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Abstract: Prompt diagnostics and appropriate cancer therapy necessitate the use of gene expression
databases. The integration of analytical methods can enhance detection precision by capturing
intricate patterns and subtle connections in the data. This study proposes a diagnostic-integrated
approach combining Empirical Bayes Harmonization (EBS), Jensen–Shannon Divergence (JSD), deep
learning, and contour mathematics for cancer detection using gene expression data. EBS preprocesses
the gene expression data, while JSD measures the distributional differences between cancerous and
non-cancerous samples, providing invaluable insights into gene expression patterns. Deep learning
(DL) models are employed for automatic deep feature extraction and to discern complex patterns from
the data. Contour mathematics is applied to visualize decision boundaries and regions in the high-
dimensional feature space. JSD imparts significant information to the deep learning model, directing
it to concentrate on pertinent features associated with cancerous samples. Contour visualization
elucidates the model’s decision-making process, bolstering interpretability. The amalgamation
of JSD, deep learning, and contour mathematics in gene expression dataset analysis diagnostics
presents a promising pathway for precise cancer detection. This method taps into the prowess of
deep learning for feature extraction while employing JSD to pinpoint distributional differences and
contour mathematics for visual elucidation. The outcomes underscore its potential as a formidable
instrument for cancer detection, furnishing crucial insights for timely diagnostics and tailor-made
treatment strategies.

Keywords: accuracy; classification; detection; diagnosis; contour; visualization; computation; cancer;
loss; precision; recall

Diagnostics 2023, 13, 3452. https://doi.org/10.3390/diagnostics13223452 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13223452
https://doi.org/10.3390/diagnostics13223452
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-1070-3212
https://orcid.org/0000-0002-6948-5240
https://orcid.org/0000-0003-3097-6568
https://orcid.org/0000-0002-3206-547X
https://doi.org/10.3390/diagnostics13223452
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13223452?type=check_update&version=2


Diagnostics 2023, 13, 3452 2 of 19

1. Introduction

Cancer is another notable driver of fatalities everywhere, behind cardiovascular dis-
ease. The World Health Organization (WHO) reported that more than nine million in-
dividuals died from cancer in 2018, with the number of new cases projected to rise to
twenty-seven million annually by 2040 (World Health Organization (WHO), 2019). An
accurate and prompt cancer diagnosis is thus essential for improving rates of recovery and
survival via patient outcomes.

Due to the rising abundance of gene expression data from populations worldwide,
there has never been a better opportunity to uncover the molecular insights of cancer.
However, novel approaches are required for efficient analysis and interpretation due to
these data’s extensive dimensionality and multifaceted nature [1].

Cancer continues to be a global health challenge, causing substantial morbidity and
mortality worldwide. Early and accurate cancer detection is critical for successful treatment
outcomes and predictive analytics [2], making integrating multiple analytical techniques
essential for enhancing diagnostic accuracy [3]. In this context, gene expression datasets
have emerged as a valuable resource, providing insights into the molecular mechanisms
underlying cancer development and progression.

The need of the hour is to explore innovative methodologies that harness the potential
of gene expression data for cancer detection. Grasping the intricate patterns and associ-
ations in these high-dimensional data can greatly enhance our comprehension of cancer
biology and aid in tailoring individualized treatment approaches [4]. Integrating multiple
analytical techniques offers a unique opportunity to extract valuable information from
gene expression datasets, paving the way for more effective and timely cancer diagnosis
and intervention.

The integration of EBS [5], JSD, deep learning, and contour mathematics in the analysis
of gene expression data presents a cutting-edge and innovative approach in the process
of cancer detection. Combining these powerful analytical techniques, this research holds
significant potential to revolutionize cancer diagnosis and treatment strategies worldwide.
JSD [6] enables the measurement of distributional differences between cancerous and non-
cancerous samples, providing valuable insights into gene expression patterns associated
with cancer. Deep learning models bring automatic feature extraction and pattern recog-
nition capabilities, enabling the discovery of complex molecular relationships crucial for
accurate cancer detection [7]. Additionally, contour mathematics offers a unique visualiza-
tion tool, aiding in the interpretation of the model’s decision boundaries and regions in the
high-dimensional feature space [8]. Ultimately, this integrated approach aims to contribute
to the global fight against cancer by improving early diagnosis and enabling personalized
treatment approaches, thus alleviating the burden of cancer on a global scale.

This research presents a novel and integrated approach to cancer detection, combining
EBS, JSD, deep learning, and contour mathematics in the analysis of gene expression data.
The objectives of this study are three-fold:

• To leverage the power of EBS and JSD as an information-theoretic measure to quantify
distributional differences between cancerous and non-cancerous samples based on
preprocessed data. By integrating JSD into the analysis, this research aims to gain
deeper insights into gene expression patterns, enabling the identification of critical
genomic signatures associated with cancer.

• To harness the capabilities of deep learning models for automatic feature extraction
and pattern recognition from gene expression data. By employing deep learning,
this research seeks to uncover complex molecular relationships and identify crucial
features that contribute to accurate cancer detection.

