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Abstract— Methane (CH4) emissions produced by dairy 

cattle (DC) are a key contributor to global warming. To assess 

the effectiveness of strategies designed to mitigate CH4 

emissions, complex and expensive recording equipment is 

required. Therefore, the use of predictive models based on 

animal information provides a more accessible alternative. 

Traditionally, Statistical (SA) methods have been employed 

in the prediction of DC CH4 emissions. However due to the 

smart farming revolution, the scale and variety of complex 

animal information now available for the prediction of DC 

CH4 emissions has grown exponentially, and within them are 

likely to exist non-linear relationships which these traditional 

SA models may struggle to capture. Therefore, this research 

aims to explore if Machine Learning (ML) models are a 

viable alternative for the prediction of DC CH4 emissions, as 

they can handle and extract these inevitable non-linear 

relationships present within today's large, heterogeneous 

datasets. In this research, we compared a traditional SA 

method, a Linear Mixed Effects (ME) model, with an original 

ML method, a Random Forest (RF) model, as well as a novel 

SA/ML hybrid method, a Mixed Effects Random Forest 

(MERF) model, in the prediction of CH4 emissions (CH4 g/d) 

produced by DC across 32 experiments. The ML RF model 

was able to challenge the traditional SA ME model in the 

prediction of DC CH4 emissions, achieving a Root Mean 

Square Prediction Error (RMSPE) and Concordance 

Correlation Coefficient (CCC) of 52.73 CH4 g/d and 0.70 

respectively, compared to a ME model’s 53.90 CH4 g/d and 

0.71. When both the ME and RF models were combined 

within the novel SA/ML hybrid MERF model, a lower 

RMSPE and higher CCC were achieved than by each of its 

composite parts in isolation, 51.87 CH4 g/d and 0.73 

respectively. These results demonstrate the potential of ML 

in the prediction of DC CH4 emissions, particularly when 

hybridised alongside traditional SA methods. 
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I. INTRODUCTION 

About 30% of the current rise in global surface 

temperature is due to Methane (CH4) [1], a potent Green 

House Gas (GHG) with 84 times the Global Warming 

Potential (GWP) of Carbon Dioxide (CO2) over a 20-year 

period [2]. However, approximately 60% of total global CH4 

emissions are man-made [3]. Whilst much greater than CO2 

in terms of intensity, CH4 actually has a much shorter 

atmospheric lifespan, remaining for only 12 years compared 

to CO2’s centuries [1]. Agriculture is in fact the single largest 

source of anthropogenic CH4 emissions worldwide, 

surpassing even Fossil Fuels, and is responsible for 40% of 

man-made CH4 emissions [3]. The overwhelming majority of 

CH4 emissions from the Agricultural sector, some 80%, are 

generated through the unique digestive process which takes 

place in ruminant Livestock known as Enteric Fermentation 

(EF) [3]. Of all the ruminant Livestock which produce CH4 

emissions through EF, Cattle alone are responsible for more 

than all other ruminant Livestock types combined, 

responsible for 77% of this majority [4]. Due to its intensity, 

short stay, and largely anthropogenic nature, CH4 has become 

a very attractive GHG to target for mitigation, as it can enable 

a reduction in the Earth’s global surface temperature almost 

within the same decade, allowing the international 

community to fulfil its collective environmental agreements, 

whilst still facilitating the growing population. 

Whilst there are a myriad of DC CH4 mitigation 

techniques, to review the effectiveness of each strategy, one 

must be able to efficiently record large swathes of DC CH4 

emissions after implementation of the chosen strategy, for 

assessment. However, the accessibility of DC CH4 emission 

recording technologies is a serious barrier to this essential 

stage of the process. The necessary equipment is expensive 

and requires a high degree of expertise for implementation, 

heavily restricting participation.  

Therefore, instead of relying on expensive DC CH4 

emission recording technologies, the ability to accurately 

predict DC CH4 emissions based on pre-recorded traits using 

statistical equations has been tirelessly explored, in order to 

provide perhaps the most efficient methodology for recording 

DC CH4 emissions [5]. Rather than through direct 

measurement, these models predict DC CH4 emissions based 

on animal information. 

