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Abstract

This paper presents a wearable brain-computer interface relying on neurofeed-

back in extended reality for the enhancement of motor imagery training. Visual

and vibrotactile feedback modalities were evaluated when presented either sin-20

gularly or simultaneously. Only three acquisition channels and state-of-the-art

vibrotactile chest-based feedback were employed. Experimental validation was

carried out with eight subjects participating in two or three sessions on differ-

ent days, with 360 trials per subject per session. Neurofeedback led to statisti-

cally significant improvement in performance over the two/three sessions, thus25

demonstrating for the first time functionality of a motor imagery-based instru-

ment even by using an utmost wearable electroencephalograph and a commercial

gaming vibrotactile suit. In the best cases, classification accuracy exceeded 80%

with more than 20% improvement with respect to the initial performance. No

feedback modality was generally preferable across the cohort study, but it is30

concluded that the best feedback modality may be subject-dependent.
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extended reality, haptic, neurofeedback.

1. Introduction

Motor imagery consists of imagining a movement without executing it. Inter-35

estingly, the neuronal activities during both the execution and the imagination

of a movement are compatible. Both of them induce "event-related desynchro-

nization" and "event-related synchronization" of the µ and β rhythms [1–3].

Because of this, motor imagery is widely exploited in building brain-computer

interfaces (BCI) [4] as it offers an alternative way to communicate motor inten-40

tions without involving peripheral nerves or muscles [5]. Motor imagery-based

BCIs are powerful tools both for people with [6–9] and without motor disabil-

ities [10]. Application examples range from controlling a wheelchair [7] or a

robotic arm [8] to navigating a virtual environment [10] or assessing awareness

in disorder of consciousness [11] or implementing a speller [9]. Such BCIs typi-45

cally rely on electroencephalography (EEG) to measure brain activity due to its

non-invasiveness, low cost, and wearability [12, 13]. However, in contrast with

other common BCI paradigms [14, 15], the user must be trained to properly

control a BCI based on motor imagery. In this framework, neurofeedback helps

the user to self-learn to modulate sensorimotor rhythms intentionally.50

Fig. 1 represents a closed-loop metrological chain where neurofeedback is

used to support the modulation of EEG rhythms [16, 17]. As a consequence,

this aims to enhance the performance in BCI control applications [18]. Accord-

ing to the literature, unimodal feedback such as visual, auditory, and haptic, are

compatible in terms of performance [19–21]. Among them, haptic (somatosen-55

sory) feedback could improve the sense of agency in motor imagery BCI’s [21].

Moreover, it has the potential to enhance cortical activation and system perfor-

mance as well as increase the pertinence of provided feedback [21–23].

Multimodal feedback is also sought to enhance user engagement [24, 25]. The

most commonly investigated multimodal feedback combines visual and haptic60

somatosensory feedback modalities. Recent studies showed virtual hands ap-
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EEG acquisition

motor imagery

neurofeedback

EEG processing

Figure 1: Representation of visual neurofeedback in a brain-computer interface based on motor

imagery. EEG: electroencephalography.

pearing on a screen while an electrical [26] or vibrotactile [27] stimulation was

delivered to the user’s hand. In both cases, results suggest that multimodal

feedback was beneficial for motor imagery detection, even in comparison with a

unimodal feedback modality. Meanwhile, the authors in [28] demonstrated that65

better detection accuracy1 was associated with visual or multimodal feedback if

compared to the vibrotactile feedback alone. In that case, haptic feedback was

provided by two vibrating motors placed on the wrists. Finally, three tactile

actuators were used in [30] to stimulate the shoulder blade. However, no sig-

nificant differences were found in terms of detection accuracy between visual or70

visual-haptic guide.

There is thus evidence that neurofeedback enhances the detection of mo-

tor imagery. However, there is no consensus about what is the best feedback

modality or what is the best way to provide it/them. Notably, the number of

1The concept of classification accuracy is taken into account, namely the ratio between

the number of correctly classified tasks and the total number of tasks. This should not be

confused with measurement accuracy, namely “the closeness of agreement between a measured

quantity value and a true quantity value of a measurand” [29].
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EEG acquisition channels in the above-mentioned studies ranged from 11 to 64.75

However, previous research also suggests that three is a minimum number of

channels to properly measure sensorimotor rhythms [31], so that a lower num-

ber of channels could be used to achieve user comfort, wearability, portability,

and ease of use [32, 33].

