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Abstract

With the proliferation of multi-robot systems, the interfaces required to operate them have become increas-
ingly complex compared to those used for single robot systems. This can present challenges for operators
who need to extract relevant information in order to make informed decisions about how to operate the
robots. To address this issue, this thesis explores a variety of strategies aimed at improving the intuitive-
ness and usability of such systems. These strategies encompass a range of approaches, from designing
user interfaces to integrating physical input devices, knowledge representations, and other modalities to
assist operators. In this context, the thesis proposes a decision support system that provides operators
with additional information in an intuitive way, focusing specifically on handling a set of distinct commands
for a heterogeneous robotic team. A key constraint during the development of this system was the lack
of historical data available to train the modules on. As a result, the proposed system was tested in a
few-shot environment and was specifically designed for this circumstance. The support system comprises
two modules: one that probabilistically classifies the next command using a data mining approach called
sequence prediction, which is used to reorder the available commands in the interface; and a second that
creates higher-level commands by mining frequent sequences from the historical dataset. These com-
mand sequences are presented to the operator, who can add them as additional executable commands.
To evaluate the advantages and disadvantages of this novel approach, a user study was conducted, which
showed that both modules increased the efficiency and usability of the system, while also identifying op-
portunities for further improvement.
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1 Introduction

1.1 Motivation

The use of robotic systems has experienced a significant surge in popularity in recent years, with their ap-
plications ranging from personal assistance to industrial use. These systems offer a multitude of ways for
humans to interact with them, including simple start and stop buttons as well as more interactive options.
To enhance the user experience, different modalities for interaction have been created, such as computer,
laptop, tablet, and smartphone interfaces, as well as game controllers, gamepads, and joysticks. Further-
more, some interfaces are designed to provide haptic feedback, while others display all the necessary
information on a screen, and some offer a combination of both.

In this text, the focus will be narrowed down to on-screen interaction with robotic systems, while omitting
additional feedback provided on non-screen interfaces. Nonetheless, some of the most interesting new
input systems with on-device feedback that are used in conjunction with a screen-based interface will be
highlighted. As application interfaces become increasingly complex, inexperienced users may find them
challenging to understand, making interaction difficult. Overcrowded interfaces can also increase workload
and reduce efficiency, ultimately leading to accidents [76].

Most robotic systems are based on a set of distinct commands [86][81] that involve executing a single
action, such as moving an arm to a specific position or driving to a particular location. Alternatively, a
command might involve planning and executing a complete set of actions based on a specified goal.
The available commands or actions may vary depending on the type of robot and its level of autonomy.
Interaction with robotic systems can be carried out using more widespread interfaces, such as a mouse
or touchscreen, or more advanced devices, such as the haptic input device sigma.7 by Force Dimension.
The latter provides haptic feedback, allowing the user to feel the robot’s movements and exert force on the
device to control the robot more accurately.

When determining the level of autonomy for different commands, certain criteria must be taken into
account. The literature proposes various definitions to categorize the autonomy level of a system or com-
mand. However, the level of autonomy can be broadly defined in several subsections. For example, one
subsection pertains to robotic autonomy, which is defined by the number of interactions required to achieve
a specific goal [27]. Commands with low extent and time affordance are considered to have a low level of
autonomy. On the other hand, if a goal consists of a combination of different actions and there is no need
for intermediate inputs, the level of autonomy can be considered high.

Another subsection pertains to system autonomy, which concentrates on data extraction and process-
ing. This approach is based on concepts like unification and evaluation of the entire system’s data. It is not
limited to the scope of single commands or actions to control robots, but rather encompasses the entire
interaction and computation process. It is also applicable as a general information system. The complexity
of each command depends on the degrees of freedom the robot has and the already implemented interac-
tion possibilities. However, the level of autonomy is independent of complexity. Hence, it is easier to attain
a high level of autonomy on systems supporting a narrow set of tasks.

For some systems, users can utilize commands on various levels of autonomy [48], resulting in a rel-
atively high number of possible commands. This can sometimes lead to confusion, as some commands
may result in a similar or even the same goal state. Therefore, it would be beneficial to have a system
that supports the user in deciding which command to choose next or a way to make the robot automati-
cally choose the next move. This would require a higher level of autonomy on the holistic side to develop
reasonable suggestions.
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1.1.1 Multi-robot Scenarios

The preceding discourse has been limited to the examination of the capabilities of single robot systems.
However, with the current advancements in technology, interfaces have been developed that enable the
commanding of multiple robots at once, also known as robotic teams. These teams can either be com-
posed of homogeneous robots, i.e., robots of the same type, or heterogeneous ones, which consist of a
blend of different robots.

When commanding a heterogeneous robotic team, there are numerous possibilities for interaction, as
each robot has its unique abilities and fields of application. Consequently, an increase in the number of
commands required to manage the team effectively is inevitable. Additionally, there may be instances
where multiple robots must work in unison to accomplish a task, thereby necessitating more dynamic
control mechanisms.

Resource management is also a crucial consideration when working with a team of robots. For a group
of mobile robots, safety during any locomotion task is of the utmost importance, and prioritizing collision
avoidance becomes imperative.

1.1.2 Non expert Operation of Complex Systems

When it comes to operating a team of robots, it’s essential to provide thorough training to users due to the
complex nature of the system and the potential problems that may arise. This puts additional requirements
on human factors, which could be reduced or avoided with an effective interface. An effective interface
should either be self-explanatory or provide enough information to guide users with no prior training.

If the system is highly advanced, a recommendation system can serve as an expert system to suggest
following steps or provide an overview based on stored knowledge. The interface may also include a help
page for available interactions. The system may include a ontology about the known world, which stores
information about objects and their relationships for each robot individually, in a combined world state, or
both. This ontology could be used to infer on reasonable next steps or help the operator decide on the
robots’ next steps by providing him with an overview of the current state.

To gain a deeper understanding of human-robot interactions, it’s possible to record interactions and
evaluate the operator’s focus and commonly used interaction possibilities. This information can help de-
velopers extract the needs of users and develop further functionalities based on the gained knowledge. It’s
also essential to evaluate data based on user experience levels for effectively training support systems.

Manual improvements can also be made based on stored and gained knowledge. Training support
systems based on experienced users’ data can guide inexperienced users towards intuitive usage. Ulti-
mately, a thorough understanding of the system and its users is an essential next step for efficient and safe
operation of a team of robots.

1.1.3 Support Systems to decrease Mental Load

As mentioned, opportunities to increase levels of autonomy are divided into robotic command-based and
holistic approaches. Both of those can be handled on each robot and the complete system of all robots
combined in the robotic team. The supporting systems that can be created for each of these opportunities
are sheer endless. Here, the focus lies on a data acquisition and processing approach that covers a
combined view of the whole robotic team and will only brush on the topics mainly used for single robots.
Depending on which data is recorded during the operation, the possible systems that can be built on top
of it vary. This already filters the possible approaches one might take for each given system.

The recordings of the sessions here will be shown as a structured text file containing time-stamped
natural language text and parameterization values. Those can be processed afterward. Hence, there is
no data acquired to create a speech recognition system for example. Still, there are many opportunities to
work with the data given.
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First, the recorded data can be used to extract knowledge about the system. Therefore, one might
extract semantic states of the given environment and store them in a world representation or ontology.
Based on that, one can build a rule-based reasoning system. If the information is unclear and needs
some further processing, one can fall back on natural language processing and data mining approaches
to extract, classify, or translate the data to be processed further [87].

Another chance to create support for the operator lies in processing the sequences of actions and
parameter changes within the system. Here, one might extract rules and common item sets of any form
or create predictions [29]. Those processing steps can be implemented based on data mining methods or
with any neural network approach. The core difference here is that neural network approaches work best
if a lot of data is available to train the systems.

Those approaches can be used to gain and create knowledge about the system that can support the
user. Depending on the system requirements, each of the proposed approaches might be better suited for
one given environment than another. Hence, creating a general supporting system should be based on a
modular approach that can quickly adapt to fit the corresponding system’s needs.

1.2 Core Challenges in creating a supporting system

Providing support is a complex task that requires a system capable of processing data such that robots or
users can understand the output. To achieve this, several key factors must be considered:

• Create a data storage that contains valuable information:

– store detected objects within the given environment

– store semantic state

– store system and environmental parameters

– store system knowledge

– store user/operator interactions

• Process the stored data to extract useful information or improve the system

– create a knowledge base

– train artificial intelligence / neural networks

• Feed the gained knowledge or information back into the system

– enhance the user interface

– enhance the reasoning processes of the robot(s)

By following these steps, one can develop a comprehensive support system that caters to the needs of
robots and users alike. It’s worth noting that each robotic system may require unique data acquisition and
processing steps, but this overview provides a solid foundation to build upon.

1.3 Explored Use Case

For the successful implementation of the proposed system, it is crucial to take into consideration the
environment in which it will be utilized. Specifically, for the purpose of this thesis, the system will facilitate
Surface Avatar experiments that have been outlined in [48]. These experiments entail teleoperating a team
of robots from an orbital point of execution. The user interface employed for this setup will be operated
by an astronaut stationed at the International Space Station (ISS), who will be tasked with controlling four
distinct robots located on Earth: Rollin’ Justin, the Interact rover from the European Space Agency (ESA),
Bert, and the Lander Mounted Arm LAMA.
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Figure 1.1 Available Robots in Surface Avatar Setup

As depicted in figure 1.1, each robot has a specific role to play. Justin is responsible for the maintenance
of the base camp and the handling of scientific workflow. On the other hand, LAMA is tasked with managing
the storage of all scientific equipment and sample probes within the lander. The rover is equipped to make
long traverses, while Bert is better suited for narrow spaces such as caves and craters.

The robots can be controlled through specific commands or direct teleoperation, with inputs from a
haptic 3D device and joystick that translate into joint movements. The user interface displays camera
views, available commands, and input configurations for the direct teleoperation modes of each robot, with
the flexibility to switch between them.

1.4 Thesis statement and Overview

The primary objective of this thesis is to introduce a new data acquisition and processing system that is
specifically designed for robotic teams. The system is highly modular and can be easily adapted to the
requirements of most command-based user interfaces that are used for controlling either a single robot or
a team of robots.

The challenges that are discussed in section 1.2 serve as the foundation for the proposed system, and
each challenge is addressed through a process that is suitable in the test environment. The modular ap-
proach employed in the system allows for the addition or exchange of algorithms in each module, thereby
making it more flexible and adaptable. Since this thesis also entails the creation of a data acquisition sys-
tem, it is imperative to test the feasibility of the system through the use of a limited amount of training data.
This few-shot learning approach is extending the current set of requirements for the proposed system.

The thesis is divided into several chapters, each with its own unique focus and purpose. Chapter 2
includes a thorough bibliographic research and state-of-the-art overview of the individual parts, as well as
an overview of other existing systems. It covers various topics such as GUI layout optimization, knowledge
representation, natural language processing, command recommendation in terms of sequence prediction,
multi-robot handling, and a basic overview of UI testing. Chapter 3 describes the fundamental concept
of the approach and its formal definition, while chapter 4 provides the test scenario definitions and re-
quirements, an overview of the robotic team, and the user interface. Chapter 5 delves into the system’s
implementation and its interfaces, including a simple testing environment that was used during the devel-
opment phase.
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Chapter 6 presents an overview of the collected run-time data on the system’s performance in terms of
efficiency, speed, and usability. It also includes the results of a conducted user study. Finally, chapter 7
discusses the system’s advantages and disadvantages and provides an overview of possible future work
in this area.

In summary, this thesis presents a comprehensive and adaptable data acquisition and processing sys-
tem that can be used to aid the operator in controlling either a single robot or a team of robots, thereby
addressing the challenges that arise in such scenarios. The chapters provide a detailed overview of the
concepts, implementation, and evaluation of the system, and discuss the potential for further research in
this area.
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2 Bibliographic Research

The operation of commanding robots can be quite demanding on the operator in many ways. The com-
plexity of robots has significantly increased, and it is becoming more common to operate not just one robot
but multiple ones at the same time. As the variables in the scenarios increase, the possible inputs to the
operating system also increase, making the interfaces more and more crowded. This issue becomes even
more critical in a multi-robot scenario where the efficiency and usability of robotic systems need to be
enhanced.

