
cryptography

Article

An Overview of DRAM-Based Security Primitives

Nikolaos Athanasios Anagnostopoulos 1 ID , Stefan Katzenbeisser 1, John Chandy 2 ID and
Fatemeh Tehranipoor 3,∗ ID

1 Computer Science Department, Technical University of Darmstadt, Mornewegstraße 32, S4|14,
64293 Darmstadt, Germany; anagnostopoulos@seceng.informatik.tu-darmstadt.de (N.A.A.);
katzenbeisser@seceng.informatik.tu-darmstadt.de (S.K.)

2 Department of Electrical and Computer Engineering, University of Connecticut, 371 Fairfield Way, U-4157,
Storrs, CT 06269-4157, USA; chandy@engr.uconn.edu

3 School of Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
* Correspondence: tehranipoor@sfsu.edu; Tel.: +1-415-338-7821

Received: 25 February 2018; Accepted: 26 March 2018; Published: 28 March 2018
����������
�������

Abstract: Recent developments have increased the demand for adequate security solutions, based
on primitives that cannot be easily manipulated or altered, such as hardware-based primitives.
Security primitives based on Dynamic Random Access Memory (DRAM) can provide cost-efficient
and practical security solutions, especially for resource-constrained devices, such as hardware used
in the Internet of Things (IoT), as DRAMs are an intrinsic part of most contemporary computer
systems. In this work, we present a comprehensive overview of the literature regarding DRAM-based
security primitives and an extended classification of it, based on a number of different criteria.
In particular, first, we demonstrate the way in which DRAMs work and present the characteristics
being exploited for the implementation of security primitives. Then, we introduce the primitives
that can be implemented using DRAM, namely Physical Unclonable Functions (PUFs) and True
Random Number Generators (TRNGs), and present the applications of each of the two types of
DRAM-based security primitives. We additionally proceed to assess the security such primitives
can provide, by discussing potential attacks and defences, as well as the proposed security metrics.
Subsequently, we also compare these primitives to other hardware-based security primitives, noting
their advantages and shortcomings, and proceed to demonstrate their potential for commercial
adoption. Finally, we analyse our classification methodology, by reviewing the criteria employed in
our classification and examining their significance.

Keywords: dynamic random access memory (DRAM); physical unclonable function (PUF);
true random number generator (TRNG); security primitive; overview

1. Introduction

Recent events have served to amplify the need for more adequate security and privacy solutions
for modern computer systems. Such events include the disclosure of a state-organised system of
online surveillance covering the whole world [1], as well as newly reported software and hardware
vulnerabilities that affect systems used every day by normal users. As these events affect the vast
majority of the public, there has been significant pressure to address them in a thorough and
transparent manner.

It is for this reason that research regarding IT security has been growing rapidly the last few years.
The quick development of this research field has, in turn, brought forward a rise in relevant publications,
regarding both software and hardware security. As an increasing number of vulnerabilities is being
found in current security mechanisms and implementations, there is a growing demand for better
security primitives that will prove more resistant to existing attacks.

Cryptography 2018, 2, 7; doi:10.3390/cryptography2020007 www.mdpi.com/journal/cryptography

http://www.mdpi.com/journal/cryptography
http://www.mdpi.com
https://orcid.org/0000-0003-0243-8594
https://orcid.org/0000-0003-3449-3205
https://orcid.org/0000-0001-8410-4306
http://www.mdpi.com/journal/cryptography
http://www.mdpi.com/2410-387X/2/2/7?type=check_update&version=3
http://dx.doi.org/10.3390/cryptography2020007


Cryptography 2018, 2, 7 2 of 33

This has led to an increased interest for hardware-based security primitives, such as Physical
Unclonable Functions (PUFs) and True Random Number Generators (TRNGs), because hardware
implementations are less exposed to attackers than software ones. Intrinsic implementations, which do
not require the addition of other hardware components, have been proposed as a lightweight and
cost-efficient basis for security solutions. Memory components, such as Static Random Access
Memories (SRAMs), Dynamic Random Access Memories (DRAMs) and Flash memories [2–6], have
proven to be particularly well-suited for the implementation of intrinsic hardware-based security
primitives.

DRAMs seem to have a number of additional advantages regarding their usage for the
implementation of security primitives, such as their presence in most contemporary computer systems,
their large storage size, and the easy way in which they can be accessed, even at run-time. In particular,
their large storage size can guarantee both the existence of an adequate amount of entropy and that a
part of them can be used, for a limited amount of time, exclusively as a dedicated security primitive,
while the system is running. These advantages have led to an increased focus being placed on novel
DRAM-based security primitives in recent publications regarding hardware-based security primitives.

However, the fast pace of research and the large number of recent publications regarding
DRAM-based security primitives make it difficult to keep track of developments in this field and thus
retain a degree of obscurity over it. Additionally, the public tends to trust hardware much more than
software, due to the volatile nature of software and the physical nature of hardware. It is, therefore,
crucial to perform an overview study of the literature regarding DRAM-based security primitives,
not only in order to expose the current state of the art in this field, but also to provide helpful insights
into its future development.

We aim to address this urgent need with the current paper, by making the following contributions:

1. We provide a comprehensive overview of literature relevant to DRAM-based security primitives.
2. We then classify this literature using a number of criteria, in order to allow for a clear and

thorough view into the current state of the art regarding DRAM-based security primitives.
3. We also consider, in our taxonomy, their potential applications of such primitives, as well as their

security, in order to provide a brief evaluation of them.
4. We additionally compare them to other hardware-based security primitives, noting their

advantages and disadvantages, and we also examine their potential for commercial adoption,
in order to present an assessment of how practical they are as security mechanisms.

5. Finally, we discuss the criteria employed in our classification and their significance in assessing
the relevant literature regarding DRAM-based implementations as security mechanisms.

We, therefore, perform, to the best of our knowledge, the first systematic classification, analysis
and assessment of works regarding DRAM-based security primitives. We aim in this way to present a
thorough and transparent overview of this field and provide clear insights into the current and future
trends regarding DRAM-based security primitives.

The rest of this paper is organised in the following way. Section 2 provides background
information concerning preliminary concepts, with a focus on the topics of DRAMs, PUFs and RNGs.
In Section 3, we present a comprehensive overview and a detailed taxonomy of the literature regarding
DRAM-based security primitives, based on a number of classification criteria. In this way, we allow
for a thorough view into the current state of the art in the relevant scientific field. We compare
DRAM-based security primitives to other hardware-based ones and examine their potential to be
commercially adopted, in Section 4. Additionally, we also discuss, in this section, the significance of
the classification criteria being employed in assessing the relevant literature. Finally, Section 5 contains
a very brief summary of the previous sections and a few final remarks regarding future research,
concluding, in this way, our overview paper.



Cryptography 2018, 2, 7 3 of 33

2. Preliminary Concepts

We can distinguish three main concepts that form the background of our paper. The first one is
the hardware component used, Dynamic Random Access Memories (DRAMs). The inherent properties
of DRAMs are exploited in order to implement the security primitives that form the other two
background concepts that this section discusses, Physical Unclonable Functions (PUFs) and Random
Number Generators (RNGs). Both PUFs and RNGs have proven very useful for the implementation of
cryptographic applications, especially in resource-constrained devices, such as the hardware used in
the implementation of the Internet of Things (IoT). PUFs can be used for the implementation of key
agreement, identification and authentication protocols, while RNGs can produce ephemeral keys and
nonces, which are extremely vital for the security of cryptographic protocols.

Ephemeral keys can be produced by TRNGs, making it almost impossible for an attacker to gain
access to them, as a good TRNG is extremely unlikely to produce the same output, even if an attacker
gets hold of it. Additionally, such keys can be employed in a one-time pad (OTP) scheme, where
they will only be used once [7]. The single usage of such ephemeral keys guarantees that the OTP
scheme is information-theoretically secure and provides perfect secrecy, therefore making TRNGs really
important for cryptography. Furthermore, nonces produced by TRNGs have also become a common
feature of cryptographic protocols, in order to prevent replay attacks. Therefore, TRNGs are essential
primitives for the secure implementation of a large number of modern cryptographic protocols.

Moreover, as PUFs ideally act as physical functions that always produce the same output for a
specific input, not only their outputs can be used as keys in key agreement schemes, or identifiers
for identification and authentication purposes, but they also provide the additional advantage that
they do not have to be stored after they are used. This is a significant advantage, because, in this
way, cryptographic protocols can be implemented without the need for additional secure storage
hardware. Finally, as DRAM-based PUFs and TRNGs are based on an inherent memory module of
most contemporary computer systems, they allow for the implementation of cryptographic protocols
even on IoT hardware and other resource-constrained devices that do not support additional security
mechanisms, such as Trusted Platform Module (TPM) implementations and other security primitives
that require hardware additions.

In this section, we examine how DRAMs work and which of their characteristics have been
employed for the implementation of security primitives, namely PUFs and TRNGs. We then proceed to
additionally discuss basic concepts regarding these security primitives. In this way, we aim to provide
insights into the way DRAM-based security primitives work, as well as a preliminary introduction to
their cryptographic applications, which will be discussed in more detail in Section 3.3.

2.1. Dynamic Random Access Memories

Dynamic Random Access Memories (DRAMs) are a type of Random Access Memory (RAM) that
has been incorporated into the vast majority of modern computer systems. RAM is a type of volatile
memory, a memory that can only store values while it is being powered. However, Dynamic RAMs
(DRAMs), unlike Static RAMs (SRAMs), not only lose their stored content when they are not being
powered, but also need to have their content constantly refreshed, due to the significant leakage that
is inherent to their design. On the contrary, the design of SRAMs allows them to keep their content
without being refreshed, as the design of SRAM cells is such that the stored value is constantly being
reinforced on its own.

However, DRAMs are one of the most widely used types of RAM, as the design of DRAM cells is
very simple, lightweight and cost-efficient. Most often, DRAM cells consist of a single capacitor that
stores charge above or below a certain threshold, indicating one logical value or the other, and a single
gatekeeper transistor that controls access to the storage capacitor. In comparison, the most common
design for SRAM cells consists of six transistors, therefore providing a clear explanation for the usual
difference in the size of the DRAM and the SRAM incorporated on a system. As DRAM cells require
less space and are cheaper to implement than SRAM cells, most modern commercial systems tend



Cryptography 2018, 2, 7 4 of 33

to have DRAM storage sizes in the range of gigabytes (GB) and SRAM storage sizes in the order of
kilobytes (KB), a difference that translates in billions of DRAM cells and only thousands of SRAM cells.

DRAM cells are grouped into memory arrays, where each row is connected to a wordline,
which enables access to that row. All the cells in a single column are connected to a bitline, which is
used to extract the value stored on a particular DRAM cell, to which access has been enabled through
the wordline. The bitlines are connected to sense amplifiers that amplify the voltage of each bitline
to a level that can be interpreted as logical zero or logical one. Obviously, this setup, which is shown
in Figure 1, only allows access to one row at a time, while the values of all the cells of this row can
be read at the same time using the bitlines. However, the sense amplifiers work in a differential way,
as they compare the voltage of two different bitlines in order to determine whether the charge of one
of them has increased or decreased from the reference level stored in the other one [8].

Storage
Capacitor

Access
Transistor

Wordline

Bitline

Memory
Array

Pull up Network

Sense Amplifiers

Column Decoder

R
ow
D
ec
od
er

DRAM

... Bit Lines ...

...
W
or
d
L
in
es
...

T

Vdd/2

Bit selection Device

PEQ

SAB

SA

BL

BLB

BL

BLB

Vc

Figure 1. Memory structure of a one-transistor one-capacitor (1T1C) DRAM array.

In order for a row to be accessed, first, the bitlines are charged to
Vdd

2
and, then, the relevant

wordline is also charged, in order to force the row’s transistors to contact and, therefore, allow access
to the relevant capacitors. If a cell’s capacitor is charged, charge flows from the capacitor to the bitline,
causing the bitline to get slightly more charged, whereas if the capacitor is not charged, charge flows
from the bitline to the capacitor, causing the bitline to become slightly less charged. Then, a sense

amplifier compares the charge of this bitline to the reference
Vdd

2
charge stored in another bitline,

and amplifies their difference. This leads into the cell’s value being recognised as logical one or logical
zero, when the cells of a row are being read. In order to facilitate the differential amplification process,
DRAM cells are usually organised into two different categories; true cells, whose charged capacitor
indicates a value of logical one, and anti-cells, which store a value of logical one when their capacitor is
discharged [8]. For both categories of cells, the opposite state of their capacitors indicates a value of
logical zero.

This procedure also helps refresh the values stored on the DRAM cells, as the bitlines being
compared are forced to exchange charges [9]. This happens in such a way that either will discharge

the cell’s capacitor, if the relevant bitline is charged below the
Vdd

2
charge stored in the other bitline,



Cryptography 2018, 2, 7 5 of 33

or will charge the capacitor, if the relevant bitline is charged above the
Vdd

2
charge stored in the other

one. As DRAM cells store their charge on a capacitor, their charge will inevitably leak unless it is
regularly replenished. Therefore, an automated process exists in order to refresh the values stored in
all the DRAM cells, within such a time interval that even the most leaking cell will always be able to
provide the correct value. The refresh process is almost identical to reading, but the logical values of
the DRAM cells are not used further.

Writing usually happens in a similar way to reading, with the difference being that while a row is
being accessed, particular bitlines are forced to potentially different charges, in order for the correct
values to be written in the cells, through the previously described operation of the sense amplifiers [9].
After a row has been accessed, either for writing, reading or to be refreshed, the relevant wordline is
discharged, therefore trapping the charge of the capacitor in the cell, until it either leaks or is refreshed.

However, apart from DRAMs with cells consisting of one transistor and one capacitor (1T1C),
as the one shown in Figure 1, there are also other DRAM implementations, such as purpose-built
embedded DRAMs, with cells consisting of only two transistors (2T) [10,11]. In these, the storage
capacitor is replaced by a storage transistor connected to a transistor that allows access for writing.
In these 2T DRAM cells, writing and reading are decoupled, therefore requiring two different sets
of a wordline and a bitline each, one set of which is used for writing and the other for reading [10].
This design is quite similar to the one used in early DRAM cells, which consisted of three transistors
(3T), one used for write access, one for read access and one for storage. This design again required two
wordlines and two bitlines for each cell, as one set of a wordline and a bitline was used for writing and
the other for reading [9]. Nevertheless, all of these designs again require frequent refreshing of the
values stored in their DRAM cells, due to leakages.