On these premises, the present work investigates different neurofeedback80

modalities within the implementation of a wearable BCI based on motor im-

agery. In acquiring brain signals, only three differential channels were chosen

a-priori to achieve utmost wearability and portability. Meanwhile, visual and

haptic feedbacks were presented through a custom virtual reality scenario. For

the first time, a wearable haptic suit was exploited as an actuator for chest85

vibrotactile feedback. The remainder of the paper is organized as follows. Sec-

tion 2 presents the proposed system with specific regards to hardware, software,

and signal processing. Then, Section 3 discusses the experimental procedures

adopted to validate the instrument prototype, while Section 4 reports the results

of an experimental campaign carried out according to those methods.90

2. Proposal

The proposed closed-loop wearable BCI is presented in this section. Two

feedback modalities were adopted either singularly or simultaneously, namely

visual and vibrotactile modalities. The former consisted of a rolling virtual

ball, while the latter was a vibration delivered on the chest. As this study aims95

to maximize user engagement and comfort, EEG signals were acquired through

a recently commercialized wireless cap, FlexEEG [34], while the chest-based

feedback was delivered with a suit designed for immersive experiences.

The block diagram of the BCI system is shown in Fig. 2. The EEG signals,

acquired from the user’s scalp, are sent via Bluetooth to a custom Simulink100

model embedding online signal processing. The EEG processing output is sent

to a purposely designed Unity application, and it is employed for modulating

the sensory feedback. Thus, the loop is closed by delivering the neurofeedback
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125 EEG samples per second

feedback direction and intensity

protocol timing

UDP
Bluetooth

EEG acquisition EEG processing NF application

Figure 2: Block diagram of the wearable brain-computer interface. The information exchanged

between blocks (black) and the exploited communication protocols (blue) are highlighted.

EEG: electroencephalography, UDP: User Datagram Protocol, NF: neurofeedback.

to the user. In addition, the Unity application also dictates the timing for the

motor imagery tasks (synchronous cue-based paradigm [35]). Details about the105

system implementation are discussed in the following subsections.

2.1. Wearable hardware

The hardware of the wearable BCI system involves two main devices: a

commercial electroencephalograph, and a haptic suit for vibrotactile feedback.

Visual feedback was instead delivered through the screen of a personal computer,110

though, in a real application, the visual feedback may be naturally provided as

an effect of the control task.

(a)

FC3 FCZ FC4

AFZ

CP3 CPZ CP4

(b)

Figure 3: Wearable and portable EEG acquisition system: (a) EEG cap with electrodes, (b)

FlexMI channels configuration with three pairs and a reference electrode.

EEG acquisition was carried out with the FlexEEG headset by NeuroCON-
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(a) (b)

Figure 4: Wearable and portable haptic suit with a double vibration motors matrix: (a) suit,

(b) front view of matrix with motors.

CISE Ltd2 shown in Fig. 3. The headset was used with the FlexMI channels

montage, which is specifically designed to record the sensorimotor area of the115

brain. Notably, it consists of three differential channels placed at FC3-CP3,

FCz-CPz, and FC4-CP4, while the ground electrode is at AFz (Fig. 3(b), see

[36] for the international 10/20 EEG standard locations). Conductive gel was

used to ensure low contact impedance and high stability at the scalp interface.

The EEG signals were filtered and amplified by the electronic board. Then,120

these signals were digitized with 16-bit resolution by sampling at 250 Sa/s and

then down-sampling to 125 Sa/s. The data were finally transmitted via Blue-

tooth 2.0.