• To utilize contour mathematics for visual interpretation of the deep learning model’s
decision boundaries and regions in the high-dimensional feature space. This novel
visualization approach enhances the interpretability of the model, facilitating a deeper
understanding of the complex interactions between genes and their relevance in
cancer detection.
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The overall outline of the research strategy is sequenced as follows. Section 2 reviews
the most recent research progress carried out on gene expression cancer datasets, Section 3
delineates the characteristics of the incorporated dataset, Section 4 elaborates the methodol-
ogy with the essential computational process, Section 5 assesses and discusses the observed
empirical outcome of the proposed strategy, and lastly, Section 6 presents a brief conclusion
and notes on the attained objective with possible future enhancements.

2. Related Work

This study [9] compare three deep learning methods, namely MLP, 1DCNN, and
2DCNN, in terms of their effectiveness in processing different cancer gene expression
datasets. Using both balanced and unbalanced datasets, the study utilizes feature selection
strategies such as ANOVA and Information Gain. Notably, 1DCNN outperforms others
in terms of F1-score and accuracy, despite MLP showing superior performance in terms
of False Positive Rate. The results highlight the promising potential of deep learning
techniques in gene expression datasets.

This work [10] presented DEGnext, a convolutional neural network model designed
for predicting upregulated (UR) and downregulated (DR) genes using gene expression
data from The Cancer Genome Atlas. Utilizing transfer learning, the model leveraged
insights from training feature maps on new, untrained cancer datasets. Compared to five
traditional machine learning techniques, DEGnext demonstrated strong performance (with
ROC scores ranging between 88% and 99%), establishing its reliability and efficiency in
transferring learned features for new data classification and verifying the connection of
major cancer-related Gene Ontology terms and pathways to the differentially expressed
genes (DEGs) predicted by DEGnext.

The authors in this [11], explored eight supervised machine learning methods for
cancer classification using the TCGA PancancerHiSeq dataset, which includes various
types of cancers. The study involved preprocessing steps, including feature selection,
oversampling, and normalization. The study showcases the utility of machine learning in
improving the diagnostic precision of diverse cancers through effective feature selection
and balancing of the dataset.

This study [12], proposed an optimized DL approach for classifying different types
of cancers using tumor RNA sequence data. The study leveraged a novel combination
of binary particle swarm optimization with a decision tree (BPSO-DT) and convolutional
neural network (CNN), converting high-dimensional RNA-seq data into 2D images, which
were then enhanced using an augmentation strategy. The study demonstrated impressive
performance, achieving a classification accuracy of 96.90% across five cancer types, showing
improved memory efficiency and simplicity in implementation.

This work [13], leveraged a part of the Pan-Cancer dataset to pre-train convolutional
neural networks (CNNs) for predicting survival rates in lung cancer. The researchers
tackled the lack of structure in gene expression data by reformatting RNA-seq samples
into gene expression images, which enabled the extraction of high-level features through
CNNs. They also investigated if integrating data from various tumor types could enhance
the predictability of lung cancer progression compared to other machine learning methods.
Ref. [14] introduced multiple convolutional neural network (CNN) models for tumor and
non-tumor classification using gene expression inputs. Using gene expression profiles
from thousands of samples, their models achieved impressive prediction accuracies and
identified key cancer indicators. The team extended one model to predict breast cancer
subtypes with high accuracy. The novel CNN design and the interpretability approach for
highlighting biologically significant cancer marker genes showcase its potential for future
use in cancer detection.

This study [15], explored the complexity of employing a deep learning (DL) model for
cancer classification via gene expression data, presenting a novel approach to transforming
one-dimensional gene expression levels into two-dimensional images using RNA-seq data
from the Pan-Cancer Atlas. Utilizing a convolutional neural network (CNN), their model
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achieved an impressive 95.65% accuracy rate across 33 cancer type cohorts. The study also
incorporated heat maps to interpret gene significance in diverse cancer types, ultimately
enhancing the understanding of cancer’s intricate characteristics and propelling the usage
of deep learning in cancer genomics.

This work [16], employed a combination of fuzzy support vector machine (SVM),
particle swarm optimization (PSO), and genetic algorithms (GAs) for improved gene-based
cancer classification. This approach uses fuzzy logic and a decision tree algorithm to boost
its sensitivity to training samples and to tailor a unique set of rules per cancer type. High
classification accuracy was achieved across leukemia, colon, and breast cancer datasets,
demonstrating the method’s ability to effectively reduce data dimensionality and identify
pertinent gene subsets.

The authors [17] introduced the MCSE-enhancer model, a multi-classifier stacked
ensemble, to pinpoint enhancers in DNA (Deoxyribonucleic acid) sequences accurately.
Leveraging both experimental techniques like ChIP-seq and computational methods, our
model surpassed existing enhancer classifiers with 81.5% accuracy. This integrated ap-
proach offers a significant advancement in enhancer detection. Utilizing RNA-Seq (Ribonu-
cleic acid-sequence) data from the Mendeley repository for five cancer types, this study [18]
converted values to 2D images. They applied DL for feature extraction and classification.
Among eight tested models, the convolutional neural network (CNN) emerged as the most
effective, excelling particularly with a 70–30 data split.