2.2. DRAM-Based Security Primitives

Hardware-based security primitives exploit inherent characteristics of hardware in order to extract
entropy, in the form of random and unique outputs, which can be used for the implementation of
cryptographic solutions. These outputs can be robust, in which case they can be used for identification
and authentication, or unstable, in which case they can be used in cryptography as random one-time
keys and nonces. Manufacturing variations cause minor imperfections in commodity hardware,
such as DRAMs, which can serve to create inherent characteristics in a random and unique way in each
individual hardware instance. Therefore, while such imperfections do not affect the correct operation
of hardware, they can be exploited for the implementation of security primitives. Researchers have
identified a number of inherent characteristics in DRAMs that can be leveraged for the implementation
of hardware-based security primitives.

In particular, it has been noted that the cells of DRAMs may assume different values at startup [12],
in a similar way to SRAM cells. In this case, the startup charge of the capacitor of each individual cell

(in a 1T1C DRAM) may be slightly above the
Vdd

2
threshold value (Figure 2a), or slightly below it

(Figure 2b), a situation that leads to the cell’s value being interpreted as logical one or logical zero,
respectively, if the cell is a true cell, and vice versa, if the cell is an anti-cell. Figure 2 provides an
overview of how voltage moves, in each of the two cases, through the DRAM circuitry presented in
Figure 1, when the cells are read. The cells are previously untouched, not having been written to,
by the system or the user.

Another characteristic of DRAM cells that can be exploited for the extraction of entropy is their
retention times. As already mentioned before, DRAM cells need to be frequently refreshed or the
charge of their capacitors leaks away, causing the values stored in them to flip. However, the decay
characteristic is not the same for all the cells of a particular DRAM, with cells exhibiting different
periods of charge remanence. This phenomenon can be exploited in a number of different ways,
resulting in different degrees of instability. Researchers have either stopped the refresh function of the
DRAM [13–16], exploiting the retention of different cells, or cut the power of the whole chip [17], taking



Cryptography 2018, 2, 7 6 of 33

advantage of the data remanence of the cells, or even forced different low voltages in the wordlines,
in order to intensify the decay effect [18].

Vc

Word Line

Vdd/2BL/BLB

Vdd/2Output Amplified to Vdd 

Restores Cell Data

Vdd/2

BL

(Vdd/2)+ɛ 

Vdd

(Vdd/2)-ɛ 

Vc Vdd/2

Word Line

Vdd/2BL/BLB Restores Cell Data

BLB

Vdd/2Output
Amplified to Vss

Vss

(a)

(b)

tA (charge sharing between the
cell and the bit capacitances)

tB (sense amplifier is pulling 
down the bit line)

Figure 2. Timing diagram of a read operation of a previously untouched DRAM cell, for cells biased to
Vdd (a) or Vss (b) at startup due to process variations. In this case, Vdd signifies the supply voltage
and Vss the ground voltage.

Furthermore, in order to increase the number of flips exhibited over time, a row hammer process
can be used [5]. In this case, rows are constantly written alternately with zeros and ones, causing the
values of cells in other rows to flip, due to excessive leakage. In order to maximise the effects of row
hammering, the rows constantly changing value (hammer rows) alternate with the rows that will be
used for the implementation of the security primitive (primitive rows), as shown in Figure 3.

Memory
Array

Pull up Network

Sense Amplifiers

Column Decoder

R
ow

D
ec

od
er

DRAM

... Bit Lines ...

...
W

or
d

L
in

es
...

Bit selection Device

hammer row
primitive row
hammer row

hammer row
primitive row
hammer row

...
...

Figure 3. The alternating order between rows used for row hammering (hammer rows) and rows used
for the implementation of a security primitive (primitive rows).



Cryptography 2018, 2, 7 7 of 33

It is, therefore, evident that the retention characteristic of DRAM cells is highly dependent on the
leakage of their capacitors, which can be affected by nearby components, such as other cells in the
same or in other rows. Figure 4 presents some of the different leakage paths, showing with red colour
paths in the same row, and with blue, paths affecting cells in other rows. Note that the leakage of a cell
can also affect cells in non-adjacent rows, and can affect nearby bitlines and wordlines, as well as the
transistors and capacitors of other cells, as shown in Figure 4.

WL

WL

WL

BL

BLBBLB

leakage to
the same row

leakage to
a different row

Figure 4. Some of the potential leakage paths for a single cell’s capacitor. Charge can leak to components
in the same row (red lines), or even in other rows (blue lines), especially in the case of row hammering.

We need to mention that DRAM cells also exhibit a Variable Retention Time (VRT) phenomenon,
which means that the same cell may randomly switch between a high retention state (corresponding to
a high retention time) and a low retention state (corresponding to a low retention time) at different
points in time [8,19]. This behaviour depends on the amount of unoccupied traps that exist in the
gate region of the transistor at a given point in time, which can absorb some of the draining charge,
and is related to the manufacturing process of the cell’s transistor. This phenomenon can add to the
instability of the retention characteristic of DRAM cells.

Moreover, another characteristic of DRAM cells that has been exploited for the implementation
of security primitives is the time required for the read and write operations to be successful [20,21].
If this time is decreased, some cells will fail to be read or written, while others will still be read or
written successfully, depending on slight variations in their transistors and capacitors. Obviously,
however, for the output of the DRAM to be truly random, the time allowed for the read and the write
operations must not be set too high or too low, as this would cause the vast majority of cells to be read
and written successfully or to fail to be read and written, respectively. Changing the time parameters,
such as the access latency, used for the read and write operations of a DRAM can be done either with
the introduction of a delay component [20], or by manipulating their values using software commands,
when this is possible [21].

We should, finally, note that, based on the stability of the DRAM characteristics exploited, different
security primitives can be implemented. If the characteristic exhibits a high degree of stability, then a
Physical Unclonable Function (PUF) can be implemented out of it, which can be used for identification,
authentication or even as a secure key storage. Even if the characteristic is not fully stable, error
correction can be applied so that the DRAM-based PUF can truly act as a function, which always
provides the same output for a specific input. Otherwise, if the characteristic is highly unstable, it can



Cryptography 2018, 2, 7 8 of 33

be leveraged for the production of a random number generator. In this case, we want the output
to be as unstable as possible, so that we can ensure that the numbers (actually, bitstrings) that are
produced will be highly random. In both cases, however, we require that the characteristic holds
enough randomness to be unpredictable and is quite unique per DRAM instance, in order to prevent
trivial attacks against the security primitives being implemented.

2.2.1. Physical Unclonable Functions

As already mentioned, Physical Unclonable Functions (PUFs) act as functions encoded in
hardware, which produce a unique output, being referred to as a response, for a specific input, being
called a challenge. PUFs provide a varying level of security, and can, therefore, be used in different
applications, depending on the number of their available input–output pairs, which are referred to as
Challenge-Response Pairs (CRPs). For example, a PUF with only a single challenge-response pair can
be used for identification, while a PUF with multiple CRPs can be used to provide multiple different
session keys for authentication. In the first case, the response needs to be secret, while, in the second
one, responses can be also used without any secrecy, as long as the related CRPs are not used again.

Although a number of publications considered the usage of physical characteristics for
identification, authentication and anti-counterfeiting [22–24], the first major investigation regarding the
potential of a physical structure to serve as a hardware-entangled one-way function was only conducted
in 2001 [25,26]. Nevertheless, this study concentrated on the usage of a dedicated disordered optical
structure as a security primitive, and required additional hardware for its identification. The first
intrinsic PUF came in 2002 [27,28], being reported in the same publications that also proposed the
term “physical unclonable function” in order to describe a hardware-entangled function that produces
outputs that are unique for each hardware instance. However, again, the primitives proposed (arbiter
PUFs) were dedicated hardware components that, although they were implemented in silicon, would
require additional hardware in order to be evaluated.

A major breakthrough happened in 2007 with the introduction of the SRAM PUF [29,30],
which was the first PUF that not only was implemented in silicon, but was also based on a hardware
component, SRAM, that was part of most contemporary computer systems, and which could also be
evaluated without the need of additional hardware. Nevertheless, the SRAM PUF is based on the
startup values of the SRAM, and can therefore only be evaluated at boot-time. This means that the
system needs to be restarted every time its PUF response is required. Additionally, the SRAM PUF has
only a single CRP, whereas all previous PUF implementations could provide multiple CRPs, forcing
a distinction between PUFs with a single or very few CRPs, which are referred to as “weak” PUFs,
and PUFs with a large number of CRPs, which are called “strong” [31,32].

However, at the same time, modelling and machine-learning attacks against the so-called “strong”
PUFs [33–36], forced the development of newer more resistant implementations, such as the XOR
(eXclusive OR) arbiter PUF and the lightweight arbiter PUF, which were, however, then attacked
using more sophisticated modelling and machine-learning attacks. Therefore, while research still
continues in order to find a strong PUF that will also be immune to modelling and machine-learning
attacks, most of the delay-based implementations, such as arbiter and ring oscillator PUFs, are proven
to be extremely vulnerable to them. It is for this reason that the majority of the most recent PUF
implementations are based on memory elements, such as SRAMs, DRAMs and Flash memories.

The distinction between “strong” and “weak” PUFs is not always obvious, as it is not easy to
define what constitutes a large enough number of CRPs. In general, however, delay-based PUF
implementations have been considered as “strong” and memory-based ones as “weak”. Nevertheless,
the ring oscillator PUF, a delay-based PUF, has been described in some publications as a “weak”
PUF [32] and in others as a “strong” one [35]. Additionally, as we discuss in other sections, DRAM
PUFs can quite often provide multiple CRPs, and even a very large number of them [11]. However, in
this work, we refrain from judging whether the different DRAM-based PUFs are “weak” or “strong”,



Cryptography 2018, 2, 7 9 of 33

and only examine the amount of CRPs that they can potentially allow for, which we sometimes proceed
to compare to the single CRP that most SRAM PUF implementations provide.

Regarding the prevalence of memory-based PUF implementations in recent publications, this is
clearly demonstrated in Table 1, which presents a brief history regarding the development of the most
well-known PUFs. In this table, we use a colour classification to distinguish between memory-based,
delay-based and other PUF implementations, in order to present this information to the reader in a
way that is very simple to understand without additional effort.

Table 1. History of the development of the most well-known Physical Unclonable Functions (PUFs).
The PUFs presented are colour-coded according to their type.

Year Publications

2001–2002 Optical PUF [25,26]

2002–2003 Arbiter PUF [27,28]

2004 Feed-Forward Arbiter PUF [33]

2006 Coating PUF [37]

2007 SRAM PUF [29,30], Ring Oscillator PUF [38], Latch PUF [39], XOR Arbiter PUF [38]

2008 Lightweight Arbiter PUF [40], Butterfly PUF [41], Flip-Flop PUF [42]

2010 Glitch PUF [43]

2011 Flash PUF [6], Current-based PUF [44], Bistable Ring PUF [45]

2012 Buskeeper PUF [46], DRAM Decay PUF [13,14,18]

2014 Bitline PUF [47], Transient Effect Ring Oscillator PUF [48]

2015 DRAM Startup PUF [12], DRAM Latency PUF [20]

2016 MEMS PUF [49]

2017 Row Hammer PUF [5]

Memory-based PUFs Delay-based PUFs Other PUFs

Memory elements are inherent components of most modern computer systems, therefore
allowing for cost-efficient PUF implementations, especially in resource-constrained devices, such
as IoT hardware [2,7]. Additionally, DRAM PUFs based on the startup values of the DRAM offer a
significantly larger amount of entropy than SRAM PUFs because of the much larger size of DRAMs
found in most modern computer systems [3]. Moreover, DRAM decay-based PUFs can also offer
run-time access to their responses, addressing in this way one of the major shortcomings of the SRAM
PUF [4,5]. Furthermore, the most recent implementation of the DRAM latency-based PUF can offer a
significantly lower evaluation time than the DRAM decay-based PUF, therefore making evaluation
practical in all cases [21]. Finally, the row hammer PUF is an implementation that can significantly
increase the entropy extracted from the decay characteristic of DRAMs [5].

A DRAM decay-based PUF can inherently provide multiple CRPs, and not only a single one,
as the retention characteristic of DRAM cells is dependent on time and temperature. In a similar
fashion, the DRAM latency-based PUF can provide multiple CRPs, when a set of different values is
used for the time parameters of the read and the write operations of the DRAM. Even the DRAM PUF
based on the startup values of the DRAM can be considered to be able to provide a number of CRPs, if
large segments of a single DRAM are considered as different components of the PUF, each of which
can be queried independently and provide its own (single) CRP. It is therefore essential to investigate
DRAM PUFs in detail, in order to shed light on the current state of the art, as well as provide insights
into their full potential.



Cryptography 2018, 2, 7 10 of 33

2.2.2. Random Number Generators

Since antiquity, humans have been interested in the generation of random numbers for a plenitude
of reasons, ranging from gambling to cryptography and statistics. Random number generation can
be either truly random, when a chaotic system is being used, or pseudorandom, when a seed is
being used to generate a sequence that appears random, but is repeatable using the same seed as a
basis for the generation of a future sequence. A chaotic system, on the contrary, is based on so many
different factors that the sequences generated by it are not fully predictable. Such a system can often
be modelled or simulated, up to some degree, but its exact output is not fully predictable. For example,
throwing dice or flipping a coin can be modelled and simulated, but the results of these actions are not
fully predictable because the exact circumstances under which these actions may be performed are
extremely hard to predict.

However, if we know the exact force with which a coin is being flipped, on which exact spot on
the coin this force has been placed, what was the initial state of the coin, what are characteristics of the
coin, such as its mass, the material of which it is made, etc., and, also, that no other forces affect the
coin, then perhaps the outcome of the coin flipping can be predicted. In exactly the same way, if we
know the seed of a number generator and its exact algorithm, we can then usually predict the exact
output of it. Therefore, the generation of random numbers is highly dependent on the system being
used for it and, more specifically, on how deterministic this system is.

A non-deterministic system will produce highly unpredictable outputs and can therefore be
used for the implementation of True Random Number Generators (TRNGs), while a simple system
that is also fully deterministic will produce outputs that are highly predictable and therefore not
suitable for random number generation. Finally, a complex deterministic system will produce output
that is, up to some degree, predictable, but does appear random, and can therefore be used for the
implementation of a PseudoRandom Number Generator (PRNG). Therefore, the degree of complexity
of a system and its determinism have to be assessed, in order to determine the ability of a system to
be used for random number generation. Nevertheless, this task can prove to be much more complex
than assessing the output of such a system, for its randomness, unpredictability, etc. For this reason,
researchers have developed tests that can indeed examine the suitability of a system to act as a Random
Number Generator (RNG) based on its outputs. One of the most popular suites of such tests has
been produced by the National Institute of Standards and Technology (NIST) in the United States of
America (USA) [50].