To address this problem, automatic processes can be incorporated into interfaces to aid the operator in
making reasonable decisions to complete tasks. The effectiveness of each method depends on the given
goal and scenario. One way to improve the interface is by adapting its layout to make it more transparent
and easier to navigate. Another method is to extend the current input and output devices to remove the
full range of information that still needs to be displayed on the screen.

The operation of commanding robots can be quite demanding on the operator in many ways. The
complexity of robots has significantly increased, and it is becoming more common to operate not just one
robot but multiple ones at the same time. As the variables in the scenarios increase, the possible inputs to
the operating system also increase, making the interfaces more and more crowded. This issue becomes
even more critical in a multi-robot scenario where the efficiency and usability of robotic systems need to
be enhanced.

To address this problem, automatic processes can be incorporated into interfaces to aid the operator in
making reasonable decisions to complete tasks. The effectiveness of each method depends on the given
goal and scenario. One way to improve the interface is by adapting its layout to make it more transparent
and easier to navigate. Another method is to extend the current input and output devices to remove the
full range of information that still needs to be displayed on the screen.

Adding processes that help to structure the displayed information is also possible. This includes intel-
ligent structures that can store knowledge about the current state of the scenario, which can be stored
in ontologies and world representations. Within those structures, one can create a comparably easy way
to handle, store, and reason with the data at hand. The information can also be used to create recom-
mendation values for the most likely following action. Predicting a following action is just one of many
ways to create recommendations, as another commonly used method is based on a data mining point of
view. It involves processing the history of interactions with the system and additional metadata to infer the
connection between different events and actions within the system.

One crucial area that is frequently utilized to create a more natural interface is Natural Language Pro-
cessing (NLP). NLP helps bridge the gap between robotic and human knowledge patterns since robots
generally only comprehend what they have been programmed to understand. When the system can auto-
matically translate data presented in a human-readable format to machine-readable data, the interaction
between humans and machines becomes more accessible.

Given this brief overview of the intricacy of the subject, it is evident that there are numerous possibilities
for creating a system that supports the operator. As a result, the next chapter will provide a fundamental
overview of current and critical literature in the context of this topic and elaborate on the specific appli-
cations it would be helpful in. It focuses on the processes utilized in developing the given thesis, and
while many more research areas can be utilized to support the user, the topics covered here will include
information display and control, knowledge handling, natural language processing, command prediction
and recommendation, a combination of different classification methods, and an overview of evaluation
techniques for a user study at the end.
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2.1 Information Display and Control

In order to effectively coordinate and control multiple robots operating simultaneously, a well-designed
interface is essential. An optimized interface should provide a comprehensive system overview, including
real-time status updates, task allocation, and sensor data visualization. It should enable operators to easily
monitor and command individual robots or groups of robots, while also facilitating seamless communication
and information sharing among the robots. Moreover, the interface should be intuitive and user-friendly,
minimizing cognitive load and allowing operators to respond quickly to changing situations. By optimizing
interfaces for multi-robot scenarios, one can unlock the full potential of these systems, promoting seamless
coordination, enhanced decision-making, and improved overall performance. In the following sections, one
will explore current research on projects that address these challenges.

2.1.1 GUIs Available

In this section, one will delve into the current implementations for multi-robot UIs and provide a more
detailed explanation. Many graphical user interfaces for multi-robot scenarios primarily focus on high-level
commands for each robot and provide an overview of the telemetry data of the robots. One specific area
of the interface is dedicated to assigning available commands to the available robots [36] [81] [82] [85].

The multi-robot interfaces typically consist of multiple views that allow the operator to view the infor-
mation available for the given system. The basic layout includes a map of the known surroundings, an
overview of the basic robot information, such as availability, error messages, and available commands,
and an overview of each robot’s currently scheduled commands. Furthermore, an overview of the avail-
able camera streams from the robots is also part of the basic layout, as illustrated in figures 2.1c and 2.1b.
It should be noted that most interfaces allow for the simultaneous execution of tasks for multiple robots.
The commands are defined in such a way that the command specifies a goal, and the robots are respon-
sible for planning all the necessary sub-tasks. Therefore, if one commands a robot to collect a sample at
a specific point on the map, it autonomously plans the path, drives there, and collects the given sample.
This approach eliminates any different levels of autonomy that may be present.

The design of interfaces for multi-robot systems is a crucial aspect of developing efficient and effective
systems. As shown in Figure 2.1, these interfaces are typically designed to separate information into
different screen layouts, which can either require multiple screens or an efficient way to switch between
them. One interesting layout, presented in Schmaus et al.’s paper [86], focuses on a single robot for the

(a) Multi-robot Interface in robot focused view (source:
[86]) (b) Copilot (source: [36])

(c) ROS-MC (source: [81])

Figure 2.1 Current GUIs for multi-robot Scenarios
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base layout (as seen in Figure 2.1a), allowing the user to have all the information of that single robot on
the screen while also providing the ability to switch between robots to command each one of them. This
focus on individual robots is particularly helpful for a lower level of autonomy, as the robots require more
interactions for commanding. It is plausible that this system also allows interaction with the robots on
different levels of autonomy.

It is worth noting that the components for multi-robot interfaces are stable in their combination, but the
layout varies depending on the robotic team’s autonomy level. In contrast, on a lower level of autonomy,
the information is structured so that each robot is the center of attention by itself. On the other hand,
robotic systems based on a higher level of autonomy tend to have a layout that provides an overview of all
the robots at once. This highlights the importance of designing interfaces that meet the specific needs of
the robotic team’s autonomy level.

Overall, the design of interfaces for multi-robot systems is a complex task that requires careful consider-
ation of the robots’ autonomy levels. The layout of the interface must be tailored to meet the needs of the
user, with a focus on providing efficient and effective ways to command and control each robot. With the
right interface design, multi-robot systems can be highly effective tools for achieving complex tasks and
improving overall efficiency.

2.1.2 Multi-Robot Handling by Single Operator

The use of multiple robots in a scenario can be quite complex, especially when it comes to commanding
them, which is often the responsibility of a single operator. This can become overwhelming and potentially
lead to errors. However, there are several options available to manage the workload and reduce the
operator’s stress levels.

As mentioned in the introduction, robots can operate at different levels of autonomy [27][86], offering
a wide range of possible interactions. To keep the operator’s workload manageable, one approach is
to filter the commands based on their current mental state. This means that the operator’s situational
awareness, stress levels, and trust level are assessed in some way. Based on this assessment, the
available commands and interface are adapted. This approach was highlighted in an article by Gomez et
al. [76].

Another interesting idea was presented in a 2016 article [75], which stated that the data recorded from
the robots and the operator can be used to create a selection model. This model determines which parts
of the UI are most likely to be needed and used, taking into account the current mission state and the
operator’s mental state. Consequently, the robot’s layout and commanding method are adapted according
to these parameters. Furthermore, depending on the state, it should be considered to adjust the level

Figure 2.2 Mining Information from Robot and Operator-Side (source:[75])
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of autonomy and the type of command provided for each robot. This method can save time and reduce
errors. The states are retrieved from the user and mission data and collected in the selection algorithm,
as shown in Figure 2.2, to decide which interface parts should be currently visible.

These approaches can make the commanding of multiple robots more manageable and less overwhelm-
ing for the operator. By adapting the interface and commands to the operator’s mental state, the operator
is more likely to make the right decisions and avoid errors.

2.1.3 Supporting Devices for Information Display and Teleoperation Modalities

Given the increasing diversity of interfaces and available input and output devices, it is important to con-
sider how these factors can impact immersion and task workload. With numerous options available, in-
cluding devices currently in development and already on the market, it is essential to carefully evaluate
their potential benefits.

In addition to traditional input methods such as mice, keyboards, and touchscreens, newer control de-
vices are being developed to provide output information to the device or an additional output device. This
is known as haptic feedback and is a growing area of research. Haptic feedback devices can reduce
workload and help manage information overload by providing additional resources [5].

One example of a haptic feedback device is the e-Vita haptic tablet [52]. This device, which resembles
a touchscreen, can adapt its texture to provide physical feedback when the state of the commanded robot
changes. The result is an increased level of immersion and a decrease in task workload.

Another device that provides both input and output capabilities is the sigma.7 joystick device from Force
Dimension [93]. This seven-degree-of-freedom device offers force output on each of the translational and
rotational dimensions, making it ideal for tasks that require collision detection. The force output can mimic
collisions on the input device and guide the user in a specific direction.

Next, the GUI robot [30] is a unique spherical device that can detect hits, shaking, spinning, movement,
and pick-up and put-down events. It can also use these actions as output events, such as simulating a
jumping motion, shaking, or driving. The GUI robot was used to improve the usability of desktop GUI
applications, including the 3D modeling application Blender, by emulating keyboard and mouse inputs

(a) Brain-embedded system to control robotic team
(source: [38])

(b) Exoskeleton as input device with haptic feedback
(source: [80])

(c) GUI Robot Ollie with haptic feedback (source: [30])

Figure 2.3 Overview of in- and output devices
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(see figure 2.3c). The result is an improved user experience and greater efficiency in non-scriptable
applications.

An exoskeleton is one of the most complex haptic devices currently available in the field. Exoskeletons
come in various forms, from arm-only to full-body exoskeletons, and are primarily used for complicated
tasks that have yet to be autonomously implemented on robots [88][80][98]. Due to their complexity and
infrequent use, the implementation of exoskeletons would be of little priority in most cases. However, they
do offer increased granularity in which one can operate the robot or robots. An example for such a system
can be viewed in figure 2.3b.

Finally, the traction cylinder [53] is another great haptic device option, which is designed to provide
haptic feedback to the user of an unmanned ground vehicle (UGV). The traction cylinder outputs different
motion patterns, depending on the current traction state of the vehicle, and deflects the information from
the screen accordingly.

While most examples discussed here are primarily based on haptic feedback devices, it is worth men-
tioning that research in robotics is going in different directions. For example, in Kirchner et al.’s paper
[38], robots are controlled using an embedded brain reading device, showing a promising future of using
brain signals to control robots (figure 2.3a). On the other hand, Jeffri and Rambli’s work [35] showcases
the advantages of reducing mental load and task completion time with the help of an augmented reality
system.

These technologies have varied fields of application, from exploration missions to assistive robotics. The
potential for their implementation in different sectors is still being explored, and with the rapid advancement
in robotics technology, one can expect more exciting developments in the field in the coming years.

2.2 Knowledge Representation and Handling

As previously mentioned, decision-making is an essential aspect of managing a team of robots. How-
ever, the operator’s workload can be reduced if some autonomous processes can assist in this aspect.
To achieve this, the system requires knowledge representation to make logical decisions within those pro-
cesses. This is typically achieved by creating a "world model" or "world representation."

In simple terms, a world model is a machine-readable database that provides information about the
current state of the environment surrounding the robots. It includes the states of all objects, including the
robots themselves. Depending on the level of autonomy and the task space in which the robots operate,
the world model may consist of different variables. For example, it can be a purely geometric model that
handles collision avoidance for any movement. Alternatively, the model can contain semantic information
and interaction instructions. It is often a shared data store that each of the robots or components can
access. In other words, the world models can be seen as the system’s current belief state.

The robots can share their world information and sensor data with the world model, as well as request
information from the world model to plan their next task. Based on these world states, the robots can
execute different tasks, which can be represented in a planning framework like the planning domain defi-
nition language (PDDL) [26][43][87][63]. This framework defines the world in a set of finite states, and the
actions within are defined in a way where the prerequisites, the required tools, and the outcome of each
action are defined. With this information, the robot can plan its actions accordingly.

2.2.1 Ontologies

By continuing to advance in the field of robotics, it is becoming increasingly important to develop a proper
way to extract and process information from these systems. One newer approach to defining world mod-
els is through the use of ontologies, which are representations of a domain of knowledge consisting of
classes with different properties and their relation to one another. While the concept of an ontology is
not new, its application as a knowledge base in robotics is a rising trend, as it offers a more holistic ap-
proach to representing the world and solving problems without needing specific robots to perform tasks
[63][7][60][55]
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Unlike traditional world models, ontologies provide a better framework for the relationship between parts
of the world, creating a network of world component classes, their properties, capabilities, functions, and
relations. Each component can be represented by an ontology individually, providing a specification of
the concept for each of the components. According to Olivares et al. [63], the cognitive capabilities
implemented on current ontologies include recognition and categorization, decision-making, perception,
prediction, problem-solving, belief modeling, execution handling, interaction with the system, remembering
historical data, and learning from it. Although not all ontologies cover all of these points, the list of options
alone shows the power and potential of such a system. Ontologies can create, monitor, and execute
applications for a robotic team, depending on the circumstances.