The hardware for the haptic feedback consists of the vibrotactile suit from

bHaptics Inc 3 shown in Fig. 4. This is wearable and portable, and it is primarily125

commercialized for gaming. It provides a double 5 × 4 matrix with motors

installed on the front and back of the torso. Vibration can be modulated in

terms of intensity per each single motor, and patterns can be created to give

a specific haptic sensation to the user. In the current application, vibration

2https://www.neuroconcise.co.uk/technology/
3https://www.bhaptics.com/tactsuit/tactsuit-x40
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patterns consist of activating a column of five motors vibrating at the same130

time. The column shifts to the left or to the right side of the torso starting

from the front centre. They are controlled through Bluetooth via the Unity

application according to online classification of EEG signals.

2.2. Software application

A virtual scenario was developed with the Unity games engine to deliver135

the feedbacks and dictate the timing of the experiment and trials. The visual

feedback consisted of a virtual ball with the capability to roll in one dimension

to the left or the right side of a screen. Gravity was applied to the ball to keep

it tied to the virtual floor (Fig. 5). Its movement was controlled in accordance

with online classification of EEG signals where the class and score (i.e., class140

probability) associated with the EEG signals determine the force applied to the

ball in terms of direction and intensity, respectively. Meanwhile, the haptic

pattern (columns of vibrating motors) could be modulated in terms of position

and intensity, again according to class and score.

Through the graphical interface, the experimenter could select the feedback145

to deliver: visual, vibrotactile, or both. When the visual feedback was not

wanted, the virtual ball disappeared. Instead, if the vibrotactile feedback was

unwanted, the suit was shut down. In any case, the task indication was always

provided with an arrow appearing on the screen. Details on the timing will be

provided in Section 3.150

2.3. Signal processing

In order to translate the brain activity into control commands, the acquired

EEG data were processed both online and offline with an algorithm based on

“filter-bank common spatial pattern” (FBCSP) [37, 38]. This approach was suc-

cessfully replicated and tested on benchmark datasets [37–40], and some studies155

even showed its efficacy in analysing differential channel data [41]. FBCSP

involves the following steps:
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Figure 5: Visual feedback consisting of a ball rolling according with motor imagery.

• the EEG signals are filtered with an array of 17 bandpass Type II Cheby-

shev filters (tenth order, attenuation 50 dB) from 4Hz to 40Hz (4-8, 6-10,

8-12, . . . , 36-40 Hz);160

• the data from the three channels are spatially filtered using the Common

Spatial Pattern (CSP) algorithm, which transforms the raw EEG signals

to maximize the variance of one class while minimizing the variance of the

other;

• the most informative features are selected by means of the Mutual Information-165

based Best Individual Features (MIBIF) algorithm;

• the signal features were classified using a Bayesian approach, namely the

Naive Bayesian Parzen Window (NBPW).

The steps of the FBCSP are shown in Fig. 6. Further details about the im-

plementation of each processing block are reported in the literature [37, 38].170

It is worth mentioning that the adopted classifier assigns a probability to the

two possible classes (left and right), and hence the most probable class is as-

signed to the processed EEG data. By exploiting the class and its probability

as a score, the feedback could be modulated in terms of direction and intensity,

respectively.175
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6-10 Hz

8-12 Hz
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…

filter bank CSP MIBIF

F1

F2

F3

F4

…

Fn

class
info

direction and 
intensity

naive bayesian
classifier

samples

Figure 6: EEG signals processing in the proposed wearable brain-computer interface. CSP:

Common Spatial Pattern, MIBIF: Mutual Information-based Best Individual Features.

Note that the algorithm must be trained before being used for online clas-

sification. For this purpose, a first set of data was acquired subject-by-subject

without any pre-processing being applied (more details in Sec. 3.1). The model

for EEG processing was thus identified with these initial data for each subject.

Then, in a second step, the identified model was used for online classification180

of unlabelled EEG data. In the online version, the EEG data stream was pro-

cessed with a sliding window of fixed duration in order to provide a continuous

feedback. The width of the sliding window was fixed at 2.00 s while the shift

between consecutive windows was fixed at 0.25 s. These choices were made both

according to empirical evidence from preliminary measures and according to185

literature [42]. The same FBCSP approach was adopted in offline analyses as

well.

3. Experimental validation

The experimental protocol is described in the following section and the meth-

ods for offline analyses of the results are discussed. Some details are also given190

about the participant in this preliminary validation.

