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ABSTRACT

An interval-valued fuzzy graph (IVFG) emanates from a fuzzy graph (FG) where the membership is given in interval 
form. This framework give the user more flexibility in dealing with fuzzy information. In this paper, the signless 
Laplacian matrix of an interval-valued fuzzy-directed graph is defined. The eigenvalue, spectrum, spectral radius, 
and energy of an interval-valued fuzzy-directed graph associated with the signless Laplacian matrix are reported. 
In addition, the lower bound of the signless Laplacian energy in this graph is highlighted. Finally, these tools are 
employed to build an algorithm that helps in solving some real live problems.
Keywords: Energy of a graph; interval-valued fuzzy graph; signless Laplacian matrix
 

ABSTRAK

Graf kabur bernilai-selang (GKBS) terpancar daripada graf kabur (GK) dengan keahliannya diberi dalam bentuk 
selang. Rangka kerja ini memberikan pengguna lebih keluwesan dalam menangani maklumat kabur. Dalam makalah 
ini, matriks Laplacian tanpa tanda bagi graf berarah kabur bernilai-selang ditakrifkan. Nilai eigen, spektrum, jejari 
spektrum dan tenaga bagi graf berarah kabur bernilai-selang yang dikaitkan dengan matriks Laplacian tanpa tanda 
dilaporkan. Di samping itu, sempadan bawah tenaga tanpa tanda Laplacian dalam graf ini diserlahkan. Akhir sekali, 
alat ini digunakan untuk membina algoritma yang membantu menyelesaikan beberapa masalah dalam kehidupan 
sebenar.
Kata kunci: Graf kabur bernilai-selang; matriks Laplacean tanpa tanda; tenaga graf

INTRODUCTION

Zadeh (1965) provoked the concept of a fuzzy set 
(FS) as an extension of a crisp set to describe the 
belongingness of objects to certain sensations under 
uncertainty. Zadeh’s FS is characterized by one part 
called single truth membership, such that its value 
belongs to a closed interval [0, 1]. Zadeh again gave a 

new concept of an interval-valued fuzzy set (IVFS) to 
assign one interval truth membership for every object in 
a void set. This framework is more acceptable than FS 
because it allows the user more flexibility in organizing 
the data in the face of uncertainty. The IVFS has been 
widely studied by many researchers around the world 
and has been linked to many branches of mathematics, 
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such as algebra, topology, and numerical analysis (Al-
Sharqi, Ahmad & Al-Quran 2022a, 2022b, 2022c; Azam, 
Mamun & Nasrin 2013; Rasuli 2019). In addition, the 
graph theory concept was first introduced by Euler in 
1736. Then, this concept developed into the determination 
of the energy of the graph, which was first discussed by 
Gutman (1978). The study of a graph has contributed to 
several other fields. For example, graph modeling for 
chemical compounds (Trinajstic 1992) includes graph 
energy (Gutman 1978) by determining the energy of 
π-electrons. This graph energy concept is also useful 
for predicting the boiling points, vaporization heat, and 
critical temperatures (Hosamani et al. 2017). Besides, 
the ordering index for chemical molecule coding shows 
a correlation with boiling points (Wang & Ma 2016). 
Graphs also play remarkable roles in solving network 
problems (Loh, Salleh & Sarmin 2014; Razak & Expert 
2021).

The idea of fuzzy graphs was proposed by 
Rosenfeld as a generalization of Euler’s graph theory. 
The idea of fuzzy graph theory aroused the interest 
of many researchers and pushed them to make a lot 
of contributions; for example, Mordeson and Chang-
Shyh (1994) showed some operations on fuzzy graphs. 
The merging of these two concepts gave rise to a new 
idea of fuzzy graph energy by Narayanan and Mathew 
(2013). Wan et al. (2023) introduced and describe 
various methods of bipolar fuzzy graphs with their 
applications. Akram and Dudek (2011) investigated the 
cartesian product, composition, and union operations 
on interval fuzzy graphs with various properties. Talebi 
and Rashmanlou (2013) solved the decision-making 
application based on fuzzy graph structures. Qiang et al. 
(2022) proposed homomorphisms and isomorphisms 
of interval-valued fuzzy (IVF) graphs and focused 
on industry management. Patra et al. (2021) also 
demonstrated how an IVF graph can be used to describe 
an ecological system in other fields. 

Furthermore, associating matrices with several 
types of graphs has become a very popular area of 
research at present. The discussion can be found in 
Gheisari and Ahmad (2012), Romdhini and Nawawi 
(2023, 2022a, 2022b), Romdhini et al. (2023, 2022. 
Following the trend of contributions mentioned above 
on fuzzy graph environment, this paper focuses on 
representing the signless Laplacian matrix for the IVF 
graph. Taking the summation of the absolute eigenvalues 
computed from the corresponding matrices leads us to 
derive the formula of the signless Laplacian energy of 
the IVF graph. 

This paper is organized as follows. We set forth 
several existing definitions and introduce some basic 
concepts in the next section 2.  Subsequently, we provide 
the spectra of the IVF graph accompanied by examples 
of computation. At the end, we summarize the findings 
of this study in the last section. 

PRELIMINARIES

In this section, we include some basic concepts of IVF 
graph. Now let  𝕀𝕀  = {a:0 ≤ a ≤1} be the set of all real 
numbers between 0 and 1 and D [0,1] be the set of all 
subsets of the interval [0,1] or simply D and is defined 
as D [0,1] ={[a,b]: a ≤ b; a, b ∈  𝕀𝕀 }. The addition and 
multiplication operations of two elements of  are as 
follows:
Definition 2.1. (Patra et al. 2021) Let α = 

𝛼𝛼 + 𝛽𝛽 = [𝛼𝛼, 𝛼𝛼] + [𝛽𝛽, 𝛽𝛽] = [max (𝛼𝛼, 𝛽𝛽) , max (𝛼𝛼, 𝛽𝛽)], 

and 𝛼𝛼 ∙ 𝛽𝛽 = [𝛼𝛼, 𝛼𝛼] ∙ [𝛽𝛽, 𝛽𝛽] = [min (𝛼𝛼, 𝛽𝛽) , min(𝛼𝛼, 𝛽𝛽)]. 

 

and 
β = 

𝛼𝛼 + 𝛽𝛽 = [𝛼𝛼, 𝛼𝛼] + [𝛽𝛽, 𝛽𝛽] = [max (𝛼𝛼, 𝛽𝛽) , max (𝛼𝛼, 𝛽𝛽)], 

and 𝛼𝛼 ∙ 𝛽𝛽 = [𝛼𝛼, 𝛼𝛼] ∙ [𝛽𝛽, 𝛽𝛽] = [min (𝛼𝛼, 𝛽𝛽) , min(𝛼𝛼, 𝛽𝛽)]. 

 

be two intervals in . The addition (+) and 
multiplication (∙) between α dan β are defined below:

Some properties of the IVF set are stated as follows: 

1. The zero element of an IVF set is denoted by θ = [0,0].
2. The unit element of an IVF set is denoted by ε = [1,1].
3. The equality α = β, where α = 

𝛼𝛼 + 𝛽𝛽 = [𝛼𝛼, 𝛼𝛼] + [𝛽𝛽, 𝛽𝛽] = [max (𝛼𝛼, 𝛽𝛽) , max (𝛼𝛼, 𝛽𝛽)], 

and 𝛼𝛼 ∙ 𝛽𝛽 = [𝛼𝛼, 𝛼𝛼] ∙ [𝛽𝛽, 𝛽𝛽] = [min (𝛼𝛼, 𝛽𝛽) , min(𝛼𝛼, 𝛽𝛽)]. 

 

and β = 

𝛼𝛼 + 𝛽𝛽 = [𝛼𝛼, 𝛼𝛼] + [𝛽𝛽, 𝛽𝛽] = [max (𝛼𝛼, 𝛽𝛽) , max (𝛼𝛼, 𝛽𝛽)], 

and 𝛼𝛼 ∙ 𝛽𝛽 = [𝛼𝛼, 𝛼𝛼] ∙ [𝛽𝛽, 𝛽𝛽] = [min (𝛼𝛼, 𝛽𝛽) , min(𝛼𝛼, 𝛽𝛽)]. 

 

if 
and only if only if 𝛼𝛼 = 𝛽𝛽 and 𝛼𝛼 = 𝛽𝛽. 

only if 𝛼𝛼 ≤ 𝛽𝛽 and 𝛼𝛼 ≤ 𝛽𝛽. 

only if 𝛼𝛼 ≠ 𝛽𝛽 and 𝛼𝛼 < 𝛼𝛼𝛽𝛽 < 𝛽𝛽. 

 

4. The inequality α ≤ β, where α = 

𝛼𝛼 + 𝛽𝛽 = [𝛼𝛼, 𝛼𝛼] + [𝛽𝛽, 𝛽𝛽] = [max (𝛼𝛼, 𝛽𝛽) , max (𝛼𝛼, 𝛽𝛽)], 

and 𝛼𝛼 ∙ 𝛽𝛽 = [𝛼𝛼, 𝛼𝛼] ∙ [𝛽𝛽, 𝛽𝛽] = [min (𝛼𝛼, 𝛽𝛽) , min(𝛼𝛼, 𝛽𝛽)]. 

 

and β = 

𝛼𝛼 + 𝛽𝛽 = [𝛼𝛼, 𝛼𝛼] + [𝛽𝛽, 𝛽𝛽] = [max (𝛼𝛼, 𝛽𝛽) , max (𝛼𝛼, 𝛽𝛽)], 

and 𝛼𝛼 ∙ 𝛽𝛽 = [𝛼𝛼, 𝛼𝛼] ∙ [𝛽𝛽, 𝛽𝛽] = [min (𝛼𝛼, 𝛽𝛽) , min(𝛼𝛼, 𝛽𝛽)]. 

 

 if 
and only if 

only if 𝛼𝛼 = 𝛽𝛽 and 𝛼𝛼 = 𝛽𝛽. 

only if 𝛼𝛼 ≤ 𝛽𝛽 and 𝛼𝛼 ≤ 𝛽𝛽. 

only if 𝛼𝛼 ≠ 𝛽𝛽 and 𝛼𝛼 < 𝛼𝛼𝛽𝛽 < 𝛽𝛽. 

 

5. The inequality α < β, where α = 

𝛼𝛼 + 𝛽𝛽 = [𝛼𝛼, 𝛼𝛼] + [𝛽𝛽, 𝛽𝛽] = [max (𝛼𝛼, 𝛽𝛽) , max (𝛼𝛼, 𝛽𝛽)], 

and 𝛼𝛼 ∙ 𝛽𝛽 = [𝛼𝛼, 𝛼𝛼] ∙ [𝛽𝛽, 𝛽𝛽] = [min (𝛼𝛼, 𝛽𝛽) , min(𝛼𝛼, 𝛽𝛽)]. 

 

and β = 

𝛼𝛼 + 𝛽𝛽 = [𝛼𝛼, 𝛼𝛼] + [𝛽𝛽, 𝛽𝛽] = [max (𝛼𝛼, 𝛽𝛽) , max (𝛼𝛼, 𝛽𝛽)], 

and 𝛼𝛼 ∙ 𝛽𝛽 = [𝛼𝛼, 𝛼𝛼] ∙ [𝛽𝛽, 𝛽𝛽] = [min (𝛼𝛼, 𝛽𝛽) , min(𝛼𝛼, 𝛽𝛽)]. 

 

 if 
and only if 

only if 𝛼𝛼 = 𝛽𝛽 and 𝛼𝛼 = 𝛽𝛽. 

only if 𝛼𝛼 ≤ 𝛽𝛽 and 𝛼𝛼 ≤ 𝛽𝛽. 

only if 𝛼𝛼 ≠ 𝛽𝛽 and 𝛼𝛼 < 𝛼𝛼𝛽𝛽 < 𝛽𝛽. 

 

 

Definition 2.2. (Ju & Wang 2009) Let G = (V, E) be a 
crisp graph with E ⊆ V × V. An IVF of a graph G is a 
pair Γ = (P, Q), where P = [𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)} and 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)}. 

 

, 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)} and 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)}. 

 

] ∈ V is an IVF set 
with condition 0 ≤ 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)} and 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)}. 

 

 (x) ≤ 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)} and 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)}. 

 

 (x) ≤ 1 for all x ∈ V and 
Q = [𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)} and 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)}. 

 

, 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)} and 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)}. 

 

] ∈ E is an IVF relation with conditions for 
all x, y ∈ E:

Note that P represents an IVF vertex set of V, and Q is 
an IVF edge set of E. We consider Γ is a simple graph 
without a loop and multiple edges.

𝛼𝛼 + 𝛽𝛽 = [𝛼𝛼, 𝛼𝛼] + [𝛽𝛽, 𝛽𝛽] = [max (𝛼𝛼, 𝛽𝛽) , max (𝛼𝛼, 𝛽𝛽)], 

and 𝛼𝛼 ∙ 𝛽𝛽 = [𝛼𝛼, 𝛼𝛼] ∙ [𝛽𝛽, 𝛽𝛽] = [min (𝛼𝛼, 𝛽𝛽) , min(𝛼𝛼, 𝛽𝛽)]. 

 

𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)} and 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)}. 

 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)} and 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)}. 
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Definition 2.3. (Patra et al. 2021) Let �⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), 

=(V, �⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), 

) be a 
crisp directed graph with a directed edge �⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 

 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), 

⊆ V × V. 
An IVF of a directed graph G is a pair 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), =(P, 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ), where 

P=[ 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)} and 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)}. 

 

, 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)} and 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)}. 

 

 ]∈ V is an IVF set with condition 0 ≤ 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)} and 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)}. 

 

(x) 
≤ 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)} and 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)}. 

 

(x) ≤ 1 for all x ∈ V and 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), =[𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)} and 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)}. 

 

, 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)} and 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)}. 

 

 ]∈ �⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), 

is an 
IVF relation with conditions for all x, y ∈ �⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 

 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), 

: 

Note that P represents an IVF vertex set of V, and Q is 
an IVF edge set of E. We consider Γ is a simple graph 
without a loop and multiple edges.

