
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fully reusing clause deduction algorithm based on standard contradiction separation
rule

Liu, P., Xu, Y., Liu, J., Chen, S., Cao, F., & Wu, G. (2023). Fully reusing clause deduction algorithm based on
standard contradiction separation rule. Information Sciences, 622, 337-356. Advance online publication.
https://doi.org/10.1016/j.ins.2022.11.128

Link to publication record in Ulster University Research Portal

Published in:
Information Sciences

Publication Status:
Published (in print/issue): 30/04/2023

DOI:
10.1016/j.ins.2022.11.128

Document Version
Author Accepted version

General rights
Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright
owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these
rights.

Take down policy
The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been
made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in
the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.

Download date: 06/12/2023

https://doi.org/10.1016/j.ins.2022.11.128
https://pure.ulster.ac.uk/en/publications/2c767ff4-4730-4340-b427-c8b4ef25e69a
https://doi.org/10.1016/j.ins.2022.11.128


Fully Reusing Clause Deduction Algorithm Based on Standard 

Contradiction Separation Rule 

Peiyao Liu a,d, Yang Xu a,d, Jun Liu b,d, Shuwei Chen a,d,, Feng Cao c,d, Guanfeng Wu a,d 

a School of Mathematics, Southwest Jiaotong University, Chengdu 611756, China 

b School of Computing, Ulster University, Belfast BT15 1ED, Northern Ireland, UK 

c School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, 

China 

d National-Local Engineering Laboratory of System Credibility Automatic Verification, Southwest 

Jiaotong University, Chengdu 611756, China 

Abstract: An automated theorem proving (ATP) system's capacity for reasoning is 

significantly influenced by the inference rules it uses. The recently introduced standard 

contradiction separation (S-CS) inference rule extends binary resolution to a multi-clause, dynamic, 

contradiction separation inference mechanism. The S-CS rule is used in the present work to provide 

a framework for fully clause reusing deductions. Accordingly, a fully reusing clause deduction 

algorithm (called the FRC algorithm) is built. The FRC algorithm is then incorporated as an 

algorithm module into the architecture of a top ATP, Vampire, creating a single integrated ATP 

system dubbed V_FRC. The objective of this integration is to enhance Vampire's performance while 

assessing the FRC algorithm's capacity for reasoning.  According to experimental findings, V_FRC 

not only outperforms Vampire in a variety of aspects, but also solves 46 problems in the TPTP 

benchmark database that have a rating of 1, meaning that none of the existing ATP systems are able 

to resolve them.  

 Keywords: Theorem proving; ATP system; Inference rule; Deduction algorithm; Standard 

contradiction; S-CS rule; Vampire 

1. Introduction 

Automated reasoning is a technical means of using computers to automatically verify 

mathematical theorems or computer software and hardware systems, etc. in the form of theorem 

proving [1], and it is an important part of the field of artificial intelligence. Automated theorem 

proving (ATP), as the core research area of automated reasoning, has achieved fruitful results during 

the years of development. The refutation inference of an ATP system for first-order logic (FOL) is 
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a process that eventually generates empty clause from an unsatisfiable clause set for FOL and its 

derivation clauses [2]. ATP systems have been applied in a wide range of fields, initially to prove 

mathematical problems, and with the proposal of new problems, techniques and ideas, they have 

then been applied to many other fields where the problems could be converted into logical form for 

ATP systems to process, such as program verification [3, 4] and knowledge representation [5, 6]. 

Inference rules have a big impact on efficiency and performance during the inference process. An 

inference rule, we might even say, determines the reasoning capability of an ATP system to a great 

extent. At present, ATP systems for FOL can be divided into three categories according to the 

inference rules they are based on: 1) ATP systems [7, 8] based on tableaux calculus [9]; 2) ATP 

systems [10-12] based on saturation algorithm [13] of binary resolution [14]; 3) ATP systems [15, 

16] based on SAT/SMT theories [17, 18]. Binary resolution proposed by Robinson has become the 

most well-known inference method due to its simplicity, reliability and efficiency, and research on 

the ATP systems based on binary resolution is still the mainstream research trend in this field. During 

the past few decades, many scholars have proposed a mass of different variants of binary resolution 

[19-21], e.g., linear resolution [22], locking resolution [23], sematic resolution [24], hyper resolution 

[25], and heuristic strategies based on binary resolution [26-28]. 

The essential feature of inference methods based on binary resolution is that only two clauses 

involved in each deduction step, and only one complementary pair from parent clauses is eliminated 

[3]. This feature also implies that binary resolution is a static and binary inference method, and a 

mass of redundant clauses are generated during the inference process, which may cause the search 

space explosion problem [29]. Although the appearance of redundancy elimination techniques [30-

32] reduces the search space to a certain extent, this leads to additional deduction overhead. In 2018, 

multi-clause standard contradiction separation (S-CS) rule for FOL was proposed [33], which 

theoretically broke through the limitation of binary resolution. S-CS rule offers multiple 

characteristics, such as multi-clause, dynamic and guidance, etc. [34]. The basic idea is that S-CS 

rule takes multiple clauses (two or more) as parent clauses, and selects multiple literals (one or more) 

from each parent clause to construct a contradiction, then a clause is inferred by taking the 

disjunction of the non-selected literals of the parent clauses [35]. A derivation clause from one 

deduction step of S-CS rule may require multiple deduction steps for binary resolution to obtain. 

Binary resolution is a special case of S-CS rule.  

The use of the S-CS inference rule allows automated deduction to take “large steps” in the 

search space, and the sound and complete multi-clause dynamic automated S-CS deduction theory 

for first-order logic was introduced in [33]. However, the necessary proof search algorithms and 

strategies are still required to support this theory and enable automation implementation. Different 

deduction techniques and implementations were developed based on the various distinctive 



properties of S-CS deduction theory. For example, Ref. [35] introduced a S-CS dynamic deduction 

algorithm (called SDDA). In order to further take advantage of the abilities of S-CS rule, especially 

guidance and synergy, this paper proposes a novel effective deduction framework for fully clause 

reusing based on the S-CS rule, then designs and implements a novel multi-clause dynamic 

deduction algorithm based on this deduction framework, which is one research objective of this 

present work. 

Binary resolution and its variants are used by many ATP systems [10-12], including the top 

system, Vampire [36]. Vampire has been the champion of CADE ATP System Competition (CASC) 

[37] for nearly two decades. In the annual CASC, Vampire can solve the vast majority of 500 

problems in FOF division. Vampire has so powerful performance, but there are still a lot of problems 

in the latest released version (TPTP-v7.5.0) of the TPTP (Thousands of Problems for Theorem 

Provers) [38] benchmark library of ATP systems, especially many hard problems with the rating of 

1 that cannot be solved by Vampire [39]. Therefore, it is a very meaningful and challenging work to 

further improve the performance of Vampire, which is another research objective of this present 

work.  

In order to achieve the two research objectives, this paper divides the research content into two 

parts. The first part in-deep analyzes the S-CS rule, then proposes a fully clause reusing deduction 

framework based on the S-CS rule and designs and implements a multi-clause dynamic deduction 

algorithm based on this deduction framework (in short, FRC algorithm). The second part integrates 

the FRC algorithm (as an independent algorithm module) into Vampire to generate a single 

integrated ATP system, denoted as V_FRC, to improve the performance of Vampire. The reasoning 

capability of V_FRC is evaluated through two experimental groups: 1) 2016-2021 CASC (FOF 

division) problems; 2) all problems with rating of 1 in TPTP-v7.5.0. Both the experimental results 

show that FRC algorithm effectively improves the deduction capability of Vampire, which also 

suggests that a deduction framework with full clause reuse is more suited for creating contradictions. 

We note that a shorter conference version of this paper has been presented in FLINS 2022 [40]. 

Our initial conference paper neither introduced the algorithmic steps and pseudocode of the FRC 

algorithm, nor had sufficient experimental data to show the effectiveness of the FRC algorithm. This 

manuscript not only addresses these issues and provides a more adequate analysis on fully reusing 

clause deduction algorithm and the S-CS rule, but also provides more experiments and offers 

sufficient verification and analysis of the experiments results. The key contributions of this 

manuscript include: 1) a feasible implementation method for S-CS rule and an efficient multi-clause 

dynamic synergized deduction algorithm, i.e., FRC algorithm, are proposed; 2) FRC algorithm is 

applied to improve the performance of Vampire. 

The remainder of this paper is organized as follows. In Section 2, we briefly introduce the 



related terms of FOL and the S-CS rule. Section 3 deeply analyzes key characteristics of the S-CS 

rule, then introduces a fully clause reusing deduction framework based on the S-CS rule. In Section 

4, a multi-clause dynamic deduction algorithm based on fully reusing clause framework, called FRC 

algorithm, is proposed and detailed. The heuristic strategies involved in the FRC algorithm are 

introduced in Section 5. Section 6 introduces the integrated architecture of incorporating the FRC 

algorithm to Vampire. Detailed experiments and the analysis of experimental results are provided 

in Section 7. Finally, Section 8 summarizes the research content of this paper and introduces future 

research work. 

2. Preliminaries  

This section first introduces the related concepts of first-order logic, then introduces multi-

clause standard contradiction separation (S-CS) rule. We assume that the reader is already familiar 

with related concepts of FOL. This section only recalls some basic concepts, and the readers are 

referred to [33] for a detailed introduction.  

FOL is a rich language with complex, hierarchical formulae, a large set of operators, and the 

use of quantifiers. In order to obtain more proof procedures, we restrict our discussion to conjunctive 

normal form (CNF) of FOL, a subset of first-order predicate that eliminates quantifiers and allows 

only conjunctions of clauses (which are disjunctions of elementary literals) as formulae. A literal is 

either an atom or a negated form, where an atom is an 𝑛-ary predicate (denoted 𝑃) with 𝑛 terms. A 

term (denoted by 𝑡  is either a variable (denoted 𝑥 ), a constant (denoted 𝑎 ), or an 𝑛 -ary function 

(denoted 𝑓) with 𝑛 terms. By the way, we use 𝑇 to denote the set of all terms and use 𝑉 to denote 

the set of all variables. A term is called a ground term if it contains no variables. A clause (denoted 

by 𝐶) is a disjunction of a finite set of literals (denoted by 𝑙). The empty clause with no literal is 

denoted by ∅. If clause 𝐶 has only one literal, the clause is called a unit clause. A formula (denoted 

by 𝑆) is a conjunction of a finite clauses. A substitution (denoted by 𝜎) is a mapping from 𝑉 to 𝑇 

with the property that {𝑥|𝜎(𝑥) ≠ 𝑥} is finite. 

Definition 1. [33] Let 𝑆 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑚} be a clause set. The Cartesian product of 𝐶1, 𝐶2, ⋯ , 𝐶𝑚, 

denoted as ∏ 𝐶𝑖
𝑚
𝑖=1 , is the set of all ordered tuples (𝑙1, 𝑙2, ⋯ , 𝑙𝑚) such that 𝑙𝑖 ∈ 𝐶𝑖 (𝑖 = 1,2, ⋯ , 𝑚), 

where 𝑙𝑖 is a literal, and 𝐶𝑖 is also regarded as a set of literals (𝑖 = 1,2, ⋯ , 𝑚). 