The authors [19] introduced the m5C (5-methylcytosine)-pred model, which accurately
identifies RNA m5C methylation sites across five species, leveraging five feature encoding
techniques and optimizing with SHapley Additive exPlanations and Optuna, surpassing
existing methods. This study [20], assessed the literature on convolutional neural net-
work applications in gene expression data analysis, highlighting a peak accuracy of 99.2%
across studies. This study [21] introduced i6mA-Caps (N6-methyladenine-CapsuleNet), a
CapsuleNet-based tool for detecting DNA N6-methyladenine sites, achieving up to 96.71%
accuracy across three genomes, outperforming current leading methods. On utilizing ML,
this study [22], integrated gene expression data from three SLE (systemic lupus erythe-
matosus) datasets, achieving up to 83% classification accuracy for disease activity. Despite
technical variation challenges, gene modules proved more robust than raw gene expression,
maintaining around 70% accuracy. [23] evaluated the efficacy of various optimizers in deep
learning for classifying five cancer types using gene expression data. AdaGrad and Adam
stood out among tested optimizers, with performance further analyzed across different
learning and decay rates.

This study [24], introduced DCGN, a novel DL approach that integrates CNN and
BiGRU (Bidirectional Gated Recurrent Unit), to optimize cancer subtype classification from
gene expression data. Addressing challenges of limited samples and high dimensionality,
DCGN outperforms seven existing methods in classifying breast and bladder cancers,
showcasing its superior capability in handling sparse, high-dimensional datasets. This
study [25], introduced the DL-m6A (N6-methyladenosine) tool based on deep learning
and multiple encoding schemes, which improves the identification of m6A sites in mam-
mals. Surpassing existing tools in performance, a dedicated web server is available for
broader access.

While many of the reviewed studies utilized CNN models and other ML approaches
for cancer classification using gene expression data, few have focused on integrating these
models with comprehensive explainability methods for better interpretability of the model
outcomes. Also, there is a lack of research on the development of models that can efficiently
handle complex extraction and visualization among different types of cancer.

3. Dataset

From Mendeley data [26], selecting the Microarray Gene Expression Cancer (MGEC)
dataset allowed us to assess the efficacy of our unique approach. With an impressive
array of more than 14,124 features grouped within six distinct classifications, this dataset
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provides a rare chance to rigorously evaluate the effectiveness of our proposed technique
on specific categories of malignancy data. The MGEC dataset is widely used for cancer
type predictions, and its samples come from prestigious bioinformatics laboratories at top
institutions across the globe. The use of microarray data in oncology research has become
crucial in recent years, especially for early cancer detection, directing treatment choices,
and forecasting outcomes.

This comprehensive collection includes brain, lung, prostate, and CNS (Central Ner-
vous System) embryonal cancers. Figure 1 depicts the expression heat map of all the
considered cancer types. Gene expression heat maps are graphical representations that
showcase the expression levels of multiple genes across various samples or conditions.
These heat maps reveal distinct expression patterns when focusing on specific cancers such
as lung, brain, prostate, and CNS embryonal cancers. Lung cancer heat maps might exhibit
specific upregulation or downregulation of genes related to cell proliferation and smoke
exposure. Brain cancer maps could highlight genes involved in neural development and
signaling pathways. Genes associated with hormonal regulation and cell growth might
stand out in prostate cancer. For CNS embryonal cancers, a group of high-grade malignant
tumors usually found in children, genes related to embryonic development and rapid cell
division might be prominently displayed. Researchers can identify commonalities and
differences by comparing the expression patterns across these cancers, potentially guiding
the DL methodologies to learn therapeutic strategies and understand disease mechanisms.
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Figure 1. Gene expressions of various cancer types. (a) Lung cancer gene expression; (b) Brain cancer
gene expression; (c) CNS embryonal cancer gene expression; (d) Prostate cancer gene expression.

The term “microarray” is often used in the medical sector to refer to an essential
research factor that can evaluate the expression of several genes at once. Microarray
profiling has become the gold standard for identifying and classifying tumor development.
We have analyzed microarray data for reliable cancer diagnostics using unique methods
and developed improved techniques to analyze the results. To fully evaluate the efficacy of
our suggested approach, we compare the accuracy results to those of other existing datasets;
this further emphasizes the importance of the MGEC dataset in furthering oncology studies
and precise diagnosis.

4. Methodology

The generic architecture of the proposed model is depicted in Figure 2, which com-
prises the primary strategy of the computation and its purpose. The diagram vividly
illustrates the Empirical Bayes Harmonization (EBH) process applied to gene expression
datasets, highlighting its efficacy in addressing batch effects. Through contour visualiza-
tions, areas of heightened concentration for cancer-related gene expression signatures in
n-dimensional feature space are distinctly demarcated, either by contour lines or color-
coded regions. The visualization effectively contrasts the gene expression profiles of
cancerous and non-cancerous samples, as measured by JSD. Furthermore, the schematic
representation of the PCA-transformer showcases its three-phase structure, including the
embedding layer, self-learning transformer, and output layer, elucidating its capability to
discern intricate patterns from individual gene elements in the dataset.
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4.1. Data Preprocessing

Batch effect correction in gene expression data is crucial to ensure that the input to the
subsequent steps is clean and consistent. Thus, the Empirical Bayes Harmonization (EBH)
is a novel data preprocessing procedure that combines the Empirical Bayes framework and
Harmonization principles to address batch effects in gene expression datasets [27,28]. EBH
aims to remove technical variations while harmonizing the data, allowing for robust and
integrative analyses across diverse dataset formats. Algorithm 1 represents the procedures
of EBH.

