interpretation of self-paced learning as the process of generating a sequence of
distributions over samples. We use this interpretation to transfer the concept of self-paced
learning to RL problems, where the resulting approach generates a curriculum based on
two quantities: the value function of the agent (reflecting the task complexity) and the KL
divergence to a target distribution of tasks (reflecting the incorporation of desired tasks).
Contribution: We propose an interpretation of the self-paced learning algorithm from
a probabilistic perspective, in which the weighting of training samples corresponds to a
sampling distribution (Section 2.4). Based on this interpretation, we apply self-paced
learning to the contextual RL setting, obtaining a curriculum over RL tasks that trades-
off agent performance and matching a target distribution of tasks (Section 2.5). We
connect the approach to the RL-as-inference paradigm [197, 109], recovering well-known
regularization techniques in the inference literature (Section 2.9). We experimentally
evaluate algorithmic realizations of the curriculum in both episodic- (Section 2.6) and step-
based RL settings (Section 2.7). Empirical evidence suggests that the scheme can match
and surpass state-of-the-art CL methods for RL in environments of different complexity
and with sparse and dense rewards.

18

2.2. Related Work

Simultaneously evolving the learning task with the learner has been investigated in a
variety of fields ranging from behavioral psychology [184] to evolutionary robotics [24]
and RL [11, 50, 206]. For supervised learning, this principle was given the name curricu-
lum learning by Bengio et al. [20]. The name has by now also been established in the
reinforcement learning (RL) community, where a variety of algorithms aiming to generate
curricula that maximally benefit the learner have been proposed.
A driving principle behind curriculum reinforcement learning (CRL) is the idea of transfer-
ring successful behavior from one task to another, deeply connecting it to the problem of
transfer learning [153, 192, 108]. In general, transferring knowledge is—depending on
the scenario—a challenging problem on its own, requiring a careful definition of what is
to be transferred and what are the assumptions about the tasks between which to transfer.
Aside from this problem, Narvekar and Stone [145] showed that learning to create an
optimal curriculum can be computationally harder than learning the solution for a task
from scratch. Both of these factors motivate research on tractable approximations to the
problem of transfer and curriculum generation.
To ease the problem of transferring behavior between RL tasks, a shared state-action
space between tasks as well as an additional variable encoding the task to be solved are
commonly assumed. This variable is usually called a goal [175] or a context [137, 106].
In this chapter, we will adapt the second name, also treating the word “context” and “task”
interchangeably, i.e. treating the additional variable and the task that it represents as the
same entity.
It has been shown that function approximators can leverage the shared state-action space
and the additional task information to generalize important quantities, such as value func-
tions, across tasks [175]. This approach circumvents the complicated problem of transfer
in its generality, does however impose assumptions on the set of Markov decision processes
(MDPs) as well as the contextual variable that describes them. Results from [137] suggest
that one such assumption may be a gradual change in reward and dynamics of the MDP
w.r.t. the context, although this requirement would need to be empirically verified. For
the remainder of this document, we will disregard this important problem and focus on
RL problems with similar characteristics as the ones investigated by [137], as often done
for other CRL algorithms. A detailed study of these assumptions and their impact on CRL
algorithms is not known to us but is an interesting endeavor. We now continue to highlight
some CRL algorithms and refer to the survey by [146] for an extensive overview.
The majority of CRL methods can be divided into three categories w.r.t. the underlying
concept. On the one hand, in tasks with binary rewards or success indicators, the idea
of keeping the agent’s success rate within a certain range has resulted in algorithms

19

with drastically improved sample efficiency [56, 57, 10]. On the other hand, many CRL
methods [176, 15, 162, 58] are inspired by the idea of ‘curiosity’ or ‘intrinsic motivation’
[152, 23]—terms that refer to the way humans organize autonomous learning even in
the absence of a task to be accomplished. The third category includes algorithms that use
the value function to guide the curriculum. While similar to methods based on success
indicators in sparse reward settings, these methods can allow to incorporate the richer
feedback available in dense rewards settings. To the best of our knowledge, only our work
and that of Wöhlke, Schmitt, and Hoof [220] fall into this category. The work of Wöhlke,
Schmitt, and Hoof [220] defines a curriculum over starting states using the gradient of
the value function w.r.t. the starting state. The proposed curriculum prefers starting states
with a large gradient norm of the value function, creating similarities to metrics used in
intrinsic motivation. In our method, the value function is used as a competence measure
to trade-off between easy tasks and tasks that are likely under a target distribution.
Our approach to curriculum generation builds upon the idea of self-paced learning (SPL),
initially proposed by Kumar, Packer, and Koller [105] for supervised learning tasks and
extended by Jiang et al. [81, 80] to allow for user-chosen penalty functions and con-
straints. SPL generates a curriculum by trading-off between exposing the learner to all
available training samples and selecting samples in which the learner performs well. The
approach has been employed in a variety of supervised learning problems [187, 51, 79].
Furthermore, Meng, Zhao, and Jiang [131] proposed a theoretical interpretation of SPL,
identifying it as a majorize-minimize algorithm applied to a regularized objective func-
tion. Despite its well-understood theoretical standing and empirical success in supervised
learning tasks, SPL has only been applied in a limited way to RL problems, restricting
its use to the prioritization of replay data from an experience buffer in deep Q-networks
[168]. Orthogonal to this approach, we will make use of SPL to adaptively select training
tasks during agent learning.
Furthermore, we will connect the resulting algorithms to the RL-as-inference perspective
during the course of this chapter. Therefore, we wish to briefly point to several works
employing this perspective [41, 197, 43, 167, 109]. Taking an inference perspective is
beneficial when dealing with inverse problems or problems that require tractable approxi-
mations [72, 163]. Viewing RL as an inference problem naturally motivates regularization
methods such as maximum- or relative entropy [228, 157, 66] that have proven highly
beneficial in practice. Further, this view allows to rigorously reason about the problem of
optimal exploration in RL [61]. Finally, it stimulates the development of new, and inter-
pretation of existing, algorithms as different approximations to the intractable integrals
that need to be computed in probabilistic inference problems [1, 52], resulting in a highly
principled approach to tackling the challenging problem of RL.

20

2.3. Preliminaries: Self-Paced Learning

Having introduced the necessary notation on (contextual) MDPs and the associated RL
objectives in Section 1.3, we are left with defining the concept of self-paced learning (SPL).
Self-paced learning (SPL) has been introduced by Kumar, Packer, and Koller [105] for
supervised learning settings, in which a function approximator y = m(x,θ) with parame-
ters θ ∈ Rdθ is trained w.r.t. a given data set D =

{︁
(xi, yi) | xi ∈ Rdx , yi ∈ R, i ∈ [1, N]

}︁.
In this setting, SPL generates a curriculum over the data set D by introducing a vector
ν = [ν1 ν2 . . . νN] ∈ [0, 1]N of weights νi for the entries (xi, yi) in the data set. These
weights are automatically adjusted during learning via a ‘self-paced regularizer’ f(α, νi)
in the SPL objective

ν∗,θ∗ = argmin
ν∈[0,1]N ,θ∈Rdθ

r(θ) +

N∑︂
i=1

(νil(xi, yi,θ) + f(α, νi)) , α > 0. (2.1)

The term r(θ) represents potentially employed regularization of the model and l(xi, yi,θ)
represents the error in themodel prediction ỹi=m(xi,θ) for sample (xi, yi). Themotivation
for this principle as well as its name are best explained by investigating the solution ν∗(α,θ)
of optimization problem (2.1) when only optimizing it w.r.t. ν while keeping α and θ
fixed. Introducing the notation ν∗(α, l) = argminν νl+ f(α, ν), we can define the optimal
ν for given α and θ as

ν∗(α,θ) = [ν∗(α, l(x1, y1,θ)) ν
∗(α, l(x2, y2,θ)) . . . ν∗(α, l(xN , yN ,θ))].

For the self-paced function fBin(α, νi)=− ανi initially proposed by [105], it holds that

ν∗Bin(α, l) =

{︄
1, if l < α

0, else. (2.2)

We see that the optimal weights ν∗Bin(α,θ) focus on examples on which the model under
the current parameters θ performs better than a chosen threshold α. By continuously
increasing α and updating ν and θ in a block-coordinate manner, SPL creates a curriculum
consisting of increasingly “hard” training examples w.r.t. the current model. A highly
interesting connection between SPL and well-known regularization terms for machine
learning has been established by Meng, Zhao, and Jiang [131]. Based on certain axioms on
the self-paced regularizer f(α, νi) (see appendix), Meng, Zhao, and Jiang [131] showed
that the SPL scheme of alternatingly optimizing (2.1) w.r.t. θ and ν implicitly optimizes

21

the regularized objective

min
θ

r(θ) +

N∑︂
i=1

Fα(l(xi, yi,θ)), Fα(l(xi, yi,θ)) =

∫︂ l(xi,yi,θ)

0
ν∗(α, ι) dι. (2.3)

Using the Leibniz integral rule on Fα, we can see that ∇lFα(l) = ν∗(α, l). Put differently,
the weight ν∗i (α,θ) encodes how much a decrease in the prediction error l(xi, yi,θ) for the
training example (xi, yi) decreases the regularized objective (2.3). In combination with
the previously mentioned axioms on the self-paced regularizer f(α, νi), this allowed Meng,
Zhao, and Jiang [131] to prove the connection between (2.1) and (2.3). Furthermore,
they showed that, depending on the chosen self-paced regularizer, the resulting regularizer
Fα(l(xi, yi,θ)) corresponds exactly to non-convex regularization terms used in machine
learning to e.g. guide feature selection [226, 224]. Opposed to feature selection, SPL
makes use of these regularizers to attenuate the influence of training examples which
the model cannot explain under the current parameters θ. This attenuation of hard
training examples on non-proficient models is achieved by reducing their contribution
to the gradient w.r.t. θ via the function Fα (see Figure 2.1). This observation naturally
explains tendencies of SPL to improve learning e.g. in the presence of extreme noise, as
empirically demonstrated by [80].
To summarize, we have seen that SPL formulates a curriculum over a set of training data as
an alternating optimization of weights ν for the training data given the current model and
the model parameters θ given the current weights. This alternating optimization performs
an implicit regularization of the learning objective, suppressing the gradient contribution
of samples that the model cannot explain under the current parameters. Empirically, this
has been shown to reduce the likelihood of converging to poor local optima.

2.4. A Probabilistic Interpretation of Self-Paced Learning

In Chapter 1, we have discussed the RL objective (1.8) and highlighted the problem
of policy optimization converging to a local optimum or only converging slowly. While
ensuring to learn globally optimal policies with optimal sample complexity in its whole
generality is an open problem, we discussed in the previous section that for supervised
learning, the use of regularizing functions Fα can smooth out local optima by transforming
the employed loss function. Motivated by this insight, we now apply the aforementioned
functions to regularize the contextual RL objective (1.10), obtaining

min
θ∈Θ

Eµ(c) [Fα(−J(θ, c))] . (2.4)

22

This objective has two slight differences to the SPL objective (2.3). First, it misses the
regularization term r(θ) from (2.3). Second, objective (2.4) is defined as an expectation of
the regularized performance Fα(J(θ, c)) w.r.t. to the context distribution µ(c) instead of
a sum over the regularized performances. This can be seen as a generalization of (2.3), in
which we allow to chose µ(c) differently from a uniform distribution over a discrete set of
values. Regardless of these technical differences, one could readily optimize objective (2.4)
in a supervised learning scenario e.g. via a form of stochastic gradient descent. As argued
in Section 2.3, this results in an SPL optimization scheme (2.1) since the regularizer Fα

performs an implicit weighting of the gradients ∇θJ(θ, c).
In an RL setting, the problem with such a straightforward optimization is that each evalu-
ation of J(θ, c) and its gradient is typically expensive. If now for given parameters θ and
context c, the regularizer Fα leads to a negligible influence of J(θ, c) to the gradient of
the objective (see Figure 2.1), evaluating J(θ, c) wastes the precious resources that the
learning agent should carefully utilize. In an RL setting, it is hence crucial to make use of
a sampling distribution p(c) that avoids the described wasteful evaluations. At this point,
the insight that an SPL weight is equal to the gradient of the regularizing function Fα for
the corresponding context, i.e. ν∗(α, J(c,θ)) = ∇lFα(l)|l=J(c,θ), directly yields a method
for efficiently evaluating objective (2.4)—that is by sampling a context c according to
its SPL weight ν∗(α, J(c,θ)). To make this intuition rigorous, we now introduce a proba-
bilistic view on self-paced learning that views the weights ν in the SPL objective (2.1) as
probabilities of a distribution over samples.
More precisely, we define the categorical probability distribution p(c=i|ν) = νi for
i ∈ [1, N]. Note that we restrict ourselves to discrete distributions p(c=i|ν) in this section
to both ease the exposition and more easily establish connections to the SPL objective
introduced in Section 2.3, although the results can be generalized to continuous distri-
butions µ(c). For p(c=i|ν) = νi to be a valid probability distribution, we only need to
introduce the constraint∑︁N

i=1 νi = 1, as νi ≥ 0 per definition of SPL. Hence, we rewrite
the SPL objective (2.1) as

ν∗,θ∗ = argmin
ν∈∆(N),θ∈Rdθ

r(θ) + Ep(c|ν) [l(xc, yc,θ)] +
N∑︂
i=1

f(α, p(c=i|ν)), α > 0, (2.5)

where ∆(N)={ν | ν∈RN
≥0,
∑︁N

i=1 νi=1} is the N -dimensional probability simplex. Apart
from changes in notation, the only difference to the SPL objective (2.1) is the constraint
that forces the variables νi to sum to 1. Interestingly, this constraint does not just normalize
the SPL weights obtained by optimizing objective (2.1) since the previously independent
SPL weights ν∗(α, l(xi, yi,θ)) are now coupled via the introduced normalization constraint.
The seminal regularizer fBin(α, νi) = −ανi explored by Kumar, Packer, and Koller [105]

23

0 50 100

l(x, y,ω)

0

50

100
F

K
L
,α

(l
(x
,y
,ω

))

0 50 100

l(x, y,ω)

0.0

0.5

1.0

∇
lF

K
L
,α

(l
(x
,y
,ω

))

α = 10 α = 25 α = 50 α = 102 α = 104

Figure 2.1.: A visualization of the effect of FKL,α (see Equation 2.7) for different values
of α and a single data-point (x, y). The left plot shows the transformation of the model
error l(x, y,θ) by FKL,α. The right plot shows the gradient of FKL,α w.r.t. l(x, y,θ), i.e. the
corresponding weight ν∗KL(α,θ).

serves as an example of this behavior. With the additional constraint, the optimal solution
ν∗Bin to (2.5) simply puts all weight on the sample with the minimum loss instead of
sampling uniformly among samples with a loss smaller than α. Although there seems
to be no general connection between objectives (2.1) and (2.5) that holds for arbitrary
self-paced regularizers, we can show that for the self-paced regularizer

fKL,i(α, νi) = ανi (log(νi)− log(µ(c=i)))− ανi, (2.6)

the value of ν∗KL,i(α,θ) obtained by optimizing the default SPL objective (2.1) and its
probabilistic counterpart (2.5) w.r.t. ν is identical up to a normalization constant. The
user-chosen distribution µ(c) in the self-paced regularizer (2.6) represents the likelihood
of (xc, yc) occurring and has the same interpretation as in the regularized contextual RL
objective (2.4). The corresponding function FKL,α,i is given by

FKL,α,i(l(xi, yi,θ))=

∫︂ l(xi,yi,θ)

0
ν∗KL,i(α, ι) dι = µ(c=i)α

(︃
1− exp

(︃
−1

a
l(xi, yi,θ)

)︃)︃
(2.7)

and is visualized in Figure 2.1. Note the additional subscript i in both fKL,i and FKL,α,i.
This extra subscript arises due to the appearance of the likelihood term µ(c=i) in both
formulas, resulting in an individual regularizer for each sample (xi, yi). As can be seen,

24

FKL,α,i(l) exhibits a squashing effect to limit the attained loss l to a maximum value of
α. The closer the non-regularized loss l attains this maximum value of α, the more it is
treated as a constant value by FKL,α,i(l). For l increasingly smaller than α, a change in
the non-regularized loss l leads to an increasingly linear change in the regularized loss
FKL,α,i(l). More interestingly, using fKL,i(α, νi) in objective (2.5) results in a KL-Divergence
penalty to µ(c). Theorem 1 summarizes these findings. The proof can be found in the
appendix.
Theorem 1. Alternatingly solving

min
θ,ν

Ep(c|ν) [l(xc, yc,θ)] + αDKL (p(c|ν) ∥ µ(c))

w.r.t. θ and ν is a majorize-minimize scheme applied to the regularized objective

min
θ

Eµ(c)

[︃
α

(︃
1− exp

(︃
− 1

α
l(xc, yc,θ)

)︃)︃]︃
.

In the following section, we make use of the insights summarized in Theorem 1 to motivate
a curriculum as an effective evaluation of the regularized RL objective (2.4) under the
particular choice Fα = FKL,α,i.

2.5. Self-Paced Learning for Reinforcement Learning

Obtaining an efficient way of optimizing the regularized contextual RL objective (2.4)
with Fα = FKL,α,i is as easy as exploiting Theorem 1 to define the alternative objective

max
θ∈Θ,ν∈N

Ep(c|ν) [J(θ, c)]− αDKL (p(c|ν) ∥ µ(c)) .

As discussed in the previous section, this formulation introduces a way of computing the
desired sampling distribution that efficiently evaluates objective (2.4) given the current
agent parameters θ by optimizing the above optimization problem w.r.t. ν. As discussed
in Section 2.3, p(c|ν) will assign probability mass to a context c based on its contribution
to the gradient of objective (2.4). Before we look at the application to RL problems, we
will introduce a regularization that is an important ingredient to achieve practicality.
More precisely, we introduce a KL divergence constraint between subsequent context
distributions p(c|ν) and p(c|ν ′), yielding

max
θ,ν

Ep(c|ν) [J(θ, c)]− αDKL (p(c|ν) ∥ µ(c))

s.t. DKL
(︁
p(c|ν)

⃦⃦
p(c|ν ′)

)︁
≤ ϵ, (2.8)

25

with ν ′ being the parameters of the previously computed context distribution. In a practical
algorithm, this secondary regularization is important because the expected performance
J(θ, c) is approximated by a learned value function, which may not predict accurate
values for contexts not likely under p(c|ν ′). The KL divergence constraint helps to avoid
exploiting these false estimates too greedily.
Furthermore, it forces the distribution over contextual variables, and hence tasks, to
gradually change. Assuming e.g. a Gaussian p(c|ν), such a gradual change in distribution
implies a gradual change in the sampled contexts c. This gradual change fosters the
extrapolation of learned behavior when the policy πθ(a|s, c) is e.g. represented by (deep)
neural networks, which typically exhibit a fair amount of continuity w.r.t. their inputs.
Naturally, successful extrapolation of behavior also assumes that a small distance ∥c− c′∥
implies a certain similarity between the tasksM(c) andM(c′). Note that the imprecision
of this formulation is not by accident but is rather an acknowledgment that the question
of similarity between MDPs is a complicated topic on its own.
From a theoretical perspective on SPL, the constraint changes the form of ν∗ making it not
only dependent on α and θ, but also on the previous parameter ν ′. Although it may be
possible to relate this modification to a novel regularizer Fα,i, we do not pursue this idea
here but rather connect objective (2.8) to the RL-as-inference perspective in Section 2.9,
where we can show highly interesting similarities to the well-known concept of tempering
in inference. To facilitate the intuition of the proposed curriculum and its usage, we,
however, first present applications and evaluations in the following sections.
An important design decision for such applications is the schedule for α, i.e. the parameter
of the regularizing function Fα. As can be seen in (2.8), α corresponds to the trade-off
between reward maximization and progression to µ(c). In a supervised learning scenario,
it is preferable to increase α as slowly as possible to gradually transform the objective
from an easy version towards the target one. In an RL setting, each algorithm iteration
requires the collection of data from the (real) system. Since the required amount of
system interaction should be minimized, we cannot simply choose very small step sizes
for α, as this would lead to a slower than necessary progression towards µ(c). In the
implementations in sections 2.6 and 2.7, the parameter α is chosen such that the KL
divergence penalty w.r.t. the current context distribution p(c|νk) is in constant proportion
ζ to the expected reward under this current context distribution and current policy
parameters θk

αk = B(νk,θk) = ζ
Ep(c|νk) [J(θk, c)]

DKL (p(c|νk) ∥ µ(c))
. (2.9)

For the first Kα iterations, we set α to zero, i.e. only focus on maximizing the reward
under p(c|ν). In combination with an initial context distribution p(c|ν0) covering large

26

parts of the context space, this allows to tailor the context distribution to the learner in the
first iterations by focusing on tasks in which it performs best under the initial parameters.
Note that this schedule is a naive choice, that nonetheless worked sufficiently well in our
experiments. In Section 2.8, we revisit this design choice and investigate it more carefully.

2.6. Application to Episodic Reinforcement Learning

In this section, we implement and evaluate our formulation of SPL for RL in a slightly
different way than the “full” RL setting, which has been described in Chapter 1 and will be
evaluated in the next section. Instead, we frame RL as a black-box optimization problem
[36, 70]. This setting is interesting for two reasons: Firstly, it has been and still is a core
approach to perform RL on real (robotic) systems [106, 155, 159], where “low-level”
policies such as Dynamic- and Probabilistic Movement Primitives [174, 154] or PD-control
laws [21] are commonly used to ensure smooth and stable trajectories while keeping the
dimensionality of the search space reasonably small. Secondly, the different mechanics
of the employed episodic RL algorithm and the resulting different implementation of
objective (2.8) serve as another validation of our SPL approach to CRL apart from the
deep RL experiments in the next section. Readers not interested in or familiar with the
topic of black-box optimization (and episodic RL) can skip this section and continue to
the experiments with deep RL algorithms in Section 2.7.
The episodic RL setting arises if we introduce an additional “low-level” policy πω(a|s)
with parameters ω ∈ Rdω and change the agent policy π to not generate actions given
the current state and context, but only generate a parameter ω for the low-level policy
given the current context, i.e. πθ(ω|c). Defining the expected reward for a parameter ω
in context c as

r(ω, c) = Ep0,c(s) [V
ω(s, c)] , (2.10)

where V ω(s, c) is the value function defined in Section 1.3, we see that we can simply
interpret r(ω, c) as a function that, due to its complicated nature, does only allow for
noisy observations of its function value without any gradient information. The noise in
function observations arises from the fact that a rollout of policy πω(a|s) in a context c
corresponds to approximating the expectations in r(ω, c) with a single sample.
As a black-box optimizer for the experiments, we choose the contextual relative entropy
policy search (c-reps) algorithm [148, 106, 155], which frames the maximization of
(2.10) over a task distribution µ(c) as a repeated entropy-regularized optimization

max
q(ω,c)

Eq(ω,c) [r(ω, c)] s.t. DKL (q(ω, c) ∥ p(ω, c)) ≤ ϵ

∫︂
q(ω, c) dω = µ(c) ∀c ∈ C,

27

where p(ω, c) = p(ω|c)µ(c) is the distribution obtained in the previous iteration. Note
that the constraint in the above optimization problem implies that only the policy q(ω|c)
is optimized since the constraint requires that q(ω, c) = q(ω|c)µ(c). This notation is
common for this algorithm as it eases the derivations of the solution via the concept of
Lagrangian multipliers. Furthermore, this particular form of the c-reps algorithm allows
for a straightforward incorporation of SPL, simply replacing the constraint ∫︁ q(ω, c) dω =
µ(c) by a penalty term on the KL divergence between q(c) = ∫︁ q(ω, c) dω and µ(c)

max
q(ω,c)

Eq(ω,c) [r(ω, c)]− αDKL (q(c) ∥ µ(c))

s.t. DKL (q(ω, c) ∥ p(ω, c)) ≤ ϵ. (2.11)

The above objective does not yet include the parameters θ or ν of the policy or the context
distribution to be optimized. This is because both c-reps and also our implementation
of SPL for episodic RL solve the above optimization problem analytically to obtain a re-
weighting scheme for samples (ωi, ci) ∼ p(ω|c,θk)p(c|νk) based on the observed rewards
r(ωi, ci). The next parameters θk+1 and νk+1 are then found by a maximum-likelihood
fit to the set of weighted samples. The following section will detail some of the practical
considerations necessary for this.

2.6.1. Algorithmic Implementation

Solving (2.11) analytically using the technique of Lagrangian multipliers, we obtain the
following form for the variational distributions

q(ω, c)∝p(ω, c|θk,νk) exp
(︃
r(ω, c)− V (c)

ηq

)︃
= p(ω, c|θk,νk) exp

(︃
A(ω, c)

ηq

)︃
, (2.12)

q(c)∝p(c|νk) exp
(︃
V (c) + α(log(µ(c))− log(p(c|νk)))

α+ ηq̃

)︃
= p(c|νk) exp

(︃
β(c)

α+ ηq̃

)︃
,

(2.13)

with ηq, ηq̃ as well as V (c) being Lagrangian multipliers that are found by solving the dual
objective

G = (ηq + ηq̃)ϵ+ ηq log

(︃
Ep

[︃
exp

(︃
A(ω, c)

ηq

)︃]︃)︃
+ (α+ ηq̃) log

(︃
Ep

[︃
exp

(︃
β(c)

α+ ηq̃

)︃]︃)︃
.

(2.14)

The derivation of the dual objective, as well as the solution to objective (2.11), are shown
in the appendix. As previously mentioned, in practice the algorithm has only access to a

28

Algorithm 1 Self-Paced Episodic Reinforcement Learning (sprl)
Input: Initial context distribution- and policy parameters ν0 and θ0, Target context
distribution µ(c), KL penalty proportion ζ, Offset Kα, Number of iterations K, Rollouts
per policy updateM , Relative entropy bound ϵ
for k = 1 to K do
Collect Data:
Sample contexts: ci ∼ p(c|νk−1), i ∈ [1,M]
Sample parameters: ωi ∼ p(ω|ci,θk−1)
Execute πωi(·|s) in ci and observe reward: ri = r (ωi, ci)
Create sample set: Dk = {(ωi, ci, ri)|i ∈ [1,M]}
Update Policy and Context Distributions:
Update schedule: αk = 0, if k ≤ Kα, else B(νk−1,θk−1) (2.9)
Optimize dual function:

[︂
η∗q , η

∗
q̃ , V

∗
]︂
← argminG(ηq, ηq̃, V) (2.14)

Calculate sample weights: [wi, w̃i]←
[︂
exp

(︂
A(ωi,ci)

η∗q

)︂
, exp

(︂
β(ci)
αk+η∗q̃

)︂]︂
(2.12), (2.13)

Infer new parameters: [θk,νk]← {(wi, w̃i,ωi, ci)|i ∈ [1,M]}
end for

set of samples D = {(ωi, ci, ri)|i ∈ [1,M]} and hence the analytic solutions (2.12) and
(2.13) are approximated by re-weighting the samples via weights wi. To compute the
optimal weights wi, the multipliers V ∗, η∗q , and η∗q̃ need to be obtained by minimizing the
dual (2.14), to which two approximations are introduced: First, the expectations w.r.t.
p(ω, c|θ,ν) (abbreviated as p in Equation 2.14) are replaced by a sample-estimate from
the collected samples in D. Second, we introduce a parametric form for the value function
V (c) = χTϕ(c)with a user-chosen feature function ϕ(c), such that we can optimize (2.14)
w.r.t. χ instead of V .
After finding the minimizers χ∗, η∗q , and η∗q̃ of (2.14), the weights wi are then given by
the exponential terms in (2.12) and (2.13). The new policy- and context distribution
parameters are fitted via maximum likelihood to the set of weighted samples. In our
implementation, we use Gaussian context distributions and policies. To account for the
error that originates from the sample-based approximation of the expectations in (2.14),
we enforce the KL divergence constraint DKL (p(ω, c|θk,νk) ∥ q(ω, c|θk+1,νk+1)) ≤ ϵ
when updating the policy and context distribution. Again, details on this maximum
likelihood step can be found in the appendix. To compute the schedule for α according
to (2.9), we approximate the expected reward under the current policy with the mean
of the observed rewards, i.e. Ep(c|νk) [J(θk, c)] ≈ 1

M

∑︁M
i=1 ri. The overall procedure is

summarized in Algorithm 1.

29

2.6.2. Experiments

We now evaluate the benefit of the SPL paradigm in the episodic RL scenario (sprl).
Besides facilitating learning on a diverse set of tasks, we are also interested in the idea
of facilitating the learning of a hard target task via a curriculum. This modulation can
be achieved by choosing µ(c) to be a narrow probability distribution focusing nearly
all probability density on the particular target task. To judge the benefit of our SPL
adaptation for these endeavors, we compared our implementation to c-reps, cma-es [69],
goalgan [56] and sagg-riac [15]. With cma-es being a non-contextual algorithm, we
only use it in experiments with narrow target distributions, where we then train and
evaluate only on the mean of the target context distributions. We will start with a simple
point-mass problem, where we evaluate the benefit of our algorithm for broad and narrow
target distributions. We then turn towards more challenging tasks, such as a modified
version of the reaching task implemented in the OpenAI Gym simulation environment
[27] and a sparse ball-in-a-cup task. Given that goalgan and sagg-riac are algorithm
agnostic curriculum generation approaches, we combine them with c-reps to make the
results as comparable as possible.
In all experiments, we use radial basis function (RBF) features to approximate the value
function V (c), while the policy p(ω|c,θ) = N (ω|Aθϕ(c),Σθ) uses linear features ϕ(c).
sprl and c-reps always use the same number of RBF features for a given environment.
sprl always starts with a wide initial sampling distribution p (c|ν0) that, in combination
with setting α = 0 for the first Kα iterations, allows the algorithm to automatically choose
the initial tasks on which learning should take place. After the first Kα iterations, we then
choose α following the scheme outlined in the previous section. Experimental details that
are not mentioned here to keep the section short can be found in the appendix. 1

Point-Mass Environment

In the first environment, the agent needs to steer a point-mass in a two-dimensional
space from the starting position [0 5] to the goal position at the origin. The dynamics
of the point-mass are described by a simple linear system subject to a small amount of
Gaussian noise. Complexity is introduced by a wall at height y = 2.5, which can only be
traversed through a gate. The x-position and width of the gate together define a task
c. If the point-mass crashes into the wall, the experiment is stopped and the reward
is computed based on the current position. The reward function is the exponentiated
negative distance to the goal position with additional L2-Regularization on the generated
actions. The point-mass is controlled by two linear controllers, whose parameters need to
1Code is publicly available under https://github.com/psclklnk/self-paced-rl.

30

https://github.com/psclklnk/self-paced-rl

0 100 200 300
60

100

105

110

Re
wa
rd

SPRL C-REPS CMA-ES GoalGAN SAGG-RIAC

−4 −2 0 2 4
0.1
0.2
0.3
0.4
0.5

Ga
te
W
id
th

20
80
130
210
320

0 200 400 600
60

100

105

110

Iterations

Re
wa
rd

−4 −2 0 2 4
0.1
0.2
0.3
0.4
0.5

Gate Position

Ga
te
W
id
th

50

150

250

400

Figure 2.2.: Left: Reward in the “precision” (top row) and “global” setting (bottom row)
on the target context distributions in the gate environment. Thick lines show the 50%-
quantiles and shaded areas the intervals from 10%- to 90%-quantile for 40 seeds. Middle:
Evolution of the sampling distribution p (c|ν) (colored areas) of one sprl run together
with the target distribution µ (c) (black line). Right: Task visualizations for different gate
positions and widths. Boxes mark the corresponding positions in the context space.

be tuned by the agent. The controllers are switched as soon as the point-mass reaches
the height of the gate, which is why the desired y-position of the controllers are fixed to
2.5 (the height of the gate) and 0, while all other parameters are controlled by the policy
π, making ω a 14-dimensional vector. We evaluate two setups in this gate environment,
which differ in their target context distribution µ(c): In the first one, the agent needs
to be able to steer through a very narrow gate far from the origin (“precision”) and in
the second it is required to steer through gates with a variety of positions and widths
(“global”). The two target context distributions are shown in Figure 2.2. Figure 2.2
further visualizes the obtained rewards for the investigated algorithms, the evolution of
the sampling distribution p (c|ν) as well as tasks from the environment. In the “global”
setting, we can see that sprl converges significantly faster to the optimum than the other
algorithms while in the “precision” setting, sprl avoids a local optimum to which c-reps
and cma-es converge and which, as can be seen in Figure 2.3, does not encode desirable
behavior. Furthermore, both curriculum learning algorithms sagg-riac and goalgan only
slowly escape this local optimum in the “precision” setting. We hypothesize that this slow
convergence to the optimum is caused by sagg-riac and goalgan not having a notion of

31

0 100 200 300

0

0.5

1

Iterations

Su
cc
es
sR
at
e

SPRL C-REPS CMA-ES GoalGAN SAGG-RIAC

0 200 400 600

Iterations

Figure 2.3.: Success rates in the “precision” (left) and “global” setting (right) of the gate
environment. Thick lines represent the 50%-quantiles and shaded areas show the intervals
from 10%- to 90%-quantile. Quantiles are computed using 40 algorithm executions.

a target distribution. Hence, these algorithms cannot guide the sampling of contexts to
sample relevant tasks according to µ(c). This is especially problematic if µ(c) covers only a
small fraction of the context space with a non-negligible probability density. The visualized
sampling distributions in Figure 2.2 indicate that tasks with wide gates positioned at the
origin seem to be easier to solve starting from the initially zero-mean Gaussian policy,
as in both settings sprl first focuses on these kinds of tasks and subsequently changes
the sampling distributions to match µ(c). Interestingly, the search distribution of cma-es
did not always converge in the “precision” setting, as shown in Figure 2.2. This behavior
persisted across hyperparameters and population sizes.

Reacher Environment

For the next evaluation, we modify the three-dimensional reacher environment of the
OpenAI Gym toolkit [27]. In our version, the goal is to move the end-effector along the
surface of a table towards the goal position while avoiding obstacles that are placed on the
table. With the obstacles becoming larger, the robot needs to introduce a more pronounced
curve movement to reach the goal without collisions. To simplify the visualization of the
task distribution, we only allow two of the four obstacles to vary in size. The sizes of those
two obstacles make up a task c in this environment. Just as in the first environment, the
robot should not crash into the obstacles, and hence the movement is stopped if one of the
four obstacles is touched. The policy π encodes a ProMP [154], from which movements
are sampled during training. In this task, ω is a 40-dimensional vector.
Looking at Figure 2.4, we can see that c-reps and cma-es find a worse optimum compared
to sprl. This local optimum does—just as in the previous experiment—not encode optimal
behavior, as we can see in Figure 2.5. goalgan and sagg-riac tend to find the same

32

0 100 200 300 400

0

10

14.5

19

Iterations

Re
wa
rd

SPRL C-REPS CMA-ES GoalGAN SAGG-RIAC

2 4 6 8 ·10−2

2

4

6

8

·10−2

Size #1

Si
ze
#2

10
50
110
180
300

Figure 2.4.: Left: 50%-quantiles (thick lines) and intervals from 10%- to 90%-quantile
(shaded areas) of the reward in the reacher environment. Quantiles are computed over 40
algorithm runs. Middle: The sampling distribution p (c|ν) at different iterations (colored
areas) of one sprl run together with the target distribution (black line). Right: Task
visualizations for different contexts with black crosses marking the corresponding positions
in context space.

optimum as sprl, however with slower convergence. This is nonetheless surprising given
that—just as for the “precision” setting of the previous experiment—the algorithm deals
with a narrow target context distribution. Although the 10%-90% quantile of sagg-riac
and goalgan contain policies that do not manage to solve the task (i.e. are below the
performance of c-reps), the performance is in stark contrast to the performance in the
previously discussed “precision” setting, in which the majority of runs did not solve the
task. Nonetheless, the 10%-50% quantile of the performance displayed in Figure 2.4 still
indicates the expected effect that sprl leverages the knowledge of the target distribution
to yield faster convergence to the optimal policy in the median case.
Another interesting artifact is the initial decrease in performance of sprl between iterations
50−200. This can be accounted to the fact that in this phase, the intermediate distribution
p(c|ν) only assigns negligible probability density on areas covered by µ(c) (see Figure 2.4).
Hence the agent performance on µ(c) during this stage is completely dependent on the
extrapolation behavior of the agent, which seems to be rather poor in this setting. This
once more illustrates the importance of appropriate transfer of behavior between tasks,
which is, however, out of the scope of this chapter.
The sampling distributions visualized in Figure 2.4 indicate that sprl focuses on easier
tasks with smaller obstacle sizes first and then moves on to the harder, desired tasks.
Figure 2.5 also shows that ppo [177], a step-based reinforcement learning algorithm, is
not able to solve the task after the same amount of interaction with the environment,
emphasizing the complexity of the learning task.

33

SPRL C-REPS GoalGAN CMA-ES PPO SAGG-RIAC

Figure 2.5.: Trajectories generated by final policies learned with different algorithms in
the reacher environment. The trajectories should reach the red dot while avoiding the
cyan boxes. Please note that the visualization is not completely accurate, as we did not
account for the viewpoint of the simulation camera when plotting the trajectories.

Sparse Ball-in-a-Cup

We conclude this experimental evaluation with a ball-in-a-cup task, in which the reward
function exhibits a significant amount of sparsity by only returning a reward of 1 minus
an L2 regularization term on the policy parameters, if the ball is in the cup after the policy
execution, and 0 otherwise. The robotic platform is a Barrett WAM, which we simulate
using the MuJoCo physics engine [195]. The policy represents again a ProMP encoding
the desired position of the first, third and fifth joint of the robot. Achieving the desired task
with a poor initial policy is an unlikely event, leading to mostly uninformative rewards and
hence poor learning progress. However, as can be seen in Figure 2.6, giving the learning

0 100 200

0.0
0.2
0.4
0.6
0.8
1.0

Iterations

Su
cc
es
sR
at
e

SPRL C-REPS CMA-ES GoalGAN SAGG-RIAC

1.0 1.4 1.8 2.2
0.0
0.2
0.4
0.6
0.8
1.0

Cup Diameter Scale

PD
F

5
30

80

120

Figure 2.6.: Left: 50%-quantiles (thick lines) and intervals from 10%- to 90%-quantile
(shaded areas) of the success rates for the sparse ball-in-a-cup task. Quantiles are computed
from the 10 best runs out of 20. Middle: The sampling distribution p (c|ν) at different
iterations (colored areas) of one sprl run together with the target distribution µ(c) (black
line). Right: Task visualization on the real robot (upper) and in simulation with a scale of
2.5 (lower).