Both TRNGs and PRNGs may pass such statistical tests successfully, but once the initial seed of a
PRNG, including its initial state, is known, all its outputs can be predicted successfully. TRNGs are
therefore much more secure, being completely unpredictable, and are, therefore, more suitable for
applications related to security, such as data encryption. However, PRNGs are also very popular due
to their flexible and low-cost implementations and their low generation times [51]. Recent research
has, therefore, focused on the implementation of cost-efficient and flexible TRNGs, which could
be employed as security primitives, mainly in cryptographic protocols. Such TRNGs could be
implemented using commercial hardware, such as DRAMs, which is not only widely available,
but would also not require additional dedicated hardware, which would raise the cost of production.

Such implementations would enable the use of intrinsic TRNGs that would be inherently available
even in resource-constrained devices, such as IoT hardware. As already noted, TRNGs are particularly
useful for the production of ephemeral, one-time keys and nonces, which can allow the implementation
of complex cryptographic protocols. For this reason, intrinsic TRNGs could enable the usage of complex
cryptography even on low-end devices. Therefore, DRAM-based TRNGs could prove to be a major
breakthrough in the history of hardware-based TRNGs.

As software can only very rarely prove to be unpredictable, most TRNG implementation in
modern computer systems use hardware in order to generate random numbers. A large number of
hardware components, such as power supplies [52,53], Zener diodes and delay and clocking elements,
which inherently carry an increased noise load, have been utilised for the implementation of TRNGs.



Cryptography 2018, 2, 7 11 of 33

However, the implementation of such TRNGs usually requires additional circuitry or other hardware,
either for the construction of the TRNG components or for the evaluation of the TRNG hardware. As a
result, not only such TRNGs may increase the production costs, but also have an increased generation
time, as multiple components may be required for their construction and evaluation. On the contrary,
an intrinsic silicon TRNG, such as a DRAM-based TRNG, can provide increased security in comparison
to a PRNG, while providing low generation times and requiring only dedicated software, a need that
is also common to most PRNGs.

Recent research has proven that the characteristics of DRAMs may, in some cases, provide outputs
that are random and unique per DRAM instance, but also highly unstable, and can therefore be used
for the implementation of intrinsic hardware TRNGs in commodity devices. In particular, the potential
of the retention time of DRAM cells to serve as a source of entropy for the implementation of a TRNG
had been noted even in the very first publications regarding the decay characteristic of the DRAM
cells as a basis for the implementation of security primitives [15,16]. Additionally, the data remanence
of DRAM cells has also been investigated as a characteristic that can be exploited for the creation of
a robust DRAM-based TRNG [17,54]. Finally, a more recent publication studies the potential of the
startup values of DRAM cells to be employed for the production of a TRNG, and the difficulties in
the realisation of such a scheme [55]. Therefore, as recent research [19] keeps providing promising
results regarding the potential of DRAMs to serve as a basis for the formation of cost-efficient, fast and
flexible TRNGs, we believe that it is crucial to investigate in detail the current state of the art regarding
DRAM-based TRNGs and their future potential for cryptographic applications.

3. Overview of the Current State of the Art Regarding DRAM-Based Security Primitives

As already mentioned in the previous section, the recent development of DRAM-based security
primitives can potentially lead to significant advances in the field of IT security, because such primitives
not only can be implemented in a cost-efficient manner, as DRAMs constitute intrinsic components of
most contemporary computer systems, but also, quite often, can be used at run-time. For this reason,
in this section, we investigate the relevant literature, provide a thorough overview of it and classify it,
in such a way as to provide a clear picture of the current state of the art and useful insights regarding
potential future developments.

Our overview and classification scheme have been inspired by relevant publications containing
classifications and taxonomies of other hardware-based security primitives and mechanisms. We briefly
cite a very small number of such overview papers on the security of smart grids and smart homes
[56,57], on the security of Radio-Frequency IDentification (RFID) [58,59], on IoT infrastructure [60–63],
on PUFs [32,64–71] and on hardware Trojans [72–74], which clearly demonstrate the diversity of hardware
security mechanisms that have so far been examined.

3.1. Brief Literature Taxonomy

As Table 2 reveals, there has been an increased interest regarding DRAM-based security primitives
in previous years. This is also evident from the publication of two doctoral dissertations in 2017 that
consider DRAM-based security primitives to a significant extent [54,75]. Additionally, other doctoral
dissertations also discuss DRAM-based security primitives [76,77], exhibiting that these primitives are
becoming well-known. Finally, the existence of other publications from Eastern Europe [78,79] and
Asia [13,77] are further indicators of the global outreach of the topic of DRAM-based security primitives.

It is, therefore, important to examine in some detail the most influential publications regarding
DRAM-based security primitives, in order to identify their most important contributions and, in this
way, expose the current state of the art of this scientific field. We choose to do so in a chronological
order, as Table 2 shows, in order to allow the reader to view how this field has evolved and get some
very first insights into its potential future development.

As it has already been mentioned, there are four major characteristics and effects related to
DRAMs that have so far been exploited for the implementation of a DRAM-based security primitive.



Cryptography 2018, 2, 7 12 of 33

These are DRAM decay and data remanence effects, the startup values of the DRAM cells, DRAM
access latencies and the effect of applying a row hammer algorithm on the rows of a DRAM array.
We, therefore, choose to also classify the publications presented in Table 2 according to the exploited
characteristic(s), which they refer to, in order to provide a more detailed view of the way in which
DRAM-based security primitives were developed. We choose a colour classification, in order to make
the results of our classification easier for the reader to understand. As some publications consider two
characteristics, we indicate those by using both relevant colour indicators in Table 2.

Table 2. History of the development of DRAM-based security primitives. The publications examined
are colour-coded according to the DRAM characteristic being exploited for the implementation of the
security primitives discussed in them.

Year Total Amount
of Publications Publications

2012 4
Okamura et al. [13], Fainstein et al. [18], Keller et al. [14] (poster),
Felber [15] (presentation slides)

2013 2 Rosenblatt et al. [80], Rosenblatt et al. [81]

2014 3 Liu et al. [82], Liu et al. [83], Keller et al. [16]

2015 4
Tehranipoor et al. [12], Hashemian et al. [20], Zhang [84],
Rahmati et al. [85]

2016 4
Tehranipoor et al. [17], Sutar et al. [86], Vitenko [78],
Xiong et al. [4]

2017 10

Sutar et al. [87], Tehranipoor et al. [88], Tang et al. [11],
Eckert et al. [55], Tehranipoor et al. [3], Schaller [75],
Tehranipoor [54], Kumar et al. [89], Kirihata et al. [90],
Schaller et al. [5]

2018 (Jan) 2 Kim et al. [21], Sutar et al. [19]

DRAM natural decay effect DRAM intensified decay effect due to VWL DRAM startup values
DRAM data remanence effect DRAM row hammer effect DRAM access latency

3.2. Overview of the Literature Regarding DRAM-Based Security Primitives

As Table 2 shows, the first publications regarding DRAM-based security primitives have occurred
in 2012 and all were considering DRAM PUF implementations based on the retention characteristic
of DRAMs. Since then, however, the amount of publications per year seems to be stable, with a
sudden increase in 2017, which may also be continued in 2018. Additionally, the number of DRAM
characteristics employed for the implementation of security primitives has also increased, and may
further increase in the future. An overview of the current literature regarding DRAM-based security
primitives follows.

In 2012, Okamura et al. [13] published a paper regarding the usage of the retention characteristic of
a DRAM in order to produce a PUF. They also examined the effect of temperature on this characteristic,
with a focus on the effects of different temperatures on the number of bits flipping. They compared
PUF responses measured at 25 ◦C to responses measured and −5 ◦C, 45 ◦C and 65 ◦C, showing that
the number of flipped bits increases, for higher temperatures and higher decay times, during which
the DRAM is not being refreshed. Finally, they showed that unique 192-bit keys can be generated
within 30 s and 672-bit keys within 60 s.

Fainstein et al. [18] published a paper describing a Retention-based Intrinsic Chip ID (RICID)
using embedded DRAM (eDRAM). They demonstrated intrinsic chip identification using a 32 nm
Silicon-On-Insulator (SOI) high-κ/metal gate embedded DRAM, which provided a high probability
of ID uniqueness and recognition. Their technique constitutes a decay-based DRAM PUF, where the
decay is intensified by using higher wordline low voltages (VWLs). They used a bit fail map of a



Cryptography 2018, 2, 7 13 of 33

DRAM array, in which retention pass or fail bits (represented as logical zeros or ones, respectively) are
used to generate a pair of binary strings A and B using different VWLs. Using a higher VWL for B
results in a greater number of retention fails such that the list of failing cell positions includes all of the
positions that failed in A and new ones because more cells leak enough for their logical value to flip.

Keller et al. [14] presented a poster about the usage of the retention characteristic for the implementation
of a DRAM PUF, and Felber [15] made also presentation slides for the same implementation and its usage
in a Quantum Key Distribution (QKD) system.

In 2013, Rosenblatt et al. [80] extended the RICID idea published by Fainstein et al. [18] using
the same DRAM PUF implementation in order to include field-tolerant authentication by detecting
a number of bits that can ensure successful recognition and also prevent ID spoofing during the
read operation. This allowed for a 100% recognition rate of the unique chip IDs generated under
different temperature and voltage conditions, using more than 400,000 ID pair comparisons in more
than 250 chips. Successful recognition rates were predicted to be very close to 100% using an analytical
model for one million different pairs.

In a different publication in the same year, Rosenblatt et al. [81] presented an architecture that
enables self-authentication in chips, using electrically programmable fuses (eFUSEs) that store PUF
responses produced by an eDRAM. Again, the DRAM PUF is based on the retention times of the
DRAM cells, which can be lowered using higher VWLs. The responses produced are proven to be
unique using Monte Carlo simulations and the chips can be authenticated even when the responses
are noisy. The simulation results are confirmed by testing more than 50 chips and an analytical model
is used to predict that attacking the DRAM PUF using brute force would require more than 10 years to
be successful and that successful authentication rates are very close to 100% using an analytical model
for one million different chips.

In 2014, Liu et al. [82] published a paper regarding a DRAM decay PUF based on a
Double-Data-Rate type three (DDR3) Synchronous DRAM (SDRAM). They also described an algorithm
for key generation, with an integrated fuzzy extractor, which can produce secure 128-bit keys. Due
to the wide adoption of DDR3 memory in wireless sensor networks (WSNs), and as the proposed
DRAM PUF technology provides high security and does not require hardware changes, the proposed
PUF is suitable for usage in WSN applications. The feasibility of such a PUF is validated using an
Field-Programmable Gate Array (FPGA) board and a number of removable Small Outline Dual In-line
Memory Module (SODIMM) DRAMs. An extended version of this paper was also published the same
year by Liu et al. [83], in which a more detailed overview of the algorithm, including a thorough
description of the fuzzy extractor parameters, is presented. Both papers present positive results
regarding the decay rate and the intra-device and inter-device Hamming distances.

Keller et al. [16] also presented a DRAM decay PUF based on a DDR3 SODIMM DRAM connected
to an FPGA board, which can, however, also be used for the generation of random numbers. A memory
controller that permanently disables the refresh operation has been implemented. The authors note
that the implemented DRAM PUF allows for repeated queries at run-time, in contrast to an SRAM
PUF. Furthermore, utilising a 512 MB DDR3 module, 400 random bits can be produced per second.

In 2015, Tehranipoor et al. [12] introduced a DRAM PUF based on the startup values of the DRAM
cells, which works in a similar way to the SRAM PUF. Nevertheless, due to the size of the DRAM,
this PUF allows for a much larger response size. It relies on the fact that DRAM cells initialise to
random values at startup because of variations in their manufacturing process, which are however
too small to affect their regular operation. Different operating conditions, such as different voltage
and temperature levels are investigated in order to test the PUF’s reliability. The most stable cells are
selected during enrollment for further use.

Hashemian et al. [20] presented in the same year a DRAM PUF implementation based on the
write access failures. An external delay circuit can be implemented in order to change the time
parameter of the write operation, in such a way that a number of cells fail to be written. Monte
Carlo simulations were performed using an implementation of a Simulation Program with Integrated



Cryptography 2018, 2, 7 14 of 33

Circuit Emphasis (SPICE), a program used for the simulation of hardware. These simulations showed
that, for 1000 chips with 10% inter-die and 8% intra-die variation, the proposed PUF exhibits high
uniqueness with a 50.01% average inter-die Hamming distance and good robustness under temporal
fluctuations in the supply voltage and the temperature and under aging effects for its estimated 10-year
lifetime. The PUF also provides good reproducibility with a 7% average intra-die Hamming distance
for temperatures ranging from 20 ◦C to 50 ◦C and 7.4% average intra–die Hamming distance for supply
voltages ranging from 0.9 to 1.2 volts. Furthermore, aging analysis shows that under Negative-Bias
Temperature Instability (NBTI) effects, unstable bits constitute on average only 0.92% of the PUF
responses over the estimated 10-year lifetime.

Zhang [84] published his master’s thesis on the same year, which is highly related to the papers by
Liu et al. [82,83]. The same PUF implementation is presented, along with an extended related literature
section, additional sections on the applications of PUFs and more information regarding the fuzzy
extractor scheme and the metrics used to evaluate this DRAM decay PUF. The results prove that this
PUF implementation can serve for secure key generation.

Rahmati et al. [85] presented what can be characterised as an “attack” PUF implementation,
as their paper explored how the decay characteristics of DRAM cells in approximate DRAM, a DRAM
that does not provide 100% stability of its stored values can create an error pattern that could serve
as a system identifying fingerprint. Approximate DRAM allows for some values to decay, as its
refreshing time is not adequate enough for all the cells to be refreshed before they decay. Therefore,
the values stored in the cells with the lowest retention times will fade away, creating a unique pattern
of error, which may not affect significantly the content stored over all the DRAM array, but can lead
to successful recognition and de-anonymisation. This publication was followed by others that focus
more on the optimisation of the quality of an approximate DRAM [91,92].

In 2016, Tehranipoor et al. [17] published a paper presenting a hardware TRNG based on the data
remanence effect of a DRAM, whereby information remains in a DRAM even after powering it down.
This phenomenon is practically another version of the cell decay characteristic. Nevertheless, as in
this case, the whole DRAM, or even the whole chip, is powered down, a slightly different behaviour
may appear, which is also dependent on burn-in and grounding effects, i.e., the time that a value has
been stored on a cell and whether the overall circuit is grounded or not. Additionally, the startup
behaviour of the cells can play a role because, if the cells decay completely during the period of time
that the DRAM is powered off, they will probably assume their startup values when the DRAM is
again powered on. Therefore, this implementation is inclined to exhibit high instability, which makes
it fit to serve as an TRNG. An FPGA and its on-board DRAM are used for testing, together with a
power-cycle circuit used to enable and disable the DRAM.

