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1. Introduction

There has been a long-standing interest in graphene-based
nanostructures due to carbon’s low spin-orbit and hyperfine cou-
pling promising long coherence times.[1–3] Recently, advanced
fabrication and gating techniques have enabled the experimental
realization of electrostatically confined nanostructures in bilayer
graphene, i.e., quantum channels,[4–8] dots,[9–29] Josephson
junctions, interferometers, and superconducting quantum
interference devices (SQUIDs),[30–35] in an endeavor to design
bilayer graphene-based nanostructures for future quantum
technology applications.

In these electrostatically defined structures, one uses a com-
bination of multiple gates (including a split gate and a crossing
finger gate, c.f. Figure 1a) to locally modulate the bilayer gra-
phene gap and the charge carrier density to confine individual
electrons. In such setups, the bilayer graphene band structure,
as well as the confinement potential, is simultaneously tuned
by the gates. This gate-tunability enables immense control and

the opportunity to manipulate the confined
quantum states. Therefore, a thorough
understanding is required of how the
confined states depend on the gate-tunable
parameters and their interplay to design
tailor-made bilayer graphene quantum
nanostructures, e.g., quantum dots to be
operated as qubits.

We present a large-scale space explora-
tion investigating the dependence of con-
fined bilayer graphene dot states on the
gate-tunable dot and material parameters.
Previous studies of bilayer graphene quan-
tum dots have provided proof-of-principle
calculations[36,37] or descriptions of single
points in parameter space to characterize
specific experiments.[14–17] Here, in turn,

we offer the full parameter dependence, giving tangible indica-
tions of how to design the confinement to tailor the dot states and
their properties to achieve different regimes and functionalities.
By numerically investigating bilayer graphene quantum dots over
an extensive range of differently shaped soft confinements, we
study: 1) The confined states in circular dots, their orbital
degeneracy, and the corresponding wave functions. We find a
regime where the orbital ground state is singly degenerate, and
the wave function is localized around the center of the valley in
momentum space, compared to a regime where the ground
state acquires a threefold degeneracy corresponding to three
minivalleys around the valley center. We give the parametric
dependencies on the dot size and depth and the bilayer gra-
phene gap for achieving either of the regimes. 2) The confined
states’ valley g-factor, which descends from the bilayer gra-
phene Bloch bands’ Berry curvature and determines the valley
splitting of the confined states in a weak perpendicular mag-
netic field. We establish the dependencies of the valley g-factor
on the dot parameters in either of the before-mentioned
regimes and thereby demonstrate how to tune the valley split-
ting by quantum dot design, e.g., how to maximize or minimize
the valley g-factor. 3) How to modify the dot states and their
properties via alterations of the dot shape. We find that elliptical
deformations of the confinement potential allow one to tune
further the wave function distribution, the orbital degeneracy,
and the valley g-factor of the confined states.

For the dependencies of the dot states’ characteristics on the
confinement and material properties, we perform statistical anal-
ysis to reveal the correlations and provide a physical picture in
terms of the underlying confined quantum states. The insights
above will be relevant for efficient quantum dot design, e.g., for
identifying suitable two-level regimes to operate the dots as
qubits. Being able to modulate the g-factor by quantum dot
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Electrostatically confined quantum dots in bilayer graphene have shown potential
as building blocks for quantum technologies. To operate the dots, e.g., as qubits,
a precise understanding and control of the confined states and their properties is
required. Herein, a large-scale numerical characterization of confined quantum
states in bilayer graphene dots is performed over an extensive range of gate-
tunable parameters such as the dot size, depth, shape, and the bilayer graphene
gap. The dot states’ orbital degeneracy, wave function distribution, and valley g-
factor are established and the parametric dependencies to achieve different
regimes are provided. It is found that the dot states are highly susceptible to gate-
dependent confinement and material parameters, enabling efficient tuning of
confined states and valley g-factor modulation by quantum dot design.
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design is also of interest for multidot setups with varying valley
splitting across the different dots, allowing, e.g., for valley valves
and selective state addressing.