34

agent control over the diameter of the cup significantly improves the learning progress
by first training with larger cups and only progressively increasing the precision of the
movement to work with smaller cups. Having access to only 16 samples per iteration, the
algorithms did not always learn to achieve the task. However, the final policies learned
by sprl outperform the ones learned by c-reps, cma-es, goalgan and sagg-riac. The
movements learned in simulation were finally applied to the robot with a small amount of
fine-tuning.

2.7. Application to Step-Based Reinforcement Learning

The experiments in the previous section demonstrate that the self-paced learning paradigm
can indeed be beneficial in the episodic RL —or black-box optimization— setting, so that
as a next step we want to investigate its application when using a stochastic policy of the
form πθ(a|s, c). In this setting, we derive an implementation of SPL that is agnostic to
the RL algorithm of choice by using the possibility of updating the SPL objective (2.8) in
a block-coordinate manner w.r.t. θ and ν. The resulting approximate implementation
allows to create learning agents following the SPL paradigm using arbitrary RL algorithms
by making use of the value functions that the RL algorithms estimate during policy
optimization.

2.7.1. Algorithmic Implementation

Optimizing objective (2.8) w.r.t. the policy parameters θ using an RL algorithm of choice
under the current context distribution p(c|νk) generates a data set Dk of trajectories

Dk= {(ci, τ i) | ci ∼ p(c|νk), τ i ∼ p(τ |ci,θk), i ∈ [1,M]} ,
where the distribution p(τ |ci,θk) is defined in Section 1.3. One unifying property of many
RL algorithms is their reliance on estimating the state-value function V θ(s, c), each in
their respective way, as a proxy to optimizing the policy. We make use of this approximated
value function Ṽ θ

(s, c) (note the ∼ indicating the approximation) to compute an estimate
of the expected performance J(θ, ci) = Ep0,ci (s0)

[︁
V θ(s0, ci)

]︁
≈ Ṽ

θ
(si,0, ci) in context ci,

where si,0 is the initial state of trajectory τ i. This yields an approximate form of objective
(2.8) given by

max
νk+1

1

M

M∑︂
i=1

p (ci|νk+1)

p (ci|νk)
Ṽ

θ
(si,0, ci)− αkDKL (p(c|νk+1) ∥ µ(c))

s.t. DKL (p(c|νk+1) ∥ p(c|νk))≤ϵ. (2.15)

35

Algorithm 2 Self-Paced Deep Reinforcement Learning (spdl)
Input: Initial context distribution- and policy parameters ν0 and θ0, Target context
distribution µ(c), KL penalty proportion ζ and offset Kα, Number of iterations K,
Rollouts per policy updateM , Relative entropy bound ϵ
for k = 1 to K do
Agent Improvement:
Sample contexts: ci ∼ p(c|νk), i ∈ [1,M]
Rollout trajectories: τ i ∼ p(τ |ci,θk), i ∈ [1,M]
Obtain θk+1 from RL algorithm of choice using Dk = {(ci, τ i)|i ∈ [1,M]}
Estimate Ṽ θk+1

(si,0, ci) (or use estimate of RL agent) for contexts ci
Context Distribution Update:
IF k ≤ Kα: Obtain νk+1 from (2.15) with αk = 0
ELSE: Obtain νk+1 optimizing (2.15), using αk = B(νk,Dk) (2.9)

end for

The first term in objective (2.15) is an approximation to Ep(c|νk+1) [J(θ, c)] via importance-
weights. The above objective can be solved using any constrained optimization algorithm.
In our implementation, we use the trust-region algorithm implemented in the SciPy library
[204]. The two KL divergences in (2.15) can be computed in closed form since µ(c) and
p(c|ν) are Gaussians in our implementations. However, for more complicated distributions,
the divergences can also be computed using samples from the respective distributions
and the corresponding (unnormalized) log-likelihoods. The resulting approach (spdl) is
summarized in Algorithm 2.

2.7.2. Experiments

We evaluate spdl in three different environments (Figure 2.7) with different deep RL
(DRL) algorithms: trpo [178], ppo [177], and sac [66]. For all DRL algorithms, we use
the implementations from the Stable Baselines library [73]. 2
The first environment for testing spdl is again a point-mass environment but with an
additional parameter to the context space, as we will detail in the corresponding section.
The second environment extends the point-mass experiment by replacing the point-mass
with a torque-controlled quadruped ‘ant’, thus increasing the complexity of the underlying
control problem and requiring the capacity of deep neural network function approximators
used in DRL algorithms. Both environments focus on learning a specific hard target task.
2Code for running the experiments can be found at https://github.com/psclklnk/spdl.

36

https://github.com/psclklnk/spdl

(a) Point-Mass (b) Ant (c) Ball-Catching

Figure 2.7.: Environments used for experimental
evaluation. For the point-mass environment (a),
the upper plot shows the target task. The shaded
areas in picture (c) visualize the target distribution
of ball positions (green) as well as the ball positions
for which the initial policy succeeds (blue).

The final environment is a robotic
ball-catching environment. This en-
vironment constitutes a shift in cur-
riculum paradigm as well as reward
function. Instead of guiding learn-
ing towards a specific target task,
this third environment requires to
learn a ball-catching policy over a
wide range of initial states (ball po-
sition and velocity). The reward
function is sparse compared to the
dense ones employed in the first two
environments. To judge the perfor-
mance of spdl, we compare the ob-
tained results to state-of-the-art CRL
algorithms alp-gmm [162], which is
based on the concept of Intrinsic Mo-
tivation, and goalgan [56], which
relies on the notion of a success indicator to define a curriculum. Further, we also compare
to curricula consisting of tasks uniformly sampled from the context space (referred to
as ‘Random’ in the plots) and learning without a curriculum (referred to as ‘Default’).
Additional details and qualitative evaluations of them can be found in the appendix.

Point-Mass Environment

As previously mentioned, we again focus on a point-mass environment, where now the
control policy is a neural network. Furthermore, the contextual variable c ∈ R3 now
changes the width and position of the gate as well as the dynamic friction coefficient
of the ground on which the point-mass slides. The target context distribution µ(c) is a
narrow Gaussian with a negligible variance that encodes a small gate at a specific position
and a dynamic friction coefficient of 0. Figure 2.7 shows two different instances of the
environment, one of them being the target task.
Figure 2.8 shows the results of two different experiments in this environment, one where
the curriculum is generated over the full three-dimensional context space and one in
which the friction parameter is fixed to its target value of 0 so that the curriculum is
generated only in a two-dimensional subspace. As Figure 2.8 and Table 2.1 indicate, spdl
significantly increases the asymptotic reward on the target task compared to other methods.
Increasing the dimension of the context space harms the performance of the other CRL

37

0 100 200 300 400

Iteration

0.0

2.5

5.0

7.5

R
e
w

a
rd

Point Mass

0 100 200 300 400

Iteration

2.5

5.0

7.5

Point Mass (2D)

-4 -2 0 2 4

Position

0.5

3

5.5

8

W
id

th

-4 -2 0 2 4

Position

-4 -2 0 2 4

Position

-4 -2 0 2 4

Position

-4 -2 0 2 4

Position

-4 -2 0 2 4

Position

SPDL ALP-GMM Random Default GoalGAN SPRL

Figure 2.8.: Reward of different curricula in the point-mass (2D and 3D) environment for
trpo. Mean (thick line) and two times standard error (shaded area) is computed from 20
algorithm runs. The lower plots show samples from the context distributions p(c|ν) in
the point-mass 2D environment at iterations 0, 20, 30, 50, 65 and 120 (from left to right).
Different colors and shapes of samples indicate different algorithm runs. The black cross
marks the mean of the target distribution µ(c).

algorithms. For spdl, there is no statistically significant difference in performance across
the two settings. This observation is in line with the hypothesis posed in Section 2.6.2,
that spdl leverages the notion of µ(c) compared to other CRL algorithms that are not
aware of it. As the context dimension increases, the volume of those parts in context space
that carry non-negligible probability density according to µ(c) become smaller and smaller
compared to the volume of the whole context space. Hence curricula that always target
the whole context space tend to spend less time training on tasks that are relevant under
µ(c). By having a notion of a target distribution, spdl ultimately samples contexts that
are likely according to µ(c), regardless of the dimension. The context distributions p(c|ν)
visualized in Figure 2.8 show that the agent focuses on wide gates in a variety of positions
in early iterations. Subsequently, the size of the gate is decreased and the position of the
gate is shifted to match the target one. This process is carried out at different paces and
in different ways, sometimes preferring to first shrink the width of the gate before moving
its position while sometimes doing both simultaneously. More interestingly, the behavior
of the curriculum is consistent with the one observed in Section 2.6.2. We further see
that the episodic version (sprl), which we applied by defining the episodic RL policy
pθ(ω|c) to choose the weights ω of a policy network for a given context c, learns much

38

slower compared to its step-based counterpart, requiring up to 800 iterations to reach an
average reward of 5 (only the first 400 are shown in Figure 2.8). To keep the dimension
of the context space moderate, the policy network for sprl consisted of one layer of 21
tanh-activated hidden units, leading to 168 and 189 parameter dimensions in the two
2D and 3D context space instances. We also evaluated spdl with this particular policy
architecture, still significantly outperforming sprl with an average reward of around 8
after 800 iterations.

Ant Environment

We replace the point-mass in the previous environment with a four-legged ant similar to
the one in the OpenAI Gym simulation environment [27]. 3 The goal is to reach the other
side of a wall by passing through a gate, whose width and position are determined by
the contextual variable c ∈ R2 (see Figure 2.7). We only evaluated the CRL algorithms
using ppo since the implementations of trpo and sac in the Stable-Baselines library
do not allow to make use of the parallelization capabilities of the Isaac Gym simulator,
leading to prohibitive running times (details in the appendix).
Looking at Figure 2.9, we see that spdl allows the learning agent to escape the local
optimum which results from the agent not finding the gate to pass through. alp-gmm and
a random curriculum do not improve the reward over directly learning on the target task.
However, as we show in the appendix, both alp-gmm and a random curriculum improve
the qualitative performance, as they sometimes allow the ant to move through the gate.
Nonetheless, this behavior is less efficient than the one learned by goalgan and spdl,
causing the action penalties in combination with the discount factor to prevent this better
behavior from being reflected in the reward.

Ball-Catching Environment

Due to a sparse reward function and a broad target task distribution, this final environment
is drastically different from the previous ones. In this environment, the agent needs to
control a Barrett WAM robot to catch a ball thrown towards it. The reward function
is sparse, only rewarding the robot when it catches the ball and penalizing excessive
movements. In the simulated environment, the ball is considered caught if it is in contact
with the end effector. The context c ∈ R3 parameterizes the distance to the robot from
which the ball is thrown as well as its target position in a plane that intersects the base
of the robot. Figure 2.7 shows the robot as well as the target distribution over the ball
3We use the Nvidia Isaac Gym simulator [151] for this experiment.

39

0 50 100 150 200 250

Iteration

0

1000

R
e
w

a
rd

Ant

0 100 200 300 400 500

Iteration

0

20

40

Ball Catching

-1 -0.5 0

X-Position

1

1.4

1.8

Y
-P

o
si

ti
o
n

-1 -0.5 0

X-Position

-1 -0.5 0

X-Position

-1 -0.5 0

X-Position

-1 -0.5 0

X-Position

-1 -0.5 0

X-Position

SPDL ALP-GMM Random Default GoalGAN SPDL* GoalGAN* Default*

Figure 2.9.: Mean (thick line) and two times standard error (shaded area) of the reward
achieved with different curricula in the ant environment for ppo and in the ball-catching
environment for sac (upper plots). The statistics are computed from 20 seeds. For ball-
catching, runs of spdl/goalganwith an initialized context distribution and runs of Default
learning without policy initialization are indicated by asterisks. The lower plots show
ball positions in the ‘catching’ plane sampled from the context distributions p(c|ν) in the
ball-catching environment at iterations 0, 50, 80, 110, 150 and 200 (from left to right).
Different sample colors and shapes indicate different algorithm runs. Given that p(c|ν) is
initialized with µ(c), the samples in iteration 0 visualize the target distribution.

positions in the aforementioned ‘catching’ plane. The context c is not visible to the policy,
as it only changes the initial state distribution p(s0) via the encoded target position and
initial distance to the robot. Given that the initial state is already observed by the policy,
observing the context is superfluous. To tackle this learning task with a curriculum, we
initialize the policy of the RL algorithms to hold the robot’s initial position. This creates
a subspace in the context space in which the policy already performs well, i.e. where
the target position of the ball coincides with the initial end effector position. This can be
leveraged by CRL algorithms.
Since spdl and goalgan support to specify the initial context distribution, we investigate
whether this feature can be exploited by choosing the initial context distribution to encode
the aforementioned tasks in which the initial policy performs well. When directly learning
on the target context distribution without a curriculum, it is not clear whether the policy
initialization benefits learning. Hence, we evaluate the performance both with and without
a pre-trained policy when not using a curriculum.

40

ppo (P3D) sac (P3D) ppo (P2D) sac (P2D) trpo (BC) ppo (BC)
alp-gmm 2.43± 0.3 4.68± 0.8 5.23± 0.4 5.11± 0.7 39.8± 1.1 46.5± 0.7
goalgan 0.66± 0.1 2.14± 0.6 1.63± 0.5 1.34± 0.4 42.5± 1.6 42.6± 2.7
goalgan * - - - - 45.8± 1.0 45.9± 1.0
spdl 8.45± 0.4 6.85± 0.8 8.94± 0.1 5.67± 0.8 47.0± 2.0 53.9± 0.4
spdl * - - - - 43.3± 2.0 49.3± 1.4
Random 0.67± 0.1 2.70± 0.7 2.49± 0.3 4.99± 0.8 - -
Default 2.40± 0.0 2.47± 0.0 2.37± 0.0 2.40± 0.0 21.0± 0.3 22.1± 0.3
Default * - - - - 21.2± 0.3 23.0± 0.7

Table 2.1.: Average final reward and standard error of different curricula and RL algorithms
in the two point-mass environments with three (P3D) and two (P2D) context dimensions
as well as the ball-catching environment (BC). The data is computed from 20 algorithm
runs. Significantly better results according to Welch’s t-test with p < 1% are highlighted
in bold. The asterisks mark runs of spdl/goalgan with an initialized context distribution
and runs of default learning without policy initialization.

Figure 2.9 and Table 2.1 show the performance of the investigated curriculum learning
approaches. We see that sampling tasks directly from the target distribution does not
allow the agent to learn a meaningful policy, regardless of the initial one. Further, all
curricula enable learning in this environment and achieve a similar reward. The results
also highlight that initialization of the context distribution slightly improves performance
for goalganwhile slightly reducing performance for spdl. The context distributions p(c|ν)
visualized in Figure 2.9 indicate that spdl shrinks the initially wide context distribution in
early iterations to recover the subspace of ball target positions, in which the initial policy
performs well. From there, the context distribution then gradually matches the target
one. As in the point-mass experiment, this progress takes place at a differing pace, as can
be seen in the visualizations of p(c|ν) in Figure 2.9 for iteration 200: Two of the three
distributions fully match the target distribution while the third only covers half of it.
The similar performance across curriculum learning methods is indeed interesting. Clearly,
the wide target context distribution µ(c) better matches the implicit assumptions made
by both alp-gmm and goalgan that learning should aim to accomplish tasks in the whole
context space. However, both alp-gmm and goalgan are built around the idea to sample
tasks that promise a maximum amount of learning progress, typically avoiding to sample
tasks that the agent can already solve. spdl achieves the same performance by simply
growing the sampling distribution over time, not at all avoiding to sample tasks that the
agent has mastered. Hence, a promising direction for further improving the performance
of CRL methods is to combine ideas of spdl and methods such as alp-gmm and goalgan.

41

1.0 1.2 1.4 1.6 1.8 2.0

ζ

7

8
R

e
w

a
rd

150

200

It
e
ra

ti
o
n
s

10 20 30 40 50

Kα

7

8

R
e
w

a
rd

150

200

It
e
ra

ti
o
n
s

Figure 2.10.: Final performance (blue) of spdl on the point-mass (3D) environment for
different values ofKα and ζ as well as the average number of iterations required to reach a
reward larger or equal to 5 on tasks sampled from µ(c) (orange). The results are computed
from 20 environment runs. The error bars indicate the standard error. When varying ζ,
Kα was fixed to a value of 20. When varying Kα, ζ was fixed to a value of 1.6.

2.8. Improved α-Schedule

The evaluation in the previous settings showed that choosing the trade-off parameter αk in
each iteration according to (2.9) was sufficient to improve the performance of the learner
in the investigated experiments. However, the introduced schedule requires an offset
parameter Kα as well as a penalty proportion ζ to be specified. Both these parameters
need to be chosen adequately. If Kα is chosen too small, the agent may not have enough
time to find a subspace of the context space containing tasks of adequate difficulty. If Kα

is chosen too large, the learner wastes iterations focusing on tasks of small difficulty, not
making progress towards the tasks likely under µ(c). The parameter ζ exhibits a similar
trade-off behavior. Too small values will lead to an unnecessarily slow progression towards
µ(c) while too large values lead to ignoring the competence of the learner on the tasks
under p(c|ν), resulting in a poor final agent behavior because of a too speedy progression
towards µ(c). This trade-off is visualized in Figure 2.10 for the point-mass environment.
Despite the clear interpretation of the two parameters Kα and ζ, which allows for a fairly
straightforward tuning, we additionally explore another approach of choosing αk in this
section. This approach only requires to specify an expected level of performance VLB that
the agent should maintain under the chosen context distribution p(c|ν). Assuming the
decoupled optimization of the policy πθ and the context distribution p(c|ν) investigated
in the last section, this can be easily realized by rewriting (2.8) as

min
ν

DKL (p(c|ν) ∥ µ(c))
s.t. Ep(c|ν) [J(θ, c)] ≥ VLB

DKL
(︁
p(c|ν)

⃦⃦
p(c|ν ′)

)︁
≤ ϵ. (2.16)

42

The main modification is to avoid the explicit trade-off between expected agent per-
formance and KL divergence by minimizing the KL divergence w.r.t. µ(c) subject to a
constraint on the expected agent performance. Investigating the Lagrangian of objec-
tive (2.16)

L(ν, α, η) = DKL (p(c|ν) ∥ µ(c)) + α(VLB − Ep(c|ν) [J(θ, c)])

+ η(DKL
(︁
p(c|ν)

⃦⃦
p(c|ν ′)

)︁
− ϵ), α, η ≥ 0

we see that the constraint reintroduces a scalar α that trades-off the expected agent
performance and KL divergence to µ(c). The value of this scalar is, however, now auto-
matically chosen to fulfill the imposed constraint on the expected agent performance. For
an implementation of (2.16), we again replace J(θ, c) by an importance-sampled Monte
Carlo estimate as done in (2.15). At this point, we have replaced the parameter ζ with VLB.
The benefit is a more intuitive choice of this hyperparameter since it is directly related
to the expected performance, i.e. the quantity being optimized. Furthermore, we can
easily remove the need for the offset parameterKα by setting αk=0 in (2.15) until we first
reach VLB. Consequently, this new schedule only requires one hyperparameter VLB to be
specified. From then on, we compute the new context distribution by optimizing (2.16).
If during learning, the performance of the agent falls below VLB again, we simply do not
change the context distribution until the performance exceeds VLB again. We now compare
this new schedule with the schedule for α that is based on Kα and ζ. The corresponding
experiment data is shown in Table 2.2. We can see that the final rewards achieved with
the two heuristics are not significantly different according to Welch’s t-test. This indicates
that the simpler heuristic performs just as well in the investigated environments in terms
of final reward. However, the often significantly smaller average number of iterations
required to reach a certain average performance on µ(c) shows that the schedule based
on VLB tends to lead to a faster progression towards µ(c). In a sense, this is not surprising,
given that the explicit minimization of the KL divergence w.r.t. µ(c) under a constraint
on the expected performance optimizes the trade-off between agent performance and KL
divergence to µ(c) in each iteration. With the schedule based on Kα and ζ, this trade-off
was compressed into the parameter ζ that stayed constant for all iterations. Furthermore,
the lower bound VLB on the achieved average reward under p(c|ν) exhibits certain similar-
ities to the goalgan algorithm in which the context distribution resulted from a constraint
of encoding only tasks of intermediate difficulty. In a sense, goalgan uses an upper and
lower bound on the task difficulty. However, it enforces this constraint per context while
our formulation enforces the lower bound in expectation.

43

spdl(Kα, ζ) spdl(VLB)
Performance Iterations to Threshold Performance Iterations to Threshold

trpo (P3D) 8.04± 0.25 198± 18 7.79± 0.28 220± 19
ppo (P3D) 8.45± 0.42 165± 14 8.66± 0.07 120± 10
sac (P3D) 6.85± 0.77 94± 8 7.13± 0.71 67± 4
trpo (P2D) 7.47± 0.33 201± 20 7.67± 0.2 198± 19
ppo (P2D) 8.94± 0.10 132± 5 9.01± 0.07 119± 3
sac (P2D) 5.67± 0.77 134± 30 6.56± 0.82 59± 3
ppo (ANT) 1371± 23 131± 3 1305± 38 131± 2
trpo (BC) 47.0± 2.0 379± 21 50.0± 1.5 320± 20
ppo (BC) 53.9± 0.4 285± 19 51.6± 1.7 234± 12
sac (BC) 34.1± 2.3 205± 12 34.1± 1.3 139± 8
trpo (BC*) 43.3± 2.0 354± 18 46.0± 1.5 285± 20
ppo (BC*) 49.3± 1.4 224± 7 51.8± 0.5 212± 17
sac (BC*) 36.9± 1.0 235± 23 37.1± 1.2 173± 20

Table 2.2.: Comparison between the two spdl heuristics on the point-mass (P3D and P2D),
ant, and ball-catching (BC) environments over 20 seeds. The asterisks mark runs of spdl
with an initialized context distribution. We compare the final average reward ± standard
error (Performance) and the average number of iterations required to reach 80% of the
lower of the two rewards (Iterations to Threshold). Statistically significant differences
according to Welch’s t-test are highlighted in bold for p<1% and brown for p<5%.

2.9. An Inference Perspective on Self-Paced Reinforcement
Learning

As noted in Section 2.5, the KL divergence regularization w.r.t. ν in (2.8) was done to
stabilize the overall learning procedure. In this final section, we show that the resulting
learning scheme can be connected to a modified version of the expectation-maximization
algorithm, a well-known majorize-minimize algorithm for inference problems. Before we
conclude this chapter, we want to briefly point out this connection, especially highlighting
a connection between self-paced learning and the concept of tempering [91, 202].

2.9.1. RL as Inference

To establish the aforementioned connection, we need to introduce a probabilistic interpreta-
tion of the contextual RL problem as being an inference task [41, 197, 109]. In this formula-

44

tion, the goal is to maximize the probability of an optimality eventO ∈ {0, 1} that depends
on the sum of rewards along a trajectory of states and actions τ = {(st,at)|t = 0, 1, . . .}

p(O|τ , c) ∝ exp (R(τ , c)) = exp

(︄ ∞∑︂
t=0

rc(st,at)

)︄
. (2.17)

Together with the probability for a trajectory τ given the policy parameters θ

p(τ |θ, c) = p0,c(s0)
∏︂
t≥0

p̄c(st+1|st,at)πθ(st|at, c) (2.18)

we can marginalize over the trajectories τ generated by p(τ |θ, c), i.e. generated by the
agent. This results in a probabilistic equivalent of the expected performance J(θ, c) in
context c under policy parameters θ. This probabilistic equivalent is given by the marginal
likelihood of event O in an MDPM(c)

J(θ, c) = p(O|c,θ) =
∫︂

p(O|τ , c)p(τ |θ, c) dτ . (2.19)

The transition probabilities p̄c in (2.18) are a modified version of the original transition
probabilities pc that introduce a “termination” probability in each step that can occur
with a probability of 1− γ [see 109]. This introduces the concept of a discounting factor
γ into the probabilistic model. Introducing a context distribution p(c|ν) then yields a
probabilistic interpretation of the contextual RL objective

J(θ, p(c|ν)) = p(O|θ,ν) =
∫︂

p(O|τ , c)p(τ |θ, c)p(c|ν) dc dτ . (2.20)

When not making use of a curriculum, we would simply set p(c|ν) = µ(c). The above
model is called a latent variable model (LVM), as the trajectories τ , as well as the contexts
c are marginalized out to form the likelihood of the eventO. These marginalizations make
the direct optimization w.r.t. θ and ν challenging. The so-called expectation-maximization
algorithm is commonly applied to split this complicated optimization into two simpler
steps: The E- and M-Step

E-Step : qk(τ , c) = argmin
q(τ ,c)

DKL (q(τ , c) ∥ p(τ , c|O,θk,νk)) (2.21)

M-Step : θk+1,νk+1 = argmax
θ,ν

Eqk(τ ,c) [log(p(O, τ , c|θ,ν))] . (2.22)

Iterating between these two steps is guaranteed to find a local optimum of the marginal
likelihood p(O|θ,ν).

45

2.9.2. Connection to Self-Paced Reinforcement Learning

At this point, two simple reformulations are required to establish the connection between
the KL-regularized objective (2.8) and the expectation-maximization algorithm on LVM
(2.20). First, we can reformulate the M-Step as anM-projection (i.e. a maximum-likelihood
fit of the parametric model q(τ , c|θ,ν) to qk(τ , c))

argmax
θ,ν

Eqk(τ ,c) [log(p(O, τ , c|θ,ν))] = argmin
θ,ν

DKL (qk(τ , c) ∥ q(τ , c|θ,ν)) .

Second, the E-Step can, for this particular model, be shown to be equivalent to a KL-
regularized RL objective

argmin
q(τ ,c)

DKL (q(τ , c) ∥ p(τ , c|O,θk,νk))

= argmax
q(τ ,c)

Eq(τ ,c) [R (τ , c)]−DKL (q(τ , c) ∥ p(τ , c|θ,ν)) ,

in which we penalize a deviation of the policy and context distribution from the current
parametric distribution p(τ , c|θ,ν). Adding a term −αDKL (q(c) ∥ µ(c)) and optimizing
this modified E-Step only w.r.t. the context distribution q(c) while keeping q(τ |c) fixed at
p(τ |θk, c), we obtain

argmax
q(c)

Eq(c)

[︁
Ep(τ |θk,c) [R (τ , c)]

]︁
− αDKL (q(c) ∥ µ(c))−DKL (q(c) ∥ p(c|νk)) . (2.23)

This result resembles (2.8), where however the optimization is carried out w.r.t. q(c)
instead of ν and the KL divergence w.r.t. p(c|νk) is treated as a penalty term instead of
a constraint. Not fitting the parameters νk+1 directly but in a separate (M-)step is also
done by c-reps and our episodic RL implementation of SPL. Hence, in the light of these
results, the step-based implementation can be interpreted as skipping an explicit M-Step
and directly optimizing the E-Step w.r.t. to the parametric policy. Such a procedure can
be found in popular RL algorithms, as detailed by [1].

2.9.3. Self-Paced Learning as Tempering

The previously derived E-Step has a highly interesting connection to a concept in the
inference literature called tempering [91, 202]. This connection is revealed by showing
that the penalty term αDKL (q(c) ∥ µ(c)) in the modified E-Step (2.23) results in an E-Step

46

to a modified target distribution. That is

argmin
q(c)

DKL (q(c) ∥ p(c|O,θk,νk)) + αDKL (q(c) ∥ µ(c))

= argmin
q(c)

DKL

(︃
q(c)

⃦⃦⃦⃦
1

Z
p(c|O,θk,νk)

1
1+αµ(c)

α
1+α

)︃
. (2.24)

The modified target distribution in (2.24) is performing an interpolation between µ(c)
and p(c|O,θk,νk) based on the parameter α. Looking back at the sampling distribution
induced by the probabilistic SPL objective (2.5) for the regularizer fKL,i (see Equation B.1
in the appendix)

p(c|α,θ) ∝ ν∗KL,c(α,θ) = µ(c) exp (J(θ, c))
1
α , (2.25)

we can see that, similarly to the modified E-Step, the distribution encoded by ν∗KL,c, i.e. the
optimizers of (2.5), interpolates between µ(c) and the distribution p(c|θ) ∝ exp (J(θ, c)).
Both of these distributions would be referred to as tempered distributions in the inference
literature.
The concept of tempering has been explored in the inference literature as a tool to improve
inference methods when sampling from or finding modes of a distribution µ(c) with many
isolated modes of density [91, 127, 200]. The main idea is to not directly apply inference
methods to µ(c) but to make use of a tempered distribution pα(c) which interpolates
between µ(c) and a user-chosen reference distribution ρ(c) from which samples can be
easily drawn by the employed inference method (e.g. a Gaussian distribution). Doing
repeated inference for varying values of α allows to explore the isolated modes more
efficiently and with that yielding more accurate samples from µ(c). Intuitively, initially
sampling from ρ(c), chosen to be free from isolated modes, and gradually progressing
towards µ(c) while using the previous inferences as initializations avoids getting stuck in
isolated modes of µ(c) that encode comparatively low density. This technique makes the
inference algorithm less dependent on a good initialization.
We can easily identify both (2.24) and (2.25) to be particular tempered distributions
pα(c). There, however, seems to be a striking difference to the aforementioned tempering
scheme: The target density µ(c) is typically trivial, not requiring any advanced inference
machinery. However, although µ(c) may be trivial from an inference perspective, the
posterior over policy parameters

p(θ|O) ∝ p(θ)

∫︂
p(O|c,θ)µ(c) dc

47

is highly challenging for contexts c distributed according to µ(c), potentially containing
multiple, highly isolated modes, many of which only encode suboptimal behavior. In these
cases, tempering helps to achieve better performance when employed in combination
with RL. For low values of α, it is easier to find high-density modes of

pα(θ|O) ∝ p(θ)

∫︂
p(O|c,θ)pα(c)dc.

These modes can then be “tracked” by the RL algorithm while increasing the value of α.
The connection between SPL and the concept of tempering yields interesting insights
into the problem of choosing both a good schedule for α and also the general design of
pα(c). As introduced in Section 2.3, the particular choice of the self-paced regularizer
f(α,ν), and hence the regularizer Fα(l), is closely related to the particular form of pα(c).
A ubiquitous decision is the choice of the particular regularizer or tempered distribution
for a given problem. Gelman and Meng [60] show that the particular choice of pα has a
tremendous effect on the error of Monte Carlo estimates of ratios between normalization
constants. Furthermore, they compute the optimal form of pα for a Gaussian special
case that achieves minimum variance of the Monte Carlo estimator. It may be possible to
draw inspiration from their techniques to design specialized regularizers for problems of
particular structures.
For the application of SPL to RL, another important design decision is the schedule of
α. The value of α should be increased as fast as possible while ensuring the stability of
the RL agent. We proposed two schedules that accomplished this task sufficiently well.
However, there may be a tremendous margin for improvement. In the inference literature,
people readily investigated the problem of choosing α, as they face a similar trade-off
problem between required computation time of inference methods and the usefulness
of their results [124, 63, 119]. Again, it may be possible to draw inspiration from these
works to design better schedules for α in RL problems.

2.10. Conclusion

We have presented an interpretation of self-paced learning as inducing a sampling dis-
tribution over tasks in a reinforcement learning setting when using the KL divergence
w.r.t. a target distribution µ(c) as a self-paced regularizer. This view renders the induced
curriculum as an approximate implementation of a regularized contextual RL objective
that samples training tasks based on their contribution to the overall gradient of the
objective. Furthermore, we identified our approximate implementations to be a modified
version of the expectation-maximization algorithm applied to the common latent variable

48

model for RL. These findings, in turn, revealed connections to the concept of tempering in
the inference literature.
The observations in this chapter motivate further theoretical investigations, such as iden-
tifying the particular regularized SPL objective that is related to our approximate im-
plementation (2.8). Furthermore, we only explored the KL divergence as a self-paced
regularizer. Although we showed that the probabilistic interpretation of SPL does not hold
for arbitrary regularizers, it may be possible to derive the presented results for a wider
class of divergences.
From an experimental point of view, we focused on RL tasks with a continuous context
space in this chapter. In the future, we want to conduct experiments in discrete context
spaces, where we do not need to restrict the distribution to some tractable analytic form
since we can exactly represent discrete probability distributions.
Our implementations of the SPL scheme for RL demonstrated remarkable performance
across RL algorithms and tasks. The presented algorithms are, however, by far no perfect
realizations of the theoretical concept. The proposed ways of choosing α in each iteration
are just ad-hoc choices. At this point, insights gained through the inference perspective
into our curriculum generation scheme presented in Section 2.9 may be particularly useful.
Furthermore, the use of Gaussian context distributions is a major limitation that restricts
the flexibility of the context distribution. Specifically in higher-dimensional context spaces,
such a restriction could lead to poor performance. Here, it may be possible to use ad-
vanced inference methods [115, 216] to sample from the distribution (2.24) without
approximations even in continuous spaces.

49

3. On the Benefit of Optimal Transport for
Curriculum Reinforcement Learning

Curriculum reinforcement learning (CRL) allows solving complex tasks by generating a
tailored sequence of learning tasks, starting from easy ones and subsequently increasing
their difficulty. Although the potential of curricula in RL has been clearly shown in various
works, it is less clear how to generate them for a given learning environment, resulting
in various methods aiming to automate this task. In this chapter, we focus on framing
curricula as interpolations between task distributions, which has previously been shown
to be a viable approach to CRL. Identifying key issues of existing methods, we frame
the generation of a curriculum as a constrained optimal transport problem between task
distributions. Benchmarks show that this way of curriculum generation can improve
upon existing CRL methods, yielding high performance in various tasks with different
characteristics.

3.1. Introduction

Reinforcement learning (RL) [189] has celebrated great successes as a framework for the
autonomous acquisition of desired behavior. With ever-increasing computational power,
this framework and the algorithms developed under it have allowed to create learning
agents capable of solving non-trivial long-horizon planning [134, 183] and control tasks
[8]. However, these successes have highlighted the need for certain forms of regularization,
such as leagues in the context of board games [183], gradual diversification of simulated
training environments for robotic manipulation [8] and -locomotion [173], or a tailored
training pipeline in the context of humanoid control for soccer [117]. These regularizations
can help to overcome the shortcomings of modern RL agents such as poor exploratory
behavior – an active topic of research [16, 61, 121].
One can view the regularizations mentioned above under the umbrella term of curriculum
reinforcement learning [146], which aims to avoid the shortcomings of modern (deep) RL
agents by learning on a tailored sequence of tasks. Such task sequences can materialize in

51

Task Parameter c1

sprl

Task Parameter c1

T
a
sk

P
a
ra

m
et

er
c 2

Target Tasks

Initial Tasks

currot

low

high

A
g
en

t
P

er
fo

rm
a
n

ce

Figure 3.1.: Our approach (currot) addresses problems of existing curriculum RL meth-
ods, such as sprl, which create curricula between a distribution of initial tasks (blue) and
a distribution of target tasks (green). In this example, the curriculum can change the task
via two parameters c1 and c2, leading to more or less challenging learning environments
for an agent. Looking at the different stages of the curricula (colored points), we see that
existing methods can lead to distributions that encode hard- and easy tasks, but ignore
tasks of intermediate difficulty. Our method avoids such a splitting behavior, resulting
in interpolations that gradually increase the task difficulty throughout the curriculum.
Please see Sections 3.4 and 3.5 for a detailed description.

a variety of ways, and they are motivated by different perspectives in the literature, such as
intrinsic motivation or regret minimization, to name some of them [10, 57, 206, 162, 220,
83]. Following the perspective from Chapter 2, we interpret curricula as sequences of task
distributions that interpolate between an auxiliary task distribution – with the sole purpose
of facilitating learning – and a distribution of target tasks. We refer to these approaches
as interpolation-based curricula. While algorithmic realizations of such curricula have
been successfully evaluated in the literature [97, 98, 29], some evaluations indicated a
relatively poor learning performance of these methods [171]. Furthermore, applications
of interpolation-based curricula have been limited to scenarios with somewhat restricted
distributions, such as Gaussian- or uniform ones. The observed performance gaps and
lack of flexibility w.r.t. distribution parameterization call for a better understanding of the
inner workings of these methods to improve their performance and applicability.
This chapter investigates the shortcomings of methods that realize curricula as a scheduled
interpolation between task distributions based on the KL divergence and an expected
performance constraint. We show how both these concepts can fail to produce meaningful
curricula in simple examples. The demonstrated failure cases a) illustrate the importance

52

of explicitly reasoning about the similarity of tasks when building a curriculum and b) show
how parametric assumptions on the generated task distributions can masquerade failures
of the underlying framework used to generate curricula. To resolve the observed issues,
we explicitly specify the similarity of learning tasks via a distance function and use the
framework of optimal transport to generate interpolating distributions that, independent
of their parameterization, result in gradual task changes. Based on this explicit notion
of task similarity, we then propose our approach to curriculum RL (currot), which
additionally replaces the expected performance constraint with a more strict condition to
obtain the behavior visualized in Figure 3.1. Furthermore, we contrast our approach with
an alternative method that has been recently proposed by Huang et al. [76] and outline
how both approaches use optimal transport to generate curricula but differ in their use
of the agent performance to constrain the curriculum while avoiding the demonstrated
pitfalls of expected performance constraints.
In experiments, we a) validate the correct behavior of both currot and gradient free
from approximations and parametric assumptions in a small discrete MDP and b) compare
approximate implementations on a variety of tasks featuring discrete- and continuous task
spaces, as well as Euclidean- and non-Euclidean measures of distance between learning
tasks. In these experiments, both approaches show convincing performance with currot
consistently matching and surpassing the performance of all other algorithms.