Sutar et al. [86] published a paper on a DRAM decay PUF that is intrinsically reconfigurable,
supporting a large number of challenge-response pairs (CRPs) through the variation of different
parameters. Their design is implemented and validated using an FPGA and removable SODIMM
DDR3 DRAM modules. Their design also allows for reduced authentication times in comparison to
previous works. Additionally, the authors tested the robustness of their authentication mechanism
under temperature variations and aging effects. Their results demonstrate a 100% true-positive
(successful authentication) rate for a 10 ◦C temperature variation with a 0% false-positive rate. For a
nine-month old DRAM module, their authentication mechanism also provided a 100% true-positive
rate and a 0% false-positive rate.

Vitenko [78] presented a rather interesting implementation of a DRAM PUF based on the
retention characteristic of DRAM cells, as it was the first implementation on a truly commercial
device. The DRAM of a tablet computer produced by LG, a well-known electronics company that has
its headquarters in Seoul, South Korea, was used in order to implement a PUF and the relevant DRAM
module was controlled using the Android OS. The evaluation of the responses of the PUF proves that
it can be used for identification purposes, as they are proven to be random, unique and stable enough.
This paper proves in a definitive way that DRAM PUFs can be used commercially.



Cryptography 2018, 2, 7 15 of 33

Xiong et al. [4] implemented a DRAM decay PUF that can be queried at run-time on two
commercially available evaluation boards using a Linux kernel module, therefore exhibiting that
DRAM PUFs can be implemented and used in IoT hardware. Additionally, they also presented
a firmware implementation of the same PUF on both devices using the firmware of these devices.
However, this implementation cannot be accessed at run-time. Finally, they also presented lightweight
cryptographic protocols based on their PUF implementations, which can be used for device
authentication and secure channel establishment.

In 2017, Sutar et al. [87] presented a memory-based combination PUF implementation that
combined an SRAM PUF with a DRAM decay PUF. This implementation can potentially combine the
advantages of both types of memory-based PUFs and address the shortcomings of each individual
PUF type. This implementation addresses potential problems of the two different PUF types, such as
the DRAM module being removable, in which case, it can easily be transferred to another system for
the implementation of a number of different attacks against its security. The proposed PUF exhibits
high entropy, supports a large number of challenge-response pairs, and is intrinsically reconfigurable.
The SRAM PUF utilizes a power-cycling approach to generate startup values as responses, while the
DRAM PUF responses consist of unique bit-flip patterns generated through a refresh-pausing
approach. The combination PUF has been implemented using an FPGA and several off-the-shelf
SRAMs and DRAMs. Their experimental results demonstrate substantial improvements over current
memory-based PUFs including the ability to resist various attacks. Extensive authentication tests across
a wide temperature range (20–60 ◦C) and accelerated aging (12 months) demonstrate the robustness
of the proposed design, which achieves a 100% true-positive rate and a 0% false-positive rate for
authentication across these parameter ranges.

Tehranipoor et al. [88] published an investigation of the reliability of the responses of a DRAM
PUF based on the startup values of its DRAM cells under device-accelerated aging effects. Their paper
presents accelerated aging experimental results over 18 months on three DRAM PUFs based on startup
values. Experiments were conducted using three Commercial Off-The-Shelf (COTS) DRAM modules.
Additionally, in order to accelerate aging, a thermal inducting system was employed. Based on their
results, the effect of NBTI stress appears to be negligible on DRAMs and can be ignored. In other
words, this type of DRAM PUFs is resistant to aging, and can, therefore, improve the performance and
reliability of the entire system during its operational life.

Tang et al. [11] presented a DRAM PUF based on the retention characteristic of DRAM cells,
utilising the location of cells with a weak retention characteristic in a 65 nm 2T Complementary
Metal–Oxide–Semiconductor (CMOS) eDRAM. In this case, multiple locations of the DRAM are
utilised to produce the PUF’s final response, as their error patterns are combined in the final response.
This scheme allows for the creation of more than 1032 unique CRPs from a 1 Kbit eDRAM array.
The responses become more stable through the application of a zero-overhead repetitive write-back
technique along with bitmasking, while instabilities induced by voltage and temperature variation are
mitigated by adjusting the read reference voltage and refresh time before each authentication operation.
Finally, the area of each cell of the proposed DRAM PUF is calculated to be less than 1 µm2.

Eckert et al. [55] published a paper dealing with a hardware TRNG implementation based on
the startup values of Double-Data-Rate type two (DDR2) DRAM. In this paper, they show that the
startup values of newer DRAMs may not suitable to serve as a PUF, a conclusion that was also
reached by Anagnostopoulos et al. [93]. However, by combining multiple measurements through an
XOR operation and by using a von Neumann corrector, the authors manage to implement a TRNG.
The authors assess the randomness of their scheme using the NIST suite of tests and prove that it can
be used as a TRNG. We note here that the eXclusive OR (XOR) logical operation provides a logical
output of zero when all its inputs have the same logical value and of one when at least one of them has
a different logical values from the others.

Tehranipoor et al. [3] extended the previous publication by Tehranipoor et al. [12] regarding a
DRAM PUF based on the startup values of the DRAM cells. Their approach has a relatively low



Cryptography 2018, 2, 7 16 of 33

generation time and no additional hardware is required. The effect of different operating conditions,
based on voltage and temperature variations and aging is examined. Their implementation consists
of external Dual In-line Package (DIP) DRAM modules connected to an FPGA board, and provides
highly distinct PUF responses with an average inter-die Hamming distance of 0.4937, which can be
utilised to construct 128-bit secure keys.

Schaller [75] published his doctoral dissertation in 2017, in which he examines PUF
implementations on COTS hardware and their applications. He discusses in detail DRAM PUFs
based on both the retention characteristic of DRAM cells and the row hammer effect, as well as their
applications, and potential protocols based on them. His dissertation proves that DRAM and other
memory-based PUFs can be implemented on COTS hardware and serve as security primitives for the
implementation of lightweight cryptographic protocols.

Tehranipoor [54] also presented her doctoral dissertation in 2017, in which DRAM-based PUFs
and TRNGs are presented and discussed in detail. The overall dissertation is considering the design
and architecture of various hardware-based TRNGs and PUFs that meet the requirements and needs
for low-cost solutions in today’s electronic systems. For this reason, particular focus is placed upon
DRAM-based security primitives. Additionally, this dissertation also deals with the architectural
requirements for designing resource-efficient embedded system platforms. Works presented in this
dissertation include a DRAM PUF based on startup values and two DRAM-based TRNGs, one that is
based on the startup values of DRAM cells and another that is based on their data remanence.

Kumar et al. [89] published a book chapter, a part of which deals with hardware security based
on intrinsic IDs produced by eDRAM. These IDs are produced by eDRAM based on the retention
of its cells, which is lowered by using higher VWLs. The technique being employed is very similar
to the ones used by Rosenblatt et al. [80] and Rosenblatt et al. [81]. The authors prove that this
implementation can be successfully employed for the authentication of a chip.

Kirihata et al. [90] also published a book chapter, in which they also discuss a DRAM PUF
implementation based on the retention of its cells, which is lowered by using higher VWLs. The scheme
being employed is again very similar to the ones used by Rosenblatt et al. [80] and Rosenblatt et al. [81],
and is used for anti-counterfeiting purposes. This scheme has the advantage of being based on an
intrinsic element, the DRAM, thus not requiring additional hardware for its implementation, and
therefore being highly cost-efficient.

In general, we must note that the publications by Fainstein et al. [18], Rosenblatt et al. [80],
Rosenblatt et al. [81], Kumar et al. [89] and Kirihata et al. [90] form a family of publications investigating
the potential of eDRAM for the implementation of a DRAM PUF based on the retention characteristic
of its cells, which is artificially lowered by using higher VWLs. To this end, these publications examine
in detail the applications and security of such a primitive, in order to determine its suitability to serve
as the basis of lightweight cryptographic protocols.

Schaller et al. [5] presented a paper regarding the potential of the row hammer effect to be used
in order to enhance the uniqueness and randomness of a DRAM PUF, if it is used in conjunction to
the decay characteristic of the DRAM cells that is exhibited when the refresh operation of the DRAM
is paused. Their implementation on COTS evaluation boards proved that generation times can be
significantly decreased in this way, leading to a PUF that is accessible at run-time and can be used in a
quick manner. Additionally, this was the first positive application of the DRAM row hammer effect.

In 2018, Kim et al. [21]presented an implementation of a DRAM PUF based on the latency of the
read and write operations of the DRAM, and proved that it has a significantly lower generation time
in comparison to the DRAM decay PUF. For this purpose, they implemented both DRAM decay-based
and DRAM latency-based PUFs on a large number of Double-Data-Rate type four (DDR4) DRAM
modules connected to an evaluation board. Their implementation of the DRAM latency PUF requires
no additional hardware for measurements, in contrast to the implementation of the same type of PUF
by Hashemian et al. [20], as they use memory controllers that allow them to change the time parameters
of the read and write operations of the DRAM through software means. Their implementation is



Cryptography 2018, 2, 7 17 of 33

accessible at run-time and the effects of temperature on it have been investigated, proving a significant
decrease of generation times for the DRAM latency PUF in comparison to the DRAM decay PUF at all
temperatures.

Finally, also in 2018, Sutar et al. [19] extended the previous paper by Sutar et al. [86] regarding a
reconfigurable DRAM decay PUF, by also presenting a TRNG based on the DRAM decay PUF and the
VRT phenomenon. Their implementation was based on several COTS DDR3 DRAM modules being
connected to an FPGA board and was proven to be around five times faster than other prior DRAM
PUFs. Their PUF implementation was also proven to be resilient and robust against temperature
variations and aging effects, while the potential of the proposed TRNG design was verified using the
NIST statistical test suite.

3.3. Applications of DRAM-Based Security Primitives

As the previous section shows, DRAM-based security primitives have been employed in a number
of different applications, while both PUF and TRNG implementations have been constructed with
equally good results. In this section, therefore, we will investigate the different primitives proposed by
each work and their applications. In order, however, to do this, we first need to discuss what are the
potential applications of PUFs and TRNGs and the way in which these applications work.

In particular, as already mentioned, the main difference between a PUF and a TRNG is the stability
of their outputs. While a good PUF will provide pretty much the same output for the same input,
a good TRNG will provide different outputs each time the same input is fed into it. This property
of a good TRNG is also shown on Figure 5, where, for the same input A, the TRNG provides a
different output, each time it is queried. Therefore, while TRNGs can be used for the construction of
ephemeral keys and nonces, which are very useful in cryptography, they are not ideal for identification
or authentication purposes. Nevertheless, ephemeral keys can provide information-theoretic security
and perfect secrecy when used in a one-time pad scheme and nonces are widely used in order to
protect against replay attacks.

IC

TRNG

input A

True Random Number Generator

IC

TRNG

input A

IC

TRNG

input A

measurement 1 measurement 2 measurement 3

output 1 output 2 output 3

Figure 5. Principle of operation of a True Random Number Generator.

Additionally, a key produced by a TRNG can also be stored and used for identification and
authentication. However, a key generated from a TRNG cannot be directly traced back to it and,
therefore, has a weak connection to the device itself. On the contrary, if a key is generated by a PUF,
it can be linked to it (and, therefore, also to the relevant device), as a PUF will always generate the
same output when provided the same input under the same conditions, and, therefore, also the same
key. Moreover, a key generated from a PUF does not need to remain stored after being used, as it can
be easily regenerated every time it is needed. Therefore, PUFs have three main applications, namely
key agreement, identification and authentication.

Regarding secure key agreement, usually a fuzzy extractor scheme needs to be applied, as a PUF
often provides slightly noisy responses, which could otherwise affect its reliability [94,95]. This means
that, for a particular challenge, the PUF may not always generate exactly the same response, but may



Cryptography 2018, 2, 7 18 of 33

often generate similar responses, which, however, contain some amount of noise. For this reason,
we employ a fuzzy extractor scheme, which incorporates some Error Correction Code (ECC) [14],
in order to stabilise the PUF response [96]. PUF-based key agreement consists of two phases, which
are shown in Figure 6.

In the first phase, the enrollment phase, which is executed entirely on the server’s side, the PUF
response is combined with the desired key, in order to produce some redundancy bits, called helper
data. The server then saves the challenge, the response and the key used, as well as the helper data
produced, and an ID regarding the CRP and the key used. As Figure 6 shows, the same CRP can be
used with a different key, which will result in different helper data. If the fuzzy extraction scheme is
constructed in a secure way, such that the helper data do not leak information about the CRP and the
key, then the helper data can also be made public.

In the second phase, the reconstruction phase, the PUF has been transferred securely from the
server to the client and a reverse procedure is employed in order for the server and the client to agree
on a key. The server sends a challenge to the client and the relevant helper data for a specific key.
The client uses the PUF to produce the (noisy) response corresponding to the sent challenge, which is
then combined with the helper data and corrected, using the same ECC as in the enrollment, in order
to produce the key. As the server already has the relevant key from the enrollment phase, the server
and the client have agreed to a key, without revealing or transferring a CRP or the key.

Version March 22, 2018 submitted to Cryptography 17 of 32

IC

TRNG

input A

True Random Number Generator

IC

TRNG

input A

IC

TRNG

input A

measurement 1 measurement 2 measurement 3

output 1 output 2 output 3

Figure 5. Principle of operation of a True Random Number Generator

easily regenerated every time it is needed. Therefore, PUFs have three main applications, namely key651

agreement, identification and authentication.652

Regarding secure key agreement, usually a fuzzy extractor scheme needs to be applied, as a653

PUF often provides slightly noisy responses. This means that for a particular challenge, the PUF654

may not always generate exactly the same response, but may often generate similar responses, which,655

however, contain some amount of noise. For this reason, we employ a fuzzy extractor scheme, which656

incorporates some Error Correction Code (ECC) [13], in order to stabilise the PUF response [92].657

PUF-based key agreement consists of two phases, which are shown in Figure 6.658

IC

PUF

challenge response

response

10110010 10100011
11010011
10011010

10100111

00101100
11001011

PUF-based Key Agreement

ID

11
22
33
41

key
helper data

key

10010110
10110101
10011001
10010110

helper data

00110101
00010010
10110101
01011101

Transfer to client
IC

PUF

challenge noisy response
key

helper data client key 
=

server 
key

challenge

10110010

Figure 6. PUF-based key agreement

In the first phase, the enrollment phase, which is executed entirely on the server’s side, the PUF659

response is combined with the desired key, in order to produce some redundancy bits, called helper660

data. The server then saves the challenge, the response and the key used, as well as the helper data661

produced, and an ID regarding the CRP and the key used. As Figure 6 shows, the same CRP can be662

used with a different key, which will result in different helper data. If the fuzzy extraction scheme is663

constructed in a secure way, such that the helper data do not leak information about the CRP and the664

key, then the helper data can also be made public.665

Figure 6. PUF-based key agreement.