In this data preparation and analysis process, we start with gene expression data
matrix D ∈ |M|n×p for the primary dataset, which we divide into a Bs ∈ |M|n×p (biological
signal matrix) and a Be ∈ |M|n×p (batch-specific effect matrix). We fit a linear model to
estimate the batch effects for each gene (g i) in the primary dataset, taking into account
the overall mean (µ) and residual error (e). We then obtain additional gene expression
datasets

(
Dj
)

from different batches and perform the same process to estimate batch-
specific effects in each dataset using linear models, followed by empirical Bayes shrinkage
to stabilize variance estimates. Afterwards, we correct all datasets’ gene expression data
matrices to remove batch effects and harmonize the data. The resulting harmonized and
batch-corrected gene expression data can be integrated for more robust analyses, such
as differential expression, enabling comprehensive insights into gene expression patterns
across diverse datasets, crucial for cancer detection and research.
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Algorithm 1. EBH algorithm.

Input: Gene expression data matrix: D ∈ |M|n×p

Output: DI

//Data Preparation:
1: split(D)

D→ Bs ∈ |M|n×p&&Be ∈ |M|n×p //Bs: biological signal matrix and
//Be: Batch-specific effect matrix

//Model Fitting:
2: ∀[(gi) ∈ D]Do

Bs(gi) = µ(gi) + Be(gi) + e;
End Do

//Harmonization:
3: ∀

(
Dj

)
//j = 2, 3, . . ., k

Bs ∈ |M|(nj×p); Be ∈ |M|(nj×p);
End ∀

4: ∀
[
(gi) ∈ Dj

]
Do

Bsj (gi) = µ(gi) + Bej (gi) + e;
End Do

//Batch Effect Correction and Harmonization:
5: Bs(gi) = D− Be(gi);

6: Bsj (gi) = Dj − Bej (gi);
//Integration (DI)

7: DI = Bs(gi) + Bsj (gi) + · · ·+ Bsk (gi); //integrated dataset

The harmonized and batch-corrected gene expression data matrices
(

Bs(gi), Bsj(gi)
)

are utilized to extract the required features. PCA (Principal Component Analysis) is applied
to extract the features from the batch effect correction and harmonization step.

We sort the eigenvalues in descending order and choose the top ‘K’ eigenvectors,
representing the principal components. These selected eigenvectors

{
V̂1, V̂2· · · V̂K

}
capture

the most significant variation in the integrated gene expression data, allowing for dimen-
sionality reduction and efficient feature extraction. The mean-centered integrated data (the
mean of each gene across samples, X(µ) are ultimately projected onto the selected principal
components (PCs) to obtain the feature representation.

Fi = X(µ)×
[{

V̂1, V̂2· · · V̂K
}]

(1)

The represented Fi ∈ |M|n×p matrix is projected onto a two-dimensional space for N
number of selected principal components.

4.2. Jensen–Shannon Divergence (JSD)

The distributions of gene expression profiles of cancerous (
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) and non-cancerous

Diagnostics 2023, 13, x FOR PEER REVIEW 9 of 20 
 

 

datasets (𝐷 ) from different batches and perform the same process to estimate batch-spe-
cific effects in each dataset using linear models, followed by empirical Bayes shrinkage to 
stabilize variance estimates. Afterwards, we correct all datasets’ gene expression data ma-
trices to remove batch effects and harmonize the data. The resulting harmonized and 
batch-corrected gene expression data can be integrated for more robust analyses, such as 
differential expression, enabling comprehensive insights into gene expression patterns 
across diverse datasets, crucial for cancer detection and research. 

Algorithm 1. EBH algorithm. 

Input: Gene expression data matrix: 𝑫 ∈ |𝑴|𝒏×𝒑 
Output: DI 

//Data Preparation: 
1: split(D) 

 𝑫 → 𝑩𝒔 ∈ |𝑴|𝒏×𝒑&& 𝑩𝒆  ∈ |𝑴|𝒏×𝒑  //Bs: biological signal matrix and 
//Be: Batch-specific effect matrix 

//Model Fitting: 
2: ∀[(𝒈𝒊) ∈ 𝑫] Do 

  𝑩𝒔(𝒈𝒊) = 𝝁(𝒈𝒊) +  𝑩𝒆(𝒈𝒊) + 𝒆; 
End Do 

//Harmonization: 
3: ∀(𝑫𝒋)      //j = 2, 3, …, k 

 𝑩𝒔 ∈ |𝑴| 𝒏𝒋×𝒑 ;  𝑩𝒆  ∈ |𝑴| 𝒏𝒋×𝒑 ; 
End ∀ 

4: ∀[(𝒈𝒊) ∈ 𝑫𝒋] Do 
 𝑩𝒔𝒋(𝒈𝒊) = 𝝁(𝒈𝒊) + 𝑩𝒆𝒋(𝒈𝒊) + 𝒆; 

End Do 
//Batch Effect Correction and Harmonization: 

5: 𝑩𝒔(𝒈𝒊) = 𝑫 −  𝑩𝒆(𝒈𝒊); 
6: 𝑩𝒔𝒋(𝒈𝒊) = 𝑫𝒋 − 𝑩𝒆𝒋(𝒈𝒊); 

//Integration (𝑫𝑰) 
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The distributions of gene expression profiles of cancerous (Ꞓ) and non-cancerous (₵) 

samples are computed using JSD. JSD will measure the similarity or dissimilarity between 
the two distributions, providing valuable information about the differences in gene ex-
pression patterns between the two groups. 

samples are computed using JSD. JSD will measure the similarity or dissimilarity
between the two distributions, providing valuable information about the differences in
gene expression patterns between the two groups.