2. Microscopic Modeling of Confined Dot States

We describe the gate-defined soft confinement by the spatially
varying confinement potential, UðrÞ, sketched in Figure 1a,
and bandgap profile, ΔðrÞ, as follows:

UðrÞ ¼ Uc=cosh
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ΔðrÞ ¼ Δ0 � Δmod=cosh
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where the gate- and fabrication-defined parameters such as the
dot depth, Uc, width L, and ellipticity a

b, and the pristine bilayer
graphene gap away from the dot can be varied independently.
Further, Δmod ¼ 0.3Δ0 describes the gate modulation of the
gap toward the center of the dot. This specific value of the
gate-induced gap modulation has been chosen in accordance
with recent experiments, and we show the stability of our results
with respect to slight variations in the Appendix.

Spatially varying potentials of the form as in Equation (2) have
proven successful in providing faithful, realistic models of gate-
defined quantum dots in bilayer graphene in comparison with
experiments.[15–17,36] The potentials enter into the four-band
Hamiltonian of bilayer graphene[38,39]

Hξ ¼
U � ξ 1

2Δ ξv3π 0 ξvπ†

ξv3π† U þ ξ 1
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with momenta π ¼ px þ ipy, π† ¼ px � ipy, parameters
v ¼ 1.02� 106m s�1, v3 � 0.12 v, and γ1 � 0.38 eV.
Equation (3) is written for the two valleys Kξ labeled by the valley
index ξ ¼ �1 and in the Bloch basis ψKþ ¼ ðψA,ψB0 ,ψA0 ,ψBÞ in
valley Kþ, and ψK� ¼ ðψB0 ,ψA,ψB,ψA0 Þ in valley K� (in terms
of the electron’s amplitudes on the bilayer graphene sublattices
A and B in the top and A0 and B0 in the bottom layer).

To compute the confined dot states, we employ an
established numerical technique described in the previous
studies,[5,6,16,17,36,40,41] where the Hamiltonian in Equation (3)
is diagonalized in a suitable basis of localized states. From this
diagonalization, we obtain the quantum dot spectrum, i.e., the
eigenenergies of the n-th orbital dot level, Eξ,n, and the corre-
sponding eigenstates, Ψξ,n. In the absence of any symmetry
breaking, each orbital state is fourfold degenerate in the spin-
and valley degree of freedom.

Figure 1. a) A combination of gates (including split gates and a finger gate) electrostatically confines charge carriers in bilayer graphene into a quantum
dot (top). The gate-induced confinement potential, UðrÞ, is smooth and gate-tunable (center). The dominant source of state splitting in a weak per-
pendicular magnetic field is valley splitting characterized by the valley g-factor, gv (bottom). b) Scatterplots visualizing the statistical correlations between
the lowest-orbital dot state’s gv and the dot parameters L,Uc, and the bilayer graphene gap Δ0. We distinguish the valley center regime (when the lowest
energy orbital is nondegenerate and the dot wavefunction is peaked within the center of the valley in momentum space, marked by blue dots) and the
minivalley regime (the lowest orbital threefold degenerate with wavefunctions in the minivalleys, marked by red stars). The examples in the bottom panel
were computed using the parameters L= 20 nm, Δ0 = 60meV, Uc = 20meV (valley center regime) and L= 80 nm, Δ0 = 150meV, Uc = 20meV (mini-
valley regime), respectively. c) Electronic and topological properties of the bilayer graphene Bloch bands as a function of the gap. The bands are almost
quadratic around the Brillouin zone corners (valleys at the K-points) for small gaps, and the Berry-curvature-induced orbital magnetic moment,M, exhibits
strong peaks and dips. At large gaps, three minivalleys develop around each K-point, while the maximum and minimum value of M is suppressed. Plots
for the K� valley where the Kþ valley is rotated byπ with the opposite sign ofM.
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One key property of these quantized dot states is their
coupling to an external magnetic field. Over the last few years,
it has been shown that the dominant source of state splitting
in a perpendicular magnetic field is the splitting of the two valleys
Kþ and K�. The corresponding valley g-factor, gv, quantifying
this valley splitting in weak magnetic fields, can be orders of
magnitude larger than the spin g-factor.[6,9,15,17,36] The
origin of this large valley splitting is the topological properties
of bilayer graphene. Its Bloch bands, jαi, feature nontrivial
Berry curvature

Ωξ,α ¼ �2ℏ2Im
X
α6¼β

D
α
��� ∂pxHξ

���βE β
��� ∂pyHξ

���αD E
ðεα � εβÞ2

(4)

entailing an orbital magnetic moment[42–46]

Mξ,α ¼ �eℏIm
X
α6¼β

D
α
��� ∂pxHξ

���βE β
��� ∂pyHξ

���αD E
εα � εβ

(5)

where, for a band α, we sum over the other three bands β 6¼ α in
Equation (3) (For the confined states in the following, we con-
sider states in the first conduction band, dropping the index
α). The orbital magnetic moment, Mξ, has opposite signs in
the two valleys Kþ and K� and couples linearly to weak perpen-
dicular magnetic fields, leading to sizeable magnetic field valley
splittings.