Definition 2. (Contradiction) [33]  Let 𝑆 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑚}  be a clause set. If ∀(𝑙1, 𝑙2, ⋯ , 𝑙𝑚) ∈

∏ 𝐶𝑖
𝑚
𝑖=1  , there exists at least one complementary pair among {𝑙1, 𝑙2, ⋯ , 𝑙𝑚} , then 𝑆 = ⋀ 𝐶𝑖

𝑚
𝑖=1   is 

called a standard contradiction (in short, SC). 



Example 1. Let 𝑆 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6} be a clause set, where 𝐶1 = ~𝑃1(𝑥1) ∨ 𝑃3(𝑥1, 𝑓1(𝑥1)), 

𝐶2 = ~𝑃1(𝑥2) ∨ 𝑃2(𝑥2) ∨ 𝑃4(𝑓1(𝑥2)) , 𝐶3 = 𝑃1(𝑎) , 𝐶4 = ~𝑃3(𝑎, 𝑥3) ∨ 𝑃5(𝑥3) , 𝐶5 = ~𝑃5(𝑥4) ∨

~𝑃2(𝑥4), 𝐶6 = ~𝑃5(𝑥5) ∨ ~𝑃4(𝑥5). Here 𝑎 is constant, 𝑓1 is function symbol, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 are 

variables, 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5 are predicate symbols.  

According to Definitions 1 and 2 ， 𝑆𝜎 = 𝐶1
𝜎 ∧ 𝐶2

𝜎 ∧ 𝐶3
𝜎 ∧ 𝐶4

𝜎 ∧ 𝐶5
𝜎 ∧ 𝐶6

𝜎  is a standard 

contradiction (see Table 1), where 𝜎 = {𝑎 𝑥1⁄ , 𝑎 𝑥2⁄ , 𝑓1(𝑎) 𝑥3⁄ , 𝑎 𝑥4⁄ , 𝑓1(𝑎) 𝑥5⁄ }. 

Table 1  

Standard contradiction in Example 1. 

𝐶1
𝜎 𝐶2

𝜎 𝐶3
𝜎 𝐶4

𝜎 𝐶5
𝜎 𝐶6

𝜎 

~𝑃1(𝑎)

∨ 𝑃3(𝑎, 𝑓1(𝑎)) 

~𝑃1(𝑎) ∨ 𝑃2(𝑎)

∨ 𝑃4(𝑓1(𝑎)) 

𝑃1(𝑎) ~𝑃3(𝑎, 𝑓1(𝑎))

∨ 𝑃5(𝑓1(𝑎)) 

~𝑃5(𝑎) ∨ ~𝑃2(𝑎) ~𝑃5(𝑓1(𝑎))

∨ ~𝑃4(𝑓1(𝑎)) 

Definition 3. [33] Suppose a clause set 𝑆 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑚} in FOL. The following inference rule 

that produces a new clause from 𝑆 is called a standard contradiction separation rule, in short, an S-

CS rule: 

For each 𝐶𝑖 (𝑖 = 1,2, ⋯ , 𝑚) , firstly apply a substitution 𝜎𝑖  to 𝐶𝑖  ( 𝜎𝑖  could be an empty 

substitution but not necessary the most general unifier), denoted as 𝐶𝑖
𝜎𝑖; then separate 𝐶𝑖

𝜎𝑖  into two 

sub-clauses 𝐶𝑖
𝜎𝑖−

 and 𝐶𝑖
𝜎𝑖+

 such that 

1) 𝐶𝑖
𝜎𝑖 = 𝐶𝑖

𝜎𝑖−
∨ 𝐶𝑖

𝜎𝑖+
, where 𝐶𝑖

𝜎𝑖−
 and 𝐶𝑖

𝜎𝑖+
 have no common literals; 

2) 𝐶𝑖
𝜎𝑖+

 can be an empty clause itself, but 𝐶𝑖
𝜎𝑖−

 cannot be an empty clause; 

3) ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1  is a standard contradiction, that is ∀(𝑥1, 𝑥2, ⋯ , 𝑥𝑚) ∈ ∏ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 , there exists at 

least one complementary pair among {𝑥1, 𝑥2, ⋯ , 𝑥𝑚}. 

The resulting clause ⋁ 𝐶𝑖
𝜎𝑖+𝑚

𝑖=1 , denoted as ℂ𝑚
𝑠𝜎(𝐶1, ⋯ , 𝐶𝑚), is called a standard contradiction 

separation clause (CSC) of 𝐶1, ⋯ , 𝐶𝑚, and ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1  is called a separated standard contradiction 

(SC). 

Example 2. Let 𝑆 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶7}  be a clause set, where 𝐶1 = ~𝑃1(𝑥11, 𝑥12, 𝑥13) ∨

~𝑃2(𝑥11, 𝑥13) , 𝐶2 = 𝑃1(𝑥22, 𝑥21, 𝑥23) ∨ ~𝑃1(𝑥21, 𝑥22, 𝑥23) , 𝐶3 = 𝑃2(𝑥31, 𝑥34) ∨ ~𝑃3(𝑥31) ∨

~𝑃1(𝑥32, 𝑥33, 𝑥34) ∨ ~𝑃2(𝑥31, 𝑥32) ∨ ~𝑃2(𝑥31, 𝑥33) , 𝐶4 = 𝑃1(𝑥41, 𝑥41, 𝑓1(𝑥41)) , 𝐶5 =

𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2)), 𝐶6 = 𝑃3(𝑎1), 𝐶7 = 𝑃2(𝑎1, 𝑎2). Here 𝑎𝑖 (𝑖 = 1,2) is constant, 𝑓1 is function 

symbol, 𝑥𝑖 (𝑖 = 11, ⋯ ,41) is variable, 𝑃𝑖 (𝑖 = 1,2,3) is predicate symbol. 

 The clause set 𝑆 applies the S-CS rule to separate the contradiction. Table 2 shows the result 

of clause separation, and Table 3 shows the corresponding substitution of the clause. 

The SC is 𝐶1
𝜎1−

∧ 𝐶2
𝜎2−

∧ 𝐶3
𝜎3−

∧ 𝐶4
𝜎4−

∧ 𝐶5
𝜎5−

∧ 𝐶6
𝜎6−

∧ 𝐶7
𝜎7−

 , and the CSC is 𝐶8 =

ℂ𝑚
𝑠𝜎(𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶7) = 𝑃1(𝑓1(𝑎1), 𝑎1, 𝑓1(𝑎2)), where 𝜎 = ⋃ 𝜎𝑖

7
𝑖=1 . 

Table 2  



Partition the 𝐶𝑖
𝜎𝑖 for Example 2 

𝑖 𝐶𝑖
𝜎𝑖−

 𝐶𝑖
𝜎𝑖+

 

1 ~𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2)) ∨ ~𝑃2(𝑎1, 𝑓1(𝑎2)) ∅ 

2 ~𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2)) 𝑃1(𝑓1(𝑎1), 𝑎1, 𝑓1(𝑎2)) 

3 ~𝑃3(𝑎1) ∨ ~𝑃1(𝑎2, 𝑎2, 𝑓1(𝑎2)) ∨ ~𝑃2(𝑎1, 𝑎2) ∨ ~𝑃2(𝑎1, 𝑎2) ∨ 𝑃2(𝑎1, 𝑓1(𝑎2)) ∅ 

4 𝑃1(𝑎2, 𝑎2, 𝑓1(𝑎2)) ∅ 

5 𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2)) ∅ 

6 𝑃3(𝑎1) ∅ 

7 𝑃2(𝑎1, 𝑎2) ∅ 

Table 3  

Corresponding substitution 𝜎𝑖  of clause 𝐶𝑖 for Example 2 

𝑖 𝜎𝑖 

1 {𝑎1 𝑥11, 𝑓1(𝑎1) 𝑥12⁄⁄ , 𝑓1(𝑎2) 𝑥13⁄ } 

2 {𝑎1 𝑥21, 𝑓1(𝑎1) 𝑥22⁄⁄ , 𝑓1(𝑎2) 𝑥23⁄ } 

3 {𝑎1 𝑥31, 𝑎2 𝑥32⁄⁄ , 𝑎2 𝑥33⁄ , 𝑓1(𝑎2) 𝑥34⁄ } 

4 {𝑎2 𝑥41⁄ } 

5 ∅ 

6 ∅ 

7 ∅ 

The final deduction result (usually an empty clause ∅) is derived from a series of deduction 

steps. Definition 4 describes deduction sequence based on the S-CS rule. 

Definition 4. [33] Suppose a clause set 𝑆 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑚}  in FOL. Φ1, Φ2, ⋯ , Φ𝑡  is called a 

standard contradiction separation based dynamic deduction sequence (S-CS deduction) from 𝑆 to a 

clause Φ𝑡, denoted as 𝐷𝑠, if  

1) Φ𝑖 ∈ 𝑆, 𝑖 ∈ {1,2, ⋯ , 𝑡}; or 

2) there exist 𝑟1, 𝑟2, ⋯ , 𝑟𝑘𝑖
< 𝑖, Φ𝑖 = ℂ𝑘𝑖

𝑠 (Φ𝑟2
, Φ𝑟2

, ⋯ , Φ𝑟𝑘𝑖
). 

The soundness and completeness of S-CS deduction are guaranteed by the following two 

theorems. 

Theorem 1. (Soundness) [33] Suppose a clause set 𝑆 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑚} in FOL. Φ1, Φ2, ⋯ , Φ𝑡 is a 

S-CS based dynamic deduction from 𝑆  to a clause Φ𝑡 . If Φ𝑡  is an empty clause, then 𝑆  is 

unsatisfiable. 

Theorem 2. (Completeness) [33] Suppose a clause set 𝑆 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑚}  in FOL. If 𝑆  is 

unsatisfiable, then exists an S-CS based dynamic deduction from 𝑆 to an empty clause. 

3. Fully Clause Reusing Deduction Framework Based on S-CS Rule 

S-CS rule separates a clause set 𝑆 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑚}  into two parts during the process of 

contradiction separation: contradiction and contradiction separation clause. For each clause 𝐶𝑖 ∈ 𝑆 



(𝑖 = 1,2, ⋯ , 𝑚), 𝐶𝑖 is separates into 𝐶𝑖
− and 𝐶𝑖

+ by the S-CS rule. When ⋀ 𝐶𝑖
−𝑚

𝑖=1  is unsatisfiable, a 

corresponding contradiction is formed, and ⋁ 𝐶𝑖
+𝑚

𝑖=1  is the contradiction separation clause.  

The crucial point of constructing SC is how to separate each clause 𝐶𝑖 participating the S-CS 

deduction into two parts, i.e., which literals in 𝐶𝑖 should be selected into the SC and other non-

selected literals joining the CSC, after the corresponding substitutions. In order to sequentially 

construct a SC, we need some literals from these literals in SC to form the “frame structure” of the 

contradiction which is similar to the frame structure of a building. There is one literal from each 

clause participating the S-CS deduction is called decision literal [41] that plays an important role 

on constructing SC. After each separation of one clause in S-CS deduction, a literal from this clause 

needs to be selected as a decision literal. A set of decision literals in SC is like the “frame structure” 

of the contradiction. In the present work, we use symbol 𝐷𝑙 to denote the set of decision literals in 

SC.  