Definition 2.4. (Patra et al. 2021) Let 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  = (P, 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) be a 

weighted IVF directed graph with with |P| = n . The 
weight is a function ω: P × P →  D[0,1] with ωij∈ 
D[0,1] be the weight between vertex vi and vj in P. 
Then, the adjacency matrix of a directed graph 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  is a 

square matrix of order n, denoted by  A = [aij ] whose 
(i, j) - entries are

Definition 2.5. Let 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), = (P, 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), )be a weighted IVF directed 

graph and A is an adjacency matrix. The diagonal 
matrix D =[dij ] whose (i,j) - entries are 

where dii is the degree of vi, defined as dii = ∑ωij , for ωij 
are entries of A and vi vj∈

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), .

Now we introduce the definition of the signless Laplacian 
matrix for a weighted IVF directed graph as given in 
Definition 2.6:

Definition 2.6. Let  

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  = (P, 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) be a weighted IVF 

directed graph. The signless Laplacian matrix of a 
directed graph  

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  is a square matrix of order n, denoted 

by S = [sij ] = A + D,  whose entries are (i, j) - entries are 

Definition 2.7. Let  

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  = (P, 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), )be a weighted IVF directed 

graph. The trace of the signless Laplacian matrix S of a 
graph 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), , denoted by tr(S), is defined to be the sum of 

the main diagonal entries of S. 

We know S that  is a square matrix and so we can calculate 
the eigenvalues of S. This definition brings us to the 
energy of the graph concept. Now, we proceed to the 
eigenvalue definition for S.

Definition 2.8. Let S be an n × n signless Laplacian 
matrix of IVF directed graph 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), , and a scalar λ = = [𝜆𝜆, 𝜆𝜆]  is 

an eigenvalue of S if there is a non-zero vector column 
(or row) Y such that AY = λY (or YA = λY), where Y is 
known as eigenvector with respect to λ.

Definition 2.9. Let S be an n × n signless Laplacian 
matrix of IVF directed graph 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), . The spectrum of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  

associated with S is defined as the list of eigenvalues of 
S and denoted by σS (

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) = (λ1, λ2, …, λn).

Definition 2.10. Let  

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  = (P, 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) be a weighted IVF 

graph S = [sij] and  be the signless Laplacian matrix 
of IVF graph 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), , where λ1, λ2, …, λn ∈D [0,1] are the 

eigenvalues of S. Then, the signless Laplacian energy 
of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  is denoted by  ES (

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) and defined as

Definition 2.11. Let 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  = (P, 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) be a weighted IVF graph 

and S = [sij] be an n × n signless Laplacian matrix of   

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), 

, where λ1, λ2, …, λn ∈D [0,1] are the eigenvalues of 
S. Then, the signless Laplacian spectral radius of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  is 

denoted by ρS(

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) and defined as ρS(

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) = sup{λ | λ∈σS 

(

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), )} = [sup{

Definition 2.8. Let 𝑆𝑆 be an 𝑛𝑛 × 𝑛𝑛 signless Laplacian matrix of IVF directed graph �⃗�𝛤, and a 

scalar 𝜆𝜆 = [𝜆𝜆, 𝜆𝜆] is an eigenvalue of 𝑆𝑆 if there is a non-zero vector column (or row) 𝑌𝑌 such that 

𝐴𝐴𝑌𝑌 = 𝜆𝜆𝑌𝑌 (or 𝑌𝑌𝐴𝐴 = 𝜆𝜆𝑌𝑌), where 𝑌𝑌 is known as eigenvector with respect to 𝜆𝜆. 

 

Definition 2.9. Let 𝑆𝑆 be an 𝑛𝑛 × 𝑛𝑛 signless Laplacian matrix of IVF directed graph �⃗�𝛤. The 

spectrum of �⃗�𝛤 associated with 𝑆𝑆 is defined as the list of eigenvalues of 𝑆𝑆 and denoted by 

𝜎𝜎𝑆𝑆(�⃗�𝛤) = (𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛). 

 

Definition 2.10. Let �⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄) be a weighted IVF graph and 𝑆𝑆 = [𝑠𝑠𝑖𝑖𝑖𝑖] be the signless 

Laplacian matrix of IVF graph �⃗�𝛤, where 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛 ∈ 𝐷𝐷[0,1] are the eigenvalues of 𝑆𝑆. Then, 

the signless Laplacian energy of �⃗�𝛤 is denoted by 𝐸𝐸𝑆𝑆(�⃗�𝛤) and defined as 

𝐸𝐸𝑆𝑆(�⃗�𝛤) = ∑ [𝜆𝜆𝑖𝑖, 𝜆𝜆𝑖𝑖]𝑛𝑛
𝑖𝑖=1 = [𝜆𝜆1 + 𝜆𝜆2 + ⋯ + 𝜆𝜆𝑛𝑛, 𝜆𝜆1 + 𝜆𝜆2 + ⋯ + 𝜆𝜆𝑛𝑛]. 

 

, 

Definition 2.8. Let 𝑆𝑆 be an 𝑛𝑛 × 𝑛𝑛 signless Laplacian matrix of IVF directed graph �⃗�𝛤, and a 

scalar 𝜆𝜆 = [𝜆𝜆, 𝜆𝜆] is an eigenvalue of 𝑆𝑆 if there is a non-zero vector column (or row) 𝑌𝑌 such that 

𝐴𝐴𝑌𝑌 = 𝜆𝜆𝑌𝑌 (or 𝑌𝑌𝐴𝐴 = 𝜆𝜆𝑌𝑌), where 𝑌𝑌 is known as eigenvector with respect to 𝜆𝜆. 

 

Definition 2.9. Let 𝑆𝑆 be an 𝑛𝑛 × 𝑛𝑛 signless Laplacian matrix of IVF directed graph �⃗�𝛤. The 

spectrum of �⃗�𝛤 associated with 𝑆𝑆 is defined as the list of eigenvalues of 𝑆𝑆 and denoted by 

𝜎𝜎𝑆𝑆(�⃗�𝛤) = (𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛). 

 

Definition 2.10. Let �⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄) be a weighted IVF graph and 𝑆𝑆 = [𝑠𝑠𝑖𝑖𝑖𝑖] be the signless 

Laplacian matrix of IVF graph �⃗�𝛤, where 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛 ∈ 𝐷𝐷[0,1] are the eigenvalues of 𝑆𝑆. Then, 

the signless Laplacian energy of �⃗�𝛤 is denoted by 𝐸𝐸𝑆𝑆(�⃗�𝛤) and defined as 

𝐸𝐸𝑆𝑆(�⃗�𝛤) = ∑ [𝜆𝜆𝑖𝑖, 𝜆𝜆𝑖𝑖]𝑛𝑛
𝑖𝑖=1 = [𝜆𝜆1 + 𝜆𝜆2 + ⋯ + 𝜆𝜆𝑛𝑛, 𝜆𝜆1 + 𝜆𝜆2 + ⋯ + 𝜆𝜆𝑛𝑛]. 

 

, ...,

Definition 2.8. Let 𝑆𝑆 be an 𝑛𝑛 × 𝑛𝑛 signless Laplacian matrix of IVF directed graph �⃗�𝛤, and a 

scalar 𝜆𝜆 = [𝜆𝜆, 𝜆𝜆] is an eigenvalue of 𝑆𝑆 if there is a non-zero vector column (or row) 𝑌𝑌 such that 

𝐴𝐴𝑌𝑌 = 𝜆𝜆𝑌𝑌 (or 𝑌𝑌𝐴𝐴 = 𝜆𝜆𝑌𝑌), where 𝑌𝑌 is known as eigenvector with respect to 𝜆𝜆. 

 

Definition 2.9. Let 𝑆𝑆 be an 𝑛𝑛 × 𝑛𝑛 signless Laplacian matrix of IVF directed graph �⃗�𝛤. The 

spectrum of �⃗�𝛤 associated with 𝑆𝑆 is defined as the list of eigenvalues of 𝑆𝑆 and denoted by 

𝜎𝜎𝑆𝑆(�⃗�𝛤) = (𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛). 

 

Definition 2.10. Let �⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄) be a weighted IVF graph and 𝑆𝑆 = [𝑠𝑠𝑖𝑖𝑖𝑖] be the signless 

Laplacian matrix of IVF graph �⃗�𝛤, where 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛 ∈ 𝐷𝐷[0,1] are the eigenvalues of 𝑆𝑆. Then, 

the signless Laplacian energy of �⃗�𝛤 is denoted by 𝐸𝐸𝑆𝑆(�⃗�𝛤) and defined as 

𝐸𝐸𝑆𝑆(�⃗�𝛤) = ∑ [𝜆𝜆𝑖𝑖, 𝜆𝜆𝑖𝑖]𝑛𝑛
𝑖𝑖=1 = [𝜆𝜆1 + 𝜆𝜆2 + ⋯ + 𝜆𝜆𝑛𝑛, 𝜆𝜆1 + 𝜆𝜆2 + ⋯ + 𝜆𝜆𝑛𝑛]. 

 

}, sup{

Definition 2.8. Let 𝑆𝑆 be an 𝑛𝑛 × 𝑛𝑛 signless Laplacian matrix of IVF directed graph �⃗�𝛤, and a 

scalar 𝜆𝜆 = [𝜆𝜆, 𝜆𝜆] is an eigenvalue of 𝑆𝑆 if there is a non-zero vector column (or row) 𝑌𝑌 such that 

𝐴𝐴𝑌𝑌 = 𝜆𝜆𝑌𝑌 (or 𝑌𝑌𝐴𝐴 = 𝜆𝜆𝑌𝑌), where 𝑌𝑌 is known as eigenvector with respect to 𝜆𝜆. 

 

Definition 2.9. Let 𝑆𝑆 be an 𝑛𝑛 × 𝑛𝑛 signless Laplacian matrix of IVF directed graph �⃗�𝛤. The 

spectrum of �⃗�𝛤 associated with 𝑆𝑆 is defined as the list of eigenvalues of 𝑆𝑆 and denoted by 

𝜎𝜎𝑆𝑆(�⃗�𝛤) = (𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛). 

 

Definition 2.10. Let �⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄) be a weighted IVF graph and 𝑆𝑆 = [𝑠𝑠𝑖𝑖𝑖𝑖] be the signless 

Laplacian matrix of IVF graph �⃗�𝛤, where 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛 ∈ 𝐷𝐷[0,1] are the eigenvalues of 𝑆𝑆. Then, 

the signless Laplacian energy of �⃗�𝛤 is denoted by 𝐸𝐸𝑆𝑆(�⃗�𝛤) and defined as 

𝐸𝐸𝑆𝑆(�⃗�𝛤) = ∑ [𝜆𝜆𝑖𝑖, 𝜆𝜆𝑖𝑖]𝑛𝑛
𝑖𝑖=1 = [𝜆𝜆1 + 𝜆𝜆2 + ⋯ + 𝜆𝜆𝑛𝑛, 𝜆𝜆1 + 𝜆𝜆2 + ⋯ + 𝜆𝜆𝑛𝑛]. 

 

, 

Definition 2.8. Let 𝑆𝑆 be an 𝑛𝑛 × 𝑛𝑛 signless Laplacian matrix of IVF directed graph �⃗�𝛤, and a 

scalar 𝜆𝜆 = [𝜆𝜆, 𝜆𝜆] is an eigenvalue of 𝑆𝑆 if there is a non-zero vector column (or row) 𝑌𝑌 such that 

𝐴𝐴𝑌𝑌 = 𝜆𝜆𝑌𝑌 (or 𝑌𝑌𝐴𝐴 = 𝜆𝜆𝑌𝑌), where 𝑌𝑌 is known as eigenvector with respect to 𝜆𝜆. 

 

Definition 2.9. Let 𝑆𝑆 be an 𝑛𝑛 × 𝑛𝑛 signless Laplacian matrix of IVF directed graph �⃗�𝛤. The 

spectrum of �⃗�𝛤 associated with 𝑆𝑆 is defined as the list of eigenvalues of 𝑆𝑆 and denoted by 

𝜎𝜎𝑆𝑆(�⃗�𝛤) = (𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛). 

 

Definition 2.10. Let �⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄) be a weighted IVF graph and 𝑆𝑆 = [𝑠𝑠𝑖𝑖𝑖𝑖] be the signless 

Laplacian matrix of IVF graph �⃗�𝛤, where 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛 ∈ 𝐷𝐷[0,1] are the eigenvalues of 𝑆𝑆. Then, 

the signless Laplacian energy of �⃗�𝛤 is denoted by 𝐸𝐸𝑆𝑆(�⃗�𝛤) and defined as 

𝐸𝐸𝑆𝑆(�⃗�𝛤) = ∑ [𝜆𝜆𝑖𝑖, 𝜆𝜆𝑖𝑖]𝑛𝑛
𝑖𝑖=1 = [𝜆𝜆1 + 𝜆𝜆2 + ⋯ + 𝜆𝜆𝑛𝑛, 𝜆𝜆1 + 𝜆𝜆2 + ⋯ + 𝜆𝜆𝑛𝑛]. 

 

, ...,

Definition 2.8. Let 𝑆𝑆 be an 𝑛𝑛 × 𝑛𝑛 signless Laplacian matrix of IVF directed graph �⃗�𝛤, and a 

scalar 𝜆𝜆 = [𝜆𝜆, 𝜆𝜆] is an eigenvalue of 𝑆𝑆 if there is a non-zero vector column (or row) 𝑌𝑌 such that 

𝐴𝐴𝑌𝑌 = 𝜆𝜆𝑌𝑌 (or 𝑌𝑌𝐴𝐴 = 𝜆𝜆𝑌𝑌), where 𝑌𝑌 is known as eigenvector with respect to 𝜆𝜆. 

 

Definition 2.9. Let 𝑆𝑆 be an 𝑛𝑛 × 𝑛𝑛 signless Laplacian matrix of IVF directed graph �⃗�𝛤. The 

spectrum of �⃗�𝛤 associated with 𝑆𝑆 is defined as the list of eigenvalues of 𝑆𝑆 and denoted by 

𝜎𝜎𝑆𝑆(�⃗�𝛤) = (𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛). 

 

Definition 2.10. Let �⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄) be a weighted IVF graph and 𝑆𝑆 = [𝑠𝑠𝑖𝑖𝑖𝑖] be the signless 

Laplacian matrix of IVF graph �⃗�𝛤, where 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛 ∈ 𝐷𝐷[0,1] are the eigenvalues of 𝑆𝑆. Then, 

the signless Laplacian energy of �⃗�𝛤 is denoted by 𝐸𝐸𝑆𝑆(�⃗�𝛤) and defined as 

𝐸𝐸𝑆𝑆(�⃗�𝛤) = ∑ [𝜆𝜆𝑖𝑖, 𝜆𝜆𝑖𝑖]𝑛𝑛
𝑖𝑖=1 = [𝜆𝜆1 + 𝜆𝜆2 + ⋯ + 𝜆𝜆𝑛𝑛, 𝜆𝜆1 + 𝜆𝜆2 + ⋯ + 𝜆𝜆𝑛𝑛]. 