Regarding the fuzzy extraction scheme and its related ECC, a number of schemes have been proposed
for DRAM-based PUFs, including fuzzy extractor schemes using helper data [4,19,75,82–84,86], fuzzy
match schemes with or without hashing [81,89,90] and fuzzy vault schemes that also use helper
data [13]. Additionally, using a universal hash implementation based on the Toeplitz matrix [83,84],
which can be represented by a Linear-Feedback Shift Register (LFSR), is another way of stabilising the
DRAM PUF responses. All of these schemes need to be combined with an ECC, which can potentially
be based on either Hamming [16,19,86], BCH [82–84] or Reed–Solomon [13] error correction code.

However, instead of error correction, one can also employ the use of only the most stable
cells [3,11,12,54,88], in order to create stable responses. This approach is quite efficient, especially in
applications that do not require perfect stability, such as identification and authentication. In this case,
applying an acceptance threshold for stability can be sufficient, as then only the most unstable cells
need to be excluded from the response, with no further operation required.

PUF-based identification works in a similar way, in the sense that a server queries multiple
PUFs in order to create a database of (some of) their CRPs, which are stored according to the PUF



Cryptography 2018, 2, 7 19 of 33

from which they came from. Then, at any point in time, this server can identify any of these PUFs,
without explicitly revealing the stored CRPs, by sending challenges to it and observing if the responses
produced correspond to the relevant responses stored in its database. In this way, a PUF can be
identified if CRPs from it exist on the server’s database. Figure 7 demonstrates how PUF-based
identification works. However, in the case of successful identification, a CRP of the identified PUF
may have been completely revealed, and therefore should not be used again. In order to avoid
this, a hashing scheme may be employed, so that the CRPs are not transmitted in the clear, or a key
can be used for implicit identification, through encryption and decryption of a nonce, a signature,
an identifier, etc. Finally, also error correction may again be required, if the PUF responses are noisy.

IC A

PUF A
IC X

PUF

challenge A response A
challenges responses

response

10110010 10100011
11010011
10011010
00111010

10100111

00101100
11101001

PUF-based Identification

X = ?
IC B

PUF B

challenge B response B

IC C

PUF C

challenge C response C

challengeID

A
B
B
C

Figure 7. PUF-based identification.

Finally, PUF-based authentication is very similar to PUF-based identification, as once again a
server creates a database of (some of) the CRPs of a PUF. However, this time, the PUF, and its related
device, go through untrusted environments, where they can be substituted by counterfeits. Therefore,
if a client wants to ensure the authenticity of such a device, it can do so by sending a request for
authentication of the relevant PUF to the server. Then, the server responds with a challenge for the PUF
to be identified. If the produced response matches the relevant response saved on the server’s database,
then the device is authenticated, otherwise not, as shown in Figure 8. In this case, authentication is
achieved without explicitly revealing any of the stored CRPs. Again, however, in the case of successful
authentication, a CRP of the authenticated PUF may be completely revealed, and therefore should not
be used again. In order to avoid this, a hashing scheme may be employed, so that the CRPs are not
transmitted in the clear, or a key can be used for implicit authentication, etc. Finally, error correction
may also again be required, if the PUF responses are noisy.

authentic IC

PUF

trusted ???

PUF

Untrusted 

Environments

Is this 
the 

authentic 
IC ???

challenge response challenge response

challenge response

10110010 10100011
11010011
10011010
00111010

10100111

00101100
11101001 PUF-based Authentication

= ?

Figure 8. PUF-based authentication.



Cryptography 2018, 2, 7 20 of 33

In order to provide a clear and thorough overview of the applications of DRAM-based security
primitives, we classify the relevant literature, first, in Table 3, based on the security primitive it concerns
and, then, in Table 4, based on the applications these primitives have been suggested for. We should
mention here that, in Table 3, we also include the category “Attack PUF”, in order to describe a
case where the PUF characteristic is used in order to actually facilitate an attack, rather than provide
security. Additionally, in Table 4, we group together the “Authentication” and “Anti-Counterfeiting”
categories, as they are highly related, one serving to validate the authenticity of the primitive and
the other to invalidate counterfeit instances. The same principle is applied to “Identification” and
“De-Anonymisation”, where one category implies the identification of a primitive for security purposes
and the other also its identification, but in order to facilitate an attack. Finally, of course, some additional
factors that need to be taken into account, regarding the application for which a DRAM-based security
primitive is more suitable for, are the ability of such a primitive to be used at run-time or not and
the amount of CRPs it can generate. We discuss these factors in more detail in the other sections of
this paper.

Table 3. Classification of publications according to the security primitive they concern. The publications
are colour-coded according to the DRAM characteristic being exploited for the implementation of the
security primitives examined in them.

Publication PUF TRNG “Attack” PUF

Okamura et al., 2012 [13] X

Fainstein et al., 2012 [18] X

Keller et al., 2012 [14] X

Felber, 2012 [15] X X

Rosenblatt et al., 2013 [80] X

Rosenblatt et al., 2013 [81] X

Liu et al., 2014 [82] X

Liu et al., 2014 [83] X

Keller et al., 2014 [16] X X

Tehranipoor et al., 2015 [12] X

Hashemian et al., 2015 [20] X

Zhang, 2015 [84] X

Rahmati et al., 2015 [85] X

Tehranipoor et al., 2016 [17] X

Sutar et al., 2016 [86] X

Vitenko, 2016 [78] X

Xiong et al., 2016 [4] X

Sutar et al., 2017 [87] X

Tehranipoor et al., 2017 [88] X

Tang et al., 2017 [11] X

Eckert et al., 2017 [55] X

Tehranipoor et al., 2017 [3] X

Schaller, 2017 [75] X
(both)

Tehranipoor, 2017 [54] X
(only)

X
(both)

Kumar et al., 2017 [89] X

Kirihata et al., 2017 [90] X

Schaller et al., 2017 [5] X
(both)

Kim et al., 2018 [21] X
(both)

Sutar et al., 2018 [19] X X

DRAM natural decay effect DRAM intensified decay effect due to VWL DRAM startup values
DRAM data remanence effect DRAM row hammer effect DRAM access latency



Cryptography 2018, 2, 7 21 of 33

Table 4. Classification of publications according to their applications. The publications presented are
colour-coded according to the DRAM characteristic being exploited for the implementation of the
security primitives examined in them.

Publication Authentication and
Anti-Counterfeiting

Identification and
De-Anonymisation

Random Number
Generation Key Agreement

Okamura et al., 2012 [13] X X

Fainstein et al., 2012 [18] X X

Keller et al., 2012 [14] X X

Felber, 2012 [15] X X X X

Rosenblatt et al., 2013 [80] X X X

Rosenblatt et al., 2013 [81] X X X

Liu et al., 2014 [82] X

Liu et al., 2014 [83] X

Keller et al., 2014 [16] X X

Tehranipoor et al., 2015 [12] X X X

Hashemian et al., 2015 [20] X X

Zhang, 2015 [84] X X

Rahmati et al., 2015 [85] X

Tehranipoor et al., 2016 [17] X

Sutar et al., 2016 [86] X X X

Vitenko, 2016 [78] X

Xiong et al., 2016 [4] X X X

Sutar et al., 2017 [87] X

Tehranipoor et al., 2017 [88] X X

Tang et al., 2017 [11] X X

Eckert et al., 2017 [55] X

Tehranipoor et al., 2017 [3] X X X

Schaller, 2017 [75] X
(both)

X
(both)

X
(both)

X
(both)

Tehranipoor, 2017 [54] X
(both)

X
(only)

X
(both)

X
(both)

Kumar et al., 2017 [89] X X X

Kirihata et al., 2017 [90] X X X

Schaller et al., 2017 [5] X
(both)

X
(both)

X
(both)

Kim et al., 2018 [21] X
(both)

Sutar et al., 2018 [19] X X X X

DRAM natural decay effect DRAM intensified decay effect due to VWL DRAM startup values
DRAM data remanence effect DRAM row hammer effect DRAM access latency

3.4. Security Evaluation of DRAM-Based Security Primitives

Another important aspect that we need to examine is the actual level of security provided by
DRAM-based primitives, as well as the different ways in which this can be assessed. In order to do this,
we need to first examine the factors that may affect the security of DRAM-based primitives. Apart from
conventional attack vectors, there are also other factors that affect the security of such primitives.
These factors include the time needed for the generation of primitives, the number of unique outputs
the primitive can generate, whether the DRAM module being used is removable or not, whether the
primitive can generate outputs at run-time, whether it is affected by changes in the environmental
conditions, or in the voltage being supplied and, finally, whether it is affected by aging.



Cryptography 2018, 2, 7 22 of 33

In particular, if the generation time is high, then, obviously, there is a higher probability for an
attack to be successful, without being detected. Additionally, if the DRAM module is removable,
then an attacker can easily replace it, or steal it and connect it to a different device. Furthermore,
a security primitive that can generate a lot of unique outputs provides a higher level of security than one
that can only generate a single output, and is much more resistant, for example, to a de-anonymisation
attack. Moreover, a security primitive that is accessible at run-time has a much higher potential to be
used in practical security applications than one that is only accessible at boot-time. On the other hand,
a primitive that is only accessible at boot-time can probably also only be attacked at boot-time and,
therefore, has a smaller attack surface. Finally, obviously, a primitive that is significantly affected by
factors that can easily be controlled by third-party entities, such as temperature, voltage, or whose
outputs are significantly altered by aging, can offer a lower level of security than another primitive
that remains unaffected.

3.4.1. Attacks and Defences

For this reason, we need to note here that security is a relative term, which is highly dependent on
the manufacturing cost, the cost of performing an attack and the potential gains/damages of such an
attack [97]. For example, and as invasive attacks have been proposed against DRAM-based security
primitives [19,82–84,86,87], one could point out that a complex mesh shield of detectors around the
DRAM could potentially prevent such attacks almost completely. However, if the manufacturing
cost of such a mesh shield is much higher than the inclusion of another primitive that is invulnerable
to such attacks, then DRAM-based security primitives may fail as security primitives. Additionally,
however, if the costs of a successful invasive attack outweigh the potential gains for the attacker,
then such attacks will inevitably not be used in such a scale as to render the security primitive insecure.
Finally, we also need to distinguish between different implementations, as, for example, attacks based
on the replacement of the DRAM module [3,14,54,87], have a different cost when removable DRAMs
are employed than when on-board DRAM modules are used.

Keeping, therefore, in mind that there is no perfect security, and that security is highly relevant [97],
we observe that a number of potential attacks have been proposed against DRAM-based security
primitives, and we note possible defences and countermeasures. Invasive attacks [19,82–84,86,87] can
be prevented if the DRAM module is tamper-proof or tamper-evident, meaning that it stops working
after being physically tampered with or its behaviour is noticeably altered. Non-invasive probing, such
as memory readouts [3,4,54,75,87], can be prevented if the DRAM can only be accessed by privileged
code or is a dedicated security module to which access is limited. Attacks taking advantage of the
collection of a large number of CRPs, such as machine learning attacks [19,86], as well as row hammer
attacks [4], can also be prevented in the same way as memory readouts. Fault injections [3] can be
detected through software or hardware means and appropriate action be taken.

Brute force attacks [3,81], as well as dictionary attacks, can be prevented if the entropy of the
output of the DRAM security primitive is adequate. The entropy of the output is dependent on the
probability that each bit of it, which corresponds to a memory cell, has a logical value of zero or one,
on whether there are correlations among the values of the different memory cells and on the size of the
output. Guessing attacks [4,19,86] are also highly unlikely to be successful if the DRAM-based security
primitive produces outputs with high enough entropy, even when such attacks are based on expert
manufacturing knowledge [19,54,55,86], which can also be prevented by keeping such knowledge only
available to trustworthy parties.

In order for the entropy of the output of the DRAM-based security primitive to be high enough
to prevent brute force, dictionary and guessing attacks, its possible values must be so many that an
attacker is highly unlikely to find the correct one, either by luck (in the case of guessing attacks) or by
an exhaustive (in the case of brute force attacks) or selective search (in the case of dictionary attacks).
Therefore, if the bits of the output are highly unpredictable, having an almost equal probability to have
a logical value of zero or one, are not correlated and the output has a large size, the attacker will be



Cryptography 2018, 2, 7 23 of 33

highly unlikely to be successful as the possible values of the output will be 2N , where N is the size of
the output.

Even if the output of the DRAM-based security primitive is biased towards one of the two logical
values, if the size of the output is large enough and the bias is not extremely strong, the entropy
of the output may still be adequate enough to prevent brute force, dictionary and guessing attacks,
as the number of the possible values of the output is equal to the number of possible combinations(

N
U

)
=

N!
U!(N − U)!

, where N is the size of the output and U the number of bits having the opposite

value from the one towards which the output is biased. However, again, this only holds if the bits of
the output are not correlated.

Finally, the attacker must be prevented from acquiring knowledge regarding the DRAM-based
security primitive that can be used to render the relevant conditional entropy of its output low.
For example, if an attacker can use expert manufacturing knowledge to correctly predict a large part
of the output, the entropy of the output conditioned on this knowledge may become low enough to
allow an otherwise infeasible attack to be successful.

The replacement or stealing of the DRAM module [3,14,54,87] can be prevented by using only
on-board DRAM modules and detectors of their constant presence on the board. Environmental
attacks, such as temperature-based attacks [3–5,12,13,16,17,19–21,54,75,80,85–87,89,90], as well as
voltage-based attacks [3–5,11,12,20,54,80,81,89,90], can be prevented by using temperature and voltage
sensors and taking appropriate actions.

Protocol attacks [4,19,54,75,81,86], such as replay, Man-in-the-Middle (MitM) and Denial of Service
(DoS) attacks, can be prevented through the use of nonces, authenticated channels and a high degree
of redundancy, respectively. Out-Of-Band (OOB) authentication can also help prevent protocol attacks.
Collision and spoofing attacks [81,89,90] can also be prevent in the same way as protocol attacks
in conjunction to using on-board DRAMs that have outputs with high entropy. Attacks based on
aging [3–5,11,12,19–21,54,75,80,86–88,90] can be mitigated by using DRAM modules that are resilient
to aging and anti-aging techniques.