In Definition 2, contradiction has a typical characteristic that any Cartesian product of the 

clause set 𝑆 has at least one complementary pair. Therefore, it is a key factor of constructing SC that 

continuously searching literal complementary pairs from a given clause set. For a subsequent clause 

that is about to participate the S-CS deduction, the decision literal set 𝐷𝑙  will determine which 

literals from this subsequent clause are put into SC according to pairing condition in Definition 5.  

Definition 5. (Pairing condition) Suppose ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1  is a SC, and the set 𝐷𝑙 = {𝑙𝑑1, 𝑙𝑑2, ⋯ , 𝑙𝑑𝑚} is 

a decision literal set in ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1  , where 𝑙𝑑𝑖 ∈ 𝐶𝑖
𝜎𝑖−

 , 𝑖 = 1,2, ⋯ , 𝑚  and 𝜎𝑖  is a substitution 

corresponding to 𝐶𝑖 . Assume that there exists a literal 𝑙𝑝  in a clause 𝐶 = 𝑙1 ∨ 𝑙2 ∨ ⋯ ∨ 𝑙𝑛  and a 

substitution 𝜃 , the literal 𝑙𝑝
𝜃  can be put into the 𝐶𝜃−  when the clause 𝐶  participates in the S-CS 

deduction. The following condition that 𝑙𝑝 satisfies is called a pairing condition: 

There exists a literal  𝑙𝑑𝑖 ∈ 𝐷𝑙  and a substitution 𝜃 , such that 𝑙𝑝
𝜃 = ~𝑙𝑑𝑖

𝜃  , i.e.,  𝑙𝑑𝑖  and  𝑙𝑝  can 

form a complementary pair after a substitution 𝜃.  

Remark 1. Any two literals in the decision literal set 𝐷𝑙 cannot form a complementary pair. 

If a clause currently does not have a literal that satisfies pairing condition, this clause cannot 

participate the S-CS deduction. In summary, decision literals set 𝐷𝑙  not only determine clauses 

participating S-CS deduction, but also determines the literals of the SC. Next, a clause separation 

method during the S-CS deduction is introduced as follows. 

Suppose ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1  is a constructed SC and ⋁ 𝐶𝑖
𝜎𝑖+𝑚

𝑖=1  is the corresponding CSC, and the set 

𝐷𝑙 = {𝑙𝑑1, 𝑙𝑑2, ⋯ , 𝑙𝑑𝑚} is a decision literal set in ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 , where 𝑙𝑑𝑖 ∈ 𝐶𝑖
𝜎𝑖−

, 𝑖 = 1,2, ⋯ , 𝑚 and 𝜎𝑖 

is a substitution corresponding to 𝐶𝑖. A clause 𝐶 = 𝑙1 ∨ 𝑙2 ∨ ⋯ ∨ 𝑙𝑛 as a subsequent clause that is 

about to participate the S-CS deduction. Then the process of separating clause 𝐶𝜃 into two parts 

𝐶𝜃− and 𝐶𝜃+ after a substitution 𝜃 = ⋃ 𝜃𝑗
𝑛
𝑗=1  is shown as follows. 



Step 1. If the literal 𝑙
𝑗

𝜃𝑗
 (𝑗 = 1,2, ⋯ , 𝑛)  satisfies pairing condition after a substitution 𝜃𝑗, then 

it is put into 𝐶𝜃−; otherwise, 𝑙
𝑗

𝜃𝑗
 is added to 𝐶𝜃+. 

Step 2. If 𝐶𝜃+  has no literal or 𝐶𝜃+  satisfies some predefined conditions1 , then end the 

separation of clause 𝐶; otherwise, go to Step 3. 

Step 3. Select a literal 𝑙𝑑 from 𝐶𝜃+ to put into 𝐷𝑙 as a new decision literal, then remove 𝑙𝑑 from 

𝐶𝜃+ and put 𝑙𝑑 into 𝐶𝜃−. 

SC ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1  will then be updated to ⋀ 𝐶𝑖
𝜎𝑖−𝑚+1

𝑖=1  where 𝐶𝑚+1
𝜎𝑚+1−

= 𝐶𝜃−, since 𝐶𝜃− is put into 

the SC. And CSC ⋁ 𝐶𝑖
𝜎𝑖+𝑚

𝑖=1  also will be updated to ⋁ 𝐶𝑖
𝜎𝑖+𝑚+1

𝑖=1  where 𝐶𝑚+1
𝜎𝑚+1+

= 𝐶𝜃+, since 𝐶𝜃+ is 

put into the CSC. 

Remark 2. The same clause or literal with different substitutions will be regarded as different clause 

or literal. 

In implementation of the S-CS rule, the clause uses clause separation method to participate in 

the S-CS deduction. The following example illustrates the process of S-CS deduction. 

Example 3. Let 𝑆 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶7, 𝐶8} be a clause set, where 

𝐶1 = ~𝑃1(𝑥11, 𝑥12, 𝑥13) ∨ ~𝑃2(𝑥11, 𝑥13), 𝐶2 = 𝑃1(𝑥22, 𝑥21, 𝑥23) ∨ ~𝑃1(𝑥21, 𝑥22, 𝑥23),  

𝐶3 = 𝑃2(𝑥31, 𝑥34) ∨ ~𝑃3(𝑥31) ∨ ~𝑃1(𝑥32, 𝑥33, 𝑥34) ∨ ~𝑃2(𝑥31, 𝑥32) ∨ ~𝑃2(𝑥31, 𝑥33),  

𝐶4 = 𝑃1(𝑥41, 𝑥41, 𝑓1(𝑥41)) ∨ ~𝑃2(𝑥41, 𝑎1),  

𝐶5 = ~𝑃1(𝑓1(𝑥51), 𝑥51, 𝑥52) ∨ 𝑃1(𝑥51, 𝑎2, 𝑥53) ∨ 𝑃2(𝑥53, 𝑥51, 𝑥53), 

𝐶6 = 𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2)), 𝐶7 = 𝑃3(𝑎1), 𝐶8 = 𝑃2(𝑎1, 𝑎2). 

Here 𝑎𝑖  (𝑖 = 1,2)  is constant, 𝑓1  is function symbol, 𝑥𝑖  (𝑖 = 11, ⋯ ,53)  is variable, 𝑃𝑖  (𝑖 =

1,2,3) is predicate symbol.  

Using the S-CS rule for 6 clauses 𝐶1, 𝐶3, 𝐶4, 𝐶6, 𝐶7, 𝐶8, we obtain a CSC involving 6 clauses: 

𝐶9 = ℂ𝑚
𝑠𝜎9(𝐶1, 𝐶3, 𝐶4, 𝐶6, 𝐶7, 𝐶8) = ~𝑃2(𝑎2, 𝑎1) , while the corresponding SC is 𝐶1

𝜎1−
∧ 𝐶3

𝜎2−
∧

𝐶4
𝜎3−

∧ 𝐶6
𝜎4−

∧ 𝐶7
𝜎5−

∧ 𝐶8
𝜎6−

 in Table 4 that shows the result of clause separation. Table 5 shows the 

corresponding substitution and decision literal of the clause. 

Table 4  

Partition the 𝐶𝑖
𝜎𝑖 for Example 3 

𝑖 𝐶𝑖
𝜎𝑖−

 𝐶𝑖
𝜎𝑖+

 

7 𝑃3(𝑎1) ∅ 

8 𝑃2(𝑎1, 𝑎2) ∅ 

6 𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2)) ∅ 

1 ~𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2)) ∨ ~𝑃2(𝑎1, 𝑓1(𝑎2)) ∅ 

3 𝑃2(𝑎1, 𝑓1(𝑎2)) ∨ ~𝑃3(𝑎1) ∨ ~𝑃1(𝑎2, 𝑎2, 𝑓1(𝑎2)) ∨ ~𝑃2(𝑎1, 𝑎2) ∨ ~𝑃2(𝑎1, 𝑎2) ∅ 

4 𝑃1(𝑎2, 𝑎2, 𝑓1(𝑎2)) ~𝑃2(𝑎2, 𝑎1) 

 
1 The predefined conditions are introduced in Section 5. 



Table 5  

Corresponding substitution 𝜎𝑖  and decision literal of clause 𝐶𝑖 for Table 4 

𝑖 𝜎𝑖 Decision literal 

7 ∅ 𝑃3(𝑎1) 

8 ∅ 𝑃2(𝑎1, 𝑎2) 

6 ∅ 𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2)) 

1 {𝑎1 𝑥11, 𝑓1(𝑎1) 𝑥12⁄⁄ , 𝑓1(𝑎2) 𝑥13⁄ } ~𝑃2(𝑎1, 𝑓1(𝑎2)) 

3 {𝑎1 𝑥31, 𝑎2 𝑥32⁄⁄ , 𝑎2 𝑥33⁄ , 𝑓1(𝑎2) 𝑥34⁄ } ~𝑃1(𝑎2, 𝑎2, 𝑓1(𝑎2)) 

4 {𝑎2 𝑥41⁄ } ∅ 

In addition to multi-clause and dynamic (the details are shown in [34]), there are several other 

advantages that can be summarized below: 

1) Guided deduction. The clauses in SC can guide subsequent deduction paths, i.e., the clauses 

in SC can determine the selection of subsequent clauses of S-CS deduction. The clauses in SC 

actually rely on their decision literals to play their guiding role. 

2) Clause-reusing deduction. In one S-CS deduction, i.e., the process of constructing a SC, one 

clause can be reused, such that this clause may generate multiple different decision literals. 

3) Controllable deduction. In the process of a S-CS deduction, the number of clauses and the 

number of literals in SC, i.e., the size of the contradiction, can be controlled. On the other hand, the 

controllability of S-CS deduction is achieved through the number of literals or the features of literals 

in CSC. For example, if the deduction only requires the CSC with one literal, when the deduction 

generates the CSC with one literal, this S-CS deduction process will stop. Or if the deduction 

requires the CSC without equality, when the deduction generates the CSC with one equality, this S-

CS deduction process will stop.  

4) Synergized deduction. For an unsatisfiable problem in FOL, its unsatisfiable property is 

more difficult to judge by several resolution deduction steps than several multi-clause S-CS 

deduction steps. The generated CSC of each S-CS deduction step is the result of the participation of 

multiple clauses, and therefore S-CS deduction reflects the overall synergized logical relationship 

between the clauses. 

Because of the aforesaid advantages, a single S-CS deduction eliminates more literals than a 

single resolution deduction, and the number of literals in the CSC can be limited to the number 

required for the deduction. The SC, on the other hand, is typically greater in size, but the CSC has 

fewer literals. The final goal of S-CS deduction for an unsatisfiable problem in FOL is to construct 

an empty clause, hence the fewer literals in the CSC, the easier it is to generate an empty clause.  

As a result, the fact that extra literals from a following clause can be inserted into SC is useful 

for creating SC. We can extrapolate from the above analysis that the more different literals in 𝐷𝑙, 

the easier it is to produce the empty clause ∅. A clause should be utilized numerous times in a built 

SC to give 𝐷𝑙 more distinct literals. Because a clause might have many literals, the decision literal 

must be one of them. In 𝐷𝑙, on the other hand, a single literal can form a complimentary pair with 



several literals. This is the main motivation for reusing clauses. 