3.2. Related Work

This chapter focuses on generating training curricula for reinforcement learning (RL)
agents. Unlike supervised learning, where there is an ongoing discussion about the me-
chanics and effects of curricula in different learning situations [215, 221], the mechanics
seem to be more agreed upon in RL.
Curriculum Reinforcement Learning: In RL, curricula improve the learning performance
of an agent by adapting the training environments to its proficiency. This adaptation of task
complexity can reduce the sample complexity of RL, e.g., by bypassing poor exploratory
behavior of non-proficient agents [113]. Using curricula can avoid the need for extensively
engineered reward functions, which come with risks, such as failing to encode the in-
tended behavior [26]. Applications of curricula to RL are widespread, and different terms
have been established. Adaptive Domain Randomization [8] uses curricula to gradually
diversify the training parameters of a simulator to facilitate sim-to-real transfer. Similarly,
unsupervised environment discovery [45, 82, 83] aims to efficiently train an agent robust
to variations in the environment and can be seen as a more general view of domain
randomization. Automatic curriculum learning methods [57, 186, 56, 162, 227, 165, 49,

53

93] mainly focus on improving an agent’s learning speed and/or performance on a set
of desired tasks. Curricula are often generated as distributions that maximize a specific
surrogate objective, such as learning progress [15, 162], intermediate task difficulty [56],
regret [82], or disagreement between Q-functions [227]. Curriculum generation can also
be interpreted as a two-player game [186]. The work by Jiang et al. [83] hints at a link
between surrogate objectives and two-player games. Similar to the variety of objectives
that the aforementioned algorithms optimize to build a curriculum, their implementations
use drastically different approaches to approximate the training distribution for the agent,
which is often defined over a continuous space of training tasks. For example, Florensa
et al. [56] use a combination of GANs and a replay buffer to represent the task distribution.
Portelas et al. [162] use a Gaussian mixture model to approximate the distribution of
tasks that promise high learning progress. Jiang et al. [83] use a fixed-size replay buffer
to realize an approximate distribution of high-regret tasks, simultaneously encouraging
frequent replay of buffered tasks to keep a more accurate estimate of regret.
Opposed to the aforementioned approaches, interpolation-based curriculum RL algorithms
formulate the generation of a curriculum as an explicit interpolation between an auxiliary
task distribution and a distribution of target tasks [97, 93, 29]. This interpolation is subject
to a constraint on the expected agent performance that paces its progress towards the
target tasks. As highlighted in Chapter 2, such interpolations can be formally linked to suc-
cessful curricula in supervised learning [105], the concept of annealing in statistics [147],
and homotopic continuation methods in optimization [9]. As for the algorithms based on
surrogate objectives, realizations of these interpolation-based curricula inevitably need
to rely on approximations such as the restriction to Gaussian distributions in Chapter 2
or approximate update rules enabled by uniform target task distributions [29]. In this
chapter, we reveal shortcomings of the aforementioned interpolation-based curriculum
RL methods, highlighting how approximations can masquerade issues in the conceptual
algorithm formulations. One ingredient to overcome these shortcomings is an explicit
notion of task similarity that we formulate as a distance function between tasks. We
can then lift this distance function into the space of probability measures using optimal
transport.
Optimal Transport: Dating back to work by Monge in the 18th century, optimal transport
has been understood as an important fundamental concept touching upon many fields in
both theory and application [158, 32]. In probability theory, optimal transport translates
to the so-called Wasserstein metric [86] that compares two distributions under a given
metric, allowing, e.g., for the analysis of probabilistic inference algorithms as approximate
gradient flows [115] and providing well-defined ways of comparing feature distributions or
even graphs in computer vision and machine learning [103, 85, 196]. Gromov-Wasserstein
distances [130, 203] even allow comparing distributions across metric spaces, which

54

has been of use, e.g., in computational biology [44] or imitation learning [55]. In Rein-
forcement learning, optimal transport has not found widespread application, albeit some
interesting works exist. Zhang et al. [225] provide a natural extension of the work by
Liu et al. [115] and interpret policy optimization as Wasserstein gradient flows. Metelli,
Likmeta, and Restelli [132] use Wasserstein barycenters to propagate uncertainty about
value function estimates in a Q-learning approach. In more applied scenarios, optimal
transport has been used to regularize RL in sequence generation- [30] or combinatorial
optimization problems [62]. In goal-conditioned RL, Wasserstein distances have been pre-
viously applied to improve goal generation in the hindsight experience replay framework
[169] and to realize well-performing data-driven reward functions by combining them
with so-called time-step metrics [48]. Recently, Cho, Lee, and Kim [34] combined the
data-driven reward function proposed by Durugkar et al. [48] with a curriculum that,
similarly to the work by Ren et al. [169], improves selection of training goals from a
buffer of achieved ones. When it comes to building RL curricula over arbitrary MDPs using
Optimal Transport, we are only aware of our work [95] at ICML 2022 and the work by
Huang et al. [76] at NeurIPS 2022, which we present from a unified perspective and
compare in this chapter. In addition to the aforementioned methods in goal-conditioned
RL, this chapter emphasizes curriculum reinforcement learning as another promising
application domain for optimal transport. An important issue of applied optimal transport
is its computational complexity. In Appendix C.1, we discuss the computational aspects of
optimal transport in more detail.

3.3. Divergence-Minimizing Curriculum Reinforcement Learning

We refer to Section 1.3 for the introduction of contextual RL as well as Wasserstein distances
and Wasserstein barycenters. In this section, we summarize the main algorithmic idea
of Chapter 2 in case this chapter has been skipped. On an abstract level, curriculum RL
methods can be understood as generating a sequence of task distributions (pi:C↦→R)i under
which to train an RL agent by maximizing J(π, pi) w.r.t. π. When chosen appropriately,
solving this sequence of optimization problems can yield a policy that performs better on
the target distribution µ(c) than a policy found by maximizing J(π, µ) directly. The benefit
of such mediating distributions is particularly obvious in settings where initially random
agent behavior is unlikely to observe any meaningful learning signals, such as, e.g. is the
case in sparse-reward learning tasks. CRL methods differ in the specification of pi. Often,
the distribution is defined to prioritize tasks that maximize certain surrogate quantities,
such as absolute learning progress [162], regret [82] or tasks of intermediate success
probability [56]. This chapter focuses on CRL methods that model pi as the solution to

55

an optimization problem that aims to minimize a distance or divergence between pi and
µ. We presented one such approach in Chapter 2, defining pi as the distribution with
minimum KL divergence to µ that fulfills a constraint on the expected agent performance

min
p

DKL (p(c) ∥ µ(c)) (3.1)

s.t. J(π, p) ≥ δ DKL (p(c) ∥ q(c)) ≤ ϵ,

where δ is the desired level of performance to be achieved by the agent π under p(c) and
ϵ limits the maximum KL divergence to the previous context distribution q(c)=pi−1(c).
The optimizer of (3.1) balances between tasks likely under the (target) distribution
µ(c) and tasks in which the agent currently obtains large rewards. The KL divergence
constraint w.r.t. the previous context distribution q(c) prevents large changes in p(c)
during subsequent iterations, avoiding the exploitation of faulty estimates of the agent
performance J(π, p) from a limited amount of samples. Objective (3.1) can be shown
to perform an interpolation between the distributions pη(c)∝µ(c) exp(ηJ(π, c)) and q(c),
given by

pα,η(c) ∝ (µ(c) exp(J(π, c))η)α q(c)1−α. (3.2)

The two parameters α and η that control the interpolation are the Lagrangian multipliers
of the two constraints in objective (3.1). We will later investigate the behavior of this
interpolating distribution.

3.4. Curriculum Reinforcement Learning as Constrained Optimal
Transport

At this point, we can motivate our approach to curriculum RL by looking at the limitations
of Objective 3.1 caused by a) measuring similarity between context distributions via the
KL divergence and b) the expected performance constraint used to control the progression
towards µ(c).

3.4.1. Limitations of the KL Divergence

Given the complexity of computing DKL (p(c) ∥ µ(c)) for arbitrary distributions, previous
work restricts µ(c) either to a Gaussian distribution as in Chapter 2 or to be uniform over C
to ease computation and optimization of a weighted KL divergence objective [29]. While
empirically successful, these design choices masquerade the pitfalls of the KL divergence

56

c

p1(c)αp2(c)1−α

(a) KL Divergence

0.0

0.2

0.4

0.6

0.8

1.0

α

c

B([α, 1−α], [p1, p2])

(b) Wasserstein Distance
Figure 3.2.: Interpolations generated by optimizing KL Divergence (Objective 3.3) and
Wasserstein distance (Objective 1.14) for different values of α (or α(ϵ) in the case of
Objective 3.3). In the top row, p1(c) and p2(c) are Gaussian, while in the bottom row, they
assign uniform density over different parts of C.

to measure distributional similarity in a CRL setting, particularly when dealing with a
target distribution that does not assign uniform density over all of C. To demonstrate this
issue, we will focus on an interpolation task between two distributions

p1(c)
α(ϵ)p2(c)

1−α(ϵ) = argmin
p∈{q|DKL(q∥p2)≤ϵ}

DKL (p ∥ p1) , (3.3)

which corresponds to a version of Objective (3.1) without a constraint on the expected
agent performance. Figure 3.2a demonstrates the sensibility of this interpolation to
the parametric representation of the distributions µ(c) and q(c). While for Gaussian
distributions, interpolations of the form p1(c)

αp2(c)
1−α gradually shift density in a metric

sense, this behavior is all but guaranteed for non-Gaussian distributions. The interpolation
between two uniform distributions with quasi-limited support 1 in the bottom row of
Figure 3.2a displaces density from contexts c to contexts c′ with large Euclidean distance
∥c − c′∥2. In settings in which the Euclidean distance between contexts c1 and c2 is a
good indicator for the similarity betweenM(c1) andM(c2), the observed ignorance of
the KL divergence w.r.t. the underlying geometry of the context space leads to curricula
with “jumps” in task similarity. We can easily convince ourselves that such jumps are not
a hypothetical problem by recalling that neural network-based policies π(a|s, c)=fθ(s, c)
tend to gradually change their behavior with increasing Euclidean distance to c.

1We ensure a negligible positive probability density across all of C to allow for the computation of KL
divergences.

57

At this point, we can leverage the notion of optimal transport to explicitly encode the
similarity of two tasksM(c) andM(c′) via a metric d(c, c′) and realize the interpolation
between distributions on the resulting metric space as Wasserstein barycenters (Eq. 1.14).
As we see in Figure 3.2b, this explicit notion of task similarity allows to generate interpo-
lations that are stable across changes in the parameterization of context distributions and
interpolate between arbitrary distributions that are not absolutely continuous w.r.t. each
other. Consequently, the optimization problem

min
p
W2(p, µ) s.t. J(π, p) ≥ δ (3.4)

is a promising approach to leverage optimal transport in curriculum RL. We iterate on
this candidate in the next section by investigating the role of the expected performance
constraint when generating curricula for reinforcement learning agents.

3.4.2. Challenges of Expected Performance Constraints

The sprl objective (3.1) controls the interpolation speed between the initial- and target
task distribution by the expected performance of the current agent under the chosen context
distribution J(π, p). As detailed in Chapter 2, this expected performance constraint allows
for establishing a connection to self-paced learning for supervised learning tasks [105,
131]. While this formal connection is interesting in its own right, we show in Figure 3.3a
that the expected performance constraint in sprl can lead to encoding both too simple and
too complex tasks, given the current agent capabilities. Furthermore, using Wasserstein
distances in Objective (3.4) does not resolve this issue. In Figure 3.3a, both methods
encode tasks with very high and very low agent return to fulfill the expected performance
constraint, sidestepping the goal of encoding tasks of intermediate difficulty. At this point,
we can propose our algorithm currot as well as a recent algorithm proposed by Huang
et al. [76] – called gradient– as two ways of resolving the observed interpolation issue:
1. currot restricts the support of p(c) to those contexts c ∈ C that fulfill the perfor-
mance constraint J(π, c)≥δ. We refer to this set as V(π, δ) = {c|c∈C, J(π, c) ≥ δ}.
With this notation, the restricted optimization can be written as

min
p
W2(p, µ) s.t. p(V(π, δ))=1. (3.5)

Putting the constraint in words, we require that all probability density of p is assigned
to the contexts that satisfy the performance constraint.

2. gradient restricts the interpolation to follow the barycentric interpolation (1.14)
between the initial- and target context distribution pα(c)=B2 ([1−α, α], [p0(c), µ(c)]).

58

arg minpDKL(p(c)‖µ(c)) s.t. Ep [J(π, c)] ≥ δ

c

arg minpW2(p(c), µ(c)) s.t. Ep [J(π, c)] ≥ δ

(a) Expected Performance Constraints

0.0

0.2

0.4

0.6

0.8

1.0

δ

gradient

c

currot

(b) Investigated Approaches
Figure 3.3.: Left: Interpolations using KL divergence (top) and Wasserstein distance
(bottom) subject to an expected performance constraint with different threshold values δ.
Right: Interpolations generated by gradient (Eq. 3.6, top) and currot (Eq. 3.5, bottom)
for different threshold values δ. For both plots, the performance J(π, c) is visualized in
green.

This restriction prevents the problematic behavior shown in Figure 3.3a while still
allowing to adjust α using an expected performance constraint

max
α∈[0,1]

α s.t. J(π, pα)≥δ. (3.6)

As shown in Figure 3.3b, both methods avoid the behavior generated by Objective (3.4),
resulting in an interpolation that gradually deforms the distribution in a metric sense
with changing agent competence. In the remainder of this chapter, we benchmark exact
and approximate versions of these algorithms to understand their behavior. The first
observation in this regard is that the curriculum of gradient is predetermined by the
given metric d(c1, c2) as well as the target- and initial distribution, µ(c) and p0(c). The
agent performance only influences how fast the curriculum proceeds towards µ(c). On
the other hand, currot reshapes the curriculum based on the current agent performance
to avoid sampling contexts with a performance lower than the threshold δ. Figure 3.3b
shows that this reshaping places all probability density on the border of the desired
agent performance δ until reaching regions of non-zero probability density under µ(c).
At this point, the curriculum matches the target density in those parts of C, in which
the performance constraint is fulfilled, and concentrates all remaining density on the
boundaries of agent capability. This behavior is similar to those CRL methods that combine
task-prioritization with a replay buffer to prevent catastrophic forgetting, such as goalgan
or plr [56, 82]. To the best of our knowledge, such behavior has not yet been motivated
by a first-principle optimization objective in the context of curriculum RL.

59

3.5. Approximate Algorithms for Discrete- and Continuous
Context Spaces

Objectives (3.5) and (3.6) face challenges in more realistic application scenarios with
either large discrete- or continuous context spaces due to two reasons:

1. We do not have access to the expected performance J(π, c) of an agent π in context
c but can only estimate it from observed training episodes.

2. ComputingWasserstein barycenters for arbitrary continuous- or discrete distributions
in non-Euclidean spaces can quickly become intractably expensive.

In the following sections, we address the above problems to benchmark currot and
gradient in non-trivial experimental settings.

3.5.1. Approximate Wasserstein Barycenters

Before branching into the description of the two algorithms, we first describe a particle-
based approximation to the computation of Wasserstein Barycenters which allows to
cheaply approximate Barycenters for the gradient algorithm in large discrete state-
spaces and is essential for the approximate implementation of the currot algorithm.
For approximating a Barycenter pα=B([1−α, α], [p0, µ]), we first sample a set ofN particles
from µ(c) and p0(c) to form the empirical distributions

µ̂(c) =
1

N

N∑︂
n=1

δcµ,n(c), cµ,n ∼ µ(c) (3.7)

p̂0(c) =
1

N

N∑︂
n=1

δcp0,n(c), cp0,n ∼ p0(c),

where δcref(c) represents a Dirac distribution centered at cref. Due to the discrete nature
of µ̂(c) and p̂0(c), the coupling ϕ(c1, c2) reduces to a permutation ϕ∈Perm(N), which
assigns the particles between p̂0 and µ̂ [158, Section 2.3]. With that, the computation of
W2(p̂0, µ̂) reduces to

min
ϕ∈Perm(N)

(︄
1

N

N∑︂
n=1

d(cp0,n, cµ,ϕ(n))
2

)︄ 1
2

. (3.8)

60

Since a permutation is a special case of a coupling [158, Section 2.3], we overload
the meaning of ϕ to be either a permutation or coupling, depending on the number of
arguments. With today’s computing hardware, assignment problems like (3.8) can be
solved on a single CPU core in less than a second for N in the hundreds, which is typically
enough to represent the context distributions 2. Given this optimal assignment, we then
compute the Fréchet mean for each particle pair

cα,n=argmin
c∈C

(1−α)d(c, cp0,n)2 + αd(c, cµ,ϕ(n))
2 (3.9)

to form the barycenter p̂α(c)= 1
N

∑︁N
n=1 δcα,n(c). While certainly less efficient than special-

ized routines for Barycenter computations in Euclidean Spaces, such as e.g. the GeomLoss
library [54], the presented approach is useful when dealing with large discrete spaces. In
this case, faithful Barycenter computations require to work with the full distance matrix.
Assuming a discrete context space of size S and neglecting the cost of computing the
optimal assignment, the approximate barycenter computation requires O(N2 + 2NS)

evaluations of the distance function. Even computing the S(S+1)
2 entries of the entire

distance matrix required for a single step in the Sinkhorn algorithm quickly becomes more
expensive if S ≫ N . Additionally, reducing the Barycenter computation to an optimization
problem over individual particles easily allows to incorporate additional constraints that
are required by currot (3.5).

3.5.2. Approximate GRADIENT

Huang et al. [76] propose to compute barycenters between p0(c) and µ(c) for discrete
steps of size ϵ. Starting from α=0, the agent trains forM episodes on tasks sampled from
the current distribution. If the average episodic return 1

M

∑︁M
m=1Rm is greater or equal to

δ, α is increased by ϵ and the distribution is set to be the Wasserstein barycenter for the
updated value of α.
This step-wise increase of α avoids the explicit optimization over α and, with that, the
need to estimate the performance of the current policy π for a given context c. Having
laid out a way of computing approximate Barycenters in the previous section, we can
summarize our implementation of gradient in Algorithm 3.

3.5.3. Approximate CURROT

As for the gradient algorithm, we make use of an empirical distribution p̂(c) to represent
the context distribution p(c) (see Eq. 3.7). Unlike for gradient, there is no possibility to
2In our experiments, we use less than a thousand particles in all experiments

61

Algorithm 3 Approximate gradient
Input: Initial context dist. p0(c), target context dist. µ(c), metric d(c1, c2), performance
bound δ, step size ϵ
Initialize: α = 0
while True do
Compute p̂α(c) = 1

N

∑︁N
n=1 δcα,n(c) (Eq. (3.8) and (3.9))

Agent Improvement:
Sample contexts cm ∼ p̂α(c), m ∈ [1,M]
Train policy π under cm and observe episodic rewards Rm =

∑︁∞
t=0 γ

trcm(st,at), m ∈
[1,M]
Context Distribution Update:
if 1

M

∑︁M
m=1Rm≥δ then

Advance interpolation α = min(α+ ϵ, 1)
end if

end while

side-step the estimation of J(π, c) for currot, and any estimator of J(π, c) will inevitably
make mistakes. The mistakes will be particularly big for contexts c with a considerable
distance to those contexts sampled under the current training distribution p(c). To avoid
exploiting such erroneous performance predictions, we introduce a trust-region constraint
similar to the seminal sprl objective (3.1) into currot

min
p
W2(p, µ) s.t. p(V(π, δ))=1 W2(p, q) ≤ ϵ, (3.10)

which limits the Wasserstein distance between the current- and next context distribution
q(c) and p(c). We realize the performance estimator using Nadaraya-Watson kernel
regression [142, 208] with a squared exponential kernel

Ĵ(π, c)=

∑︁L
l=1Kh(c, cl)Rl∑︁L
l=1Kh(c, cl)

, Kh(c, cl)= exp

(︃
−d(c, cl)

2

2h2

)︃
.

This estimator does not rely on gradient-based updates and requires no architectural
choices except for the lengthscale h, consequently not complicating the application of the
overall algorithm. We postpone the discussion of this lengthscale parameter h until after
we have discussed the approximate optimization of Objective (3.10) and first focus on the
choice of dataset D={(cl, Rl)|l ∈ [1, L]} used to build the kernel regressor.
We create the dataset from two buffers D+ and D−, each of size N . These two buffers
are updated with the results of policy rollouts (c, Rc) during agent training, where

62

Rc=
∑︁∞

t=0 γ
trc(st,at). While D− is simply a circular buffer that keeps the most recent N

rollouts with Rc below the performance threshold δ, D+ contains contexts c for which
Rc ≥ δ. However, D+ is updated differently if full. Once full, we interpret the samples in
D+ as an empirical distribution p̂+(c) and select rollouts from the union of D+ and the set
of new rollouts above the performance threshold δ to minimizeW2(p̂+, µ̂). This optimal
selection can be computed with a generalized version of the optimal assignment problem
(3.8), where p̂+ is represented by N+ particles and µ̂ is represented by N particles with
N+ ≥ N . The generalized problem then produces a selection of N particles to represent
p̂+ which minimize the resulting distanceW(p̂+, µ̂). We can hence interpret p̂+(c) as a
conservative solution to the currot objective (3.5). The solution is conservative since the
particles are obtained from past iterations and may exceed the performance threshold δ
by some margin, hence not targeting the exact border of the performance threshold.
To more precisely target this border of agent competence, we proceed as follows: First,
we solve an assignment problem between p̂(c) and p̂+(c) to obtain pairs (cp,n, cp+,ϕ(n)).
We then reset cp,n=cp+,ϕ(n) for those contexts cp,n with Ĵ(π, cp,n)<δ. Next, we again
sample an empirical target distribution µ̂(c) and solve an assignment problem between
the updated empirical distribution p̂(c) and µ̂(c) to obtain context pairs (cp,n, cµ,ϕ(n)). We
then solve the following optimization problem for each pair to obtain the particles for the
new empirical context distribution

argmin
c∈C

d(c, cµ,ϕ(n)) s.t. Ĵ(π, c) ≥ δ d(c, cp,n) ≤ ϵ. (3.11)

Note that the restriction d(c, cp,n)≤ϵ ensures thatW2(p̂, q̂)≤ϵ while de-coupling the opti-
mization for the individual particles. We use a simple approximate optimization scheme
that samples a set of candidate contexts around cp,n and selects the candidate that mini-
mizes the distance to cµ,ϕ(n) while fulfilling the performance constraint. In the continuous
Euclidean settings, we uniformly sample candidates in the half sphere of contexts that
make an angle of less than 90 degrees with the descent direction cp,n − cµ,ϕ(n). In dis-
crete context spaces, we evaluate all contexts in the trust region. If even after resetting
cp,n=cp+,ϕ(n), no candidate satisfies the performance threshold, and hence Objective
(3.11) is infeasible, we set cp,n to the candidate with maximum performance in the ϵ-ball.
Having defined Objective (3.11), we can discuss the lengthscale parameter h of the
Nadaraya-Watson estimator. Given that the purpose of the estimator is to capture the
trend in the ϵ-ball around a particle cp,n, we simply set the lengthscale to 0.3ϵ. This choice
ensures that the two-times standard deviation interval of the squared-exponential kernel
Kh centered on cp,n covers the trust region.
A final detail of the approximate currot algorithm is its behavior, if the agent performance
on the initial distribution p̂0(c) is below the performance threshold δ. In this case, we use

63

Algorithm 4 Approximate currot
Input: Initial context dist. p0(c), target context dist. µ(c), metric d(c1,c2), performance
bound δ, distance bound ϵ
Initialize: p̂(c) = 1

N

∑︁N
n=1 δcp0,n(c), cp0,n ∼ p0(c)

while True do
Agent Improvement:
Sample contexts cm ∼ p̂(c), m ∈ [1,M]
Train policy π under cm. Observe returns Rm=

∑︁∞
t=0 γ

trcm(st,at), m∈[1,M]
Context Distribution Update:
Update buffers D+ and D− with {(cm, Rm)|m∈[1,M]}
Estimate Ĵ(π, c) ≈ J(π, c) from D+ and D−
Update p̂(c) via Eq. (3.11) and Ĵ(π, c), p̂(c), µ̂(c)

end while

a simple randomized search method to find areas of C in which the agent achieves returns
above δ. This search procedure is detailed in Appendix C.2. The approach without this
search procedure is summarized in Algorithm 4.

3.6. Experiments

To demonstrate the behavior of the introduced algorithms currot and gradient, we
benchmark the algorithms in different environments that feature discrete- and continuous
context spaces with Euclidean- and non-Euclidean distance metrics. We furthermore
evaluate both the exact approaches as well as their approximate implementations. To
highlight the benefits of the proposed approach over currently popular CRL methods,
we compare against a range of baselines. More precisely, we evaluate alp-gmm [162],
goalgan [56], plr [82], vds [227] and acl [64] in addition to a random curriculum
and training directly on µ(c) (referred to as Default). Details of the experiments, such as
hyperparameters and employed RL algorithms, can be found in Appendix C.3. 3

3.6.1. E-Maze Environment

To investigate currot and gradient without relying on approximations and highlight
the effect of the chosen distance metric, we start the experiments with the environment
3Code of the conference version [95] is publicly available under https://github.com/psclklnk/
currot. Code for the complete chapter will be made available upon its acceptance in a journal.

64

https://github.com/psclklnk/currot
https://github.com/psclklnk/currot

d
S
(c

1
,c

2
)

d
P
∗
(c

1
,c

2
)

d
E

(c
1
,c

2
)

(a) Barycenters (b) currot
(No Entropy)

(c) currot
(Entropy)

0 50K 100K 150K 200K

Step

0.0

0.2

0.4

0.6

E
p

is
o
d

ic
R

et
u

rn

Default

Random

currot(dS)

currot(dP∗)

currot(dE)

gradient(dS)

gradient(dP∗)

gradient(dE)

(d) Performance

Figure 3.4.: (a) Visualizations of barycenters between initial- and target task distribution
for the shortest-path distance dS, performance pseudo-distance dP∗ and Euclidean distance
dE. Brighter colors correspond to distributions generated at later stages of the interpolation.
The states covered by initial- and target task distributions are highlighted by the blue and
red lines. (b) currot sampling distribution without entropy regularization. (c) currot
sampling distribution for HLB=2. (d) Expected return on the target task distribution
µ(c) in the E-Maze environment achieved by currot and gradient. The shaded area
corresponds to two times the standard error (computed from 20 seeds). The red dotted
line represents the maximum possible reward achievable on µ(c).

shown in Figure 3.4. In this sparse-reward environment that is represented by a 20× 20
grid, an agent is tasked to reach a goal position by moving around an elongated wall (black
tiles in Figure 3.4). The curricula for this task control the goal position to be reached via
the context c. We investigate three different distance functions of C in this environment:

• A Euclidean distance dE(c1, c2)=∥r(c1)− r(c2)∥ based on representations r(c) ∈ R3

of the discrete contexts which encode the two-dimensional goal position as well as
the height (walls have a height of 200 and regular tiles a height of zero).

• A shortest-path distance dS(c1, c2) computed using the Dijkstra algorithm. The
search graph for the Dijkstra algorithm is built by connecting neighboring contexts
using the previously defined Euclidean distance.

• A pseudo-metric investigated by Huang et al. [76] that is based on the optimal policy’s
absolute difference in expected return dP∗(c1, c2)= |Jπ∗(c1)− Jπ∗(c2)|. Opposed to
the metrics dE and dS, this pseudo-metric can assign dP∗(c1, c2) = 0 for c1 ̸= c2.

65

While the definition of Wasserstein barycenters is not entirely rigorous for the pseudo-
metric dP∗ , the introduced approximate algorithms can still operate on it without problems.
Huang et al. [76] also investigated this pseudo-metric for the current policy π, leading to
a different metric in each algorithm iteration. We investigate this interesting concept in
Appendix C.3.2 to keep the chapter short and consistent with the previous sections that
assumed a fixed distance. Figure 3.4 visualizes the barycentric interpolations generated
by dE, dS, and dP∗ . Looking at Figure 3.4, we can already anticipate a detrimental effect
of the Euclidean metric dE on the generation of the curriculum. The visualization of dP∗
indicates a weakness of purely performance-based metrics since a similar expected return
for c1 and c2 does not guarantee similar outcomes of actions in the two contexts.
We visualize the expected return for different curricula in Figure 3.4d. As we can see,
currot and gradient can significantly improve performance over both a purely random-
as well as no curriculum. However, the performance gains are highly dependent on an
appropriate choice of metric. While both currot and gradient show strong performance
for dS, currot’s performance diminishes for dP∗ , and none of the two methods can make
the agent proficient on µ(c) when using dE. Figure 3.4b shows interpolations generated
by currot for the investigated metrics. We see that the interpolating distributions of

Table 3.1.: Final agent performance of currot and gradient on µ(c) in the E-Maze
environment for varying amounts of entropy regularization (λ and HLB). Mean and
standard error are computed from 20 seeds.

currot
HLB 0. 0.5 1.0 2.0

dS 0.62±0 0.61±0 0.53±0.04 0.58±0.03
dP∗ 0±0 0.45±0.06 0.38±0.06 0.42±0.06
dE 0±0 0±0 0±0 0±0

gradient
λ 0. 10−8 10−4 10−2

dS 0.60±0.01 0.56±0.04 0.62±0.00 0.60±0.01
dP∗ 0.55±0.03 0.48±0.05 0.45±0.05 0.30±0.06
dE 0.01±0.01 0.03±0.03 0.03±0.03 0.01±0.01

66

currot can collapse to a Dirac distribution for dS and dP∗ . As discussed in Section 3.5,
Huang et al. [76] proposed using an entropy-regularized version of optimal transport due
to its computational speed. Given that we solve Objectives (3.5) and (3.6) analytically,
we can investigate the effect of entropy-regularization not with respect to computational
speed but to performance. In Table 3.1, we show the final agent performance when using
entropy-regularized transport plans for gradient as well as a lower bound HLB on the
entropy of the generated task distributions for currot. The detailed formulations of
these variants are provided in Appendix C.3.2. As the results show, entropy regularization
can benefit currot. The visualizations in Figure 3.4c indicate that this benefit arises
from avoiding the aggressive targeting of contexts right at the edge of the performance
constraint that we can see in Figures 3.1, 3.3b, and 3.4b. In the case of the pseudo
distance dP∗ , the more diverse tasks sampled from p(c) sometimes allowed the agent
to generalize enough to solve tasks sampled from µ(c). For gradient, we cannot see
significant performance gains but can observe that a too-high entropy regularization in
combination with dP∗ diminished performance. Given that for an adequate metric (i.e.,
dS), the observed performance is stable across different amounts of entropy regularization,
we do not further explore this avenue in the following experiments.

3.6.2. Unlock-Pickup Environment

In the following environment, we aim to benchmark approximate implementations of
currot and gradient for large discrete context spaces and demonstrate that appropriate
distances for non-trivial context spaces can be designed by hand. In Figure 3.5a, we
visualize the unlock-pickup environment from the Minigrid environment collection [33]
that we chose for this investigation. To master this environment, the agent must pick up a
key, unlock a door and eventually pick up a box in the room that has just been unlocked.
We define a curriculum by controlling the starting state of an episode via the context c,
i.e., controlling the position of the box, key, agent, and door, as well as the state of the
door (whether closed or open). As detailed in Appendix C.3.3, this task parameterization
results in 81.920 tasks to compile a curriculum from. The initial context distribution is
defined to encode states in which the agent is directly in front of the box, similar to the
bottom-right image in Figure 3.5a. Starting from this initial distribution, the learning
algorithm needs to generate a curriculum that ultimately allows the agent to reach and
pick up the box from a random position in the left room with a closed door. As we show in
Appendix C.3.3, it is possible to define a so-called highway distance function [13] between
contexts that properly takes the role of the door and its interaction with the key into
account, without relying on a planning algorithm like in the previous environment. We
use this distance function in the following evaluations.

67

(a) Environment

0 0.5M 1M 1.5M 2M

Step

0.0

0.2

0.4

0.6

0.8

C
u

m
.

D
is

c.
R

et
.

Default

Random

currot

gradient

acl

plr

vds

(b) Performance

Figure 3.5.: (a) The Unlock-Pickup environment, in which an agent needs to pick up the
box in the right room by unlocking the door. After reset, the agent is randomly placed in
the left room not carrying the key (top left image). After picking up the key (top right), the
door can be unlocked (bottom left) to move to the box (bottom right). The door-, box- and
key positions as well as their colors vary across environment resets. The agent receives a
partial view of the world (highlighted rectangle) that is blocked by walls and closed doors.
(b) Episodic return on the target task distribution µ(c) in the Unlock-Pickup environment
for different curricula. The shaded area corresponds to two times the standard error
computed from 20 seeds.

In addition to the approximate versions of currot and gradient, we evaluate plr,
vds, and acl on this task. We do not evaluate sprl, alp-gmm, and goalgan since those
algorithms have been designed for continuous and Euclidean context spaces by, e.g.,
leveraging Gaussian distributions, kd-trees, or Gaussian sampling noise. The evaluation
results in Figure 3.5b show that currot and gradient consistently allow mastering the
target tasks (a cumulative discounted return of 0.75 ≈ 0.9928 is obtained by solving a task
in 28 steps). For both currot and gradient, each of the 20 runs led to a well-performing
policy, and we can barely see any difference in learning speed between the approaches.
Learning directly on the target task distribution allows mastering the environment in
some runs while failing to do so in others due to the high dependence on collecting
enough positive reward signals at the beginning of learning. These two outcomes lead,
on average, to a lower performance compared to currot and gradient. Finally, we see
that all baseline curriculum methods learn slower than directly learning on the target task
distribution µ(c), with acl not producing policies that collect any reward on the target
tasks. Given the successful application of plr in the Procgen benchmark, which features
a diverse set of Arcade game levels with highly distinct visual observations, we wish to

68

discuss the observed low performance of plr here in more detail. As we show in Appendix
C.3.3, plr indeed samples contexts occurring under µ(c) with at least 7% in each run.
Furthermore, in about half of the runs, the agent also learns to solve those target tasks
that are replayed by plr at some point in the curriculum. However, these replayed target
tasks only make up a small fraction of the total number of target tasks, resulting in low
performance on all of µ(c). The absence of a notion of target distribution for plr seems to
lead to ineffective use of samples w.r.t improving performance on the target. This lack
of target distribution causing problems will be a re-occurring theme for the subsequent
experiments.

3.6.3. Point-Mass Environment

−3 3

4

C ⊆ R2

wg

pg

(a) currot
−3 3 wg

4

pg

(b) gradient

Figure 3.6.: The point-mass environment
with its two-dimensional context space. The
target distribution µ(c) encodes the two gates
with widthwg=0.5, in which the agent (black
dot) is required to navigate through a narrow
gate at different positions to reach the goal
(red cross). The colored dots visualize a cur-
riculum generated by currot and gradient
for this environment.

In this environment, in which a point-mass
agent must pass through a narrow gate to
reach a goal position opposite a wall (Fig-
ure 3.6), we benchmark our approximate
implementations of currot and gradient
in continuous settings. The context c∈R2

controls the position and width of the gate
that the agent needs to pass. This environ-
ment has been introduced with the sprl
algorithm in Chapter 2 with a Gaussian
target distribution that essentially encodes
one narrow gate requiring the agent to de-
tour before reaching the target position.
Combined with a dense reward based on
the Euclidean distance to the goal, the tar-
get task is subject to a prominent local min-
imum that simply moves the agent close
to the wall without passing through. We
extend this task with a bi-modal target dis-
tribution that challenges sprl’s Gaussian restriction that – as we discussed – is required
for it to work properly. As seen in Figures 3.6 and 3.7, currot and gradient generate
curricula that target both modes of the distribution and allow learning a proficient policy
on all of µ(c). We can also observe the influence of the initial search for feasible contexts in
currot, which leads to an initial focus of p(c) on tasks with a large gate before matching
µ(c). gradient starts interpolating directly from the initial context distribution, leading
to more spread-out samples in p(c) throughout the curriculum. As we show in Appendix

69

0 200K 400K 600K 800K

Step

3

6

C
u

m
.

D
is

c.
R

et
.

0 200K 400K 600K 800K

Step

0

1

2

G
a
te

P
o
si

ti
o
n

0 200K 400K 600K 800K

Step

0

2

4

6

G
a
te

W
id

th

sprl Random Default currot gradient goalgan alp-gmm acl plr vds

Figure 3.7.: Left: Discounted cumulative return over learning epochs obtained in the
point mass environment under different curricula as well as baselines that sample tasks
uniformly from all of C (Random) or µ(c) (Default). Middle and Right: Median minimum
distance to the target contexts of µ(c) for the two dimensions of the context space (i.e.,
gate position and -width). Mean and two-times standard error intervals are computed
from 20 seeds.

C.3.4, the Gaussian restriction of sprl’s context distribution leads to p(c) matching only
one of the modes of µ(c), resulting in a lower average reward on µ(c) compared to currot
and gradient. We additionally visualize summary statistics for the other CRL methods
in Figure 3.7, showing that they result in a less targeted sampling of contexts likely under
µ(c). This observation, in combination with the lower performance compared to currot
and gradient, once more emphasizes the importance of embedding a notion of target
distribution in CRL algorithms.

3.6.4. Sparse Goal-Reaching Environment

We next turn to a sparse-reward, goal-reaching environment in which an agent needs
to reach a desired position with high precision (Figure 3.9). Such environments have,
e.g., been investigated by Florensa et al. [56]. The context c∈C ⊆ R3 of this environ-
ment encodes the 2D goal position as well as the allowed tolerance for reaching the
goal. This parameterization results in both infeasible tasks being part of C (unreachable
regions) as well as tasks that are solely meant to be stepping stones to more compli-
cated ones (low-precision tasks). Given that the agent is ultimately tasked to reach as
many goals as possible with the highest precision, i.e., the lowest tolerance, the target
distribution µ(c) is a uniform distribution on a 2D slice of C in which the tolerance of
each context is minimal. The walls in the environment (Figure 3.9) render many tasks
encoded by µ(c) infeasible, requiring the curriculum to identify the feasible subspace
of tasks to achieve a good learning performance. Figure 3.8 shows that currot results

70

0 1M 2M 3M 4M

Step

0

0.25

0.5

0.75

1

S
u

cc
es

s
R

a
te

0 1M 2M 3M 4M

Step

10−1

100

101

T
o
le

ra
n

ce

sprl Random Oracle currot gradient goalgan alp-gmm acl plr vds

Figure 3.8.: Success rate on the feasible subspace of C (left) and median goal tolerance
(right) for different CRL methods in the SGR environment. We also include an oracle
baseline that only samples the feasible tasks in the context space C. For both plots, mean
and two-times standard error intervals are computed from 20 runs.

