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Abstract—This paper introduces a methodology for precise object
orientation determination using Principal Component Analysis,
with robust  performance under significant  noise  conditions.  It
validates the potential to mitigate the challenges associated with
Axis-Aligned  Bounding  Boxes  in  smart  manufacturing
environments.  The  proposed  approach  paves  the  way  for
improved alignment in robotic grasping tasks, positioning it as a
computationally  efficient alternative to  ML methods employing
Oriented  Bounding  Boxes.  The  methodology   demonstrated  a
maximum  angle  deviation  of  3.5  degrees  under  severe  noise
conditions through testing with bolts in orientations of 0 to 180
degrees.

I INTRODUCTION

It  is  aspired  in  both academia  and industry  to  enhance
production lines with vision systems capable of processing
real-time data  [1].  This  enhancement  aids  in  the  accurate
identification  of  objects  which  can  be  used  to  facilitate
robotic grasping operations with dynamic or moving infeeds
[2].  Consequently,  it  provides  substantial  flexibility  to
production  lines,  fostering  an  adaptable  manufacturing
environment  [3].  The  subsequent  discourse  in  the  current
literature  highlights  a  growing  fascination  in  employing
machine  learning  (ML)  techniques,  particularly
Convolutional Neural Networks (CNNs), to enhance object
recognition for robotic grasping operations [4]. These ML-
driven object detection algorithms, such as Faster R-CNN,
YOLO, and SSD, operate under two distinct methodologies,
discernible by the nature of their bounding boxes (bboxes).

The first of these methodologies can be seen in models
such as, Faster R-CNN, YOLO, and SSD, which implement
Axis-Aligned  Bounding  Boxes  (AABBs)  [1].  AABBs use
bboxes  that  align with the axes  of  the image,  assuming a
vertical  and  horizontal  position.  AABBs provide a  simple
and computational efficient way to outline the objects in the
scene  making them a preferred  choice  for  many real-time
applications [1]. On the contrary, certain models like R-FCN
and  RRPN  (Rotated  Region  Proposal  Networks)  employ
Oriented  Bounding Boxes (OBBs) [5].  OBBs use bboxes,
that  are  adaptable  to  the  object's  orientation  within  the
image,  therefore  providing a  tighter  fit  around the object.
This feature becomes particularly advantageous in specific
applications where the object's orientation is of importance
such  as  in  detecting  objects  to  be  grasped  by robot  arms
from moving platforms or conveyors [2].

AABBs,  while  being  less  computationally  demanding
than  OBBs,  may encapsulate  significant  background  area,

particularly when dealing with rotated or irregularly shaped
objects. This inclusion could potentially introduce noise into
a  model's  predictions,  detracting  from  overall  accuracy.
Conversely, OBBs have the advantage of providing a more
precise  fit  around  the  object  and  minimizing  background
noise, thus potentially enhancing accuracy for certain tasks.
However,  this  improvement  in  performance  comes  with
increased  computational  requirements  and complexity.  For
these  reasons,  K.  Nguyen  [4]  highlights  that  YOLO  is
considered the optimal choice for real-time object detection
applications requiring high frames per second and moderate
precision. Nevertheless, this model has limitations as it uses
AABBs,  which  are  insufficient  for  autonomous  robotic
grasping  of  objects  that  are  asymmetrical  along  multiple
axes,  such  as  bolts.  Hence,  we present  a  computationally
efficient  approach  for  determining  the  orientation  of
components, such as bolts. The objective of this paper is to
introduce a methodology for deriving the orientation of an
object  post-detection  using  ML  techniques  that  employ
AABBs.  By doing  so,  it  seeks  to  mitigate  the  challenges
associated  with  AABBs,  thereby  enhancing  the  alignment
capabilities  of  robotic  grippers  with  the  grasped  parts.
Notably, this proposed methodology also aims to provide a
more  computationally  efficient  alternative  to  methods
utilising OBBs.