One example of a robotic ontology is Know-Rob [8][91], an open-source knowledge processing ontology
and one of the most full-featured ontologies currently available. It can perform most tasks described in
Olivares et al.’s paper, taking an action-centered approach that models the available tasks of a robot. An-
other example is the Socio-physical Model of Activities (SOMA) [4], a project by the collaborative research
center Everyday Activity Science and Engineering (EASE), which focuses on the physical and social con-
text in which the actions are executed in and tries to model human reasoning on the robots in that scope.
A query-based shopping assistant is one of the newest applications of this research project [41]. Each
example is based on a semantic web representation of the given data, a widespread way to implement an
ontology as it can represent the ontology’s classes and its relations [90].

In summary, by continuing to develop autonomously operating robots, it is essential to have a proper way
to extract and process information from the system and store it for future use. Creating an ontology that
handles all the relations between acquired and given knowledge about the system is an excellent approach
to achieving this goal. With the power and potential of ontologies in robotics, one can look forward to even
more innovative and advanced systems in the future.

2.3 Handling Natural Language

Natural language processing (NLP) is a critical task in handling knowledge, given that the majority of
information on our planet is presented in human-readable form. Any information generated by autonomous
systems would be useful if it could be presented in an understandable form. Therefore, NLP is not only
essential to understand the meaning of each word, but it is also important to understand the relationships
between the words, as the same set of words can mean vastly different things if their order is changed. As
a result, the development of large language models (LLMs) is on the rise. OpenAI’s Generative Pre-trained
Transformer (GPT) [12][70][71] is the most well-known LLM, and it is currently in its fourth version [64].

GPT, like many other LLMs, is based on the transformer architecture [97] and is trained on a massive
amount of data. Transformers are attention-based recurrent or convolutional neural networks with an
encoding and decoding block that can transform one sequence of tokens into another. This technique is
commonly used in natural language processing, but transformers can also be trained to process audio
and video data. As the resources required to fully train such a model are relatively high, one can choose
from various pre-trained models. To fine-tune the model for one’s specific needs, a limited amount of data-
points need to be prepared, but using at least a couple of thousand data-points to fine-tune one of those
pre-trained models is still recommended to create a valuable new model. Hence, it is not the new miracle
weapon to deal with all NLP problems without the corresponding data available.

It is important to note that the output of these models is not always one hundred percent reliable, given
that they are based on neural networks. The output is computed based on trained weights that provide a
probability distribution based on the training data. Due to the high amount of training data, the output might
sound correct in many requests, but it should not be seen as a single source of truth [79]. This is because
it is difficult to define a system in a way that the truth value of each of the outputs can be determined and
verified. Additionally, the models may hallucinate made-up information that appeared as fragments when
combining parts of the used training data. Moreover, using those models is computationally expensive
and, therefore, might not be an appropriate solution for any NLP requirement.
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2.3.1 Pretrained Models available

The platform huggingface.co [100] is a well-known research platform where you can access pre-trained
models and data sets to train those models. It provides various options for different training model pre-
sets, application domains, and languages in which the models were trained. This thesis will discuss
a few general-purpose text processing models in English that you should be aware of. Along with the
GPT2 model, which is also available on this platform, there are multiple versions of the Bidirectional
Encoder Representations from Transformers (BERT) [15][42][33], LUKE (Language Understanding with
Knowledge-based Embeddings) [103], CANINE (Character Architecture with No tokenization In Neural
Encoders) [13], and LLaMA [96][95].

BERT is an extensively researched model that covers many languages [69] and can also be used for
translation tasks. Depending on the specific model used, it tokenizes the input text on a word or sub-
word level, meaning it translates the text in a sequence of tokens or identifiers for each word or sub-word.
This sequence of tokens is then passed to the model to process, where the sequence will be mapped
to a multidimensional space that is supposed to map semantically similar phrases and words close to
each other. Each unknown word or sub-word will not be given a valid token, as the model works on
a word basis, meaning that those will be defined as ’UNKNOWN’ and processed as such. Pre-trained
BERT models often only come with the encoder part of the model, as the decoding is dependent on the
application field of the model.

LUKE is initially based on the BERT model and hence has the same restrictions in terms of word tok-
enization. However, this model has an advantage over BERT as, in addition to the usual training data, it
allows you to define a finite set of entities, which creates the possibility to model relations between those
specified entities. This works similarly to the token attention space in other tokens in usual transformers.
The type of token is also considered when computing the model output, which leads to better results in
entity-related reasoning and classification.

Natural Language Processing (NLP) is a rapidly growing field with many exciting developments. One
of the most significant advances in recent years has been the creation of sophisticated language models
that can understand and analyze text with remarkable accuracy. These models are powered by complex
algorithms that enable them to process vast amounts of data and extract valuable insights from it.

The CANINE model is trained without tokenization of words, which means that there is no preprocessing
step required before feeding information to the model. While the input length is limited to 2048 characters
per query, the model is less sensitive to writing errors and can map unknown words within the usual
dimensions without any issues. However, as the number of input parameters is higher without tokenization,
the model works with three internal encoders to embed text for further processing.

Finally, the LLaMA model was created entirely using open-source data and offers a range of models
with varying parameters. While the model can be used for personal projects, it is strictly prohibited for
any commercial or research use in biometric processing or military areas. The biggest challenge with
this model is that all available parameters need to be simultaneously loaded in float16 precision into CPU
RAM, which requires at least 130 gigabytes of RAM for the 65B model. However, the smallest of the
models should be able to run on a 14GB RAM system. The second version of this model is fine-tuned for
chat applications.

For those looking to leverage language models for NLP tasks, the model storage of huggingface.co is
an excellent resource. However, it is essential to check the licenses of the models before use, especially
for commercial and research purposes. Additionally, users need to log in to their account for each use of
the models, and the models from huggingface.co may not be appropriate for all applications. Alternatively,
users can explore the models offered by the PyTorch and TensorFlow libraries, which offer a smaller
selection of models but are still powerful. Some of the BERT models also have independent libraries that
work without middleware.

Overall, the field of NLP is continually evolving, and new models are being developed and refined. As
such, it is essential to stay up-to-date with the latest advances and choose the right model for the task at
hand. Whether it’s one of the previously mentioned models, or another model altogether, there are many
exciting possibilities for those looking to leverage NLP to analyze and understand text.
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2.3.2 Application Areas in Robotics

Now that a primary understanding of what types and models for NLP are available are present, this section
is moving on to its application. There are many fields in which these models can be beneficial, but one
of the leading research areas in this direction is task planning in a user-interactive way. For example, the
user inputs a request or goal for the robot [92][105], which will try to plan a sequence of actions to reach
this goal. In that scope, it is also essential to translate the input into an action that the robot is capable of,
as stated in other papers [34][2].

As in traditional systems, the robot usually assumes unclear or unknown parameters, the difference
here is that the robot asks the user for clarification. This helps the robot so that the plan’s outcome better
resembles what the user had in mind. It can also be used to create PDDL actions based on a prompt given
some sample actions [87]. Additionally, these systems can improve the operator’s trust in the system itself
[31] and enhance the interaction with the system compared to a conventional control setup.

Furthermore, NLP models can be applied to any text classification task, where, for some instances, only
the encoder part of the transformer is used for embedding the words or phrases in the feature space.
Other neural network-based methods exist for embedding the words, such as global vectors (GloVe) [68]
or Word2Vec [59].

However, these methods can be computationally expensive. Therefore, one of the simplest ways to
compare text strings is by computing the Damerau-Levenshtein distance [14]. This distance algorithm
focuses on character overlap, meaning that the output of the algorithm is the minimum operations needed
to change one string into the other. While it is mainly used for spelling error correction, it can also be
used here as a preprocessing step in cases where the definitions have similar descriptive strings for most
instances of the same class.

Given these embeddings, the text can be classified with any appropriate classification method like k-
means clustering, k-nearest neighbors (KNN), or any neural network-based classification method, where it
is also possible to train the transformer decoder to output the classes. By doing so, one can achieve highly
accurate and efficient text classification results that can significantly improve a wide range of applications,
including chatbots, sentiment analysis, and more.

2.4 Command Recommendations and Decision Support Systems

In the field of decision support systems, the application of knowledge extracted from data can provide
operators with significant advantages. According to Rosati et al.’s work [77], the main components of
creating support systems for predictive support systems are data collection, feature extraction, setting up a
predictive model, cloud storage, and data analysis. This applies to any knowledge-based recommendation
and support system [62][65].

Recommendation systems are widely used in various fields, covering many areas of support systems
and their information display. Therefore, any Decision Support System can also be called a part of a
general recommendation system. However, this definition might only be supported within some scientific
literature. In the software development interface, the term recommendation system often refers to a help
page system and command recommendation system that introduces unknown commands to the operator
[25][47]. This is especially useful in environments with at least a hundred, if not thousands of commands,
where it can improve command awareness of the operators. It also highlights that help pages about the us-
age of commands can improve the general understanding of what impact the execution of a command can
have on the system. Another type of recommender system works on a similarity check, as it recommends
similar content or commands to the operator [74].

Furthermore, many recommendation systems cover some form of prediction within the system [25][47][1].
In many cases, the usage of the system covers a few reoccurring sequences of commands, which can be
extracted from the recorded data and used to improve the overall usage of the interface. Especially in
robotics, those sequences can also be used to extract specific goals that can be achieved within the cur-
rent setup. Aggarwal et al. [1] proposed a system where the sequences are classified for specific goals.
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Therefore, the most probable goal is classified first, which ideally fits the one the operator has in mind.
This goal is then used as an additional input to the sequence prediction algorithm and improves its per-
formance. This is useful as this system filters unwanted recommendations with similar sequences but
different goals.

Given this first overview and definition of recommender systems, the following part of this thesis will
review a couple of examples of sequence mining, sequence prediction, and its application field. For a
basic overview of the whole topic of time series forecasting, reading Masini et al. [57] is recommended.

2.4.1 Data mining scope

In the scope of data mining, sequence handling plays a vital role, encompassing various algorithms involv-
ing sequential pattern mining, clustering, sequential rule mining, sequence prediction, and many more.
These conventional machine learning algorithms are primarily associated with the processing of big data
but can also offer value on small data sets in many cases.

Given the limited space of this thesis, only the sequence pattern mining and prediction algorithms imple-
mented in the system will be covered. It is essential to note that, unlike time series mining and prediction,
these algorithms do not predict a single value’s occurrence but rather define the possibility of an item
occurring after a sequence of items or item sets. An item can refer to anything from an event, object,
command, string, or any other identifying value representation. Additionally, an item-set is defined as a
combination of finite items. However, most algorithms only consider a sequence of single-item item-sets
as a sequence of items.

The system used in this thesis does not have implemented data collection, limiting the available data at
the point of testing. Therefore, it was decided to use loss-less sequence prediction algorithms. The CPT+
algorithm [28][29], which has higher accuracy compared to other prediction algorithms, and the SuBSeq
algorithm [40], which works on a similar approach, are presented. The significant difference between these
algorithms is that CPT+ does not consider the order of items in its prediction, while SuBSeq does. Both
algorithms extract all sub-sequences of the training data and then create a tree structure based on them.
During prediction, they compare the branches of the tree with the input and output the most likely next item
based on that.

In the realm of sequence pattern mining algorithms, it’s essential to have an algorithm that supports
different parameterizations so that the model can be easily adapted to the needs of other applications
afterward. That’s why the algorithms within the Python library prefixspan were chosen, as they include
three different specific algorithms: Jian et al.’s PrefixSpan [67], Yan et al.’s BIDE [99], and Chunacong
et al.’s FEAT [24]. Additionally, two other algorithms were used, namely the non-overlapping sequential
pattern (NOSEP) algorithm [102] and the Quantile-based Cohesive Sequential Patterns (QCSP) algorithm
[20].

The basic implementation of pattern recognition recognizes any sub-sequence within a set of sequences
where the items of the sub-sequence occur in the same order within those training sequences. The number
of times these sequences occur in the training set is called the support of the sub-sequence. Each sub-
sequence can only be detected once within each sequence present in the training set for the basic prefix-
span algorithm. QCSP follows the same approach, but with the option to define a cohesion value, which
means that the span over which the subsequence ranges can be limited.