 

}] 

MAIN RESULTS

This section will present several results on the IVF 
energy of the IVF directed graph using corresponding 
the signless Laplacian matrix. We begin with two 
results that provide the trace information of the signless 
Laplacian matrix.

TTheorem 3.1. Let A = [aij ] be an n × n adjacency matrix 
of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), . Let S = [sij] be the signless Laplacian matrix of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), , S = D+A where D = diag (d11, d22 , ..., dnn). Then tr(S) 
= tr(D).
Proof. 

𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥⃗⃗⃗⃗ ) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)}, and 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥⃗⃗⃗⃗ ) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)}. 

 

𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥⃗⃗⃗⃗ ) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)}, and 𝜇𝜇𝑄𝑄(𝑥𝑥𝑥𝑥⃗⃗⃗⃗ ) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜇𝜇𝑃𝑃(𝑥𝑥)}. 

 

Definition 2.4. (Patra et al. 2021) Let �⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  be a weighted IVF directed graph with |𝑃𝑃| =

𝑛𝑛. The weight is a function 𝜔𝜔: 𝑃𝑃 × 𝑃𝑃 → 𝐷𝐷[0,1] with 𝜔𝜔𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷[0,1] be the weight between vertex 

𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑖𝑖  in 𝑃𝑃. Then, the adjacency matrix of a directed graph �⃗�𝛤 is a square matrix of order 𝑛𝑛, 

denoted by 𝐴𝐴 = [𝑎𝑎𝑖𝑖𝑖𝑖] whose (𝑖𝑖, 𝑗𝑗) −entries are (aij) 

𝑎𝑎𝑖𝑖𝑖𝑖 = {𝜔𝜔𝑖𝑖𝑖𝑖, if 𝑣𝑣𝑖𝑖 ≠ 𝑣𝑣𝑖𝑖 and they are adjacent
𝜃𝜃, otherwise.  

 Definition 2.5. Let �⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄)  be a weighted IVF directed graph and 𝐴𝐴 is an adjacency matrix. 

The diagonal matrix 𝐷𝐷 = [𝑑𝑑𝑖𝑖𝑖𝑖] whose (𝑖𝑖, 𝑗𝑗) −entries are (dij) 

𝑑𝑑𝑖𝑖𝑖𝑖 = {
𝑑𝑑𝑖𝑖𝑖𝑖, if 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖

𝜃𝜃, if 𝑣𝑣𝑖𝑖 ≠ 𝑣𝑣𝑖𝑖, 

where 𝑑𝑑𝑖𝑖𝑖𝑖 is the degree of 𝑣𝑣𝑖𝑖, defined as 𝑑𝑑𝑖𝑖𝑖𝑖 = ∑ 𝜔𝜔𝑖𝑖𝑖𝑖, for 𝜔𝜔𝑖𝑖𝑖𝑖 are entries of 𝐴𝐴 and 𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖 ∈ �⃗⃗�𝑄. 

 

Definition 2.6. Let �⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄)  be a weighted IVF directed graph. The signless Laplacian 

matrix of a directed graph �⃗�𝛤 is a square matrix of order 𝑛𝑛, denoted by 𝑆𝑆 = [𝑠𝑠𝑖𝑖𝑖𝑖] = 𝐴𝐴 + 𝐷𝐷, 

whose (𝑖𝑖, 𝑗𝑗) −entries are (sij) 

𝑠𝑠𝑖𝑖𝑖𝑖 = {
𝜔𝜔𝑖𝑖𝑖𝑖, if 𝑣𝑣𝑖𝑖 ≠ 𝑣𝑣𝑖𝑖 and they are adjacent 
𝑑𝑑𝑖𝑖𝑖𝑖,          if 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖                                           
𝜃𝜃,             otherwise.                                        

 

 

Definition 2.7. Let �⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄) be a weighted IVF directed graph. The trace of the signless 

Laplacian matrix 𝑆𝑆 of a graph �⃗�𝛤, denoted by 𝑡𝑡𝑡𝑡(𝑆𝑆), is defined to be the sum of the main diagonal 

entries of 𝑆𝑆. 

 

 

Definition 2.8. Let 𝑆𝑆 be an 𝑛𝑛 × 𝑛𝑛 signless Laplacian matrix of IVF directed graph �⃗�𝛤, and a 

scalar 𝜆𝜆 = [𝜆𝜆, 𝜆𝜆] is an eigenvalue of 𝑆𝑆 if there is a non-zero vector column (or row) 𝑌𝑌 such that 

𝐴𝐴𝑌𝑌 = 𝜆𝜆𝑌𝑌 (or 𝑌𝑌𝐴𝐴 = 𝜆𝜆𝑌𝑌), where 𝑌𝑌 is known as eigenvector with respect to 𝜆𝜆. 

 

Definition 2.9. Let 𝑆𝑆 be an 𝑛𝑛 × 𝑛𝑛 signless Laplacian matrix of IVF directed graph �⃗�𝛤. The 

spectrum of �⃗�𝛤 associated with 𝑆𝑆 is defined as the list of eigenvalues of 𝑆𝑆 and denoted by 

𝜎𝜎𝑆𝑆(�⃗�𝛤) = (𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛). 

 

Definition 2.10. Let �⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄) be a weighted IVF graph and 𝑆𝑆 = [𝑠𝑠𝑖𝑖𝑖𝑖] be the signless 

Laplacian matrix of IVF graph �⃗�𝛤, where 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛 ∈ 𝐷𝐷[0,1] are the eigenvalues of 𝑆𝑆. Then, 

the signless Laplacian energy of �⃗�𝛤 is denoted by 𝐸𝐸𝑆𝑆(�⃗�𝛤) and defined as 

𝐸𝐸𝑆𝑆(�⃗�𝛤) = ∑ [𝜆𝜆𝑖𝑖, 𝜆𝜆𝑖𝑖]𝑛𝑛
𝑖𝑖=1 = [𝜆𝜆1 + 𝜆𝜆2 + ⋯ + 𝜆𝜆𝑛𝑛, 𝜆𝜆1 + 𝜆𝜆2 + ⋯ + 𝜆𝜆𝑛𝑛]. 

 

Definition 2.8. Let 𝑆𝑆 be an 𝑛𝑛 × 𝑛𝑛 signless Laplacian matrix of IVF directed graph �⃗�𝛤, and a 

scalar 𝜆𝜆 = [𝜆𝜆, 𝜆𝜆] is an eigenvalue of 𝑆𝑆 if there is a non-zero vector column (or row) 𝑌𝑌 such that 

𝐴𝐴𝑌𝑌 = 𝜆𝜆𝑌𝑌 (or 𝑌𝑌𝐴𝐴 = 𝜆𝜆𝑌𝑌), where 𝑌𝑌 is known as eigenvector with respect to 𝜆𝜆. 

 

Definition 2.9. Let 𝑆𝑆 be an 𝑛𝑛 × 𝑛𝑛 signless Laplacian matrix of IVF directed graph �⃗�𝛤. The 

spectrum of �⃗�𝛤 associated with 𝑆𝑆 is defined as the list of eigenvalues of 𝑆𝑆 and denoted by 

𝜎𝜎𝑆𝑆(�⃗�𝛤) = (𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛). 

 

Definition 2.10. Let �⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄) be a weighted IVF graph and 𝑆𝑆 = [𝑠𝑠𝑖𝑖𝑖𝑖] be the signless 

Laplacian matrix of IVF graph �⃗�𝛤, where 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛 ∈ 𝐷𝐷[0,1] are the eigenvalues of 𝑆𝑆. Then, 

the signless Laplacian energy of �⃗�𝛤 is denoted by 𝐸𝐸𝑆𝑆(�⃗�𝛤) and defined as 

𝐸𝐸𝑆𝑆(�⃗�𝛤) = ∑ [𝜆𝜆𝑖𝑖, 𝜆𝜆𝑖𝑖]𝑛𝑛
𝑖𝑖=1 = [𝜆𝜆1 + 𝜆𝜆2 + ⋯ + 𝜆𝜆𝑛𝑛, 𝜆𝜆1 + 𝜆𝜆2 + ⋯ + 𝜆𝜆𝑛𝑛]. 
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By Definition 2.4, the main diagonal entries of A are θ. 
Then for i = j, the entries of S are sii = dii, for all 1 ≤ i ≤ 
n, and so by Definition 2.7, tr(S) = tr(D). 

Theorem 3.2. Let A = [aij] be an n×n adjacency matrix 
of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  such that there exists a non-diagonal entry that is 

equal to ε. If S = [sij] be the signless Laplacian matrix 
of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), , S = D + A where D = diag (d11, d22, ..., dnn), then 

tr(S) = ε. Proof. 
Considering there is an element apq = ε, for 1 ≤ p, q ≤ 
n, then dpp = dqq = ε. This means D has ε element in the 
main diagonal entries, and by calculating the sum of dii, 
for all ≤ i ≤ n, we get tr(D) = ε. Hence, by Theorem 3.1, 
tr(S) = tr(D) = ε. 

Theorems 3.1 and 3.2 can be illustrated in Example 3.1 
as given below:

From the fact that S depends on A, we discuss several 
cases of A. When  has a zero column or a zero row, the 
discussion of the eigenvalue of S is provided in Theorem 
3.3.

Theorem 3.3. Let [aij] be an n × n adjacency matrix of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  

such that the entries of a column j (or row i) of A are aij 
= θ, for all 1 ≤ i ≤ n (or 1 ≤ j ≤ n), where θ = [0,0]. Let S 
be the signless Laplacian matrix of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), , S = D +  A where 

D = diag (d11,d2, ..., dnn). Then djj (or dii) is an eigenvalue 
of S associated with the eigenvector Y = [θ  θ ... ε ... 
θ)]T (or YT), where ε = [1,1] be the j-th (or i-th) entry of Y.
Proof. 

Suppose that Y = [y1   y2  ...  yn ]
T = [θ  θ  ...  ε  ...  θ]T, where 

the j-th entry is ε,

and S =                                          By Definition 2.6, we 
 

then obtain

Since yk = θ, for k ≠ j and 1 ≤ k ≤ n, then sik ∙ yk = θ. 
Meanwhile, for the k = j case, we have yj = ε and so sij∙ 
yj = sij. This implies that

(1)

From Equation (1) and Definition 2.8, we conclude 
that  djj is an eigenvalue of S. In the same manner, when 
A consists of a zero row and the proof is similar. 

Example 3.2. 

Therefore, [0.4,0.6] is an eigenvalue of S.

Example 3.1. Let 𝐴𝐴 = [
𝜃𝜃 [0.3,0.8] 𝜃𝜃
𝜃𝜃 𝜃𝜃 [0.4,0.7]

[0.2,0.5] 𝜀𝜀 𝜃𝜃
], 𝐷𝐷 = [

[0.3,0.8] 𝜃𝜃 𝜃𝜃
𝜃𝜃 𝜀𝜀 𝜃𝜃
𝜃𝜃 𝜃𝜃 [0.4,0.7]

], we 

then obtain 𝑆𝑆 = [
[0.3,0.8] [0.3,0.8] 𝜃𝜃

𝜃𝜃 𝜀𝜀 [0.4,0.7]
[0.2,0.5] 𝜀𝜀 [0.4,0.7]

]. Therefore, 𝑡𝑡𝑡𝑡(𝑆𝑆) = 𝜀𝜀 = 𝑡𝑡𝑡𝑡(𝐷𝐷). 

 

Example 3.1. Let 𝐴𝐴 = [
𝜃𝜃 [0.3,0.8] 𝜃𝜃
𝜃𝜃 𝜃𝜃 [0.4,0.7]

[0.2,0.5] 𝜀𝜀 𝜃𝜃
], 𝐷𝐷 = [

[0.3,0.8] 𝜃𝜃 𝜃𝜃
𝜃𝜃 𝜀𝜀 𝜃𝜃
𝜃𝜃 𝜃𝜃 [0.4,0.7]

], we 

then obtain 𝑆𝑆 = [
[0.3,0.8] [0.3,0.8] 𝜃𝜃

𝜃𝜃 𝜀𝜀 [0.4,0.7]
[0.2,0.5] 𝜀𝜀 [0.4,0.7]

]. Therefore, 𝑡𝑡𝑡𝑡(𝑆𝑆) = 𝜀𝜀 = 𝑡𝑡𝑡𝑡(𝐷𝐷). 

 

Example 3.1. Let 𝐴𝐴 = [
𝜃𝜃 [0.3,0.8] 𝜃𝜃
𝜃𝜃 𝜃𝜃 [0.4,0.7]

[0.2,0.5] 𝜀𝜀 𝜃𝜃
], 𝐷𝐷 = [

[0.3,0.8] 𝜃𝜃 𝜃𝜃
𝜃𝜃 𝜀𝜀 𝜃𝜃
𝜃𝜃 𝜃𝜃 [0.4,0.7]

], we 

then obtain 𝑆𝑆 = [
[0.3,0.8] [0.3,0.8] 𝜃𝜃

𝜃𝜃 𝜀𝜀 [0.4,0.7]
[0.2,0.5] 𝜀𝜀 [0.4,0.7]

]. Therefore, 𝑡𝑡𝑡𝑡(𝑆𝑆) = 𝜀𝜀 = 𝑡𝑡𝑡𝑡(𝐷𝐷). 

 

Example 3.1. Let 𝐴𝐴 = [
𝜃𝜃 [0.3,0.8] 𝜃𝜃
𝜃𝜃 𝜃𝜃 [0.4,0.7]

[0.2,0.5] 𝜀𝜀 𝜃𝜃
], 𝐷𝐷 = [

[0.3,0.8] 𝜃𝜃 𝜃𝜃
𝜃𝜃 𝜀𝜀 𝜃𝜃
𝜃𝜃 𝜃𝜃 [0.4,0.7]

], we 

then obtain 𝑆𝑆 = [
[0.3,0.8] [0.3,0.8] 𝜃𝜃

𝜃𝜃 𝜀𝜀 [0.4,0.7]
[0.2,0.5] 𝜀𝜀 [0.4,0.7]

]. Therefore, 𝑡𝑡𝑡𝑡(𝑆𝑆) = 𝜀𝜀 = 𝑡𝑡𝑡𝑡(𝐷𝐷). 