3.1. Experimental protocol

The experiments were carried out in two or three sessions on different days,

each lasting about two hours. Participants were asked to imagine the movement

of the left or right hand. A single experimental session is depicted in Fig. 7.195
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In each session, they first performed motor imagery without any feedback (noF

block), which was required for identifying the online classification model. Then,

they received online feedback (NF block). The presentation of the three feedback

modalities were randomized for each subject to avoid biases associated with the

sequence of presentation. A questionnaire (see Tab. 1) was administered during200

each session to monitor changes in the participants’ mental and physical state

between blocks. This was adapted from [43] to include neurofeedback-related

aspects.

Instruction and
questionnaire
~10 min

FlexEEG cap setup

~5 – 10 min

noF Block

~16 min

Questionnaire
and break
~10 min

NF Block

~70 min

Questionnaire

~5 min

RUN 1
~4 min

Break
~2 min

RUN 2
~4 min

Break
~2 min

RUN 3
~4 min

RUN 1
~4 min

Break
~2 min

Break
~2 min

RUN 2
~4 min

RUN 3
~4 min

Break
~10 min

Random feedback type
~16 min per each

Figure 7: Structure of a single session of the experimental campaign. noF: no feedback, NF:

neurofeedback.

The noF block consisted of three runs with 30 trials each (15 per class) with

about two-minute breaks in between. The order of the cue-based motor imagery205

was again randomized to avoid any bias. The timing of a single trial was recalled

from the standard paradigms of BCI competitions [44]. In particular, it consists

of an initial relax, a cue at t = 2 s indicating the task to carry on, motor imagery

starting at t = 3 s, and motor imagery ending at t = 6 s. Final relaxation was

then presented, and its duration was randomized between 1 s to 2 s.210

After the first block, a 10-minute break was employed to continue the ques-

tionnaire and identify the online classification model. In particular, the FBCSP

was used in a 5-fold cross validation with 10 repetitions for selecting the best

time window in terms of optimal classification accuracy. The time-varying clas-

sification accuracy and the associated standard deviation were calculated with215

a 2.00 s wide sliding window to span the 0.00 s to 7.00 s range with a 0.25 s
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Experimental Information at start

Date yyyy:mm:dd

Session #

Starting time hh:mm

Handedness 1: left / 2: right / 3: both

Age #

Sex 1: male / 2: female

Do you practice any sport? 0: no / 1: yes / 2: professional

BCI experience 0: no / 1: active / 2: passive / 3: reactive / 4: multiple types

Biofeedback experience 0: no / number: how many times

How long did you sleep? number: hours

Did you drink coffee within the past 24 h? 0: no / number: hours before

Did you drink alcohol within the past 24 h? 0: no / number: hours before

Did you smoke within the past 24 h? 0: no / number: hours before

How do you feel? Anxious 1 2 3 4 5 Relaxed

Bored 1 2 3 4 5 Excited

(Physical state) Tired 1 2 3 4 5 Very good

(Mental state) Tired 1 2 3 4 5 Very good

Which motor imagery are you confindent with? 1: grasp / 2: squeeze / 3: kinesthetic / 4: other

After training block

How do you feel? (Attention level) Low 1 2 3 4 5 High

(Physical state) Tired 1 2 3 4 5 Very good

(Mental state) Tired 1 2 3 4 5 Very good

Have you nodded off/slept a while? No 1 2 3 4 5 Yes

How easy was motor imagery? Hard 1 2 3 4 5 Easy

How do you feel? (Attention level) Low 1 2 3 4 5 High

(Physical state) Tired 1 2 3 4 5 Very good

(Mental state) Tired 1 2 3 4 5 Very good

Have you nodded off/slept a while? No 1 2 3 4 5 Yes

Did you feel to control the feedback? (Visual) No 1 2 3 4 5 Yes

(Haptic) No 1 2 3 4 5 Yes

(Multimodal) No 1 2 3 4 5 Yes

How easy was motor imagery? Hard 1 2 3 4 5 Easy

After the motor imagery experiment

Which type of feedback did you prefer? 0: v / 1: h / 2: v-h

How do you feel? Anxious 1 2 3 4 5 Relaxed

Bored 1 2 3 4 5 Excited

How was this experiment? (Duration) Too long 1 2 3 4 5 Good

(Timing) Too fast 1 2 3 4 5 Good

(Environment) Poor 1 2 3 4 5 Good

(System) Uncomfortable 1 2 3 4 5 Comfortable

Table 1: Questionnaire administered to the participants during each experimental session.