In the case of the NOSEP algorithm, an additional requirement that the extracted sub-sequences do
not overlap is stated. The detected subsequences are cohesive based on a maximum gap between the
items. It can detect a subsequence multiple times within a given training sequence. If one wants to learn
more about current advances in this field, Nagori and Kumar’s paper "Issues and Research Challenges in
Sequential Pattern Mining" [61] provides an excellent overview of this topic.
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2.4.2 Neural Networks (RNN, LSTM, GRU)

One of the available machine learning options is a neural network (NN) based approach. For time series
prediction, the most common models are based on recurrent neural networks (RNN) [49][104]. RNNs can
store and handle a recursively updated internal memory that includes previous states of the model. As
there are many different implementation specifications of RNNs, the two most commonly used RNNs in
time series forecasting are the long short-term memory (LSTM) and the gated recurrent units (GRU).

LSTMs can learn long-term dependencies, which helps deal with the vanishing gradient problem. During
training on big timesteps, the gradient of gradient-based approaches vanishes or becomes very small, and
LSTMs can handle this issue. It is based on an input, forget, and output gate that handles what part of the
data to learn, save, forget, or remember. Based on that, the output will be computed.

GRUs are more straightforward models compared to LSTMs. They lack an output gate, which is replaced
by an update and reset gate. These gates are represented as vectors and define which part of the stored
information should be given to the output of the GRU cell.

However, most NNs require data to be discretized in regular intervals for time series forecasting. This
makes it difficult to use for data with missing information or arriving at random intervals. This issue has
been handled in a paper on GRUs, which shows that they are effective in handling missing patterns for
sufficient imputation.

In addition, due to the previous occurrence of the topic, the use of transformers is also possible for
sequence prediction. Transformers have gained popularity in natural language processing and have shown
promising results in sequence prediction tasks.

In conclusion, the use of RNNs, specifically LSTMs and GRUs, has become a popular approach for time
series prediction. However, the issue of missing data and random arrival intervals can be challenging to
handle. The use of transformers also presents a promising option for sequence prediction tasks. With
these advances in machine learning, it is possible to improve time series prediction accuracy and make
better decisions based on data-driven insights.

2.4.3 Monte Carlo Methods

Markov chains, also known as Markov processes, are a commonly used method for sequence prediction
[6]. This modeling approach utilizes a set of states to represent the different items of a sequence and aims
to define distinct probabilities based on Bayesian inference to the occurrence of an item given the current
state. The state is defined by the sequence of a finite number of last observed events. Since this is a
stochastic model, algorithms are necessary to create predictions from these constructs.

One well-known example of such algorithms is the Markov Chain Monte Carlo method (MCMC). The
Metropolis method and the Gibbs sampler are among the most well-known algorithms for MCMC. However,
a transformer based on the MCMC method has also been developed more recently [56].

2.5 Combining different Classifications and Predictions

The previous section discussed various methods for predicting and classifying the occurrence of an item.
While each algorithm has its own strengths and weaknesses, many systems benefit from combining mul-
tiple algorithms to achieve the best possible results. In this section, some examples of how to achieve this
will be covered.

The two most common methods for combining algorithms are importance sampling [94] and bootstrap
aggregating (bagging) [10]. Importance sampling works by identifying the algorithm that performs best for
each state and using its output. Meanwhile, the output of the other algorithms is discarded. Bagging, on
the other hand, combines the outputs of the different algorithms. In this approach, each prediction value
is weighted and summed for each item. The weights can be equally distributed or based on a previously
calculated probability distribution. For distinct classification methods that do not return distributions, one
can either work with one-hot encoding or pass the class with the highest classification occurrence number.
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Importance sampling and bagging can be combined to create hybrid algorithms that leverage the strengths
of both methods. This approach is particularly useful when dealing with complex systems that require mul-
tiple algorithms to achieve the best possible results.

Another approach is to use ensemble methods [51], which combine the predictions of multiple base
models. Ensemble methods can be grouped into two categories: homogeneous and heterogeneous.
Homogeneous ensembles use the same base model with different parameters, while heterogeneous en-
sembles use different types of base models. Ensemble methods can also be further divided into three
types: bagging, boosting, and stacking. Bagging and boosting were previously discussed, while stacking
involves combining the outputs of multiple models using a meta-model.

In conclusion, there are many ways to combine algorithms to improve the accuracy of predictions and
classifications. By leveraging the strengths of various algorithms and combining them in innovative ways,
it is possible to create highly effective models that can handle even the most complex systems.

2.6 User Study

To assess the effectiveness of a system in enhancing the usability of a User Interface, it is crucial to
conduct one or more user studies to confirm that the additional system adds value to the interface in terms
of operation speed, perceived ease of use, and various other parameters.

The user’s behavior can be evaluated with regards to engagement, responsiveness, attractiveness, and
performance. However, not all of this information can be automatically evaluated within a basic setup.
Therefore, various questionnaire types are used to extract the perceived usability, which can be assessed
afterward with all the automatically logged data.

There are many different combinations of user data evaluation types, and as such, the most commonly
used ones will be reviewed in the following sections. By considering these evaluation types, one can
effectively assess the performance of a system and make informed decisions to improve the usability of a
User Interface.

2.6.1 Run-time Data to be stored

One common practice is to log all interactions with an interface or a specific set of them. These interactions
can range from clicking on different items to executing specific tasks or opening menus. The amount of data
needed depends on the hypothesis that one wants to prove. If there is no specific hypothesis, adding as
many data points as possible can be beneficial as long as the overall system’s performance and operation
speed are not negatively impacted.

2.6.2 Standard Questionnaires

Questionnaires can be divided into two groups: those that evaluate the overall system performance and
those that evaluate the system on a task level. In both groups, users rate their satisfaction and usability of
the system using a corresponding rating scale, such as the Likert scale.

Overall performance questionnaires are completed after the proposed system has been tested by the
user in a user study. These questionnaires typically have a broader range of questions, covering aspects
such as speed, interface, usability, and error management within the system. One example is the System
Usability Scale (SUS) [11], which consists of ten questions about satisfaction with the system and the
ability to learn to use it. The post-study system usability questionnaire (PSSUQ) [46] covers additional
questions about the interface layout and whether users were able to find the information they needed.
Other questionnaires, such as the QUIS [83] and SUMI[37], cover a wider range of topics, including display
layout, terminology, system-feedback, learning, system properties, technical instructions, and more.
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Questionnaires are also commonly used after each task to measure user satisfaction, expectation vs.
reality, or perceived task load. These questionnaires typically contain only one or two questions, such as
the single ease question (SEQ) [83], the subjective mental effort question (SMEQ) [84], or between two to
three questions [46][3]. NASA developed a more extensive version for task load measurement, called the
task load index [32], which divides task load into mental, physical, and temporal aspects.

Overall, post-task questionnaires tend to focus on user satisfaction and ease of use, while post-study
questionnaires take a more holistic approach to identifying areas where the system and its interface can
be improved.

2.7 Summary

By delving deeper into the world of User Interfaces, it becomes apparent that there is always room for
improvement. One of the primary goals of UI design is to make the interface as easy to handle as possible,
reducing the mental load that the operator has to exhaust. There are several ways to achieve this, including
improving the layout of the Graphical User Interface (GUI), deflecting the mass of information in the GUI
to other devices, or working on the knowledge handling of the system.

Speaking of knowledge handling, there are numerous options available, ranging from natural language
processing (NLP) that can handle both spoken and written input to different kinds of knowledge representa-
tions. The most common method, however, seems to be an ontology that represents knowledge in different
classes with dependencies. Data mining and machine learning techniques like sequence prediction can
also create further knowledge. When it comes to machine learning, one can choose from neural network
options like the Recurrent Neural Network (RNN) and conventional methods like prediction-tree-based op-
tions. It is important to note that only certain options are feasible for each project. For example, neural
network options require a comparatively high amount of training data to create reliable output, whereas
some conventional methods can work with a lower amount of training data. Another important point is that
NN approaches focus on predicting time series and not prediction of categorical items, although with a
one-hot encoding, that could be achieved as well.

Given the plethora of options available, one may find that for an exact prediction or classification, more
than one option would be feasible, and hence one would like to combine the outputs of those options.
Therefore, different options to do so have also been covered, ranging from particle filters to bagging.

Furthermore, it is essential to evaluate the usefulness of such a system, which can also determine how
user-friendly the given system is. This can be done through user studies, where the basic structure of user
studies and the data that is usually recorded have been discussed. There are several options available to
evaluate a system’s usefulness, and they have been elaborated upon as well.

In conclusion, the world of UI design is vast and ever-changing, and there is always something new
to learn. With the plethora of options available, it is essential to choose the right one for each project,
keeping in mind the constraints and limitations. However, with the right approach, it is possible to create
an interface that is easy to handle, efficient, and user-friendly.
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3 Concept

The proposed framework aims to enhance the user experience, particularly for those who are new or
inexperienced in the system. With the use of a multi-robot commanding user interface, the framework
aims to improve the ability to execute the given task quickly and with ease. This chapter lays out the basic
concept of the proposed system and provides a formal description and necessary definitions.

It is important to note that this system was created without significant historical data from the given
system, as there has yet to be an implementation for logging the data. Additionally, the corresponding
team has a pending project deadline (not involving this thesis’ work), which restricted access to the robots
and limited the number of logged missions. However, an approach has been utilized to improve operator
performance, even on a low count of run-time files, making the approach a few-shot-learning problem. The
performance would significantly increase the more logged runs are given to train the model.

To achieve this goal, a modular approach was employed, allowing recorded data to be processed in
different ways, with each individual part being adapted according to the specific needs of the system.
Additionally, other processing algorithms can be added to it for further customization. The focus is on a
data-centric approach using historical data logs from the specific application system to create recommen-
dation data for the user.

The concept presented here provides a basic description of the proposed system and the necessary
definitions. It is expected to provide significant improvements in user experience, particularly for new or
inexperienced users, and to offer a more efficient and effective way of handling commanding tasks within
a UI.

Figure 3.1 Overview of current communication components

The current system, which will be explained in more detail in the following chapter, offers a wide range of
options for interacting with robots, including teleoperation with a force feedback input device and a joystick.
However, due to the varying levels of autonomy and framework definitions, the decision was made to focus
on sequence prediction. This allows for a more universal approach as the definition of a sequence is not
dependent on any specific framework or action definition used by a particular robot. In addition, a plethora
of interaction events can be recorded and used as training data, enabling the system to support any robot
that can provide a set of commands in natural language form.

Moreover, any additional event information that can be formalized in a finite set of state or action defini-
tions can also be added to the sequence definition. This distinction makes the proposed system enhance-
ments usable in most scenarios with state-of-the-art robots, facilitating seamless integration with a wide
range of robotic platforms. With the ability to work with preprogrammed commands or actions, this system
can execute a variety of prediction and classification tasks, making it highly adaptable and versatile. The
system’s focus on sequence prediction ensures that it can efficiently and effectively predict and extract a
sequence of tasks from the historical data, streamlining robotic operations and facilitating greater efficiency
in executing complex tasks.
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Figure 3.2 Overview of the proposed setup’s components

In the current setup, the robots establish communication through a reader-writer setup with dynamic
message definitions. The framework will be equipped with specific message definitions for each of the
published topics, allowing it to be tailored to the requirements of the project. The framework will handle
all real-time communication between the UI, the robots, and the recommendation system. As a result,
the proposed system will receive all real-time data from the published topics and must ensure that all
necessary topics are subscribed to and available in the system. Otherwise, the process will not be able
to make any accurate predictions. This also enables seamless integration for this system in any similarly
structured control system for robotic teams.

3.1 Modular Approach

The system in question is expected to be as general as possible, and as such, a modular approach was
chosen. This decision allows for each process within the system to be extended or replaced with similar or
entirely different processes as required. It is important to note that each of these processes has a train and
a run-time mode as the data format may differ between the two. This requirement is necessary because
the training data will be extracted from log files, while the run-time data will be directly extracted from the
communication system between the robots and the user interface (UI).

These modules can be categorized into five groups based on their function in the process. A summary
of these categories can be seen in picture 3.3. This block represents the processes that run within the red
component, which is the recommendation system in picture 3.2. The first process, called ’Preprocess,’ is
a preprocessing step that is essential since most processes cannot work directly with raw data available in
different formats. Therefore, the data must be processed to ensure uniformity irrespective of the source.