 

and 𝑆𝑆 = [
𝑠𝑠11 𝑠𝑠12 ⋯ 𝑠𝑠1𝑛𝑛
𝑠𝑠21 𝑠𝑠22 ⋯ 𝑠𝑠2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑠𝑠𝑛𝑛1 𝑠𝑠𝑛𝑛2 ⋯ 𝑠𝑠𝑛𝑛𝑛𝑛

]. By Definition 2.6, we then obtain 

𝑆𝑆 = 𝐴𝐴 + 𝐷𝐷 =

[
 
 
 
 
 𝜃𝜃 𝑎𝑎12 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝜃𝜃 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑗𝑗1 𝑎𝑎𝑗𝑗2 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎𝑗𝑗𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝜃𝜃 ⋯ 𝜃𝜃 ]
 
 
 
 
 

+ [
𝑑𝑑11 𝜃𝜃 ⋯ 𝜃𝜃
𝜃𝜃 𝑑𝑑22 ⋯ 𝜃𝜃
⋮ ⋮ ⋱ ⋮
𝜃𝜃 𝜃𝜃 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛
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[
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⋮ ⋮ ⋱ ⋮ ⋱ ⋮
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⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝜃𝜃 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛]
 
 
 
 
 

. 

 

and 𝑆𝑆 = [
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𝑠𝑠21 𝑠𝑠22 ⋯ 𝑠𝑠2𝑛𝑛
⋮ ⋮ ⋱ ⋮
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]. By Definition 2.6, we then obtain 
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[
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⋮ ⋮ ⋱ ⋮ ⋱ ⋮
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⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝜃𝜃 ⋯ 𝜃𝜃 ]
 
 
 
 
 

+ [
𝑑𝑑11 𝜃𝜃 ⋯ 𝜃𝜃
𝜃𝜃 𝑑𝑑22 ⋯ 𝜃𝜃
⋮ ⋮ ⋱ ⋮
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[
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⋮ ⋮ ⋱ ⋮ ⋱ ⋮
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⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝜃𝜃 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛]
 
 
 
 
 

. 

 

and 𝑆𝑆 = [
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⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝜃𝜃 ⋯ 𝜃𝜃 ]
 
 
 
 
 

+ [
𝑑𝑑11 𝜃𝜃 ⋯ 𝜃𝜃
𝜃𝜃 𝑑𝑑22 ⋯ 𝜃𝜃
⋮ ⋮ ⋱ ⋮
𝜃𝜃 𝜃𝜃 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛

] =

[
 
 
 
 
 𝑑𝑑11 𝑎𝑎12 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑑𝑑22 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑗𝑗1 𝑎𝑎𝑗𝑗2 ⋯ 𝑑𝑑𝑗𝑗𝑗𝑗 ⋯ 𝑎𝑎𝑗𝑗𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝜃𝜃 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛]
 
 
 
 
 

. 

 

𝑆𝑆𝑆𝑆 = [
∑ (𝑠𝑠1𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛

𝑘𝑘=1
∑ (𝑠𝑠2𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛

𝑘𝑘=1
⋮

∑ (𝑠𝑠𝑛𝑛𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛
𝑘𝑘=1

] =

[
 
 
 
 𝜃𝜃

⋮
𝑑𝑑𝑗𝑗𝑗𝑗
⋮
𝜃𝜃 ]

 
 
 
 
= 𝑑𝑑𝑗𝑗𝑗𝑗

[
 
 
 
 𝜃𝜃⋮
𝜀𝜀
⋮
𝜃𝜃]
 
 
 
 
= 𝑑𝑑𝑗𝑗𝑗𝑗𝑆𝑆.                            

Example 3.2. Let 𝐴𝐴 = [
𝜃𝜃 𝜃𝜃 [0.2,0.5]

[0.4,0.6] 𝜃𝜃 𝜃𝜃
𝜃𝜃 𝜃𝜃 𝜃𝜃

], 𝐷𝐷 = [
[0.4,0.6] 𝜃𝜃 𝜃𝜃

𝜃𝜃 [0.4,0.6] 𝜃𝜃
𝜃𝜃 𝜃𝜃 [0.2,0.5]

], we 

then obtain 𝑆𝑆 = [
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[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
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𝜃𝜃
𝜀𝜀
𝜃𝜃
], and so 
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] [
𝜃𝜃
𝜀𝜀
𝜃𝜃
] = [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
] = [0.4,0.6] [

𝜃𝜃
𝜀𝜀
𝜃𝜃
]. 
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Theorem 3.4. Let A = [aij ] be an n × n adjacency matrix 
of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  such that the entries of a column j (or row i) of A 

are aij = θ, for all 1 ≤ i ≤ n (or 1 ≤ j ≤ n), where θ = [0,0]. 
Let S be the signless Laplacian matrix of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), , S = D + A 

where D = diag (d11, d22, ..., dnn ) and djj ≥ dii (or d_ii ≥ 
djj). Then  σS (

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) = (d11, d22, ..., dnn ) is the spectrum of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), . 

Proof. 

We suppose that S = We suppose that 𝑆𝑆 = [
𝑠𝑠11 𝑠𝑠12 ⋯ 𝑠𝑠1𝑛𝑛
𝑠𝑠21 𝑠𝑠22 ⋯ 𝑠𝑠2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑠𝑠𝑛𝑛1 𝑠𝑠𝑛𝑛2 ⋯ 𝑠𝑠𝑛𝑛𝑛𝑛

], and 𝑋𝑋 = [
𝑥𝑥1
𝑥𝑥2
⋮

𝑥𝑥𝑛𝑛

] =

[
 
 
 
 𝜃𝜃⋮
𝜀𝜀
⋮
𝜃𝜃]
 
 
 
 
, where the 𝑗𝑗-th entry is 𝜀𝜀. We , and X = We suppose that 𝑆𝑆 = [

𝑠𝑠11 𝑠𝑠12 ⋯ 𝑠𝑠1𝑛𝑛
𝑠𝑠21 𝑠𝑠22 ⋯ 𝑠𝑠2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑠𝑠𝑛𝑛1 𝑠𝑠𝑛𝑛2 ⋯ 𝑠𝑠𝑛𝑛𝑛𝑛

], and 𝑋𝑋 = [
𝑥𝑥1
𝑥𝑥2
⋮

𝑥𝑥𝑛𝑛

] =

[
 
 
 
 𝜃𝜃⋮
𝜀𝜀
⋮
𝜃𝜃]
 
 
 
 
, where the 𝑗𝑗-th entry is 𝜀𝜀. We 

We suppose that 𝑆𝑆 = [
𝑠𝑠11 𝑠𝑠12 ⋯ 𝑠𝑠1𝑛𝑛
𝑠𝑠21 𝑠𝑠22 ⋯ 𝑠𝑠2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑠𝑠𝑛𝑛1 𝑠𝑠𝑛𝑛2 ⋯ 𝑠𝑠𝑛𝑛𝑛𝑛

], and 𝑋𝑋 = [
𝑥𝑥1
𝑥𝑥2
⋮

𝑥𝑥𝑛𝑛

] =

[
 
 
 
 𝜃𝜃⋮
𝜀𝜀
⋮
𝜃𝜃]
 
 
 
 
, where the 𝑗𝑗-th entry is 𝜀𝜀. We where the j-th entry is ε. We also have A that has a 

zero j-column. By Definition 2.6, we then obtain

We pick Y = 

𝑆𝑆 = 𝐴𝐴 + 𝐷𝐷 =

[
 
 
 
 
 𝜃𝜃 𝑎𝑎12 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝜃𝜃 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑗𝑗1 𝑎𝑎𝑗𝑗2 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎𝑗𝑗𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝜃𝜃 ⋯ 𝜃𝜃 ]
 
 
 
 
 

+ [
𝑑𝑑11 𝜃𝜃 ⋯ 𝜃𝜃
𝜃𝜃 𝑑𝑑22 ⋯ 𝜃𝜃
⋮ ⋮ ⋱ ⋮
𝜃𝜃 𝜃𝜃 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛

] =

[
 
 
 
 
 𝑑𝑑11 𝑎𝑎12 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑑𝑑22 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑗𝑗1 𝑎𝑎𝑗𝑗2 ⋯ 𝑑𝑑𝑗𝑗𝑗𝑗 ⋯ 𝑎𝑎𝑗𝑗𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝜃𝜃 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛]
 
 
 
 
 

. 

We pick 𝑌𝑌 = [
𝑦𝑦1
𝑦𝑦2
⋮
𝑦𝑦𝑛𝑛

] = 𝑑𝑑𝑖𝑖𝑖𝑖𝑋𝑋 = 𝑑𝑑𝑖𝑖𝑖𝑖

[
 
 
 
 𝜃𝜃⋮
𝜀𝜀
⋮
𝜃𝜃]
 
 
 
 
=

[
 
 
 
 𝜃𝜃

⋮
𝑑𝑑𝑖𝑖𝑖𝑖
⋮
𝜃𝜃 ]

 
 
 
 
 for all 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. Since 𝑦𝑦𝑘𝑘 = 𝜃𝜃, for 𝑘𝑘 ≠ 𝑗𝑗 and 

1 ≤ 

for all 1 ≤ i 

≤ n. Since y_k = θ, for k ≠ j and 1 ≤ k ≤ n, then sik ∙ yk = 
θ. Meanwhile, for the k = j case, we have yj = dii and so 
sij ∙ yj = djj ∙ dii = dii. This implies that 
                        
  

(2)

From Equation (2) and Definition 2.8, we conclude that  
dii is an eigenvalue of S and Y is an eigenvector of S 
with respect to dii. The list of eigenvalues gives us the 
spectrum of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), , and the proof is similar for A consists of 

a zero row. 

Theorem 3.5. Let A = [aij] be an n × n adjacency matrix 
of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), such that the entries of a column j (or row i) of A 

are aij = θ, for all 1 ≤ i ≤ n (or 1 ≤ j ≤ n), where θ = [0,0]. 
Let S be the signless Laplacian matrix of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), , S  = D + A 

where D = diag (d11, d22, ..., d_nn) and djj ≥ dii (or dii ≥ djj). 
Then, the signless Laplacian energy of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  is ES (

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) = [𝑑𝑑22     𝑑𝑑11 

11+ 𝑑𝑑22     𝑑𝑑11 22 + ... + 𝑑𝑑22     𝑑𝑑11 nn, d11 +𝑑𝑑22     𝑑𝑑11 22+ ...+𝑑𝑑22     𝑑𝑑11 nn] and ES (

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) ≥ djj (or 

ES (

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) ≥ dii).

Proof. 

Immediately by Theorem 3.4 and Definition 2.10, we can 
compute the S- energy of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  :

The fact that djj ≥ dii for all 1 ≤ i ≤ n when A has a zero 
column j implies ES (

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) ≥ djj. In other words, djj is the 

lower bound of  ES (

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ). For the second case when A 

consists of a zero row, since dii ≥ djj for all 1 ≤ j ≤ n,  
therefore ES (

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) ≥ dii.

As an illustration of Theorems 3.4 and 3.5, we follow 
the matrix in Example 3.2 and the following example 
is obtained.

Example 3.3. By Example 3.2, with S = Example 3.3. By Example 3.2, with 𝑆𝑆 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
], we know that 𝜆𝜆1 =

[0.4,0.6] is the first eigenvalue of 𝑆𝑆. Now we need to investigate the others eigenvalues.  

Suppose that 𝑌𝑌 = [
𝜃𝜃

[0.4,0.6]
𝜃𝜃

], and so 

𝑆𝑆𝑌𝑌 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
] [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
] = [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
] = [0.4,0.6] [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
]. 

Consequently, the second eigenvalue of 𝑆𝑆 is 𝜆𝜆2 = [0.4,0.6] and 𝑌𝑌 is an eigenvector with respect 

to 𝜆𝜆2. Also by choosing 𝑋𝑋 = [
𝜃𝜃

[0.2,0.5]
𝜃𝜃

] such that 

𝑆𝑆𝑋𝑋 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
] [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
] = [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
] = [0.2,0.5] [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
], 

 

Example 3.3. By Example 3.2, with 𝑆𝑆 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
], we know that 𝜆𝜆1 =

[0.4,0.6] is the first eigenvalue of 𝑆𝑆. Now we need to investigate the others eigenvalues.  

Suppose that 𝑌𝑌 = [
𝜃𝜃

[0.4,0.6]
𝜃𝜃

], and so 

𝑆𝑆𝑌𝑌 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
] [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
] = [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
] = [0.4,0.6] [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
]. 

Consequently, the second eigenvalue of 𝑆𝑆 is 𝜆𝜆2 = [0.4,0.6] and 𝑌𝑌 is an eigenvector with respect 

to 𝜆𝜆2. Also by choosing 𝑋𝑋 = [
𝜃𝜃

[0.2,0.5]
𝜃𝜃

] such that 

𝑆𝑆𝑋𝑋 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
] [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
] = [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
] = [0.2,0.5] [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
], 

 

, we know that λ1 = [0.4,0.6] is the first eigenvalue 

of S. Now we need to investigate the others eigenvalues. 

Suppose that Y = 

Example 3.3. By Example 3.2, with 𝑆𝑆 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
], we know that 𝜆𝜆1 =

[0.4,0.6] is the first eigenvalue of 𝑆𝑆. Now we need to investigate the others eigenvalues.  

Suppose that 𝑌𝑌 = [
𝜃𝜃

[0.4,0.6]
𝜃𝜃

], and so 

𝑆𝑆𝑌𝑌 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
] [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
] = [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
] = [0.4,0.6] [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
]. 

Consequently, the second eigenvalue of 𝑆𝑆 is 𝜆𝜆2 = [0.4,0.6] and 𝑌𝑌 is an eigenvector with respect 

to 𝜆𝜆2. Also by choosing 𝑋𝑋 = [
𝜃𝜃

[0.2,0.5]
𝜃𝜃

] such that 

𝑆𝑆𝑋𝑋 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
] [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
] = [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
] = [0.2,0.5] [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
], 

 

 and so

Consequently, the second eigenvalue of S is λ2 = 
[0.4,0.6] and Y is an eigenvector with respect to λ2. Also 

by choosing X = 

Example 3.3. By Example 3.2, with 𝑆𝑆 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
], we know that 𝜆𝜆1 =

[0.4,0.6] is the first eigenvalue of 𝑆𝑆. Now we need to investigate the others eigenvalues.  