Initially, for each gi, the probability distribution is computed as follows:
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To learn complex patterns and relationships from each of the (𝑔 ) ∈ 𝐷 , we applied a 

DL transformer-based process, namely PCA-transformer [29–31]. The model comprises of 
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To estimate the JSD between the two distributions, it is necessary to compute the
average distribution
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Self-Supervised Transformer: Let TL be the number of transformer layers in the 

model. Each transformer layer consists of self-attention and feedforward neural network 
sub-layers. 

For each TL(L → 1 to l), the self-attention mechanism computes the attention weights 
Aw and the attention output, Ow. Let Il−1 be the input embeddings for the (l−1)th layer, and 
Ol be the output embeddings for the lth layer. Thus, the self-attention computation is ex-
pressed as 

𝑨𝒍 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙 𝑶𝒍 𝟏 × 𝒘𝒒𝒍 × 𝑶𝒍 𝟏 × 𝒘ʞ𝒍 𝑻 𝒅ʞ  (8)

𝑶𝒍 = 𝑨𝒍 × 𝑶𝒍 𝟏 × 𝒘𝒗𝒍  (9)

)] denotes the Kullback–Leibler (γ) divergence, which
measures how one probability distribution diverges from a second, expected probab-
ility distribution.
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). The result is a value ranging from 0 to 1, where 0 indicates
that the two distributions are identical, and 1 indicates that the two distributions do not
overlap at all.

The estimation of γ, as described in the provided method, involves comparing two
probability distributions, P(
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) is balanced and unbiased. This symmetric formula-
tion acknowledges that γ is not symmetric by nature, thereby providing an accurate and
comprehensive evaluation of the dissimilarity between the two probability distributions.
Incorporating this symmetric γ into the Jensen–Shannon divergence calculation demon-
strates a mathematically rigorous and well-founded approach to comparing probability
distributions in genomics research. This nuanced understanding and application of γ high-
light the method’s technical robustness, ensuring precise measurement of distributional
differences and enhancing the reliability of the research outcomes.

In the context of gene expression profiles, JSD effectively distinguishes between can-
cerous and non-cancerous samples, with lower values indicating similarity and higher
values highlighting significant differences.

4.3. Intelligent Computation

To learn complex patterns and relationships from each of the (g i) ∈ DI , we applied a
DL transformer-based process, namely PCA-transformer [29–31]. The model comprises of
three phases: embedding layer, self-learning transformer, and output layer.

Embedding Process (Ẽ): The extracted Fi ∈ |M|n×p will be passed through an embed-
ding layer to convert the numerical values into dense embeddings. This layer allows the
model to learn meaningful representations of the PCs. Thus, the output of the embedding
layer is obtained by matrix multiplication and is expressed as

Ẽ = Fi × E (7)

where E is the embedding matrix with embedding dimensions.
Self-Supervised Transformer: Let TL be the number of transformer layers in the

model. Each transformer layer consists of self-attention and feedforward neural net-
work sub-layers.

For each TL(L→ 1 to l), the self-attention mechanism computes the attention weights
Aw and the attention output, Ow. Let Il−1 be the input embeddings for the (l−1)th layer,
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and Ol be the output embeddings for the lth layer. Thus, the self-attention computation is
expressed as
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After the self-supervised transformer [33] encoder, the output embeddings 𝑍  are 
used for downstream tasks, such as cancer detection, using a supervised learning ap-
proach. Let Ty be the target label for the cancer detection task, with dimensions (n × c), 
where c indicates the number of cancer types. Similarly, 𝑤  and 𝑒  are the weight ma-
trix and bias term for the downstream task classification, respectively. Thus, the final pre-
dictive (վ) analytics is determined as վ = 𝒁𝒍 × 𝒘𝑻𝒚 × 𝒆𝑻𝒚 (12)

The self-supervised loss encourages the model to learn meaningful representations 
from the extracted PCs. Depending on the chosen self-supervised task, the loss can be 
contrastive or reconstruction loss. Let Lss be the self-supervised loss term. We use a super-
vised loss, such as cross-entropy loss, to train the model on labeled data for the down-
stream task. Let Ls be the supervised loss term. Thus, the overall loss (⅄) is a combination 
of the Lss and Ls, weighted by their respective hyperparameters, (𝜆  and 𝜆 ): ⅄ = 𝝀𝑳𝒔𝒔 × 𝑳𝒔𝒔 + 𝝀𝑳𝒔 × 𝑳𝒔  (13)

Density Estimation: For each point on the grid, compute the density of the ‘n’ in 𝐷  
that corresponds to the cancer signature region in the reduced feature space. For these, we 
utilized KDE (kernel density estimation) computation, which is stated as đ(𝒂, 𝒃) = 𝟏 𝒏 (𝒇𝒌[(𝒂, 𝒃)(𝑭𝟏, 𝑭𝟐, ⋯ 𝑭𝒏)]) (14)

where (a, b) denotes a point on the grid, (𝐹 , 𝐹 , ⋯ 𝐹 ) are the values of the selected PCs 
for each sample, and fk is the kernel function. Figure 3 represents the visualization of the 
decision boundaries and decision regions of the DL model. This visualization can aid in 
understanding how the model separates cancerous and non-cancerous samples in the 
high-dimensional feature space. 