(a) currot
0.05

0.70

1.35

2.00

(b) gradient

Figure 3.9.: Curricula generated by currot
and gradient in the spare goal-reaching
(SGR) environment at different epochs. The
starting area of the agent is highlighted in
red. Walls are shown in black. The position of
the samples encodes the goal to be reached
while the color encodes the goal tolerance.

in the best learning performance across all
evaluated CRL methods. Only an oracle,
which trains the learning agent only on the
feasible subspace of high-precision tasks,
can reach higher precision. The evolution
of the task tolerances shown in Figure 3.8
highlights that currot and gradient con-
tinuously increase the precision with which
the goals must be reached. The baseline
CRL methods lack focus on the tasks en-
coded by µ(c), sampling tasks with com-
paratively high tolerance even towards the
end of training. Interestingly, sprl does not
progress to high-precision tasks but contin-
ues to sample tasks of high tolerance in
later training epochs. As we show in Ap-
pendix C.3.5, this behavior is caused by the
Gaussian context distribution of sprl converging to a quasi-uniform distribution over
C. Otherwise, sprl would not be able to cover the non-Gaussian target distribution of
feasible high-precision tasks without encoding many infeasible tasks. Figure 3.9 shows
the evolution of particles for runs of currot and gradient. currot gradually decreases
the goal tolerance over epochs, starting from contexts that are close to the initial position
of the agent. Interestingly, it retains higher tolerance contexts located in the walls of the
environment even in later epochs due to the trade-off between sampling high-precision

71

2 4 6 8

hobs
1

3

5

sobs

−1.5 1.5

hobs
1

3

5

sobs

(a) gradient Curriculum
2 4 6 8

hobs
1

3

5

sobs

−1.5 1.5

hobs
1

3

5

sobs

(b) currot Curriculum

Figure 3.10.: Sampling distribution of gradient and currot on the teach my agent
benchmark in the no expert knowledge setting in task spaces with mostly infeasible- (left)
and mostly trivial (right) tasks. The small images visualize the obstacles encoded by
the corresponding contexts. For environment details, please see [171]. Brighter colors
indicate tasks at later epochs of training. The yellow dots represent the samples from the
last generated distribution.

tasks and covering all goal positions. The pre-determined interpolation of gradient
cannot adjust to the infeasible parts of the context space and, with that, reduces to a
curriculum that shrinks the tolerance interval [0.05, tub] by reducing the tolerance tub.
Consequently, an increase in precision goes hand-in-hand with an increasing number of
infeasible tasks on which the agent is trained, slowing down learning and resulting in a
significant performance gap between currot and gradient in this environment.

3.6.5. Teach My Agent

In this final evaluation environment, a bipedal agent must learn to maneuver over a track
of evenly spaced obstacles of a specified height (see Figure 3.10). The environment is a
modified bipedal walker environment introduced by Portelas et al. [162] and extended by
Romac et al. [171] in which the spacing and height of obstacles is controlled by the context
c ∈ R2. The evaluations by Romac et al. [171] demonstrated poor performance of sprl,
often performing statistically significantly worse than a random curriculum. Given that
both currot and gradient can be seen as improved versions of sprl that – among other
improvements – explicitly take the geometry of the context space into account, we are
interested in whether they can improve upon sprl. Consequently, we revisit two learning
scenarios investigated by Romac et al. [171], in which CRL methods demonstrated a
substantial benefit over random sampling: a setting in which most tasks of the context
space are infeasible due to large obstacles and a setting in which most tasks of the context

72

currot alp-gmm cov-gmm gradient riac Random sprl
0

25

50

75

100

P
er

fo
rm

a
n

ce

Mostly infeasible task space

currot alp-gmm cov-gmm riac Random gradient sprl
0

25

50

75

100

P
er

fo
rm

a
n

ce

Mostly trivial task space

Figure 3.11.: Performance (in percentage of solved tasks) in the Teach My Agent benchmark
in the no expert knowledge setting. The baseline results are taken from [171], and only
currot and gradient are evaluated by us. Statistics have been computed from 32 seeds.
Horizontal lines between connecting two methods indicate statistically significant different
performances according to Welch’s t-test with p < 0.05.

space are trivially solvable. Both scenarios lead to slow learning progress when choosing
tasks randomly due to frequently encountering too complex or too simple learning tasks.
Given that both the initial- and target distribution is uniform over the context space C, we
extend the gradient algorithm with the initial feasible context search used in currot
(see Appendix C.2). Otherwise, gradient would simply result in uniform sampling of C.
Figure 3.11 visualizes the performance of currot and gradient in comparison to other
CRL methods that were already evaluated by Romac et al. [171]. We see that currot
achieves the best performance in all environments, in one case performing statistically
significantly better than alp-gmm, the best method evaluated in [171]. We also see that
the extended version of gradient can improve upon a random curriculum in the “mostly
infeasible” scenario while performing insignificantly worse than a random curriculum
in the “mostly trivial” scenario. Figure 3.10 can help shed some light on the observed
performance difference between currot and gradient. For the “mostly trivial” scenario,
gradient consistently arrives at sampling from the uniform µ(c), whereas currot focuses

73

on the contexts at the border of agent competence. For the “mostly infeasible” scenario,
the pre-determined interpolation of gradient can fail to encode feasible learning tasks,
ultimately leading to a lower overall performance than currot.
Summarizing, the experimental results underline that empirically successful curricula can
be generated by framing CRL as an interpolation between context distributions. The leap
in performance between gradient and currot compared to sprl and the performance
differences between gradient and currot underline the impact of design choices, such
as the distributional measure of similarity and the way of incorporating performance
constraints, on the final algorithm performance. However, when chosen correctly, these
curricula exhibit strong performance and allow for guiding training towards tasks of
interest specified via µ(c). Especially this last aspect can allow for more flexibility in the
curriculum design, as it is possible to define auxiliary task parameterizations without
jeopardizing learning progress toward tasks of interest. We saw an example of this trade-
off in the sparse goal-reaching environment, where the additional precision parameter
boosted the performance of currot while diminishing the performance of other baselines.

3.7. Conclusion

In this chapter, we framed curriculum reinforcement learning as an interpolation between
distributions of initial- and target tasks. We demonstrated that the lack of an explicit
notion of task similarity in combination with an expected performance constraint makes
existing approaches highly dependent on the parameterization of the interpolating task
distribution. We avoided these pitfalls by explicitly encoding task similarity via an optimal
transport formulation, and by restricting the generated task distributions to only encode
tasks that satisfy a specified performance threshold. The resulting method called currot
led to good performance in experiments due to its focus on tasks at the performance
threshold and the adaptive nature of the curriculum. Contrasting our approach to a
recently proposed method that generates curricula via Wasserstein barycenters between
initial- and target task distributions [76], we saw that the more adaptive nature of our
formulation resulted in better performance when facing learning settings with infeasible
target tasks. For the future, we believe that the precise notion of task similarity via the
distance d(c1, c2) can prove beneficial in advancing the understanding of curriculum
RL. We already saw that an appropriate definition of task similarity is key to successful
curriculum learning. We believe that distances learned from experience, which encode
a form of intrinsic motivation, will significantly advance these methods by merging the
strong empirical results of intrinsic motivation in open-ended learning scenarios [206]
with the targeted learning achieved by currot and gradient.

74

4. Tracking Control for a Spherical Pendulum
via Curriculum Reinforcement Learning

Reinforcement Learning (RL) allows learning non-trivial robot control laws purely from
data. However, many successful applications of RL have relied on ad-hoc regularizations,
such as hand-crafted curricula, to regularize the learning performance. In this chapter,
we pair the currot algorithm for automatically building curricula with RL on massively
parallelized simulations to learn a tracking controller for a spherical pendulum on a
robotic arm via RL. Through an improved optimization scheme that better respects the
non-Euclidean task structure, we allow the method to reliably generate curricula of
trajectories to be tracked, resulting in faster and more robust learning compared to an
RL baseline that does not exploit this form of structured learning. The learned policy
matches the performance of an optimal control baseline on the real system, demonstrating
the potential of curriculum RL to jointly learn state estimation and control for non-linear
tracking tasks.

4.1. Introduction

Due to a steady increase in available computation over the last decades, reinforcement
learning (RL) [189] has been applied to increasingly challenging learning tasks both in
simulated [134, 182] and robotic domains [111, 8, 173]. Learning control of non-trivial
systems via reinforcement learning (RL) is particularly appealing when it is required to
deal with partially observable systems, high-dimensional observations such as images,
or if quick generalization to multiple related tasks is desired. In this chapter, we pro-
vide another demonstration of the potential of reinforcement learning to find solutions
to a non-trivial control task that has, to the best of our knowledge, not been tackled
using learning-based methods. More precisely, we focus on the tracking control of a
spherical pendulum attached to a four-degrees-of-freedom Barrett Whole Arm Manip-
ulator (WAM) [194], as shown in Figure 4.1. The partial observability of the system
arising from access to only positional information paired with an inherently unstable,

75

Figure 4.1.: An image of our simulation (left)
and robot environment (right) of the spheri-
cal pendulum tracking task. The pendulum is
mounted to a Barrett WAM robotic arm and
is tracked by an Optitrack system. In the left
image, the colored dots visualize the upcom-
ing target trajectory to be followed, and the
blue line visualizes the achieved trajectory.

underactuated system and non-trivial kine-
matics results in a challenge for modern
reinforcement learning algorithms. When
applying reinforcement learning to increas-
ingly demanding learning tasks, different
strategies for improving learning perfor-
mance, such as guiding learning through
highly shaped and -informative reward
functions, have evolved.
In this chapter, we improve the training
performance of the learning agent via cur-
ricula, i.e., tailored sequences of learning
tasks that adapt the environment’s com-
plexity to the capability of the learning
agent. For the considered tracking task, we
adapt the complexity via the target trajecto-
ries that are to be tracked by the controller,
starting from small deviations from an ini-
tial position and progressing to a set of
eight-shaped target trajectories. Schedul-
ing the complexity of the learning tasks is
subject to ongoing research [146], and so-
lutions to this problem are motivated from different perspectives, such as two-player
games [186] or the maximization of intrinsic motivation [15]. In this chapter, we generate
the curriculum of tasks using the currot algorithm introduced in Chapter 3, which
defines the curriculum as a constrained interpolation between an initial- and desired
distribution of training tasks and is well-suited to our goal of directing learning to a set
of target trajectories. The applications of currot have so far relied on training tasks
that can be represented in a low-dimensional vector space. In our investigations, we will
create a curriculum over desired trajectories, a high-dimensional space of learning tasks,
allowing us to benchmark the robustness of the currot algorithm to high-dimensional
task representations.
We will demonstrate that the sampling-based optimization scheme of currot that drives
the evolution of the learning tasks faces challenges in high-dimensional settings. Further-
more, the default assumption of a Euclidean distance on the vector space of learning tasks
can lead to curricula that do not facilitate learning. Addressing both pitfalls, we obtain
robust convergence to the target distribution of tasks, resulting in a tracking controller
that can be applied to the real system.

76

Contributions: We demonstrate a simulation-based approach for learning tracking con-
trollers for an underactuated, partially observable, and highly unstable non-linear system
that directly transfer to reality. Our approach includes a curriculum reinforcement learning
method that reliably works with high-dimensional task spaces equipped with Mahalanobis
distances, such as trajectories, commonly encountered in robotics. Through ablations, we
confirm the robustness of our method and provide insights into the importance of the
policy structure for generalization in tracking tasks.

4.2. Related Work

As of today, there exist many demonstrations of applying reinforcement learning (RL) to
real-world robotic problems, ranging from locomotion [173, 31, 114] to object manipula-
tion [65, 111, 116], where the RL agents need to process high-dimensional observations,
such as images [111] or grids of surface height measurements [173] in order to produce
appropriate actions. The RL agent typically controls the robot via desired joint positions
[173, 114], joint position deltas [111], joint velocities [65], or even joint torques [114].
Depending on the application scenario, actions are restricted to a manifold of save actions
[65, 116].
Spherical Pendulum: Inverted pendulum systems have been investigated since the 1960s
[118] as an archetype of an inherently unstable system and are a long-standing evaluation
task for reinforcement learning algorithms [181], with swing-up and stabilization tasks
successfully solved on real systems via RL [100, 120]. Other learning-based approaches
tune linear quadratic regulators (LQRs) and PID controllers in a data-driven manner to
successfully stabilize an inverted pendulum mounted on a robotic arm [126, 47]. The
extension of the one-dimensional inverted pendulum task to two dimensions has been
widely studied in the control community, resulting in multiple real-world applications in
which the pendulum has been mounted either to an omnidirectional moving base [87,
88], a platform driven via leading screws [223], a SCARA robotic arm [185], or a seven
degrees-of-freedom collaborative robotic arm [205]. The controllers for these systems
were synthesized either via linear controller design in task space [185], a time-variant
LQR around pre-planned trajectories [205], linear output regulation [88], sliding-mode
control [87], or feedback linearization [223]. In these approaches, the control laws as-
sumed observability of the complete state, requiring specially designed pendulum systems
featuring joint encoders or magneto-resistive sensors and additional processing logic to
infer velocities.
In this chapter, we learn tracking control of a spherical pendulum on a robotic arm from
position-only observations via reinforcement learning. To the best of our knowledge, this

77

has not yet been achieved, and we believe that the combination of non-trivial kinematics,
underactuation, and partial observability is an excellent opportunity to demonstrate the
capabilities of modern deep RL agents.
Curriculum Reinforcement Learning: The complexity of this learning task provides an
opportunity to utilize methods from the field of curriculum reinforcement learning [146].
These methods improve the learning performance of RL agents in various application
scenarios [182, 8, 173] by adaptively modifying environment aspects of a contextual- [67]
or, more generally, a configurable Markov Decision Process [133]. As do their application
scenarios, motivations for and realizations of these algorithms differ widely, e.g., in the
form of two-player games [186, 45], approaches that maximize intrinsic motivation [15,
162], or as interpolations between task distributions [29, 95]. We will focus on the
currot algorithm, which we introduced in Chapter 3 and belongs to the last category
of approaches. It is well suited for our goal of learning to track a specific set of target
trajectories and has so far been applied to rather low-dimensional settings, allowing us to
extend its application scenarios to the high-dimensional space of trajectories faced here.

4.3. Reinforcement Learning System

This section describes the trajectory tracking task and its simulation in IsaacSim [150].
Further, we re-state the main ideas of the curriculum learning approach from Chapter 3,
which we utilize to speed up learning in this environment.

4.3.1. Simulation Environment and Policy Representation

As shown in Figure 4.1, we aim to learn a tracking task of a spherical pendulum that is
mounted on a four-degrees-of-freedom Barrett Whole Arm Manipulator (WAM) [194] via
a 3D printed universal joint1. The robot can be approximately modeled as a rigid body
system

M(q)q̈ = c(q, q̇) + g(q) + τ pad (4.1)

with six degrees of freedom q = [qw qp] ∈ R6 that represent the joint positions of the
Barrett WAM (qw) and the pendulum (qP), and four control signals τ ∈ R4 that drive
the joints of the Barrett WAM, where τ pad = [τ 0 0] appends the (always zero) controls
for the non-actuated universal joint of the spherical pendulum. The universal joint does
1We designed the universal joint such that it has a large range of motion. Furthermore, the use of skateboard
bearings resulted in low joint friction.

78

not possess any encoders, and we can infer the state of the pole only through position
measurements provided by an OptiTrack system [160] at 120 Hz. Hence, albeit the Barrett
WAM can be controlled at 500 Hz and delivers updates on its joint positions at the same
frequency, we run the control law only at 125 Hz due to the OptiTrack frequency. In the
following, we denote a variable’s value at a discrete time index as xt and the value at
arbitrary continuous time as x(t). We learn a tracking control law for following desired
trajectories γ:[ts, te] ↦→R3 of the pendulum tip from a fixed initial configuration qw,0. The
control law generates torques on top of a gravity compensation term g(qw) using a history
of positional observations, torques, and information about the desired trajectory γ

τ t=π(Ot,At,Tt)+g(qw,t) Ot={ot−i|i ∈ [0,K−1]}
Tt={(γt+∆i

, γ̇t+∆i
)|i∈[1, L]} At={τ t−i|i∈[1,K]}, (4.2)

where K=15, L=20, and the ∆i’s are spread out over the interval [0, 1.04] (Figure 4.2) to
capture both the immediately upcoming positions and velocities of γ(t) as well as the future
behavior of the trajectory. An observation ot is given by the joint position of the Barrett

t t+∆i t+∆L

γ
(t

)

qw,t

xp,t

Tt
τ t

Ot Tt At

Figure 4.2.: The policy (a feedforward net-
work with [1024, 512, 256, 256]−dimensional
hidden layers) observes a history Ot of joint
positions qw,t and pole directions xp,t, a his-
tory At of past actions τ t, and a lookahead
Tt of the trajectory γ(t) to be followed.

WAM qw,t as well as a three-dimensional
unit vector xp,t∈R3 that represents the ori-
entation of the pole (Figure 4.2). In sim-
ulation, we compute this vector using the
difference between the pendulum tip xtip,t
and the pendulum base xbase,t. In the real
system, we compute this vector from Opti-
track measurements of four points on the
pendulum. We reconstruct neither the pen-
dulum joint positions qp,t nor the joint ve-
locities q̇t as this information is implicitly
contained in the observation- and action
histories Ot and At.
We learn π via the proximal policy optimiza-
tion (ppo) algorithm implemented in the
RL Games library [123]. This choice is moti-
vated by our use of the IsaacSim simulation
environment [150], which allows us to sim-
ulate a large number of environments in
parallel on a single GPU2. The chosen ppo
implementation is designed to leverage this
2We used 2048 parallel environments for learning.

79

parallel simulation during training. Screenshots of the simulation environment are shown
in Figures 4.1 and 4.2. The trajectories evolve over a total duration of 12 seconds, resulting
in 12·125=1500 steps per episode. The reward function at a given time-step t mainly
penalizes tracking failures and additionally regularizes excessive movement of the robot

r(qt, τ t)=

⎧⎪⎨⎪⎩
− α

1−γ , if tipped(qt)

1− 1000∥γt−xtip,t∥22−1e−1∥q̇w,t∥22
−1e−1∥qw,t−qw,0∥22 − 1e−3∥τ t∥22, else.

(4.3)

The function tipped(qt) returns true if either |qp,t|≥0.5π or if the z-coordinate of the
pendulum tip xtip,t is less than five centimeters above the z-coordinate of the pendulum
base xbase,t. The episode ends if tipped(qt) evaluates to true. The large amplification of
the tracking error is required since ∥γt−xtip,t∥2 is measured in meters. With the chosen
amplification, a tracking error of three centimeters leads to a penalty of −0.9. In our
experiments, we use a discount factor of γ=0.992.

4.3.2. Facilitating Sim2Real Transfer

To enable successful transfer from simulation to reality, we first created a rigid-body
model of the Barrett WAM (Eq. 4.1) based on the kinematic and inertial data sheets
from Barrett Technology [194] in the MuJoCo physics simulator [195]. We chose the
MuJoCo simulator for initial investigations since it allows us to more accurately model the
actuation of the Barrett WAM via tendons and differentials3. Opposed to the simplified
model (4.1), this more faithful model of the Barrett WAM requires an extended state space
qext=[qw qr qp]∈R10, in which the joint- qw and rotor positions qr of the Barrett WAM are
coupled via tendons that transfer the torques generated at the rotors to the joints (and vice
versa). The joint encoders of the WAM are located at the rotors, and hence, we can only
observe qr, which may differ from qw depending on the stiffness of the tendons. During
our initial evaluations, we found that modeling this discrepancy between measured- and
real joint positions as well as delayed actions (approximated as an exponential filter)

τ̃ t = ω ⊙ τ̃ t−1 + (1− ω)⊙ τ t, ω ∈ [0, 1]4, (4.4)

where ⊙ represents the element-wise multiplication of vectors and 1 is a vector of all ones,
were required to achieve stable behavior of the learned policy on the real system. When not
modeling these effects, the actions generated by the learned policies resulted in unstable
3IsaacSim also has support for tendon modeling. However, this support is significantly more restricted at
the moment, preventing to recreate the tendon structure of the Barrett WAM in simulation.

80

feedback loops. A final extension to the model is given by simulating a Stribeck-like
behavior of friction by compensating the coulomb friction modeled by MuJoCo

τ̃ a,t = τ̃ t + c⊙ tanh(β ⊙ q̇w,t), (4.5)

where c ∈ R4
≥0 is the coefficient of coulomb friction simulated by MuJoCo and β ∈ R4

≥0

models the reduction of this friction due to movement. Having completed our model, we
then adjusted the tendon stiffness, rotor armature, damping, coulomb friction c, as well
as ω and β using trajectories from the real system.
Given the lack of possibilities to model the tendon drives of the Barret WAM in IsaacSim,
we simulate the robot without tendons and model the discrepancies between qr observed
by the policy and qw by a simple spring-damper model

q̈r = KP (qw −Tqqr) +KD(q̇w −Tqq̇r) +Tτ τ̃ , (4.6)

where Tq,Tτ∈R4×4 model the transformation of joint position and -torques via the ten-
dons and KP ,KD∈R4×4 model the spring-damper properties of the tendons.
Given the policy’s reliance on Optitrack measurements of the pendulum, which are ex-
changed over the network, we measured the time delays arising from the communication
over the network stack. We then modeled these delays in the simulation, as detailed in
Appendix D.2.
During learning, we randomize the link masses within 75% and 125% of their nominal
values and randomize damping and coulomb friction within 50% and 150% of their nomi-
nal values. Additionally, we add zero-mean Gaussian distributed noise with a standard
deviation of 0.005 to the actions generated by the agent, which are normalized between−1
and 1. The observations are corrupted by uniform noise within [−0.01, 0.01]. Finally, the
amount of action delay is also randomized by sampling the elements of ω from [0.5, 0.9],
and β is set to zero 25% of the time and sampled from [0, 100] otherwise.

4.3.3. Trajectory Representations

We represent the target trajectories γ:[ts, te]↦→R3 via a constrained three-dimensional LTI
system that is driven by a sequence of jerks (time-derivatives of accelerations)

∀t ∈ [ts, te] : γ(t) ∈ P (4.7)

∀t ∈ [ts, te] :

⃦⃦⃦⃦
d3

dt3
γ(t)

⃦⃦⃦⃦
2

≤ jUB (4.8)

γ(ts)=γ(te) γ̇(ts)=γ̇(te)=0 γ̈(ts)=γ̈(te)=0 (4.9)

81

with a convex set P⊂R3 of allowed positions. We model the LTI system as three individual
triple integrator models. For simplicity of exposition, we focus on only one of the three
systems, i.e., γ:[ts, te]↦→R. The full system is obtained by simple “concatenation” of three
copies of the following system

ẋ(t) = Ax(t) +Bu(t) A=

⎡⎣0 1 0
0 0 1
0 0 0

⎤⎦ B=

⎡⎣00
1

⎤⎦ (4.10)

with xi(t) = di−1

dti−1γ(t) and u(t) = d3

dt3
γ(t). To represent the trajectories as some finite-

dimensional vectors u ∈ RK , we assume that the control trajectory of jerks u(t) is piece-
wise constant

u(t) =
K∑︂
k=1

uk1k(t), 1k(t)=

{︄
1, if tk−1 ≤ t < tk

0, else

with t0=ts and tK=te. This assumption allows us to represent x(t) at time t as a linear
combination of the initial system state and the piece-wise constant jerks

x(t)=Φ(ts, t)x(ts) +
[︁
ψ(ts, t1, t) ψ(t1, t2, t) . . . ψ(tK−1, tK , t)

]︁⏞ ⏟⏟ ⏞
Ψ(t)∈R3×K

⎡⎢⎢⎢⎣
u1
u2
...

uK

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞
u∈RK

. (4.11)

We derive Φ and ψ in Appendix D.3. With the closed-form solution (4.11), we can rewrite
Constraint (4.9) as a system of three linear equations

x(te) = Φ(ts, te)x(ts)+Ψ(te)u⇔ x(te)−Φ(ts, te)x(ts)=Ψ(te)u⇔ 0=Ψ(te)u. (4.12)

Since our initial state x(ts) is defined as x(ts)=[γ(ts) 0 0], the form of Φ(ts, te) implies
x(te)−Φ(ts, te)x(ts) = 0. We can hence represent all trajectories that fulfill Constraint
(4.9) in a (K−3)-dimensional basis of the kernel ker(Ψ(te)). We refer to vectors in this
kernel as ũ ∈ RK−3. The two remaining constraints (4.7) and (4.8) specify a convex set
in ker(Ψ(te)). As described in the next section, generating a curriculum over trajectories
will require sampling in an ϵ-ball around a given kernel element ũ in the convex set of
constraints, which we perform using simple rejection sampling.

82

4.3.4. Curriculum Reinforcement Learning

By now, we can represent target trajectories γ(t) via a vector c= [ũ1 ũ2 ũ3]∈C⊆R3(K−3)

that encodes the trajectory behavior in the three spatial dimensions. We will treat γ(t)
and c interchangeably for the remainder of this chapter. We are interested in learning
a policy π that performs well on a target distribution µ(γ)=µ(c) of trajectories. To
facilitate learning, we use the curriculum method currot developed in Chapter 3, whose
main algorithmic aspects we summarize in this section. currot creates a curriculum
of task distributions pi(c) by iteratively minimizing their Wasserstein distanceW2(p, µ)
to the target distribution µ(c) under a given distance function d(c1, c2) and subject to a
performance constraint

argmin
p
W2(p, µ) s.t. p(V(π, δ)) = 1, (4.13)

where the set V(π, δ) = {c ∈ C|J(π, c) ≥ δ} is the set of contexts c ∈ C in which the agent
achieves a performance J(π, c) = Eπ

[︁∑︁∞
t=0 γ

tr(qt, τ t)
]︁ of at least δ. We refer to Chapter 3

for the precise definition and derivation of the algorithm and, for brevity, only state the
resulting algorithm. The task distribution pi(c) is represented by a set of N particles, i.e.
p̂i(c) =

1
N

∑︁N
n=1 δcpi,n(c) with δcref(c) being the Dirac distribution centered on cref. Each

particle is updated by minimizing the distance d(c, cµ,ϕ(n)) to a target particle cµ,ϕ(n)

min
c∈C

d(c, cµ,ϕ(n)) s.t. Ĵ(π, c) ≥ δ d(c, cpi,n) ≤ ϵ, (4.14)

where Ĵ(π, c) is a prediction of J(π, c) using Nadaraya-Watson kernel regression [142]

Ĵ(π, c)=

∑︁L
l=1Kh(c, cl)Jl∑︁L
l=1Kh(c, cl)

, Kh(c, cl)= exp

(︃
−d(c, cl)

2

2h2

)︃
. (4.15)

The N target particles cµ,ϕ(n) are sampled from µ(c) and the permutation ϕ ∈ Perm(N)
assigning them to cpi,n is obtained by minimizing an assignment problem

W2(p̂i, µ̂) = min
ϕ∈Perm(N)

(︄
1

N

N∑︂
n=1

d(cpi,n, cµ,ϕ(n))
2

)︄ 1
2

. (4.16)

The parameter ϵ in (4.14) limits the displacements of the particles within one update step,
preventing the exploitation of faulty performance estimates Ĵ(π, c). The kernel bandwidth
h is set to a fraction of ϵ, e.g., h=0.3ϵ in Chapter 3, given its purpose to capture the trend
of J(π, c) within the trust region around cpi,n. The L contexts cl and episodic returns Jl

83

V(π, δ)

pi(c)

pi+1(c)

µ(c)

(a) currot w/o Trust Region
V̂(π, δ)

d(cpi,n, c)=ε

(b) currot with Trust Region

Figure 4.3.: Task sampling scheme used by currot. (Left) A particle-based representa-
tion p̂i(c) of the task distribution pi(c) is updated to minimize the Wasserstein distance
W2(p̂i, µ̂) while keeping all particles in the feasible set V(π, δ) of tasks in which agent π
achieves a performance of at least δ. The yellow lines indicate which particles of p̂i have
been matched to µ̂ to computeW2(p̂i, µ̂). (Right) In practice, currot needs to rely on an
approximation V̂(π, δ) of V(π, δ), which is why a trust region d(cpi,n, c)≤ϵ is introduced
to avoid the overly greedy exploitation of approximation errors. The indicated trust region
belongs to the non-opaque particle.

used for predicting the agent performance are stored in two buffers, whose update rules
we define in Chapter 3. Figure 4.3 shows a schematic visualization of currot.
If we can optimize d(cpi,n, cµ,ϕ(n)) to zero for each particle in each iteration, we essentially
sample from µ(c). A crucial ingredient in the currot algorithm is the distance function
d(c1, c2) that expresses the (dis)similarity between two learning tasks. In Chapter 3, d
has been assumed to be the Euclidean distance in continuous space. A critical part of our
experimental investigation of the benefit of curricula for learning tracking control will
be the comparison of the Euclidean distance between context vectors, c1 and c2, and a
Mahalanobis distance [122]. In the following section, we describe this distance and other
improvements that we benchmark in the experimental section.

4.4. Improved Curriculum Generation

The currot algorithm has so far been evaluated in rather low-dimensional scenarios,
with two- or three-dimensional context spaces C that lend themselves to a Euclidean

84

interpretation. In this section, we describe technical adjustments of the currot algorithm
that improve the creation of curricula over trajectories, i.e., over a high-dimensional
context space C with a more intricate metric structure.

4.4.1. Affine Metrics

In Chapter 3, we evaluated the currot algorithm under the assumption of a Euclidean
metric

d(c1, c2) = ∥c1 − c2∥2 =
√︂

(c1 − c2)T (c1 − c2)

in continuous context spaces C. For our trajectory representation, this corresponds to a
Euclidean distance between elements in ker(Ψ(te)). However, according to Eq. (4.11),
we know that the difference between two (one-dimensional) LTI system states is given by

x1(t)−x2(t) = Ψ(t)(u1 − u2).

This observation allows us to compute the similarity of the trajectories γ1(t), γ2(t) gener-
ated by c1, c2 via a Mahalanobis distance

dΨ(c1, c2) =
√︂
(c1 − c2)TA(c1 − c2), A = ΓT

3

⎡⎢⎢⎢⎣
Ψ3(ts)
Ψ3(t1)
...

Ψ3(te)

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

Ψ3(ts)
Ψ3(t1)
...

Ψ3(te)

⎤⎥⎥⎥⎦Γ3,

where Ψ3(t)=blkdiag
(︁
{Ψ(t)}3n=1

)︁ and Γ3 = blkdiag
(︁
{Γ}3n=1

)︁ are block diagonal matri-
ces. We denote Γ ∈ RK×K−3 as the matrix that maps the elements ũ ∈ ker(Ψ(te)) to jerk
sequences u. The Mahalanobis distance can be computed with no change to the algorithm
by whitening the contexts c and computing the Euclidean distance in the whitened space.

4.4.2. Sampling-Based Optimization

The optimization of Objective (4.14) in Chapter 3 is carried out in parallel for all particles
cpi,n by uniformly sampling contexts in an n-dimensional ϵ-half ball

Bn
≥0(cpi,n, ϵ) =

{︁
c
⃓⃓
∥c− cpi,n∥2 ≤ ϵ ∧ ⟨c− cpi,n, cµ,ϕ(n)⟩ ≥ 0

}︁
around cpi,n and selecting the sample with minimum distance to cµ,ϕ(n) that fulfills the
performance constraint. ⟨·, ·⟩ denotes the dot product. In higher dimensions, this sampling

85

2 14 27 39 51

0.2

0.4

0.6

0.8
p

(‖
c
‖ 2
≤

0
.9

5
|c
∈B

n
)

0.0

0.1

0.2

0.3

0.4

0.5

p
(∠

c
e
n
≤

0
.2

5
π
∣ ∣ ∣c
∈S

n ≥
0

)

pi(c)

pi+1(c)

d(cpi,n, c)=ε

Figure 4.4.: (Left) In higher dimensions, the Euclidean norm of a vector ∥c∥2 in the n-
dimensional ball Bn increasingly converges to one. The angle ∠cen between a context c in
the n-dimensional half sphere Sn

≥0 and any fixed n-dimensional vector en is with increasing
certainty larger than 45◦=0.25π. (Right) We adapt the sampling-based optimization of
Objective (4.14) to sample those unit vectors that make an angle of less than 45◦ with a
descent direction and scale them uniformly in [0, ϵ]. Unlike the default currot sampling
scheme (black samples), this sampling scheme (colored dots, color indicates density)
more robustly finds descent directions in high-dimensional tasks.

scheme faces two problems. Firstly, the mass of a ball is increasingly concentrated on the
surface for higher dimensions, resulting in samples that are increasingly concentrated
at the border of the trust region. Secondly, the chance of sampling a context c for
which d(c, cµ,ϕ(n)) < d(c, cpi,n) decreases dramatically for higher dimensions as soon as
∥d(cpi,n, cµ,ϕ(n))∥≤ϵ. To remedy both problems, we first sample unit vectors that make an
angle of less than θ = 0.25π with the descent direction cµ,ϕ(n)−cpi,n. Such unit vectors can
be sampled using, e.g., the sampling scheme described in [12]. We then scale these search
direction vectors by a scalar that we uniformly sample from the interval [0, ϵ]. Figure 4.4
contrasts the new sampling scheme with the one introduced in Chapter 3.

4.4.3. Tracking Metrics Other than Reward

The constraint p(V(π, δ))=1 in Objective (4.13) is controlling the curriculum’s progression
towards µ(c) by preventing it from sampling contexts in which the agent does not fulfill a
performance threshold δ. We generalize this constraint to define V based on an arbitrary
functionM(π, c)∈R obtained from a rollout of the policy π in a context c. We hence define

86

V(π, δ) = {c ∈ C|M(π, c) ≥ δ}. The same Nadaraya-Watson kernel regression introduced
in Section 4.3.4 can approximateM(π, c). In our setting, the increased flexibility enables
restricting training to those trajectories for which the agent can stabilize the pendulum
throughout almost the whole episode, i.e., almost all of the 1500 episode steps. Encoding
this restriction via a fixed lower bound on the episode return is hard to achieve due to,
e.g., regularizing terms on the joint velocities and the penalty for non-precise tracking of
γ(t). These terms can result in highly differing returns for episodes in which the agent
stabilized the pendulum throughout the episode.

4.4.4. GPU Implementation

The experiments in Chapter 3 relied on an implementation of currot in NumPy [71]
and SciPy [204], computing the assignment to the target distribution particles using
the SciPy-provided linear sum assignment solver. Given the large number of parallel
simulations that we utilize, this application of currot needed to work with a large
number of particles N and contexts for performance prediction L. We hence created a
GPU-based implementation using PyTorch [156]. To solve the assignment problem (4.16),
we implemented a default auction algorithm [22] using the PyKeOps library [28], which
provides highly efficient CUDA routines for reduction operations on large arrays. We also
use the PyKeOps library for the Nadaraya-Watson kernel regression. 4

4.5. Experiments

In this section, we answer the following questions by evaluating the described learning
system in simulation as well as in the real system:
• Do curricula stabilize or speed up learning in the trajectory tracking task?
• How do the proposed changes to the currot algorithm alter the generated curricu-
lum and its benefit on the learning agent?

• Does the behavior learned in simulation transfer to the real system?
The experiment requires the agent to track eight-shaped trajectories projected onto a
sphere (Figure 4.5). The target distribution µ(γ) of tasks encodes eight-shaped trajecto-
ries whose maximal distance to the starting position is 0.36-0.4m in the x-dimension and
0.18-0.2m in the y-dimension. We choose the z-coordinate of the trajectory such that the
trajectory has a constant distance to the first joint of the Barrett WAM, i.e., moves on a
4Code for this chapter will be made available upon its acceptance in a journal.

87

c1

c2 CL ⊂ R2

CH ⊂ R51

Figure 4.5.: A visualization of the eight-shaped target trajectories γ(t) (in yellow) that the
learning agent is required to track in our experiments. The trajectories are projected onto a
dome that is centered around the robot. Due to the particular shape of the trajectories, we
can represent them via both a low- and high-dimensional parametric description, providing
the possibility to test how currot scales to high-dimensional context representations.
Compared to the low-dimensional representation, eight-shaped trajectories are only a
small part of the full, high-dimensional context space.

sphere centered on this joint. We chose this particular task since the trajectories encoded
by the target distributions µ(γ) can, in addition to the parameterization via jerks, be pa-
rameterized in a two-dimensional parameter space. This dual parameterization enables us
to benchmark the currot algorithm in low- and high-dimensional task parameterizations.
For the two-dimensional representation, we represent the maximum distance in x- and
y-dimension when generating curricula in the two-dimensional context space CL⊂R2.
When representing trajectories via jerks, we compose the jerk sequence u of K=20 con-
stant segments evenly spread in the interval [1, 10.5]. The first- and last second of each
trajectory is always stationary at x(ts). Hence, the actual movement happens within [1, 11].
Due to constraint (4.9) of starting and ending in x(ts), the parameterization reduces to
17 dimensions for each task space dimension, i.e., CH⊂R51. For building the curricula, we
define the set V(π, δ) to contain those trajectories for which the policy manages to keep
the pendulum upright for at least 1400 steps, i.e., those trajectories which fully complete
their movements during the lifetime of the agent (remember that the policy is stationary
for the last second, i.e., the last 125 out of 1500 steps).
We ablate the default ppo learner as well as four ablations of the currot method intro-
duced in Section 4.3.4
• currot: The default algorithm, as introduced in Chapter 3, using our GPU-based
implementation and usingM(π, c) instead of J(π, c) to define V(π, δ).

88

• currotL: The default algorithm exploiting the low-dimensional parameterization
of the target trajectories to generate curricula in R2 instead of R51.

• currotA: A variation of currot that uses the metric dΨ to capture the dissimilarity
between the generated trajectories rather than the context variables.

