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Abstract. Neuromorphic vision data offers a new means of evaluating
digitise spatial and temporal representations of evolving scene dynam-
ics. Reduction-Over-Time (ROT) trees have seen growing popularity as
a medium for storing and operating over the temporally asynchronous
data produced from neuromorphic sensors given their 1-D nature, spatial
preservation, and speed. In this paper we propose a variation of the ROT
tree called R-ROT which allows for greater adaptability within structure
when compared to the originally proposed ROT tree using adaptive self-
pruning. The R-ROT structure is evaluated against the original ROT
model and is shown to achieve high accuracy results in shorter time
across a widely popular benchmark database.

Keywords: smart sensors and actuators, smart factory, neuromorphic
data

1 Introduction

The Reduction-Over-Time (ROT) tree, [1, 2], is an abstract data structure pop-
ularly applied to neuromorphic data, particularly the output of models based
on silicon retinas. Neuromorphic vision sensors, and their systems [3–5], emulate
the function of modelled biological visual systems by mimicking the structures
and electrical behaviour of these systems in silicon. Neuromorphic sensing is a
paradigm shift enabling a completely new avenue of approach to understand ob-
servable scenes; sensors such as the Dynamic Vision Sensor (DVS) model family
[3] are growing increasingly popular in embedded, high-speed, and/or low-power
systems for their compact size, speed increases, and power demand reduction.
We contrast sensors such as those of DVS with the classical active-pixel sensor
(APS) based approaches.
The classical APS approach is well understood and is the foundation of most
imaging research to date but it has disadvantages in terms of time and energy
since its formalisation. Classic APS sensors, or active-pixel sensors (APS), work
by polling a 2-D array of pixels at a certain time interval (static or dynamic)
and digitising the data values of all pixels during the polling to produce a nu-
merical representation of the light levels detected at the polling moment. When
displayed on a 2-D surface, these data values will contain spatial information at
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the moment of capture which can be processed further by classical image pro-
cessing techniques.
Taking a series of 2-D matrices formed from the event time at an instance in time,
and representing in a sequence from oldest captured to newest, we can develop a
representation of change within an observed scene. The power-to-speed ratio is
directly linear such that in order to poll and digitise scene information at high-
speeds we always need to increase the power consumption in the vision system;
conversely to decrease the power consumption we need to decrease the polling
and digitisation slowing the capturing process down. This ratio is acceptable in
a number of existing areas but some key areas of research, such as autonomous
vehicles, power and/or data conscious [6] systems, general embedded robotics,
and energy-focussed manufacturing require more responsible energy usage while
maintaining high-speeds.

Sensors, such as the DVS (including the hybrid DAVIS [7]) family, are em-
ulations of retinal neural behaviour [?,7] which asynchronously release informa-
tion on a pixel-by-pixel basis unlike APS sensors which operate on fixed cyclic
emission rates . The core datatype of neuromorphic vision sensors is the event
ei = ⟨ti, xi, yi, pi⟩ where t is the event emission time, x and y are identifiers of
the emitting pixel, p = ±1 indicates the polarity of light intensity change and i
is the index of the event within E = {e1, . . . , ei}.
The ROT tree offers a fast means of processing neuromorphic data with ob-
served enhanced noise reduction. The ROT tree is a paradigm shifting structure
in terms of neuromorphic data processing which can operate in 1-D space as op-
posed to the 2-D approaches common currently in the field [8, 9, 5]. An ROT tree
uses a event-time differences reduction model, which models information decay
over time, to perform self-pruning) while maintaining the self-balancing nature
of the tree for read operations. The ROT tree has been applied to neuromorphic
data because:

1. ROT trees are well-suited for handling high-dimensional, continuous data
because they can perform data reduction, as the data streams in, without
requiring large amounts of memory or computing power.

2. ROT trees can efficiently [2] extract relevant information from the neuro-
morphic data while preserving its temporal and spatial structure. This is
important because neuromorphic data often has complex temporal and spa-
tial patterns that traditional data reduction techniques may not be able to
capture.

3. ROT trees can be used to detect and track changes in the neuromorphic
data over time. This is important because neuromorphic data often con-
tains dynamic, evolving patterns that may be difficult to detect using other
methods.