(8)

Ol = Al ×Ol−1 ×wl
v (9)

where wl
q, wl
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tions with a ReLU activation function in between [32]. Thus, the outcome is computed as
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FFNN = ReLU
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]
(10)

where wl
n, el

n are learnable weight matrices and bias terms, respectively. The output of the
transformer layer is obtained by applying a residual connection and layer normalization.

Zl = norm
(

Ol
FFNN + Ol−1

)
(11)

After the self-supervised transformer [33] encoder, the output embeddings Zl are used
for downstream tasks, such as cancer detection, using a supervised learning approach.
Let Ty be the target label for the cancer detection task, with dimensions (n × c), where
c indicates the number of cancer types. Similarly, wTy and eTy are the weight matrix and
bias term for the downstream task classification, respectively. Thus, the final predictive (
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The self-supervised loss encourages the model to learn meaningful representations
from the extracted PCs. Depending on the chosen self-supervised task, the loss can be con-
trastive or reconstruction loss. Let Lss be the self-supervised loss term. We use a supervised
loss, such as cross-entropy loss, to train the model on labeled data for the downstream task.
Let Ls be the supervised loss term. Thus, the overall loss (
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= [(λLss × Lss) + (λLs × Ls)] (13)

Density Estimation: For each point on the grid, compute the density of the ‘n’ in DI
that corresponds to the cancer signature region in the reduced feature space. For these, we
utilized KDE (kernel density estimation) computation, which is stated as

d̄(a, b) =
(

1
/

n
)
∑(fk[(a, b)(F1, F2, · · · Fn)]) (14)

where (a, b) denotes a point on the grid, (F1, F2, · · · Fn) are the values of the selected PCs
for each sample, and fk is the kernel function. Figure 3 represents the visualization of the
decision boundaries and decision regions of the DL model. This visualization can aid
in understanding how the model separates cancerous and non-cancerous samples in the
high-dimensional feature space.
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Figure 3. Sample contour visualization representing the presence of cancer signature (from sample
(a–f)). High-expression regions indicate areas in the reduced feature space where cancer-related
signatures are more concentrated.

The attention mechanism is pivotal in the described DL process, particularly in the
self-learning transformer component. This architecture uses attention to capture complex
patterns and relationships within the high-dimensional input data represented by the
selected principal components (PCs) after PCA dimensional reduction. As defined in
Equations (11) and (12), the attention mechanism enables the model to focus on specific
parts of the input embeddings and learn the relevant features crucial for downstream tasks,
such as cancer detection. The model can effectively capture intricate relationships among
the input features by calculating attention weights and output embeddings iteratively
through self-attention. This process is vital for understanding how the transformed data
in the form of PCs are leveraged by the DL model, ensuring that the model can discern
meaningful patterns even in the reduced feature space.

Regarding the transition from the original image data to the final X_Train and y_train
datasets, the description provides a clear pathway. First, PCA dimensional reduction is
applied to the original high-dimensional data, retaining only the top ‘K’ principal com-
ponents that capture the most significant variation. These selected PCs form the basis of
the subsequent DL feature extraction process. As part of the self-learning transformer, the
attention mechanism ensures that the model effectively learns from these PCs, even though
the dimensionality has been reduced. The model is trained using labeled data (target
labels for cancer detection task) represented as y_train. In contrast, the input features are
represented by X_Train, comprising the transformed data obtained after the self-learning
transformer’s processing.

5. Performance Evaluation
5.1. Empirical Layout

This deep learning model was developed on an Intel Core i7 13620H CPU clocked at
1.8 GHz in an experimental setting. Ubuntu 20.04 LTS is the preferred OS since it offers
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a reliable and well-supported setting for ML projects. Python 3.7 or later is the primary
programming language, while PyTorch 1.7.1 is the deep learning framework of choice. The
environment includes popular data processing and scientific computing libraries, including
Numpy, Pandas, and Scikit-Learn. The versions of CUDA and cuDNN were installed to
use NVIDIA GPUs when computation varies with the version of PyTorch.

Table 1 represents the hyperparameters configured in the proposed deep learning
model for training purposes.

Table 1. Vital parameters of the model.

Hyperparameters Typical Values

E 50

TL 4

d
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Batch Size 64
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5.2. Outcome Analysis

The results of the proposed model are comparatively assessed with some relevant
existing approaches discussed in Section 2. A few key performance metrics are included in
this section for precise analysis.

In the research context, a contour visualization [33] would use contour lines (or color-
coded regions) to indicate areas in an n-dimensional feature space where cancer-related
gene expression signatures are more concentrated. The contour lines (or regions) represent
areas with a high concentration of cancer-related signatures. In a color-coded contour
plot, warmer colors like red or orange represent high-concentration regions, while cooler
colors like blue or green represent low-concentration regions. Figure 3 presents a series
of six contour plots labeled from sample (a) to (f), which depict the spatial distribution of
cancer-related gene expression in a reduced feature space. As we traverse from sample
(a) to (f), there is a noticeable gradation in the intensity of cancer-related gene signatures.
Sample (b), for instance, displays minimal areas of heightened gene expression, signifying
a scant presence of cancer-associated markers.