We use Example 4 to illustrate the performance of reusing clauses. 

Example 4. If reusing some clauses, then the clause set 𝑆 of Example 3 can deduce an empty clause 

by constructing only one SC. 

Using S-CS rule for 8 clauses 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶7, 𝐶8, we directly obtain the empty clause 

Ø. Clauses 𝐶1  and 𝐶2  are each reused twice continuously. Table 6 shows the result of clause 

separation. Table 7 shows the corresponding substitution and decision literal of the clause. 

Table 6  

Partition the 𝐶𝑖
𝜎𝑖 for Example 3.3 

𝑖 𝐶𝑖
𝜎𝑖−

 𝐶𝑖
𝜎𝑖+

 

7 𝑃3(𝑎1) ∅ 

8 𝑃2(𝑎1, 𝑎2) ∅ 

6 𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2)) ∅ 

1_12 ~𝑃1(𝑎1, 𝑎2, 𝑎2) ∨ ~𝑃2(𝑎1, 𝑎2) ∅ 

1_2 ~𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2)) ∨ ~𝑃2(𝑎1, 𝑓1(𝑎2)) ∅ 

2_1 𝑃1(𝑎1, 𝑎2, 𝑎2) ∨ ~𝑃1(𝑎2, 𝑎1, 𝑎2) ∅ 

2_2 ~𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2)) ∨ 𝑃1(𝑓1(𝑎1), 𝑎1, 𝑓1(𝑎2)) ∅ 

3 𝑃2(𝑎1, 𝑓1(𝑎2)) ∨ ~𝑃3(𝑎1) ∨ ~𝑃1(𝑎2, 𝑎2, 𝑓1(𝑎2)) ∨ ~𝑃2(𝑎1, 𝑎2) ∨ ~𝑃2(𝑎1, 𝑎2) ∅ 

4 𝑃1(𝑎2, 𝑎2, 𝑓1(𝑎2)) ∨ ~𝑃2(𝑎2, 𝑎1) ∅ 

5 ~𝑃2(𝑎2, 𝑎1) ∨ ~𝑃1(𝑎1, 𝑎2, 𝑎2) ∨ 𝑃1(𝑎2, 𝑎1, 𝑎2) ∨ ~𝑃1(𝑓1(𝑎1), 𝑎1, 𝑓1(𝑎2)) ∅ 

Table 7  

Corresponding substitution 𝜎𝑖  and decision literal of clause 𝐶𝑖 for Table 6 

𝑖 𝜎𝑖 Decision literal 

7 ∅ 𝑃3(𝑎1) 

8 ∅ 𝑃2(𝑎1, 𝑎2) 

6 ∅ 𝑃1(𝑎1, 𝑓1(𝑎1), 𝑓1(𝑎2)) 

1_1 {𝑎1 𝑥11, 𝑎2 𝑥12⁄⁄ , 𝑎2 𝑥13⁄ } ~𝑃1(𝑎1, 𝑎2, 𝑎2) 

1_2 {𝑎1 𝑥11, 𝑓1(𝑎1) 𝑥12⁄⁄ , 𝑓1(𝑎2) 𝑥13⁄ } ~𝑃2(𝑎1, 𝑓1(𝑎2)) 

2_1 {𝑎2 𝑥21, 𝑎1 𝑥22⁄⁄ , 𝑎2 𝑥23⁄ } ~𝑃1(𝑎2, 𝑎1, 𝑎2) 

2_2 {𝑎1 𝑥21, 𝑓1(𝑎1) 𝑥22⁄⁄ , 𝑓1(𝑎2) 𝑥23⁄ } 𝑃1(𝑓1(𝑎1), 𝑎1, 𝑓1(𝑎2)) 

3 {𝑎1 𝑥31, 𝑎2 𝑥32⁄⁄ , 𝑎2 𝑥33⁄ , 𝑓1(𝑎2) 𝑥34⁄ } ~𝑃1(𝑎2, 𝑎2, 𝑓1(𝑎2)) 

4 {𝑎2 𝑥41⁄ } ~𝑃2(𝑎2, 𝑎1) 

5 {𝑎1 𝑥51, 𝑓1(𝑎2) 𝑥52⁄⁄ , 𝑎2 𝑥53⁄ } ∅ 

In the S-CS deduction, how many times does a subsequent clause that is about to participate in 

the S-CS deduction need to be reused properly? The concept of repetition value is therefore 

introduced as follows. 

Definition 6.  Two literals 𝑙1 with 𝑛-ary predicate and 𝑙2 with 𝑛-ary predicate can form predicate 

complementary, if the predicate symbol of 𝑙1 is negated form of the predicate symbol of 𝑙2. 

Definition 7. (Repetition value) Suppose ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1  is a SC, and the set 𝐷𝑙 = {𝑙𝑑1, 𝑙𝑑2, ⋯ , 𝑙𝑑𝑚} is a 

 
2 Because the same clause can participate in the deduction multiple times under different substitutions during the deduction process, 

in order to distinguish the clauses, the manuscript uses the index such as “1_1”. Specifically, the index “1_1” means that the clause 

𝐶1 participates in the deduction for the first time in this S-CS deduction step, the former “1” denotes the index of clause 𝐶1, and 

the latter “1” denotes the times that clause 𝐶1 participates in the deduction. 



decision literal set in ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1  , where 𝑙𝑑𝑖 ∈ 𝐶𝑖
𝜎𝑖−

 , 𝑖 = 1,2, ⋯ , 𝑚  and 𝜎𝑖  is a substitution 

corresponding to 𝐶𝑖. There is a subsequent clause 𝐶 = 𝑙1 ∨ 𝑙2 ∨ ⋯ ∨ 𝑙𝑛 that is about to participate 

the S-CS deduction. Literal repetition value is defined as follows. 

For any literal 𝑙𝑝 ∈ 𝐶, if there are 𝑘 literals in the set 𝐷𝑙 that can respectively form a predicate 

complementary with literal 𝑙𝑝, then the literal repetition value of 𝑙𝑝 is 𝐿𝑅𝑣(𝑙𝑝) = 𝑘. 

Clause repetition value of clause 𝐶 is 𝐶𝑅𝑣(𝐶) = ∑ 𝑘𝑖
𝑚
𝑖=1 , where 𝐿𝑅𝑣(𝑙𝑖) = 𝑘𝑖 (𝑖 = 1,2, ⋯ , 𝑛). 

The initial value of each clause and literal in a clause set is 0. For a subsequent clause that is 

about to participate in the S-CS deduction, if its 𝐶𝑅𝑣(𝐶) = 𝑢, then this clause needs to be reused 𝑢 

times, which is the main idea of fully reusing clause. After a clause has been fully used, the SC will 

obtain multiple (one or more) decision literals. On the other hand, the number of decision literals 

from a clause is regarded as a measure of deductive performance of this clause. The question of how 

to achieve the maximum deductive performance of each clause can be transformed into how to fully 

reuse each clause. The idea of fully reusing clauses can be described as follows. 

1) Each clause in the original clause set needs to be fully reused. It means that each clause in 

the original clause set should participate in the S-CS deduction at least once. 

2) Each literal in a clause needs to be fully reused. For a clause participating the S-CS deduction, 

i.e., constructing the SC and the separation of the clause, there exists a literal from this clause whose 

literal repetition value 𝐿𝑅𝑣 = 𝑘, then this literal needs to be reused 𝑘 times where the SC could 

obtain 𝑘 different decision literals. There are more decision literals in SC, the situation where all 

literals of a clause that is about to participate in the deduction satisfy pairing condition are more 

likely to occur. 

Of course, since the running time and memory resources of an ATP system are limited, it is not 

feasible for all clauses in a clause set to be fully reused. Meanwhile, the process of reusing a clause 

may generate many redundant clauses or make the number of literals in the CSC grow too fast. 

Therefore, we selected some clauses from the clause set for fully reusing according to heuristic 

strategies that will be detailed in Section 5, these selected clauses are called eligible-reuse clauses. 

Unit clauses and binary clauses are easier to reuse than other clauses due to their nature (fewer 

number of literals and less complexity of deduction, etc.). A fully clause reusing deduction 

framework is described in the following steps for the implementation purpose. 

Given a clause set 𝑆 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑚}  in FOL, 𝐷𝑙  denotes the set of decision literal, 𝐺2 

denotes the set of all 2-ary clauses in 𝑆  and 𝐺3  denotes the set of all 𝑡 -ary clauses (𝑡 ≥ 3 ) in 𝑆 , 

whose initialization are empty. 

Step 1. All unit clauses in 𝑆 are put into 𝐷𝑙, all binary clause in 𝑆 are put into 𝐺2, and all non-

unit and non-binary clauses in 𝑆 are put into 𝐺3. 

Step 2. Traverse each clause 𝐶2 of 𝐺2. Count the clause repetition value 𝐶𝑅𝑣(𝐶2) of 𝐶2, and 



𝐶2 is reused 𝐶𝑅𝑣(𝐶2) times by applying clause separation method. Each separation of 𝐶2 generates 

a new clause 𝐶𝑅. If 𝐶𝑅 is not ∅, then it is added to 𝑆; otherwise, output UNSAT, and Exit! 

Step 3. End traverse of 𝐺2. Mark the eligible-reuse clauses in 𝐺3 according to the heuristic 

strategy. Traverse each clause 𝐶3  of 𝐺3 . If 𝐶3  is eligible-reuse clause, then count the clause 

repetition value 𝑅𝑣(𝐶3)  of 𝐶3 , and 𝐶3  is reused 𝐶𝑅𝑣(𝐶2)  times by applying clause separation 

method; otherwise, 𝐶3  is used only once by applying clause separation method. Each clause 

separation generates a new clause 𝐶𝑅. If 𝐶𝑅 is not ∅, then it is added to 𝑆; otherwise, output UNSAT, 

and Exit! 

Step 4. End traverse of 𝐺3. Exit! 

The heuristic strategies mentioned above will be introduced in Section 5. 

4. A Novel Deduction Algorithm Based on Fully Clause Reusing Deduction 

Framework 

To obtain an effective implementation of this deduction framework, we need to develop a 

feasible deduction algorithm according to this framework. Therefore, we propose a novel deduction 

algorithm based on fully clause reusing deduction framework (in short FRC algorithm). FRC 

algorithm is not only a deduction algorithm based on the S-CS rule, but also an algorithm for 

constructing the contradiction. The overall flow of the FRC algorithm is shown in Fig. 1. 

In Fig. 1, the left swim lane denotes the main routine of the FRC algorithm, the middle swim 

lane denotes a subroutine of the FRC algorithm, i.e., fully_reusing_set, and the right swim lane 

denotes a subroutine of fully_reusing_set, i.e., fully_reusing_single_clause. Specifically, the subset 

𝑮𝟏 , 𝑮𝟐 , 𝑮𝟑  of the clause set 𝑷  denotes unit clause subset, binary clause subset and other clause 

subset respectively. More specific details of the FRC algorithm are introduced as follows. 



 

Fig. 1. The overall flow of FRC algorithm 

Firstly, the main routine of the FRC algorithm is described in the following steps: 

Step 1. Given a clause set 𝑺, select a clause 𝐶 from 𝑺, which will be the start clause of the S-

CS deduction. 