The diversity and depth of biological, environmental, and 

genetic information which can be used to model the EF 

process of the animal under representation, hide within their 

structures and relationships that traditional Statistical (SA) 

approaches used in the prediction of DC CH4 emissions may 

struggle to handle or extract. The sophistication of Machine 

Learning (ML) on the other hand, has the ability to facilitate 

these diverse data types and identify the underlying structures 

and complex relationships between them, which perhaps 

holds the key to overcoming the limitations currently faced, 



and surpassing the accuracies currently achieved, in the 

prediction of DC CH4 emissions.  

Therefore, in this research, we compared the performance 

of a traditional SA method, a Linear Mixed Effects (ME) 

model, with an original ML method, a Random Forest (RF) 

model, as well as a proposed novel SA/ML hybrid method, a 

Mixed Effects Random Forest (MERF) model, in the 

prediction of CH4 emissions produced by DC across 32 

experiments. 

This research hopes to highlight the preference of ML in 

the prediction of DC CH4 emissions, providing both a more 

accessible and more accurate alternative to traditional 

methods. Through these benefits, ML can simplify the 

validation of multiple CH4 mitigation strategies and play a 

vital role in the reduction of Agricultural GHG emissions. 

II. RELATED WORK 

The application of ML in the prediction of DC CH4 

emissions remains extremely rare, although a handful of 

preliminary investigations have indeed shown the promising 

potential that ML approaches could bring to the challenge. 

One study which compared the ability of an ML RF model 

against a traditional Multiple Linear Regression (MLR) 

model in the prediction of DC CH4 emissions, demonstrated 

the superiority of ML, with the RF model able to consistently 

outperform the SA MLR model across the multitude of 

datasets tested [6]. The advantage of ML was noticed 

particularly in the smaller datasets tested, where the RF 

model was able to attain a Pearson Correlation Coefficient (r, 

described below) of 32% in a 3k dataset, while the MLR 

model was only able to muster an r of 12%. Interestingly, 

when the MLR model was trained on a much greater dataset, 

with 41k records, it still could not manage to beat the 

predictive performance of the RF model trained on the 

original 3k dataset, achieving an r of 19%, the RF upon this 

set achieving 71% [6]. The flexibility of the underlying 

ensemble algorithm that the RF employs is perhaps the reason 

why this ML model is able to outperform its SA counterpart. 

Utilising random subsets of predictor variables on 

bootstrapped samples of the data allows the RF to get a much 

more intimate understanding of the heterogeneous structures 

within the dataset, of which it takes an average, laying the 

foundation for better predictive performance compared to the 

more rudimentary MLR approach. 

As dry matter intake (DMI) increases, enteric CH4 

emission as a proportion of DMI declines [5, 7]. This is due 

to the increase in rumen passage rate, thus leaving less time 

for EF of consumed feed in the rumen. This phenomenon 

strongly encourages traditional SA models to convert from 

their predominantly linear structure to the non-linear, as 

through this they will be better able to capture the diminishing 

increase in enteric CH4 emissions as feeding level increases. 

However, this growing realisation of non-linear 

relationships between feed intake and CH4 emissions, which 

traditional SA models are reluctant to convert to, may be of 

more value to the ML approach. The diversity and depth of 

animal information which can be used to model the 

fermentation biochemistry of the animal under 

representation, hide within their structures and relationships 

that traditional linear SA approaches may struggle to handle 

or extract. With the vast heterogenous datasets being 

accumulated through the high throughput recording of animal 

information, as a result of the smart farming revolution [6, 

10], the diverse structures and relationships that will 

inevitably be introduced as a result will challenge a large 

majority of the traditional SA modelling approaches used in 

the prediction of DC CH4 emissions. Yet the equally diverse 

range of ML algorithms available provides the necessary 

flexibility required to handle and account for these intricate 

constraints, facilitating cross talk amongst them, and 

identifying relationships between them, improving the 

potential of DC CH4 emission prediction. 

That is not to say that ML models do not also bring with 

them their own set of challenges to DC CH4 emission 

prediction. Another study which tested the ability of an ML 

Neural Network (NN) model against a SA Partial Least 

Squares (PLS) model in the prediction of DC CH4 emissions 

produced some contrasting results. Taking advantage of the 

NN’s hidden layer activation functions which can 

accommodate non-linear relationships, the study 

hypothesised that an NN could better capture the complex 

relationships of the variables within their dataset, which were 

subject to causality, non-linearity, or both [11]. As a result, 

the non-linear variant of the NN was able to outperform the 

PLS model in the majority of predictor sets tested in the 

study. Yet, when a Milk Fatty Acid (MFA) predictor was 

added to the test set, the PLS model overtook the non-linear 

NN model in terms of predictive performance [11]. The non-

linear NN model outperformed the PLS model using the same 

predictor set based on training data, yet failed to generalise to 

the test data as reliably as the PLS model [11]. This trend led 

the authors to believe that the reason for the stall in 

performance of the non-linear NN model using the MFA 

predictor set on test data was due to overfitting of the model 

upon the training set, evidenced by its superior performance 

in the earlier predictor sets as well as training data of the later 

predictor sets [11].  