Since the lowest orbital confined states are zero angular
momentum states having both radial (principal) and azimuthal
(angular momentum) quantum numbers close to zero (akin to
the Fock–Darwin levels[36,47,48]), for these states, the orbital mag-
netic moment of Equation (5) is the dominant quantity coupling
to a perpendicular magnetic field. We can hence quantify the
valley splitting of the lowest orbital confined dot states by inte-
grating over the orbital magnetic moment and the wave function
distribution in momentum space[6,15,17,36]

�ξgv ¼
1
μB

Z
dkMξðkÞjΨξ,n¼0ðkÞj2 (6)

determining how much the states in either valley are pushed up
and down in a weak magnetic field. Equation (6) demonstrates
the subtle interplay of confinement and material properties as it
depends on both the distribution of the confined dot wave
functions and bilayer graphenes’ orbital magnetic moment in
momentum space.

As the properties of the dot states depend so intricately on the
material characteristics of bilayer graphene as the host material,
we demonstrate the electronic and topological properties of pris-
tine bilayer graphene in Figure 1c as described by Hamiltonian
in Equation (3) in the absence of any confinement potential and
gap modulation, i.e., for U ≡ 0 and Δ ≡ Δ0. Of the four resulting
bands, the two low-energy bands are trigonally warped, forming
three minivalleys around each of the K-points. The depth and the
separation of these minivalleys increase with an increasing gap,
such that the low-energy bands range from almost quadratic at
small gaps to strongly modulated at large gaps. The orbital mag-
netic moment M inherits the trigonally warped triplet structure,
with three peaks around the minivalleys. Due to the inverted,

hole-like part of the band around the K-point, M exhibits a region
of inverted sign around this area of momentum space. Both the
peaks and the dips increase in magnitude as the bilayer graphene
bandgap decreases.

3. Tuning Dot States and the Valley G-Factor

3.1. States in a Circular Dot

We analyze the dot’s ground state and their valley g-factor over an
extensive range of gate-tunable parameters Δ0,Uc , and L in a
circular dot. Figure 1b depicts the statistical correlations between
gv and the gap, the dot depth, and the width. These correlations
illustrate what parametric regimes are most suitable when aim-
ing at, e.g., minimizing or maximizing the value of gv.
Furthermore, we visualize the correlation between smaller/larger
values of the valley g-factor and distinct momentum space distri-
bution patterns of the confined dot wave function. The confined
state’s distribution ranges between being peaked around the
K-point (the “valley-center” regime, which we characterize by
nonzero weight at K and a finite separation of the lowest and
the first excited single-particle orbital, ΔE) and sitting mainly
in the three minivalleys around the K-point, with zero weight
at the valley center (the “minivalley” regime). In the latter case,
the lowest three orbitals corresponding to the three minivalleys
are degenerate.

In Figure 2, we further characterize these regimes by analyz-
ing the wave function’s evolution and the valley g-factor across
characteristic system parameter ranges. An overarching trend
emerges, where the valley g-factor is consistently maximal within
the minivalley regime. However, the dependence of gv on the
system parameters is not always monotonic.

From Figure 1 and 2, we deduce that the most suitable param-
eters for the valley center regime are small and deep dots, while
large and shallow dots can promote the minivalley regime for
sufficiently large values of the bilayer graphene gap.