• currotAO: The version of currot that combines the use of dΨ with improvements
to the sampling-based optimization of Objective (4.14).

For all curricula, we choose the trust region parameter ϵ of Objective (4.14) as in Chapter 3,
i.e., setting ϵ≈0.05maxc1,c2∈C d(c1, c2). All curricula train on an initial distribution p0(c)
of trajectories that barely deviate from the starting position until Ep0

[︂
M̂(π, c)

]︂
≥δ, at

which point the methods start updating the context distribution. All methods train for 262
million learning steps, where a policy update is performed after 64 environment steps,
resulting in 64 · 2048 = 131072 samples generated between a policy update.

4.5.1. Quantitative Results

Figure 4.6 shows the performance of the learned policies. More precisely, we show the
average tracking error during the agent’s lifetime and the number of completed trajectory
steps on µ(γ). While the tracking errors of the investigated methods behave similarly, the
curricula shorten the required training iterations until tracking complete target trajectories.
The results indicate that by first focusing on trajectories that can be tracked entirely and
gradually transforming them into more complicated ones, we avoid repeated sampling of
initial parts of the trajectory due to system resets once the pendulum falls over.
We additionally ablate the results over the penalty term α that the agent receives when
the pendulum topples over (Eq. 4.3). Figure 4.6 shows that its influence on the learning
speed of the agent is limited, as the epochs required by ppo to track the target trajectories
completely stays relatively constant even when increasing α by a factor of three.
For the curriculum methods themselves, we can make two observations. First, in the high-
dimensional context space CH ⊂ R51, all curricula learn the task reliably with comparable
learning speed. Second, operating in the low-dimensional context space CL ⊂ R2 does not
lead to faster learning. Both results surprised us since, in the high-dimensional context
space, we expected that exploiting the structure of the context space via dΨ(c1, c2) and
the improved optimization would significantly improve the curricula. Furthermore, we
expected the low-dimensional representation CL ⊂ R2 to ease the performance estimation
Ĵ(π, c) via kernel regression since we can more densely populate the context space CL
with samples of the current agent performance. The following section highlights why the
observed performance did not behave according to our expectations.

89

0 500 1000 1500 2000

Epoch

0

33

66

100

C
o
m

p
le

ti
o
n

[%
]

0 500 1000 1500 2000

Epoch

5

3

1

A
v
.

T
ra

ck
.

E
rr

.
[c

m
]

-8 -16 -24

Penalty Scale

0

250

500

750

1000

1250

1500

E
p

o
ch

s
to

C
o
m

p
le

ti
o
n

ppo currotAO currotA currot currotL

Figure 4.6.: (Left) Ablation over different tipping penalties α and their effect on the
required number of epochs until successfully completing the target trajectories. (Middle)
Completion rate (i.e. fraction of maximum steps per episode) over epochs for α=− 8 for
different learning methods. (Right) Average tracking error achieved during the agent
lifetime over epochs for different learning methods. Thick lines represent the median, and
the shaded area represents the interquartile range. Statistics are computed from 10 seeds.

4.5.2. Qualitative Analysis of Generated Curricula

To better understand the dynamics of the generated curricula, we visualize the generated
trajectories throughout different learning epochs and the evolution of the Wasserstein
distance W2(pi, µ) in Figures 4.7 and 4.8. Focusing on the evolution of Wasserstein
distances shown in Figure 4.8, we can see that only currotAO and currotL can converge
to the target distribution, achieving zero Wasserstein distance. currot and currotA do
not converge to µ(c) after initially exhibiting fast progression towards µ(c) but slowing
down as theWasserstein distance approaches the value of the trust region parameter ϵ. This
slowing-down behavior is precisely due to the naive sampling in the half-ball of the default
currot algorithm, which we discussed in Section 4.3.4. If the target contexts are well
outside the trust region, even samples that do make an angle larger than 0.25π with the
descent direction cµ,ϕ(n)−cpi,n decrease the distance to the target cµ,ϕ(n). Once the target
contexts are on or within the boundary of the trust region, the effect visualized in Figure
4.4 takes place, preventing further approach to the target samples. As shown in Figure 4.7,
the effect of the resulting bias on the generated trajectories greatly depends on the chosen
metric. By measuring dissimilarity via the Euclidean distance between contexts c1 and c2,
currot generates trajectories that behave entirely differently from the target trajectories
during the initial and later stages of training. Incorporating domain knowledge via the
Mahalanobis distance dΨ allows currotA to generate trajectories with similar qualitative

90

(a) currotAO (b) currotA (c) currot (d) currotL

Figure 4.7.: Evaluation of training distributions pi for different ablations of currot.
Brighter colors indicate later iterations. The black dotted line indicates the "boundaries"
of the support of the target distribution. Note that the distributions have been projected
onto a 2D plane, omitting the z-coordinate.

0 600 1200

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

W
2
(p
,µ

) /
W

2
(p

0
,µ

)

currotAO currotA currot currotL

1800 2000

Figure 4.8.: Evolution of Wasserstein distance
W2(p, µ) compared to the initial distance over
learning epochs for different variants of cur-
rot. The dashed horizontal lines represent

ϵ
W2(p0,µ)

, i.e., the fraction between the trust
region ϵ for Objective (4.14) and the initial
Wasserstein distance W2(p0, µ). Thick lines
represent the medians, and shaded areas vi-
sualize the interquartile range. Statistics are
computed from 10 seeds.

behavior to the target trajectories through-
out the whole learning process.
While underlining the importance of the
proposed improvements in currotAO, the
high performance achieved by currot
and currotA, despite the potentially
strong dissimilarity in generated trajecto-
ries, stresses a critical observation: The
success of a curriculum is inherently de-
pendent on the generalization capability
of the learning agent. By conditioning the
policy behavior on limited-time lookahead
windows of the target trajectory Tt, the
learning agent seems capable of generaliz-
ing well to unseen trajectories as long as
those trajectories visit similar task-space
positions as the trajectories in the training
distribution. Consequently, the failure of
currot to generate trajectories of similar
shape to those in µ(γ) is compensated for
by the generalization capabilities of the learning agent. All in all, the results indicate that
convergence of pi(c) to µ(c) is only a sufficient condition for good agent performance on
µ(c), but not a necessary one.

91

0 500 1000 1500 2000

Epoch

0

33

66

100

C
o
m

p
le

ti
o
n

[%
]

ppo currotAO currotA currot currotL

0 500 1000 1500 2000

Epoch

5

3

1A
v
.

T
ra

ck
.

E
rr

.
[c

m
]

0 500 1000 1500 2000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

W
2
(p
,µ

) /
W

2
(p

0
,µ

)

0 500 1000 1500 2000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

p
(M

(π
,c

)>
δ
)|c
∼
p
i
)

Figure 4.9.: (Left) Completion rate (i.e. fraction of maximum steps per episode) over
epochs for α= − 8 for different learning methods. (Mid-Left) Average tracking error
achieved during the agent lifetime over epochs for different learning methods. (Mid-
Right) Wasserstein distance between training- and target distribution over epochs. (Right)
Percentage for whichM(π, c) ≥ δ on the training distribution pi(c) over epochs. We show
median and interquartile ranges that are computed from 10 seeds.

4.5.3. Alternative Trajectory Representation

The surprising effectiveness of currot, despite its ignorance of the context space structure,
led us to conclude that the policy structure leads to rather strong generalization capabilities
of the agent, concealing shortcomings of the generated curricula. We changed the policy
architecture to test this hypothesis, replacing the trajectory lookahead Tt simply by the
contextual parameter c ∈ R51 and the current time index t ∈ R. While this representation
still contains all required information about the desired target position γ(t) at time step
t, it does not straightforwardly allow the agent to exploit common subsections of two
different trajectories. Figure 4.9 visualizes the results of this experiment. Comparing
Figures 4.6 and 4.9, we see that the different context representation slows down the
learning progress of all curricula and consequently leads to higher tracking errors after
2000 epochs. We also see that the lookahead Tt benefits learning with ppo, as with the
new context representation, none of the 10 seeds learn to complete the trajectory within
2000 epochs. More importantly, we see how the inadequate metric of currot now leads
to a failure in the curriculum generation, withW2(pi, µ) staying almost constant for the
entire 2000 epochs as the agent struggles to solve the tasks in the curriculum. This failure
to generate tasks of adequate complexity is also shown in Figure 4.9, where we visualize
the percentage of tasks c sampled by the curriculum for whichM(π, c) ≥ δ. As we can
see, this percentage drops to zero under currot once the algorithm starts updating
p0(c). The other curricula maintain a non-zero success percentage. We can also observe a

92

x

y

y

z

(a) ddp (b) ppo (c) currotAO

Figure 4.10.: Generated trajectories on the real robot. We visualize projections to the xy-
(top) and yz-plane (bottom) to highlight the three-dimensional nature of the trajectory.
The reference trajectories are shown in blue. Other colors indicate trajectories that have
been generated by the different (learned) controllers. For ppo and currotAO, we evaluate
the three best-performing seeds, indicated by colors.

pronounced drop in success rate for currotA, which is not present for currotAO. This
more stable performance of currotAO may result from the more targeted sampling in the
approximate update step of the context distribution, resulting in more similar trajectories.
Apart from this ablation, we also performed experiments for increasing context space
dimensions, generating curricula in up to 399-dimensional context spaces. The results in
Appendix D.1 show that currotAO generates beneficial curricula across all investigated
dimensions and trajectory representations, while the curricula of currotA become less
effective in higher dimensions for the alternative trajectory representation presented
in this section. For currot, the resulting picture stays unchanged with poor observed
performance for the alternative trajectory representation regardless of the context space
dimension.

4.5.4. Real Robot Results

To assess transferability to the real world and put the achieved results into perspective,
we evaluated the three best policies learned with ppo and currotAO for α=− 8 on the
real robot and compared them to an optimal control baseline. We evaluated each seed
on 10 trajectories sampled from µ(γ). The target trajectories are shown in Figure 4.10,
and Figure 4.11 shows snapshots of the policy execution on the real system. Given the
architectural simplicity of the agent policy, it was easy to embed it in a C++-based ROS

93

(a) t ≈ 4.0 (b) t ≈ 5.2 (c) t ≈ 6.5 (d) t ≈ 8.0 (e) t ≈ 11

Figure 4.11.: Snapshots of the policy learned with currotAO during execution on the
real robot. The dotted red line visualizes the target trajectory to be tracked by the policy.
The generated trajectory is visualized by the colored line, where brighter colors indicate
later time-steps.

[164] controller using the Eigen library, receiving the pole information from Optitrack via
UDP packets. The execution time of the policy network was less than a millisecond and
hence posed no issue for our target control frequency of 125 Hz. Given that the pole starts
in an upright position during training, we attached a thread to the tip of the pendulum
to stabilize the pendulum via a pulley system before starting the controller. We then
simultaneously release the thread and start the controller. Given the negligible weight of
the thread, we did not observe any interference with the pole. To ensure safety during the
policy execution, we first executed the policies in a MuJoCo simulation embedded in the
ROS ecosystem. We monitored the resulting minimum- and maximum joint positions qmin
and qmax, and defined a safe region S, which the agent is not supposed to leave during
execution on the real system

S = [q̄− 1.25(qmax − qmin), q̄+ 1.25(qmax − qmin)],

where q̄ = 1/2(qmin+qmax). Inspired by the results of Vu, Hartl-Nesic, and Kugi [205], we
decided to compare the results of ppo and currotAO to an optimal control baseline that
we obtained by computing a time-varying linear feedback controller using the differential
dynamic programming (ddp) algorithm implemented in the Crocoddyl library [128]. At
the convergence of ddp, we can obtain a time-varying linear controller from the internally

94

computed linearization of the dynamics on the optimal trajectory. We use the same cost
function as for the reinforcement learning agent, simply removing the penalty term for
tipping the pendulum, as the gradient-based ddp does not run into danger of tipping the
pendulum. The obtained time-varying controller requires access to full state information,
i.e., position and velocity of the robot and pole, which we infer using a high-gain non-linear
observer [89], whose gains we tuned on the real system using the synthesized controller

Table 4.1.: Mean and standard deviation of tracking errors achieved with different con-
trollers. We evaluate both on a ROS-embedded MuJoCo simulation (Sim) and the real
robot (Real). For ppo and currotAO, the color of the seeds corresponds to the trajectories
shown in Figure 4.10. In each row, statistics are computed from 20 seeds.

ddp
Gain Sim Real

Completion Error [cm] Completion Error [cm]
High 1.00 0.75±0.02 - -
Low 1.00 2.58±0.11 1.00 3.11±0.12

currotAO

Seed Sim Real
Completion Error [cm] Completion Error [cm]

2 1.00 1.98±0.06 1.00 2.30±0.16
4 1.00 1.80±0.07 1.00 2.44±0.09
5 1.00 1.85±0.07 1.00 2.10±0.13
Avg. 1.00 1.88±0.10 1.00 2.28±0.19

ppo
Seed Sim Real

Completion Error [cm] Completion Error [cm]
1 1.00 3.10±0.14 1.00 2.82±0.20
5 1.00 2.30±0.08 1.00 2.71±0.20
8 1.00 2.15±0.07 0.55 4.18±0.66
Avg. 1.00 2.52±0.43 0.85 3.07±0.68

95

to achieve the best tracking performance. We performed the tracking experiments twice
on different days, obtaining 20 trajectories per seed and method, from which we can
compute statistics. Figure 4.10 visualizes the result of the policy rollouts on the real
system, and Table 4.1 provides quantitative data. As shown in Figure 4.10, the policies
learned with currotAO seem to track the reference trajectories more precisely than the
other methods. This impression is backed up by the data in Table 4.1, where the average
tracking performance of both ddp and ppo on the real robot is about 35% worse than that
of currotAO. Comparing the results of the ROS-embedded MuJoCo simulation and the
execution on the real robot, we see that, on average, the performance on the real system
is about 20% worse across all methods. Regarding reliability, one out of the three policies
learned with ppo did not reliably perform the tracking task, as it left the safe region S
during execution. We can observe a significantly worse real robot tracking performance for
this particular seed in Figure 4.10. Looking at the ddp results again, we see a distinction
between high and low gains. The high gain setting corresponds to precisely using reward
function 4.3, resulting in the best tracking performance across all methods in simulation.
However, the high gains of the generated time-varying linear feedback controllers resulted
in unstable behavior in the real system. To obtain stable controllers in the real system, we
needed to increase the regularization of actions, position, and velocity by a factor of 30.
We assume that more sophisticated methods that better account for uncertainty in the
model parameters could further improve performance. Since our baseline only aims to
put the learned behavior into perspective, we did not explore such advanced methods.
Instead, we interpreted the results as evidence that deep RL-based methods can learn
precise control of highly unstable systems comparable to classical control methods.
Looking back at Figure 4.6, we see that the tracking errors in the ROS-embedded MuJoCo
simulation in Table 4.1 are slightly worse than the error observed in Isaac Sim, where
ppo consistently achieved a tracking error of less than 2cm, and currotAO consistently
achieved a tracking error of less than 1.5cm. This performance gap may be caused by our
approximate modeling of actuation delay and tendons, and we expect additional efforts
on system identification, modeling, and domain randomization to close this gap.

4.6. Conclusion

We presented an approach that learns a tracking controller for an inverted spherical
pendulum mounted to a four-degrees-of-freedom Barret Whole Arm Manipulator. We
showed that increasingly available massively parallel simulators allow off-the-shelf re-
inforcement learning algorithms paired with curricula to reliably learn this non-trivial
partially observable control task across policy- and task-space representations. Our evalu-

96

ations of curricula and their effect on learning success showed multiple interesting results.
Apart from confirming the sample-complexity benefit of learning the tracking task via
curricula, we showed that a) the generation of curricula is possible in high-dimensional
context spaces and b) that high-dimensionality does not need to make the curriculum
generation less efficient. However, we also saw that the very structure of our learning
agent was a significant factor in the robustness of the generated curricula, allowing it to
track target trajectories that are significantly different from the trajectories encountered
in the curricula. These findings motivate future investigations into the interplay between
agent generalization and curricula. From a technical point of view, we demonstrated the
importance of appropriately encoding the structure of the context space C via the distance
function of currot, particularly when the generalization capability of the agent is limited.
An interesting next step is to generalize currot to work with arbitrary Riemannian
manifolds. On the robotic side, we see much potential in applications to other robotic
tasks, e.g., locomotion problems. On this particular setup, investigating the control of
a non-rigidly attached inverted pendulum would allow us to tackle more complicated
movements that, e.g., require the robot to thrust the pendulum into the air and catch it
again. Furthermore, a non-rigidly attached pendulum would pose an additional challenge
for modeling the system in simulation and deriving controllers using optimal control, as
contact friction becomes essential to balancing the non-rigidly attached pendulum.

97

5. Conclusion and Future Work

In this thesis, we tackled the problem of slow learning and convergence to undesirable
behavior in the framework of reinforcement learning. We modeled the problem as learning
to solve a distribution of target tasks µ(M) and proposedmethods that generate a sequence
of training task distributions p(M) to increase the robustness of learning on the target
distribution µ(M). These methods are often referred to as curriculum reinforcement
learning. However, as we have shown throughout this thesis, they can also be seen as
approximate implementations of continuation- or annealed inference methods.
We represented the sequence of task distributions p(M) by a sequence of distributions
over contexts p(c), where the context c ∈ C parameterizes a contextual MDP M(c).
While the experiments in this thesis showed that this formulation is flexible enough to
accommodate different scenarios, they also reminded us that we must carefully consider
the interpolating behavior of p(c). In a sense, the importance of a gradual change in task
complexity along the interpolation p(c) has already been emphasized in early works on
curriculum reinforcement learning, e.g., by Asada et al. [11].
A core observation of this thesis is that optimal transport provides a well-suited mechanism
for specifying the behavior of p(c), and, with that, a gradual change in task complexity
by lifting a distance metric on the learning tasksM(c) into a distance on the space of
distributions over learning tasks. In this thesis’s final chapter, we demonstrated that an
approach generating intermediate task distributions using notions of optimal transport
can scale to problems with high dimensional task spaces C and enable robust learning of
non-trivial tracking behavior on a four-degrees-of-freedom robotic arm.
Throughout the thesis, we showed various successful applications of the developedmethods
in different prototypical evaluation tasks. However, as we already stated in Chapter 1,
there is no guarantee that the presented methods provide a benefit over regular learning in
any given task. Instead, these methods should rather be seen as ways of stabilizing learning
if standard algorithms learn in an unacceptably slow or unstable fashion. Compared to
alternative curriculum reinforcement learning algorithms, the methods developed in this
thesis emphasize an explicit notion of task similarity and target task distribution, leading
to empirical advantages over existing curriculum reinforcement learning methods if the
problem structure at hand violates their implicit assumptions.

99

We believe and hope that the explicit notion of assumptions in our algorithms will allow
for future investigations that ultimately result in a more solid theoretical foundation
of the presented methods. A first step towards this goal may be to investigate under
which conditions the interpolations p(c) contain a connected solution path from the
initial distribution p0(c) to the target distribution µ(c) by establishing similar results as
probability-one homotopies [35]. Such results would facilitate a better understanding of
the situations in which curriculum reinforcement learning can bring a benefit in the first
place since disconnected solution paths imply that the policy needs to change abruptly at
some point during the curriculum.
Next, our evaluated algorithms rely on approximate or restricted representations of the
distributions they are manipulating, as well as estimates of the agent performance over
the context space made from a limited and biased set of samples. In Chapter 3, we
witnessed the importance of these approximations, showing that parametric restrictions
are an important ingredient of the sprl algorithm. In Chapter 4, we demonstrated
that the approximate optimization of currot requires a careful treatment in higher
dimensions. Therefore, once a better formal understanding of the presented algorithms
has been established, an important next step is to see which theoretical guarantees can be
preserved in the face of approximations necessary for practice.
The task-space metric d(M1,M2) introduced in Chapter 3 provides another opportunity
for future investigations. We empirically showed that the choice of metric significantly
affects the performance of the resulting curriculum, both in a positive and negative
sense. Given the empirical importance of a “good” task-space metric, the question arises
whether a universally “good” task-space metric exists. In Appendix C.3.2, we investigated
a general-purpose (pseudo-)metric initially proposed by Huang et al. [76], which led to a
desirable explorative behavior of the generated curriculum in the investigated environment.
Understanding whether the observed behavior is simply an artifact of the specific learning
task or whether this (pseudo-)metric is a first step towards universally “good” metrics
for curriculum reinforcement learning seems a promising next step. The results of such
investigations may indeed be connected to the first question of whether we can create
curricula that correspond to probability-one homotopies, which guarantee a connected
solution path to a local optimum of the target problem.
With few or no prior assumptions, it seems reasonable to assume that general-purpose
metrics would need to be constructed or refined with the help of data generated by
learning agents, connecting this metric learning problem to the curriculum design problem
investigated by Narvekar, Sinapov, and Stone [144], which is modeled as a higher-level
curriculum MDP. In this framework, approximate methods allowed to learn adaptive
curricula purely from data [145, 222]. Hence, efforts to learn a metric structure over
learning tasks from data should leverage the insights gained in these works.

100

Finally, the problem of transferring behavior between two tasks,M1 andM2, has been
mostly ignored, relying on appropriate choices of the state-, action- and context space
S, A, and C to allow transfer to happen implicitly in the chosen parametric policy. We
already saw in Chapter 4 that this ignorance can make the success of curricula dependent
on these choices. More importantly, such an approach is not suitable in more general
settings when, e.g., state- or action-spaces change [192]. In these more general settings,
the transfer of behavior is expected to play a vital role in the success of curricula and
consequently needs to be accounted for explicitly.

101

6. Contribution Statements

Albeit summarizing the findings of my scientific work, this thesis has not been written
from the perspective of a group (using We instead of I) by accident. Research is only
possible with collaboration, so I wish to disentangle the individual contributions that have
led to the papers presented in this thesis.

6.1. Contributions to Chapter 2

The work leading to this chapter started with the sprl algorithm that I developed during
my Master’s thesis under the supervision of Hany Abdulsamad and Boris Belousov. We
started the thesis without having a specific idea other than generalizing solutions between
learning tasks, and I believe that their continuing support and the time they invested in
our discussions tremendously helped me progress towards the final idea behind sprl.
After completing my thesis, I worked on generalizing the initial algorithm to broader
application scenarios and establishing the connection to self-paced learning [105], during
which I collaborated with Carlo D’Eramo. His expertise in deep reinforcement learning
was a great help in setting up the additional experiments. Finally, all authors of this work
contributed to its writing.

6.2. Contributions to Chapter 3

The motivation for this work emerged during the Master’s thesis of Haoyi Yang, whom
I supervised starting in 2021. Under my lead, we first aimed to remove the parametric
restriction of sprl while staying in the variational inference (VI) framework. While we
could show some successes, the formulation and results of the created approach were not
fully satisfactory. This dissatisfaction led us to investigate optimal transport approaches,
for which Haoyi could do some very first investigations towards the end of his thesis.
Convinced by his early results, I performed more research on the weaknesses of the
VI-based approaches and how to best integrate the idea of optimal transport into our
current algorithmic framework, resulting in both the analysis of the weaknesses of the

103

KL-based interpolations in Chapter 3 as well as the currot algorithm with its features like
the Nadaraya-Watson regression and enforcing the performance constraint on individual
contexts instead of in expectation. I have performed all the evaluations and comparisons.
Carlo D’Eramo and Joni Pajarinen supported my work on the topic through discussions
and helped in writing the submitted manuscripts.

6.3. Contributions to Chapter 4

The idea for applying curriculum RL for the tracking task described in this chapter came
up while supervising a Bachelor thesis by Jonathan Kinzel, who designed a stabilizing
controller for a spherical pendulum mounted on a Barrett WAM. To better understand the
more intricate tracking task, Kai Ploeger and I supervised Florian Wolf as an integrated
project student, who created a high-precision tracking controller in simulation via model-
predictive control.
Based on these successes, I saw a chance to learn tracking control using curriculum RL,
simultaneously putting currot to the test in high-dimensional context spaces. I have
performed the training in simulation and the investigations in simulation and on the robot.
Florian helped implement an optimal control baseline for the robot to compare the RL
agent against. For the real-world set-up, I could leverage some basic infrastructure for
communicating with the Optitrack system our group had set up in previous projects. The
ROS stack for the Barrett WAM developed by Kai Ploeger and Alap Kshirsagar tremendously
accelerated the robot experiments. I wrote the remaining domain-specific code of the
real-world system, e.g., for starting the controller and initializing the experiment.

104

A. Appendix to Chapter 1

This short appendix serves to precisely define the Markov Decision Process (MDP)M that
was used in Section 1.1.2 to showcase an MDP whose corresponding RL objective (1.8)
was equivalent to a function f(a) that only depends on an action a ∈ A ⊆ R.
The MDPM = ⟨S,A, p, r, p0⟩ of interest can be constructed from a state space with two
states, i.e. S = {s+, s−} and an initial state distribution p0(s) = δs+(s) that assigns all
probability to s+. The reward function is given by

r(s, a) =

{︄
f(a), if s = s+,

0, else.

and the transition probabilities p(s′|s, a) = δs−(s
′) make the agent transition into s− and

stay in this state regardless of the action. With these definitions, the expected reward
reduces to a myopic one-step objective

J(π,M) = Ep0(s0),p(si+1|si,ai),π(ai|si)

[︄ ∞∑︂
i=0

γir(si, ai)

]︄
= Ep0(s0),π(a0|s0) [r(s0, a0)]

= Eπ(a0|s+) [r(s+, a0)] .

If we optimize over a deterministic policy that always generates the same action, i.e.
πθ(a|s) = δθ(a), it follows immediately that optimizing J(πθ,M) is equivalent to optimiz-
ing f(θ) w.r.t. θ. If we chose a Gaussian policy πθ(a|s) = N

(︁
a
⃓⃓
µ, σ2

)︁ with θ = [µ σ] ∈ R2,
we obtain the objective from Section 1.1.2.

105

B. Appendix to Chapter 2

B.1. Proof of Theorem 1

We begin by restating the theorem from the main text

Theorem 1. Alternatingly solving

min
θ,ν

Ep(c|ν) [l(xc, yc,θ)] + αDKL (p(c|ν) ∥ µ(c))

w.r.t. θ and ν is a majorize-minimize scheme applied to the regularized objective

min
θ

Eµ(c)

[︃
α

(︃
1− exp

(︃
− 1

α
l(xc, yc,θ)

)︃)︃]︃
.

Proof. To prove the theorem, we make use of the result established by Meng, Zhao, and
Jiang [131] that optimizing the SPL objective alternatingly w.r.t. ν and θ

ν∗,θ∗ = argmin
ν,θ

r(θ) +

N∑︂
i=1

(νil(xi, yi,θ) + f(α, νi)) , α > 0. (2.1)

is a majorize-minimize scheme applied to the objective

min
θ

r(θ) +

N∑︂
i=1

Fα(l(xi, yi,θ)), Fα(l(xi, yi,θ)) =

∫︂ l(xi,yi,θ)

0
ν∗(α, ι) dι. (2.3)

Based on this result, the proof of Theorem 1 requires three steps: First, we need to show
that the function

fKL,i(α, ν) = αν (log(ν)− log(µ(c=i)))− αν, (2.6)

is a valid self-paced regularizer for objective (2.1) and that the corresponding objective
(2.3) has the form of the second objective in Theorem 1. Second, we need to show the

107

equivalence between the SPL objective (2.1) and the probabilistic objective (2.5) for the
regularizer fKL,i. Finally, we need to show that objective (2.5) corresponds to the first
objective in Theorem 1 when using fKL,i. We begin by restating the axioms of self-paced
regularizers defined by [80] to prove the first of the three points. Again making use of the
notation ν∗(α, l) = argminν νl + f(α, ν), these axioms are
1. f(α, ν) is convex w.r.t. ν
2. ν∗(α, l) is monotonically decreasing w.r.t. l and it holds that liml→0 ν

∗(α, l) = 1 as
well as liml→∞ ν∗(α, l) = 0

3. ν∗(α, l) is monotonically decreasing w.r.t. α and it holds that limα→∞ ν∗(α, l) ≤ 1
as well as limα→0 ν

∗(α, l) = 0.
It is important to note that, due to the term µ(c=i) in (2.6), there is now an individual
regularizer fKL,i for each sample. This formulation is in line with the theory established
by Meng, Zhao, and Jiang [131] and simply corresponds to an individual regularizer Fα,i

for each sample in (2.3). Inspecting the second derivative of fKL,i w.r.t. ν, we see that
fKL,i(α, ν) is convex w.r.t. ν. Furthermore, the solution to the SPL objective (2.1)

ν∗KL,i(α, l) = µ(c=i) exp

(︃
− 1

α
l

)︃
(B.1)

fulfills above axioms except for liml→0 ν
∗
KL,i(α, l) = 1, since liml→0 ν

∗
KL,i(α, l) = µ(c=i).

However, we could simply remove the log-likelihood term log(µ(c=i)) from fKL,i(α, νi)
and pre-weight each sample with µ(c=i), which would yield exactly the same curriculum
while fulfilling all axioms. We stick to the introduced form, as it eases the connection of
fKL,i to the KL divergence between p(c|ν) and µ(c). Given that we have ensured that fKL,i
is a valid self-paced regularizer, we know that optimizing the SPL objective (2.1) under
fKL,i corresponds to employing the non-convex regularizer

FKL,α,i(l(xi, yi,θ)) =

∫︂ l(xi,yi,θ)

0
ν∗KL,i(α, ι) dι = µ(c=i)α

(︃
1− exp

(︃
−1

a
l(xi, yi,θ)

)︃)︃
.

(B.2)

Put differently, optimizing the SPL objective (2.1) with r(θ) = 0 under fKL,i corresponds
to optimizing

min
θ

N∑︂
i=1

FKL,α,i(l(xi, yi,θ)) = min
θ

Eµ(c)

[︃
α

(︃
1− exp

(︃
−1

a
l(xc, yc,θ)

)︃)︃]︃
,

108

as stated in Theorem 1. As a next step, we notice that entries in the optimal ν for a given
θ and α in the probabilistic SPL objective (2.5) are proportional to ν∗KL,i(α, l) in (B.1),
where the factor of proportionality Z simply rescales the variables ν∗KL,i so that they fulfill
the normalization constraint of objective (2.5). Since

Ep(c|ν) [f(xc, yc,θ)] =
N∑︂
i=1

νif(xi, yi,θ)

by definition of p(c|ν) introduced in Section 2.4, we see that consequently the only
difference between (2.1) and (2.5) for this particular regularizer is a different weighting
of the regularization term r(θ) throughout the iterations of SPL. More precisely, r(θ) is
weighted by the aforementioned factor of proportionality Z. Since r(θ) = 0 in Theorem
1, SPL (2.1) and the probabilistic interpretation (2.5) introduced in Chapter 2 are exactly
equivalent, since a constant scaling does not change the location of the optima w.r.t θ
in both (2.1) and (2.5). Consequently, we are left with proving that the PSPL objective
(2.5) under fKL,i and r(θ) = 0 is equal to the first objective in Theorem 1. This reduces
to proving that∑︁N

i=1 fKL,i(α, νi) is equal to the KL divergence between p(c|ν) and µ(c).
Remembering p(c=i|ν) = νi, it follows that

N∑︂
i=1

fKL,i(α, νi) = α
N∑︂
i=1

p(c=i|ν) (log(p(c=i|ν))− log(µ(c=i)))− α
N∑︂
i=1

p(c=i|ν)

= αDKL (p(c=i|ν) ∥ µ(c=i))− α.

The removal of the sum in the second term is possible because∑︁N
i=1 p(c=i|ν) = 1 per

definition of a probability distribution. Since the constant value α does not change the
optimization w.r.t. ν, this proves the desired equivalence and with that Theorem 1.

B.2. Self-Paced Episodic Reinforcement Learning Derivations

This appendix serves to highlight some important details regarding the derivation of the
weights (2.12) and (2.13) as well as the dual objective (2.14). The most notable detail
is the introduction of an additional distribution q(c) that takes the role of the marginal∫︁
q(θ, c) dθ as well as the regularization of this additional distribution via a KL divergence
constraint w.r.t. to the previous marginal p(c) = ∫︁ p(θ, c) dθ. This yields the following

109

objective

max
q(θ,c),q(c)

Eq(θ,c) [r (θ, c)]− αDKL (q(c) ∥ µ(c))

s.t. DKL (q(θ, c) ∥ p(θ, c)) ≤ ϵ

∫︂
q(θ, c) dcdθ = 1

DKL (q(c) ∥ p(c)) ≤ ϵ

∫︂
q(c) dc = 1∫︂

q(θ, c) dθ = q(c) ∀c ∈ C.

However, these changes are purely of technical nature as they allow to derive numerically
stable weights and duals. It is straightforward to verify that DKL (q(θ, c) ∥ p(θ, c))≤ϵ
implies DKL (q(c) ∥ p(c))≤ϵ. Hence, the constraint

∫︁
q(θ, c) dθ = q(c) guarantees that a

solution q(θ, c) to above optimization problem is also a solution to (2.11). The dual as
well as the weighted updates now follow from the Lagrangian

L(q, V, ηq, ηq̃, λq, λq̃) = Eq(θ,c) [r (θ, c)]− αDKL (q(c) ∥ µ(c))

+ ηq (ϵ−DKL (q(θ, c) ∥ p(θ, c))) + λq

(︃
1−

∫︂
q(θ, c) dcdθ

)︃
+ ηq̃ (ϵ−DKL (q(c) ∥ p(c))) + λq̃

(︃
1−

∫︂
q(c) dc

)︃
+

∫︂
V (c)

(︃∫︂
q(θ, c) dθ − q(c)

)︃
dc. (B.3)

Note that we slightly abuse notation and overload the argument q in the definition of
the Lagrangian. The update equations (2.12) and (2.13) follow from the two conditions

∂L
∂q(θ,c) = 0 and ∂L

∂q(c)L = 0. Inserting (2.12) and (2.13) into equation (B.3) then allows to
derive the dual (2.14). We refer to [201] for detailed descriptions on the derivations in
the non-contextual setting, which however generalize to the one investigated here.

110

B.3. Regularized Policy Updates

In order to enforce a gradual change in policy and context distribution not only during
the computation of the weights via equations (2.12) and (2.13) but also during the actual
inference of the new policy and context distribution, the default weighted linear regression
and weighted maximum likelihood objectives need to be regularized. Given a data set of
N weighted samples

D =
{︁
(wx

i , w
y
i ,xi,yi)|i = 1, . . . , N

}︁
,

with xi ∈ Rdx ,yi ∈ Rdy , the task of fitting a joint-distribution

q(x,y) = qy(y|x)qx(x) = N (y|Aϕ(x),Σy)N (x|µx,Σx)

to D while limiting the change with regards to a reference distribution

p(x,y) = py(y|x)px(x) = N (y|Ãϕ(x), Σ̃y)N (x|µ̃x, Σ̃x),

with feature function ϕ : Rdx ↦→ Ro, can be expressed as a constrained optimization
problem

max
A,Σy,µx,Σx

N∑︂
i=1

(wx
i log(qx(xi)) + wy

i log(qy(yi|xi)))

s.t. DKL (p ∥ q) ≈
1

N

N∑︂
i=1

DKL (py(·|xi) ∥ qy(·|xi)) +DKL (px ∥ qx) ≤ ϵ.

Note that we employ the reverse KL divergence in the constraint as this is the only form that
allows for a closed form solution w.r.t. the parameters of the Gaussian distribution. Due to
the unimodal nature of Gaussian distributions as well as the typically small value of ϵ this
is a reasonable approximation. Since the distributions px, py, qx and qy are Gaussians,
the KL divergences can be expressed analytically. Setting the derivative of the Lagrangian
with respect to the optimization variables to zero yields to following expressions of the

111

optimization variables in terms of the multiplier η and the samples from D

A =

[︄
N∑︂
i=1

(︂
wiyi +

η

N
Ãϕ(xi)

)︂
ϕ(xi)

T

]︄[︄
N∑︂
i=1

(︂
wi +

η

N

)︂
ϕ(xi)ϕ(xi)

T

]︄−1

,

Σy =

∑︁N
i=1wi∆yi∆yT

i + ηΣ̃y + η
N∆A

∑︁N
i=1 ϕ(xi)ϕ(xi)

T∆AT∑︁N
i=1wi + η

,

µx =

∑︁N
i=1wixi + ηµ̃x∑︁N

i=1wi + η
,

Σx =

∑︁N
i=1wi(xi − µx)(xi − µx)

T + η
(︂
Σ̃x + (µx − µ̃x)(µx − µ̃x)

T
)︂

∑︁N
i=1wi + η

,

with ∆yi = yi − Aϕ(xi) and ∆A = A − Ã. Above equations yield a simple way of
enforcing the KL bound on the joint distribution: Since η is zero if the constraint on the
allowed KL divergence is not active, A, Σy, µx and Σx can be first computed with η = 0
and only if the allowed KL divergence is exceeded, η needs to be found by searching the
root of

f(η) = ϵ− 1

N

N∑︂
i=1

DKL (py(·|xi) ∥ qy(·|xi)) +DKL (px ∥ qx) ,

where qy and qx are expressed as given by above formulas and hence implicitly depend
on η. As this is a one-dimensional root finding problem, simple algorithms can be used for
this task.

B.4. Experimental Details

This section is composed of further details on the experiments in sections 2.6 and 2.7,
which were left out in the main chapter to improve readability. The details are split
between the episodic- and step-based scenarios as well as the individual experiments
conducted in them.
To conduct the experiments, we use the implementation of alp-gmm, goalgan and sagg-
riac provided in the repositories accompanying the papers from Florensa et al. [56] and

112

Portelas et al. [162] as well as the cma-es implementation from Hansen, Akimoto, and
Baudis [68]. The employed hyperparameters are discussed in the corresponding sections.
Conducting the experiments with sprl and spdl, we found that restricting the standard
deviation of the context distribution p(c|ν) to stay above a certain lower bound σLB helps
to stabilize learning when generating curricula for narrow target distributions. This is
because the Gaussian distributions have a tendency to quickly reduce the variance of
the sampling distribution in this case. In combination with the KL divergence constraint
on subsequent context distributions, this slows down progression towards the target
distribution. Although we could enforce aforementioned lower bound via constraints on
the distribution p(c|ν), we simply clip the standard deviation until the KL divergence
w.r.t. the target distribution µ(c) falls below a certain threshold DKLLB . This threshold was
chosen such that the distribution with the clipped standard deviation roughly “contains”
the mean of target distribution within its standard deviation interval. The specific values
of DKLLB and σLB are listed for the individual experiments.