Suppose that 𝑌𝑌 = [
𝜃𝜃

[0.4,0.6]
𝜃𝜃

], and so 

𝑆𝑆𝑌𝑌 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
] [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
] = [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
] = [0.4,0.6] [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
]. 

Consequently, the second eigenvalue of 𝑆𝑆 is 𝜆𝜆2 = [0.4,0.6] and 𝑌𝑌 is an eigenvector with respect 

to 𝜆𝜆2. Also by choosing 𝑋𝑋 = [
𝜃𝜃

[0.2,0.5]
𝜃𝜃

] such that 

𝑆𝑆𝑋𝑋 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
] [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
] = [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
] = [0.2,0.5] [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
], 

 

such that

𝑆𝑆 = 𝐴𝐴 + 𝐷𝐷 =

[
 
 
 
 
 𝜃𝜃 𝑎𝑎12 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝜃𝜃 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑗𝑗1 𝑎𝑎𝑗𝑗2 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎𝑗𝑗𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝜃𝜃 ⋯ 𝜃𝜃 ]
 
 
 
 
 

+ [
𝑑𝑑11 𝜃𝜃 ⋯ 𝜃𝜃
𝜃𝜃 𝑑𝑑22 ⋯ 𝜃𝜃
⋮ ⋮ ⋱ ⋮
𝜃𝜃 𝜃𝜃 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛

] =

[
 
 
 
 
 𝑑𝑑11 𝑎𝑎12 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑑𝑑22 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑗𝑗1 𝑎𝑎𝑗𝑗2 ⋯ 𝑑𝑑𝑗𝑗𝑗𝑗 ⋯ 𝑎𝑎𝑗𝑗𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝜃𝜃 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛]
 
 
 
 
 

. 

We pick 𝑌𝑌 = [
𝑦𝑦1
𝑦𝑦2
⋮
𝑦𝑦𝑛𝑛

] = 𝑑𝑑𝑖𝑖𝑖𝑖𝑋𝑋 = 𝑑𝑑𝑖𝑖𝑖𝑖

[
 
 
 
 𝜃𝜃⋮
𝜀𝜀
⋮
𝜃𝜃]
 
 
 
 
=

[
 
 
 
 𝜃𝜃

⋮
𝑑𝑑𝑖𝑖𝑖𝑖
⋮
𝜃𝜃 ]

 
 
 
 
 for all 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. Since 𝑦𝑦𝑘𝑘 = 𝜃𝜃, for 𝑘𝑘 ≠ 𝑗𝑗 and 

1 ≤ 

𝑆𝑆 = 𝐴𝐴 + 𝐷𝐷 =

[
 
 
 
 
 𝜃𝜃 𝑎𝑎12 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝜃𝜃 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑗𝑗1 𝑎𝑎𝑗𝑗2 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎𝑗𝑗𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝜃𝜃 ⋯ 𝜃𝜃 ]
 
 
 
 
 

+ [
𝑑𝑑11 𝜃𝜃 ⋯ 𝜃𝜃
𝜃𝜃 𝑑𝑑22 ⋯ 𝜃𝜃
⋮ ⋮ ⋱ ⋮
𝜃𝜃 𝜃𝜃 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛

] =

[
 
 
 
 
 𝑑𝑑11 𝑎𝑎12 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑑𝑑22 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑗𝑗1 𝑎𝑎𝑗𝑗2 ⋯ 𝑑𝑑𝑗𝑗𝑗𝑗 ⋯ 𝑎𝑎𝑗𝑗𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝜃𝜃 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛]
 
 
 
 
 

. 

We pick 𝑌𝑌 = [
𝑦𝑦1
𝑦𝑦2
⋮
𝑦𝑦𝑛𝑛

] = 𝑑𝑑𝑖𝑖𝑖𝑖𝑋𝑋 = 𝑑𝑑𝑖𝑖𝑖𝑖

[
 
 
 
 𝜃𝜃⋮
𝜀𝜀
⋮
𝜃𝜃]
 
 
 
 
=

[
 
 
 
 𝜃𝜃

⋮
𝑑𝑑𝑖𝑖𝑖𝑖
⋮
𝜃𝜃 ]

 
 
 
 
 for all 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. Since 𝑦𝑦𝑘𝑘 = 𝜃𝜃, for 𝑘𝑘 ≠ 𝑗𝑗 and 

1 ≤ 

𝑆𝑆𝑆𝑆 = [
∑ (𝑠𝑠1𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛

𝑘𝑘=1
∑ (𝑠𝑠2𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛

𝑘𝑘=1
⋮

∑ (𝑠𝑠𝑛𝑛𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛
𝑘𝑘=1

] =

[
 
 
 
 
 𝜃𝜃
𝜃𝜃
⋮

𝑑𝑑𝑖𝑖𝑖𝑖
⋮
𝜃𝜃 ]

 
 
 
 
 

=

[
 
 
 
 
 𝜃𝜃

𝜃𝜃
⋮

𝑑𝑑𝑖𝑖𝑖𝑖 ∙ 𝑑𝑑𝑖𝑖𝑖𝑖
⋮
𝜃𝜃 ]

 
 
 
 
 

= 𝑑𝑑𝑖𝑖𝑖𝑖

[
 
 
 
 
 𝜃𝜃
𝜃𝜃
⋮

𝑑𝑑𝑖𝑖𝑖𝑖
⋮
𝜃𝜃 ]

 
 
 
 
 

= 𝑑𝑑𝑖𝑖𝑖𝑖𝑆𝑆.            

𝑆𝑆𝑆𝑆 = [
∑ (𝑠𝑠1𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛

𝑘𝑘=1
∑ (𝑠𝑠2𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛

𝑘𝑘=1
⋮

∑ (𝑠𝑠𝑛𝑛𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛
𝑘𝑘=1

] =

[
 
 
 
 
 𝜃𝜃
𝜃𝜃
⋮

𝑑𝑑𝑖𝑖𝑖𝑖
⋮
𝜃𝜃 ]

 
 
 
 
 

=

[
 
 
 
 
 𝜃𝜃

𝜃𝜃
⋮

𝑑𝑑𝑖𝑖𝑖𝑖 ∙ 𝑑𝑑𝑖𝑖𝑖𝑖
⋮
𝜃𝜃 ]

 
 
 
 
 

= 𝑑𝑑𝑖𝑖𝑖𝑖

[
 
 
 
 
 𝜃𝜃
𝜃𝜃
⋮

𝑑𝑑𝑖𝑖𝑖𝑖
⋮
𝜃𝜃 ]

 
 
 
 
 

= 𝑑𝑑𝑖𝑖𝑖𝑖𝑆𝑆.            

𝐸𝐸𝑆𝑆(�⃗�𝛤) = ∑ [𝜆𝜆𝑖𝑖, 𝜆𝜆𝑖𝑖]𝑛𝑛
𝑖𝑖=1 = ∑ [𝑑𝑑𝑖𝑖𝑖𝑖, 𝑑𝑑𝑖𝑖𝑖𝑖]𝑛𝑛

𝑖𝑖=1 = [𝑑𝑑11 + 𝑑𝑑22 + ⋯+ 𝑑𝑑𝑛𝑛𝑛𝑛, 𝑑𝑑11 + 𝑑𝑑22 + ⋯+ 𝑑𝑑𝑛𝑛𝑛𝑛]. 

 𝐸𝐸𝑆𝑆(�⃗�𝛤) = ∑ [𝜆𝜆𝑖𝑖, 𝜆𝜆𝑖𝑖]𝑛𝑛
𝑖𝑖=1 = ∑ [𝑑𝑑𝑖𝑖𝑖𝑖, 𝑑𝑑𝑖𝑖𝑖𝑖]𝑛𝑛

𝑖𝑖=1 = [𝑑𝑑11 + 𝑑𝑑22 + ⋯+ 𝑑𝑑𝑛𝑛𝑛𝑛, 𝑑𝑑11 + 𝑑𝑑22 + ⋯+ 𝑑𝑑𝑛𝑛𝑛𝑛]. 

 

Example 3.3. By Example 3.2, with 𝑆𝑆 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
], we know that 𝜆𝜆1 =

[0.4,0.6] is the first eigenvalue of 𝑆𝑆. Now we need to investigate the others eigenvalues.  

Suppose that 𝑌𝑌 = [
𝜃𝜃

[0.4,0.6]
𝜃𝜃

], and so 

𝑆𝑆𝑌𝑌 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
] [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
] = [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
] = [0.4,0.6] [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
]. 

Consequently, the second eigenvalue of 𝑆𝑆 is 𝜆𝜆2 = [0.4,0.6] and 𝑌𝑌 is an eigenvector with respect 

to 𝜆𝜆2. Also by choosing 𝑋𝑋 = [
𝜃𝜃

[0.2,0.5]
𝜃𝜃

] such that 

𝑆𝑆𝑋𝑋 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
] [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
] = [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
] = [0.2,0.5] [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
], 

 

Example 3.3. By Example 3.2, with 𝑆𝑆 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
], we know that 𝜆𝜆1 =

[0.4,0.6] is the first eigenvalue of 𝑆𝑆. Now we need to investigate the others eigenvalues.  

Suppose that 𝑌𝑌 = [
𝜃𝜃

[0.4,0.6]
𝜃𝜃

], and so 

𝑆𝑆𝑌𝑌 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
] [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
] = [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
] = [0.4,0.6] [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
]. 

Consequently, the second eigenvalue of 𝑆𝑆 is 𝜆𝜆2 = [0.4,0.6] and 𝑌𝑌 is an eigenvector with respect 

to 𝜆𝜆2. Also by choosing 𝑋𝑋 = [
𝜃𝜃

[0.2,0.5]
𝜃𝜃

] such that 

𝑆𝑆𝑋𝑋 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
] [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
] = [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
] = [0.2,0.5] [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
], 
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then we get the last eigenvalue λ3 = [0.2,0.5] and X is an 
eigenvector for λ2. Therefore, by Definition 2.9, we get 
the spectrum of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  associated with  as follows:

     σS (

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) = (λ1, λ2, λ3) = ([0.4,0.6],[0.4,0.6],[0.2,0.5]).

Now by using Definition 2.10, we can calculate the 
-energy of  as given below:

The following two theorems discuss the eigenvalue of  
S when  A consists of a row or column with the same 
entries. 

Theorem 3.6. Let  A = [aij] be an n × n adjacency matrix 
of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  such that the entries of a column j (or row i) of A are 

aij = α, for all 1 ≤ i ≤ n (or 1 ≤ j ≤ n) and i ≠ j, otherwise 
aij ≤ α. Let S be the signless Laplacian matrix of Γ, S 
= D + A where D = diag (d11, d22, ..., dnn). Then α is an 
eigenvalue of S associated with the eigenvector Y = [ε  ε  
...  ε)]T (or YT).

Proof. 

We suppose that Y = [y1   y2  ... yn)]
T = [ε  ε  ...  ε)]T, and 

S = [sij], for i,j = 1, 2, ..., n.

Since α is a maximum entry of A and in a column j, aij 
= α, for all 1 ≤ i ≤ n and i ≠ j, then immediately we get 
djj = α. By Definition 2.6, we then obtain

Clearly that dii ≤ α, for 1 ≤ i ≤ n, conforming from the 
addition operation. Since yk = ε, for 1 ≤ k ≤ n, then based 
on the multiplication operation, sik ∙ yk = sik, for 1 ≤ i ≤ 
n. This implies

 

 (3)

Note that every row of S has element α which is the 
maximum interval-valued entry, then ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 𝛼𝛼   = α and 
α + dii = α. Therefore, we can rewrite Equation (3) as

 (4)

From Equation (4) and again by Definition 2.8, we 
conclude that α is an eigenvalue of S, and similar proof 
for A consists of a row with the same entries. 

Theorem 3.7. Let A = [aij] be an n × n adjacency matrix 
of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), . Let S be the signless Laplacian matrix of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), , S = 

D + A where D = diag (d11, d22, ..., dnn) such that dii = α 
for all 1 ≤ i ≤ n and aij ≤ α, for all 1 ≤ i, j ≤ n and i ≠ j. 
Then tr(S) = α and it is an eigenvalue of S associated 
with the eigenvector Y = [ε  ε  ... ε]T. 

Proof. 

We suppose that Y = y1  y2  ...  yn]
T = [ε  ε  ... ε)]T, and S = 

[sij], for i, j = 1, 2, ..., n.

By Definition 2.6, we then obtain

Now, since yk = ε, for every 1 ≤ k ≤ n, then sik ∙ yk = sik, 
for all 1 ≤ i ≤ n. This implies that 

 (5)

Example 3.3. By Example 3.2, with 𝑆𝑆 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
], we know that 𝜆𝜆1 =

[0.4,0.6] is the first eigenvalue of 𝑆𝑆. Now we need to investigate the others eigenvalues.  

Suppose that 𝑌𝑌 = [
𝜃𝜃

[0.4,0.6]
𝜃𝜃

], and so 

𝑆𝑆𝑌𝑌 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
] [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
] = [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
] = [0.4,0.6] [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
]. 

Consequently, the second eigenvalue of 𝑆𝑆 is 𝜆𝜆2 = [0.4,0.6] and 𝑌𝑌 is an eigenvector with respect 

to 𝜆𝜆2. Also by choosing 𝑋𝑋 = [
𝜃𝜃

[0.2,0.5]
𝜃𝜃

] such that 

𝑆𝑆𝑋𝑋 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
] [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
] = [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
] = [0.2,0.5] [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
], 

 

Example 3.3. By Example 3.2, with 𝑆𝑆 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
], we know that 𝜆𝜆1 =

[0.4,0.6] is the first eigenvalue of 𝑆𝑆. Now we need to investigate the others eigenvalues.  

Suppose that 𝑌𝑌 = [
𝜃𝜃

[0.4,0.6]
𝜃𝜃

], and so 

𝑆𝑆𝑌𝑌 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
] [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
] = [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
] = [0.4,0.6] [

𝜃𝜃
[0.4,0.6]

𝜃𝜃
]. 