Next, the data will be filtered to suit the needs of each specific model within the system. This step is
necessary because not all the data will be needed for every model. For the system presented in this thesis,
the data will be filtered in multiple ways based on the event type to prepare different sets of sequences for
the recommendation-generating models. This module is called the ’Filter’ module.

The third module is the ’Classify’ module, which is implemented to assign a specific aspect of the given
event to one of several predefined classes. This additional information is then passed to the different mod-
els, making it particularly helpful when an unknown command or event is encountered. This classification
enables the calculation of outputs for such instances.

The fourth module is the ’Models’ module, which is the most complex and diverse module. This module
can contain any function that processes the given sequence data into something useful. For the given
system, these models contain two different data processing types. Firstly, it evaluates the sequences
of events given and calculates priorities for each available robot command. Secondly, it uses the pure
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sequence of issued commands, evaluates which sub-sequences occur frequently, and sends those to the
operator to add them as higher-level commands.

For the last step, it is essential to ensure that all the data is in the right format before sending it to the
UI or the robots, depending on the data processed. The UI will then process all the generated command
couples for the system. However, it would be interesting to try to process the data directly on the robot side,
especially for the higher-level commands. This functionality would be particularly helpful for commanding
robots from orbit as it would reduce the waiting time that occurs as a direct consequence of the data
transmission lag as the robot is able to execute the full sequence and does not have to wait for the next
commanding input.

For each category, as many processes as desired can be implemented for each module. However, it is
crucial to ensure that the transferred data type within these modules matches for each of those instances.
If the exchanged module differs significantly from the previous one, it would be beneficial to check whether
the other components are compatible with the desired change in the system. This additional check ensures
that this system’s modules can be exchanged on demand.

Figure 3.3 Overview of the Modules

3.2 Formal Description

In order to better understand the nature of a given system, it is often useful to formalize the basic setup
in a mathematical way. This can be achieved by considering a database D of distinct sequences, each of
which is defined by the available recorded sequences. These sequences, denoted by s ∈ S, consist of
specific events e that define a particular action or state change within the system. These events belong
to a defined set of events E, which may include actions such as "Send command," "Speak," "Add object,"
and "Table," among others.

To formalize this structure, one can define the sequence database D as a collection of all possible
sequences that can be generated from the available events in E. Specifically, one can represent each
sequence s in D as a tuple (e1, e2, ..., en), where ei denotes the i-th event in the sequence. Furthermore,
one can define the length of a sequence s as the number of events it contains, denoted by |s|. With this
baseline in place, it can be summarized by the definitions for the historical data as follows:
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Definition 1: Overview of the Sequence Data Sets as retrieved from the historical data:

• Dl: This set contains all non-filtered sequences in the historical data. It is represented by
D = {(sk)n

k=0|sk ∈ S, n ∈ N0}.

• Sl: This set represents the sequence of events for a recorded instance. It is defined as
S = {(ek)n

k=0|ek ∈ E, n ∈ N0}.

• El: This set includes all possible events in the historical data. It is represented by
E = {(p, s, e, t)|p ∈ P, s ∈ S, e ∈ T, t ∈ Ts}.

• P : This set contains all possible event participants or objects affected by the event. It is usually a
set of available objects and can be defined as
P = {”Justin”, ”Panel3”, ”Operator”, ”Seismometer”}.

• S: This set contains all the sources of the event or who executed it. It can be defined as
S = {”Justin, ””LAMA, ””Rover, ””Bert”}.

• T : This set defines the overall event type, which is logged. It usually corresponds to a published
event or specific function within the program. It can be chosen as needed and might contain
T = {”Send Command”, ”Command Reply”, ”Add Object, ”Add Robot”, ”Change Robot”}.

• Ts: This set contains the sub-type of the event and doesn’t have to be defined for each event. It might
contain the specific commands issued on the event type "Send Command," which would correspond
to Ts = {”pick Seismometer, ””update_firmware, ””drive_around”}.

In order to effectively process and analyze the items in the event set El, it is necessary to perform a
preprocessing step. This step will enable the events to be brought into a more manageable form and will
also provide additional classification information for each event. Although the database and sequence
definitions will remain unchanged, the corresponding events will be redefined to facilitate the analysis
process.

It is important to note that this definition will not cover the processed database Dp and its sequences
Sp. Therefore, proceeding with the following definition to ensure that the data is handled accurately and
efficiently is imperative:

Definition 2: Mapping the event so they are processable

• Pre is a way to map an event el from the set El to a processed event ep from the set Ep.

• Ep: This set consists of possible processed events defined by the tuple (i, t, d, c), where i is a unique
identifier, t ∈ T represents the event type, d ∈ Def stands for the representing string representation,
and c ∈ Class.

• Def : This set consists of unique string identifiers created from the event participants, source, and
sub-type

• Class: This set contains the class identifiers. The event class c is assigned by a classifying process
in Pre.

• F is the filter applied to Ep to retrieve the corresponding subsequence, depending on the specified
event type t of the events.

• Ef This set contains a subset of the processed events Ep after applying filter F .
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The definition presented above already encompasses the mapping process that occurs in the ’Prepro-
cess’ and ’Classify’ modules discussed earlier. These modules are merged into a single definition, and
since filtering can be understood as defining a subset of the given set, it is also handled by the definition of
Ef . Moreover, this definition applies to each preprocessed sequence, and it is possible to create multiple
filters, resulting in different sequence types for further processing. Consequently, the fully prepared data
can be passed to the modules. In subsequent sections, one can delve into more detail about this definition
for both implemented models. The following are the fundamental definitions for the processing of the data
within the modules:

Definition 3: Processing of the prepared data by the Modules

• M : This object contains all processing up until the model’s data is sent.

• M.train(s): This function trains the model using historical data s ∈ Sp.

• M.predict(x) = rec: This function processes the current sequence of run-time data (x ∈ Sin) and
returns recommendation data (rec ∈ Rec).

• Sin: This is the sequence of events processed within the recommendation system, defined as
Sin = {(ek)n

k=0|ek ∈ (Ep ∪ Enew), n ∈ N0}.

• Enew: This is a set of unknown commands stored in the same way as processed events Ef .

• where Rec: This is the data published and sent to the UI or robots, which is the output of each model.

Next, the specifics of both implemented models will be elaborated on, starting with the Command Priori-
tization model, which will be referred to as model M1. In the interest of simplicity, the input to the functions
will not be included, as it should be clear from the previously defined process and context definitions. Our
ultimate objective is to generate item predictions from the sequence database Df that are consistent with
the available recorded sequences. This means that any item prediction generated can only contain predic-
tions concerning events that are present in Ef . To provide a comprehensive overview and delve deeper
into this topic, the following definitions are provided:

Definition 4: Specifications of the "Command Prioritization" model

• M1: This contains a model to derive the command priority based on the historical data

• M1.algo: This is a list of algorithm descriptions and parameters. Multiple instances of these algo-
rithms can be combined to create the model, resulting in the notation
M1.algo = {(tk, stk)n−1

k=0 |tk ∈ {CPT+, subseq}, stk ∈ Ts, n ∈ N}, where n indicates the number of
algorithm specifications used.

• Ts: This is the type of sequence present. It is detemined by the filters used to extrac the subse-
quence. As an example, it could be defined as
Ts = {”sendCommand, ””classified, ””fullsequence”}.

• M1.train = (M1.algo[n].train)n−1
k=0 , where n is the number of implemented algorithms. This repre-

sents the combined training process on each implemented algorithm.

• M1.predict = M1.send(M1.filter(M1.bag((M1.algo[n].predict)n−1
k=0))): This function generates a

vector with a probability distribution or one-hot encoded prediction. It results from executing proba-
bilistic classification with the implemented algorithms, followed by postprocessing.

• M1.bag: This is a function that combines the predictions of the individual algorithms. Further expla-
nation can be found in chapter 5.
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• M1.filter: This function removes non-command predictions and predictions for inactive commands,
and normalizes the remaining values so they sum to one.

• M1.send: This function assigns a rank to each command and sends the data to the user interface in
the form of lists containing the robot’s name, command name, and assigned rank.

One crucial definition that has been missing so far is that of the "Command Coupling" model. The
primary objective of this model is to extract frequent item sets from the data present in Df so that higher-
level commands can be created with ease. Model M2 encapsulates this particular model, and its definitions
can be found below:

Definition 5: Specifications of the "Command Coupling" model

• M2: This model is using a data mining approach that employs a parameterized sequence mining
algorithm. Three different algorithms are available to choose from, but only one can be used at a
time.

• M2.algo: This is the algorithm that extracts the most common sub-sequences based on the defined
parameters. It currently supports three options: {NOSEP, pefix_span, QCSP} and returns a list
of the found sub-sequences.

• M2.train = M2.predict = M2.update: Here is a special case where the predict and train functions
are defined identically.

• M2.update = M2.get_unseen(M2.algo): This function updates the found sub-sequences on each
new input to the corresponding sequence. It reruns the algorithm and extracts any unknown sub-
sequences.

• M2.get_unseen: This function compares the sent command couples with the new input and returns
the unseen couples.

The previous explanation provides a comprehensive definition of the system, which includes the possi-
bility of exchanging, adapting, and expanding the modules for future development. An advantage of this
approach is that each module can be utilized individually if there is no need for the entire set of modules
or if the available bandwidth cannot support the transmission of the whole set.

In the examples above, the set elements have been defined in natural language. However, if enumeration
identifiers for each type better suit the requirements of the system, this can be implemented as well. For
this thesis, the human-readable definition was chosen as it is easier to explain the concept.

3.3 Summary and Comparison to other approaches

The approach described above presents a unique opportunity to apply gained knowledge from historical
data directly to the user interface or robots. This approach creates a modular system that can be easily
adapted to one’s needs and is more effective than current systems that rely on either a rule-based ontology
system or neural networks. One key advantage of this approach is that the system can create meaningful
recommendations even with a lower number of training data, which is contrary to using a neural network
that typically requires thousands of data points to train. However, an additional rule-based ontology would
be an excellent addition to the current system.

When creating a system for robots, it’s crucial to take into account the variations in operating systems,
which can make it challenging to establish a universally applicable system. Moreover, using item sequence
prediction as a basis for recommendations is not a common approach, as most models usually predict
specific function parameters. Therefore, this approach represents a new avenue of development in this
direction.
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Moreover, it is worth noting that recommendation systems are typically interface-specific, as they are
more commonly implemented on websites or other non-robot-specific interfaces. They are often used to
make the user aware of unknown commands, and for frequently executed tasks, alternative commands
are presented. These presentations include information on the specific command and example usage.

Data Mining Approaches are frequently utilized in the realm of big data, where the given system presents
a rather uncommon option. Consequently, this approach provides a novel way to view run-time predictions
in a robotic environment with a low run count, enabling the developer to evaluate its use. Further specifi-
cations regarding the test environment for the proposed system can be found in the forthcoming chapter.
All things considered, this approach has significant potential to enhance the efficiency and effectiveness
of user interaction with a graphical user interface, particularly in the context of robots and other unique
operating systems.
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4 Robotic System Architecture

Within the context of DLR and ESA’s exploration mission, a robotic team of four robots has been set
up. The aim of this setup is to control a heterogeneous robotic team from an orbiting satellite, with an
astronaut situated at the ISS controlling the team on earth [18][48]. These efforts are part of the Surface
Avatar Project, which is a component of the ExPeRT (Exploration, Preparation, Research, and Technology)
projects under ESA’s Terrae Novae European Exploration Envelope Programme [17]. The Surface Avatar
Project is specifically designed to conduct robotic martian and lunar exploration campaigns.

The robotic team is composed of four robots: Justin, the humanoid robot, LAMA, the Lander Mounted
Arm, Analogue-1 Interact Rover, and Bert, a quadrupled robot mimicking canine locomotion. Each robot
has unique capabilities that make them an integral part of the team. In this chapter, a thorough overview
of each robot and their current capabilities will be provided.

Furthermore, the collaboration scenario will be discussed that outlines the different responsibilities of
each robot in the current setup. Details about the commanding UI that is currently available and used
will also be provided. This information will help to provide a better understanding of the robotic team’s
capabilities and how they function together to achieve their mission goals.