In this paper, we will show that ROT trees can be easily modified and adapted to
suit specific types of neuromorphic data. We achieve this by comparing the ROT
tree [2] which is based on a fixed data reduction model with an ROT variation
which uses an adaptive data reduction model based on data temporality. We will
refer to the ROT variation within this paper as R-ROT.



2 Methodology

The ROT tree is a self-pruning temporal device for storing neuromorphic data
based on relevance over time, historically the data structure has made use of
a forgetting curve designed to model the information retention observed across
many psychological studies. This approach has proved to be efficient in terms
of time and memory but recent implementations of ROT have favoured the
use of fixed-thresholding to evaluate temporal information as it develops over
time. Spatial ROT trees [1] have shown little consequences of storing spatial
information over time but temporal information is based on an all-or-nothing
decay model. Instead of organising ROT trees purely based on data reduction
through temporal delta (the difference in time against events) we adjust for the
natural variance of data. Consider the original data reduction model P (k) −→
0.184/ log10 k

1.25+0.184 where k is the time difference between the current event
and previous events and the rate of reduction can be considered at local maxima
to be 25% , we adjust such that P (k) −→ 0.184/ log10 k

1+κ+0.184 such that κ is
a inverse normalised percentage value of k value variance ϱ, such that κ = 1−ϱ,
as the neuromorphic data evolves over time.

3 Experiment and Results

We compare T--ROT against an original [2] this includes the same experimental
setup using a popular and publicly available database [10]. We will compare ROT
and R-ROT using the the shapes, boxes, walking and run datasets. The datasets
are captured using a 240 × 180 resolution event-based and frame-based hybrid
camera known as the DAVIS240-C [7]. Fig. 1 shows the output sample from
the experiment, the ROT-Harris (proposed in [2] operating a Harris response
model in 1-D) response is captured as computed from neuromorphic data held
in ROT (green) and R-ROT (red) tree respectively. The original scene image
is also provided to allow for contrasting. An assessment of ROT and R-ROT
contents revealed a near 1 : 1 ratio indicating that, at sampling time, the ROT
and R-ROT contained the same events at that stage.

To evaluate ROT and R-ROT we compute accuracy, similarly to the original
ROT paper, using ground-truth of the datasets to form true positive (tP) and
false positive (fP) statistics as showing in (1).

Accuracy =
tP

tP + fP
(1)

As in [2] we use the spatial identifiers (x and y) of the neuromorphic data as
purely identifiers, we do not consider event data within this paper to exceed
1-D in operational space, this architectural decision has been shown to produce
faster and more memory conservative means frameworks for operating over neu-
romorphic data at the cost of some thread-safe management. The results of [2]
highlighted the benefits of using an ROT as an underlying engine for corner
point extraction using an adapted Harris algorithm [11]. In terms of accuracy



Fig. 1. A sample output of operating the 1-D ROT-Harris corner detector over data
retained in the ROT (green) and R-ROT (red) trees respectively. The original under-
laying image is provided for clarity

the original ROT algorithm achieved an average result of 68.45%, the R-ROT
achieved an averaged result of 73.14%. It is important to note that on average
we saw a factor of 4 decrease in overall memory usage while utilising R-ROT.
Comparing ROT and R-ROT in time we also notice a significant change, the
ROT reported an average of 83.25 nanoseconds per execution instruction (that
is the amount of time taken to determine if an event is a corner or not) while
R-ROT obtained an average of 64.33(rec.); this speed-up is likely the result of
the R-ROT retaining fewer events when gaps (temporal voids) appear within
the data while the data stream progressing.

4 Conclusion

This paper presents a variation of the classical ROT tree applied to neuromorphic
vision data which we denote as R-ROT. The R-ROT tree utilises an adaptive
data reduction approach to allow the self-pruning mechanism residing with ROT
tree design to adapt based on the pattern of a data stream. The R-ROT structure
is compared against the original ROT structure in the area of corner detection
using the 1-D neuromorphic ROT-Harris algorithm to identify corners as interest
points within a widely used database. The results show that the R-ROT structure
is able to outperform the original ROT structure in accuracy (as calculated using
accepted ground truth) and time (as calculated in decision time). For future work
we will explore introducing a deep-learning model to replace or enhance the
ROT tree features with the goals of deploy-ability and generalisation, alongside
accuracy and speed increases.
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