Within these two regimes, the valley g-factor shows distinct
dependence on the gap: for fixed L and Uc, the valley g-factor
can decrease with increasing Δ0 within the valley center regime,
while it generally increases strongly with an increasing gap in the
minivalley regime (cf. the evolution between the filled pink sym-
bols in the top center panel of Figure 2). As we demonstrate in
Figure 3, this nonmonotonic dependence of gv, in particular on
Δ0, stems from the influence of the hole-like part of the disper-
sion around the valley center where M becomes negative. For
small gaps, both the maximum peaks of M around the minival-
leys and the minimum dip in the center increase in magnitude
(cf. Figure 1c), entailing a partial cancellation when calculating gv
for a wave function in the valley center regime. Conversely,
within the minivalley regime, increasing the bilayer graphene
gap promotes the minivalleys and further pushes the wave func-
tion toward the band edges, where M is peaked. Since, in this
regime, the wave function has no weight around the center of
the valley, the corresponding confined states are obnoxious to
any negative values of the orbital magnetic moment.

As a consequence, while the maximal value of the orbital mag-
netic moment generally is a decreasing function of the bandgap
(Figure 1c), the dependence of a dot state’s gv is more subtle and
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Figure 2. Evolution of the lowest orbital dot states’ valley g-factor, gv, over an extensive range of system parameters,Uc, L, andΔ0. The dashed white lines
indicate the transition from the valley-center regime (regions of low gv, blue) to the minivalley regime (regions of high gv, yellow). On the right, we show
examples of the wave function distribution in momentum space characterizing these regimes (fromminivalleys on the top to valley center on the bottom).
We observe nonmonotonic dependencies of gv on the gap size, width, and gap, depending on the wave functions momentum space distribution in the
respective regimes. The filled pink symbols illustrate the positions in the parameter space for the examples in Figure 3 while the empty symbols relate to
the dot states we elliptically deform in Figure 4—all results for the K� valley.

Valley center Valley centerMinivalleys Minivalleys

Figure 3. Gap dependence of the orbital magnetic moment and the lowest orbital confined dot wave functions in the valley center regime (L= 30 nm,
Uc = 20meV) compared to the minivalley regime (L= 130 nm, Uc = 20meV) exemplified for a small gap (left, Δ0 = 80meV), and a large gap (right,
Δ0 = 120meV) in valley K�. Dot wave functions confined in the center of the valley are sensitive to the inverted part of the bilayer graphene band structure
and hence to the region of negativeM. Wave functions residing in the minivalleys pick up close to the maximal possible value ofM near the band edges.
The pink symbols relate to the symbols in Figure 2.
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depends on the distribution of the dot wave function in momen-
tum space. The valley g-factor of the confined states in the mini-
valley regime is closest to the maximal value achievable from the
band structure’s orbital magnetic moment.

The above discussion demonstrates how one may leverage the
different dot parameters to tune the confined dot wave function,
and hence the state orbital multiplicity and their magnetic field
coupling via valley g-factor.

3.2. States in Elliptical Dots

One additional way to tune the wave function distribution and its
symmetry is to alter the shape of the confinement potential
compared to a circular quantum dot. Herein, we study elliptical
deformations since elliptical dot shapes are ubiquitous in
experimental studies and representative of breaking the rota-
tional symmetry along the two crystallographic directions of
bilayer graphene.

Figure 4 exemplifies how the confined states and their valley
g-factors evolve with the ellipticity of the dot for two characteristic
parameter choices for the valley center regime and the minivalley
regime, respectively. Overall, we observe an increase in the valley g-
factor when the dot is deformed into an ellipse. This increase
occurs as the dot wave function is pushed either into one of the
minivalleys when the dot is deformed along the x-axis or into
two minivalleys for deformations along the y-axis. In addition,
breaking the threefold rotational symmetry between the threemini-
valleys also affects the orbital degeneracy of the ground state: states
peaked in one minivalley are orbitally nondegenerate, while states
peaked in two minivalleys exhibit a twofold orbital degeneracy.

We observe that the states in wide dots and for large gaps are
most easily deformed, while deep confinement makes deforming
the states more difficult. As a consequence, the states in the orig-
inal minivalley regime, Figure 4b, are most susceptible to being
deformed in momentum space. The states in the original valley
center regime, Figure 4a, are more stable against deformations.
The relative deformation-induced increase of the valley g-factor,
however, is larger in the valley center regime as compared to the
original minivalley regime since states with little or no support in

the center of the valley do not suffer from cancellations due to the
negative regions of the orbital magnetic moment,M, cf. Figure 3.

The analysis above shows that realizing strongly elliptical
bilayer graphene quantum dots represents one possible route
to prepare confined states with large valley splittings at moderate
gaps and dot sizes compared to the large dots and gaps required
for the full minivalley regime in circular dots, cf. Figure 2.