Additionally, when inherent error correction hinders the PUF or the TRNG behaviour [5,21], it can
be simply disabled or DRAMs without this feature can be used. Additionally, the TRNG behaviour of
a DRAM-based implementation can be enhanced by combining multiple outputs and using de-biasing
schemes, such as a von Neumann corrector [54,55].

Finally, we also need to examine the “attack” PUF scheme proposed by Rahmati et al. [85].
Attacks against this implementation constitute countermeasures against the de-anonymisation attack
it is being used for. Its attack model is based on supply-chain and eavesdropping attacks [85], and
countermeasures against it, which constitute attacks against the PUF’s de-anonymisation application,
are data segregation, noise and data scrambling. Noise can be countered through error correction
schemes, while data segregation and scrambling can be potentially disabled.

3.4.2. Evaluation Metrics

We also need to examine the different metrics used in the relevant literature in order to assess the
security of DRAM-based primitives. A significant reason for this is that the variety of metrics being
employed in order to evaluate the security of different DRAM-based security primitives significantly
hinders our ability to compare and assess them. This variety stems from the novelty of these
implementations and their unique characteristics. In particular, not only conventional metrics, such
as the Hamming weight [3–5,12,13,16–19,54,75,80–84,86,87,89,90], the intra-device and inter-device
Hamming distances [3,4,11,12,16,19,20,54,82–84,86–88], the Shannon entropy [4,5,13,16,75,85] and the
min-entropy [3,13,20,54,83,84], have been extensively employed, but also a number of less well-known
metrics, such as the intra-device and inter-device Jaccard indices [4,5,21,75,85], the Sokal–Michener
(simple matching) coefficient [78], the overlap distance [13,18,80,81,89,90] and other quantitative and
statistical performance metrics [78].



Cryptography 2018, 2, 7 24 of 33

Additionally, these metrics may have a different meaning, depending on the DRAM-based security
primitive they are used for. For example, the Hamming weight of a DRAM decay PUF refers to the
number of bit flips that have occured, while the Hamming weight of a DRAM PUF based on the startup
values of the DRAM refers to the number of cells whose startup value is equal to logical one. Moreover,
a number of other metrics, such as the number of stable cells [3,11,12,19,54,81,88–90], the probability
of uniqueness [18,80,81,89,90], the chance of mismatch [85], the bit error rate [21,75] and the number
of CRPs or keys being produced [3–5,11,14,15,19,21,54,75,80,81,85–87,89,90], have also been employed
in order to assess the security that a DRAM-based primitive can provide.

Finally, we also need to mention the NIST statistical suite of tests, which serves as a sui generis
suite of metrics for DRAM-based TRNG implementations [12,16,17,19,54,55], as well as the generation
time as a metric to assess security [4,19,21,86]. It is therefore clear that it is currently not easy to
compare different DRAM-based security primitives and their implementations, as a common single
set of metrics is not currently being used in the relevant literature.

4. Discussion

In this section, we briefly compare DRAM-based security primitives to other hardware-based
security primitives, discuss the potential of DRAM-based security primitives to be commercially
adopted and, finally, present and discuss the different classification criteria employed in
this publication.

4.1. A Short Comparison of DRAM-Based Security Primitives to Other Hardware-Based Security Primitives

As already mentioned, DRAMs have a number of advantages over other similar hardware-based
security primitives. In particular, while a large variety of hardware-based security implementations
have been proposed, memory-based primitives are attractive security mechanisms due to the
ubiquitous presence of memory in virtually every computer system. Moreover, these memory-based
security primitives do not require any additional circuitry for their operation, giving them a distinct
advantage over other implementations. Additionally, unlike SRAM, standalone DRAM has a large
size in most contemporary computer systems and most DRAM-based security primitives can also be
accessed as a security primitive at run-time and not only at boot-time. Finally, most DRAM-based
PUFs can provide multiple CRPs, in contrast to SRAM-based PUFs, which usually only allow for a
single CRP.

However, DRAM-based security primitives may sometimes require a long generation time,
especially when they are based on the retention times of DRAM cells. Nevertheless, recent research
has significantly improved the output generation times, even for DRAM decay-based PUFs, as the
relevant literature shows. Furthermore, if the DRAM module being used is removable, it provides more
flexibility, but, at the same, it introduces the risk of being stolen or replaced. This issue can, however,
be resolved if an on-board DRAM module is used. Finally, the characteristics of DRAM modules
being used for the implementation of security primitives are quite often particularly susceptible
to temperature changes. This is an issue that can, however, be resolved by the introduction of a
temperature sensor.

We can therefore conclude that the intrinsic nature of DRAM-based primitives, their large size and
their inclusion in most contemporary computer systems make them appealing for security applications,
as they are highly cost-efficient, lightweight and can act as sources of significant entropy. However, a
number of open issues still remains to be addressed by future research.

4.2. The Potential of DRAM-Based Security Primitives for Commercial Adoption

As we have already discussed in the previous sections, DRAMs are already widely available and
in mass production, forming an intrinsic part of most contemporary computer systems. Additionally,
they can also provide run-time access to characteristics that can be used for the implementation of
security primitives, and have, most often, a significantly large size, which can ensure that DRAM-based



Cryptography 2018, 2, 7 25 of 33

security primitives can provide enough entropy. Therefore, and as DRAM-based security primitives
have a number of advantages over other hardware-based security primitives, we need to assess their
potential to be adopted as widely used commercially available security implementations.

However, in order to do this, we first need to examine the implementations proposed in
the relevant literature and their characteristics. For this purpose, Table 5 presents the various
implementations described in the different works concerning DRAM-based security primitives. Based
on this table, it is obvious that DRAM-based security primitives have been tested using both simulations
and practical implementations. Regarding practical implementations of such security primitives, these
range from external DIP, removable DIMM and on-board DRAM modules connected to FPGA and
evaluation COTS boards to widely used commercial devices. It should, therefore, be evident that
DRAM-based security primitives can easily become commercially available and be used in a large scale.

Table 5. Classification of publications according to their implementation setup. The publications are
colour-coded according to the DRAM characteristic being exploited for the implementation of the
security primitives examined in them.

Implementation Setup Publications

Monte Carlo simulation Fainstein et al., 2012 [18], Rosenblatt et al., 2013 [80], Rosenblatt et al., 2013 [81],
Kumar et al., 2017 [89], Kirihata et al., 2017 [90]

SPICE-based simulation Hashemian et al., 2015 [20]

novel eDRAM ASIC Fainstein et al., 2012 [18], Rosenblatt et al., 2013 [80], Rosenblatt et al., 2013 [81],
Tang et al., 2017 [11], Kumar et al., 2017 [89], Kirihata et al., 2017 [90]

FPGA and external DIP
DRAM

Tehranipoor et al., 2015 [12], Tehranipoor et al., 2017 [88],
Tehranipoor et al., 2017 [3], Tehranipoor, 2017 [54] (only)

FPGA and removable DIMM
DRAM

Liu et al., 2014 [82], Liu et al., 2014 [83], Keller et al., 2014 [16], Zhang, 2015 [84],
Rahmati et al., 2015 [85], Sutar et al., 2016 [86], Sutar et al., 2017 [87],
Sutar et al., 2018 [19]

FPGA and on-board DRAM Okamura et al., 2012 [13], Tehranipoor et al., 2016 [17], Eckert et al., 2017 [55],
Tehranipoor, 2017 [54]

evaluation board and
external DIP DRAM Rahmati et al., 2015 [85]

evaluation board and
removable DIMM DRAM Kim et al., 2018 [21]

evaluation board and
on-board DRAM Xiong et al., 2016 [4], Schaller, 2017 [75],Schaller et al., 2017 [5]

conventional commercial
hardware Vitenko, 2016 [78] (on-board DRAM)

DRAM natural decay effect DRAM intensified decay effect due to VWL DRAM startup values
DRAM data remanence effect DRAM row hammer effect DRAM access latency

As already noted in the previous sections, existing barriers against the commercial adoption of
DRAM-based security primitives can be overcome in various different ways, towards which existing
research is already moving. This is evident in recent publications, some of which consider the
generation times of these primitives and how they can be improved [4,19,21,86] or the implementation
of such security primitives using the latest commercially available DRAM modules, such as Low-Power
Double-Data-Rate type 4 (LPDDR4) DRAM modules [21], or widely used commercial devices [78].
To this end, research has considered DRAM-based security primitives based on the startup values
of cells, which can most often only provide a single input–output pair, but has also focused on
DRAM-based security primitives that provide multiple input–output pairs, such as DRAM decay-based
and DRAM latency-based primitives, as it can clearly been seen on Table 2.

Finally, as DRAM-based security primitives are already present in most contemporary computer
systems, including IoT hardware, which is usually resource-constrained, they provide the ideal basis



Cryptography 2018, 2, 7 26 of 33

for the implementation of intrinsic highly cost-efficient security mechanisms in IoT devices. As IoT
devices quite often cannot inherently support additional security mechanisms, such as Trusted Platform
Modules (TPMs) and other security primitives that require hardware additions, DRAM modules can
allow for the implementation of security primitives in such devices, which can then be utilised in a
number of different security applications, such as cryptographic protocols. This is further supported
by the ability of DRAM modules to serve as a basis for the creation of both TRNGs and PUFs, which
are also accessible at run-time. We can, therefore, conclude that DRAM-based security primitives
exhibit significant potential for commercial adoption, especially in IoT devices.

This is of particular importance, as a constant rise has been noted in the use of IoT devices
for a multitude of different applications, which include user and customer authentication, weather
prediction, traffic monitoring and health applications that range from monitoring general health
indicators to tracking specific heart signals [98]. This constant expansion of IoT devices into everyday
life significantly increases the need for adequate security solutions that are compatible with the
constrained resources of IoT hardware, such as DRAM-based security primitives [7]. Therefore, there
are increased incentives for the commercial adoption of DRAM-based security primitives.

4.3. Classification Criteria

In this section, we provide a quick overview of the classification criteria used in this paper to
classify DRAM-based security primitives and the relevant literature and discuss their significance.

In particular, we note that we have provided a comprehensive overview of works concerning
such primitives, and have used the following criteria in order to produce a thorough classification
of them:

• Year of publication, in order to demonstrate the significance of the topic of DRAM-based security
primitives and provide insights into the future development of the relevant scientific field.

• DRAM characteristic being exploited for the implementation of a security primitive, in order
to demonstrate the diversity of characteristics being used and highlight the number of works
about them.

• Security primitive being implemented, in order to demonstrate that works concerning both PUF
and TRNG implementations exist and that both primitive types can be generated, with equally
good results, using DRAMs.

• Applications used, in order to demonstrate that all DRAM-based primitives can be employed
in a wide range of security applications, serving as the basis for the implementation of relevant
cryptographic protocols.

• Security considerations, regarding both attacks against the implemented security primitives and
countermeasures against such attacks, as well as an overview of the employed security metrics,
in order to provide detailed insights into the security of DRAM-based primitives.

• Implementation setup, in order to discuss whether they can be commercially adopted and how
practical are the implementations discussed in the relevant literature.

Finally, we also note that we have additionally provided a comparison of DRAM-based security
primitives to other hardware-based security primitives, in order to provide a clear and thorough view
of their advantages and disadvantages, in comparison to other hardware-based security primitives.

5. Conclusions

In this work, we have presented a comprehensive overview and an extended classification of
DRAM-based security primitives. We have examined the characteristics that are being exploited
for the implementation of such primitives, and also provided extended insights into the way a
DRAM works. We have also discussed in detail PUFs and TRNGs as the security primitives being
implemented. Additionally, we have provided insights into the development of the relevant scientific
field, the applications of DRAM-based security primitives and their evaluation as security mechanisms.



Cryptography 2018, 2, 7 27 of 33

Moreover, we have also compared them to other hardware-based security primitives, noting their
advantages and disadvantages, discussed their potential for commercial adoption and, finally, presented
our classification methodology and the significance of the criteria employed in our classification.

Based on our extensive survey of the relevant literature, we can conclude that DRAM-based
security primitives can be easily adopted for commercial use and can provide significant advantages
when employed as a basis for security in resource-constrained devices, such as IoT hardware. Although
current implementations exhibit a number of potential shortcomings, current research is already trying
to address them. We can, therefore, conclude that DRAM-based security primitives could easily be
employed in commercial applications in the future, and that the relevant scientific field may potentially
thrive in the future.

To this end, some related issues that still remain to be addressed in future works include the
establishment of commonly accepted security metrics, in order to enable an easier evaluation of the
implemented DRAM-based security primitives, a thorough assessment of ways to mitigate their
dependence on temperature and voltage variations and the effects of aging, as well as a review
and analysis of ways to secure removable DRAM modules, which could allow for more flexibility.
Additionally, another topic that is still under investigation concerns further ways in which the time
required for the generation of the outputs of DRAM-based security primitives could be reduced
even further. Finally, a future study could also examine whether the Integrated Circuit (IC) design
parameters relevant to the design of DRAM modules can affect these outputs. The quick growth and
the recent advances in this scientific field, as they have been demonstrated in this paper, lead us to
believe that all the open research topics discussed in this section may be thoroughly investigated in the
near future.

Acknowledgments: This work has been partly funded by the DFG (Deutsche Forschungsgemeinschaft; German
Research Foundation) as part of project P3 within the CRC (Collaborative Research Center) 1119 CROSSING.
This work has also been supported by Comcast Corporation, a company headquartered in Philadelphia, PA, USA,
and Honeywell International Inc., a company headquarted in Morris Plains, NJ, USA.