Step 2. Select all clauses from 𝑺 whose literals can form complementary pairs with the literals 

of clause 𝐶 into the clause set 𝑷. 

Step 3. Enter the iterative process of S-CS deduction. 

Step 4. Execute the subroutine fully_reusing_set, i.e., the clause set 𝑷 and the clause 𝐶 are 

fully reused to generate CSCs and construct the contradiction, and the CSCs are temporary stored 

in the clause set 𝑹. 

Step 5. Check whether 𝑹 is an empty set. If 𝑹 is an empty set, the proof found (UNSAT) and 

S-CS deduction stop. Exit! 

Step 6. Check whether current deduction satisfies other stop conditions of S-CS deduction. If 

a deduction stop condition is met, go to Step 8. 

Step 7: Empty the clause set 𝑷. Select a clause 𝐶 from clause set 𝑺. Select all clauses from 𝑺 

whose literals can form complementary pairs with the literals of clause 𝐶 into the clause set 𝑷, then 

go to Step 3. 

Step 8. Exit the iterative process of S-SC deduction.  

Step 9. Traverse each clause 𝐶′ of 𝑹, remove the clauses from 𝑺 which are subsumed by clause 

𝐶′. 



Step 10. All clauses of clause set 𝑹 are put into clause set 𝑺. Then output clause set 𝑺. Exit! 

The pseudo-code for the main routine of the FRC algorithm is shown in Algorithm 1, and the 

explanations of the subroutines are detailed in Table 8. 

Algorithm 1. The pseudo-code for the main routine of FRC algorithm 

Input 

  𝑺: set of given clauses 

𝑷: temporary store for pending clauses (the initial is empty) 

𝑹: temporary store for newly generated clauses (the initial is empty) 

𝑫𝒍: set of decision literals (the initial is empty) 

  𝐶: the optimal clause with respect to some heuristic strategies (the initial is null) 

  𝐶′: temporary handle clause (the initial is null) 

Output 

  clause set 𝑺 containing newly generated clauses 

1: 𝐶 = select_optimal(𝑺);  

2: 𝑷 = select_set(𝐶, 𝑺);  

3: while 𝑷 ≠ ∅ begin 

4:   𝑹 = fully_reusing_set(𝐶, 𝑷, 𝑫𝒍);  

5:   if 𝑹 == ∅ 

6:     proof found; exit 

7:   if TRUE == judge_break(𝑹) 

8:     goto 13 

9:   𝑷 = ∅; 

10:   𝐶 = select_optimal(𝑺);  

11:   𝑷 = select_set(𝐶, 𝑺);  

12:   𝑷 = 𝑷 ∪ {𝐶}; 

13: end while 

14: foreach 𝐶′ ∈ 𝑹 

15:   𝑺 = 𝑺 \ backward_subsumption(𝐶′, 𝑺); 

16: 𝑺 = 𝑺 ∪ 𝑹; 

Table 8  

Subroutines for the pseudo-code in Algorithm 1 

Subroutine name Function 

select_optimal(𝑺) Return the optimal (with respect to some heuristic strategies) clause from 𝑺. 

select_set(𝐶, 𝑺) Return the clause set that all clauses from 𝑺 whose literals can form literal complementary 

pairs with the literals of clause 𝐶. 

fully_reusing_set(𝐶, 𝑷, 𝑫𝒍) The clause set 𝑷  and the clause 𝐶  are fully used to generate CSCs and construct the 

contradiction based on fully reusing clause principle, then return the clause set consisting 

of newly generated clauses (CSCs). 

judge_break(𝑹) Return true if and only if the clause set 𝑹 satisfies the deduction exit condition (with respect 

to some heuristic strategies). 

backward_subsumption(𝐶′, 𝑺) Return the clauses from 𝑺 which are subsumed by clause 𝐶′. 

The subroutine fully_reusing_set(𝐶 , 𝑷 , 𝑫𝒍 ) can be further described with more details as 

follows. 

Step 1. Sort clauses in clause set 𝑷 according to the heuristic strategy and divide 𝑷 into three 

subsets 𝑮𝟏 , 𝑮𝟐 , 𝑮𝟑 , where 𝐺1  stores 1-ary clauses, 𝑮𝟐  stores 2-ary clauses and 𝑮𝟑  stores 𝑡 -ary 

clauses (𝑡 ≥ 3) clauses. 

Step 2. Put all literals of each clause in the set 𝑮𝟏, i.e., unit clause set, into the decision literal 

set 𝑫𝒍 as decision literals. 

Step 3. If the decision literal set 𝑫𝒍 is an empty set, then select one literal (with respect to the  



heuristic strategy) from the clause 𝑐 as a new decision literal and put the new decision literal into 

𝑫𝒍 and the contradiction, go to Step 5; otherwise, go to Step 4. 

Step 4. Execute the subroutine fully_reusing_single_clause, i.e., 𝐶 is fully reused to participate 

in the S-CS deduction, then obtain the newly generated clauses. If there is an empty clause in these 

newly generated clauses, then go to Step 12; otherwise, put these newly generated clauses into the 

clause set 𝑹 which stores newly generated clauses. 

Step 5. Traverse each clause 𝐶′ in the clause 𝑮𝟐. 

Step 6. Execute the subroutine fully_reusing_single_clause, i.e., 𝐶′  is fully reused to 

participate in the S-CS deduction, then obtain the newly generated clauses. If there is an empty 

clause in these newly generated clauses, then go to Step 12; otherwise, put these newly generated 

clauses into the clause set 𝑹. 

Step 7. End traverse of 𝑮𝟐. 

Step 8. Mark the eligible-reuse clause in 𝑮𝟑 with respect to some heuristic strategies. 

Step 9. Traverse each clause 𝐶′ in the clause 𝑮𝟑. 

Algorithm 2. The pseudo-code for the subroutine fully_reusing_set(𝐶, 𝑷, 𝑫𝒍) 

Input 

𝑷: store for pending clauses 

𝑮𝟏: store for 1-ary clauses (the initial is empty) 

𝑮𝟐: store for 2-ary clauses (the initial is empty) 

𝑮𝟑: store for 𝑡-ary clauses (𝑡 ≥ 3) clauses (the initial is empty) 

𝑹: store for newly generated clauses (the initial is empty) 

𝑹′: temporary store for newly generated clauses (the initial is empty) 

𝑫𝒍: set of decision literals (the initial is empty) 

  𝐶: begin clause 

𝐶′: temporary handle literal (the initial is null) 

Output 

  newly generated clause set 𝑹 

1: sort_set(𝑷); 

2: classify_set(𝑷, 𝑮𝟏, 𝑮𝟐, 𝑮𝟑); 

3: initialize_decisionSet(𝑮𝟏, 𝑫𝒍); 

4: if 𝑫𝒍 == ∅ 

5:   select_decision(𝐶, 𝑫𝒍); 

6: else 

7:   𝑹′ = fully_reusing_single_clause(𝐶, 𝑫𝒍); 

8:   if 𝑹′ == ∅  goto 23; 

9:   𝑹 = 𝑹 ∪ 𝑹′; 

10: foreach 𝐶′ ∈ 𝑮𝟐 

11:   𝑹′ = ∅; 

12:   𝑹′ = fully_reusing_single_clause(𝐶′, 𝑫𝒍); 

13:   if 𝑹′ == ∅  goto 23; 

14:   𝑹 = 𝑹 ∪ 𝑹′; 

15: end for 

16: mark_eligible-reuse(𝑮𝟑); 

17: foreach 𝐶′ ∈ 𝑮𝟑 

18:   𝑹′ = ∅; 

19:   𝑹′ = fully_reusing_single_clause(𝐶′, 𝑫𝒍); 

20:   if 𝑹′ == ∅  goto 23; 

21:   𝑹 = 𝑹 ∪ 𝑹′; 

22: end for 

23: return 𝑹; 



Step 10. Execute the subroutine fully_reusing_single_clause, i.e., 𝐶′  is fully reused to 

participate in the S-CS deduction, then obtain the newly generated clauses. If there is an empty 

clause in these newly generated clauses, then go to Step 12; otherwise, put these newly generated 

clauses into the clause set 𝑹. 

Step 11. End traverse of 𝑮𝟑. 

Step 12. Output the clause set 𝑅. 

The pseudo-code for the subroutine fully_reusing_set(𝐶, 𝑷, 𝑫𝒍) is shown in Algorithm 2, and 

the explanations of the subroutines of the pseudo-code can be found as in Table 9. 

Table 9  

Subroutines for the pseudo-code in Algorithm 2 

Subroutine name Function 

sort_set(𝑷) Sort clauses (with respect to some heuristic strategies) in clause set 𝑷. 

classify_set 𝑷, 𝑮𝟏, 𝑮𝟐, 𝑮𝟑) 𝑷  is divided into three subsets  𝑮𝟏 , 𝑮𝟐 , 𝑮𝟑 , where 𝑮𝟏  stores 1-ary clauses, 𝑮𝟐 

stores 2-ary clauses and 𝑮𝟑 stores 𝑡-ary clauses (𝑡 ≥ 3) clauses. 

initialize_decisionSet(𝑮𝟏, 𝑫𝒍) All literals of 𝑮𝟏 are put into 𝑫𝒍 as decision literals. 

select_decision(𝐶, 𝑫𝒍) Select one literal (with respect to some heuristic strategies) from the clause 𝐶 as a 

new decision literal and put the new decision literal into 𝑫𝒍 and the contradiction, 

then non-selected literals are put into the CSC. 

fully_reusing_single_clause(𝐶, 𝑫𝒍) Clause 𝐶  is fully reused to participate in the S-CS deduction, return a newly 

generated clause set. 

mark_eligible-reuse(𝑮𝟑) Mark the eligible-reuse clause (with respect to some heuristic strategies) in 𝑮𝟑. 

The subroutine fully_reusing_single_clause(𝐶, 𝑫𝒍) is detailed in the following steps. 

Step 1. If the given clause 𝐶 is an eligible-reuse clause, go to Step 2; otherwise, go to Step 5. 

Step 2. Count the repetition value 𝑅𝑣 of the clause 𝐶. Reuse the clause 𝐶 until the number of 

uses reaches 𝑅𝑣. 

Step 3. During each reusing process of the clause 𝐶, it participates in the S-CS deduction by 

applying clause separation method, then a new generated clause 𝐶′ is generated. 

Step 4. Check whether the clause 𝐶′ is subsumed by the clause in the clause set 𝑺 (given in 

Algorithm 1), or clause 𝐶′  is a tautology, or the deduction is noneffective. If one of the two 

conditions is satisfied, the backtracking operation is performed (please see Table 10 for the 

explanation of backtracking); Otherwise, the clause 𝐶′  is put into the clause set 𝑹  where newly 

generated clauses store, and select one literal (with respect to the heuristic strategy) from the clause 

𝐶 as a new decision literal, that is then put into 𝑫𝒍 and the contradiction. Go to Step 7. 

Step 5. The clause 𝐶 participates in the S-CS deduction by applying clause separation method, 

then a new generated clause 𝐶′ is generated. 