B.4.1. Episodic Setting

For the visualization of the success rate as well as the computation of the success indicator
for the goalgan algorithm, the following definition is used: An experiment is considered
successful, if the distance between final- and desired state (sf and sg) is less than a given
threshold τ

Success (θ, c) =
{︄
1, if ∥sf (θ)− sg (c)∥2 < τ,

0, else.

For the Gate and reacher environment, the threshold is fixed to 0.05, while for the ball-in-
a-cup environment, the threshold depends on the scale of the cup and the goal is set to

ϵ nsamples Buffer Size ζ Kα σLB DKLLB

Gate “Global” 0.25 100 10 0.002 140 - -
Gate “Precision” 0.4 100 10 0.02 140 - -
Reacher 0.5 50 10 0.15 90 [0.005 0.005] 20
Ball-in-a-cup 0.35 16 5 3.0 15 0.1 200

Table B.1.: Important parameters of sprl and c-reps in the conducted experiments. The
meaning of the symbols correspond to those presented in the algorithm from the main
text and introduced in this appendix.

113

δNOISE nROLLOUTGG nGOALS nHIST

Gate “Global” 0.05 5 100 500
Gate “Precision” 0.05 5 100 200
Reacher 0.1 5 80 300
Ball-in-a-cup 0.05 3 50 120

Table B.2.: Important parameters of goalgan and sagg-riac in the conducted experiments.
The meaning of the symbols correspond to those introduced in this appendix.

be the center of the bottom plate of the cup. The policies are chosen to be conditional
Gaussian distributionsN (θ|Aϕ(c),Σθ), where ϕ(c) is a feature function. sprl and c-reps
both use linear policy features in all environments.
In the reacher and the ball-in-a-cup environment, the parameters θ encode a feed-forward
policy by weighting several Gaussian basis functions over time

ui (θ) = θ
Tψ (ti) , ψj (ti) =

bj (ti)∑︁L
l=1 bl (ti)

, bj (ti) = exp

(︄
(ti − cj)

2

2L

)︄
,

where the centers cj and length L of the basis functions are chosen individually for the
experiments. With that, the policy represents a Probabilistic Movement Primitive [154],
whose mean and covariance matrix are progressively shaped by the learning algorithm to
encode movements with high reward.
In order to increase the robustness of sprl and c-reps while reducing the sample com-
plexity, an experience buffer storing samples of recent iterations is used. The size of this
buffer dictates the number of past iterations, whose samples are kept. Hence, in every
iteration, c-reps and sprl work with NSAMPLES×BUFFER SIZE samples, from which only
NSAMPLES are generated by the policy of the current iteration.
As the employed cma-es implementation only allows to specify one initial variance for all
dimensions of the search distribution, this variance is set to the maximum of the variances
contained in the initial covariance matrices used by sprl and c-reps.
For the goalgan algorithm, the percentage of samples that are drawn from the buffer
containing already solved tasks is fixed to 20%. The noise added to the samples of the GAN
δNOISE and the number of iterations that pass between the training of the GAN nROLLOUTGG
are chosen individually for the experiments.
The sagg-riac algorithm requires, besides the probabilities for the sampling modes which
are kept as in the original paper, two hyperparameters to be chosen: The maximum
number of samples to keep in each region nGOALS as well as the maximum number of

114

recent samples for the competence computation nHIST. Tables B.1 and B.2 show the afore-
mentioned hyperparameters of c-reps, sprl, goalgan and sagg-riac for the different
environments.

Point-Mass Experiment

The linear system that describes the behavior of the point-mass is given by[︃
ẋ
ẏ

]︃
=

[︃
5
−1

]︃
+ u+ δ, δ ∼ N

(︁
0, 2.5× 10−3I

)︁
.

The point-mass is controlled by two linear controllers

Ci (x, y) =Ki

[︃
xi − x
yi − y

]︃
+ ki, i ∈ [1, 2] , Ki ∈ R2×2, ki ∈ R2, xi, yi ∈ R,

where x is the x-position of the point-mass and y its position on the y-axis. The episode
reward exponentially decays with the final distance to the goal. In initial iterations of the
algorithm, the sampled controller parameters sometimes make the control law unstable,
leading to very large penalties due to large actions and hence to numerical instabilities in
sprl and c-reps because of very large negative rewards. Because of this, the reward is
clipped to always be above 0.
Table B.1 shows that a large number of samples per iteration for both the “global” and
“precision” setting are used. This is purposefully done to keep the influence of the sample
size on the algorithm performance as low as possible, as both of these settings serve as a
first conceptual benchmark of our algorithm.
Figure B.1 helps in understanding why sprl drastically improves upon c-reps especially
in the “precision” setting even with this large amount of samples. For narrow gates, the
reward function has a local maximum which tends to attract both c-reps and cma-es,
as the chance of sampling a reward close to the true maximum is very unlikely. By first
training on contexts in which the global maximum is more likely to be observed and only
gradually moving towards the desired contexts, sprl avoids this sub-optimal solution.

Reacher Experiment

In the reacher experiment, the ProMP encoded by the policy π has 20 basis functions of
width L = 0.03. The centers are evenly spread in the interval [−0.2, 1.2] and the time
interval of the movement is normalized to lie in the interval [0, 1] when computing the
activations of the basis functions. Since the robot can only move within the xy-plane, θ

115

x

y

x1
des

r
(θ

,c
1
)

x

y

x1
des

r
(θ

,c
2
)

x

y

x1
des

r
(θ

,c
3
)

Figure B.1.: The columns show visualizations of the point-mass trajectories (upper plots)
as well as the obtained rewards (lower plots) in the point-mass task, when the desired
position of the first controller is varied while all other parameters are kept fixed such that
a stable control law is obtained. In every column, the gate is positioned at x = 4.0 while
the size of it varies from 20 (left), over 3 (middle) to 0.1 (right).

is a 40-dimensional vector. As in the previous experiment, the episode reward decays
exponentially with the final distance to the goal. As we can see in Table B.1, the number
of samples in each iteration was decreased to 50, which in combination with the increased
dimensionality of θ makes the task more challenging.
As in the step-based setting, the ppo results are obtained using the version from the
Stable Baselines library [73]. A step-based version of the reacher experiment is
used, in which the reward function is given by

r(s,a) = exp

(︃
−2.5

√︂
(x− xg)2 + (y − yg)2

)︃
,

where s = (x ẋ y ẏ) is the position and velocity of the end-effector, a = (ax ay) the desired
displacement of the end-effector (just as in the regular reacher task from the OpenAI Gym
simulation environment) and xg and yg is the x− and y− position of the goal. When an
obstacle is touched, the agent is reset to the initial position. This setup led to the best
performance of ppo, while resembling the structure of the episodic learning task used

116

by the other algorithms (a version in which the episode ends as soon as an obstacle is
touched led to a lower performance of ppo).
To ensure that the poor performance of ppo is not caused by an inadequate choice of
hyperparameters, ppo was run on an easy version of the task in which the two obstacle
sizes were set to 0.01, where it encountered no problems in solving the task.
Every iteration of ppo uses 3600 environment steps, which corresponds to 24 trajectory
executions in the episodic setting. ppo uses an entropy coefficient of 10−3, γ = 0.999
and λ = 1. The neural network that learns the value function as well as the policy has
two dense hidden layers with 164 neurons and tanh activation functions. The number of
minibatches is set to 5 while the number of optimization epochs is set to 15. The standard
deviation in each action dimension is initialized to 1, giving the algorithm enough initial
variance, as the actions are clipped to the interval [−1, 1] before being applied to the robot.

Ball-in-a-Cup Experiment

For the ball-in-a-cup environment, the 9 basis functions of the ProMP are spread over the
interval [−0.01, 1.01] and have width L = 0.0035. Again, the time interval of the movement
is normalized to lie in the interval [0, 1] when computing the basis function activations.
The ProMP encodes the offset of the desired position from the initial position. By setting
the first and last two basis functions to 0 in each of the three dimensions, the movement
always starts in the initial position and returns to it after the movement execution. All in
all, θ is a 15-dimensional vector. The reward function is defined as

r(θ, c) =

{︄
1− 0.07θTθ , if successful
0 , else .

This encodes a preference over movements that deviate as little as possible from the initial
position while still solving the task.
Looking back at Table B.1, the value of ζ stands out, as it is significantly higher than in the
other experiments. We suppose that such a large value of ζ is needed because of the shape
of the reward function, which creates a large drop in reward if the policy is sub-optimal.
Because of this, the incentive required to encourage the algorithm to shift probability
mass towards contexts in which the current policy is sub-optimal needs to be significantly
higher than in the other experiments.
After learning the movements in simulation, the successful runs were executed on the real
robot. Due to simulation bias, just replaying the trajectories did not work satisfyingly. At
this stage, we could have increased the variance of the movement primitive and re-trained
on the real robot. As sim-to-real transfer is, however, not the focus of this chapter, we

117

Kα ζ Koffset VLB nstep σLB DKLLB

Point-Mass (trpo) 20 1.6 5 3.5 2048 [0.2 0.1875 0.1] 8000
Point-Mass (ppo) 10 1.6 5 3.5 2048 [0.2 0.1875 0.1] 8000
Point-Mass (sac) 25 1.1 5 3.5 2048 [0.2 0.1875 0.1] 8000
Ant (ppo) 15 1.6 10 600 81920 [1 0.5] 11000
Ball-Catching (trpo) 70 0.4 5 42.5 5000 - -
Ball-Catching* (trpo) 0 0.425 5 42.5 5000 - -
Ball-Catching (ppo) 50 0.45 5 42.5 5000 - -
Ball-Catching* (ppo) 0 0.45 5 42.5 5000 - -
Ball-Catching (sac) 60 0.6 5 25 5000 - -
Ball-Catching* (sac) 0 0.6 5 25 5000 - -

Table B.3.: Hyperparameters for the spdl algorithm per environment and RL algorithm.
The asterisks in the table mark the ball-catching experiments with an initialized context
distribution.

decided to manually adjust the execution speed of the movement primitive by a few
percent, which yielded the desired result.

B.4.2. Step-Based Setting

The parameters of spdl for different environments and RL algorithms are shown in Table
B.3. Opposed to the sketched algorithm in the main chapter, we specify the number
of steps nSTEP in the environment between context distribution updates instead of the
number of trajectory rollouts. The additional parameter KOFFSET describes the number
of RL algorithm iterations that take place before spdl is allowed the change the context
distribution. We used this in order to improve the estimate regarding task difficulty, as for
completely random policies, task difficulty is not as apparent as for slightly more structured
ones. This procedure corresponds to providing parameters of a minimally pre-trained
policy as θ0 in the algorithm sketched in the main chapter. We selected the best ζ for
every RL algorithm by a simple grid-search in an interval around a reasonably working
parameter that was found by simple trial and error. For the point-mass environment, we
only tuned the hyperparameters for spdl in the experiment with a three-dimensional
context space and reused them for the two-dimensional context space.
Since the step-based algorithm makes use of the value function estimated by the individual
RL algorithms, particular regularizations of RL algorithms can affect the curriculum. sac,
for example, estimates a “biased” value function due to the employed entropy regular-
ization. This bias caused problems for our algorithm when working with the α-heuristic

118

based on VLB. Because of this, we simply replace the value estimates for the contexts by
their sample return when working with sac and VLB. This is an easy way to obtain an un-
biased, yet noisier estimate of the value of a context. Furthermore, the general advantage
estimation (GAE) employed by trpo and ppo can introduce bias in the value function
estimates as well. For the ant environment, we realized that this bias is particularly large
due to the long time horizons. Consequently, we again made use of the sample returns to
estimate the value functions for the sampled contexts. In all other cases and environments,
we used the value functions estimated by the RL algorithms.
For alp-gmm we tuned the percentage of random samples drawn from the context space
pRAND, the number of policy rollouts between the update of the context distribution
nROLLOUT as well as the maximum buffer size of past trajectories to keep sBUFFER. For each
environment and algorithm, we did a grid-search over

(pRAND, nROLLOUT, sBUFFER) ∈ {0.1, 0.2, 0.3} × {25, 50, 100, 200} × {500, 1000, 2000}.

For goalgan we tuned the amount of random noise that is added on top of each sample
δNOISE, the number of policy rollouts between the update of the context distribution
nROLLOUT as well as the percentage of samples drawn from the success buffer pSUCCESS. For
each environment and algorithm, we did a grid-search over

(δNOISE, nROLLOUT, pSUCCESS) ∈ {0.025, 0.05, 0.1} × {25, 50, 100, 200} × {0.1, 0.2, 0.3}.

The results of the hyperparameter optimization for goalgan and alp-gmm are shown in
Table B.4.
Since for all environments, both initial- and target distribution are Gaussians with inde-
pendent noise in each dimension, we specify them in Table B.5 by providing their mean
µ and the vector of standard deviations for each dimension δ. When sampling from a
Gaussian, the resulting context is clipped to stay in the defined context space.
The experiments were conducted on a computer with an AMD Ryzen 9 3900X 12-Core
Processor, an Nvidia RTX 2080 graphics card and 64GB of RAM.

Point-Mass Environment

The state of this environment is comprised of the position and velocity of the point-mass
s = [x ẋ y ẏ]. The actions correspond to the force applied in x- and y-dimensiona = [Fx Fy].
The context encodes position and width of the gate as well as the dynamic friction coeffi-
cient of the ground onwhich the point-mass slides c=[pg wg µk]∈[−4, 4]×[0.5, 8]×[0, 4]⊂R3.

119

pRAND nROLLOUTAG sBUFFER δNOISE nROLLOUTGG pSUCCESS

Point-Mass 3D (trpo) 0.1 100 1000 0.05 200 0.2
Point-Mass 3D (ppo) 0.1 100 500 0.025 200 0.1
Point-Mass 3D (sac) 0.1 200 1000 0.1 100 0.1
Point-Mass 2D (trpo) 0.3 100 500 0.1 200 0.2
Point-Mass 2D (ppo) 0.2 100 500 0.1 200 0.3
Point-Mass 2D (sac) 0.2 200 1000 0.025 50 0.2
Ant (ppo) 0.1 50 500 0.05 125 0.2
Ball-Catching (trpo) 0.2 200 2000 0.1 200 0.3
Ball-Catching (ppo) 0.3 200 2000 0.1 200 0.3
Ball-Catching (sac) 0.3 200 1000 0.1 200 0.3

Table B.4.: Hyperparameters for the alp-gmm and goalgan algorithm per environment
and RL algorithm. The abbreviation AG is used for alp-gmm, while GG stands for goalgan.

The dynamics of the system are defined by⎛⎜⎜⎝
ẋ
ẍ
ẏ
ÿ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 1 0 0
0 −µk 0 0
0 0 0 1
0 0 0 −µk

⎞⎟⎟⎠ s+
⎛⎜⎜⎝
0 0
1 0
0 0
0 1

⎞⎟⎟⎠a.
The x- and y- position of the point-mass is enforced to stay within the space [−4, 4]×[−4, 4].
The gate is located at position [pg 0]. If the agent crosses the line y = 0, we check whether
its x-position is within the interval [pg − 0.5wg, pg + 0.5wg]. If this is not the case, we stop
the episode as the agent has crashed into the wall. Each episode is terminated after a
maximum of 100 steps. The reward function is given by

r(s,a) = exp (−0.6∥o− [x y]∥2) ,

where o=[0 −3], ∥ · ∥2 is the L2-Norm. The agent is always initialized at state s0=[0 0 3 0].

For all RL algorithms, we use a discount factor of γ = 0.95 and represent policy and value
function by networks using two hidden layers with 64 neurons and tanh activations. For
trpo and ppo, we take 2048 steps in the environment between policy updates.
For trpo we set the GAE parameter λ = 0.99, leaving all other parameters to their
implementation defaults.
For ppo we use GAE parameter λ = 0.99, an entropy coefficient of 0 and disable the

120

µinit δinit µtarget δtarget

Point-Mass [0 4.25 2] [2 1.875 1] [2.5 0.5 0] [0.004 0.00375 0.002]
Ant [0 8] [3.2 1.6] [−8 3] [0.01 0.005]
Ball-Catching [0.68 0.9 0.85] [0.03 0.03 0.3] [1.06 0.85 2.375] [0.8 0.38 1]

Table B.5.: Mean and standard deviation of target and initial distributions per environment.

clipping of the value function objective. The number of optimization epochs is set to 8 and
we use 32 mini-batches. All other parameters are left to their implementation defaults.
For sac, we use an experience-buffer of 10000 samples, starting learning after 500 steps.
We use the soft Q-Updates and update the policy every 5 environment steps. All other
parameters were left at their implementation defaults.
For sprl, we use Kα = 40, KOFFSET = 0, ζ = 2.0 for the 3D- and ζ = 1.5 and 2D case. We
use the same values for σLB and DKLLB as for spdl (Table B.3). Between updates of the
episodic policy, we do 25 policy rollouts and keep a buffer containing rollouts from the
past 10 iterations, resulting in 250 samples for policy- and context distribution update.
The linear policy over network weights is initialized to a zero-mean Gaussian with unit
variance. We use polynomial features up to degree two to approximate the value function.
For the allowed KL divergence, we observed best results when using ϵ = 0.5 for the weight
computation of the samples, but using a lower value of ϵ = 0.2 when fitting the parametric
policy to these samples. We suppose that the higher value of ϵ during weight computation
counteracts the effect of the buffer containing policy samples from earlier iterations.
Looking at Figure B.2, we can see that depending on the learning algorithm, alp-gmm,
goalgan, and a random curriculum allowed to learn policies that sometimes are able to
pass the gate. However, in other cases, the policies crashed the point-mass into the wall.
Opposed to this, directly training on the target task led to policies that learned to steer
the point-mass very close to the wall without crashing (which is unfortunately hard to see
in the plot). Reinvestigating the above reward function, this explains the lower reward of
goalgan compared to directly learning on the target task, as a crash prevents the agent
from accumulating positive rewards over time. spdl learned more reliable and directed
policies across all learning algorithms.

Ant Environment

As mentioned in the main chapter, we simulate the ant using the Isaac Gym simulator
[151]. This allows to speed up training time by parallelizing the simulation of policy
rollouts on the graphics card. Since the Stable-Baselines implementation of trpo and sac

121

(a) Default (b) Random (c) alp-gmm (d) goalgan (e) spdl

(f) Default (g) Random (h) alp-gmm (i) goalgan (j) spdl

(k) Default (l) Random (m) alp-gmm (n) goalgan (o) spdl

Figure B.2.: Visualizations of policy rollouts in the point-mass environment (three context
dimensions) with policies learned using different curricula and RL algorithms. Each rollout
was generated using a policy learned with a different seed. The first row shows results for
trpo, the second for ppo and the third shows results for sac.

do not support the use of vectorized environments, it is hard to combine Isaac Gym with
these algorithms. Because of this reason, we decided not to run experiments with trpo
and sac in the ant environment.
The state s ∈ R29 is defined to be the 3D-position of the ant’s body, its angular and linear
velocity as well as positions and velocities of the 8 joints of the ant. An action a ∈ R8 is
defined by the 8 torques that are applied to the ant’s joints.
The context c = [pg wg] ∈ [−10, 10] × [3, 13] ⊂ R2 defines, just as in the point-mass
environment, the position and width of the gate that the ant needs to pass.
The reward function of the environment is computed based on the x-position of the ant’s

122

center of mass cx in the following way

r(s,a) = 1 + 5 exp
(︁
−0.5min(0, cx − 4.5)2

)︁
− 0.3∥a∥22.

The constant 1 term was taken from the OpenAI Gym implementation to encourage the
survival of the ant [27]. Compared to the OpenAI Gym environment, we set the armature
value of the joints from 1 to 0 and also decrease the maximum torque from 150Nm to
20Nm, since the values from OpenAI Gym resulted in unrealistic movement behavior in
combination with Isaac Gym. Nonetheless, these changes did not result in a qualitative
change in the algorithm performances.
With the wall being located at position x=3, the agent needs to pass it in order to obtain
the full environment reward by ensuring that cx >= 4.5.
The policy and value function are represented by neural networks with two hidden layers
of 64 neurons each and tanh activation functions. We use a discount factor γ = 0.995 for
all algorithms, which can be explained due to the long time horizons of 750 steps. We take

0 500
Timestep

0

5

Po
si

tio
n

(a) Default

0 500
Timestep

0

5

Po
si

tio
n

(b) Random

0 500
Timestep

0

5
Po

si
tio

n

(c) alp-gmm

0 500
Timestep

0

5

Po
si

tio
n

(d) goalgan

0 500
Timestep

0

5

Po
si

tio
n

(e) spdl

Figure B.3.: Visualizations of the x-position during policy rollouts in the ant environment
with policies learned using different curricula. The blue lines correspond to 200 individual
trajectories and the thick black line shows the median over these individual trajectories.
The trajectories were generated from 20 algorithms runs, were each final policy was used
to generate 10 trajectories.

123

81920 steps in the environment between a policy update. This was significantly sped-up
by the use of the Isaac Gym simulator, which allowed to simulate 40 environments in
parallel on a single GPU.
For ppo, we use an entropy coefficient of 0 and disable the clipping of the value function
objective. All other parameters are left to their implementation defaults. We disable the
entropy coefficient as we observed that for the ant environment, ppo still tends to keep
around 10− 15% of its initial additive noise even during late iterations.
Investigating Figure B.3, we see that both spdl and goalgan learn policies that allow to
pass the gate. However, the policies learned with spdl seem to be more reliable compared
to the ones learned with goalgan. As mentioned in the main chapter, alp-gmm and a
random curriculum also learn policies that navigate the ant towards the goal in order
to pass it. However, the behavior is less directed and less reliable. Interestingly, directly
learning on the target task results in a policy that tends to not move in order to avoid
action penalties. Looking at the main chapter, we see that this results in a similar reward
compared to the inefficient policies learned with alp-gmm and a random curriculum.

Ball-Catching Environment

In the final environment, the robot is controlled in joint space via the desired position for
5 of the 7 joints. We only control a subspace of all available joints, since it is not necessary
for the robot to leave the ”catching” plane (defined by x = 0) that is intersected by each
ball. The actions a ∈ R5 are defined as the displacement of the current desired joint
position. The state s ∈ R21 consists of the positions and velocities of the controlled joints,
their current desired positions, the current three-dimensional ball position and its linear
velocity.
As previously mentioned, the reward function is sparse,

r(s,a) = 0.275− 0.005∥a∥22 +
{︄
50 + 25(ns · vb)5, if ball catched
0, else ,

only giving a meaningful reward when catching the ball and otherwise just a slight penalty
on the actions to avoid unnecessary movements. In the above definition, ns is a normal
vector of the end effector surface and vb is the linear velocity of the ball. This additional
term is used to encourage the robot to align its end effector with the curve of the ball. If
the end effector is e.g. a net (as assumed for our experiment), the normal is chosen such
that aligning it with the ball maximizes the opening through which the ball can enter the
net.
The context c = [ϕ, r, dx] ∈ [0.125π, 0.5π] × [0.6, 1.1] × [0.75, 4] ⊂ R3 controls the target

124

ball position in the catching plane, i.e.

pdes = [0 −r cos(ϕ) 0.75 + r sin(ϕ)].

Furthermore, the context determines the distance in x-dimension from which the ball is
thrown

pinit = [dx dy dz],

where dy ∼ U(−0.75,−0.65) and dz ∼ U(0.8, 1.8) and U represents the uniform distri-
bution. The initial velocity is then computed using simple projectile motion formulas
by requiring the ball to reach pdes at time t = 0.5 + 0.05dx. As we can see, the context
implicitly controls the initial state of the environment.
The policy and value function networks for the RL algorithms have three hidden layers
with 64 neurons each and tanh activation functions. We use a discount factor of γ = 0.995.
The policy updates in trpo and ppo are done after 5000 environment steps.
For sac, a replay buffer size of 100, 000 is used. Due to the sparsity of the reward, we
increase the batch size to 512. Learning with sac starts after 1000 environment steps. All
other parameters are left to their implementation defaults.
For trpo we set the GAE parameter λ = 0.95, leaving all other parameters to their imple-
mentation defaults.
For ppo we use a GAE parameter λ = 0.95, 10 optimization epochs, 25 mini-batches per
epoch, an entropy coefficient of 0 and disable the clipping of the value function objective.
The remaining parameters are left to their implementation defaults.
Figure B.4 visualizes the catching success rates of the learned policies. As can be seen,
the performance of the policies learned with the different RL algorithms achieve compara-
ble catching performance. Interestingly, sac performs comparable in terms of catching
performance, although the average reward of the final policies learned with sac is lower.
This is to be credited to excessive movement and/or bad alignment of the end effector
with the velocity vector of the ball.

125

Default Default* GoalGAN* Goal GAN ALP-GMM SPDL* SPDL
0.00

0.25

0.50

0.75
C

at
ch

in
g

R
at

e

(a) sac

Default Default* GoalGAN* Goal GAN ALP-GMM SPDL* SPDL
0.00

0.25

0.50

0.75

C
at

ch
in

g
R

at
e

(b) trpo

Default Default* GoalGAN* Goal GAN ALP-GMM SPDL* SPDL
0.00

0.25

0.50

0.75

C
at

ch
in

g
R

at
e

(c) ppo

Figure B.4.: Mean catching rate of the final policies learned with different curricula and
RL algorithms on the ball catching environment. The mean is computed from 20 algorithm
runs with different seeds. For each run, the success rate is computed from 200 ball-throws.
The bars visualize the estimated standard error.

126

C. Appendix to Chapter 3

C.1. Computational Cost of Optimal Transport

The benefits of optimal transport (OT), such as explicitly incorporating a ground distance
on the sample space, come at the price of a relatively high computational burden caused
by the need to solve an optimization problem to compute the Wasserstein distance be-
tween two distributions. In practice, OT problems in continuous spaces (such as some of
the context spaces investigated in this chapter) are often reduced to linear assignment
problems between sets of particles. Such assignment problems can be exactly solved
with variations of the Hungarian algorithm with a time complexity of O(n3) [84]. While
this polynomial complexity ultimately leads to prohibitive runtimes for large n, we can
typically avoid this problem for curriculum RL. Given the often moderate dimensionality of
the chosen context spaces, a few hundred particles are typically sufficient to represent the
context distributions. In our experiments, we used less than 500 particles in the continuous
environments and 640 particles for the discrete unlock-pickup environment, leading to
observed solving times of less than 200ms with the linear_sum_assignment function
of the SciPy library [204] on an AMD Ryzen 9 3900X. Since the currot and gradient
algorithms solve, at most, three OT problems per context distribution update, the compu-
tational costs of OT are relatively small for the investigated environments.
Furthermore, approximations have emerged to tackle problems that require a large number
of particles. For example, the GeomLoss library [53], which we use in the gradient imple-
mentations for continuous Euclidean spaces, implements a variant of entropy-regularized
OT that has brought down the computation time of OT for sets of hundreds of thousands
of samples to seconds on high-end GPUs [54]. So-called sliced Wasserstein distances [25,
102] approximately solve the given OT problem by solvingM OT problems in 1-D sub-
spaces, reducing the time complexity to O(Mn log(n)), where typicallyM ≪ n. Finally,
neural function approximators have been employed e.g. to speed up the computation
of Wasserstein distances by learning a metric embedding from data [38] or enable to
computation of regularized free-support Wasserstein barycenters by approximating the
dual potentials [112]. Consequently, we see opportunities to significantly increase the
number of particles via such approximate approaches.

127

C.2. CURROT Search for Feasible Contexts

As detailed in Section 3.5, the initial context distribution p0(c) may be uninformed and
consequently lead to sampling many learning tasks for which the agent performance
is below δ. In such scenarios, we initiate a search procedure for tasks in which the
current agent achieves a performance at least δ of as long as R̄ = 1

M

∑︁M
m=1Rm < δ. We

terminate this search procedure as soon as R̄ ≥ δ. During this search, D+ contains the
best-encountered samples, and D− is empty. When a batch ofM new episodes arrives,
we add those episodes whose return is at least as large as the median return in D+ to
the buffer – and for each new episode added, remove the worst performing episode. The
search distribution is a (truncated) Gaussian mixture model

psearch(c) =
ND∑︂
i=1

wiN
(︁
c
⃓⃓
ci, σ

2
i I
)︁

with weights wi and variances σ2
i defined via the minimum return observed over all

episodes Rmin and the median performance of the buffered episodes Rmed

wi ∝ max(0, Rci −Rmed), σi = max

(︃
10−3, 2

δ −Rci

δ −Rmin

)︃
.

For simplicity of exposition, we assume that C = [0, 1]d, i.e., that the context space is a
d-dimensional hyper-cube of edge-length one. Consequently, a context c with a return
of Rmin will have a standard deviation of two in each dimension, which, in combination
with the Gaussian being truncated, leads to spread-out sampling across the hyper-cube. If
the dimensions of C are scaled differently, a simple re-scaling is sufficient to use the above
sampling procedure. Note that we only required the search procedure in the point-mass
and teach my agent environments, as in the other environments p0(c) provided enough
successful initial episodes. For discrete context spaces, the search distribution would need
to be adapted, e.g., by defining a uniform distribution over all contexts c with a distance
d(c, ci) less that or equal to a threshold that is similarly scaled as the variance σ2

i .

C.3. Experimental Details

This section discusses hyperparameters and additional details of the conducted exper-
iments that could not be provided in the main text due to space limitations. For all
experiments except the teach my agent benchmark, we used RL algorithms from the
Stable Baselines 3 library [73]. For teach my agent, we use the sac implementation
provided with the benchmark.

128

sprl currot gradient
Env. δ ϵ σlb DKLlb δ ϵ δ ϵ

Sparse Goal-Reaching 0.6 .25 - - 0.8 1.2 0.6 0.05
Point Mass 4 .25 [.2 .1875] 8000 4 0.7 3.0 0.2
Unlock-Pickup - - - - 0.6 3 0.6 0.05
Teach My Agent - - - - 180 0.5|0.4 180 0.05

Table C.1.: Hyperparameters of sprl, currot, and gradient in the different learning
environments. The ϵ parameter of currot is computed according to the procedure
described in appendix C.3. We do not provide teach my agent parameters for sprl as we
rely on the results reported by [171]. We also do not evaluate sprl in the unlock-pickup
environment since sprl is designed for continuous context spaces.

C.3.1. Algorithm Hyperparameters

The main parameters of sprl, currot, and gradient all factor into one parameter δ
corresponding to the performance constraint and one parameter ϵ controlling the interpo-
lation speed. We did not perform an extensive hyperparameter search for these parameters
but used their interpretability to select appropriate parameter regions to search in. The

alp-gmm goalgan
Env. prand nrollout sbuffer δnoise nrollout psuccess

Sparse Goal-Reaching .2 200 500 .1 200 .2
Point Mass .1 100 500 .1 200 .2
Unlock-Pickup - - - - - -

plr vds acl
Env. ρ β p lr nep nbatch η ϵ

Sparse Goal-Reaching .45 .15 .55 5×10−4 10 80 0.05 0.2
Point Mass .15 .45 .85 10−3 3 20 0.025 0.2
Unlock-Pickup .45 .45 .55 10−3 5 20 0.025 0.1

Table C.2.: Hyperparameters of the investigated baseline algorithms in the different
learning environments, as described in Appendix C.3.

129

performance parameter δ was chosen by evaluating values around 50% of the maximum
reward. This approach resulted in a search over δ ∈ {3, 4, 5} for the point-mass environ-
ment and δ ∈ {0.4, 0.6, 0.8} for the sparse goal-reaching and unlock-pickup environment.
For the teach my agent experiments, we evaluated δ ∈ {140, 160, 180} for currot and
gradient. We did not evaluate sprl in the teach my agent experiment since we took
the results from Romac et al. [171]. We evaluated gradient for ϵ ∈ [0.05, 0.1, 0.2]. For
sprl, we initialized ϵ with a value of 0.05 used in the initial experiments in Chpater 2.
However, we realized that larger values slightly improved performance. For currot, the
value of ϵ depends on the magnitude of the distances d and hence changes per experiment.
For currot, the parameter ϵ is seto to around 5% of the maximum distance between
any two points in the context space, also evaluating a slightly larger and smaller value.
When targeting narrow target distributions, we introduced a lower bound on the standard
deviation σlb of the context distribution of sprl in Chapter 2. This lower bound needs to
be respected until the KL divergence w.r.t. µ(c) falls below a threshold DKL, as otherwise,
the variance of the context distribution may collapse too early, causing the KL divergence
constraint on subsequent distributions to only allow for minimal changes to the context
distribution. This detail again highlights the benefit of Wasserstein distances, as they are
not subject to such subtleties due to their reliance on a chosen metric. Table C.1 shows
the parameters of currot, gradient, and sprl for the different environments.
For alp-gmm, the relevant hyperparameters are the percentage of random samples drawn
from the context space prand, the number of completed learning episodes between the
update of the context distribution nrollout, and the maximum buffer size of past trajec-
tories to keep sbuffer. Similar as in Chapter 2, we chose them by a grid-search over
(prand, nrollout, sbuffer) ∈ {0.1, 0.2, 0.3} × {50, 100, 200} × {500, 1000, 2000}.
For goalgan, we tuned the amount of random noise that is added on top of each sample
δnoise, the number of policy rollouts between the update of the context distribution nrollout
as well as the percentage of samples drawn from the success buffer psuccess via a grid
search over (δnoise, nrollout, psuccess) ∈ {0.025, 0.05, 0.1} × {50, 100, 200} × {0.1, 0.2, 0.3}.
For acl, the continuous context spaces of the environments need to be discretized, as the
algorithm is formulated as a bandit problem. The Exp3.S bandit algorithm that ultimately
realizes the curriculum requires two hyperparameters to be chosen: the scale factor for
updating the arm probabilities η and the ϵ parameter of the ϵ-greedy exploration strategy.
We combine acl with the absolute learning progress (ALP) metric also used in alp-gmm
and conducted a hyperparameter search over (η, ϵ) ∈ {0.05, 0.1, 0.2} × {0.01, 0.025, 0.05}.
Hence, contrasting acl and alp-gmm sheds light on the importance of exploiting the
continuity of the context space. For acl, the absolute learning progress in a context c can
be estimated by keeping track of the last reward obtained in the bin of c (note that we
discretize the context space) and then computing the absolute difference between the

130

return obtained from the current policy execution and the stored last reward. We had
numerical issues when implementing the acl algorithm by Graves et al. [64] due to the
normalization of the ALPs via quantiles. Consequently, we normalized via the maximum
and minimum ALP seen over the entire history of tasks.
For plr, the staleness coefficient ρ, the score temperature β, and the replay probability p
need to be chosen. We did a grid search over (ρ, β, p) ∈ {0.15, 0.3, 0.45}×{0.15, 0.3, 0.45}×
{0.55, 0.7, 0.85} and chose the best configuration for each environment.
For vds, the parameters for the training of the Q-function ensemble, i.e., the learning rate
lr, the number of epochs nep and the number of mini-batches nbatch, need to be chosen.
Just as for plr, we conducted a grid search over (lr, nep, nbatch) ∈ {10−4, 5×10−4, 10−3} ×
{3, 5, 10} × {20, 40, 80}. The parameters of all employed baselines are given in Table C.2.
We now continue with the description of experimental details for each environment.

C.3.2. E-Maze Environment

The xy-coordinates of the representatives
r(c)=[x, y, z]T ∈ R3

of a context c form a grid on [−1, 1]× [−1, 1] and, as mentioned in the main chapter,
z=200 for walls and z=0 for all other cells. The four actions {up,down, left, right} lead
to a transition to the corresponding neighboring cell with a probability of 0.9, if the
neighboring cell has the same height, and 0 if not. Upon reaching the desired state
(controlled by the context c), the agent observes a reward of value one, and the episode
terminates. In this environment, we use ppo with λ = 0.99 and all other parameters left to
the implementation defaults of the Stable Baselines 3 library. For solving objectives
(3.5) and (3.6), we make use of the linprog function from the SciPy library [204].
Current Agent Performance as a Distance: In the main text, we have investigated the
pseudo-distance

dP∗(c1, c2) = |J(π∗, c1)− J(π∗, c2)| (C.1)
that defines the similarity of contexts based on the absolute performance difference of the
optimal policy in the contexts c1 and c2. While dP∗ only performed slightly worse than the
more informed distance dS for gradient, it could only provide meaningful performance
for currot if combined with entropy regularization. However, Huang et al. [76] also
investigated a pseudo-distance function that computes the similarity of two contexts based
on the current policy π

dP(c1, c2) = |J(π, c1)− J(π, c2)|, (C.2)

131

leading to a distance function that changes in each iteration. As we show in Figure C.1b,
this distance, while still leading to slower learning for currot compared to dS, leads
to stable learning across different levels of entropy regularization without any prior en-
vironment knowledge. Figure C.1a shows multiple curricula that have been generated
by currot and gradient. Particularly for currot, we can see fairly diverse curricula,
which sometimes target all three corridors at once (top middle) and sometimes even
back track out of the right-most corridor into the remaining two (top right). We see
the good performance and the diverse behavior as indicators for the potential of general
purpose distance metrics that encode some form of implicit exploration, calling for future
investigations to better understand their mechanics. Furthermore, computational aspects
arise with the use of such metrics, since for the case of dP, robust and efficient versions for
estimating J(π, c) need to be devised.
Entropy-Regularized currot and gradient: As discussed in Section 3.6.1, we bench-
mark versions of gradient and currot in which we introduce different forms of entropy
regularization. For gradient, we recreate the implementation by Huang et al. [76] by
using optimal transport formulations that regularize the entropy of the transport plan ϕ
[19, 39]

Wp,λ(p1, p2)=

(︃
inf

ϕ∈Φ(p1,p2)
Eϕ [d(c1, c2)

p]− λH(ϕ)

)︃1/p

, (C.3)

with the constraint set Φ(p1, p2) defined as in Section 1.3 and the entropy H(p) of a
distribution p over a sample space X defined as H(p) = −

∫︁
x∈X p(x) log(p(x)). Note that

Huang et al. [76] chose these formulations for computational speed rather than curriculum
performance. This formulation allows for a straightforward adaptation of the gradient
objective to incorporate entropy-regularization

max
α∈[0,1]

α s.t. J(π, pα,λ) ≥ δ (C.4)

pα,λ(c) = argmin
p

αW2,λ(p, µ) + (1− α)W2,λ(p, p0). (C.5)

For the currot algorithm, we choose a more direct form of regularization and directly
constrain the entropy of the interpolating distribution p

min
p
W2(p, µ) (C.6)

s.t. p(V(π, δ)) = 1 H(p) ≥ HLB.