Despite being an extremely advanced ML method, deep 

learning models such as NNs are susceptible to overfitting, 

especially when the number of neurons in the hidden layer 

exceeds the number of features supplied to the model [11], 

impeding predictive performance on new data. Therefore, to 

avoid such drawbacks, NN models require extensive 

tweaking before finding the most favourable parameters that 

can effectively model the data. Just because a model 

implements ML, this is no guarantee that the model itself will 

be able to enjoy the benefits of the underlying algorithm. It 

must be specifically tailored to the context in which it is being 

applied. Dutifully, one must respect the underlying nuances 

of the algorithm, in order to get the most out of its potential, 

when applying it to a predictive problem. 

III. METHODOLOGY 

A. Dataset Understudy 

The dataset used in this research was made up of a 

combination of 32 separate DC CH4 emission experiments 

conducted at the Agri Food and Biosciences Institute (AFBI) 

in Northern Ireland. Each experiment explored a different 

strategy in the manipulation of DC CH4 emissions: whether 

via the effect of experimental dietary treatments, the impact 

of a selective breed, or the influence of a certain lactation 

stage, and each varied in scale and duration. A variety of DC 

breeds were used in each experiment, including Holstein, 



Jersey and Norwegian. Respiration Calorimeter Chambers 

were used in each experiment to record the emission, 

digestion, and metabolism information of each animal. The 

physical attributes of each animal, as well as their production 

level during the experiment, were also available. This 

resulted in a dataset of 934 observations with 13 available 

features, made up of 32 experiments and 322 cows (Table I.). 

TABLE I.  DESCRIPTIVE STATISTICS OF SIGNIFICANT FEATURES 

Features 
Range 

Min Mean Max 

ECMY (kg/d) 0.90 22.67 45.60 

LWT (kg) 379.00 552.50 756.50 

Conc/DMI (kg/d) 0 8.15 20.2 

CH4 (g/d) 138.00 375.90 681.30 

ECMY = Energy Corrected Milk Yield, LWT = Live Weight, Conc/DMI = 
Concentrate as a Proportion of Dry Matter Intake, CH4 g/d = CH4 Production. 

Descriptive statistics of full dataset available at: 

https://computing.ulster.ac.uk/ZhengLab/Ross/     

B. Data Preparation 

As the interest of this research was in the prediction of DC 

CH4 emissions, the feature CH4 Production (CH4 g/d) was 

selected as the target response variable for prediction, and its 

distribution was visualised for confirmation of normality 

(Fig. 1). 

 

 
Fig. 1 - Distribution of CH4 Production (CH4 g/d) 

C. Feature Selection 

Dimensionality Reduction 

To avoid the curse of dimensionality during model 

development, a stringent feature selection process was 

carried out. To initially refine the feature set, a correlation 

matrix was constructed between each feature and CH4 g/d 

using r. R represents the strength and direction of a linear 

relationship between two features using their covariance and 

standard deviation (1). 
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Where �  is the Pearson Correlation Coefficient, and � 

and Y are both feature vectors of the same length between 

which the relationship is sought. The numerator calculates the 

covariance between X and Y, while the denominator 

multiplies both of their standard deviations [25]. Ranked 

between -1 and 1, only those features with a r of over +- 0.25 

with CH4 g/d would be highlighted within the matrix (Fig. 2).  

Multicollinearity Handling 

To ensure that the features highlighted by the initial 

correlation matrix were not highly correlated with CH4 g/d as 

well as with each other, and thus introduce multicollinearity 

into our predictive models, this correlation process was hence 

repeated, this time between the features found to be highly 

correlated with CH4 g/d in the initial correlation matrix. Only 

those features with a r over +- 0.90 between each other would 

be highlighted within the multicollinearity correlation matrix. 