shift. For each subject, the best time window was chosen in terms of maximum

classification accuracy during the motor imagery task and minimum difference

between within class accuracies. The online model was hence trained by using

such a window. A further run of the noF block was repeated if the classification220

results were compatible with randomness.

Once the model was trained, participants performed the NF block, namely

they received feedback in response to the motor imagery task. In each of these

trials, the online processing began 0.50 s after the cue at t = 2 s and it relied on a

sliding time window of 2.00 s shifting of 0.25 s until the end of the motor imagery225

task. For each type of feedback, three runs with 30 trials each and two classes

11



0 1 2 3 4 5 6 7 8 t(s)

Fixation cross

Cue

Feedback Break

Figure 8: Timing diagram of a single trial in the BCI experiment with neurofeedback.

of imagery were recorded in total. The timing of a trial with feedback is shown

in Fig. 8. Note that, unlike the previous block, in this case the imagination

starts from the cue. The participants were asked to maintain high concentration

throughout the entire motor imagery task, even if the feedback did not respond230

correctly. Between feedback types, a 10-minute break was given.

Regarding the visual feedback, the goal for the user was to overcome the

white line (Fig. 5). Instead, for the haptic feedback, the goal for the user was

to activate the haptic feedback maximally on the respective side of the chest.

Finally, in the multimodal feedback case, the aforementioned feedbacks were235

jointly provided. During feedback, the virtual ball or the haptic pattern could

move only if the obtained EEG class was equal to the assigned task (positive

bias [45]). Otherwise, no feedback was provided, and the virtual ball was drawn

towards the centre of the screen while the vibration intensity was stopped.

3.2. Offline data analysis240

After the experiments, the 360 available trials were analysed offline per ses-

sion per subject. Firstly, baseline removal was applied by considering the 100ms

before the cue. Then, the time-varying accuracy was calculated for all subjects,

blocks and sessions by means of cross validation [46]. A permutation test was

performed for each session, subject and block. The purpose was to validate the245

results obtained in the time-varying analysis by evaluating how far these were

from random classification. Hence, the labels associated with the left and right

motor imagery tasks were randomly permuted and the time-varying analysis

was repeated. In both cases, the cross-validation was performed.Finally, the

12



comparison between the results with permuted and non-permuted labels was250

carried out by using the non-parametric Wilcoxon test.

Next, by relying on the best 2.00 s time window in terms of classification ac-

curacy, the one-way analysis of variance (ANOVA) was performed to compare

the accuracies in different conditions. To check for the normality assumption

of the distributions, the Jarque-Bera test [47] was performed. Instead, the ho-255

moscedasticity was tested by means of the Bartlett’s test. When the assumption

of homoscedasticity was violated, Welch’s correction to ANOVA was applied.

When the distributions were not normally distributed, the Kruskal–Wallis non-

parametric test was used.

3.3. Subjects260

Eight right-handed volunteers (three males, mean age 28 years, and five

females, mean age 25 years) participated in the experiments. These were con-

ducted at the Augmented Reality for Health Monitoring Laboratory (ARHeM-

Lab, University of Naples Federico II) in Italy. When designing the experiments,

the number of subjects was chosen according to the expected effect size [48, 49]265

due to neurofeedback. Notably, a preliminary study [50] suggested a Cohen’s d

index greater than 0.8, namely a large effect size [51]. Consequently, a sample

size of six was enough to achieve a statistical power around 95% [52]. Nonethe-

less, eight subjects were actually considered in accordance with recent studies

in this field [53, 54].270

All subjects had no brain injury or motor impairment, and did not report any

other medical or psychological illness/medication. Moreover, they had normal

or corrected to normal vision. All subjects signed an informed consent before

taking part to the experiment. By means of the questionnaire, it emerged that

half of the participants played sport (S01, S03, S05, S08), though none of the275