Consequently, the second eigenvalue of 𝑆𝑆 is 𝜆𝜆2 = [0.4,0.6] and 𝑌𝑌 is an eigenvector with respect 

to 𝜆𝜆2. Also by choosing 𝑋𝑋 = [
𝜃𝜃

[0.2,0.5]
𝜃𝜃

] such that 

𝑆𝑆𝑋𝑋 = [
[0.4,0.6] 𝜃𝜃 [0.2,0.5]
[0.4,0.6] [0.4,0.6] 𝜃𝜃

𝜃𝜃 𝜃𝜃 [0.2,0.5]
] [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
] = [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
] = [0.2,0.5] [

𝜃𝜃
[0.2,0.5]

𝜃𝜃
], 

 

𝐸𝐸𝑆𝑆(�⃗�𝛤) = ∑ [𝜆𝜆𝑖𝑖, 𝜆𝜆𝑖𝑖]3
𝑖𝑖=1 = [0.4,0.6] + [0.4,0.6] + [0.2,0.5] = [1.0,1.7] ≥ [0.4,0.6] = 𝑑𝑑22. 

 𝐸𝐸𝑆𝑆(�⃗�𝛤) = ∑ [𝜆𝜆𝑖𝑖, 𝜆𝜆𝑖𝑖]3
𝑖𝑖=1 = [0.4,0.6] + [0.4,0.6] + [0.2,0.5] = [1.0,1.7] ≥ [0.4,0.6] = 𝑑𝑑22. 

 

𝑆𝑆 = 𝐴𝐴 + 𝐷𝐷 =

[
 
 
 
 
 𝜃𝜃 𝑎𝑎12 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝜃𝜃 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑗𝑗1 𝑎𝑎𝑗𝑗2 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎𝑗𝑗𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝛼𝛼 ⋯ 𝜃𝜃 ]
 
 
 
 
 

+

[
 
 
 
 
 𝑑𝑑11 𝜃𝜃 ⋯ 𝜃𝜃 ⋯ 𝜃𝜃

𝜃𝜃 𝑑𝑑22 ⋯ 𝜃𝜃 ⋯ 𝜃𝜃
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝜃𝜃 𝜃𝜃 ⋯ 𝛼𝛼 ⋯ 𝜃𝜃
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝜃𝜃 𝜃𝜃 ⋯ 𝜃𝜃 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛]

 
 
 
 
 

=

[
 
 
 
 
 𝑑𝑑11 𝑎𝑎12 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑑𝑑22 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑗𝑗1 𝑎𝑎𝑗𝑗2 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎𝑗𝑗𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝛼𝛼 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛]
 
 
 
 
 

. 

 

𝑆𝑆 = 𝐴𝐴 + 𝐷𝐷 =

[
 
 
 
 
 𝜃𝜃 𝑎𝑎12 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝜃𝜃 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑗𝑗1 𝑎𝑎𝑗𝑗2 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎𝑗𝑗𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝛼𝛼 ⋯ 𝜃𝜃 ]
 
 
 
 
 

+

[
 
 
 
 
 𝑑𝑑11 𝜃𝜃 ⋯ 𝜃𝜃 ⋯ 𝜃𝜃

𝜃𝜃 𝑑𝑑22 ⋯ 𝜃𝜃 ⋯ 𝜃𝜃
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝜃𝜃 𝜃𝜃 ⋯ 𝛼𝛼 ⋯ 𝜃𝜃
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝜃𝜃 𝜃𝜃 ⋯ 𝜃𝜃 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛]

 
 
 
 
 

=

[
 
 
 
 
 𝑑𝑑11 𝑎𝑎12 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑑𝑑22 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑗𝑗1 𝑎𝑎𝑗𝑗2 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎𝑗𝑗𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝛼𝛼 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛]
 
 
 
 
 

. 

 

𝑆𝑆 = 𝐴𝐴 + 𝐷𝐷 =

[
 
 
 
 
 𝜃𝜃 𝑎𝑎12 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝜃𝜃 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑗𝑗1 𝑎𝑎𝑗𝑗2 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎𝑗𝑗𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝛼𝛼 ⋯ 𝜃𝜃 ]
 
 
 
 
 

+

[
 
 
 
 
 𝑑𝑑11 𝜃𝜃 ⋯ 𝜃𝜃 ⋯ 𝜃𝜃

𝜃𝜃 𝑑𝑑22 ⋯ 𝜃𝜃 ⋯ 𝜃𝜃
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝜃𝜃 𝜃𝜃 ⋯ 𝛼𝛼 ⋯ 𝜃𝜃
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝜃𝜃 𝜃𝜃 ⋯ 𝜃𝜃 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛]

 
 
 
 
 

=

[
 
 
 
 
 𝑑𝑑11 𝑎𝑎12 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑑𝑑22 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑗𝑗1 𝑎𝑎𝑗𝑗2 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎𝑗𝑗𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝛼𝛼 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛]
 
 
 
 
 

. 

 

𝑆𝑆 = 𝐴𝐴 + 𝐷𝐷 =

[
 
 
 
 
 𝜃𝜃 𝑎𝑎12 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝜃𝜃 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑗𝑗1 𝑎𝑎𝑗𝑗2 ⋯ 𝜃𝜃 ⋯ 𝑎𝑎𝑗𝑗𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝛼𝛼 ⋯ 𝜃𝜃 ]
 
 
 
 
 

+

[
 
 
 
 
 𝑑𝑑11 𝜃𝜃 ⋯ 𝜃𝜃 ⋯ 𝜃𝜃

𝜃𝜃 𝑑𝑑22 ⋯ 𝜃𝜃 ⋯ 𝜃𝜃
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝜃𝜃 𝜃𝜃 ⋯ 𝛼𝛼 ⋯ 𝜃𝜃
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝜃𝜃 𝜃𝜃 ⋯ 𝜃𝜃 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛]

 
 
 
 
 

=

[
 
 
 
 
 𝑑𝑑11 𝑎𝑎12 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑑𝑑22 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑗𝑗1 𝑎𝑎𝑗𝑗2 ⋯ 𝛼𝛼 ⋯ 𝑎𝑎𝑗𝑗𝑛𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝛼𝛼 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛]
 
 
 
 
 

. 

 

       𝑆𝑆𝑆𝑆 = [
∑ (𝑠𝑠1𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛

𝑘𝑘=1
∑ (𝑠𝑠2𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛

𝑘𝑘=1
⋮

∑ (𝑠𝑠𝑛𝑛𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛
𝑘𝑘=1

] =

[
 
 
 
 
 ∑ 𝑠𝑠1𝑘𝑘

𝑛𝑛
𝑘𝑘=1

∑ 𝑠𝑠2𝑘𝑘
𝑛𝑛
𝑘𝑘=1

⋮
𝛼𝛼 + 𝑑𝑑𝑗𝑗𝑗𝑗

⋮
∑ 𝑠𝑠𝑛𝑛𝑘𝑘

𝑛𝑛
𝑘𝑘=1 ]

 
 
 
 
 

.                                         

 
 
 

𝑆𝑆𝑆𝑆 = [
𝛼𝛼
𝛼𝛼
⋮
𝛼𝛼
] = 𝛼𝛼 [

𝜀𝜀
𝜀𝜀
⋮
𝜀𝜀
] = 𝛼𝛼𝑆𝑆.                                                    

       𝑆𝑆𝑆𝑆 = [
∑ (𝑠𝑠1𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛

𝑘𝑘=1
∑ (𝑠𝑠2𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛

𝑘𝑘=1
⋮

∑ (𝑠𝑠𝑛𝑛𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛
𝑘𝑘=1

] =

[
 
 
 
 
 ∑ 𝑠𝑠1𝑘𝑘

𝑛𝑛
𝑘𝑘=1

∑ 𝑠𝑠2𝑘𝑘
𝑛𝑛
𝑘𝑘=1

⋮
𝛼𝛼 + 𝑑𝑑𝑗𝑗𝑗𝑗

⋮
∑ 𝑠𝑠𝑛𝑛𝑘𝑘

𝑛𝑛
𝑘𝑘=1 ]

 
 
 
 
 

.                                         

 
 
 

𝑆𝑆𝑆𝑆 = [
𝛼𝛼
𝛼𝛼
⋮
𝛼𝛼
] = 𝛼𝛼 [

𝜀𝜀
𝜀𝜀
⋮
𝜀𝜀
] = 𝛼𝛼𝑆𝑆.                                                    

Definition 2.6, we then obtain 

𝑆𝑆 = 𝐴𝐴 + 𝐷𝐷 = [
𝜃𝜃 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝜃𝜃 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝜃𝜃

] + [
𝑑𝑑11 𝜃𝜃 ⋯ 𝜃𝜃
𝜃𝜃 𝑑𝑑22 ⋯ 𝜃𝜃
⋮ ⋮ ⋱ ⋮
𝜃𝜃 𝜃𝜃 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛

] = [
𝑑𝑑11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑑𝑑22 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛

]. 

 

Definition 2.6, we then obtain 

𝑆𝑆 = 𝐴𝐴 + 𝐷𝐷 = [
𝜃𝜃 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝜃𝜃 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝜃𝜃

] + [
𝑑𝑑11 𝜃𝜃 ⋯ 𝜃𝜃
𝜃𝜃 𝑑𝑑22 ⋯ 𝜃𝜃
⋮ ⋮ ⋱ ⋮
𝜃𝜃 𝜃𝜃 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛

] = [
𝑑𝑑11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑑𝑑22 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛

]. 

 

       𝑆𝑆𝑌𝑌 = [
∑ (𝑠𝑠1𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛
𝑘𝑘=1

∑ (𝑠𝑠2𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛
𝑘𝑘=1

⋮
∑ (𝑠𝑠𝑛𝑛𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛
𝑘𝑘=1

] = [
∑ 𝑠𝑠1𝑘𝑘𝑛𝑛
𝑘𝑘=1

∑ 𝑠𝑠2𝑘𝑘𝑛𝑛
𝑘𝑘=1
⋮

∑ 𝑠𝑠𝑛𝑛𝑘𝑘𝑛𝑛
𝑘𝑘=1

].                                          
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Since dii = α, for 1 ≤ i ≤ n, and aij ≤ α, for all 1 ≤ i, j ≤ n 
and i ≠ j, then ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 𝛼𝛼   = dii = α, for all 1 ≤ i ≤ n. Then 
Equation (5) can be written as

(5)

Consequently, α is n eigenvalue of S. Moreover, it can be 
seen that tr(S) =that 𝑡𝑡𝑡𝑡(𝑆𝑆) = ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 𝛼𝛼. . 

Theorem 3.8. Let A = [aij] be an n × n adjacency matrix 
of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  with aij = [𝑎𝑎, 𝑎𝑎 ij,𝑎𝑎, 𝑎𝑎 ij] such that max{𝑎𝑎, 𝑎𝑎 

i1, 𝑎𝑎, 𝑎𝑎 
i2, ...,𝑎𝑎, 𝑎𝑎 

in} 
= 𝑎𝑎, 𝑎𝑎  and max{𝑎𝑎, 𝑎𝑎 i1,𝑎𝑎, 𝑎𝑎 i2,...,𝑎𝑎, 𝑎𝑎 in}= 𝑎𝑎, 𝑎𝑎 , for all 1 ≤ i ≤ n (or 
max{𝑎𝑎, 𝑎𝑎 1j, 𝑎𝑎, 𝑎𝑎 2j, ...,𝑎𝑎, 𝑎𝑎 2j} = 𝑎𝑎, 𝑎𝑎  and max{𝑎𝑎, 𝑎𝑎 1j, 𝑎𝑎, 𝑎𝑎 2j, ..., 𝑎𝑎, 𝑎𝑎 2j}= 

𝑎𝑎, 𝑎𝑎 , for all 1 ≤ j ≤ n.). Let S be the signless Laplacian 
matrix of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), , S = D + A where D = diag (d11, d22, ..., dnn), 

then α = [𝑎𝑎, 𝑎𝑎 ,𝑎𝑎, 𝑎𝑎 ] is an eigenvalue of S associated with the 
eigenvector Y = [ε  ε  ...  ε)]T (or YT).  

Proof. 

We suppose that Y = [y1  y2  ... yn )]
T = [ε  ε  ...  ε)]T, 

and S = [sij], for i, j = 1, 2, ..., n. By Definition 2.6, we 
then obtain

Now, since yk = ε, for every 1 ≤ k ≤ n, then sik ∙ yk = sik, 
for all 1 ≤ i ≤ n. This implies that 

 (6)

Since max{𝑎𝑎, 𝑎𝑎 
i1, 𝑎𝑎, 𝑎𝑎 

i2, ...,𝑎𝑎, 𝑎𝑎 
in} = 𝑎𝑎, 𝑎𝑎  and max{𝑎𝑎, 𝑎𝑎 i1,𝑎𝑎, 𝑎𝑎 i2,...,𝑎𝑎, 𝑎𝑎 

in}= 𝑎𝑎, 𝑎𝑎  and dii ≤ α, we then obtain max{𝑠𝑠𝑖𝑖1  𝑠𝑠𝑖𝑖1   [∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 , ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 ] 
i1, 𝑠𝑠𝑖𝑖1  𝑠𝑠𝑖𝑖1   [∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 , ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 ] 

i2, ...,𝑠𝑠𝑖𝑖1  𝑠𝑠𝑖𝑖1   [∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 , ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 ] 
in} = 𝑎𝑎, 𝑎𝑎  

and max{𝑠𝑠𝑖𝑖1  𝑠𝑠𝑖𝑖1   [∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 , ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 ] i1, 𝑠𝑠𝑖𝑖1  𝑠𝑠𝑖𝑖1   [∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 , ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 ] i2, ...,𝑠𝑠𝑖𝑖1  𝑠𝑠𝑖𝑖1   [∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 , ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 ] in} = 𝑎𝑎, 𝑎𝑎 , for 1 ≤ i ≤ n. Consequently 
for 1 ≤ k ≤ n, ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 𝛼𝛼  , 𝑠𝑠𝑖𝑖1  𝑠𝑠𝑖𝑖1   [∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 , ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 ] = [𝑎𝑎, 𝑎𝑎 ,𝑎𝑎, 𝑎𝑎 ] = α. 
Then Equation (6) can be written as

and α is n eigenvalue of S. In the same manner for max{
𝑎𝑎, 𝑎𝑎 

1j, 𝑎𝑎, 𝑎𝑎 
2j, ..., 𝑎𝑎, 𝑎𝑎 

2j} = 𝑎𝑎, 𝑎𝑎  and 𝑎𝑎, 𝑎𝑎 1j, 𝑎𝑎, 𝑎𝑎 2j, ..., 𝑎𝑎, 𝑎𝑎 2j,we complete 
the proof.

Theorem 3.9. Let S be the signless Laplacian matrix of  

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), . Then  ρS (

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) is either θ or = ε.

Proof.