After the multicollinear correlation matrix had been 

generated, each pair of correlated features was compared with 

CH4 g/d, and of the two multicollinear features, only the one 

more highly correlated with CH4 g/d, was kept, dropping its 

correlated feature partner and thus removing the possibility 

of multicollinearity in future models, as only those features 

which were highly correlated with CH4 g/d and also 

independent of any other feature involved, were kept (Fig. 2).  

Feature Significance 

To finalise the feature selection process, the concluding 

stage involved calculating the significance of each remaining 

feature after Dimensionality Reduction and Multicollinearity 

Handling through Hypothesis Testing. Whilst a Linear 

Regression (LR) model would commonly be used for this 

essential stage of the process; due to the structure of the 

dataset being used, which was made up of 32 separate 

Experiments each imposing a direct influence upon CH4 g/d, 

the dataset was therefore not independent, violating the 

primary assumption of the LR algorithm. 

Instead, a Linear Mixed Effects (ME) model was chosen, 

as this could incorporate both fixed and random effects. This 

allowed the influence of each Experiment and Cow that made 

up the dataset to be stabilised, and an unbiased view of the 

influence the independent features of interest had over CH4 

g/d to be obtained. This would result in more precise feature 

significance calculations. All of the features remaining after 

the Dimensionality Reduction and Multicollinearity 

Handling stage were passed into the ME model as fixed 

effects, with Experiments and Cow being passed in as random 

effects. The model was trained on the entire dataset. 

 Only those features which had a p-value of 0.05 or lower 

within the summary output of the ME model were kept, and 

these would act as the explanatory features during model 

development and prediction (Fig. 2). 

D. Assessment Pipeline 

Using only the features deemed significant during the 

initial Feature Selection stage, along with the CH4 g/d 

response and Experiment and Cow random effects, the 

dataset was then split into proportional 75%/25% train/test 

subsets. The models chosen for analysis would be developed 

using the 75% train set and evaluated using the 25% test set.  

The Root Mean Square Prediction Error (RMSPE) and 

Concordance Correlation Coefficient (CCC) of each model 

upon the test set would then be calculated for an assessment 

of their performance. This process would then be repeated ten 

times, each time refreshing the train/test split and models 

developed, and an average of each assessment metric over the 

ten executions was taken (Fig. 3). 



 
Fig. 2 - Feature selection process 

 

 
Fig. 3 - Assessment pipeline process 

E. Prediction Models 

As this research was concerned with the ability of ML to 

challenge traditional SA methods in the prediction of DC CH4 

emissions, a specific prediction model was selected to 

represent each approach. 

Statistical: Linear Mixed Effects Model 

 

� = �� �  ��� � �                           (2) 

 

Acting as ambassador for the traditional SA approach 

used in the prediction of DC CH4 emissions would be a ME 

model. This would provide the SA benchmark with which the 

original ML models applied could be compared. The ME 

model is outlined in (2), where � is the response variable, �� 

is a set of fixed effects (�� and their coefficients (�), and ��� 

is a set of random effects (�) with a coefficient (�) for each 

of their hierarchical subgroups (�) [21]. 

A ME model initially generates an intercept for the entire 

sample, much like LR, yet also goes on to generate a unique 

intercept for each hierarchical subgroup of the random 

effects. Then, during prediction, the intercept is dynamically 

updated, starting with the intercept for the entire sample, 

which is then adjusted accordingly, based on the unique 

intercept of the hierarchical random effect subgroup the 

observation under prediction belongs to. This corrects the 

variation each random effect subgroup imposes upon the 

fixed effects, and as a result, improves prediction potential. 

Machine Learning: Random Forest Model 

The prediction of DC CH4 emissions from the ML 

perspective would be initially represented by a RF, as this 

model had been successfully applied within the literature and 

produced promising results [6], which we wanted to validate 

and further enhance within this research. A RF comes from 

the ensemble family of ML algorithms, in which it trains 

multiple models, in this case, non-linear Regression Trees 

(RT), on bootstrapped samples of the training data, utilising 

random subsets of predictor variables. Once all of the RTs 

have been trained, the RF will then take an average of all of 

their results. Whilst a RT may be a “weak learner” on its own, 

when corralled by a RF, it finds its strength in numbers, and 

an average of all its estimations, makes for a much more 

accurate prediction, rather than a suggestion when on its own.  

A hyper grid was established containing all possible 

permutations of the RF based on the current dataset structure, 

and a grid search was then carried out to identify the optimal 

RF parameters for maximal predictive performance. 