In contrast, sample (c) unveils expansive zones of intensified expression, signaling a
robust concentration of cancer-specific signatures. Such visualizations furnish a tangible
representation of the gene expression landscape by mapping the gene expression onto
a 2D plane using contour lines. This provides an intuitive understanding of the data’s
structure and offers critical insights into the relative abundance and clustering of specific
cancer-related genetic markers within the compressed feature domain.

From Figure 4, the accuracy rates of 96.5% for lung cancer, 94.5% for brain cancer, 93.5%
for prostate cancer, and 95.5% for CNS embryonal cancer are all relatively high, suggesting
that the integrated approach is successful in the detection of these types of cancer using gene
expression data. Firstly, the procedures of EBS in preprocessing the gene expression data
may have helped to address issues of variability and noise in the data, enhancing the quality
and reliability of the gene expression measurements and making them more amenable
for further analysis. Secondly, the use of JSD to measure the distributional differences
between cancerous and non-cancerous samples provides a robust way to identify crucial
genomic signatures associated with each type of cancer. This information-theoretic measure
quantifies differences in gene expression patterns, potentially aiding in capturing unique
disease signatures.
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Thirdly, implementing a DL transformer-based process allows for the automatic ex-
traction of deep features and the ability to learn complex patterns from the data. Deep
learning has proven to be very effective in tasks involving high-dimensional data, such
as gene expression profiles, and can potentially uncover complex molecular relationships
and identify critical features for cancer detection. Lastly, the use of contour mathematics
for visualization provides an intuitive way to understand the decision boundaries and
regions in the high-dimensional feature space. It enhances the interpretability of the model,
providing a visual representation of where cancer-related signatures are more concentrated
in the feature space.

Therefore, considering the complexity and high dimensionality of gene expression
data, achieving accuracy rates of over 93% for all types of cancer studied is a strong
endorsement of the proposed integrated approach.

The impressive accuracy rates achieved for detecting various types of cancer under-
score the effectiveness of the integrated approach. This is due to the inclusion of the EBH
technique in preprocessing, which ensures the removal of extraneous noise and variance
from the gene expression data, leading to consistent and reliable measurements. This foun-
dation is crucial, as cleaner data often correlate with enhanced predictive performance. The
JSD also introduces a rigorous mathematical framework to differentiate between cancerous
and non-cancerous gene expression profiles, ensuring that the most pivotal genomic mark-
ers are emphasized. DL, especially transformer architectures, delves into the intricacies of
high-dimensional data, autonomously pinpointing and deciphering multi-layered patterns
that might elude traditional methods. When visualized using contour mathematics, these
patterns furnish a lucid, graphical delineation of the decision-making process, revealing
zones of high cancer signature concentration and providing clinicians and researchers with
actionable insights into the underlying molecular dynamics.

Performances of a few recent and relevant methodologies (MLP, DEGnext, BPSO-
DT+CNN) are compared with the outcomes of the proposed model. Figure 4 showcases
the performance of different models on the same dataset as evaluated by the Area Under
the Receiver Operating Characteristics (AUC-ROC) measure [32]. This measure illustrates
the ability of a model to differentiate between classes, in this case, different types of
cancers, with a value of 1 indicating perfect classification and a value of 0.5 equivalent to
arbitrary guessing.
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The Multilayer Perceptron (MLP) model delivered an AUC-ROC score of 0.8901. This
suggests that the MLP model has a good ability to distinguish between cancer types,
showing its effectiveness in this classification task. Next, the DEGnext model achieved
an AUC-ROC of 0.9021. This impressive score demonstrates an excellent classification
performance, superior to the MLP model, indicating that the DEGnext model has a slightly
higher capacity to distinguish between the classes. The BPSO-DT+CNN model achieved a
remarkable AUC-ROC of 0.9133. This score shows that the BPSO-DT+CNN model could
differentiate between cancer types with even greater accuracy than both the MLP and
DEGnext models. The proposed model, however, achieved an outstanding AUC-ROC
score of 0.9411, the highest among all the evaluated models. This exceptional performance
shows that the proposed model not only outperformed the other models but also has a
high discriminative power, making it highly efficient and accurate in classifying different
types of cancer.

The insights drawn from Figure 5 have significant implications for cancer classification
using gene expression data. The progressive increase in AUC-ROC scores from MLP to the
proposed model underscores the continuous advancements in machine learning and data
processing techniques tailored for genomic data. The dominant outcome of the proposed
model, with its peak AUC-ROC score of 0.9411, suggests that the integration of advanced
techniques, possibly coupled with superior feature engineering or extraction methodologies,
can provide unparalleled precision in distinguishing between different cancer types. This
precision is invaluable in clinical settings, as it can guide diagnosis, treatment decisions, and
prognostic evaluations. Furthermore, the evident gap between traditional models like MLP
and the proposed model emphasizes the need for continuous research and adaptation in
the rapidly evolving domain of genomic data analysis. In essence, the insights highlight the
paramount importance of leveraging cutting-edge techniques to achieve optimal accuracy,
ultimately benefiting patient care and advancing our understanding of cancer biology.
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Figure 5. Analysis of AUC-ROC curve.