4.1 Heterogeneous Robotic Team

4.1.1 The humanoid robot "Rollin’ Justin"

Figure 4.1 The humanoid
robot Justin

Rollin’ Justin is a humanoid robot that is mounted on a wheeled moving plat-
form, as shown in figure 4.1. With 19 joints that can move the torso, arms,
and head, Justin has the ability to interact with its environment in a variety of
ways. The robot’s head is equipped with a set of cameras that can be used
to localize it within its surroundings. To aid with this, an April-Tag-based sys-
tem has been implemented on the robot. This system uses visual reference
markers, similar to QR codes, which are placed around the robot’s environ-
ment. By recognizing these markers, Justin can determine its position in
space.

The robot’s reasoning and planning system is based on a two-step mech-
anism [44], which includes geometric and symbolic planning. When given
a goal state to reach, the planning system uses Justin’s internal knowledge
about the world to find a feasible solution. This involves searching for a plan
based on semantic knowledge of the environment. The robot’s knowledge is
based on a PDDL representation of all available actions it can execute. If a
plan is found, it is then simulated in a 3D environment, taking into account all
of the objects that have been detected. The robot will execute the plan if the
simulation finishes collision and error-free, otherwise it will backtrack to the

last successful part of the planning.
During execution, the robot uses a collision avoidance system based on distance-measuring sensors.

If any issues occur, the robot can be manually manipulated to return to an error-free state. This can be
done with the help of the robotic team or by using the implemented teleoperation systems, which allow the
operator to control Justin’s base and arm with a force-feedback controller.

An accurate representation of the environment is essential for the robot’s planning to work effectively.
This means that the robot needs to be aware of most of the objects within the environment it operates in.
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Additionally, planning adaptation for dynamic objects necessary in a multi-robot environment will require
an update on the planning. However, if there are no moving objects or robots within a known environment,
Justin can autonomously navigate. The Surface Avatar project is working on solving these problems. As
part of the METERON experiments, Justin was able to learn how to work in a solar farm environment.
Here, the robot was responsible for maintaining individual solar panels and their processing units [86].

4.1.2 ESA’s "Interact Rover"

Figure 4.2 ESA’s Analogue-
1 Interact Rover

As an integral part of the robotic team, the Analogue-1 rover from ESA is
introduces, which is shown in Figure 4.2. This rover has been developed as
part of ESA’s moon and Mars exploration program [16], making it perfectly
equipped to navigate rough terrain and cover long distances [101][39]. The
rover comes equipped with two robotic arms, one of which has a camera as
the end-effector, while the other serves as a gripper. The arm-mounted cam-
era allows the robot to adapt the given view in many ways, thus improving
situational awareness. The arm with the gripper can be controlled using a
force feedback system, just like Justin’s arm.

The Analogue-1 rover has undergone rigorous testing in sample return
missions. Notably, the rover was tested when the orbit-to-moon teleoperation was being tested on Mount
Etna [19].

4.1.3 Robotic arm on Lander "Tina"

Figure 4.3 The Lander
Mounted Arm (LAMA)

The Lander Mounted Arm is a crucial component of the team’s site [48],
serving as the primary reference point based on a static point in the camp
[48]. The lander itself is not movable and acts as a router for the Wi-Fi,
handling all the data transfer between the robots and the non-camp-based
participants of the network.

This mounted arm is based on the TINA-system [54], a small modular
torque-controlled robotic manipulator designed based on the specific require-
ments of the Martian mission. Its primary function is to handle all the objects
stored within the lander, including sample tubes and seismometers.

To store and handle these objects effectively, the lander is equipped with
an electrically powered drawer and additional storage space within the center
of the lander. The objects are made available by placing them on a tray
mounted in front of the lander, allowing Justin to extract them with ease.

4.1.4 Bio-inspired robot "Bert"

Figure 4.4 The quadrupled
robot Bert

Bert’s development is a work in progress and not yet ready to be imple-
mented as a part of the team. In order to be successful, it needs to be
autonomous and able to follow predefined commands without any issues.
As of now, a teleoperation system is not available, which limits the possibili-
ties for the robot. However, despite these challenges, the potential of Bert is
exciting.

The project aims to explore the implementation of canine locomotion pat-
terns on robotic systems [72], which is an interesting avenue to pursue. The
spring-based actuator that Bert is equipped with should allow for energy-

efficient movement, which is a crucial aspect of robotic design. Furthermore, due to its small size, it can
reach areas that other robots might not be able to access.
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To increase the capabilities of Bert, he will be equipped with a camera for our experiment. This will
enable him to record and map small spaces like caves and caverns, which has exciting implications for
exploration and research.

4.2 Collaboration Scenario

The collaboration scenarios planned for the given setup are crucial for the proper functioning and main-
tenance of a scientific exploration camp on Mars. This camp is primarily powered by solar panels, which
ensure energy sufficiency, and the LAMA, which is responsible for handling storage and managing all the
scientific equipment required for the expedition. Within the camp, Justin plays a critical role in maintain-
ing all the objects on site. As the camp’s caretaker, he is responsible for keeping the solar panels clean,
updating the solar panel software, and handling all handover actions between the rover and the LAMA.

The rover’s responsibilities are equally significant, mainly focusing on tasks that demand long traverses
and require the collection of soil samples and other necessary objects from the surrounding environment.
Additionally, the rover is capable of transporting Bert to any cave that requires exploration, making it an
essential asset to the team. Bert’s purpose in the team is to explore narrow areas and caves, as it is the
only small robot available. Furthermore, it can serve as a Wi-Fi booster when the rover is too far from the
lander to have access to the network, making it a valuable asset to the team’s communication system.

4.3 User Interface

In Schmaus et al.’s work [86], the presented interface to control the previously presented robots is pre-
sented (figure 4.5b). It is based on a layout that focuses on the robot that is currently being controlled.
However, the interface lacks an overview of the available robots. Figure 4.5 provides an overview of the
current setup. The robots can be controlled using a set of predefined commands, provided by the avail-
able robots, listed on the right of the interface. Above the commands, the current robot is displayed, and
the operator can switch to control another robot. The teleoperation options available for the current robot
are located below the commands. It is important to note that this system supports the parameterization
of commands, which means that for some of the commands, an operator must define the value of those
parameters before sending them. These values can be either strings chosen from a set of options, strings
defined by text input or numerical values. A command can also support multiple values of different types.

The main view displays the camera image sent from the robot. The operator can use the drop-down
menu on the top left to switch to other robot’s cameras to gain better awareness of the surrounding objects.

(a) Usual Setup of the Interface (b) overview of the current interface

Figure 4.5 Current State of the User Interface
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An additional overview is provided in the form of a map of the currently known objects, located on the
bottom left, above the chat window. The chat window enables the operator to contact the robotics team if
any problems arise.

Commands can be filtered by clicking on any object in the scene. After that, only commands for the
corresponding object can be viewed. To reverse this action, the operator can either click somewhere else
on the screen or use the cancel button on top of the list of commands.

4.3.1 Communication System

The communication between the user interface (UI) and the other components of the system is achieved
through broker software. For this purpose, the rti DDS framework [78] has been employed, which provides
standard protocols for publishing, subscribing, and services in a hybrid form. The message types are
defined using the Interface Description Language (IDL) format, which is specified in a file. An IDL definition
example is provided below. With the message definitions, the topic name, and the transmission protocol
definition, data can be transmitted between points. The transmission protocol is defined by a quality
of service (QoS) definition, which specifies whether packages should be sent with best effort or if each
package should be checked for delivery. Rti offers several default options for QoS definitions.

// Temperature data type
struct Temperature {

// ID of the sensor sending the temperature
string<256> sensor_id;

// Degrees in Celsius
int32 degrees;

};

In this framework, each robot shares and transmits valuable information about its current state. This
information includes telemetry data, such as current joint angles, the robot’s current pose, available com-
mands, and detected objects and their poses. Once this received information is processed in the UI, it can
be easily added to the screen. Additionally, the selected command for execution is sent over this framework
in this system, where the robot returns a message to the UI after execution. The standardized communica-
tion protocol used in this project’s scope makes it easy to add other robots given these definitions. Overall,
this framework promotes efficient and effective communication among all robots involved.

4.3.2 Teleoperating robotic team on different levels of autonomy

As robots are integrated into different controlling and commanding structures, it is logical to assume that
each robot operates on a slightly different level of autonomy. Furthermore, the different modalities in which
one can operate the robots can involve multiple levels of autonomy as well. In particular, when it comes to
the rover and Justin, there are options available to control them using commands or directly control their
movements using the implemented teleoperation modalities. Command-based controlling can be seen as
a form of supervised autonomy, which is considered a mid-tier level of autonomy, while teleoperation is
considered one of the lowest levels of autonomy.

The teleoperation modes available for these robots include moving their arms with the help of the sigma.7
or locomotion using the joystick. By utilizing these different levels of autonomy, one can work with the
robots on a finer granularity. For long and complex tasks, the robot can be instructed to execute the task
autonomously, with the operator assuming a supervisory role. At the same time, it is also possible to use
teleoperation commanding to fix errors, exemplifying the flexibility and versatility of these robots.

Overall, the varying levels of autonomy available for these robots allow for a more tailored approach to
controlling and commanding them, catering to the specific needs of each task or situation. As technology
continues to advance, it will be interesting to see how these levels of autonomy evolve and what new
possibilities will arise in the realm of robotics.
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5 Implementation

The previous chapters have discussed the fundamentals of the thesis and the environment setup. In this
chapter, the implementation of the given concept in the presented environment will be delved into. To
provide a clear understanding, an overview of all topics and their connection will be provided. Following
this, a detailed description of each part will cover the logging of historical data, necessary preprocessing
steps, support systems currently at play, and post-processing of data.

It is important to note that the data itself is insufficient to help users understand the interface and deal
with it effectively. Therefore, the implementations made on the UI to visualize the given data will be dis-
cussed. This will include how one could interact with the data and handle it in the UI.

In addition to the recommender system implementations, the implementations for simulating the real
robots will also be explained. These implementations have been used to conduct the user study, as the
actual system is still under development and only available with limits. Moving forward, the next chapter
will then focus on the user study itself and the evaluation of it.

5.1 Distinct Parts of the Recommendation System

As described in chapter 3, the recommender system is developed in a modular way, consisting of a prepro-
cess, filter, classify, and post-process step. Those steps must be executed for each implemented model,
where, ideally, more than one model can use the given processing steps. The models implemented for
this thesis include creating a probability distribution for the available commands and a system to couple
multiple commands into one higher-level command. The prioritization should ease the navigation on the

Figure 5.1 Basic Structure of full proposed System
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(a) Flowchart of training/loading prediction models (b) Flowchart of run-time prediction generation

Figure 5.2 Flowcharts of the prediction models

interface, while the coupling should allow for faster command execution. The recommender system, as
described in chapter 3, is developed in a modular way, consisting of several steps. These steps include
preprocess, filter, classify, and post-process and must be executed for each implemented model. Ideally,
more than one model can use the given processing steps. The models implemented for this thesis include
creating a probability distribution for the available commands and a system to couple multiple commands
into one higher-level command. The prioritization should ease navigation on the interface, while the cou-
pling should allow for faster command execution.

To provide a quick overview of the system, the recommendation system takes input from logged histor-
ical data for the training phase and run-time data from the communication system on run-time, as shown
in 5.1. This data is preprocessed within the recommender system by filtering, classifying, and then to-
kenization. The preprocessed sequences are then passed to both models, command prioritization and
command coupling. The recommendation system is based on a Python program, which is suitable for fast
implementation.

The implementation of the recommender system involves the installation of a bagging model for com-
mand prioritization, comprising as many individual prediction models as needed. These models are trained
on preprocessed sequences, and users can choose from two implemented algorithms - the CPT+ algo-
rithm or the Subseq algorithm. The Command Coupling algorithm extracts relevant sub-sequences based
on predefined parameters, and users can select from three algorithms - NOSEP, QCSP, and PrefixSpan.
The extracted data is processed and sent back to the user interface.

Now that a basic overview of the implementation is given, the next part goes over how the processing
for the training and run-time works. These processes are also shown in figure 5.2. Each time the recom-
mender system models are trained, the models will be saved to a binary file at the end of execution. They
can be loaded individually or as the complete recommender system on a later run.