The above entropy regularized objectives are not linear programs anymore, and we hence
solve the (convex) objectives with the CVXPY library [46].

132

currot(dP) currot(dP) currot(dP)

gradient(dP)gradient(dP)gradient(dP)

(a) Curricula for Distance dP

0 50K 100K 150K 200K

Step

0.0

0.2

0.4

0.6

E
p

is
o
d

ic
R

et
u

rn

currot(dP, HLB=0)

currot(dP, HLB=0.5)

gradient(dP, ε=0)

gradient(dP, ε=10−8)

(b) Performance of Curricula using dP

Figure C.1.: a) Interpolations generated by currot and gradient in different runs for the
current performance-based distance dP(c1, c2). Brighter colors indicate later iterations. b)
Expected return on the target task distribution µ(c) in the E-Maze environment achieved by
currot and gradient under varying entropy regularizations for the current performance-
based distance dP. The shaded area corresponds to two times the standard error (computed
from 20 seeds). The red dotted line represents the maximum possible reward achievable
on µ(c).

C.3.3. Unlock-Pickup Environment

We use the Unlock-Pickup environment from the Minigrid library [33]. We do not change
the behavior of the environment and only remove the additional discounting that occurs
within the environment, as the environment does not reveal the current timestep to the
agent, which, combined with an internally discounted reward, leads to non-Markovian
behavior. As stated in the main chapter, the context c controls the initial state of the
environment by specifying the position of the agent, key, and box as well as the position
and state of the door (i.e., open or closed). We use the dqn algorithm since the extremely
sparse nature of the environment favors RL algorithms with a replay buffer. Compared to
the default parameters of the dqn algorithm, we only increase the exploration rate from
0.05 to 0.1 and also increase the batch size to 256. We train the Q-network every fourth
step, updating the target network with a Polyak update with τ = 0.005 in each step.
The Q-network is realized by encoding the image observation with a convolutional neural
network with three convolutions of kernel size (2, 2), ReLU activations after each convo-
lution, and a max-pool operation with kernel size (2, 2) after the first convolution and
ReLU operation. We do not use information about the agent orientation or the textual
task description, as both are not strictly necessary for our environment. The convolutional

133

network has 32-dimensional hidden layers. The output of the convolutional encoder is
64-dimensional, which is then further processed by two fully connected layers with 64
dimensions and ReLU activations before being reduced to the Q-values for the seven
actions available in the environment.
As briefly mentioned in the main chapter, the target distribution µ(c) is a uniform distri-
bution over all those contexts in which the agent is in the left room with a closed door
and does not hold the key. The initial state distribution contains one context for each box
position in the right room in which the agent is positioned directly next to the box.
Distance Function As discussed in Section 3.6.2, a context c controls the starting state of
the environment, which is defined by

• the agent position ap : C ↦→ [1, 9]× [1, 4]

• the key position kp : C ↦→ [1, 9]× [1, 4]

• the box position bp : C ↦→ [6, 9]× [1, 4]

• the position of the door in the wall dp : C ↦→ [1, 4]

• the state of the door ds : C ↦→ {open, closed}.

The images of the individual functions that access the state information of a context
are motivated by the two rooms R1 = [1, 4] × [1, 4] and R2 = [6, 9] × [1, 4] that make
up the environment. Consequently, the agent and the key can be placed in both rooms,
whereas the box can only be placed in R2. The wall that separates the rooms occupies
tiles inW (c) = {(5, y) | y∈[1, 4], y ̸=dp(c)}. Due to this wall, we restrict the context space
C such that it does not contain contexts in which the agent or key is located in the wall,
i.e., ap(c) /∈ W (c) and kp(c) /∈ W (c). Additionally, we only allow placing the agent
and key in R2 if the door is open. Formally, this requires ap(c)≥4 ⇒ ds(c)=open and
kp(c)≥4⇒ ds(c)=open. Finally, neither key nor agent can be at the same position as the
box, i.e., ap(c) ̸= bp(c) and kp(c) ̸= bp(c). With these restrictions, we arrive at the 81.920
individual contexts mentioned in Section 3.6.2.
Note that the distance function between contexts reasons both about state changes that
can be achieved in an episode, such as moving between agent positions, and ones that
can’t, such as moving the box. Moving boxes is impossible since the episode terminates
successfully when the agent picks up the box. Hence, a distance function that is purely
based on state transitions would neglect certain similarities between contexts in this
environment.

134

We define the distance function dbase(c1, c2) function via representatives r(c), i.e.

d(c1, c2)=

⎧⎪⎨⎪⎩
dbase(c1, r(c1))+dbase(r(c1), r(c2))

+dbase(r(c2), c2), if ds(c1) ̸=ds(c2)
dbase(c1, c2), else.

(C.7)

Such distances are also known as highway distances [13]. The mapping r : C ↦→ C from a
context c to its representative r(c) ensures that the agent is standing right in front of the
open door with the key in its hand, i.e., ds(r(c))=open, and ap(r(c))=kp(r(c))=[4,dp(c)],
while ensuring that dp(r(c))=dp(c) and bp(r(c))=bp(c).
The base distance dbase(c1, c2) encodes the cost of moving both key and agent from their
positions in c1 to those in c2 (via dka) as well as the cost of equalizing the box positions
between the contexts (via the L1 distance)

dbase(c1, c2) =

⎧⎪⎨⎪⎩
dka(c1, c2) + ∥bp(c1)− bp(c2)∥1,
if dp(c1)=dp(c2)
∞, else.

(C.8)

We see that we render contexts with different door positions incomparable to ease the
definition of the distance function. The key-agent distance is defined on top of an object
distance dobj,dp that is conditioned on a door position dp

dka(c1, c2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dobj,dp(c1)(ap(c1), ap(c2)), if kp(c1)=kp(c2)
dobj,dp(c1)(ap(c1), kp(c1))

+dobj,dp(c1)(kp(c1), kp(c2))
+dobj,dp(c1)(ap(c2), kp(c2)), else.

(C.9)

Note that we can simply take dp(c1) since we know that dp(c1)=dp(c2). The object distance
is defined as the L1 distance between the two objects if they are in the same room and
incorporates the detour caused by passing through the door in the wall if not

dobj,dp(p1,p2) =

{︄
∥p1 − p2∥1, if p1,0≤4⇔ p2,0≤4
∥p1 − [5,dp]∥1 + ∥[5,dp]− p2∥1, else.

(C.10)

We ensured that the resulting distance d(c1, c2) fulfills all axioms of a valid distance
function, i.e. d(c1, c2) ≥ 0, d(c1, c2)=0 ⇔ c1=c2, d(c1, c2) = d(c2, c1), and d(c1, c3) ≤
d(c1, c2)+d(c2, c3) via brute-force computations. Note that the in-comparability of contexts
with different door positions effectively splits the context space into four disjoint sets (for
the four different door positions) that cannot be compared. Hence, we must only ensure
these axioms within the four disjoint sets separately.

135

0.00

0.05

0.10

0.15

0.20

0.25

0.30
F

ra
ct

io
n
µ

(c
)>

0

0

5

10

15

#
V

is
it

ed
C

o
n
te

x
ts

×103

Training Progress
0.0

0.2

0.4

0.6

0.8

1.0

E
p

.
R

et
.

o
n
p
(c

)

Training Progress
0.0

0.2

0.4

0.6

0.8

1.0

E
p

.
R

et
.

o
n
µ

(c
)>

0

(a) plr Statistics 1

0.35

0.40

0.45

0.50

0.55

0.60

F
ra

ct
io

n
L

ef
t

R
o
o
m

Training Progress

0.10

0.15

0.20

0.25

0.30

F
ra

ct
io

n
D

o
o
r

C
lo

se
d

(b) plr Statistics 2

Figure C.2.: (a) Statistics of the plr curricula in the unlock-pickup environment over
training progress. Top left: Fraction of contexts sampled by plr that are also sampled by
the target context distribution µ(c). The red dashed line indicates the fraction of target
samples generated by a random curriculum. Top right: Number of unique contexts (solid
lines), unique target contexts (dashed lines), and unique solved target contexts (dotted
lines) sampled by plr at least once. Bottom left: Performance on the plr curriculum.
Bottom right: Performance in those contexts of the curriculum, which are also sampled
by the target context distribution µ(c) (i.e., on the fraction indicated in the top left). (b)
Fraction of contexts in the plr curricula in which the agent is placed in the left room
(left) and in which the door is closed (right) at the start of the episode. A closed door
implies that the agent is located in the left room, hence a more strict condition. The color
again indicates runs with high- (orange) and low performance (blue) on p(c).

PLR Performance: As mentioned in Section 3.6.2, Figure C.2a shows statistics of the plr
curricula. We can see that throughout most plr curricula, the chance of sampling a target
context stays relatively constant, even though the number of distinct sampled contexts
and the number of distinct sampled target contexts continuously grows. We also see that
the agent receives a positive learning signal on p(c) in all runs of plr. Additionally, we
see that the prioritization by plr suppresses contexts from µ(c) since a purely random

136

(a) Default (b) Random (c) sprl (d) currot (e) gradient

(f) alp-gmm (g) goalgan (h) acl (i) plr (j) vds

Figure C.3.: Final trajectories generated by the different investigated curricula in the point
mass environment. The color encodes the context: Blue represents gates positioned at the
left and red at the right.

curriculum would sample a target context 18.75% of the time. In about half of the runs
(orange lines), the agent learned to solve some of the target tasks, although this fraction
is rather low (there are 15.360 target tasks). Interestingly, this increase in proficiency on
tasks from µ(c) does not go hand-in-hand with a consistently increased sampling rate of
target tasks. However, as we see in Figure C.2b there seems to be a tendency of plr runs
that are more successful on µ(c) to sample more contexts in which the agent is located in
the left room at the beginning of the episode. Generally speaking, Figures C.2a and C.2b
show that plr prioritized specific contexts over others. However, either due to the missing
notion of a target distribution or the dependence of plr on the agent’s internal value
function (which may be biased and incorrect), the generated curricula did not consistently
progress to the most challenging, long-sequence tasks encoded by µ(c).

C.3.4. Point-Mass Environment

The environment setup is the same as the one investigated in Chapter 2 with the only
difference in the target context distributions, which is now defined as a Gaussian mixture

µ(c) =
1

2
N
(︁
c1, 10

−4I
)︁
+

1

2
N
(︁
c2, 10

−4I
)︁

c1 = [−3 0.5]T , c2 = [3 0.5]T .

137

In this environment, we use ppo with 4.096 steps per policy update, a batch size of 128,
and λ=0.99. All other parameters are left to the implementation defaults of the Stable
Baselines 3 implementation.
Figure C.3 shows trajectories generated by agents trained with different curricula in the
point-mass environment. We see that directly learning on the two target tasks (Default)
prevents the agent from finding the gates in the wall to pass through. Consequently, the
agent minimizes the distance to the goal by moving right in front of the wall (but not
crashing into it) to accumulate reward over time. We see that random learning indeed
generates meaningful behavior. This behavior is, however, not precise enough to pass
reliably through the wall. As mentioned in the main chapter, sprl only learns to pass
through one of the gates, as its uni-modal Gaussian distribution can only encode one
of the modes of µ(c) (see Figure C.4 for a visualization). currot and gradient learn
policies that can pass through both gates reliably, showing that the gradual interpolation
towards both target tasks allowed the agent to learn both. alp-gmm and plr also learn
good policies. The generated trajectories are, however, not as precise as the ones learned
with currot and gradient and sometimes only solve one of the two tasks reliably. acl,
goalgan, and vds partly create meaningful behavior. However, this behavior is unreliable,

0.05

2

4

6

8

≥10

(a) sprl Curriculum (SGR)

0 1M 2M 3M 4M

Step

101

102

S
ta

n
d

a
rd

D
ev

ia
ti

o
n x-Position y-Position Tolerance

(b) sprl Sampling Distribution Stds.
(SGR)

−3 3 wg

4

pg

(c) sprl Curriculum (Point
Mass)

Figure C.4.: a) Visualization of the sampling distribution of sprl in the sparse goal-
reaching (SGR) task. The color of the dots encodes the tolerance of the corresponding
contexts, and the position represents the goal to be reached under that tolerance. The
walls are shown in black, and the red area visualizes the starting area of the agent. b)
10-, 50- and 90-percentile of the standard deviation of sprl’s sampling distribution on the
sparse goal-reaching task. The statistics have been computed from 20 seeds. c) Sampling
distribution of sprl in the point mass environment for a given seed. The color indicates
the iteration, where brighter colors correspond to later iterations.

138

leading to low returns due to the agent frequently crashing into the wall.

C.3.5. Sparse Goal-Reaching Environment

For the sparse goal-reaching task, the goal can be chosen within [−9, 9] × [−9, 9], and
the allowed tolerance can be chosen from [0.05, 18]. Hence, the context space is a three-
dimensional cube C = [−9, 9]×[−9, 9]×[0.05, 18]. The actually reachable space of positions
(and with that goals) is a subset of [−7, 7]× [−7, 7] due to the “hole” caused by the inner
walls of the environment. The target context distribution is a uniform distribution over
tasks with a tolerance of 0.05

µ(c) ∝
{︄
1, if c3 = 0.05,

0, else.

The state s of the environment is given by the agent’s x- and y-position. The reward is
sparse, only rewarding the agent if the goal is reached. A goal is considered reached if
the Euclidean distance between the goal and position of the point mass falls below the
tolerance

∥s− [c1 c2]
T ∥2 ≤ c3.

The two-dimensional action of the agent corresponds to its displacement in the x− and
y− direction. The action is clipped such that the Euclidean displacement per step is no
larger than 0.3.
Given the sparse reward of the task, we again use an RL algorithm that utilizes a replay
buffer. Since the actions are continuous in this environment, we use sac instead of dqn.
Compared to the default algorithm parameters of Stable Baselines 3, we only
changed the policy update frequency to 5 environment steps, increased the batch size to
512, and reduced the buffer size to 200.000 steps.
Figure C.4 visualizes the behavior of sprl in the sparse goal-reaching (SGR).We see that for
the SGR environment, sprl increases the variance of the Gaussian context distribution to
assign probability density to the target contexts while fulfilling the expected performance
constraint by encoding trivial tasks with high tolerance (Figures C.4a and C.4b). The
inferior performance of an agent trained with sprl compared to one trained with a random
curriculum shows that the Gaussian approximation to a uniform distribution is a poor
choice for this environment. While it may be possible to find other parametric distributions
that are better suited to the particular problem, currot flexibly adapts the shape of the
distribution without requiring any prior choices.

139

C.3.6. Teach My Agent

As mentioned in the main text, we used the environment and sac learning agent imple-
mentation provided by Romac et al. [171]. We only interfaced currot and gradient to
the setup they provided, allowing us to reuse the baseline evaluations provided by Romac
et al. [171]. The two settings (mostly infeasible and mostly trivial) differ in the boundaries
of their respective context spaces. The mostly infeasible setting encodes tasks with a stump
height in [0, 9] and -spacing in [0, 6]. The mostly trivial setting keeps the same boundaries
for the stump spacing while encoding stumps with a height in [−3, 3]. Since a stump with
negative height is considered not present, half of the context space of the mostly trivial
setting does not encode any obstacles for the bipedal walker to master. The initial- and
target context distribution µ(c) is uniform over the respective context space C for both
settings.

140

D. Appendix to Chapter 4

D.1. High-Dimensional Ablations

To investigate the robustness of the different currot versions w.r.t. changes in context
space dimensions, we increased the number of sections to represent the jerk trajectory u(t).
We tested three numbers, resulting in 99, 198, and 399 context space dimensions. When
increasing the dimension, we observed that the condition number of the whitening matrix
for currotAO and currotA increased significantly, leading to high-jerk interpolations,
which were smooth in position and velocity but exhibited strong oscillations in acceleration.
We counteracted this behavior by not only measuring the LTI system state via the matrix
A (Section 4.4.1) but also adding the transform Γ3 as additional rows to the entriesΨ3(t)
in the definition of A, where Γ maps the elements of ker(Ψ(te)) to piece-wise constant
jerk trajectories and Γ3 is its block-diagonal version as defined in the main chapter. The
resulting explicit regularization of the generated jerks prevented the previously observed
high jerk interpolations.
Figure D.1 shows the results of the experiments with increasing context space dimensions.
The required number of epochs to fully track the target trajectories and the final tracking
performance stays almost constant for all methods when using the default trajectory
representation, as it allows for good generalization of learned behavior. However, the
Wasserstein distances between the final context distribution of the curriculum pf (c) and
µ(c) increases with the context space dimension for currotA and currot.
When using the alternative trajectory representation from Section 4.5.3 (indicated by
(jc) in Figure D.1), this increasingly poor convergence to µ(c) leads to a noticeable
performance decrease in the required epochs to completion and final tracking performance
for currotA. The performance of currotAO decreases only slightly, as the convergence
of pf (c) to µ(c) seems unaffected by higher-dimensional context spaces. As discussed in
the main chapter, currot does not allow for good learning with the alternative trajectory
representation, rendering the observed tracking performance rather uninformative as they
are computed on partially tracked trajectories. The presented results additionally highlight
the importance of the improved optimization scheme implemented in currotAO, which
was not obvious from the experiments in the main chapter.

141

99 198 399

Context Dimension

0

500

1000

1500

2000
E

p
o
ch

s
to

C
o
m

p
le

ti
o
n

currotAO currotA currot currotAO(JC) currotA(JC) currot(JC)

99 198 399

Context Dimension

0.00

0.02

0.04

0.06

0.08

0.10

A
v
.

T
ra

ck
.

E
rr

.
[c

m
]

99 198 399

Context Dimension

0.0

0.2

0.4

0.6

0.8

W
(p
f
,µ

) /
W

(p
0
,µ

)

Figure D.1.: Quantitative results for different currot versions under increasing dimensions.
We show the mean Epochs To Completion (left), Final Average Tracking Error (middle), and
Final (Normalized) Wasserstein Distance (right). The error bars indicate the standard error.
Statistics are computed from 10 seeds. The abbreviation (jc) stands for experiments in
which the agent is given the alternative trajectory representation investigated in Section
4.5.3.

D.2. Modeling Network Communication Delays

Since our measurements indicated a non-negligible chance of delayed network packets, we
modeled this effect during training. With the simulation advancing in discrete timesteps,
we modeled the network delays in multiples of simulation steps. More formally, the
observation of the pendulum xp,t at time t only becomes available to the agent at time
t+ δt, where δt ∈ [0, 1, 2, 3, 4]. Furthermore, even if t+ i+ δt+i < t+ δt for some i > 0, the
observation at t+ i cannot become available before time t+ δt. We realized this behavior
by a FIFO queue, where we sample δt upon entry of an observation xp,t.
We also observed packet losses over the network. Since those losses seemed to correlate
with packet delays, we, in each timestep, drop the first packet in the queue with a chance
of 25%. Hence, the longer the queue is non-empty, i.e., packets are subject to delays, the
higher the chance of packets being lost. The probabilities for the delays are given by

p(δt) =
[︁
0.905 0.035 0.02 0.02 0.02

]︁
δt
. (D.1)

142

D.3. Analytic Solution to the LTI System Equations

Given that Constraints (4.7) and (4.8) on the LTI system specify a convex set, which can
be relatively easily dealt with, we turn towards Constraint (4.9), for which we need to
derive the closed-form solution of the LTI system (4.10)

x(t) = Φ(ts, t)x(ts) +

∫︂ t

ts

Φ(τ, t)Bu(τ)dτ. (D.2)

The transition matrix Φ(ts, t) is given by

Φ(ts, t) = eA∆s = I+A∆s +
A2∆2

s

2
+ . . .+

Ak∆k
s

k!
+ . . .

= I+A∆s +
∆2

s

2

⎡⎣0 0 1
0 0 0
0 0 0

⎤⎦ =

⎡⎣1 ∆s
∆2

s
2

0 1 ∆s

0 0 1

⎤⎦ , (D.3)

where ∆s = t − ts. We can now turn towards the second term in Equation (D.2). For
solving the corresponding integral, we exploit the assumption that the control signal u(t)
is piece-wise constant on the intervals [tk, tk+1) with ts=t0<t1< . . .<tK−1<tK=te. With
that, the second term reduces to

∫︂ t

t0

Φ(τ, t)Bu(τ)dτ =
K∑︂
k=1

uk

∫︂ min(tk,t)

tk−1

Φ(τ, t)Bdτ. (D.4)

We are hence left to solve

∫︂ th

tl

Φ(τ, t)Bdτ =

∫︂ th

tl

⎡⎣ (t−τ)2

2
t− τ
1

⎤⎦dτ =

⎡⎢⎣ t2τ
2 − tτ2

2 + τ3

6

tτ − τ2

2
τ

⎤⎥⎦⃓⃓⃓⃓⃓
th

τ=tl

=

⎡⎢⎣ t2th
2 −

tt2h
2 +

t3h
6

tth − t2h
2

th

⎤⎥⎦−
⎡⎢⎣ t2tl

2 −
tt2l
2 +

t3l
6

ttl − t2l
2

tl

⎤⎥⎦ =

⎡⎢⎣ t2∆lh
2 −

t∆̃
2
lh
2 + ∆̃

3
lh
6

t∆lh − ∆̃
2
lh
2

∆lh

⎤⎥⎦ = ψ(tl, th, t),

(D.5)

143

where ∆lh = th − tl and ∆̃i
lh = (th − tl)

i. Note that we assume tl ≤ th ≤ t and otherwise
define ψ(tl, th, t) to be zero. With Φ and ψ available, we can rewrite the state x at te as

x(te)=Φ(ts, te)x(ts) +
[︁
ψ(ts, t1, te) ψ(t1, t2, te) . . . ψ(tK−1, te, te)

]︁⏞ ⏟⏟ ⏞
Ψ(te)∈R3×K

⎡⎢⎢⎢⎣
u1
u2
...

uK

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞
u∈RK

(D.6)

and consequently arrive at the following rewritten version of Constraint (4.9)

x(ts) = x(te)

⇔ x(ts) = Φ(ts, te)x(ts) +Ψ(te)u

⇔ (I−Φ(ts, te))x(ts) = Ψ(te)u. (D.7)

With x(ts) = [γ(ts) 0 0], and the particular form of Φ(ts, te) in Eq. (D.3), we can see that
Φ(ts, te)x(ts) = x(ts) and hence (I−Φ(ts, te))x(ts) = 0. Consequently, we know that the
set of admissible controls u is given by the kernel ker(Ψ(te)).

144

Bibliography

[1] Abbas Abdolmaleki et al. “Maximum a posteriori policy optimisation”. In: Interna-
tional Conference on Learning Representations (ICLR). 2018.

[2] Hany Abdulsamad et al. “A Variational Infinite Mixture for Probabilistic Inverse
Dynamics Learning”. In: IEEE International Conference on Robotics and Automation
(ICRA). 2021.

[3] Hany Abdulsamad et al. “Variational Hierarchical Mixtures for Probabilistic Learn-
ing of Inverse Dynamics”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) (2023, In Press).

[4] David Abel et al. “On the expressivity of markov reward”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2021.

[5] Bernardetta Addis, Marco Locatelli, and Fabio Schoen. “Local optima smoothing
for global optimization”. In: Optimization Methods and Software 20.4-5 (2005),
pp. 417–437.

[6] Alekh Agarwal et al. “Reinforcement learning: Theory and algorithms”. In: CS
Dept., UW Seattle, Seattle, WA, USA, Tech. Rep 32 (2019). url: https : / /
rltheorybook.github.io/rl_monograph_AJK.pdf.

[7] Martial Agueh and Guillaume Carlier. “Barycenters in the Wasserstein space”. In:
SIAM Journal on Mathematical Analysis 43.2 (2011), pp. 904–924.

[8] Ilge Akkaya et al. “Solving rubik’s cube with a robot hand”. In: arXiv preprint
arXiv:1910.07113 (2019).

[9] Eugene L Allgower and Kurt Georg. Introduction to numerical continuation methods.
SIAM, 2003.

[10] Marcin Andrychowicz et al. “Hindsight experience replay”. In: Advances in Neural
Information Processing Systems (NIPS). 2017.

[11] Minoru Asada et al. “Purposive Behavior Acquisition for a Real Robot by Vision-
based Reinforcement Learning”. In: Machine Learning 23.2 (1996), pp. 279–303.

145

https://rltheorybook.github.io/rl_monograph_AJK.pdf
https://rltheorybook.github.io/rl_monograph_AJK.pdf

[12] Abolfazl Asudeh et al. “On Obtaining Stable Rankings”. In: Proceedings of the
VLDB Endowment (PVLDB) 12.3 (2018), pp. 237–250.

[13] Eftychia Baikousi, Georgios Rogkakos, and Panos Vassiliadis. “Similarity measures
for multidimensional data”. In: International Conference on Data Engineering
(ICDE). 2011.

[14] Adrien Baranes and Pierre-Yves Oudeyer. “Active learning of inverse models with
intrinsically motivated goal exploration in robots”. In: Robotics and Autonomous
Systems 61.1 (2013), pp. 49–73.

[15] Adrien Baranes and Pierre-Yves Oudeyer. “Intrinsically motivated goal exploration
for active motor learning in robots: A case study”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2010.

[16] Marc Bellemare et al. “Unifying count-based exploration and intrinsic motivation”.
In: Advances in Neural Information Processing Systems (NIPS). 2016.

[17] Richard Bellman. “A Markovian decision process”. In: Journal of mathematics and
mechanics 6.5 (1957), pp. 679–684.

[18] Boris Belousov et al. Reinforcement Learning Algorithms: Analysis and Applications.
Springer International Publishing, 2021.

[19] Jean-David Benamou et al. “Iterative Bregman projections for regularized trans-
portation problems”. In: SIAM Journal on Scientific Computing 37.2 (2015), A1111–
A1138.

[20] Yoshua Bengio et al. “Curriculum learning”. In: International Conference onMachine
Learning (ICML). 2009.

[21] Felix Berkenkamp, Angela P Schoellig, and Andreas Krause. “Safe controller
optimization for quadrotors with Gaussian processes”. In: International Conference
on Robotics and Automation (ICRA). 2016.

[22] Dimitri P Bertsekas. “Auction Algorithms.” In: Encyclopedia of optimization 1
(2009), pp. 73–77.

[23] Douglas Blank et al. “Bringing up robot: Fundamental mechanisms for creating
a self-motivated, self-organizing architecture”. In: Cybernetics and Systems 36.2
(2005), pp. 125–150.

[24] Josh Bongard and Hod Lipson. “Once more unto the breach: Co-evolving a robot
and its simulator”. In: Conference on Artificial Life (ALIFE). 2004.

[25] Nicolas Bonneel et al. “Sliced and radon wasserstein barycenters of measures”. In:
Journal of Mathematical Imaging and Vision 51.1 (2015), pp. 22–45.

146

[26] Serena Booth et al. “The perils of trial-and-error reward design: misdesign through
overfitting and invalid task specifications”. In: AAAI Conference on Artificial Intelli-
gence (AAAI). 2023.

[27] Greg Brockman et al. “OpenAI gym”. In: arXiv preprint arXiv:1606.01540 (2016).
[28] Benjamin Charlier et al. “Kernel Operations on the GPU, with Autodiff, without

Memory Overflows”. In: Journal of Machine Learning Research (JMLR) 22.74
(2021), pp. 1–6.

[29] Jiayu Chen et al. “Variational Automatic Curriculum Learning for Sparse-Reward
Cooperative Multi-Agent Problems”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2021.

[30] Liqun Chen et al. “Sequence generation with optimal-transport-enhanced rein-
forcement learning”. In: AAAI Conference on Artificial Intelligence (AAAI). 2020.

[31] Shuxiao Chen et al. “Learning torque control for quadrupedal locomotion”. In:
arXiv preprint arXiv:2203.05194 (2022).

[32] Yongxin Chen, Tryphon T Georgiou, and Michele Pavon. “Stochastic Control
Liaisons: Richard Sinkhorn Meets Gaspard Monge on a Schrödinger Bridge”. In:
SIAM Review (SIREV) 63.2 (2021), pp. 249–313.

[33] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal.Minimalistic Gridworld
Environment for Gymnasium. 2018. url: https://github.com/Farama-
Foundation/Minigrid.

[34] Daesol Cho, Seungjae Lee, and H Jin Kim. “Outcome-directed Reinforcement
Learning by Uncertainty & Temporal Distance-Aware Curriculum Goal Genera-
tion”. In: International Conference on Learning Representations (ICLR). 2023.

[35] Shui Nee Chow, John Mallet-Paret, and James A Yorke. “Finding zeroes of maps:
homotopy methods that are constructive with probability one”. In: Mathematics
of Computation 32.143 (1978), pp. 887–899.

[36] Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction to Derivative-
Free Optimization. SIAM, 2009.

[37] Luca Consolini and Mario Tosques. “On the exact tracking of the spherical inverted
pendulum via an homotopy method”. In: Systems & Control Letters 58.1 (2009),
pp. 1–6.

[38] Nicolas Courty, Rémi Flamary, and Mélanie Ducoffe. “Learning Wasserstein Em-
beddings”. In: International Conference on Learning Representations (ICLR). 2018.

147

https://github.com/Farama-Foundation/Minigrid
https://github.com/Farama-Foundation/Minigrid

[39] Marco Cuturi. “Sinkhorn distances: Lightspeed computation of optimal transport”.
In: Advances in Neural Information Processing Systems (NIPS). 2013.

[40] Tuan Dam et al. “Generalized Mean Estimation in Monte-Carlo Tree Search”. In:
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI).
2020.

[41] Peter Dayan and Geoffrey E Hinton. “Using expectation-maximization for rein-
forcement learning”. In: Neural Computation 9.2 (1997), pp. 271–278.

[42] Jonas Degrave et al. “Magnetic control of tokamak plasmas through deep rein-
forcement learning”. In: Nature 602.7897 (2022), pp. 414–419.

[43] Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. “A survey on policy
search for robotics”. In: Foundations and Trends® in Robotics 2.1–2 (2013), pp. 1–
142.

[44] Pinar Demetci et al. “Gromov-Wasserstein optimal transport to align single-cell
multi-omics data”. In: ICML Workshop on Computational Biology. 2020.

[45] Michael Dennis et al. “Emergent complexity and zero-shot transfer via unsuper-
vised environment design”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2020.

[46] Steven Diamond and Stephen Boyd. “CVXPY: A Python-embedded modeling
language for convex optimization”. In: Journal of Machine Learning Research
17.83 (2016), pp. 1–5.

[47] Andreas Doerr et al. “Model-based policy search for automatic tuning of multivari-
ate PID controllers”. In: IEEE International Conference on Robotics and Automation
(ICRA). 2017.

[48] Ishan Durugkar et al. “Adversarial intrinsic motivation for reinforcement learning”.
In: Advances in Neural Information Processing Systems (NeurIPS). 2021.

[49] Theresa Eimer et al. “Self-Paced Context Evaluation for Contextual Reinforcement
Learning”. In: International Conference on Machine Learning (ICML). 2021.

[50] Tom Erez and William D Smart. “What does shaping mean for computational
reinforcement learning?” In: International Conference on Development and Learning
(ICDL). 2008.

[51] Hehe Fan et al. “Unsupervised person re-identification: Clustering and fine-tuning”.
In: ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMM) 14.4 (2018), pp. 1–18.

148

[52] Matthew Fellows et al. “Virel: A variational inference framework for reinforcement
learning”. In: Advances in Neural Information Processing Systems (NeurIPS). 2019.

[53] Jean Feydy and Pierre Roussillon. GeomLoss. 2019. url: https://www.kernel-
operations.io/geomloss/index.html (visited on 06/04/2022).

[54] Jean Feydy et al. “Interpolating between Optimal Transport and MMD using
Sinkhorn Divergences”. In: International Conference on Artificial Intelligence and
Statistics (AISTATS). 2019.

[55] Arnaud Fickinger et al. “Cross-Domain Imitation Learning via Optimal Transport”.
In: International Conference on Learning Representations (ICLR). 2022.

[56] Carlos Florensa et al. “Automatic goal generation for reinforcement learning
agents”. In: International Conference on Machine Learning (ICML). 2018.

[57] Carlos Florensa et al. “Reverse Curriculum Generation for Reinforcement Learn-
ing”. In: Conference on Robot Learning (CoRL). 2017.

[58] Pierre Fournier et al. “Accuracy-based Curriculum Learning in Deep Reinforcement
Learning”. In: arXiv preprint arXiv:1806.09614 (2018).

[59] Yuzhen Ge et al. “Probability-one homotopy algorithms for full-and reduced-order
H2/H∞ controller synthesis”. In: Optimal Control Applications and Methods 17.3
(1996), pp. 187–208.

[60] Andrew Gelman and Xiao-Li Meng. “Simulating normalizing constants: From
importance sampling to bridge sampling to path sampling”. In: Statistical Science
13.2 (1998), pp. 163–185.

[61] Mohammad Ghavamzadeh et al. “Bayesian Reinforcement Learning: A Survey”.
In: Foundations and Trends® in Machine Learning 8.5-6 (2015), pp. 359–483.

[62] Yong Liang Goh et al. “Combining reinforcement learning and optimal transport
for the traveling salesman problem”. In: 1st International Workshop on Optimal
Transport and Structured Data Modeling. 2022.

[63] Matthew M. Graham and Amos J. Storkey. “Continuously tempered hamiltonian
monte carlo”. In: Conference on Uncertainty in Artificial Intelligence (UAI). 2017.

[64] Alex Graves et al. “Automated curriculum learning for neural networks”. In:
International Conference on Machine Learning (ICML). 2017.

[65] Shixiang Gu et al. “Deep reinforcement learning for robotic manipulation with
asynchronous off-policy updates”. In: IEEE International Conference on Robotics
and Automation (ICRA). 2017.

149

https://www.kernel-operations.io/geomloss/index.html
https://www.kernel-operations.io/geomloss/index.html

[66] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep
Reinforcement Learning with a Stochastic Actor”. In: International Conference on
Machine Learning (ICML). 2018.

[67] Assaf Hallak, Dotan Di Castro, and Shie Mannor. “Contextual Markov decision
processes”. In: arXiv preprint arXiv:1502.02259 (2015).

[68] Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. CMA-ES/pycma on Github.
Feb. 2019. url: https://github.com/CMA-ES/pycma.

[69] Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos. “Reducing the
time complexity of the derandomized evolution strategy with covariance matrix
adaptation (CMA-ES)”. In: Evolutionary Computation 11.1 (2003), pp. 1–18.

[70] Nikolaus Hansen et al. “Comparing results of 31 algorithms from the black-box op-
timization benchmarking BBOB-2009”. In: Genetic and Evolutionary Computation
Conference (GECCO). 2010.

[71] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(Sept. 2020), pp. 357–362.

[72] Philipp Hennig, Michael A Osborne, and Mark Girolami. “Probabilistic numerics
and uncertainty in computations”. In: Proceedings of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences 471.2179 (2015), p. 20150142.

[73] Ashley Hill et al. Stable Baselines. https://github.com/hill-a/stable-
baselines. 2018.

[74] Rein Houthooft et al. “Vime: Variational information maximizing exploration”. In:
Advances in Neural Information Processing Systems (NIPS). 2016.

[75] Ronald A Howard. Dynamic programming and markov processes. John Wiley, 1960.
[76] Peide Huang et al. “Curriculum Reinforcement Learning using Optimal Transport

via Gradual Domain Adaptation”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2022.

[77] Max Jaderberg et al. “Reinforcement learning with unsupervised auxiliary tasks”.
In: International Conference on Learning Representations (ICLR). 2017.

[78] F Jalali-Farahani and JD Seader. “Use of homotopy-continuation method in stabil-
ity analysis of multiphase, reacting systems”. In: Computers & Chemical Engineering
24.8 (2000), pp. 1997–2008.

[79] Lu Jiang et al. “Easy samples first: Self-paced reranking for zero-example multi-
media search”. In: ACM International Conference on Multimedia (MM). 2014.

150

https://github.com/CMA-ES/pycma
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

[80] Lu Jiang et al. “Self-paced curriculum learning”. In: AAAI Conference on Artificial
Intelligence (AAAI). 2015.

[81] Lu Jiang et al. “Self-paced learning with diversity”. In: Advances in Neural Infor-
mation Processing Systems (NIPS). 2014.

[82] Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. “Prioritized Level Replay”.
In: International Conference on Machine Learning (ICML). 2021.

[83] Minqi Jiang et al. “Replay-Guided Adversarial Environment Design”. In: Advances
in Neural Information Processing Systems (NeurIPS). 2021.

[84] Roy Jonker and Anton Volgenant. “A shortest augmenting path algorithm for dense
and sparse linear assignment problems”. In: Computing 38.4 (1987), pp. 325–340.

[85] Kirthevasan Kandasamy et al. “Neural architecture search with bayesian optimisa-
tion and optimal transport”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2018.

[86] Leonid Kantorovich. “On the transfer of masses (in Russian)”. In: Doklady Akademii
Nauk 37.2 (1942), pp. 227–229.

[87] Sho-Tsung Kao, Wan-Jung Chiou, and Ming-Tzu Ho. “Balancing of a spherical
inverted pendulum with an omni-directional mobile robot”. In: International
Conference on Control Applications (CCA). 2013.

[88] Sho-Tsung Kao and Ming-Tzu Ho. “Tracking control of a spherical inverted pen-
dulum with an omnidirectional mobile robot”. In: International Conference on
Advanced Robotics and Intelligent Systems (ARIS). 2017.

[89] Hassan K Khalil and Laurent Praly. “High-gain observers in nonlinear feedback
control”. In: International Journal of Robust and Nonlinear Control 24.6 (2014),
pp. 993–1015.