When θ is only the eigenvalue of S, we have σS (

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) = 

{θ}, then directly ρS (

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) = θ. Assuming now there exists 

α ∈ σS (

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) with α ≠ θ. It means there is an eigenvector Y 

with respect to α such that SY = αY. Suppose that we 
have an arbitrary β with α ≤ β ≤ ε. From this fact, we 
know that β ∙ α = α and α ∙ α = α. Considering S(αY) =  
α(AY) = α(αY) = (α ∙ α)Y = αY =  (β∙α)Y = β (αY), then 
β ∈ σS (

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ). Also, we can write S(αY) = αY = (ε ∙ α) Y = 

ε(αY), and so ε ∈ σS (

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ). Therefore, ρS (

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) = ε. 

 
TWO APPLICATIONS IN REAL-WORLD

In this part, we present two real-world applications that 
can be solved with a proposed algorithm. This algorithm 
is based on the tools proposed in this work, so it can be 
used to solve problems.

Algorithm:

1. Determine the vertex v1, v2, ..., vn, the edge between vi 
and vj, and the weight of every edge ωij, for i, j = 1, 2, ..., 
n. 2. Construct the IVF-directed graph 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), = (P,�⃗�𝑄  ) with P 

= {v1, v2, ..., vn}. 3. Analyze the degree of every vertex vi 
for all vi in P and construct matrix D of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), . 4. Construct 

the Signless Laplacian matrix S of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), . 5. Compute the 

eigenvalues of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  associated to S. 6. Calculate the energy 

of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), , ES(

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) = = [𝜆𝜆, 𝜆𝜆] . 7. Compute the average of ES(

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) 

by the following formula: Zi =
𝜆𝜆+𝜆𝜆
2 . 8. Select the largest 

value of Zi.

APPLICATION IN ECOLOGICAL MODELING

Steele (1974) has presented a production food web for the 
North Sea and the values for yearly production (kcal⁄m2  

year)  produced by the main group of organisms and then 
consumed by the other organism. There are 10 groups 
of organisms from the lowest level ‘primary production’ 
and the highest is ‘yield to man’. At the second level, 
pelagic herbivores produce 300 kcal⁄m2 of feces per year 
which is broken down into bacteria and benthic infauna 
which feed on fecal material. In this case, macrobenthos 
consumed 50 kcal⁄m2 and meiobenthos consumed 20 
kcal⁄m2 of the total produced by pelagic herbivores. 

𝑆𝑆𝑆𝑆 = [
𝛼𝛼
⋮
𝛼𝛼
] = 𝛼𝛼 [

𝜀𝜀
⋮
𝜀𝜀
] = 𝛼𝛼𝑆𝑆. 

 

𝑆𝑆 = 𝐴𝐴 + 𝐷𝐷 = [
𝜃𝜃 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝜃𝜃 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝜃𝜃

] + [
𝑑𝑑11 𝜃𝜃 ⋯ 𝜃𝜃
𝜃𝜃 𝑑𝑑22 ⋯ 𝜃𝜃
⋮ ⋮ ⋱ ⋮
𝜃𝜃 𝜃𝜃 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛

] = [
𝑑𝑑11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑑𝑑22 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛

]. 

 

𝑆𝑆 = 𝐴𝐴 + 𝐷𝐷 = [
𝜃𝜃 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝜃𝜃 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝜃𝜃

] + [
𝑑𝑑11 𝜃𝜃 ⋯ 𝜃𝜃
𝜃𝜃 𝑑𝑑22 ⋯ 𝜃𝜃
⋮ ⋮ ⋱ ⋮
𝜃𝜃 𝜃𝜃 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛

] = [
𝑑𝑑11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑑𝑑22 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝑑𝑑𝑛𝑛𝑛𝑛

]. 

 

       𝑆𝑆𝑆𝑆 = [
∑ (𝑠𝑠1𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛
𝑘𝑘=1

∑ (𝑠𝑠2𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛
𝑘𝑘=1

⋮
∑ (𝑠𝑠𝑛𝑛𝑘𝑘 ∙ 𝑦𝑦𝑘𝑘)𝑛𝑛
𝑘𝑘=1

] = [
∑ 𝑠𝑠1𝑘𝑘𝑛𝑛
𝑘𝑘=1

∑ 𝑠𝑠2𝑘𝑘𝑛𝑛
𝑘𝑘=1
⋮

∑ 𝑠𝑠𝑛𝑛𝑘𝑘𝑛𝑛
𝑘𝑘=1

].                                         

𝑆𝑆𝑆𝑆 = [
𝛼𝛼
𝛼𝛼
⋮
𝛼𝛼
] = 𝛼𝛼 [

𝜀𝜀
𝜀𝜀
⋮
𝜀𝜀
] = 𝛼𝛼𝑆𝑆, 
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So that the percentage of total food consumption is 
obtained. According to Steele (1974), the intermediate 
values are speculative, based on analogy and simplifying 
assumptions, the whole system is bounded by fairly 
well-determined values for the primary productivity 
and the fish yield. Therefore, we assume that there are 
tentative values of 5%. Consequently, meiobenthos 
and macrobenthos consume 2%-12% and 12%-22% 
of fecal material, respectively. With the same analysis 
of other organisms’ levels from the secondary data 

(Steele, 1974), we provide the IVF directed graph as 
in Figure 1.

Let the set of vertex V = {v1, v2, ...,v10} with v1: yield to 
man; v2: large fish; v3: inverted carnivore; v4: pelagic fish; 
v5: demersal fish; v6: other carnivores; v7: macrobenthos; 
v8: meiobenthos; v9: pelagic herbivores; and v10: primary 
production. The edges of the graph are the consumption 
relation between two groups of organisms. The weight 
between the vertex vi and vj is the percentage of total 
food consumption of vj from the production from vi. The 
signless Laplacian matrix of 

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄),  is obtained as follows:

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Yield to Man 

Large Fish 

Demersal 
Fish 

Other 
Carniv. 

Pelagic 
Fish 

Invert 
Carniv. 

Macrobenthos  Meiobenthos 

Pelagic Herbivores 

Primary Production 

[0.60,0.70] [0.68,0.78] [1.00,1.00] 

[1.00,1.00] 

In this case, 10th the column entries of A are θ. Therefore, 
by Theorem 3.4 we have the S-spectrum of �⃗⃗�𝜞  as σS ( �⃗⃗�𝜞  ) = 

 

𝝈𝝈𝑺𝑺(�⃗⃗�𝜞 ) = ([𝟎𝟎. 𝟕𝟕𝟕𝟕, 𝟎𝟎. 𝟖𝟖𝟕𝟕], [𝟎𝟎. 𝟏𝟏𝟖𝟖, 𝟎𝟎. 𝟕𝟕𝟖𝟖], [𝟎𝟎. 𝟏𝟏𝟖𝟖, 𝟎𝟎. 𝟕𝟕𝟖𝟖], [𝟎𝟎. 𝟔𝟔𝟖𝟖, 𝟎𝟎. 𝟕𝟕𝟖𝟖], [𝟏𝟏. 𝟎𝟎𝟎𝟎, 𝟏𝟏. 𝟎𝟎𝟎𝟎], [𝟏𝟏. 𝟎𝟎𝟎𝟎, 𝟏𝟏. 𝟎𝟎𝟎𝟎],
[𝟏𝟏. 𝟎𝟎𝟎𝟎, 𝟏𝟏. 𝟎𝟎𝟎𝟎], [𝟏𝟏. 𝟎𝟎𝟎𝟎, 𝟏𝟏. 𝟎𝟎𝟎𝟎], [𝟎𝟎. 𝟏𝟏𝟏𝟏, 𝟎𝟎. 𝟕𝟕𝟏𝟏], [𝟎𝟎. 𝟏𝟏𝟏𝟏, 𝟎𝟎. 𝟕𝟕𝟏𝟏] ) 

 

By Theorem 3.9, we then get the S-spectral radius of  as  

�⃗⃗�𝜞  as ρS( �⃗⃗�𝜞  ) = [1.00, 1.00] = ε. Clearly, ρS( �⃗⃗�𝜞  ) is an interval-
valued that is the upper bound of all the eigenvalues of 
�⃗⃗�𝜞  . As seen in the system in Figure 2, macrobenthos 

       𝒗𝒗𝟏𝟏                 𝒗𝒗𝟐𝟐                𝒗𝒗𝟑𝟑                        𝒗𝒗𝟒𝟒                 𝒗𝒗𝟓𝟓                 𝒗𝒗𝟔𝟔                𝒗𝒗𝟕𝟕                   𝒗𝒗𝟖𝟖               𝒗𝒗𝟗𝟗               𝒗𝒗𝟏𝟏𝟏𝟏
𝒗𝒗𝟏𝟏
𝒗𝒗𝟐𝟐
𝒗𝒗𝟑𝟑
𝒗𝒗𝟒𝟒
𝒗𝒗𝟓𝟓
𝒗𝒗𝟔𝟔
𝒗𝒗𝟕𝟕
𝒗𝒗𝟖𝟖
𝒗𝒗𝟗𝟗
𝒗𝒗𝟏𝟏𝟏𝟏 [

 
 
 
 
 
 
 
 
 
 [𝟏𝟏. 𝟕𝟕𝟐𝟐, 𝟏𝟏. 𝟖𝟖𝟐𝟐] 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽
[𝟏𝟏. 𝟏𝟏𝟖𝟖, 𝟏𝟏. 𝟐𝟐𝟖𝟖] [𝟏𝟏. 𝟏𝟏𝟖𝟖, 𝟏𝟏. 𝟐𝟐𝟖𝟖] 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽

𝜽𝜽 𝜽𝜽 [𝟏𝟏. 𝟔𝟔𝟖𝟖, 𝟏𝟏. 𝟕𝟕𝟖𝟖] [𝟏𝟏. 𝟔𝟔𝟖𝟖, 𝟏𝟏. 𝟕𝟕𝟖𝟖] 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽
[𝟏𝟏. 𝟒𝟒𝟓𝟓, 𝟏𝟏. 𝟓𝟓𝟓𝟓] 𝜽𝜽 𝜽𝜽 [𝟏𝟏. 𝟔𝟔𝟖𝟖, 𝟏𝟏. 𝟕𝟕𝟖𝟖] [𝟏𝟏. 𝟔𝟔𝟏𝟏, 𝟏𝟏. 𝟕𝟕𝟏𝟏] 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽
[𝟏𝟏. 𝟕𝟕𝟐𝟐, 𝟏𝟏. 𝟖𝟖𝟐𝟐] [𝟏𝟏. 𝟏𝟏𝟖𝟖, 𝟏𝟏. 𝟐𝟐𝟖𝟖] 𝜽𝜽 𝜽𝜽 [𝟏𝟏. 𝟏𝟏𝟏𝟏, 𝟏𝟏. 𝟏𝟏𝟏𝟏] 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽

𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 [𝟏𝟏. 𝟏𝟏𝟏𝟏, 𝟏𝟏. 𝟏𝟏𝟏𝟏] [𝟏𝟏. 𝟏𝟏𝟏𝟏, 𝟏𝟏. 𝟏𝟏𝟏𝟏] 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽
𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 [𝟏𝟏. 𝟏𝟏𝟒𝟒, 𝟏𝟏. 𝟏𝟏𝟒𝟒] [𝟏𝟏. 𝟏𝟏𝟓𝟓, 𝟏𝟏. 𝟏𝟏𝟓𝟓] [𝟏𝟏. 𝟏𝟏𝟏𝟏, 𝟏𝟏. 𝟏𝟏𝟏𝟏] 𝜽𝜽 𝜽𝜽 𝜽𝜽
𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 [𝟏𝟏. 𝟏𝟏𝟏𝟏, 𝟏𝟏. 𝟏𝟏𝟏𝟏] [𝟏𝟏. 𝟏𝟏𝟏𝟏, 𝟏𝟏. 𝟏𝟏𝟏𝟏] 𝜽𝜽 𝜽𝜽
𝜽𝜽 𝜽𝜽 [𝟏𝟏. 𝟏𝟏𝟖𝟖, 𝟏𝟏. 𝟏𝟏𝟖𝟖] [𝟏𝟏. 𝟏𝟏𝟒𝟒, 𝟏𝟏. 𝟏𝟏𝟒𝟒] 𝜽𝜽 𝜽𝜽 [𝟏𝟏. 𝟏𝟏𝟐𝟐, 𝟏𝟏. 𝟐𝟐𝟐𝟐] [𝟏𝟏. 𝟏𝟏𝟐𝟐, 𝟏𝟏. 𝟏𝟏𝟐𝟐] [𝟏𝟏. 𝟏𝟏𝟒𝟒, 𝟏𝟏. 𝟐𝟐𝟒𝟒] 𝜽𝜽
𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 𝜽𝜽 [𝟏𝟏. 𝟏𝟏𝟒𝟒, 𝟏𝟏. 𝟐𝟐𝟒𝟒] [𝟏𝟏. 𝟏𝟏𝟒𝟒, 𝟏𝟏. 𝟐𝟐𝟒𝟒]]

 
 
 
 
 
 
 
 
 
 

 

FIGURE 1. IVF directed graph �⃗⃗�𝜞  of a north sea food based on the main 
groups of organism
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absorbs all nutrients from the meiobenthos. Moreover, 
the signless laplacian energy of is �⃗⃗�𝜞  is ES ( �⃗⃗�𝜞  ) = [6.04, 
6.64].

APPLICATION IN SELECTING A SUITABLE SECONDARY 
SCHOOL

In our daily lives, selecting the appropriate school for 
a son or daughter is an essential responsibility of the 
family, so the family takes into account many criteria 
for the suitable selection, including the efficiency of the 
teaching staff, tuition fees, the size of the school, the 
technological techniques used in teaching, the services 
provided to students in the school, such as the provision 
of a bus to transport students, and the cleanliness of the 
school.
Example 4.1. Mr. Xu wants to choose a secondary 
school for his daughter, and three secondary schools 
are available in the area where he lives. The criteria 
Mr. Xu is focusing on are fees, the efficiency of the 
teaching staff, and the technological techniques used, 
respectively. Mr. Xu sought the help of four of his 
friends (the experts) to help him choose, and accordingly, 
each of Mr. Xu’s friends gave his opinion based on the 
criteria on which Mr. Xu relied, as each of them showed 
the difference between each criterion from one school 
to another and vice versa. We, in turn, analyzed the 
experts’ opinions and organized them in the form of an 
IVF-directed graph (

�⃗�𝐺 = (𝑉𝑉, �⃗⃗�𝐸) be a crisp directed graph with a directed edge �⃗⃗�𝐸 
 
 
�⃗�𝛤 = (𝑃𝑃, �⃗⃗�𝑄), ) where each IVF-directed graph 

represents one of these schools, as seen in Figures 3, 4, 
and 5, as follows. 