In order to improve the functionality of the training phase, an option called "Load Model" has been added,
which allows for both options to be utilized. However, once the models have been saved, it is not possible
to fine-tune them. If these options are not chosen, the recorded data is extracted from the log file and
filtered for each specific sequence of event tokens. These event tokens represent distinct events and are
equal to the concept’s outcome of mapping Pre, therefore being a part of the set Ep. Each model is
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then trained on the corresponding set of sequences. In the case of a classified model, the sequence is
translated to a class sequence, which creates an output for unknown commands that do not appear in the
training data. After the event tokens are assigned an identifying number or class number, they are ready
for further processing.

Once the sequences are ready, they are transferred to the command prioritization and command cou-
pling algorithms, where those algorithms will be updated and sent. During run-time, the sequence of events
is recorded, and every update is given to the sequence prediction algorithm through the communication
system. This update triggers an event for both the command prioritization and the command coupling. For
the command coupling, this will execute another update on the sequence, where the algorithm reiterates
the sequences and checks for any new couples. If there are any, those will be sent to the UI. The event or
command is added to any corresponding sequence for prioritization.

In the next step, the calculation and combination of the prediction for each model are performed. The
commands are sorted according to their prediction and then sent to the UI. Overall, this process allows for
the efficient and effective utilization of the recommender system, improving user experience and satisfac-
tion. An overview of those processes can be viewed in figure 5.2

Overall, the implementation of the recommender system involves several distinct parts, each with its
unique algorithms and processes. However, the system’s ultimate goal is to provide users with an efficient
and reliable recommendation system for their commands.

5.2 Recording History of User Data

As the initial stage of the recommendation system, this report will present the implementation of the logging
system for the historical data. As the proposed system is expected to support robots independent of their
reasoning system or working framework, the logging system should be implemented on top of the UI, a
shared world representation, or directly on the communication system between the two. However, due
to the unavailability of a shared world representation at the time of this thesis, the logging system was
implemented directly on the UI. This gives the additional advantage of also having the sent data available
as processed in the UI. As the UI is based on the Qt framework, the scripting language was C++ and qml.

In most frameworks, the logging rate is part of the logging definition. Logging all data in the published
rate would result in much useless data. Therefore, the logging rate should be explicitly considered if it is
set up on the communication system itself. This setup should provide most of the useful information to the
user, or at least the fraction of the data that is helpful to train prediction models for maximum accuracy.

For the current setup, an event-logging style has been chosen, as it vastly reduces the amount of
data logged. The developer can define a set of distinguishable events that provide the developer with
crucial information about the ongoing changes in the robot’s world. These events can be defined for each
individual robot and in conjunction with all existing robots in the current environment. Then, on each
occurrence of the corresponding event, it will be added to the logged sequence.

The log of events that is maintained includes comprehensive data about all incoming and outgoing
chat messages, object data, as well as communication between the robots and the operator. Those
specifically chosen events are logged for the purpose of covering most of the current information that the
UI can access. This includes objects, their positions, and the available actions and movements within the
environment. In addition to this, the integration of chat messages is enabling natural language processing,
which will allow for the specification of possible missions and their commands in future work. This module
could also be used for command prioritization model algorithms.

The log file is constantly updated with object-specific data, including the object definition itself, available
commands, and positioning, which enables developers to define specifications about the environment
within which the robots are operating. Furthermore, the commanding log provides information about how
the robots interact with the world based on the sent commands and their response, allowing for evaluation
and improvement of their performance.
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Data is also stored about the occurrences when the robots are directly controlled via teleoperation,
depending on the active mode. For each of these events, a basic structure is used to cover essential data,
which includes the time of the event, participants (which can be logged by name or by object ID), the type
and sub-type of the event, as well as specified parameters and a message in connection to the event.

By maintaining such a comprehensive log of events, the aim is to ensure that all the required information
is available to optimize the performance of the recommender system and improve its overall functionality.

An event-based history logging system example is available in table 5.1. The log files are stored in
csv-format, which is cost-effective in terms of storage and easy to read. Another advantage is that the file
is human-readable, and information can be directly extracted from those files. Here is an overview of the
events logged and their names. The events of the logged data El are formally defined as follows based on
the concept:

• P = {"Justin," "Interact," "LAMA," "Bert," "Operator," "DIP," "Seismometer," "SPU1," "SPU2," "SPU3,"
"VSU," "Lever1", "Lever2", Lever3"}

– This encompasses all the available robots and objects, with each object having an ID that can
be used to identify it. Additionally, an operator variable has been included, primarily for UI
interactions that do not involve robots or objects. Since not all objects are pertinent to this
thesis, only those within the state machine described later will be explained in greater depth.

• S = {"Justin," "Interact," "LAMA," "Bert," "Operator"}

– This shows where the event originates from. Hence, it only includes participants who can
actively interact with the environment

• T = {"Remove Object," "Remove Command," "Remove Robot," "Add Frame," "Add Object," "Add
Command," "Add Robot," "Send Command," "Command Reply," "Enable Teleop Mode," "Disable
Teleop Mode," "Configure Gripper," "Current Robot Changed," "Update Frame," "Send Chat," Re-
ceive Chat"}

• Ts - This includes all the subcategories of event types, which cannot be fully listed here due to their
length. The list also varies depending on the commands programmed in the robots, so that it may
differ greatly for different systems.

Additionally, to understand the meaning of the logged events, here is a short overview of them. Some
have been coupled together due to their similarity.

• Add {Object, Command, Robot} - Add the corresponding object to the active set

• Remove {Object, Command, Robot} - Remove the corresponding object from the active set

• Add Frame - Store the first transformation matrix of the specified object

• Update Frame - Update the transformation matrix of an object if the distance is more than 20cm.
Rotation deviation is not yet considered

• Send command - Logged on execution request for a currently active command

• Command Reply - Logged on finished execution of a command with its execution message

• Enable Teleop Mode - Start one of the teleoperation modes implemented on the robots

• Disable Teleop Mode - End teleoperation

• Current Robot Changed - Change the robot in the robot select widget in the top right corner of the
user interface

• Send/Receive Chat - Log the chat messages
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5.2.1 Pre-processing

With the options for historical data now defined, this section aims to explain the process through which the
data will be made useful for the rest of the system. As per the concept, the process begins with mapping
the log data to make it processable by the mapping Pre. This mapping takes events from the log El and
maps them to Ep. For the purpose of implementing this thesis, only the command data, including the "Add
Command," "Remove Command," and "Send Command" events, have been processed for the models.
The "Command Reply" has been omitted during this feasibility study but can be added at any given point.
Thus, the mapping only includes those events where the exact mapping is:

(p in E_p)
for e in E_l:

p(i) = size(E_p)
p(t) = "Command"
p(d) = e(t) + e(s)
p(c) = classify(e(t))

In analyzing the mapping of events, it is evident that the ID of the processed event is always set equiva-
lent to the previous number of already processed events, making it unique. The type of event is specified
as "Command," which is the only type of processed event in the course of this thesis. The defining repre-
sentation is a combination of the event type and the source of the event. This representation corresponds
to the command name and executing robot in the log files. The classify function will be explained in detail
in an upcoming paragraph.

During the parsing of the logged files, the mapping is executed when reading the data from the files,
with the data loaded using the pandas library. The file is first searched for logged "Add command" events,
which are then added to Ef in the given form. Through NLP classification, the command name is classified
as one of seven options. As the data is already filtered for the command events, the need to process all
data is skipped by not previously calculating Ep. The file is then filtered for "Send command" events,
where the sequence s ∈ Sf is extracted. This process is executed for each available file, resulting in a
set of sequences defining Df . Due to the classification of the command, there are already two data sets
available for training the models, as the sequences of IDs and the sequences of classes can be used.
The execution of the filtering as a first step is an advantage in the current project, as there are not many
different models available, and those available are working on the same subset of events. Hence, setting
the filter as the first step makes the process faster. This is mentioned as id deviates from the proposed
concept.

It is worth noting that, as the commands cannot be processed the same way on run-time, the sequence
will be recorded from the communication system. The data is sent via a service of the framework DDS
under the topic name "surfa.execute_command." It works on the following message definition.

module ExecuteCommandService{
struct RobotCommandRequest {

// Request for command execution
string<255> robot_id;
uint command_id;
uint user_id;
string<255> parameters;

};
struct RobotCommandReply {

//reply after command execution
bool success;
string<255> message;

};
};
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In order to retrieve the command name in this scenario, one must iterate through a list of active com-
mands, as the command name is currently unavailable in the definition. These active commands can be
accessed by parsing the information published on "world_representation.commands" using the message
definition provided. The data from this topic is constantly updated within the recommendation system and
is stored in an active command dictionary that references the corresponding robot and command name
for each command_id. It is important to note that this command_id is different from the ID specified in the
recommendation system. The robot name can be extracted from the robot_id, which is already provided
as the robot’s name. The command name can be found in the text field of the command. By utilizing this
dictionary, the commands can be added to the currently recorded sequence of events on run-time.

struct Command{
uint id;
string<255> text;
sequence<uint, 100> object_ids;
string<255> parameters;

};
struct Commands{

string<255> robot_id;
sequence<Command,100> commands;

};

In the upcoming study, the robot will operate in an error-free environment, making the sequence of
commands issued sufficient for model training. However, if the system were to be applied to actual robots,
it would be beneficial to include a "Command Reply" in the sequence. This would improve predictions as
they would also consider the outcome of command execution. Since the models were trained on artificially
generated data in a simulated environment, no errors were possible. This implementation can also assist
in error handling, although this is beyond the scope of the thesis.

Classification The classification of commands has been based on a Natural Language Processing
(NLP) model. To process natural language, transformers have been deemed highly effective in previous
studies. Therefore, a pre-trained model has been used in this study. The NLP model has only been utilized
as an embedding system, as insufficient data was available to fine-tune a model for the needs of this study.
The model that was chosen for this study is the ’paraphrase-albert-small-v2’ model, which is part of the
sentence-transformers library and is licensed under the Apache 2.0 license [22][73]. This model is rela-
tively small in size and has the ability to embed phrases of words. By using the cosine distance, the model
can map semantically similar phrases close to each other. Each phrase is mapped to a multidimensional
space with its embedding, which makes it easier to distinguish between different commands.

To classify each command, a k nearest neighbor classifier has been used. The scikit-learn implemen-
tation of the algorithm has been employed for this purpose [66]. In order to train the model, a 50-entry
data-set has been used. This data set covers roughly seven to eight entries per class. Although this data-
set needs to be bigger to enable a more robust classification of each possible command, it was sufficient
for the limited amount of commands the system is currently working with. However, training the model on
a more extensive data set is highly recommended for a less restrictive environment. Additionally, the clas-
sification quality still needs to be verified, as its performance has only been checked on several occasions.
Due to the number of data-points, the classification is done on the two nearest neighbors. The commands
are classified into one of seven distinct classes, which are presented in the following.

• Prepare - Prepare the environment for another action or command

• Relocation - Moves the robot to another position or pose

• Visual Alignment - Realigns the camera of the robot
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• Capture - Acquiring an object, mostly by picking it up

• Release - Part with an object, put it down

• Maintenance - Keep the objects in the environment functional by cleaning or updating them

• Finish - Bring the robot or the environmental objects in a standardized configuration after finishing
a task

The classes that were selected were based on the command classes that were defined in Roldan et
al. [76]. These classes were slightly modified to better fit the project’s requirements. In the current
environment, they serve as an ideal introductory assignment for new commands, as their purpose is clearly
captured through their class definitions. The chosen classes are, therefore, instrumental in ensuring that
new commands are comprehensible and can be implemented effectively.

5.2.2 Command Prioritization

The Command Prioritization process is a critical component of the system, and it is important to understand
how it works. The data is processed in a way that allows it to be passed to the different models. The
prioritization was set up using a bootstrap aggregating approach, which means that multiple algorithms are
implemented in this approach. A handler was created for each of these algorithms, which has functions
for dealing with both the training and prediction phases.

During the training phase, the previously processed sequences are passed to the handlers for training,
and the resulting models are saved within the handlers. In the prediction phase, the functions are passed
to the currently recorded sequence of events, which is then given to the algorithms for the prediction
calculation. As the different algorithms return results in different forms, the results are then processed to
return a two-column pandas DataFrame with a list of the command IDs and the scores. The scores are
also normalized to sum to one.