Author Contributions: Nikolaos Athanasios Anagnostopoulos has contributed in this paper by gathering and
classifying the literature used in it, by assessing the results of this classification, by writing and proofreading
most of this paper and by creating some of the figures used in it. Stefan Katzenbeisser has guided the writing
of this paper, by providing useful background information, especially regarding the way in which entropy can
prevent some of the attacks discussed, and by giving valuable feedback that significantly improved the quality of
the paper. John Chandy has also encouraged and guided the writing of this paper, by helping select and assess
the relevant literature and by providing crucial feedback that truly helped to improve the quality of this paper.
Fatemeh Tehranipoor has conceived the idea for this paper and was essential to its materialisation into a written
manuscript. She has contributed by gathering, analysing and classifying the literature used in it and helping to
assess it and by writing some sections of this paper and creating some of the figures used in it.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

1T1C one-Transistor one-Capacitor
2T two-Transistor
3T three-Transistor
ASIC Application-Specific Integrated Circuit
CMOS Complementary Metal–Oxide–Semiconductor
COTS Commercial Off-The-Shelf
DDR Double-Data-Rate (type one)
DDR2 Double-Data-Rate type two
DDR3 Double-Data-Rate type three
DDR4 Double-Data-Rate type four
DIMM Dual In-line Memory Module
DIP Dual In-line Package
DoS Denial of Service
DRAM Dynamic Random Access Memory
ECC Error Correction Code



Cryptography 2018, 2, 7 28 of 33

eDRAM embedded Dynamic Random Access Memory
eFUSE electrically programmable fuse
FPGA Field-Programmable Gate Array
GB GigaByte
IC Integrated Circuit
IT Information Technology
IoT Internet of Things
KB KiloByte
Kbit Kilobit
LPDDR4 Low Power Double-Data-Rate type 4
LFSR Linear-Feedback Shift Register
MB MegaByte
MDPI Multidisciplinary Digital Publishing Institute
MitM Man-in-the-Middle
NBTI Negative-Bias Temperature Instability
NIST National Institute of Standards and Technology (USA)
OOB Out-Of-Band
OS Operating System
OTP One-Time Pad
PRNG Pseudo-Random Number Generator
PUF Physical Unclonable Function
QKD Quantum Key Distribution
RAM Random Access Memory
RFID Radio-Frequency IDentification
RICID Retention-based Intrinsic Chip ID
SDRAM Synchronous Dynamic Random Access Memory
SODIMM Small Outline Dual In-line Memory Module
SOI Silicon-On-Insulator
SPICE Simulation Program with Integrated Circuit Emphasis
SRAM Static Random Access Memory
TPM Trusted Platform Module
TRNG True Random Number Generator
USA United States of America
VRT Variable Retention Time
VWL Wordline Low Voltage
WSN Wireless Sensor Network
XOR eXclusive OR

References

1. Landau, S. Making Sense from Snowden: What’s Significant in the NSA Surveillance Revelations. IEEE Secur. Priv.
2013, 11, 54–63.

2. Katzenbeisser, S.; Kocabaş, Ü.; Rožić, V.; Sadeghi, A.R.; Verbauwhede, I.; Wachsmann, C. PUFs: Myth, Fact
or Busted? A Security Evaluation of Physically Unclonable Functions (PUFs) Cast in Silicon. In International
Workshop on Cryptographic Hardware and Embedded Systems; Springer: Berlin, Germany, 2012; pp. 283–301.

3. Tehranipoor, F.; Karimian, N.; Yan, W.; Chandy, J.A. DRAM-Based Intrinsic Physically Unclonable Functions
for System-Level Security and Authentication. IEEE Trans. Very Large Scale Integr. Syst. 2017, 25, 1085–1097.

4. Xiong, W.; Schaller, A.; Anagnostopoulos, N.A.; Saleem, M.U.; Gabmeyer, S.; Katzenbeisser, S.; Szefer, J.
Run-Time Accessible DRAM PUFs in Commodity Devices. In International Conference on Cryptographic
Hardware and Embedded Systems; Springer: Berlin, Germany, 2016; pp. 432–453.

5. Schaller, A.; Xiong, W.; Anagnostopoulos, N.A.; Saleem, M.U.; Gabmeyer, S.; Katzenbeisser, S.; Szefer, J.
Intrinsic Rowhammer PUFs: Leveraging the Rowhammer Effect for Improved Security. In Proceedings of
the 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA,
USA, 1–5 May 2017; pp. 1–7.

6. Prabhu, P.; Akel, A.; Grupp, L.M.; Wing-Kei, S.Y.; Suh, G.E.; Kan, E.; Swanson, S. Extracting Device
Fingerprints from Flash Memory by Exploiting Physical Variations. In International Conference on Trust and
Trustworthy Computing; Springer: Berlin, Germany, 2011; pp. 188–201.

7. Tehranipoor, F.; Karimian, N.; Wortman, P. A.; Haque, A.; Fahrny, J.; Chandy, J. A.; Exploring Methods of
Authentication for the Internet of Things. In Internet of Things: Challenges, Advances, and Applications; Hassan,
Q.F., Khan, A.R., Madani, S.A., Eds.; CRC Press: Boca Raton, FL, USA, 2017.



Cryptography 2018, 2, 7 29 of 33

8. Liu, J.; Jaiyen, B.; Kim, Y.; Wilkerson, C.; Mutlu, O. An Experimental Study of Data Retention Behavior
in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms. In ACM SIGARCH
Computer Architecture News; ACM: New York, NY, USA, 2013; Volume 41, pp. 60–71.

9. Keeth, B.; Baker, R.J.; Johnson, B.; Lin, F. DRAM Circuit Design: Fundamental and High-Speed Topics, 2nd ed.;
Wiley-IEEE Press: Piscataway, NJ, USA, 2007.

10. Chun, K.C.; Jain, P.; Kim, T.H.; Kim, C.H. A 667 MHz Logic-Compatible Embedded DRAM Featuring an
Asymmetric 2T Gain Cell for High Speed On-Die Caches. IEEE J. Solid State Circuits 2012, 47, 547–559.

11. Tang, Q.; Zhou, C.; Choi, W.; Kang, G.; Park, J.; Parhi, K.K.; Kim, C.H. A DRAM Based Physical
Unclonable Function Capable of Generating > 1032 Challenge Response Pairs per 1Kbit Array for Secure
Chip Authentication. In Proceedings of the 2017 IEEE Custom Integrated Circuits Conference (CICC),
Austin, TX, USA, 30 April–3 May 2017.

12. Tehranipoor, F.; Karimian, N.; Xiao, K.; Chandy, J. DRAM Based Intrinsic Physical Unclonable Functions
for System Level Security. In Proceedings of the Great Lakes Symposium on VLSI, Pittsburgh, PA, USA,
20–22 May 2015; pp. 15–20.

13. Okamura, T.; Minematsu, K.; Tsunoo, Y.; Iida, T.; Kimura, T.; Nakamura, K. DRAM PUF (in Japanese).
In Proceedings of the 29th Symposium on Cryptography and Information Security (SCIS 2012); Institute of
Electronics, Information and Communication Engineers: Tokyo, Japan, 2012.

14. Keller, C.; Felber, N.; Gürkaynak, F.; Kaeslin, H.; Junod, P. Physically Unclonable Functions for Secure Hardware
(poster); RTD 2010—QCrypt; Swiss National Science Foundation (SNSF): Bern, Switzerland; Nano-Tera.CH:
Lausanne, Switzerland, 2012.

15. Felber, N. for Gisin, N. Secure High-Speed Communication Based on Quantum Key Distribution (presentation slides);
RTD 2010—QCrypt, Annual Plenary Meeting; Swiss National Science Foundation (SNSF): Bern, Switzerland;
Nano-Tera.CH: Lausanne, Switzerland, 2012.

16. Keller, C.; Gürkaynak, F.; Kaeslin, H.; Felber, N. Dynamic Memory-Based Physically Unclonable Function
for the Generation of Unique Identifiers and True Random Numbers. In Proceedings of the 2014 IEEE
International Symposium on Circuits and Systems (ISCAS), Melbourne, VIC, Australia, 1–5 June 2014;
pp. 2740–2743.

17. Tehranipoor, F.; Yan, W.; Chandy, J.A. Robust Hardware True Random Number Generators using DRAM
Remanence Effects. In Proceedings of the 2016 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), McLean, VA, USA, 3–5 May 2016; pp. 79–84.

18. Fainstein, D.; Rosenblatt, S.; Cestero, A.; Robson, N.; Kirihata, T.; Iyer, S.S. Dynamic Intrinsic Chip ID Using
32nm High-K/Metal Gate SOI Embedded DRAM. In Proceedings of the 2012 Symposium on VLSI Circuits
(VLSIC), Honolulu, HI, USA, 13–15 June 2012; pp. 146–147.

19. Sutar, S.; Raha, A.; Kulkarni, D.; Shorey, R.; Tew, J.; Raghunathan, V. D-PUF: An Intrinsically Reconfigurable
DRAM PUF for Device Authentication and Random Number Generation. ACM Trans. Embed. Comput. Syst.
2018, 17.

20. Hashemian, M.S.; Singh, B.; Wolff, F.; Weyer, D.; Clay, S.; Papachristou, C. A Robust Authentication
Methodology Using Physically Unclonable Functions in DRAM Arrays. In Proceedings of the Design,
Automation & Test in Europe Conference, Grenoble, France, 9–13 March 2015; pp. 647–652.

21. Kim, J.S.; Patel, M.; Hassan, H.; Mutlu, O. The DRAM Latency PUF: Quickly Evaluating Physical Unclonable
Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM Devices. In Proceedings of
the 24th International Symposium on High-Performance Computer Architecture (HPCA), Vienna, Austria,
24–28 February 2018.

22. Bauder, D.W. An Anti-Counterfeiting Concept for Currency Systems; Technical Report PTK-11990; Sandia
National Labs: Albuquerque, NM, USA, 1983.

23. Simmons, G.J. A System for Verifying User Identity and Authorization at the Point-of Sale or Access.
Cryptologia 1984, 8, 1–21.

24. Simmons, G.J. Identification of Data, Devices, Documents and Individuals. In Proceedings of the 25th
Annual IEEE International Carnahan Conference on Security Technology, Taipei, Taiwan, 1–3 October 1991;
pp. 197–218.

25. Pappu, R.S. Physical One-Way Functions. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge,
MA, USA, 2001.

26. Pappu, R.; Recht, B.; Taylor, J.; Gershenfeld, N. Physical One-Way Functions. Science 2002, 297, 2026–2030.



Cryptography 2018, 2, 7 30 of 33

27. Gassend, B.; Clarke, D.; van Dijk, M.; Devadas, S. Silicon Physical Random Functions. In Proceedings of the
9th ACM Conference on Computer and Communications Security; ACM: New York, NY, USA, 2002; pp. 148–160.

28. Gassend, B.L.P. Physical Random Functions. Master’s Thesis, Massachusetts Institute of Technology,
Cambridge, MA, USA, 2003.

29. Guajardo, J.; Kumar, S.S.; Schrijen, G.J.; Tuyls, P. FPGA Intrinsic PUFs and their Use for IP Protection.
In International Workshop on Cryptographic Hardware and Embedded Systems; Springer: Berlin, Germany, 2007;
pp. 63–80.

30. Holcomb, D.E.; Burleson, W.P.; Fu, K. Initial SRAM State as a Fingerprint and Source of True Random
Numbers for RFID Tags. In Proceedings of the Conference on RFID Security, Malaga, Spain, 11–13 July 2007.

31. Yan, W.; Jin, C.; Tehranipoor, F.; Chandy, J.A. Phase Calibrated Ring Oscillator PUF Design and
Implementation on FPGAs. In Proceedings of the 27th International Conference on Field Programmable
Logic and Applications (FPL 2017), Ghent, East Flanders, Belgium, 4–8 September 2017.

32. Herder, C.; Yu, M.D.; Koushanfar, F.; Devadas, S. Physical Unclonable Functions and Applications: A Tutorial.
Proc. IEEE 2014, 102, 1126–1141.

33. Lee, J.W.; Lim, D.; Gassend, B.; Suh, G.E.; van Dijk, M.; Devadas, S. A Technique to Build a Secret Key
in Integrated Circuits for Identification and Authentication Applications. In Proceedings of the 2004
Symposium on VLSI Circuits, Digest of Technical Papers, Honolulu, HI, USA, 17–19 June 2004; pp. 176–179.

34. Majzoobi, M.; Koushanfar, F.; Potkonjak, M. Testing Techniques for Hardware Security. In Proceedings of
the 2008 IEEE International Test Conference, Santa Clara, CA, USA, 28–30 October 2008.

35. Rührmair, U.; Sehnke, F.; Sölter, J.; Dror, G.; Devadas, S.; Schmidhuber, J. Modeling Attacks on Physical
Unclonable Functions. In Proceedings of the 17th ACM Conference on Computer and Communications
Security, Chicago, IL, USA, 4–8 October 2010; pp. 237–249.

36. Rührmair, U.; Sölter, J.; Sehnke, F.; Xu, X.; Mahmoud, A.; Stoyanova, V.; Dror, G.; Schmidhuber, J.; Burleson, W.;
Devadas, S. PUF Modeling Attacks on Simulated and Silicon Data. IEEE Trans. Inf. Forensics Secur. 2013,
8, 1876–1891.

37. Tuyls, P.; Schrijen, G.J.; Škorić, B.; Van Geloven, J.; Verhaegh, N.; Wolters, R. Read-Proof Hardware from
Protective Coatings. In International Workshop on Cryptographic Hardware and Embedded Systems; Springer:
Berlin, Germany, 2006; pp. 369–383.

38. Suh, G.E.; Devadas, S. Physical Unclonable Functions for Device Authentication and Secret Key Generation.
In Proceedings of the 44th Annual Design Automation Conference, San Diego, CA, USA, 4–8 June 2007;
pp. 9–14.

39. Su, Y.; Holleman, J.; Otis, B. A 1.6 pJ/bit 96% Stable Chip-ID Generating Circuit Using Process Variations.
In Proceedings of the Digest of Technical Papers of the 2007 IEEE International Solid-State Circuits Conference
(ISSCC 2007), San Francisco, CA, USA, 11–15 February 2007; pp. 406–611.

40. Majzoobi, M.; Koushanfar, F.; Potkonjak, M. Lightweight Secure PUFs. In Proceedings of the 2008 IEEE/ACM
International Conference on Computer-Aided Design, San Jose, CA, USA, 10–13 November 2008; pp. 670–673.

41. Kumar, S.S.; Guajardo, J.; Maes, R.; Schrijen, G.J.; Tuyls, P. The Butterfly PUF Protecting IP on Every FPGA.
In Proceedings of the 2008 IEEE International Workshop on Hardware-Oriented Security and Trust (HOST
2008), Anaheim, CA, USA, 9 June 2008; pp. 67–70.

42. Maes, R.; Tuyls, P.; Verbauwhede, I. Intrinsic PUFs from Flip-Flops on Reconfigurable Devices.
In Proceedings of the 3rd Benelux Workshop on Information and System Security (WISSec 2008), Eindhoven,
The Netherlands, 13–14 November 2008; Volume 17.

43. Suzuki, D.; Shimizu, K. The Glitch PUF: A New Delay-PUF Architecture Exploiting Glitch Shapes.
In International Workshop on Cryptographic Hardware and Embedded Systems; Springer: Berlin, Germany,
2010; pp. 366–382.