Figure 6 shows the performance of different models on a precision–recall curve, a
widely used metric in machine learning to evaluate model performance, especially in the
case of imbalanced datasets. A higher area under the precision–recall curve (AUC-PR)
indicates a more accurate model. Starting with the MLP (Multilayer Perceptron), it has an
AUC-PR score of 0.8234. This shows a reasonably good performance in balancing both
precision and recall, thus making it a reliable model for predicting cancer classes from gene
expressions. The DEGnext model further improves the precision–recall trade-off, scoring
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0.8911 on the AUC-PR. This means it can correctly identify more true positives while
minimizing the false positives, hence being more precise and trustworthy for the same task.
The BPSO-DT+CNN model, with an AUC-PR of 0.8709, also exhibits a strong performance.
Despite its slightly lower score than DEGnext, it still has a commendable ability to classify
the cancer types correctly while minimizing errors, making it a potential choice for such
diagnostic tasks. Finally, the proposed model outperforms all the previous models with an
impressive AUC-PR score of 0.9123. This clearly indicates its superior ability to maintain
high precision and recall simultaneously, thus making it the most reliable model among the
four for this specific task. It effectively minimizes prediction errors, offering a significant
promise for practical applications in diagnosing cancer types using gene expression data.
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Figure 6. Analysis of precision–recall curve.

The insights from Figure 6 carry significant implications for the realm of cancer di-
agnosis using gene expression data. The varying scores among the models highlight
the importance of choosing a suitable algorithm, especially in scenarios with imbalanced
datasets. While MLP offers a foundational approach, advanced models like DEGnext and
BPSO-DT+CNN demonstrate the potential of specialized algorithms to enhance diagnostic
accuracy. Most importantly, the superior performance of the proposed model underscores
the value of continuous research and innovation. For healthcare professionals and re-
searchers, this suggests that leveraging the most advanced and tailored models can lead
to more precise diagnoses, potentially improving patient outcomes and guiding targeted
therapeutic interventions. In essence, the right choice of model can significantly impact the
accuracy and reliability of cancer type predictions, driving better clinical decisions.

The loss values in Figure 7 indicate how well each model’s predictions align with the
actual data. A lower loss value implies better model performance, as the predictions closely
match the actual data.

Figure 7 shows that various models exhibit different loss trajectories when applied to
gene expression data for cancer classification. The MLP model, possibly hovering around
a loss value of approximately 0.25, showcases its competence, though there is evident
room for refinement. DEGnext, with an inferred loss value nearing 0.15, outperforms MLP,
highlighting its superior alignment with the actual dataset values. The BPSO-DT+CNN
model, potentially registering a loss close to 0.18, while commendable, lags slightly be-
hind DEGnext. Most notably, the proposed model, estimated at an impressive loss value
of around 0.10, underscores its unmatched predictive prowess, making it the standout
performer in this comparative analysis.
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The MLP model has a moderate loss, which suggests that while it is performing
adequately, there may be room for improvement in aligning its predictions more accurately
with the actual data. The DEGnext model demonstrates an improvement over the MLP
model, indicating that its predictions are more in sync with the real data. The BPSO-
DT+CNN model has a slightly higher loss, which suggests that, although it is providing
valuable predictions, there is potential to reduce this error margin and bring it more in line
with the actual data. Finally, the proposed model shows the lowest loss. This indicates
superior performance over the other models, as it aligns more closely with the actual data,
making it the most accurate model in this selection. This is a very encouraging result,
suggesting that the proposed model could be a highly effective tool for predicting future
data based on the patterns it has learned from the training data. The result lays a solid
foundation for applying and improving this model in future work.

The practical implementation of our interdisciplinary approach in real-world clinical
settings necessitates a thorough evaluation of its feasibility within the constraints of current
healthcare infrastructure. It is imperative to assess its integration with existing diagnostic
tools, the training required for medical professionals, and its cost-effectiveness. Moreover,
regulatory considerations are pivotal, as any novel diagnostic modality must conform
to stringent safety, accuracy, and reproducibility standards. As future research, we plan
to delve into pilot studies within clinical environments to understand these dynamics
while liaising with regulatory bodies to ensure that the method meets the benchmarks for
clinical adoption.

6. Conclusions

Based on a comprehensive exploration and evaluation of various methods, the diagnostic-
integrated approach combining Empirical Bayes Harmonization (EBS), Jensen–Shannon
Divergence (JSD), deep learning, and contour mathematics proves to be highly effective
for cancer detection utilizing gene expression data. The EBS preprocessing optimizes the
data quality, setting a solid foundation for accurate diagnostics. JSD plays a pivotal role in
distinguishing between cancerous and non-cancerous samples. The deep learning model’s
prowess in extracting intricate features and mastering sophisticated patterns from the data
is paramount in achieving commendable accuracy. Moreover, contour mathematics offers a
robust tool for visualizing decision boundaries in the intricate, high-dimensional feature
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space. Thus, this integrated strategy illuminates a promising avenue for advancements in
cancer diagnostics and prognosis predictions based on gene expression data.

Future enhancements could include the integration of other omics data, such as epige-
nomics, metabolomics, and proteomics, to provide a more comprehensive understanding
of the cancer phenotype.
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