Step 6. Check whether the clause 𝐶′ is subsumed by the clause in the clause set 𝑺 (given in 

Algorithm 1), or clause 𝐶′  is a tautology, or the deduction is noneffective. If one of the two 

conditions is satisfied, the backtracking operation is performed (please see Table 10 for the 

explanation of backtracking); Otherwise, the clause 𝐶′ is put into the clause set 𝑹 that stores newly 



generated clauses, and select one literal (with respect to the heuristic strategy) from the clause 𝐶 as 

a new decision literal, that is then put into 𝑫𝒍 and the contradiction. 

Step 7. Output the clause set 𝑅. 

Algorithm 3 shows the pseudo-code for the subroutine fully_reusing_single_clause(𝐶 , 𝑫𝒍 ), 

and Table 10 explains each subroutines of the pseudo-code. 

Algorithm 3. The pseudo-code for the subroutine fully_reusing_single_clause(𝐶, 𝑫𝒍) 

Input 

𝐶: the given clause 

𝑫𝒍: set of decision literals 

𝑺: the clause set in Algorithm 1 

𝑹: store for newly generated clauses (the initial is empty) 

  𝐶′: newly generated clause (the initial is null) 

Output 

  newly generated clause set 𝑹 

1: if TRUE == judge_eliglible-reuse(𝐶) 

2:   𝑅𝑣 = count_repetitionValue(𝐶, 𝑫𝒍); 

3:   while 𝑅𝑣 ≠ 0 begin 

4:     𝐶′ = separate_clause(𝐶, 𝑫𝒍); 

5:     if forward_subsumption(𝐶′, 𝑺) or tautology(𝐶′, 𝑺) or evaluate_deduction(𝐶′) 

6:       backtracking(𝐶′); 

7:     else 

8:       𝑹 = 𝑹 ∪ {𝐶′}; 

9:       select_decision(𝐶, 𝑫𝒍); 

10:     𝑅𝑣 = 𝑅𝑣 − 1; 

11:   end while 

12: else 

13:   𝐶′ = separate_clause(𝐶, 𝑫𝒍); 

14:   if forward_subsumption(𝐶′, 𝑺) or tautology(𝐶′, 𝑺) or evaluate_deduction(𝐶′) 

15:     backtracking(𝐶′); 

16:   else 

17:     𝑹 = 𝑹 ∪ {𝐶′}; 

18:     select_decision(𝐶, 𝑫𝒍); 

19: return 𝑹; 

Table 10 

Subroutines for the pseudo-code in Algorithm 3 

Subroutine name Function 

judge_eliglible-reuse(𝐶) Return true if and only if the clause 𝐶 is an eliglible-reuse clause. 

count_repetitionValue(𝐶, 𝑫𝒍) Count the clause repetition value 𝑅𝑣 of the clause 𝐶, then return 𝑅𝑣. 

separate_clause(𝐶, 𝑫𝒍) The clause 𝐶 participates in the S-CS deduction by applying clause separation rule, then 

obtain a newly generated clause 𝐶′. Return the clause 𝐶′. 

forward_subsumption(𝐶′, 𝑺) Return true if and only if the clause 𝐶′ is subsumed by one clause from the clause set 

𝑺. 

tautology(𝐶′, 𝑺) Return true if and only if the clause 𝐶′ is a tautology clause. 

evaluate_deduction(𝐶′) Return true if and only if the deduction of the clause 𝐶′ participation is effective (with 

respect to some heuristic strategies) 

backtracking(𝐶′) Clear the record of proof search by the clause 𝐶′, and remove literals of the clause 𝑐′ 

in the CSC and the contradiction, and clear substitutions which are caused by the clause 

𝐶′. 

select_decision(𝐶, 𝑫𝒍) Shown in Table 9. 

The heuristic strategies involved in the FRC algorithm will be introduced in Section 5. 

 



5. Heuristic Strategies of FRC Deduction Algorithm 

For FOL, ATP systems search for proof in an infinite search space. This search is typically 

guided by heuristic strategies that select the most promising one in deduction paths. The proof search 

efficiency is a crucial factor that a deduction algorithm must consider. Up to now, hundreds of 

effective heuristic strategies [43-45], including those based on machine learning methods [46, 47], 

have been proposed by researchers. The strategy of each ATP system is developed based on the 

inference rule of the ATP system and requires extensive experiments to fix. In the subsequent section, 

we introduce the heuristic strategies involved in the FRC deduction algorithm. According to 

Algorithm 1, Algorithm 2 and Algorithm 3, the heuristic strategies involved in the FRC algorithm 

mainly are applied in clause selection, literal selection, and deduction evaluation respectively. 

5.1. Related Thresholds and Measures 

Before describing related heuristic strategies, we introduce several thresholds and measures of 

clause or literal, which can provide some reference for setting of heuristic strategies. 

A. Related thresholds 

(1) The pre-defined threshold 𝑚𝑎𝑥𝑇𝐷, i.e., the maximum term depth, generally is set 1.7 ∗ 𝑡 

by default according to our empirical experience, where 𝑡 is the maximum term depth in the original 

clause set.  

(2) The pre-defined threshold 𝑚𝑎𝑥𝐿𝑁 , i.e., the maximum number of literals in S-CSC, 

generally is set 1.5 ∗ 𝑛 by default according to our empirical experience, where 𝑛 is the maximum 

number of literals of a clause in the original clause set. 

(3) The threshold 𝑙𝑒𝑓𝑡𝐿𝑁, i.e., the maximum number of literals in part 𝐶+ of a clause 𝐶 after 

participating the S-CS deduction. To make the deduction more flexible, this threshold varies during 

the deduction process. According to our empirical experience, 𝑙𝑒𝑓𝑡𝐿𝑁 is set to 1 at the beginning of 

the deduction, then gradually increased by 1, but generally is not greater than 4. 

B. Related measures 

(1) Clause weight 

This weight has three arguments: a weight for function symbol 𝑤𝑓 , a weight for variable 

symbol 𝑤𝑣, and a weight for constant symbol 𝑤𝑐. It returns the sum of the term weight in all literals 

of a clause. In general, 𝑤𝑓 = 𝑤𝑣 = 𝑤𝑐 = 1, and these three arguments also vary with deduction 

process. For example, 𝑤𝑓 = 𝑤𝑣 = 1, 𝑤𝑐 = 2  if the ground clause needs to be selected; 𝑤𝑓 =

2, 𝑤𝑣 = 𝑤𝑐 = 1 if the clause with less function symbols is wanted. 

(2) Literal weight 

Like clause weight, literal weight also has three arguments: a weight for function symbol 𝑤𝑓, 



a weight for variable symbol 𝑤𝑣, and a weight for constant symbol 𝑤𝑐. It returns the sum of the term 

weight in a literal. 

(3) Efficient-reusing weight 

Definition 8. The efficient-reusing weight of a clause 𝐶 under substitution 𝜎 is defined as  

 𝐸𝑟𝑊(𝐶, 𝜎) =
1

𝑁𝑅
+

𝑁𝐶𝐴−𝑁𝐶𝐵

𝑁𝐶𝐵
−

𝑁𝑓𝐴−𝑁𝑓𝐵

𝑁𝑓𝐵
.  (1) 

where 𝑁𝑅 is the number of literals in clause 𝐶 separated into the CSC after substitution, 𝑁𝐶𝐴 and 

𝑁𝐶𝐵 are the number of constants in clause 𝐶 after and before substitution respectively, 𝑁𝑓𝐴 and 𝑁𝑓𝐵 

are the number of functions in clause 𝐶 after and before substitution respectively. 

The efficient-reusing weight of a literal under substitution 𝜎 is defined similarly, so we do not 

add details here. The efficient-reusing weight provides a way to order clauses when they are reused. 

In general, the efficient-reusing weight queue is sorted in a descending order, i.e., the clause with 

larger efficient-reusing weight is preferentially reused. Therefore, larger efficient-reusing weight 

allows a literal with lower function nesting layer as new decision literal.  

(4) Invalid weight and valid weight 

In addition to efficient-reusing weight, we consider the concept of invalid separation. 

Definition 9. The separation of a clause is called an invalid separation if this clause after the 

separation does not satisfy two pre-defined thresholds, 𝑚𝑎𝑥𝑇𝐷  (the maximum term depth) or 

𝑚𝑎𝑥𝐿𝑁  (the maximum number of literals in CSC). Accordingly, invalid weight of clause 𝐶  is 

defined as follow. 

 𝐼𝑊(𝐶) = 𝐼𝑡𝑖𝑚𝑒𝑠(𝐶) +
𝑇𝐷(𝐶)

𝑚𝑎𝑥𝑇𝐷
+

𝐿𝑁(𝐶)

𝑚𝑎𝑥𝐿𝑁
.  (2) 

where 𝐼𝑡𝑖𝑚𝑒𝑠(𝐶)  is the number of invalid separations in which clause 𝐶  has participated (the 

separation of clause 𝐶 is an invalid separation once, 𝐼𝑡𝑖𝑚𝑒𝑠 of clause 𝐶 is increased by 1),  𝑇𝐷(𝐶) 

is the max term depth in part 𝐶+  of 𝐶  after this invalid separation, and 𝐿𝑁(𝐶)  is the number of 

literals in part 𝐶+ of 𝐶 after this invalid separation.  

Accordingly, the opposite concept of invalid weight is valid weight. 

Definition 10. The separation of a clause is called a valid separation if this clause after the 

separation satisfies two pre-defined thresholds, 𝑚𝑎𝑥𝑇𝐷 (the maximum term depth) or 𝑚𝑎𝑥𝐿𝑁 (the 

maximum number of literals in CSC). Accordingly, valid weight of clause 𝐶 is defined as follow. 

 𝑉𝑊(𝐶) = 𝑉𝑡𝑖𝑚𝑒𝑠(𝐶) +
𝑚𝑎𝑥𝑇𝐷

𝑇𝐷(𝐶)
+

𝑚𝑎𝑥𝐿𝑁

𝐿𝑁(𝐶)
.  (3) 

where 𝑉𝑡𝑖𝑚𝑒𝑠(𝐶)  is the number of valid separations in which clause 𝐶  has participated (the 



separation of clause 𝐶 is a valid separation once, 𝑉𝑡𝑖𝑚𝑒𝑠 of clause 𝐶 is increased by 1), 𝑇𝐷(𝐶) is 

the max term depth in part 𝐶+ of 𝐶 after this valid separation, and 𝐿𝑁(𝐶) is the number of literals 

in part 𝐶+ of 𝐶 after this valid separation.  

(5) Goal distance 

A clause set for FOL consists of multiple premise clauses and a negated-conjecture clause, a 

negated-conjecture clause, or a clause a goal whose literals are all negative literals is called a goal 

clause. Therefore, the deduction path can be set to be goal oriented. The literals in the goal clause 

are called goal literals. Therefore, two concepts, such as goal distance tree and goal distance emerge 

which measure the distance from a literal or a clause to the goal clause.  

Definition 11. (Goal distance tree) A goal distance tree is a rooted tree with the following properties: 

1) Each node is a literal; 

2) The root node is the goal literal; 

3) Each node can form a complementary pair with its child node. 