4. Conclusion

Overall, we have presented the confined bilayer graphene dot
states, their spectra, and valley g-factors over an extensive range
of gate-tunable parameters, such as the confinement, width, gap,
shape, and the bilayer graphene gap. We find that the ground
state can range from being nondegenerate (and peaked in the
center of the valley in momentum space) to threefold degenerate
(and sitting in the minivalleys) in circular dots and peaked in one
or two minivalleys (with corresponding single or twofold degen-
eracy) in elliptically deformed dots. Alongside the distribution of
the confined dot wave functions, the corresponding topological
valley g-factor changes in the different regimes as a function of
the dot parameters and shape. The largest valley g-factors are
observed when the wave function is peaked in the minivalleys,
both in circular and elliptical dots. We note that we expect many
of our observations, as long as they are based on wave function
distributions, to generalize to higher dot levels with more com-
plex wave function shapes. However, for higher confined dot
states with nonzero angular momentum quantum numbers,
the intrinsic angular magnetic moment needs to be considered
in conjunction with the topological orbital magnetic moment
when studying the coupling of the states to a magnetic field
and the corresponding valley g-factors.[36]

Our results demonstrate how the dot states and their properties
can be manipulated by virtue of gate-tunable parameters. Such an
understanding is required for tailoring specific, confined states,
e.g., with the desired degeneracy and by quantum dot design.

Our findings of valley g-factor manipulation by quantum dot
size may be exploited in multidot systems as the one shown in
Figure 5a, where different dot sizes and shapes imply different

Figure 4. Top: dependence of the lowest orbital confined state’s valley g-factor, gv, on the elliptic deformation of the confinement potential. Here, the
deformation parameters a2 and b2 quantify the elongation along the x- and y-axis, respectively, as prescribed by Equation (2). The parameters are chosen
such that states of the circular dot are a) in the valley center regime (L= 60 nm, Δ0 = 80meV, Uc = 5meV), and b) in the minivalley regime (L=80 nm,
Δ0 = 150meV, Uc = 20meV), respectively. The empty symbols relate to the symbols shown in Figure 2. Bottom: examples for the corresponding dot
spectra and the lowest orbital confined state. All results for the K� valley.
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valley g-factors for the states in the left and the right dot. Hence,
valley g-factor modulation by quantum dot design allows for
controllably induced dot-dependent state splittings in a constant
perpendicular magnetic field, Figure 5b. Similar to setups of
semiconductor quantum dots with slanted magnetic fields,[49–51]

device designs like the one in Figure 5 may enable, e.g., selective
blocking and transport of specific states and single-site valley
control without the need of an inhomogeneous B-field. We,
hence, demonstrate how the simultaneous tuning of material
properties and confined quantum states offers immense control
over bilayer graphene quantum dots and holds great potential,
e.g., for future valley-logic and valleytronics applications.

Appendix: Data for Extended Parameters of the
Gap Variation

In Figure A1, we demonstrate the stability of our results with
respect to variations of the parameter Δmod in the gap profile
in Equation (2). This parameter describes the modulation of
the bilayer graphene gap underneath the gates and can differ
slightly between experiments, depending on the exact device
architecture and screening. While varying Δmod leads to shifts
of the exact quantitative values of the boundary between the

minivalley and valley center regime, see Figure A1, there are
no qualitative changes. We expect our results and conclusions
to hold as long as the potential is smooth and of the same
symmetry.
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Figure 5. a) Double-dot setup of two electrostatically confined quantum dots defined by two split gates and two finger gates where the two dots have very
different size and geometry. b) The different size and shape of the left and right quantum dots imply different valley g-factors and, hence, different valley
splittings in a perpendicular magnetic field. Whether the g-factor decreases (for small gaps) or increases (for significant gaps) with dot size (cf. Figure 2)
may be detected in finite bias spectroscopy from the relative sign and ratio of the finger gate voltages on the left and right dot, VFGL and VFGR, needed to re-
establish tunnel transport when a weak magnetic field is applied.

Figure A1. The lowest orbital dot states’ valley g-factor over a range of the system parameters L and Δ0 for different values of the gap profile parameter
Δmod. Here, Uc ¼ 5 meV for all three cases.
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