Hybrid: Mixed Effects Random Forest 
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A SA/ML hybrid method has never before been applied 

in the prediction of DC CH4 emissions, leading to the novel 

implementation of the MERF model used in this research [16, 

21]. The MERF model is outlined in (3), where ��� 

represents the same random effect hierarchical subgroup 

coefficients as in (2), however instead of being added to a set 

of fixed effect coefficients (���, they are instead, offset by 

the output of a general non-linear function, in this case, a RF 

[21]. 

75% 

25% 

X 10 



The hybrid nature of this model would allow for the 

random effects of the ME model to be incorporated with the 

ensemble technique of the RF model, essentially combining 

the best aspects of both approaches.  

This is visually represented in Fig. 4, taking place across 

two isolated stages, before coming together at the end. In 

Stage 1, the MERF model trains a RF using the given 

features, and then uses the trained model to make predictions 

upon the test set. In Stage 2, the MERF model then trains a 

ME model, generating a unique intercept for each 

hierarchical subgroup of its random effects. However, instead 

of using the linear, PLS algorithm native to the ME model for 

predictions on the test set, it uses the original, non-linear RF 

predictions from Stage 1, as an offset. Thus, adding the RF 

prediction to the uniquely generated intercept of the 

hierarchical random effect subgroup which the observation 

under prediction belongs to, allowing it to further correct the 

original prediction of the RF in Stage 1.  

 

 
Fig. 4  - Mixed Effect Random Forest (MERF) model 

F. Evaluation Metrics 

Two key evaluation metrics were used to assess the 

performance of the models applied in the prediction of CH4 

g/d. 

Root Mean Square Prediction Error 

The RMSPE is an average of the distance each model’s 

predicted value is away from the actually observed value 

under prediction. It is expressed in the same scale as the 

response (CH4 g/d), however for an additional perspective, 

this value was also expressed in a percentage form of the 

response mean (RMSPE%). Lower values here represent a 

model with higher predictive accuracy. The RMSPE is 

outlined in (4) where ��  is the actual value of the ith 

observation, �; for the predicted, and N represents the total 

number of observations once the number of parameters (P) 

have been corrected [22]. 
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Concordance Correlation Coefficient 

Whilst r is an appropriate metric for evaluating the 

relationship between two features, to appropriately assess the 

performance of a prediction model, it is the agreement, not 

the relationship, between the observed and predicted values, 

that should be assessed. Therefore, the CCC quantifies the 

deviation of two vectors of bivariate pairs from a line of 

perfect concordance (a 45-degree line through 0 on a 

scatterplot). If both vectors are in complete agreement, their 

position and scale will be completely identical, and this will 

allow all values to sit on a perfect line [23]. 

The CCC is outlined in (5) where � is a vector of observed 

values, $ is a vector of predictions of �, and %&'($, �� is their 

covariance. The CCC ranges from -1 to 1, with 1 representing 

a perfect agreement between observation and prediction. 
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G. Implementation 

This study was implemented in R. The ME model was 

implemented using the lme4 package [12]. Due to the 

implication of the random effects, the lme4 package is 

reluctant to provide p-values, therefore the lme4 package was 

extended using lmerTest [13]. lmerTest calculates p-values 

for the fixed effects using a t-test based on the degrees of 

freedom approximated by Satterwaite’s method [24]. The 

lmer4 and lmerTest summary was refined and scaled using 

the jTools package [14]. 

The RF model was implemented using the ranger package 

[15], while the MERF model was implemented using the SAE 

forest package [17]. 

The dataset splitting process was implemented using the 

caret package [20]. 

The MAE and RMSPE metrics were implemented using 

the Metrics package [18]. The CCC metric was implemented 

using the DescTools package [19].  

IV. RESULTS & DISCUSSION 

A. Feature Selection 

After the Dimensionality Reduction stage, of the original 

13 features in the dataset, 4 were found to have a r of +- 0.25 

with CH4 g/d. Energy Corrected Milk Yield (ECMY kg/d), 

Milk Yield (MY kg/d), Proportion of Concentrate in the Diet 

(Conc/DMI kg/d) and Live Weight (LWT) (Fig. 5). 



During the Multicollinearity Handling stage, of the 4 

features of interest, there was found to be only 1 

multicollinear relationship embedded within them, this 

occurred between the features ECMY kg/d and MY kg/d, 

which together had a r of 0.93. After the r of each feature in 

the correlated feature pair was checked against CH4 g/d 

individually, ECMY kg/d was found to have a higher r (0.45) 

with CH4 g/d, than MY kg/d (0.39) and was therefore kept 

whilst MY kg/d was dropped. These were added alongside 

the remaining features from the original 4 of interest which 

were not correlated with any other features, resulting in 3 

features independently correlated with CH4 g/d in total. 