Definition 12. (Goal distance) In a goal distance tree, the level of tree is called the goal literal 

distance (denoted by 𝑑𝑖𝑠𝑡𝐿) of the literal in this level. If a literal has multiple distinct goal literal 

distance values 𝑑1, 𝑑2 ⋯ , 𝑑𝑛, then 𝑑𝑖𝑠𝑡𝐿 = min {𝑑1, 𝑑2 ⋯ , 𝑑𝑛}. The goal clause distance (denoted 

by 𝑑𝑖𝑠𝑡𝐶 ) of a clause 𝐶 = 𝑙1 ∨ 𝑙2 ∨ ⋯ ∨ 𝑙𝑚  is defined as 𝑑𝑖𝑠𝑡𝐶 = min {𝑑𝑖𝑠𝑡𝐿(𝑙𝑖)|𝑖 = 1,2, ⋯ , 𝑚} , 

where 𝑑𝑖𝑠𝑡𝐿(𝑙𝑖) is the goal literal distance of literal 𝑙𝑖. 

In general, a literal or a clause with smaller goal distance also is selected or reused 

preferentially during the S-CS deduction. Because the efficiency of an ATP system is closely related 

to the goal clauses during the deduction process [48]. 

5.2. Clause Selection 

The clause selection strategy is used to determine which clause is the eligible-reuse clause and 

select a clause to participate in the S-CS deduction or clause sorting. The clause selection strategy 

is a weighted round-robin scheme with several queues, where the order within each queue is 

determined by a sort function and a weight function. The queue of a class of clauses is specialized 

by the sort function, the weight function representing a measure of the availability of a clause within 

the queue assigns a numerical value to a clause. 

FRC algorithm implements four sort functions. The function of the sort functions is to add 

the clauses that satisfies certain condition into the corresponding queue. In other words, a sort 

function corresponds to a queue. Four sort functions are detailed below: 



1) PreferGoal function. This function corresponds to a queue consisting of goal clauses. 

2) PreferUnit function. This function always prefers unit clause, which corresponds to a queue 

consisting of unit clauses; PreferNegUnit function. This function is more specific than PreferUnit, 

the corresponding queue collects the negative unit clauses. 

3) PreferBinary function. This function prefers binary clause, which corresponds to a queue 

consisting of binary clauses. 

4) PreferNew function. This function corresponds to a queue consisting of the clauses 

generated by the deduction. 

As the most important segment of a heuristic strategy, weight function is based on properties 

or features of the clause, some of which we have introduced above. Correspondingly, we set five 

weight functions. 

1) InValidWeight and ValidWeight. This function considers invalid weight and valid weight 

of each clause. 

2) ClauseWeight. This function considers the clause weight of each clause. In general, the 

clause with the smaller clause weight is selected or reused preferentially during the S-CS deduction. 

3) LitNumWeight. The LitNumWeight of a clause is equal to the number of literals in this 

clause. 

4) GoalDistWeight. This function considers the goal clause distance of each clause, i.e., The 

GoalDistWeight of a clause is equal to its goal clause distance. 

5) EReusingWeight. This function considers efficient-reusing weight of each clause, i.e., the 

EReusingWeight of a clause is equal to its efficient-reusing weight. 

The complete clause selection heuristic strategies are defined by a set of sort functions and 

weight functions. Each sort function combines a weight function to form an easy clause selection 

function. A list of weight functions and a sort function can form a composite clause selection strategy.  

Example 5. A clause selection strategy is specified as 

PreferNew[ValidWeight(2*ClauseWeight(GoalDistWeight, 1, 1.5, 2),  

1*ClauseWeight(LitNumWeight, 1, 2, 2)]. 

In the queue consisting of clauses generated by the deduction, the first half of this strategy 

represents that this queue is first sorted by GoalDistWeight, then sorted by ClauseWeight where 

𝑤𝑓 = 1, 𝑤𝑣 = 1.5, 𝑤𝑐 = 2 , and finally two clauses are chosen from this queue. The last half 

represents that this queue is first sorted by LitNumWeight, then sorted by ClauseWeight where 

𝑤𝑓 = 1, 𝑤𝑣 = 2, 𝑤𝑐 = 2 , and finally one clause is chosen from this queue. This strategy finally 

chooses one of the three clauses based on ValidWeight. 

 



5.3. Literal Selection 

The literal selection strategy is implemented based on several weight functions, and some of 

weights have been introduced above. Literal selection strategy is mainly used to select the decision 

literal from a clause. Therefore, a clause has only one queue for sorting its literals. We describe four 

weight functions as follows. 

1) LiteralWight. This function considers the literal weight of each literal. In general, the literal 

with the smaller literal weight is selected or reused preferentially during the S-CS deduction. 

2) GoalDistWeight. Like GoalDistWeight in the clause, this function considers the goal literal 

distance of each literal. 

3) VarNumWeight. This measure is equal to the number of variables in a literal. 

4) EReusingWeight. Like EReusingWeight of a clause, the EReusingWeight of a literal is 

equal to its efficient-reusing weight. 

Like clause selection strategy, a weight function can form a literal selection strategy, and a 

strategy generally is composed of multiple weight functions. 

5.4. Deduction Evaluation 

Each S-CS deduction step is evaluated by the deduction evaluation strategy. Specifically, 

whether each S-CS deduction step is effective or noneffective according to three thresholds and the 

CSC. Therefore, the deduction evaluation strategy evaluates the CSC and the latest clause to 

participate in the deduction. Deduction strategy is implemented based on three thresholds, such as 

𝑚𝑎𝑥𝑇𝐷, 𝑚𝑎𝑥𝐿𝑁 and 𝑙𝑒𝑓𝑡𝐿𝑁, and the three thresholds are set through abundant experimental data. 

After a clause 𝐶 participated S-CS deduction, two attributes of CSC, such as the maximum term 

depth and the maximum number of literals, and one attribute of the clause 𝐶, i.e., the maximum 

number of literals in part 𝐶+, need to be respectively evaluated, and if one of the following three 

conditions is not satisfied, the deduction is noneffective. 

1) The maximum term depth of the generated CSC exceeds 𝑚𝑎𝑥𝑇𝐷. 

2) The maximum number of literals of the generated CSC exceeds 𝑚𝑎𝑥𝐿𝑁. 

3) The maximum number of literals of the generated CSC exceeds 𝑙𝑒𝑓𝑡𝐿𝑁. 

If a S-CS deduction is noneffective, then this S-CS deduction path needs to backtrack to the 

previous deduction step. 

6. Integrating FRC into the Leading ATP System 

Vampire is one of the most successful ATP systems. Through more than two decades of 



research, Vampire has fully developed in terms of pre-processing technique [42], heuristic strategy 

[43,44], equality handle [36] and inference rule [36].  

However, it can be found that there are still a lot of problems in TPTP library that cannot be 

solved by Vampire. In order to further improve the performance of Vampire, and also to evaluate 

the capability of the FRC algorithm, we integrate the FRC algorithm into Vampire to form a single 

integrated prover, named V_FRC. In V_FRC, FRC algorithm plays a positive role as an algorithm 

module of Vampire so that other procedure modules of Vampire, such as pre-processing and 

simplification procedures, won’t be affected. In the integrated architecture of V_FRC, the clauses 

generated by the FRC algorithm are provided to Vampire as the lemmas. The workflow of V_FRC 

is as follows: 

Step 1. Vampire is firstly applied to the initial clause set 𝑆 for proof search, and a deduction 

result is obtained. 

Step 2. If Vampire finds a proof in Step 1, then exit. Otherwise, FRC algorithm is performed 

to initial clause set 𝑆 for deduction and generate some clauses which is put into a clause set 𝑅. 

Step 3. If the clause set 𝑅 has the empty clause, then the proof is found and output UNSAT. 

Exit! 

Step 4. Filter some clauses from 𝑅 to form a clause set 𝑅′. 

Step 5. Let 𝑆′ = 𝑆 ∪ 𝑅′. Input 𝑆′ into Vampire for proof search and obtain the final result. Exit! 

Some of the lemma clauses generated by the FRC algorithm may be redundant or useless for 

Vampire, which need to be deleted in Step 4, since the FRC algorithm could generate a large number 

of clauses. We set several conditions to filter clauses. 

1) The number of literals in the clause should be less than the pre-defined threshold 𝑘. 𝑘 usually 

set to 1 or 2, because a unit clause can easily be deduced to generate an empty clause, and the 

deduction involving binary clauses usually yield clauses with the smaller number of literals. 

2) The maximum term depth of the clause should be less than the pre-defined threshold 𝑑, 

where 𝑑 equals to the maximum term depth in the original clause set. 

3) The goal clause distance of the clause should be less than the threshold 𝑑𝑖𝑠𝑡. According to 

our empirical experience, the default setting of 𝑑𝑖𝑠𝑡 is 6. 

4) The clause weight of the clause should be less than the pre-defined threshold 𝑐𝑤. 𝑐𝑤 equals 

to the maximum clause weight in the original clause set. 

7. Experiments and Results Analysis 

7.1. Experimental Setup 

In order to evaluate the performance of V_FRC, we designed two experimental groups 



(Experiment 1 and Experiment 2). The test problems of the two experiments come from TPTP 

benchmark library that is an international standard problem library for ATP systems and covers 49 

scientific domains, where the domain corresponds to the first three letters of the problem name. The 

test problems used in Experiment 1 are CASC FOF division (2016-2021) problems with a total of 

3000 problems (500 problems per year). The test problems used in Experiment 2 are all the problems 

with a rating of 1 in the latest released version of TPTP library, TPTP-v7.5.0, a total of 1584 

problems. The rating denotes the difficulty of the problem, and it is a real number in the range 0.0 

to 1.0, where 0.0 means that all ATP systems can solve the problem (i.e., the problem is easy), and 

1.0 means no current ATP system can solve the problem (i.e., the problem is hard) [38]. The ratings 

of almost all CASC FOF division problems are less than 1.0 (there are just several problems with a 

rating of 1). Therefore, Experiment 1 is to evaluate the performance of V_FRC to solve general 

problems, and Experiment 2 is to evaluate the performance of V_FRC to solve hard problems. 

The experimental environment is a PC with 3.6GHz Inter(R) Core (TM) i7-7700 processor and 

16 GB memory, OS Ubuntu 20.04 64-bit. The test time for a single problem is 300 seconds (CPU 

time) which is the standard test time for TPTP library). In the experiments, the version of Vampire 

is 4.5.1. Finally, in order to verify the correctness of proof procedure by FRC algorithm, we use the 

well-known ATP system Prover9 [11] to verify each deduction path.  

7.2. Experimental Results and Analysis 

7.2.1. Results and Analysis of Experiment 1 

First of all, we introduce the comparison experiment between V_FRC and Vampire 4.5.1, 

where V_FRC is an integrated system formed by integrating FRC algorithm into Vampire 4.5.1. 

Experiment 1 uses the problems which are CASC FOF division (2016-2021) problems with a total 

number of 3000 problems (500 problems per year). 

Table 11 shows the experimental results of CASC FOF division problems (2016-2021) for each 

year. In each year from 2016 to 2021, the number of problems solved by V_FRC is more than the 

number of problems solved by Vampire 4.5.1. For example, in the “2017” column, V_FRC has 

solved 476 problems with 14 (denote by “(+14)”) more than Vampire 4.5.1, which has solved 462 

problems. It isn’t difficult to calculate that in these six years, the number of problems solved by 

V_FRC is 11 more than that solved by Vampire 4.5.1 on average. 