44. Majzoobi, M.; Ghiaasi, G.; Koushanfar, F.; Nassif, S.R. Ultra-Low Power Current-Based PUF. In Proceedings of
the 2011 IEEE International Symposium on Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15–18 May 2011;
pp. 2071–2074.

45. Chen, Q.; Csaba, G.; Lugli, P.; Schlichtmann, U.; Rührmair, U. The Bistable Ring Puf: A New Architecture
for Strong Physical Unclonable Functions. In Proceedings of the 2011 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), San Diego, CA, USA, 5–6 June 2011; pp. 134–141.



Cryptography 2018, 2, 7 31 of 33

46. Simons, P.; van der Sluis, E.; van der Leest, V. Buskeeper PUFs, a Promising Alternative to D Flip-Flop PUFs.
In Proceedings of the 2012 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST),
San Francisco, CA, USA, 3–4 June 2012; pp. 7–12.

47. Holcomb, D.E.; Fu, K. Bitline PUF: Building Native Challenge-Response PUF Capability into Any SRAM.
In International Workshop on Cryptographic Hardware and Embedded Systems; Springer: Berlin, Germany, 2014;
pp. 510–526.

48. Bossuet, L.; Ngo, X.T.; Cherif, Z.; Fischer, V. A PUF Based on a Transient Effect Ring Oscillator and Insensitive
to Locking Phenomenon. IEEE Trans. Emerg. Top. Comput. 2014, 2, 30–36.

49. Willers, O.; Huth, C.; Guajardo, J.; Seidel, H. MEMS Gyroscopes as Physical Unclonable Functions.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, 24–28 October 2016; pp. 591–602.

50. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.;
Heckert, A.; et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic
Applications; Special Publication 800:22; National Institute of Standards and Technology: Gaithersburg, MD,
USA, 2010.

51. Chan, J.J.M.; Sharma, B.; Lv, J.; Thomas, G.; Thulasiram, R.; Thulasiraman, P. True Random Number
Generator Using GPUs and Histogram Equalization Techniques. In Proceedings of the 13th IEEE
International Conference on High Performance Computing and Communications (HPCC 2011), Banff,
AB, Canada, 2–4 September 2011; pp. 161–170.

52. Tehranipoor, F.; Karimian, N.; Yan, W.; Chandy, J.A. A Study of Power Supply Variation as a Source of
Random Noise. In Proceedings of the 30th International Conference on VLSI Design and 16th International
Conference on Embedded Systems (VLSID 2017), Hyderabad, India, 7–11 January 2017; pp. 155–160.

53. Tehranipoor, F.; Wortman, P.; Karimian, N.; Yan, W.; Chandy, J. DVFT: A Lightweight Solution for Power
Supply Noise Based TRNG Using a Dynamic Voltage Feedback Tuning System. IEEE Trans. Very Large Scale
Integr. Syst. 2018, doi:10.1109/TVLSI.2018.2804258.

54. Tehranipoor, F. Design and Architecture of Hardware-Based Random Function Security Primitives. Ph.D. Thesis,
University of Connecticut (UConn), Storrs, CT, USA, 2017.

55. Eckert, C.; Tehranipoor, F.; Chandy, J.A. DRNG: DRAM-Based Random Number Generation Using its
Startup Value Behavior. In Proceedings of the 60th IEEE International Midwest Symposium on Circuits and
Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017.

56. Komninos, N.; Philippou, E.; Pitsillides, A. Survey in Smart Grid and Smart Home Security: Issues,
Challenges and Countermeasures. IEEE Commun. Surv. Tutor. 2014, 16, 1933–1954.

57. Mahmud, R.; Vallakati, R.; Mukherjee, A.; Ranganathan, P.; Nejadpak, A. A Survey on Smart Grid Metering
Infrastructures: Threats and Solutions. In Proceedings of the 2015 IEEE International Conference on
Electro/Information Technology (EIT), Dekalb, IL, USA, 21–23 May 2015; pp. 386–391.

58. Karygiannis, A.; Phillips, T.; Tsibertzopoulos, A. RFID Security: A Taxonomy of Risk. In Proceedings of
the First International Conference on Communications and Networking in China (ChinaCom 2006), Beijing,
China, 25–27 October 2006.

59. Mitrokotsa, A.; Rieback, M.; Tanenbaum, A. Classification of RFID Attacks. In Proceedings of the 2nd
International Workshop on RFID Technology – Concepts, Applications, Challenges (IWRT 2008), Barcelona,
Spain, June 2008; pp. 73–86.

60. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A Survey. Comput. Netw. 2010, 54, 2787–2805.
61. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on

Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376.
62. Da Xu, L.; He, W.; Li, S. Internet of Things in Industries: A Survey. IEEE Trans. Ind. Inf. 2014, 10, 2233–2243.
63. Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Context Aware Computing for the Internet of

Things: A Survey. IEEE Commun. Surv. Tutor. 2014, 16, 414–454.
64. Chang, C.H.; Zheng, Y.; Zhang, L. A Retrospective and a Look Forward: Fifteen Years of Physical Unclonable

Function Advancement. IEEE Circuits Syst. Mag. 2017, 17, 32–62.
65. Maes, R. Physically Unclonable Functions: Constructions, Properties and Applications, 1st ed.; Springer: Berlin,

Germany, 2013.
66. Maes, R.; Verbauwhede, I. Physically Unclonable Functions: A Study on the State of the Art and Future

Research Directions. In Towards Hardware-Intrinsic Security; Springer: Berlin, Germany, 2010; pp. 3–37.



Cryptography 2018, 2, 7 32 of 33

67. Rostami, M.; Wendt, J.B.; Potkonjak, M.; Koushanfar, F. Quo Vadis, PUF?: Trends and Challenges of Emerging
Physical-Disorder Based Security. In Proceedings of the Conference on Design, Automation & Test in Europe,
Dresden, Germany, 24–28 March 2014.

68. Rührmair, U.; Holcomb, D.E. PUFs at a Glance. In Proceedings of the Conference on Design, Automation &
Test in Europe, Dresden, Germany, 24–28 March 2014.

69. Böhm, C.; Hofer, M. Physical Unclonable Functions in Theory and Practice; Springer Science & Business Media:
New York, NY, USA, 2012.

70. Busch, H.; Sotáková, M.; Katzenbeisser, S.; Sion, R. The PUF Promise. In International Conference on Trust and
Trustworthy Computing; Springer: Berlin, Germany, 2010; pp. 290–297.

71. Eiroa, S.; Baturone, I.; Acosta, A.J.; Dávila, J. Using Physical Unclonable Functions for Hardware Authentication:
A Survey. In Proceedings of the XXV Conference on Design of Circuits and Integrated Systems (DCIS),
Lanzarote, Las Palmas, Canary Islands, Spain, 12–14 November 2010.

72. Tehranipoor, M.; Koushanfar, F. A Survey of Hardware Trojan Taxonomy and Detection. IEEE Des. Test Comput.
2010, 27, 10–25.

73. Karri, R.; Rajendran, J.; Rosenfeld, K. Trojan Taxonomy. In Introduction to Hardware Security and Trust;
Springer: Berlin, Germany, 2012; pp. 325–338.

74. Karri, R.; Rajendran, J.; Rosenfeld, K.; Tehranipoor, M. Trustworthy Hardware: Identifying and Classifying
Hardware Trojans. Computer 2010, 43, 39–46.

75. Schaller, A. Lightweight Protocols and Applications for Memory-Based Intrinsic Physically Unclonable
Functions Found on Commercial Off-The-Shelf Devices. Ph.D. Thesis, Technische Universität Darmstadt,
Darmstadt, Germany, 2017.

76. Ravishankar, Y. PUFs – An Extensive Survey. Ph.D. Thesis, George Mason University, Fairfax, VA, USA, 2017.
77. Sahoo, D.P. Design and Analysis of Secure Physically Unclonable Function Compositions. Ph.D. Thesis,

Indian Institute of Technology Kharagpur (IIT KGP), Kharagpur, West Bengal, India, 2017.
78. Витенко, А. Использование DRAM-PUF для Идентификации Мобильных Устройств под Управлением

ОС Android (in Russian). Апробация 2016, 1, 26–29.
79. Пучков, А.В.; Иванюк, А.А. Применение Запоминающих Устройств в качестве Криптографических

Примитивов для Интегральных Схем Программируемой Логики (in Russian). In Proceeding of the
2016 International Conference on Information Technologies and Systems (ITS 2016) – Информационные
технологии и системы 2016 (ИТС 2016), Minsk, Belarus, 26 October 2016; pp. 210–211.

80. Rosenblatt, S.; Fainstein, D.; Cestero, A.; Safran, J.; Robson, N.; Kirihata, T.; Iyer, S.S. Field Tolerant Dynamic
Intrinsic Chip ID Using 32 nm High-K/Metal Gate SOI Embedded DRAM. IEEE J. Solid-State Circuits 2013,
48, 940–947.

81. Rosenblatt, S.; Chellappa, S.; Cestero, A.; Robson, N.; Kirihata, T.; Iyer, S.S. A Self-Authenticating
Chip Architecture Using an Intrinsic Fingerprint of Embedded DRAM. IEEE J. Solid-State Circuits 2013,
48, 2934–2943.

82. Liu, W.; Zhang, Z.; Li, M.; Liu, Z. A Trustworthy Key Generation Prototype Based on DDR3 PUF for Wireless
Sensor Networks. Sensors 2014, 14, 11542–11556.

83. Liu, W.; Zhang, Z.; Li, M.; Liu, Z. A Trustworthy Key Generation Prototype Based on DDR3 PUF for Wireless
Sensor Networks. In Proceedings of the 2014 International Symposium on Computer, Consumer and Control
(IS3C), Taichung, Taiwan, 10–12 June 2014; pp. 706–709.

84. Zhang, Z. Design and Implementation of DRAM PUF (in Chinese). Master’s Thesis, Huazhong University
of Science and Technology, Wuhan, Hubei, China, 2015.

85. Rahmati, A.; Hicks, M.; Holcomb, D.E.; Fu, K. Probable Cause: The Deanonymizing Effects of Approximate
DRAM. In Proceedings of the 2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), Portland, Oregon, 13–17 June 2015; pp. 604–615.

86. Sutar, S.; Raha, A.; Raghunathan, V. D-PUF: An Intrinsically Reconfigurable DRAM PUF for Device
Authentication in Embedded Systems. In Proceedings of the 2016 International Conference on Compilers,
Architectures, and Sythesis of Embedded Systems (CASES), Pittsburgh, PA, USA, 2–7 October 2016.

87. Sutar, S.; Raha, A.; Raghunathan, V. Memory-Based Combination PUFs for Device Authentication in
Embedded Systems. arXiv 2017, arXiv:1712.01611.



Cryptography 2018, 2, 7 33 of 33

88. Tehranipoor, F.; Karimian, N.; Yan, W.; Chandy, J.A. Investigation of DRAM PUFs Reliability Under Device
Accelerated Aging Effects. In Proceedings of the 2017 IEEE International Symposium on Circuits and
Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017.

89. Kumar, R.; Xu, X.; Burleson, W.; Rosenblatt, S.; Kirihata, T. Physically Unclonable Functions: A Window into
CMOS Process Variations. In Circuits and Systems for Security and Privacy; Sheikh, F., Sousa, L., Iniewski, K., Eds.;
CRC Press: Boca Raton, FL, USA, 2017.

90. Kirihata, T.; Rosenblatt, S. Dynamic Intrinsic Chip ID for Hardware Security. In VLSI: Circuits for Emerging
Applications; Wojcicki, T., Iniewski, K., Eds.; CRC Press: Boca Raton, FL, USA, 2017.

91. Raha, A.; Jayakumar, H.; Sutar, S.; Raghunathan, V. Quality-Aware Data Allocation in Approximate DRAM.
In Proceedings of the 2015 International Conference on Compilers, Architecture and Synthesis for Embedded
Systems, Amsterdam, The Netherlands, 4–9 October 2015; pp. 89–98.

92. Raha, A.; Sutar, S.; Jayakumar, H.; Raghunathan, V. Quality Configurable Approximate DRAM.
IEEE Trans. Comput. 2017, 66, 1172–1187.

93. Anagnostopoulos, N.A.; Schaller, A.; Fan, Y.; Xiong, W.; Tehranipoor, F.; Arul, T.; Gabmeyer, S.; Szefer, J.;
Chandy, J.A.; Katzenbeisser, S. Insights into the Potential Usage of the Initial Values of DRAM Arrays
of Commercial Off-The-Shelf Devices for Security Applications. In Proceedings of the 26th Crypto-Day,
Nuremberg, Germany, 1–2 June 2017.

94. Yan, W.; Tehranipoor, F.; Chandy, J.A. PUF-Based Fuzzy Authentication Without Error Correcting Codes.
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. (CAD) 2017, 36, 1445–1457.

95. Yan, W.; Tehranipoor, F.; Chandy, J.A. A Novel Way to Authenticate Untrusted Integrated Circuits.
In Proceedings of the 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD
2015), Austin, TX, USA, 2–6 November 2015; pp. 132–138.

96. Maes, R.; Tuyls, P.; Verbauwhede, I. A Soft Decision Helper Data Algorithm for SRAM PUFs. In Proceedings
of the 2009 IEEE International Symposium on Information Theory (ISIT 2009), Seoul, South Korea,
28 June–3 July 2009; pp. 2101–2105.

97. Anagnostopoulos, N.A. Optical Fault Injection Attacks in Smart Card Chips and an Evaluation of
Countermeasures Against Them. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2014.

98. Karimian, N.; Wortman, P. A.; Tehranipoor, F. Evolving Authentication Design Considerations for the Internet
of Biometric Things (IoBT). In Proceedings of the 2016 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS 2016), Pittsburgh, PA, USA, 2–7 October 2016; pp. 1–10.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminary Concepts
	Dynamic Random Access Memories
	DRAM-Based Security Primitives
	Physical Unclonable Functions
	Random Number Generators


	Overview of the Current State of the Art Regarding DRAM-Based Security Primitives
	Brief Literature Taxonomy
	Overview of the Literature Regarding DRAM-Based Security Primitives
	Applications of DRAM-Based Security Primitives
	Security Evaluation of DRAM-Based Security Primitives
	Attacks and Defences
	Evaluation Metrics


	Discussion
	A Short Comparison of DRAM-Based Security Primitives to Other Hardware-Based Security Primitives
	The Potential of DRAM-Based Security Primitives for Commercial Adoption
	Classification Criteria

	Conclusions
	References