[90] Chaitanya Kharyal et al. “Do As You Teach: A Multi-Teacher Approach to Self-Play
in Deep Reinforcement Learning”. In: Deep Reinforcement Learning Workshop at
NeurIPS. 2022.

[91] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. “Optimization by simulated
annealing”. In: Science 220.4598 (1983), pp. 671–680.

[92] Pascal Klink and Jan Peters. “Measuring Similarities between Markov Decision
Processes”. In:Multidisciplinary Conference on Reinforcement Learning and Decision
Making (RLDM). 2019.

151

[93] Pascal Klink et al. “A probabilistic interpretation of self-paced learning with ap-
plications to reinforcement learning”. In: Journal of Machine Learning Research
(JMLR) 22.182 (2021), pp. 1–52.

[94] Pascal Klink et al. “Boosted Curriculum Reinforcement Learning”. In: International
Conference on Learning Representations (ICLR). 2022.

[95] Pascal Klink et al. “Curriculum Reinforcement Learning via Constrained Optimal
Transport”. In: International Conference on Machine Learning (ICML). 2022.

[96] Pascal Klink et al. “On the Benefit of Optimal Transport for Curriculum Reinforce-
ment Learning”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) (2023, Submitted).

[97] Pascal Klink et al. “Self-paced contextual reinforcement learning”. In: Conference
on Robot Learning (CoRL). 2020.

[98] Pascal Klink et al. “Self-paced deep reinforcement learning”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2020.

[99] Pascal Klink et al. “Tracking Control for a Spherical Pendulum via Curriculum
Reinforcement Learning”. In: IEEE Transactions on Robotics (TRO) (2023, Submit-
ted).

[100] Jens Kober and Jan Peters. “Policy search for motor primitives in robotics”. In:
Advances in Neural Information Processing Systems (NIPS). 2008.

[101] Jens Kober and Jan Peters. “Policy search for motor primitives in robotics”. In:
Advances in Neural Information Processing Systems (NIPS). 2009.

[102] Soheil Kolouri et al. “Generalized sliced wasserstein distances”. In: Advances in
Neural Information Processing Systems (NeurIPS). 2019.

[103] Soheil Kolouri et al. “Optimal mass transport: Signal processing and machine-
learning applications”. In: IEEE Signal Processing Magazine 34.4 (2017), pp. 43–
59.

[104] Solomon Kullback and Richard A Leibler. “On information and sufficiency”. In:
The annals of mathematical statistics 22.1 (1951), pp. 79–86.

[105] M Pawan Kumar, Benjamin Packer, and Daphne Koller. “Self-paced learning for
latent variable models”. In: Advances in Neural Information Processing Systems
(NIPS). 2010.

[106] Andras Gabor Kupcsik et al. “Data-efficient generalization of robot skills with
contextual policy search”. In: AAAI Conference on Artificial Intelligence (AAAI).
2013.

152

[107] Zeb Kurth-Nelson and A David Redish. “Temporal-difference reinforcement learn-
ing with distributed representations”. In: PLOS ONE 4.10 (2009), pp. 1–19.

[108] Alessandro Lazaric. “Transfer in reinforcement learning: a framework and a
survey”. In: Reinforcement Learning. Springer, 2012, pp. 143–173.

[109] Sergey Levine. “Reinforcement learning and control as probabilistic inference:
Tutorial and review”. In: arXiv preprint arXiv:1805.00909 (2018).

[110] Sergey Levine et al. “End-to-end training of deep visuomotor policies”. In: Journal
of Machine Learning Research (JMLR) 17.1 (2016), pp. 1334–1373.

[111] Sergey Levine et al. “Learning hand-eye coordination for robotic grasping with
deep learning and large-scale data collection”. In: International Journal of Robotics
Research (IJRR) 37.4-5 (2018), pp. 421–436.

[112] Lingxiao Li et al. “Continuous regularized wasserstein barycenters”. In: Advances
in Neural Information Processing Systems (NeurIPS). 2020.

[113] Qiyang Li et al. “Understanding the complexity gains of single-task rl with a
curriculum”. In: International Conference on Machine Learning (ICML). 2023.

[114] Zhongyu Li et al. “Robust and versatile bipedal jumping control through multi-task
reinforcement learning”. In: arXiv preprint arXiv:2302.09450 (2023).

[115] Chang Liu et al. “Understanding and accelerating particle-based variational infer-
ence”. In: International Conference on Machine Learning (ICML). 2019.

[116] Puze Liu et al. “Safe reinforcement learning of dynamic high-dimensional robotic
tasks: navigation, manipulation, interaction”. In: IEEE International Conference on
Robotics and Automation (ICRA). 2023.

[117] Siqi Liu et al. “From Motor Control to Team Play in Simulated Humanoid Football”.
In: arXiv preprint arXiv:2105.12196 (2021).

[118] Kent H Lundberg and Taylor W Barton. “History of inverted-pendulum systems”.
In: IFAC Proceedings Volumes 42.24 (2010), pp. 131–135.

[119] Rui Luo et al. “Thermostat-assisted continuously-tempered Hamiltonian Monte
Carlo for Bayesian learning”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2018.

[120] Michael Lutter et al. “Continuous-time fitted value iteration for robust policies”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 45.5
(2022), pp. 5534–5548.

153

[121] Marlos C Machado, Marc G Bellemare, and Michael Bowling. “Count-based ex-
ploration with the successor representation”. In: AAAI Conference on Artificial
Intelligence (AAAI). 2020.

[122] Prasanta Chandra Mahalanobis. “On the generalized distance in statistics”. In:
Proceedings of the National Institute of Science of India. 1936.

[123] Denys Makoviichuk and Viktor Makoviychuk. rl-games: A High-performance Frame-
work for Reinforcement Learning. https://github.com/Denys88/rl_
games. May 2021.

[124] Stephan Mandt et al. “Variational tempering”. In: International Conference on
Artificial Intelligence and Statistics (AISTATS). 2016.

[125] Peter Marbach and John N Tsitsiklis. “Simulation-based optimization of Markov
reward processes”. In: IEEE Transactions on Automatic Control (TACON) 46.2
(2001), pp. 191–209.

[126] Alonso Marco et al. “Automatic LQR tuning based on Gaussian process global
optimization”. In: IEEE International conference on robotics and automation (ICRA).
2016.

[127] Enzo Marinari and Giorgio Parisi. “Simulated Tempering: A New Monte Carlo
Scheme”. In: Europhysics Letters 19.6 (1992), pp. 451–458.

[128] Carlos Mastalli et al. “Crocoddyl: An Efficient and Versatile Framework for Multi-
Contact Optimal Control”. In: IEEE International Conference on Robotics and Au-
tomation (ICRA). 2020.

[129] Francisco SMelo, Sean PMeyn, andM Isabel Ribeiro. “An analysis of reinforcement
learning with function approximation”. In: International Conference on Machine
Learning (ICML). 2008.

[130] Facundo Mémoli. “Gromov–Wasserstein distances and the metric approach to
object matching”. In: Foundations of computational mathematics 11.4 (2011),
pp. 417–487.

[131] Deyu Meng, Qian Zhao, and Lu Jiang. “A theoretical understanding of self-paced
learning”. In: Information Sciences 414 (2017), pp. 319–328.

[132] Alberto Maria Metelli, Amarildo Likmeta, and Marcello Restelli. “Propagating
uncertainty in reinforcement learning via wasserstein barycenters”. In: Advances
in Neural Information Processing Systems (NeurIPS). 2019.

154

https://github.com/Denys88/rl_games
https://github.com/Denys88/rl_games

[133] Alberto Maria Metelli, Mirco Mutti, and Marcello Restelli. “Configurable Markov
Decision Processes”. In: International Conference on Machine Learning (ICML).
2018.

[134] VolodymyrMnih et al. “Human-level control through deep reinforcement learning”.
In: Nature 518.7540 (2015), pp. 529–533.

[135] Hossein Mobahi and John Fisher III. “A theoretical analysis of optimization by
Gaussian continuation”. In: AAAI Conference on Artificial Intelligence (AAAI). 2015.

[136] Hossein Mobahi, C Lawrence Zitnick, and Yi Ma. “Seeing through the blur”. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2012.

[137] Aditya Modi et al. “Markov decision processes with continuous side information”.
In: International Conference on Algorithmic Learning Theory (ALT). 2018.

[138] Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Imprimerie
Royale, 1781.

[139] Igor Mordatch, Emanuel Todorov, and Zoran Popović. “Discovery of complex be-
haviors through contact-invariant optimization”. In: ACM Transactions on Graphics
(ToG) 31.4 (2012), pp. 1–8.

[140] Alexander Morgan. Solving polynomial systems using continuation for engineering
and scientific problems. SIAM, 2009.

[141] Rémi Munos. “Performance bounds in l_p-norm for approximate value iteration”.
In: SIAM journal on control and optimization 46.2 (2007), pp. 541–561.

[142] Elizbar A Nadaraya. “On estimating regression”. In: Theory of Probability & Its
Applications 9.1 (1964), pp. 141–142.

[143] Abhishek Naik et al. “Discounted reinforcement learning is not an optimization
problem”. In: Optimization Foundations for Reinforcement Learning Workshop at
NeurIPS. 2019.

[144] Sanmit Narvekar, Jivko Sinapov, and Peter Stone. “Autonomous Task Sequencing
for Customized Curriculum Design in Reinforcement Learning.” In: International
Joint Conference on Artificial Intelligence (IJCAI). 2017.

[145] Sanmit Narvekar and Peter Stone. “Learning curriculum policies for reinforcement
learning”. In: International Conference on Autonomous Agents and Multiagent
Systems (AAMAS). 2019.

[146] Sanmit Narvekar et al. “Curriculum Learning for Reinforcement Learning Domains:
A Framework and Survey”. In: Journal of Machine Learning Research (JMLR) 21.181
(2020), pp. 1–50.

155

[147] Radford M Neal. “Annealed importance sampling”. In: Statistics and Computing
11.2 (2001), pp. 125–139.

[148] Gerhard Neumann. “Variational inference for policy search in changing situations”.
In: International Conference on Machine Learning (ICML). 2011.

[149] Andrew Y Ng, Daishi Harada, and Stuart Russell. “Policy invariance under reward
transformations: Theory and application to reward shaping”. In: International
Conference on Machine Learning (ICML). 1999.

[150] NVIDIA. Nvidia Isaac Sim. https://developer.nvidia.com/isaac-sim.
July 2023.

[151] Nvidia. Isaac Gym. https://developer.nvidia.com/gtc/2019/video/
S9918. Accessed: 2020-02-06. 2019.

[152] Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. “Intrinsic motivation sys-
tems for autonomous mental development”. In: IEEE Transactions on Evolutionary
Computation (TEVC) 11.2 (2007), pp. 265–286.

[153] Sinno Jialin Pan and Qiang Yang. “A survey on transfer learning”. In: IEEE Trans-
actions on Knowledge and Data Engineering (TKDE) 22.10 (2009), pp. 1345–1359.

[154] Alexandros Paraschos et al. “Probabilistic movement primitives”. In: Advances in
Neural Information Processing Systems (NIPS). 2013.

[155] Simone Parisi et al. “Reinforcement learning vs human programming in tetherball
robot games”. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2015.

[156] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learning
library”. In: Advances in Neural Information Processing Systems (NeurIPS). 2019.

[157] Jan Peters, Katharina Mulling, and Yasemin Altun. “Relative entropy policy search”.
In: AAAI Conference on Artificial Intelligence (AAAI). 2010.

[158] Gabriel Peyré, Marco Cuturi, et al. “Computational optimal transport: With appli-
cations to data science”. In: Foundations and Trends® in Machine Learning 11.5-6
(2019), pp. 355–607.

[159] Kai Ploeger, Michael Lutter, and Jan Peters. “High acceleration reinforcement
learning for real-world juggling with binary rewards”. In: Conference on Robot
Learning (CoRL). 2020.

[160] Natural Point. Optitrack. https://optitrack.com. July 2023.
[161] Ivaylo Popov et al. “Data-efficient deep reinforcement learning for dexterous

manipulation”. In: arXiv preprint arXiv:1704.03073 (2017).

156

https://developer.nvidia.com/isaac-sim
https://developer.nvidia.com/gtc/2019/video/S9918
https://developer.nvidia.com/gtc/2019/video/S9918
https://optitrack.com

[162] Rémy Portelas et al. “Teacher algorithms for curriculum learning of Deep RL
in continuously parameterized environments”. In: Conference on Robot Learning
(CoRL). 2019.

[163] Simon JD Prince. Computer Vision: Models, Learning, and Inference. Cambridge
University Press, 2012.

[164] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: ICRA
Workshop on Open Source Robotics. 2009.

[165] Sebastien Racaniere et al. “Automated curricula through setter-solver interactions”.
In: International Conference on Learning Representations (ICLR). 2020.

[166] Jette Randløv and Preben Alstrøm. “Learning to Drive a Bicycle Using Reinforce-
ment Learning and Shaping.” In: International Conference on Machine Learning
(ICML). 1998.

[167] Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. “On stochastic optimal
control and reinforcement learning by approximate inference”. In: International
Joint Conference on Artificial Intelligence (IJCAI). 2013.

[168] Zhipeng Ren et al. “Self-paced prioritized curriculum learning with coverage
penalty in deep reinforcement learning”. In: IEEE Transactions on Neural Networks
and Learning Systems (TNNLS) 29.6 (2018), pp. 2216–2226.

[169] Zhizhou Ren et al. “Exploration via hindsight goal generation”. In: Advances in
Neural Information Processing Systems (NeurIPS). 2019.

[170] Martin Riedmiller et al. “Learning by playing-solving sparse reward tasks from
scratch”. In: International Conference on Machine Learning (ICML). 2018.

[171] Clément Romac et al. “TeachMyAgent: a Benchmark for Automatic Curriculum
Learning in Deep RL”. In: International Conference on Machine Learning (ICML).
2021.

[172] Philipp Rostalski et al. “Numerical algebraic geometry for optimal control applica-
tions”. In: SIAM Journal on Optimization 21.2 (2011), pp. 417–437.

[173] Nikita Rudin et al. “Learning to Walk in Minutes Using Massively Parallel Deep
Reinforcement Learning”. In: Conference on Robot Learning (CoRL). 2021.

[174] Stefan Schaal. “Dynamic movement primitives-a framework for motor control in
humans and humanoid robotics”. In: Adaptive Motion of Animals and Machines.
Springer, 2006, pp. 261–280.

[175] Tom Schaul et al. “Universal value function approximators”. In: International
Conference on Machine Learning (ICML). 2015.

157

[176] Jürgen Schmidhuber. “Curious model-building control systems”. In: International
Joint Conference on Neural Networks (IJCNN). 1991.

[177] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

[178] John Schulman et al. “Trust region policy optimization”. In: International Confer-
ence on Machine Learning (ICML). 2015.

[179] Matthias Schultheis, Constantin A Rothkopf, and Heinz Koeppl. “Reinforcement
learning with non-exponential discounting”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2022.

[180] Matthias Schultheis et al. “Receding Horizon Curiosity”. In: Conference on Robot
Learning (CoRL). 2020.

[181] Oliver G Selfridge, Richard S Sutton, and Andrew G Barto. “Training and Tracking
in Robotics”. In: International Joint Conference on Artificial Intelligence (IJCAI).
1985.

[182] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: nature 529.7587 (2016), pp. 484–489.

[183] David Silver et al. “Mastering the game of Go without human knowledge”. In:
Nature 550.7676 (2017), p. 354.

[184] Burrhus Frederic Skinner. The Behavior of Organisms: An Experimental Analysis.
Appleton-Century, 1938.

[185] Bernhard Sprenger, Ladislav Kucera, and Safer Mourad. “Balancing of an inverted
pendulum with a SCARA robot”. In: IEEE/ASME Transactions on Mechatronics
(TMECH) 3.2 (1998), pp. 91–97.

[186] Sainbayar Sukhbaatar et al. “Intrinsic motivation and automatic curricula via
asymmetric self-play”. In: International Conference on Learning Representations
(ICLR). 2018.

[187] James S Supancic and Deva Ramanan. “Self-paced learning for long-term tracking”.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2013.

[188] Richard S Sutton. “Learning to predict by the methods of temporal differences”.
In: Machine learning 3 (1988), pp. 9–44.

[189] Richard S Sutton and Andrew G Barto. Introduction to Reinforcement Learning.
MIT Press, 1998.

[190] Richard S Sutton et al. “Policy gradient methods for reinforcement learning with
function approximation”. In: 1999.

158

[191] Haoran Tang et al. “# exploration: A study of count-based exploration for deep
reinforcement learning”. In: Advances in Neural Information Processing Systems
(NIPS). 2017.

[192] Matthew E Taylor and Peter Stone. “Transfer learning for reinforcement learning
domains: A survey.” In: Journal of Machine Learning Research (JMLR) 10.7 (2009),
pp. 1633–1685.

[193] Matthew E Taylor, Peter Stone, and Yaxin Liu. “Transfer Learning via Inter-Task
Mappings for Temporal Difference Learning.” In: Journal of Machine Learning
Research 8.9 (2007).

[194] Barrett Technology. Barrett Whole Arm Manipulator. https://advanced.
barrett.com/wam-arm-1. July 2023.

[195] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics engine for
model-based control”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2012.

[196] Matteo Togninalli et al. “Wasserstein weisfeiler-lehman graph kernels”. In: Ad-
vances in Neural Information Processing Systems (NeurIPS). 2019.

[197] Marc Toussaint and Amos Storkey. “Probabilistic inference for solving discrete
and continuous state Markov Decision Processes”. In: International Conference on
Machine Learning (ICML). 2006.

[198] J.N. Tsitsiklis and B. Van Roy. “An analysis of temporal-difference learning with
function approximation”. In: IEEE Transactions on Automatic Control (TACON)
42.5 (1997), pp. 674–690.

[199] Georgios Tzannetos et al. “Proximal Curriculum for Reinforcement Learning
Agents”. In: Transactions on Machine Learning Research (TMLR) (2023). issn:
2835-8856.

[200] Naonori Ueda and Ryohei Nakano. “Deterministic annealing variant of the EM
algorithm”. In: Advances in Neural Information Processing Systems (NIPS). 1995.

[201] Herke Van Hoof, Gerhard Neumann, and Jan Peters. “Non-parametric policy search
with limited information loss”. In: Journal of Machine Learning Research (JMLR)
18.73 (2017), pp. 1–46.

[202] Peter JM Van Laarhoven and Emile HL Aarts. “Simulated annealing”. In: Simulated
Annealing: Theory and Applications. Springer, 1987, pp. 7–15.

159

https://advanced.barrett.com/wam-arm-1
https://advanced.barrett.com/wam-arm-1

[203] Cédric Vincent-Cuaz et al. “Semi-relaxed Gromov-Wasserstein divergence and
applications on graphs”. In: International Conference on Learning Representations
(ICLR). 2022.

[204] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python”. In: Nature Methods 17 (2020), pp. 261–272.

[205] Minh Nhat Vu, Christian Hartl-Nesic, and Andreas Kugi. “Fast swing-up trajectory
optimization for a spherical pendulum on a 7-dof collaborative robot”. In: IEEE
International Conference on Robotics and Automation (ICRA). 2021.

[206] Rui Wang et al. “Poet: open-ended coevolution of environments and their opti-
mized solutions”. In: Genetic and Evolutionary Computation Conference (GECCO).
2019.

[207] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine learning 8
(1992), pp. 279–292.

[208] Geoffrey S Watson. “Smooth regression analysis”. In: Sankhyā: The Indian Journal
of Statistics, Series A 26.4 (1964), pp. 359–372.

[209] Joe Watson et al. “Latent Derivative Bayesian Last Layer Networks”. In: Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS). 2021.

[210] Joe Watson et al. “Neural Linear Models with Functional Gaussian Process Priors”.
In: Symposium on Advances in Approximate Bayesian Inference (AABI). 2021.

[211] Layne T Watson. “Numerical linear algebra aspects of globally convergent homo-
topy methods”. In: SIAM review 28.4 (1986), pp. 529–545.

[212] Layne T Watson. “Theory of globally convergent probability-one homotopies for
nonlinear programming”. In: SIAM Journal on Optimization 11.3 (2001), pp. 761–
780.

[213] Layne T Watson and Raphael T Haftka. “Modern homotopy methods in optimiza-
tion”. In: Computer Methods in Applied Mechanics and Engineering 74.3 (1989),
pp. 289–305.

[214] Layne TWatson et al. “Algorithm 777: HOMPACK90: A suite of Fortran 90 codes for
globally convergent homotopy algorithms”. In: ACM Transactions on Mathematical
Software (TOMS) 23.4 (1997), pp. 514–549.

[215] Daphna Weinshall and Dan Amir. “Theory of curriculum learning, with convex
loss functions”. In: Journal of Machine Learning Research (JMLR) 21.222 (2020),
pp. 1–19.

160

[216] AndreWibisono. “Sampling as optimization in the space of measures: The Langevin
dynamics as a composite optimization problem”. In: Conference on Learning Theory
(COLT). 2018.

[217] Ronald J Williams. “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning”. In: Machine learning 8 (1992), pp. 229–256.

[218] Ronald J Williams and Jing Peng. “Function optimization using connectionist
reinforcement learning algorithms”. In: Connection Science 3.3 (1991), pp. 241–
268.

[219] Aaron Wilson et al. “Multi-task reinforcement learning: a hierarchical bayesian
approach”. In: International Conference on Machine Learning (ICML). 2007.

[220] Jan Wöhlke, Felix Schmitt, and Herke van Hoof. “A Performance-Based Start State
Curriculum Framework for Reinforcement Learning”. In: International Conference
on Autonomous Agents and Multiagent Systems (AAMAS). 2020.

[221] Xiaoxia Wu, Ethan Dyer, and Behnam Neyshabur. “When Do Curricula Work?”
In: International Conference on Learning Representations (ICLR). 2021.

[222] Zifan Xu et al. “Model-Based Meta Automatic Curriculum Learning”. In: Conference
on Lifelong Learning Agents (CoLLAs). 2023.

[223] Rong Yang, Yiu-Yiu Kuen, and Zexiang Li. “Stabilization of a 2-DOF spherical
pendulum on xy table”. In: International Conference on Control Applications (CCA).
2000.

[224] Cun-Hui Zhang. “Nearly unbiased variable selection under minimax concave
penalty”. In: The Annals of Statistics 38.2 (2010), pp. 894–942.

[225] Ruiyi Zhang et al. “Policy optimization as wasserstein gradient flows”. In: Interna-
tional Conference on Machine Learning (ICML). 2018.

[226] Tong Zhang. “Multi-stage convex relaxation for learning with sparse regulariza-
tion”. In: Advances in Neural Information Processing Systems (NIPS). 2008.

[227] Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. “Automatic curriculum learning
through value disagreement”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2020.

[228] Brian D Ziebart et al. “Maximum entropy inverse reinforcement learning”. In:
AAAI Conference on Artificial Intelligence (AAAI). 2008.

161

List of Figures

1.1. Curriculum Reinforcement Learning Applications 2
1.2. Local Optima in Policy Gradient Methods 6
1.3. Gaussian Continuations for two Functions 8

2.1. Loss Function Shaping via Self-Paced Regularizers 24
2.2. sprl Evaluation - Gate Environment (Rewards and Curriculum) 31
2.3. sprl Evaluation - Gate Environment (Success Rates) 32
2.4. sprl Evaluation - Reacher Environment (Rewards and Curriculum) 33
2.5. sprl Evaluation - Reacher Environment (Final Policies) 34
2.6. sprl Evaluation - Ball-in-a-Cup Environment (Success Rates and Curriculum) 34
2.7. spdl Evaluation Environments . 37
2.8. spdl Evaluation - Point-Mass Environment (Rewards and Curriculum) . . . 38
2.9. spdl Evaluation - Ant- and Ball-Catching Environment (Rewards) 40
2.10.spdl Hyperparameter Comparison - Point-Mass Environment 42

3.1. currot Schematic Overview . 52
3.2. KL- and Wasserstein Interpolations between Distributions 57
3.3. Interpolations Generated with an Expected Performance Constraint, cur-

rot, and gradient . 59
3.4. currot Evaluation - E-Maze Environment 65
3.5. currot Evaluation - Unlock-Pickup Environment 68
3.6. currot Evaluation - Point-Mass Environment (Curriculum) 69
3.7. currot Evaluation - Point-Mass Environment (Rewards) 70
3.8. currot Evaluation - Sparse Goal Reaching Environment (Success Rates) . 71
3.9. currot Evaluation - Sparse Goal Reaching Environment (Curriculum) . . 71
3.10.currot Evaluation - TMA Environment (Curriculum) 72
3.11.currot Evaluation - TMA Environment (Success Rates) 73

4.1. Pendulum Tracking Task and Simulation 76
4.2. Pendulum Tracking Policy Architecture . 79
4.3. currot Sampling Scheme . 84

163

4.4. currot in High-Dimensional Context Spaces 86
4.5. Target Tracking Trajectories and Context Spaces 88
4.6. Learned Tracking Performance in Simulation 90
4.7. currot Curricula over Tracking Trajectories 91
4.8. currotWasserstein Distances over Epochs 91
4.9. Learned Tracking Performance in Simulation (Policy Structure Ablation) . 92
4.10.Tracking Trajectories on the Real Robot . 93
4.11.Policy Execution on the Real Robot . 94

B.1. sprl Gate Environment - Local Optimum Visualization 116
B.2. spdl Evaluation - Point-Mass Environment (Final Policies) 122
B.3. spdl Evaluation - Ant Environment (Final Policies) 123
B.4. spdl Evaluation - Ball-Catching Environment (Success Rates) 126

C.1. currot Evaluation - E-Maze Environment (Performance Distance) 133
C.2. plr Curriculum Statistics - Unlock-Pickup Environment 136
C.3. currot Evaluation - Point-Mass Environment (Final Policies) 137
C.4. sprl Curricula - Sparse-Goal Reaching Environment and Point-Mass Envi-

ronment . 138

D.1. currot Curricula in High-Dimensional Context Spaces 142

164

List of Algorithms

1. Self-Paced Episodic Reinforcement Learning (sprl) 29
2. Self-Paced Deep Reinforcement Learning (spdl) 36

3. Approximate gradient . 62
4. Approximate currot . 64

165

List of Tables

2.1. spdl Evaluation - Quantitative Results . 41
2.2. spdl α-Schedule Comparison . 44

3.1. currot Entropy Ablation - E-Maze Environment 66

4.1. Real Robot Tracking Performances . 95

B.1. sprl/c-reps Hyperparameters . 113
B.2. goalgan/sagg-riac Hyperparameters . 114
B.3. spdl Hyperparameters . 118
B.4. goalgan/alp-gmm Hyperparameters . 120
B.5. Target Distributions in the Evaluation Environments 121

C.1. sprl/currot/gradient Hyperparameters 129
C.2. Baseline Algorithm Hyperparameters . 129

167

Publication List

Journal Papers

Pascal Klink, Florian Wolf, Kai Ploeger, Jan Peters, and Joni Pajarinen. “Tracking Control
for a Spherical Pendulum via Curriculum Reinforcement Learning”. In: IEEE Transactions
on Robotics (TRO) (2023, Submitted)

Pascal Klink, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. “On the Benefit of Opti-
mal Transport for Curriculum Reinforcement Learning”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) (2023, Submitted)

Hany Abdulsamad, Peter Nickl, Pascal Klink, and Jan Peters. “Variational Hierarchi-
cal Mixtures for Probabilistic Learning of Inverse Dynamics”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI) (2023, In Press)

Pascal Klink, Hany Abdulsamad, Boris Belousov, Carlo D’Eramo, Jan Peters, and Joni
Pajarinen. “A probabilistic interpretation of self-paced learning with applications to re-
inforcement learning”. In: Journal of Machine Learning Research (JMLR) 22.182 (2021),
pp. 1–52

Conference Papers

Pascal Klink, Haoyi Yang, Carlo D’ Eramo, Jan Peters, and Joni Pajarinen. “Curriculum
Reinforcement Learning via Constrained Optimal Transport”. In: International Conference
on Machine Learning (ICML). 2022

Pascal Klink, Carlo D‘Eramo, Jan Peters, and Joni Pajarinen. “Boosted Curriculum Rein-
forcement Learning”. In: International Conference on Learning Representations (ICLR). 2022

Hany Abdulsamad, Peter Nickl, Pascal Klink, and Jan Peters. “A Variational Infinite

169

Mixture for Probabilistic Inverse Dynamics Learning”. In: IEEE International Conference
on Robotics and Automation (ICRA). 2021

Joe Watson, Jihao Andreas Lin, Pascal Klink, and Jan Peters. “Neural Linear Models
with Functional Gaussian Process Priors”. In: Symposium on Advances in Approximate
Bayesian Inference (AABI). 2021

Joe Watson, Jihao Andreas Lin, Pascal Klink, Joni Pajarinen, and Jan Peters. “Latent
Derivative Bayesian Last Layer Networks”. In: International Conference on Artificial Intelli-
gence and Statistics (AISTATS). 2021

Pascal Klink, Carlo D’ Eramo, Jan R Peters, and Joni Pajarinen. “Self-paced deep re-
inforcement learning”. In: Advances in Neural Information Processing Systems (NeurIPS).
2020

Tuan Dam, Pascal Klink, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. “Generalized
Mean Estimation in Monte-Carlo Tree Search”. In: Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI). 2020

Pascal Klink, Hany Abdulsamad, Boris Belousov, and Jan Peters. “Self-paced contex-
tual reinforcement learning”. In: Conference on Robot Learning (CoRL). 2020

Pascal Klink and Jan Peters. “Measuring Similarities between Markov Decision Processes”.
In: Multidisciplinary Conference on Reinforcement Learning and Decision Making (RLDM).
2019

Books

Boris Belousov, Hany Abdulsamad, Pascal Klink, Simone Parisi, and Jan Peters. Reinforce-
ment Learning Algorithms: Analysis and Applications. Springer International Publishing,
2021

170

Curriculum Vitae

Mr. Pascal Klink
Technische Universität Darmstadt
Hochschulstr. 10
64289 Darmstadt, Germany

pascal@robot-learning.de
https://www.ias.informatik.tu-
darmstadt.de/Team/PascalKlink

Education

Ph.D. Student in Computer Science 2019 - present
Intelligent Autonomous Systems Group, Technical University of
Darmstadt, Germany
Thesis: Reinforcement Learning Curricula as Interpolations
between Task Distributions
M.Sc. Autonomous Systems 2016-2019
Technical University of Darmstadt, Germany
Thesis: Generalization and Transferability in
Reinforcement Learning
GPA (German System): 1.02
B.Sc. Computer Science 2013-2016
Technical University of Darmstadt, Germany
Thesis: Model Learning for Probabilistic Movement Primitives
GPA (German System): 1.00

General University Entrance Qualification 2003-2012
Martin-Luther-Schule Rimbach, Germany
GPA (German System): 1.00

171

mailto:pascal@robot-learning.de
https://www.ias.informatik.tu-darmstadt.de/Team/PascalKlink
https://www.ias.informatik.tu-darmstadt.de/Team/PascalKlink

Work Experience

Research Scientist Intern 2022-2023
Amazon Robotics, Berlin, Germany
Research on Automation Technology for Amazon Fulfillment Centers

Student Assistant 2016-2019
Intelligent Autonomous Systems Group, Technical University of
Darmstadt, Germany
Development of a robot control architecture for C++ and Python
capable of running at kHz control frequencies. Support of research
in the field of Machine Learning for Advanced Robotic Motor Skills.

Working Student 2013-2016
Bisnode Informatics Deutschland GmbH, Darmstadt, Germany
Implementation of RESTful web services using Java, relational-,
and document-based databases processing 10,000 - 100,000
datasets per day.

Scholarships and Exchange Terms

Deutschlandstipendium 2013-2018
In cooperation with Datenlotsen Informationssysteme GmbH (2013
- 2014) and Bosch Rexroth AG (2014 - 2018).

Exchange Term 2017-2018
University of British Columbia, Vancouver

Teaching

Computational Engineering and Robotics 2021
TU Darmstadt

Computational Engineering and Robotics 2020
TU Darmstadt

Organization of Computing Systems 2019
TU Darmstadt

172

Invited Talks

Technical University of Berlin 2019
Berlin, Oliver Brock
ATR Computational Neuroscience Lab 2019
Kyoto, Mitsuo Kawato
Preferred Networks 2019
Tokyo, Guilherme Maeda
NAIST Robot Learning Lab 2019
Nara, Takamitsu Matsubara

Student Supervision

Thesis Supervision

Modeling and Control of a Spherical Pendulum on a 4-DOF Barret WAM 2022
Bachelor Thesis of Kinzel, J.
Multi-Object Pose Estimation for Robotic Applications in Cluttered Scenes 2022
Master Thesis of Felix, K.
Particle-Based Adaptive Sampling for Curriculum Learning 2022
Master Thesis of Carrasco, H.
Variational Inference for Curriculum Reinforcement Learning 2022
Master Thesis of Yang, H.
Multi-Instance Pose Estimation for Robot Mikado 2022
Bachelor Thesis of Meser, M.
Functional Variational Inference in Bayesian Neural Networks 2021
Master Thesis of Lin, J. A.
Variational Inference for Curriculum Reinforcement Learning 2021
Master Thesis of Yang, H.

173

Memory Representations for Partially Observable Reinforcement Learning 2021
Master Thesis of Zhang, Y.
3D Pose Estimation for Robot Mikado 2019
Master Thesis of Tengang, V. M.

Project Supervision

Measuring Task Similarity using Learned Features 2023
Integrated Project of Metternich, H.
Pendulum Acrobatics 2023
Integrated Project of Wolf, F.
Combining Intrinsic Motivation and Self-Paced Reinforcement Learning 2021
Integrated Project of Scheler, U. and Niehues, T.
Multi-Object Pose Estimation for Robot Mikado 2021
Integrated Project of Kaiser, F. and Meser, M. and Sterker, L.

Review Experience

Conferences

International Conference on Intelligent Robots and Systems (IROS) 2023
Symposium on Advances in Approximate Bayesian Inference (AABI) 2023
Conference on Robot Learning (CoRL) 2022
International Conference on Intelligent Robots and Systems (IROS) 2022
International Conference on Learning Representations (ICLR) 2022
International Conference on Robotics and Automation (ICRA) 2022
Neural Information Processing Systems (NeurIPS) 2022
Conference on Robot Learning (CoRL) 2021
International Conference on Automated Planning and Scheduling (ICAPS) 2021
International Conference on Intelligent Robots and Systems (IROS) 2021
International Conference on Learning Representations (ICLR) 2021
International Conference on Robotics and Automation (ICRA) 2021
Neural Information Processing Systems (NeurIPS) 2021
Robotics: Science and Systems (RSS) 2021

174

International Conference on Automated Planning and Scheduling (ICAPS) 2020

Journals

Robotics and Automation Letters (RA-L) 2023
Journal of Machine Learning Research (JMLR) 2023
Journal of Machine Learning Research (JMLR) 2022
Transaction on Robotics (T-RO) 2022
Transaction on Machine Learning Research (TMLR) 2022
Robotics and Automation Letters (RA-L) 2022

175

	Introduction
	A Homotopy Perspective on Curriculum Reinforcement Learning
	Reinforcement Learning as Optimization
	Local Optima, Regularization, and Reward Shaping
	Homotopic-Continuation Methods
	Homotopies via Changing Task Distributions

	Thesis Outline and Contributions
	Common Notation

	Self-Paced Reinforcement Learning
	Introduction
	Related Work
	Preliminaries: Self-Paced Learning
	A Probabilistic Interpretation of Self-Paced Learning
	Self-Paced Learning for Reinforcement Learning
	Application to Episodic Reinforcement Learning
	Algorithmic Implementation
	Experiments

	Application to Step-Based Reinforcement Learning
	Algorithmic Implementation
	Experiments

	Improved a-Schedule
	An Inference Perspective on Self-Paced Reinforcement Learning
	RL as Inference
	Connection to Self-Paced Reinforcement Learning
	Self-Paced Learning as Tempering

	Conclusion

	On the Benefit of Optimal Transport for Curriculum Reinforcement Learning
	Introduction
	Related Work
	Divergence-Minimizing Curriculum Reinforcement Learning
	Curriculum Reinforcement Learning as Constrained Optimal Transport
	Limitations of the KL Divergence
	Challenges of Expected Performance Constraints

	Approximate Algorithms for Discrete- and Continuous Context Spaces
	Approximate Wasserstein Barycenters
	Approximate gradient
	Approximate currot

	Experiments
	E-Maze Environment
	Unlock-Pickup Environment
	Point-Mass Environment
	Sparse Goal-Reaching Environment
	Teach My Agent

	Conclusion

	Tracking Control for a Spherical Pendulum via Curriculum Reinforcement Learning
	Introduction
	Related Work
	Reinforcement Learning System
	Simulation Environment and Policy Representation
	Facilitating Sim2Real Transfer
	Trajectory Representations
	Curriculum Reinforcement Learning

	Improved Curriculum Generation
	Affine Metrics
	Sampling-Based Optimization
	Tracking Metrics Other than Reward
	GPU Implementation

	Experiments
	Quantitative Results
	Qualitative Analysis of Generated Curricula
	Alternative Trajectory Representation
	Real Robot Results

	Conclusion

	Conclusion and Future Work
	Contribution Statements
	Contributions to Chapter 2
	Contributions to Chapter 3
	Contributions to Chapter 4

	Appendix to Chapter 1
	Appendix to Chapter 2
	Proof of Theorem 1
	Self-Paced Episodic Reinforcement Learning Derivations
	Regularized Policy Updates
	Experimental Details
	Episodic Setting
	Step-Based Setting

	Appendix to Chapter 3
	Computational Cost of Optimal Transport
	currot Search for Feasible Contexts
	Experimental Details
	Algorithm Hyperparameters
	E-Maze Environment
	Unlock-Pickup Environment
	Point-Mass Environment
	Sparse Goal-Reaching Environment
	Teach My Agent

	Appendix to Chapter 4
	High-Dimensional Ablations
	Modeling Network Communication Delays
	Analytic Solution to the LTI System Equations

	Bibliography
	List of Figures
	List of Algorithms
	List of Tables
	Publication List
	Curriculum Vitae