participants practiced them at a professional level. Subjects S03 and S05 had

previous experience with multiple BCI paradigms, S08 had previous experience

with motor imagery only, while S01 and S07 only had experience with evoked

potentials. The remaining three participants had never used a BCI before. The

13



subjects S03, S05 and S08 had already experienced neurofeedback.280

By analysing the experimental sample as a whole, it resulted that the night

before the experiment subjects slept about 7± 1 h. In considering the subjects’

answers to the questionnaire from all sessions, about 35% of cases reported that

they did not drink coffee within the 24 h prior to the experiment. When coffee

was consumed, it was drunk 4± 2 h earlier. No subjects drank alcohol within285

the 24 h prior to the experiment and only 20% of times participants smoked a

cigarette approximately an hour before starting (subjects S04 and S08).

Prior to the experiment beginning, subjects were instructed with information

about the experimental protocol. The goal of the experiment was first explained,

and then they were asked to try different ways of imagining hand movement290

(kinaesthetic sensation, squeezing a ball, grasping an object, snapping their

fingers, imagining themselves or another person performing the movement) to

identify the one they were most confident with. Once chosen, they were asked

to keep it constant throughout the single session. Finally, they were instructed

to avoid muscle and eye movements and eye blinks during the motor imagery295

task.

4. Experimental results

Experimental data were analysed in accordance with the previous section and

the results are reported hereafter. Among the eight volunteers, four subjects

participated in three sessions and four subjects participated in two sessions.300

4.1. Permutation test

The time-varying accuracies generated with the original and randomly per-

muted labels are shown in Fig. 9 for the subject S03 (four feedback types,

three sessions). In accordance with the previous discussion, they were obtained

through a sliding window of width 2.00 s on the −1.00 s to 8.00 s range. There-305

fore, the accuracy at t = 0.00 s corresponds to the −1.00 s to 1.00 s window, the

point in t = 0.25 s corresponds to the −0.75 s to 1.25 s window, and so on. This

allows to span the 0.00 s to 7.00 s range as a whole with a 0.25 s step.

14



The different sessions are reported on rows, while the different feedback

modalities are shown in columns. Per each plot, the time in seconds is reported310

on the x-axis, while the mean classification accuracy along with its associated

standard deviation are reported in percentage on the y-axis. The blue curves

correspond to the results obtained with the true labels while the red curves

indicate the accuracy corresponding to the permuted labels. The two bounded

lines overlap up to the cue at t = 2 s as expected during the baseline period.315

Then, the curves are separated during the motor imagery (event related) period

in most cases.

Figure 9: An example of the accuracy and permutation test accuracy for subject S03. Mean

classification accuracy and associated standard deviation are calculated in time with cross-

validation. The blue line corresponds to actual classification (original labels), while the red

line corresponds to random classification (permuted labels). The relevant time instants are

reported in bold according to the trial timing diagram of Fig. 8. noF: no feedback, H: haptic,

V: visual, M: multimodal

The significance of the difference between the curves was proven with the

15



Wilcoxon test. The results are reported in Tab. 2 for all subjects. They refer

to a test executed by considering the only motor imagery window and a 5%320

significance level. A significant difference resulted in the first session for only

half of the participants when no feedback was provided. However, the number

of subjects associated with significant, non-random, classification rose to five,

seven, and five with the haptic, visual, and multimodal feedback, respectively.

Regarding the second session, statistically significant results were obtained for325

six subjects with no feedback, seven subjects with haptic feedback, six subjects

with visual feedback, and seven subjects with multimodal feedback. Finally, for

the last session, all the four subjects obtained a statistically significant result

without receiving feedback, while only three out of four obtained a significant

result for each of the feedbacks. These results prove the functionality of the330