II METHODS

The proposed method loads the test imagesas  grayscale
then applyies a Gaussian blur (kernel size of 5x5) to reduce
noise.  The  image  is  segmented  using  an  adaptive
binarisation  method  to  separate  bolt  pixels  from  the
background. This is accomplished using the mean adaptive
thresholding  technique  in  OpenCV,
cv2.ADAPTIVE_THRESH_MEAN_C  [7],  where  the
threshold value corresponds to the neighbourhood's average
intensity.  The  neighbourhood  size  is  determined  by  the
blockSize parameter, set at 251. From this mean, a constant
C value of 15, optimised through systematic trial and error,
is  subtracted  to  refine  the  threshold.  The  binary  output
image, achieved by applying the computed threshold to each
block, signifies bolt pixels as 1's (black) and the remainder
as 0's  (white).  To ensure a more continuous bolt shape,  a
morphological 'closing' operation is performed on the binary
image. This operation fills small gaps within the bolt shape
using a rectangular kernel with a size of 21x21 pixels. The
bolt's pixel  locations within the image were identified and



centralised by examining the non-zero intensity values. The
mean was then subtracted to centralise their positions. This
process yields a new set of points referred to as centralised
points,  which  have  a  zero  mean.  Principal  Component
Analysis (PCA) is then applied to determine the orientation
of the bolt. The first step involves calculating the covariance
matrix, Σ of the centralized points. The covariance matrix is
computed using the equation (1).

Σ = (1 / (n - 1)) * Σ ((xᵢ – x̄ ) * (xᵢ – x̄ )ᵀ) (1)
    Where, xᵢ represents the centralized points, n is the 
number of points, and x̄ is the mean of the points. Eigen 
decomposition is performed on the covariance matrix, 
resulting in eigenvalues λ and their corresponding 
eigenvectors v. The eigenvalues are sorted in descending 
order, and their corresponding eigenvectors are likewise 
ordered. The eigenvectors represent the principal 
components, which signify the directions in which the data 
varies the most. To determine the orientation, the dot 
product between the second eigenvector (representing the 
minor axis of variation) and the centralised points is 
computed. By determining the angle of the principal 
eigenvector relative to the image's vertical axis and gauging 
the relative position of each point to the minor axis line, the 
bolt's orientation and shape can be accurately established. 
These calculations facilitate subsequent image analyses, 
thereby enhancing the ability to characterise the bolt.

III RESULTS & DISCUSSION

      The methodology was evaluated using colour images of 
M12x40 hex bolts. To assess performance across a range of 
bolt orientations, 19 synthetic images were generated with 
variations in the bolt's angle at 10-degree intervals from 0 to 
180 degrees. Furthermore, to examine the method's 
robustness, these images were augmented using Gaussian 
noise, following the approach outlined by G.B.P. da Costa 
[8]. The augmentation process resulted in the creation of six 
distinct test sets, each comprising 19 images. These test sets 
were generated by applying different levels of Gaussian 
noise, with standard deviations (σ) ranging from 0 to 50. 
This experimental setup enabled comprehensive testing and 
analysis of the methodology's performance under different 
bolt orientations and varying levels of image noise. An 
example of the image noise range can be seen in Fig. 1.

Successful  orientation  detection  was  determined  if  the
observed angle was within a 10-degree range of the known
one,  factoring  in  the  robot  gripper's  ability  to  effectively
handle minor misalignments.  The proposed method reliably
identified the bolt's angle within this tolerance across all test
images,  as  depicted  in  Fig.  2.  While  no  measured  angle
precisely matched the known angle in all rotations and noise

levels a high degree of accuracy was achived. Notably, the
most significant deviations were observed in angles  from 0
and 80 degrees, with the maximum average deviation of 3.5
degrees (across all noise levels) recorded for the bolt at 40
degrees.  In  contrast,  the  precision  improved  for  bolts
oriented past 90 degrees, with the highest average deviation
(across all noise levels) being 2.2 degrees for bolts at 140
and 150 degrees.

Testing has shown that lighting conditions appear to cause 
this change in accuracy, particularly once the bolt image is 
rotated beyond 90 degrees. This rotation reduces bright 
pixels caused by light reflecting off the bolt's surface, 
leading to more pixels being converted to black during 
binarization. Consequently, a larger number of pixels is 
available for PCA application, improving the accuracy of the
bolt orientation determination past 90 degrees.

IV CONCLUSIONS

In  conclusion,  the  technique  demonstrates  potential  for
accurately identifying bolt orientation in low to highly noisy
conditions with an maximum angle deviation of 3.5 degrees
(averaged across all noise levels for a bolts at a known angle
of 40 degrees).  Future research  hopes to extend  this work
into being used with with a YOLO system for a comparison
with  models  that  utilise orientated  boundary  boxes,
evaluating  both  operational  time  and  computational
requirements.
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Fig. 1  Gaussian Noise Levels in Test Images: σ = 0, σ = 20, and σ = 50

Fig. 2  Output Images (100 degrees): σ = 0, σ = 20, and σ = 50
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