 

 
Fig. 5 – Correlation Matrix between Features and CH4 Production (CH4 g/d). 

To calculate the significance of these 3 features, they were 

passed into a ME model with the Experiments and Cow 

features attached as random effects, and CH4 g/d as the 

response. The model was trained on the entire dataset. The 

ME model found all 3 features to be significant in explaining 

the variation in CH4 g/d, all with p-values < 0.001. After 

Dimensionality Reduction, Multicollinearity Handling, and 

Feature Significance identification, the original feature set 

was reduced from 13 to 3, which rose to 6 once the CH4 g/d 

response, and Experiment and Cow random effects, were 

reattached. 

B. Prediction Performance 

After the execution of the Assessment Pipeline using the 

specific features and models identified, it appears that ML 

models do indeed have the potential to challenge traditional 

SA methods used in the prediction of DC CH4 emissions.  

The RF model achieved comparable results with the 

traditional ME model in both the RMSPE and CCC metrics, 

in which the RF achieved an average of 52.73 CH4 g/d and 

0.70 respectively, compared to the ME models 53.90 CH4 g/d 

and 0.71 (Table II.). Whilst one would have to pick between 

the higher average CCC provided by the ME model, or the 

lower average RMSPE provided by the RF model, the novel 

SA/ML hybrid MERF model applied in this research, allowed 

for each of its internal model preferences to be fully realised 

within the same model instead, achieving both a higher CCC 

than the RF and lower RMSPE than the ME when on their 

own, 0.73 and 51.87 CH4 g/d respectively. 

The benefit of the MERF model can be more clearly seen 

within the respective metric scores across the ten tests 

performed (Fig. 6/7). 

In RMSPE (Fig. 6), it appears that the ME model was 

more precise, having an interquartile range (IQR) of 2.95 CH4 

g/d compared to the RF models 4.76 CH4 g/d, yet its scores 

were consistently higher, that same IQR being between 52.32 

CH4 g/d and 55.55 CH4 g/d compared to the RF models, 49.66 

CH4 g/d to 54.72 CH4 g/d. However, the hybrid MERF 

model, which combined both the ME and RF models 

together, was able to enjoy each of the advantage they 

provided together, namely the precision of the ME model and 

the higher accuracy of the RF model, achieving an RMSPE 

IQR of 50.31 CH4 g/d to 53.83 CH4 g/d. 

In CCC (Fig. 7), where, inversely to the RMSPE results, 

the ME model enjoyed a more accurate IQR, between 0.69 

and 0.75, compared to the RF models more precise 0.69 to 

0.72, the MERF model again was able to enjoy both of these 

benefits, with a CCC IQR between 0.71 and 0.76. 

TABLE II.  AVERAGE MODEL ASSESSMENT METRICS AFTER 

ASSESSMENT PIPELINE 

Metrics 
Models 

ME RF MERF 

RMSPE (CH4 g/d) 53.90 52.73 51.87 

RMSPE% (%) 14.24 13.94 13.94 

CCC 0.71 0.70 0.73 

RMSPE = Root Mean Squared Prediction Error, RMSPE% = RMSPE 

expressed as a percentage of the response mean, CCC = Concordance 

Correlation Coefficient  

Fig. 6 – Boxplot of RMSPE scores for each model across the ten tests 
performed (CH4 g/d). 

 
Fig. 7 – Boxplot of CCC scores for each model across the ten tests performed. 

This admirable ability of the RF model to challenge the 

traditional ME model, is likely due to the adaptability of the 

underlying ensemble algorithm it employs. This algorithm 

allows for such a comprehensive range of dataset impressions 

to be made, through bootstrapped samples and feature 

randomisation, that even without explicitly modelling any 

random effects, their influence is still encapsulated within the 

sheer scale of dataset impressions formulated and analysed 

by the algorithm. So, whilst the RF may not explicitly correct 

the influence of each random effect, as is the case for with the 

ME model, its underlying functionality still allows this 

omission to be captured elsewhere. 