In IVFG 𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗ and 𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗  shown in Figures 3, 4, 5, 
the IVF number of edges represents the degree of 
variation of the above criteria in this school based on the 
opinions of each expert. As for the final degree of expert 
opinion, it is represented by the degree of the vertices 
(that we obtained after we applied Definition 2.5 to the 
IVF number of edges), where each vertex represents one 
of the four experts. For example, in IVFG 𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗ , in Figure 
3 (School 1) the IVF numbers [0.5,0,6]  of expert x1, 
indicates that this expert refers to selecting this school 
represented in Figure 3, with a degree ranging between  
0.5 and 0.6. Now, to solve this problem, and to help 
Mr. Xu choose the appropriate school from among the 
three schools, we apply the above-mentioned algorithm. 
The signless Laplacian matrix of 𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗  is an 4 × 4 matrix 
as given below: 

The S-spectrum of 𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗  is σS (𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗ ), the S-spectral radius of  
𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗  is [1.0,1.0]. Afterwards, the S-energy of 𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗  is Es(𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗ )  
= [2.8,3.6].

of Mr. Xu's friends gave his opinion based on the criteria on which Mr. Xu relied, as each of 

them showed the difference between each criterion from one school to another and vice versa. 

We, in turn, analyzed the experts' opinions and organized them in the form of an IVF-directed 

graph (𝛤𝛤𝛤𝛤𝚤𝚤𝚤𝚤��⃗  ) where each IVF-directed graph represents one of these schools, as seen in Figures 

3, 4, and 5, as follows: 

FIGURE 2. [IVF Directed Graph 𝜞𝜞𝜞𝜞𝟏𝟏𝟏𝟏����⃗  (School 1)] 

In IVFG 𝛤𝛤𝛤𝛤1���⃗  , 𝛤𝛤𝛤𝛤2���⃗  and 𝛤𝛤𝛤𝛤3���⃗  shown in Figures 2, 3, 4, the IVF number of edges represents the 

degree of variation of the above criteria in this school based on the opinions of each expert. As 

for the final degree of expert opinion, it is represented by the degree of the vertices (that we 

obtained after we applied Definition 2.5 to the IVF number of edges), where each vertex 

represents one of the four experts. For example, in IVFG 𝛤𝛤𝛤𝛤1���⃗ , in Figure 2 (School 1) the IVF 

numbers [0.5,0,6] of expert 𝑥𝑥𝑥𝑥1, indicates that this expert refers to selecting this school 

represented in Figure 2, with a degree ranging between  0.5 and 0.6. Now, to solve this problem, 

and to help Mr. Xu choose the appropriate school from among the three schools, we apply the 

above-mentioned algorithm. The signless Laplacian matrix of 𝛤𝛤𝛤𝛤1���⃗  is an 4 × 4 matrix as given 

below:  

[0.6,0.9] 

𝑥𝑥𝑥𝑥1 

𝑥𝑥𝑥𝑥3 𝑥𝑥𝑥𝑥4 
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[0.4,0.7] 

[0.6,0.8] 

[0
.1

,0
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] 
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.5

,0
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] 

[0.6,0.9] 

[0.6,0.9] [0.6,0.8] 

[0.5,0.6] 

FIGURE 2. [IVF Directed Graph 𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗  (School 1)]

               𝑥𝑥1             𝑥𝑥2            𝑥𝑥3                𝑥𝑥4 

𝑆𝑆1 =
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

[
[0.5, 0.6] [0.5,0.5] [0.1,0.5] [0.1,0.3]
[0.1,0.6] [0.6,0.9] [0.4,0.7] [0.3,0.7]
[0.3,0.5] [0.6,0.9] [0.6,0.9] [0.4,0.7]
[0.2,0.6] [0.2,0.5] [0.6,0.8] [0.6,0.8]

]. 
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The signless Laplacian matrix of 𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗  is an 4 × 4 matrix 
as given herewith: 

The S-spectrum of 𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗  is σS (𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗ ) = ([1.0,1.0], [0.5,0.9], 
[0.5,0.9], [0.5,0.8]), the S-spectral radius of 𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗ is 
[1.0,1.0]. Afterwards, the S-energy of 𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗  is  ES (𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗ ) = 
[2.5,3.6].  

The signless Laplacian matrix of 𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗  is an  4 × 4 matrix 
as given herewith: 

FIGURE 3. [IVF Directed Graph 

 𝑥𝑥𝑥𝑥1 𝑥𝑥𝑥𝑥2 𝑥𝑥𝑥𝑥3 𝑥𝑥𝑥𝑥4 

𝑆𝑆𝑆𝑆1 =

𝑥𝑥𝑥𝑥1
𝑥𝑥𝑥𝑥2
𝑥𝑥𝑥𝑥3
𝑥𝑥𝑥𝑥4

�

[0.5, 0.6] [0.5,0.5] [0.1,0.5] [0.1,0.3]
[0.1,0.6] [0.6,0.9] [0.4,0.7] [0.3,0.7]
[0.3,0.5] [0.6,0.9] [0.6,0.9] [0.4,0.7]
[0.2,0.6] [0.2,0.5] [0.6,0.8] [0.6,0.8]

�.

The 𝑆𝑆𝑆𝑆-spectrum of 𝛤𝛤𝛤𝛤1���⃗  is 𝜎𝜎𝜎𝜎𝑆𝑆𝑆𝑆�𝛤𝛤𝛤𝛤1���⃗ � = ([1.0, 1.0], [0.6,0.9], [0.6,0.9], [0.6,0.8]), the 𝑆𝑆𝑆𝑆-

spectral radius of 𝛤𝛤𝛤𝛤1���⃗  is [1.0,1.0]. Afterwards, the 𝑆𝑆𝑆𝑆-energy of 𝛤𝛤𝛤𝛤1���⃗  is  𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆�𝛤𝛤𝛤𝛤1���⃗ � = [2.8, 3.6]. 

FIGURE 3. [IVF Directed Graph 𝜞𝜞𝜞𝜞𝟐𝟐𝟐𝟐����⃗  (𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝟐𝟐𝟐𝟐)] 

The signless Laplacian matrix of 𝛤𝛤𝛤𝛤2���⃗  is an 4 × 4 matrix as given herewith: 

 𝑥𝑥𝑥𝑥1             𝑥𝑥𝑥𝑥2            𝑥𝑥𝑥𝑥3                𝑥𝑥𝑥𝑥4 

𝑆𝑆𝑆𝑆2 =

𝑥𝑥𝑥𝑥1
𝑥𝑥𝑥𝑥2
𝑥𝑥𝑥𝑥3
𝑥𝑥𝑥𝑥4

�

[0.5, 0.9] [0.5,0.6] [0.1,0.9] [0.1,0.7]
[0.2,0.5] [0.5,0.8] [0.3,0.8] [0.5,0.7]
[0.4,0.5] [0.5,0.7] [0.5,0.9] [0.4,0.7]
[0.3,0.6] [0.4,0.8] [0.3,0.6] [0.5,0.8]

�.

The 𝑆𝑆𝑆𝑆-spectrum of 𝛤𝛤𝛤𝛤2���⃗  is 𝜎𝜎𝜎𝜎𝑆𝑆𝑆𝑆�𝛤𝛤𝛤𝛤2���⃗ � = ([1.0, 1.0], [0.5,0.9], [0.5,0.9], [0.5,0.8]), the 𝑆𝑆𝑆𝑆-spectral 

radius of 𝛤𝛤𝛤𝛤2���⃗  is [1.0,1.0]. Afterwards, the 𝑆𝑆𝑆𝑆-energy of 𝛤𝛤𝛤𝛤2���⃗  is  𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆�𝛤𝛤𝛤𝛤2���⃗ � = [2.5, 3.6].
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2 (School 2)]

               𝑥𝑥1             𝑥𝑥2            𝑥𝑥3                𝑥𝑥4 

𝑆𝑆2 =
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

[
[0.5, 0.9] [0.5,0.6] [0.1,0.9] [0.1,0.7]
[0.2,0.5] [0.5,0.8] [0.3,0.8] [0.5,0.7]
[0.4,0.5] [0.5,0.7] [0.5,0.9] [0.4,0.7]
[0.3,0.6] [0.4,0.8] [0.3,0.6] [0.5,0.8]

]. 

 

FIGURE 4. [IVF Directed Graph 𝜞𝜞𝜞𝜞𝟑𝟑𝟑𝟑����⃗  (𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝟑𝟑𝟑𝟑)] 

The signless Laplacian matrix of 𝛤𝛤𝛤𝛤3���⃗  is an 4 × 4 matrix as given herewith: 

 𝑥𝑥𝑥𝑥1             𝑥𝑥𝑥𝑥2            𝑥𝑥𝑥𝑥3                𝑥𝑥𝑥𝑥4 

𝑆𝑆𝑆𝑆3 =

𝑥𝑥𝑥𝑥1
𝑥𝑥𝑥𝑥2
𝑥𝑥𝑥𝑥3
𝑥𝑥𝑥𝑥4

�

[0.4, 0.8] [0.4,0.6] [0.2,0.7] [0.3,0.4]
[0.3,0.4] [0.5,0.8] [0.4,0.7] [0.3,0.6]
[0.3,0.8] [0.5,0.8] [0.5,0.8] [0.2,0.6]
[0.3,0.5] [0.3,0.8] [0.3,0.6] [0.3,0.8]

�.

The 𝑆𝑆𝑆𝑆-spectrum of 𝛤𝛤𝛤𝛤3���⃗  is 𝜎𝜎𝜎𝜎𝑆𝑆𝑆𝑆�𝛤𝛤𝛤𝛤3���⃗ � = ([1.0, 1.0], [0.4,0.8], [0.5,0.8], [0.5,0.8]), the 𝑆𝑆𝑆𝑆-spectral 

radius of 𝛤𝛤𝛤𝛤3���⃗  is [1.0,1.0]. Afterward, the 𝑆𝑆𝑆𝑆-energy of 𝛤𝛤𝛤𝛤3���⃗  is  𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆�𝛤𝛤𝛤𝛤3���⃗ � = [2.4, 3.4]. Now after we 

apply step 7 in the above algorithm, we get 𝑍𝑍𝑍𝑍1 = 3.2, 𝑍𝑍𝑍𝑍2 = 3.05 and 𝑍𝑍𝑍𝑍3 = 2.9. Thus, according 

to the opinion of the four experts, the first school represented in Figure 2 is the appropriate 

school. 

CONCLUSION 

The IVFG can amplify flexibility and precision to model some problems better than an FG. 

Recently, graph energy has been employed in numerous fields. This is why we present the 

eigenvalues of the signless Laplacian matrix of the IVF-directed graph in this research. 

𝑥𝑥𝑥𝑥1 

𝑥𝑥𝑥𝑥3 𝑥𝑥𝑥𝑥4 
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[0.5,0.8] 

[0.5,0.8] [0.3,0.8] 
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FIGURE 4. [IVF Directed Graph 𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗  (School 3)]

The S-spectrum of 𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗  is σS(𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗ ) = ([1.0,1.0],[0.4,0.8],[0.
5,0.8],[0.5,0.8]), the S-spectral radius of 𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗  is [1.0,1.0]. 
Afterward, the S-energy of 𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗  is ES (𝛤𝛤1⃗⃗  ⃗ , 𝛤𝛤2⃗⃗  ⃗ and 𝛤𝛤3⃗⃗  ⃗  ) = [2.4,3.4]. 
Now after we apply step 7 in the above algorithm, we 
get Z1 = 3.2, Z2 = 3.05 and Z3 = 2.9. Thus, according to the 
opinion of the four experts, the first school represented 
in Figure 3 is the appropriate school.

               𝑥𝑥1             𝑥𝑥2            𝑥𝑥3                𝑥𝑥4 

𝑆𝑆3 =
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

[
[0.4, 0.8] [0.4,0.6] [0.2,0.7] [0.3,0.4]
[0.3,0.4] [0.5,0.8] [0.4,0.7] [0.3,0.6]
[0.3,0.8] [0.5,0.8] [0.5,0.8] [0.2,0.6]
[0.3,0.5] [0.3,0.8] [0.3,0.6] [0.3,0.8]

]. 

 of Mr. Xu's friends gave his opinion based on the criteria on which Mr. Xu relied, as each of 

them showed the difference between each criterion from one school to another and vice versa. 

We, in turn, analyzed the experts' opinions and organized them in the form of an IVF-directed 

graph (𝛤𝛤𝛤𝛤𝚤𝚤𝚤𝚤��⃗  ) where each IVF-directed graph represents one of these schools, as seen in Figures 

3, 4, and 5, as follows: 

Figure 3. [IVF Directed Graph 𝜞𝜞𝜞𝜞𝟏𝟏𝟏𝟏����⃗  (School 1)] 

In IVFG 𝛤𝛤𝛤𝛤1���⃗  , 𝛤𝛤𝛤𝛤2���⃗  and 𝛤𝛤𝛤𝛤3���⃗  shown in Figures 3, 4, 5, the IVF number of edges represents the 

degree of variation of the above criteria in this school based on the opinions of each expert. As 

for the final degree of expert opinion, it is represented by the degree of the vertices (that we 

obtained after we applied Definition 2.5 to the IVF number of edges), where each vertex 

represents one of the four experts. For example, in IVFG 𝛤𝛤𝛤𝛤1���⃗ , in Figure 3 (School 1) the IVF 

numbers [0.5,0,6] of expert 𝑥𝑥𝑥𝑥1, indicates that this expert refers to selecting this school 

represented in Figure 3, with a degree ranging between  0.5 and 0.6. Now, to solve this problem, 

and to help Mr. Xu choose the appropriate school from among the three schools, we apply the 

above-mentioned algorithm. The signless Laplacian matrix of 𝛤𝛤𝛤𝛤1���⃗  is an 4 × 4 matrix as given 

below:  

[0.6,0.9] 
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[0.6,0.9] 
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CONCLUSION

The IVFG can amplify flexibility and precision to 
model some problems better than an FG. Recently, graph 
energy has been employed in numerous fields. This is 
why we present the eigenvalues of the signless Laplacian 
matrix of the IVF-directed graph in this research. 
Moreover, we discuss the IVF-directed graph’s spectrum, 
energy, and spectral radius using the corresponding 
signless Laplacian matrix.
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