wearable BCI and already suggest the effectiveness of providing neurofeedback

during the motor imagery task. Moreover, a training effect across sessions is

indicated, since a greater percentage of significant results was obtained in the

first block (no feedback provided) during the second and third sessions. This is

confirmed by the classification results discussed next.335

p-value

Session 1 Session 2 Session 3

noF H V M noF H V M noF H V M

S01 0.002 0.349 0.011 <0.001 0.999 0.004 0.491 <0.001

S02 0.967 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001

S03 0.076 <0.001 <0.001 <0.001 0.042 <0.001 0.003 <0.001 <0.001 <0.001 <0.001 <0.001

S04 0.272 0.002 0.212 0.212 0.013 0.004 0.004 0.009

S05 0.225 0.040 0.119 0.262 <0.001 0.586 <0.001 0.832 <0.001 <0.001 0.258 0.185

S06 0.036 <0.001 <0.001 0.034 <0.001 <0.001 0.001 <0.001 <0.001 0.094 <0.001 <0.001

S07 0.756 <0.001 0.023 0.013 0.791 <0.001 <0.001 <0.001 <0.001 <0.01 <0.001 <0.001

S08 0.194 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001

Table 2: P-values associated with the permutation test. The significant results of the Wilcoxon

non-parametric test (5% significance level) with respect to the permuted results are marked

in boldface. noF: no feedback, H: haptic, V: visual, M: multimodal
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4.2. Classification results

In analysing offline classification results, the best 2.00 s-wide time window

was selected per each subject, session, and feedback modality. In particular,

the window associated with the highest mean accuracy during the motor im-

agery task was selected. The results are reported in Tab. 3 in terms of mean340

accuracy, by reporting results in bold that were significantly different from the

“no feedback” case with a significance level equal to 5%. The statistical signifi-

cance was tested by performing the ANOVA, eventually adjusted according to

Sec. 3.2. The mean accuracy across the subjects is also reported along with the

associated standard deviation.345

accuracy (%)

Session 1 Session 2 Session 3

noF H V M noF H V M noF H V M

S01 70 60 89 60 57 59 65 64

S02 57 83 65 84 67 78 66 75

S03 70 75 87 82 62 80 77 82 74 80 82 85

S04 64 60 60 60 67 66 62 58

S05 63 65 64 68 65 60 61 64 72 67 67 59

S06 62 61 61 57 74 75 59 69 75 59 72 65

S07 57 68 59 65 61 80 62 76 60 83 75 70

S08 64 90 84 88 76 90 70 90

Mean 63 70 71 71 66 73 65 72 70 72 74 70

Uncertainty 2 4 5 4 2 4 2 4 4 6 3 6

Table 3: Classification accuracies using a 5-folds cross validation with 10 repetitions. The

significant results from the ANOVA (5% significance level) with respect to the no feedback

block are marked in boldface. noF: no feedback, H: haptic, V: visual, M: multimodal. Recall

that, in Session 3, some values are missing because those subject were only involved in two

experimental sessions.

The results confirm that, thanks to the neurofeedback, the system perfor-

mance improves with respect to the absence of feedback. The accuracy im-

provement indicates that this is especially true for the first session. Notably,

also the mean accuracy among the subjects increases across sessions in the “no

feedback” case, thus suggesting the training effect that was already indicated350
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by the permutation tests. In detail, the quantitative increase is from (63± 2)%

to (70± 4)%. However, when considering the feedback modalities, the mean

accuracies do not significantly change between sessions. Finally, by considering

the subjects as a whole, no significant differences emerged between the different

feedback conditions.355

4.3. Discussion

In validating the proposed system, the permutation test and the ANOVA

applied to classification results led to compatible results. Both tests confirmed

two important aspects: (i) the feedback improves system performance with

respect to the absence of feedback, and (ii) a training effect subsists between360

different sessions. When comparing the classification accuracy associated with

the “no feedback” case, it is worth noting that the results of the third session are

compatible with those obtained when the feedback is provided. Such accuracy

values are above 70% in most cases, which is often considered as an empirical

threshold for motor imagery-based control in BCI.365

However, no mean improvement is demonstrated by the current results. This

is justified by the fact that subjects show variegated performance associated with

motor imagery detection. Therefore, although improvements can be highlighted

in a subject-by-subject analysis, the current results do not prove a statistically

significant improvement on average across the cohort. Furthermore, the results370

do not suggest an overall best feedback modality. This is compatible with liter-

ature findings on unimodal feedbacks [19], although the results do not provide

sufficient evidence to prefer the multimodal feedback either.