In addition, there are 272 problems of 3000 problems that Vampire has not solved, but some of 

272 problems are the same. In fact, there are 182 problems that Vampire has not solved, among 

which V_FRC solved 50 problems accounting for 27.47% of these 182 problems. The 

corresponding name and rating of these 50 problems are shown in Table 12. The average rating of 

50 problems listed in Table 12 is 0.84. There are 6 problems with rating of 1, 21 problems with 



rating greater than 0.9 accounting for 42%, and 33 problems with rating greater than 0.8 accounting 

for 66% of the 50 problems. Particularly, these 50 problems involve 12 scientific domains, 26 of 

which are respectively from Logic Calculi (denoted by LCL) and Number Theory (denoted by NUM 

or NUN), accounting for half of the 50 problems. 

The experimental results show that FRC algorithm can significantly enhance the performance 

of Vampire. FRC algorithm provides effective lemmas to assist Vampire to solve some problems 

that Vampire cannot solve by itself, especially some hard problems. On the other hand, V_FRC has 

strong generality, and FRC algorithm significantly improves the performance of Vampire on solving 

general problems. 

Table 11  

Comparison on solved problems by V_FRC and Vampire 4.5.1 

 2016 2017 2018 2019 2020 2021 

V_FRC 467 (+10) 476 (+14) 473 (+13) 458 (+12) 462 (+12) 459 (+6) 

Vampire 4.5.1 457 462 460 446 450 453 

Table 12  

The list of 50 problems solved by V_FRC but not by Vampire 4.5.1 

No Problem Rating No Problem Rating 

1 BOO109+1 0.71 26 LCL682+1.020 0.86 

2 CAT025+4 0.92 27 LCL888+1 0.78 

3 CAT032+2 0.89 28 LCL898+1 0.78 

4 CSR036+3 0.5 29 NUM669+4 0.97 

5 CSR049+6 0.97 30 NUM671+4 1.00 

6 CSR064+6 0.86 31 NUM694+4 0.86 

7 GEO316+1 0.86 32 NUM695+4 0.94 

8 GEO495+1 0.69 33 NUM697+4 0.97 

9 GEO506+1 0.75 34 NUM701+4 0.97 

10 GRP745+1 0.65 35 NUM736+4 0.94 

11 GRP780+1 0.78 36 NUM781+4 0.94 

12 HWV108+1 0.97 37 NUM782+4 1.00 

13 KLE016+2 0.75 38 NUN055+1 0.64 

14 LCL468+1 0.89 39 NUN056+1 0.86 

15 LCL572+1 1.00 40 REL024+2 0.35 

16 LCL575+1 1.00 41 SEU357+2 0.89 

17 LCL646+1.010 1.00 42 SEU383+2 0.94 

18 LCL648+1.010 0.79 43 SEU410+1 0.86 

19 LCL650+1.010 0.64 44 SWB028+1 0.89 

20 LCL650+1.015 0.71 45 SWB070+1 0.92 

21 LCL650+1.020 0.86 46 SWB092+1 1.00 

22 LCL664+1.020 0.93 47 SWB103+1 0.97 

23 LCL666+1.010 0.79 48 SWB107+1 0.92 

24 LCL668+1.005 0.43 49 SWC125+1 0.78 

25 LCL678+1.005 0.93 50 SWW228+1 0.89 

7.2.2. Results and Analysis of Experiment 2 

Experiment 2 uses all problems with rating of 1 in TPTPv7.5.0, a total of 1584 problems. The 

experimental result that V_FRC is shown in Table 13.  

Table 13 shows that V_FRC solved 46 problems with a rating of 1. The average time for 

V_FRC to solve each problem is 196.04 s, which illustrates that FRC respectively enhances the 



efficiency of Vampire in addition to improve the reasoning capability. Considering that these 

problems with a rating of 1 are the most difficult problems in TPTP library, where no current state-

of-the-art ATP system can solve these problems, the experimental results are quite promising. 

Compared with general problems, the proof of the problem with a rating of 1 can better reflect the 

capability of an ATP system. V_FRC is able to solve 46 problems with a rating of 1, which shows 

that FRC plays a crucial role in the integrated system. Meanwhile, these 46 problems come from 13 

scientific domains, and most problems (accounting for 27) are distributed in three domains: Logic 

Calculi (denoted by LCL), Number Theory (denoted by NUM or NUN) and Set Theory (denoted 

by SET or SEU). 

Table 13  

The list of 46 problems with rating of 1 solved by V_FRC 

No Problem Time(s) No Problem Time(s) 

1 ALG001-1 171.08 24 LCL646+1.010 263.57 

2 COL107-1 242.53 25 NUM656+4 220.61 

3 CSR039+6 173.16 26 NUM657+4 220.31 

4 CSR040+6 181.90 27 NUM658+4 232.97 

5 CSR168+1 141.08 28 NUM659+4 234.95 

6 FLD044-3 281.99 29 NUM671+4 115.79 

7 FLD049-1 134.11 30 NUM726+4 253.19 

8 FLD050-1 136.93 31 NUM782+4 115.93 

9 FLD086-3 252.63 32 NUM791+4 268.88 

10 FLD089-3 249.44 33 SCT160+1 213.53 

11 GRP622+3 139.01 34 SET032-3 147.39 

12 ITP008+4 210.57 35 SET033-3 140.39 

13 ITP009+4 210.08 36 SET035-3 140.60 

14 LAT355+2 267.93 37 SET279-6 136.74 

15 LAT360+2 127.97 38 SET350-6 124.55 

16 LAT380+4 181.06 39 SET368-6 172.27 

17 LCL231-10 205.91 40 SET967+1 285.26 

18 LCL478+1 164.84 41 SEU227+2 227.35 

19 LCL479+1 165.47 42 SEU288+1 278.67 

20 LCL532+1 227.13 43 SEU370+1 226.06 

21 LCL572+1 215.06 44 SEU442+1 230.36 

22 LCL574+1 164.69 45 SWB092+1 216.71 

23 LCL575+1 166.20 46 SYO602-1 141.05 

The experimental analysis of the two experimental groups shows that The FRC algorithm can 

significantly enhance Vampire's capacity for reasoning and efficiency. Since Vampire applies some 

deduction rule based on binary resolution, and FRC algorithm, as a multi-clause dynamic deduction 

algorithm, is an effective complementation to binary resolution, the performance of V_FRC is 

significantly improved. In addition to this reason, we consider several other reasons. 

1) In contrast to binary resolution, S-CS rule is able to process multiple (two or more) clauses 

in one deduction step. The theoretical basis of FRC algorithm is S-CS rule, and FRC algorithm can 

quickly process multiple clauses to construct SC and the corresponding CSC. 

2) In each clause separation, multiple (one or more) literals of a clause involving S-CS 

deduction can be eliminated, and the specific number of eliminated literals changes dynamically 



based on the decision literals in the SC. Furthermore, the number of eliminated literals can be 

controlled by the heuristic strategy, so some required clauses (for example, unit clause or clause 

with equality literal) could be guided to generate and be provided as lemmas to Vampire. 

3) Compared with saturation under heuristic strategy of binary resolution, the FRC algorithm 

continuously reuses a clause, and so its deduction potential will be exhausted as much as possible 

by the FRC algorithm in a smaller search space. This greatly improves the efficiency and capability 

of the FRC algorithm. 

4) Based on pre-defined thresholds of heuristic strategy, the FRC algorithm is able to generate 

a large number of characterized clauses, such as unit clause, clause with less term depth or clause 

with less weight. These characterized clauses are generated by just a few deduction steps in the S-

CS deduction, but several times more deduction steps are usually necessary for these clauses to be 

generated in the calculus of Vampire. Therefore, the FRC algorithm improves the inference 

efficiency of Vampire. Meanwhile, these characterized clauses involved in the inference process are 

more likely to infer the empty clause, so most of these clauses can shorten the inference path of 

generating the empty clause and thus further improve the performance of Vampire.  

5) In the FRC algorithm, a clause is fully reused to generate multiple different decision literals 

during a SC construction process. In other words, literals in a clause may turn to be multiple decision 

literals because the clause is reused, which is an expression of the deductive potential of a clause 

being fully utilized. Furthermore, these decision literals guide subsequent deduction paths by 

finding complementary literals synergistically, i.e., selecting the subsequent clauses participated the 

deduction. 

8. Conclusions and Future Works 

For FOL, the Standard Contradiction Separation (S-CS) rule is a multi-clause dynamic 

deduction method that differs from binary resolution. In this paper, we proposed a novel way for 

implementing the S-CS rule (clause separation method), as well as a detailed analysis of some 

noteworthy benefits of the S-CS rule. The purpose of fully reusing clause was discussed first, and 

then we presented a fully clause reuse deduction framework based on the S-CS rule to take better 

benefit its abilities, which is one research goal of this study. Consequently, we developed a fully 

clause reusing deduction algorithm, called FRC algorithm, which is based on the fully clause reusing 

deduction framework. Subsequently, each algorithm procedure and pseudo-code of FRC algorithm 

were introduced. Notice that there are still many problems in the latest released version (TPTP-

v7.5.0) of TPTP that have not been solved by those state-of-the-art ATP systems, such as Vampire, 

especially the problem with a rating of 1. Another research objective of this paper is improving the 

performance of Vampire to solve more problems in TPTP library. To achieve this objective, FRC 



algorithm is integrated into Vampire as an algorithm module to form an integrated ATP system, 

called V_FRC. 

The experimental results have shown that the performance of V_FRC outperforms that of 

Vampire. Especially, V_FRC solved 46 problems with a rating of 1, which were unsolved by any 

other ATP system. These experimental results demonstrated not only that the FRC algorithm 

effectively enhanced Vampire's performance and that the FRC method is an effective deduction 

process for theorem proving, but also that the two research objectives of this study have been 

achieved.  

Although the FRC algorithm possesses effective reasoning capability, there is also much 

potential for improvement. For example, FRC algorithm is weak on equality handling, and input 

format of FRC algorithm needs to be optimized. In the future, we will optimize the FRC algorithm 

from three aspects. Firstly, we will design more heuristic strategies which optimize the proof path 

of S-CS rule and guide the selection of clauses or literals, and more clause ordering mechanisms. 

We are currently exploring unit clause ordering mechanism and more effective clause or literal 

features. Secondly, we will continue to study the reasoning mechanism of S-CS rule based on fully 

reusing clause principle. In the FRC algorithm, all the SCs generated during the deduction process 

are discarded and only the corresponding CSCs are retained, while these discarded SCs preserve 

many valid deduction information. To make better use of this information, we plan to develop a new 

deduction mechanism that can combine the useful SCs for further deduction. Finally, we will 

continue to improve the deduction efficiency of the FRC algorithm and incorporate some equality 

handling methods into it. In addition, the integration architecture of FRC algorithm into other 

leading ATP systems still has some shortcomings that needs to be improved, such as the interaction 

between FRC algorithm and other modules of the ATP system can be made more sufficient, and the 

lemmas provided by FRC algorithm may be further filtered.  
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S-CS Standard contradiction separation 
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