However, whilst the RF can certainly still capture a 

respectable degree of the random effect influence imposed 

upon the features; through the familarisation of multiple 

dataset impressions, should they be so extreme, on its own, a 

RF model will never quite capture the full picture. Here is 

where the novel SA/ML hybrid MERF model showcases its 

true potential, as the additional explanation of the random 

effect influence that the RF model is unable to afford on its 

own, is selflessly donated by the ME model after the hybrid 

parley.  

No longer stunted by the random effect influence beyond 

its reach, the non-linear forest of RTs is now able to flourish, 

and can outperform the more restrictive, linear PLS algorithm 

native to the ME. It is this complementary exchange that 

made the novel SA/ML hybrid MERF model the best 

performing solution in the prediction of DC CH4 emissions 

within this research. 

V. CONCLUSION  

Due to the complexity and expense of generating large 

enough DC CH4 emission datasets, most datasets that define 

their development are the result of a combination of datasets 

from multiple experiments, each imposing their own specific 

influence upon the emissions produced, as well as 

introducing potential non-linear relationships. Whilst 

traditional SA methods such as ME models are able to capture 

the influence of these underlying hierarchies through random 

effects, their linear nature still struggles to capture the 

inevitable non-linear relationships inherent within them. ML 

models on the other hand have shown that they are 

sophisticated enough to handle both these underlying 

hierarchies as well as their internal non-linear relationships. 

Yet it is still a combination of both of these approaches which 

secures the best performance. In this research, an ML RF 

model was able to challenge a SA ME model in the prediction 

of DC CH4 emissions. But rather than acting as direct 

competitors, and instead behaving as complimentary 

teammates, moderated through the SA/ML hybrid model, a 

MERF, the best aspects of both approaches can be combined, 

namely the random effects of the ME model and the non-

linear ensemble technique of the RF, and as a result, the 

highest accuracy can be achieved. Whilst an RF, to a certain 

extent, can begin to sense the influence of any underlying 

hierarchies via training on multiple dataset impressions, the 

unique intercepts generated by the ME model still remain the 

most accurate representation of their individual effect, and if 

used to temper the predictions made by an RF, will help make 

them even more refined. The inventive combination of the 

MERF algorithm within a hybrid model has demonstrated a 

potentially replicable template, if not a grueling additional 

step, where these unique hierarchical subgroup intercepts 

generated by a ME model can be potentially integrated within 

any ML algorithm. When tested on datasets with more 

extreme hierarchical influences; as with these large, 

heterogenous, DC CH4 emission datasets, which is so often 

the case; then these hybrid ML model predictions can truly 

shine. Whilst only preliminary, we believe this study 

validates the application of ML in DC CH4 emission 

prediction, and also illuminates a potential opportunity for 

their refinement; through a combination of ML techniques 

and SA methods within a hybrid model. 

VI. FUTURE WORK 

A key area of our future work will be further exploring the 

potential benefit offered by a combination of ML and SA 

methods in the prediction of DC CH4 emissions. It will be 

interesting to see how predictive accuracy is affected when 

the unique intercepts generated by a SA ME model, are 

attached to alternative ML models. The hybrid MERF model 

studied in this research has allowed for theoretical 

augmentations of additional popular ML models to be made, 

such as (ME +) Support Vector Machines, (ME +) Neural 

Networks, (ME +) Nearest Neighbours and many more. 

However as seen from the literature [11], just because a 

model applies ML, this does not mean that a high predictive 

accuracy is guaranteed, the algorithm itself needs to be 

conducive with the data available. Due to the low number of 

features available in the current dataset, deep learning models 

may unfortunately be out of reach for now, but when more 

data becomes available, their performance will be of keen 

interest. We will initially look to apply these models in the 

prediction of DC CH4 emissions in their original form, and 

then compare their performance when the underlying 

hierarchical subgroup intercepts have been calculated via a 

ME model. Then, we will have not only a better 

understanding of the ability of ML in the prediction of DC 

CH4 emissions, and potentially, further evidence of their 

suitability over traditional SA methods, but also, an 

irrefutable tool for enhancing their performance. Alongside 

this, alternative feature selection strategies will be tested, and 

the different feature sets deemed significant by each strategy 

will be used by each model under investigation. The 

performances achieved under each feature set identified will 

then be compared and assessed. Additionally, to cement the 

position of ML over the traditional SA models used in the 

prediction of DC CH4 emissions, non-linear variants of the 

traditional SA models will also be tested, to ensure that the 

original ML models being developed, are being compared to 

the best variations that the traditional SA approach has to 

offer. 
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