It should be pointed out that the multimodal feedback occasionally appeared

less effective than single feedback modalities, even when both single feedbacks375

improved the detection. This suggests that the multimodal feedback does not

simply consist of a combination of single feedbacks, and that delivering multiple

feedback simultaneously could be distracting or less engaging for the user and/or

may require additional sessions to enable to the subject to gain familiarity with

simultaneous feedback modality presentation. In this regard, investigating a380
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greater experimental sample would be desirable to better understand the differ-

ences between the proposed neurofeedback modalities. This would mean both

to involve more subjects and to consider more sessions.

Questionnaire results also provide some complementary indications to the

classification results. First, in motor imagery, participants preferred to imagine385

squeeze in 50% of circumstances, the kinaesthetic sensation associated with

touching an object for 20% of times, grasp in 15%, and other imagery, such

as to snap the fingers or to dribble, in the remaining 15%. Only two subjects,

S05 and S07, changed the type of motor imagery between sessions. Regarding

feedback, participants stated that they preferred visual and multimodal over390

haptic feedback. Finally, the degradation of classification performance occurring

in some sessions could be correlated with the worsening in physical and mental

state of the participant. As an example, if considering the “no feedback” and

the haptic feedback for subject S03, there was an accuracy diminishing of about

10% from the first to the second session, but the subject declared that he was395

mentally tired and bored during the second session. More motivating feedback

with improved accuracy enabled through a number of additional EEG channels

may indeed enhance accuracy.

4.4. Limitations

At the end of the experiments, some issues could be also pointed out. In400

the future, a balanced sample in terms of dominant hand should be consid-

ered because of the relevance that handedness has on motor imagery control

[55]. Moreover, a single experimental session was still long enough to tire the

participants indeed. Therefore, the usage of transfer learning techniques would

be desirable during future developments to simultaneously reduce the time re-405

quired for model calibration and to improve the classification performance by

means of preliminary acquired data. Notably, improving the accuracy would

also be desirable to better engage the user during motor imagery. This could be

accomplished by means of a better online pipeline of EEG data analysis, e.g.,

by dealing with non-stationarity and lowering its computational cost [56].410
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After shortening the single experimental session, a greater number of sub-

jects could be considered to investigate the correlation between the best feedback

modality and subject’s profile. In a daily-life application, the BCI should con-

tinuously measure the brain activity and also detect when the user is willing to

act (asynchronous BCI). Moreover, as a further development, imagining both415

hands, or both feet, or tongue movements will be also considered, thus increasing

the number of possible commands.

Finally, dry electrodes should be foreseen to enhance usability of the system,

though a major problem with dry electrode may be the need to apply pressure to

reduce impedance. Furthermore, this will also require effective artefact removal420

strategies, whose necessity was limited in the present work due to the usage of

conductive gel.

5. Conclusions

In this paper, neurofeedback was applied to engage the user during motor

imagery, and aimed to improve the detection of the associated neurophysiolog-425

ical phenomena. Visual and haptic feedback modalities were compared, and

multimodal sensory feedback was explored by providing both feedback modali-

ties simultaneously. A closed-loop wearable brain-computer interface based on

the detection of motor imagery was designed and implemented by including an

innovative vibrotactile chest-based feedback, wearable and portable EEG, and430

online signal processing.

The system was validated with an experimental campaign involving eight

subjects in two or three sessions taken on different days in accordance with a

standard synchronous paradigm. Results demonstrated that the feedback im-

proves the classification with respect to the absence of feedback, even with an435

utmost wearable system. However, a statistically significant mean improvement

was not always observed because of the limited subject sample with performance

variation. Moreover, no feedback modality was generally preferable. Hence,

further experiments are recommended, in which the overall system should be
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enhanced by means of a more immersive feedback, better online processing, and440

artefacts removal strategies. Finally, more experimental sessions with more sub-

jects would be needed especially to highlight the training effect and differences

between feedbacks in more depth.
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