The handlers have a set of internal parameters for each of the predictors, which include the sequence
type, such as "Command" or "Command Class" for the current system. However, this can be extended
with many more types of sequences in future development. Additionally, most algorithms offer some
parameterization, which can be set when adding the algorithm and will default to some predefined values
if not. Currently, the CPT+ and Subseq algorithms are available, which have been chosen as they allow
for predictions even based on a minimal training set. These algorithms have proven to be effective and
efficient in the current system, but future development may incorporate additional algorithms to improve
accuracy and performance.

CPT+ This algorithm has been implemented with the help of the Python wrapper developed for the spmf
library by Professor Fournier-Viger of Shenzhen University [23]. The spmf library is a powerful data-
mining tool that offers a wide range of algorithms for sequence mining and prediction, among other things.
However, since CPT+ has not been implemented as part of the wrapper, the Java library has been adapted
to execute it from there. This process involved parameterizing the algorithm with a set of parameters that
were copied from the internal example usage script provided within the library. It is important to note that
for more accurate prediction, these parameters should be further adapted.

The wrapper typically did not offer a separate training and predictions phase, so the adaptations in the
library included two options. For the training phase, the library is presented with the training data and saves
the resulting model in a binary file. This file is then referenced during prediction in combination with the
current sequence of the given sequence type. To improve ease of use, the wrapper was modified slightly
by adding another sequence type, which enables the user to input the pure sequence without putting each
item into a single item item-set prior to prediction.

It is worth noting that after prediction, no further processing other than normalizing is required. In
summary, the implementation of CPT+ using the spmf library, although not straightforward, has been
made possible by adapting the Java library to execute it.
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Subseq The algorithm used in this implementation is written in C++ with a Python wrapper, and it is
based on the research paper titled "Succinct BWT-Based Sequence Prediction" by Ktistakis et al. (2019).
The implementation process using the wrapper is simple and only requires one parameter to adjust. This
parameter sets the number of similar queries for the sequence to confidently predict the next command.
The default threshold is set to one, which is essential given limited training data. However, the algorithm
does not return the calculated probabilities. Instead, it classifies the item based on the highest probability
or returns a list of the top-k items. Since the top-k option fits better for the given purpose, it was chosen.
K is set to the highest ID in the sequence, which might not be ideal for a large data-set but works here.
If the predictions do not reach the threshold for each top-k item, the returned sequence will only contain
the items above the threshold, which could be less than k items. Next, the item sequence gets rated from
1 to n, where n is the number of returned items. These predictions are then normalized to sum to one
and returned. However, there are better solutions to this, as the actual probabilities rarely match a linear
distribution. Therefore, in future versions, the wrapper will be adapted to find a new option.

Bagging To optimize the prediction accuracy of this system, various algorithms can be implemented and
hence need to be combined afterward. Based on bibliographic research, the two most prevalent options for
combining different classifications are priority selection and bagging. However, for this thesis, the bagging
method was chosen as it is uncertain which algorithm would work better under which circumstances.
Moreover, it would require a lot of data to train a model for extracting that knowledge. For the bagging
method, a weighted option was chosen where the weights are updated on each iteration based on the
overall performance of each model.

Initially, the implementation of weight had been conducted on each command individually. This had a
harmful effect on the prediction of highly rated commands. Therefore, the model score for each model’s
complete set of prediction values was used as a weighting. For each item in the combined training and
sequence data, algorithms place a prediction. The "Command" sequence type contains the IDs of the
command events, while the "Command Class" contains the class identifying numbers.

As predictions usually only contain probabilities for a subset of available items, they are reordered in a
vector based on those values for easier processing. This means that a command’s distinct probability is
mapped to its ID’s index. This vector is called the forecast vector and is returned by each model. The
outcome, meaning the actual following command, is mapped to the corresponding command index in a
vector of the same size in a one-hot encoding. This vector is called the outcome vector. Using these
vectors and their size N, the model score can be calculated with the Brier Score.

1
N

×
N−1∑
t=0

(ft − ot)2

The Brier score measures the accuracy of a probability distribution by calculating the quadratic error
between the actual outcome and the predicted outcome, which ranges from zero to one. A score close
to zero indicates a highly accurate model, while a score close to one indicates poor performance. The
system implements this calculation in vector form using the following equation.

1
N

× (f − 0)T × (f − o)

The Brier score of each model will be gathered in a vector called s. To prioritize the models that perform
well, the scores will be inverted to create the weights w. However, the weights may not add up to one,
so the vector needs to be normalized to ensure it still represents a probability distribution for the models’
performances. This step is crucial when the output is supposed to be a probability distribution.

wc = 1 − s∑N
i=0(1 − si)

The variable wc represents the weight distribution for the current iteration. Since the models may not
perform equally well with each update, the weights from the previous runs are combined with the current
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weights using the following equation. This results in the final weights used to combine the model pre-
dictions. The parameter "t" represents the number of updates done at the beginning of the update. The
weights are initialized with an equal distribution before the first update.

wt+1 = (wt × t) + wc

t + 1

t0 = 0

Using this implementation, the recommender system will improve its predictions by giving more weight
to models with the most accurate predictions in the final combined prediction. After this, the only remaining
step is post-processing the data to prepare it for sending to the UI.

5.2.3 Command Couples

Implementing the Command Couples is based on sequence mining, a part of data mining. Here, the
aim is to extract high support sequences from a data-set. Due to that reason, it seems perfect to ex-
tract sub-sequences from the data to create a simpler way of interacting with the robots. As this field
has many options for extracting those sub-sequences, multiple options have been added for the algorithm
here. Other than for the Command Prioritization, one can choose only one option here. This is mainly
because the different options serve a similar purpose, and there is probably not much help in using mul-
tiple models as no good measure of how to combine the outputs of the different algorithms is available.
Here, the models are presented with a set of sequences containing the sequence of commands. The
class sequences cannot produce meaningful data here. Hence, they are omitted. It is also to mention that
a couple of "helper commands" exist within the commands. Those are not manually executed but mainly
serve as a data request from the UI to the robots when they are chosen or parameterized differently. Those
commands will also be filtered out, such that the sequences only contain data from manually executable
commands. Presented this data, the chosen algorithm extracts the sub-sequences based on the param-
eters set in the model. The output then contains a list of the support and the corresponding sequence
for each detected sub-sequence of the training data. Most of the models offer a top-k or support-based
output. The implemented algorithms include NOSEP, QCSP, and PrefixSpan.

The implementation of Command Couples involves sequence mining, which is a component of data
mining. The objective is to extract high support sequences from a given data-set. This is done to simplify
interactions with robots by extracting sub-sequences from the data. There are multiple algorithms available
for extracting these sub-sequences and the proposed system provides various options. However, for
Command Prioritization, only one option can be selected as all options serve a similar purpose. Combining
outputs from different algorithms is not feasible due to the absence of a good measure. The models are
presented with a set of sequences containing the sequence of commands and only manually executable
commands are included. Helper commands are filtered out as they serve as data requests from the UI to
the robots and will be automatically executed anyways. The chosen algorithm extracts the sub-sequences
based on the model parameters and outputs a list of the support and the corresponding sequence for
each detected sub-sequence. Most models offer a top-k or support-based output and the implemented
algorithms include NOSEP, QCSP, and PrefixSpan.

NOSEP This algorithm, known as Nonoverlapping Sequence Pattern Mining With Gap Constraints [102],
is part of the spmf library, just like CPT+. Its title indicates that the main constraint for subsequence
extraction is that sub-sequences should not overlap. It also incorporates a gap constraint, which allows for
cohesive sub-sequences with a specific gap length, specified in the number of items. The minimum and
maximum size of this gap can be set as parameters. Other parameters include the minimum and maximum
length of the extracted subsequences and the minimum support. All sub-sequences will be presented with
their support, and the algorithm can detect a subsequence multiple times in one training sequence. It does
not offer a top-k variant. This algorithm can be useful for presenting the operator with a set of couples that
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only contain each task sequence once, as overlapping is not allowed. However, parameterization should be
specific to the available training data, as the support number and gap constraints necessary for extracting
the most valuable sequences may vary. Additionally, some sequences presented may contain impractical
combinations of command sequences, due to the non-overlapping constraint. This incapacitates detecting
the individual sequences, even if they might be useful.

QCSP The spmf library also includes the Quantile-based Cohesive Sequential Patterns algorithm. Hence,
it has been implemented alike. Unlike NOSEP, this algorithm does not view overlapping sub-sequences as
a constraint. However, it does prioritize cohesive sub-sequences by using the alpha threshold parameter.
This parameter ensures that the containing sequence of a detected sub-sequence is not longer than alpha
times the number of items in the detected sub-sequence. For an alpha value of one, the sequence is only
counted if there are no gaps between the items. As a result, this algorithm excels in cohesiveness.

In contrast to other algorithms, this one detects all possible sub-sequences, including overlapping ones.
It also offers parameters for maximum sub-sequence length, minimum support, and top-k sequence ex-
traction. Hence, it operates on a top-k approach and even allows for multi-detection of a sub-sequence in
a single training sequence.

PrefixSpan The PrefixSpan algorithm [67] is the only Python native library available here. It includes
the standard implementation of the PrefixSpan algorithm, as well as the BIDE [99] and FEAT algorithm
[24]. BIDE is capable of detecting closed sequential patterns, while FEAT defines generator sequential
patterns. A closed sequential pattern is the longest pattern detected within the data at the same support.
This implies that every detected pattern with the same support that is strictly included in another detected
pattern will not be part of the output. In contrast, a generator sequential pattern is the exact opposite.
Each pattern containing another will not be included in the output for each subsequence detected with
the same support. The algorithm used can be defined by setting the parameters ’closed’ or ’generator.’
If ’closed’ is set to true, BIDE will be executed. If ’generator’ is set to true, FEAT will be executed. If
both are false, PrefixSpan will be used. All of these algorithms work with the definition of the parameters
support, minimum, and maximum length. Given these parameters, the sub-sequences will be extracted,
and cohesion is not considered. Additionally, it can detect a pattern once per sequence in the training set.
Therefore, it is mainly suitable for data-sets where each task is recorded independently.

5.2.4 Post-processing

After gathering the necessary data, the next step is to make it processable for the UI. This involves prepar-
ing it for sending by converting it to a Dynamic Data object using the Python dds-framework for rti [78].
The message definitions are detailed below. Due to the size of the message, the couples will be sent one
after another if new data is available, while the prioritization values will be sent continuously in a single
package. To ensure accuracy, the sequences’ length (’len’) was added to the given message definitions.
This was necessary due to a faulty implementation of the reader in the rti library, which tends to over-
write packages without first deleting the previous message. As a result, new sequences may be created
if the new message has a shorter sequence than the previous one since it appends the remainder of the
previous message to the current one.

struct Recommendation{
sequence<string<255>,100> robot_id;
sequence<short,100> command_id;
sequence<short,100> placing;
short len;

};
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struct Coupled{
short support;
sequence<string<255>,100> robot_id;
sequence<string<255>,100> command_id;
short len;

};

5.3 Handling in UI

In order to effectively handle the data in the UI, certain functions have been implemented for both systems.
These functions include message parsing for the new message types and functions that enable the usage
of the newly acquired data. It is important to note that the parsing of messages will only occur if the
corresponding data is sent, and the UI will still function as it did before without utilizing these new functions
in this case. Overall, the addition of these functions will allow for a more streamlined and efficient handling
of data within the UI.

5.3.1 Command Prioritization

In the current version, the Prioritization command has been added to the UI with the purpose of realigning
the available commands based on their rating. This means that commands with the highest rating will now
appear at the top of the list, while those with a lower rating will be placed towards the bottom. For any
command without a rating value assigned, it will be added to the bottom of the list in alphabetical order.
To facilitate this realignment, the already implemented sort function has been adapted accordingly. These
changes were made with the aim of improving the user experience and making it easier to access the most
important commands quickly.

(a) Pop-up to add Command Couple Suggestions
(b) Button for "Saved Command
Couples"

(c) Command Couples Button
extended

Figure 5.3 Adding Command Couples and Executing them
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5.3.2 Command Couples

The modifications made to facilitate the Command Couples have been more extensive, as it was necessary
to enable the addition and execution of generated couples. When messages containing identified couples
are received, a pop-up will be displayed on the UI, as depicted in figure 5.3a. This pop-up notifies the
operator that a particular sequence of commands has been detected a certain number of times. Should
the operator find the sequence useful, they can add it by giving it a name and accepting it. Conversely, if
deemed unnecessary, they can decline it.

However, if the operator fails to specify a name, the sequence will be added under the name ’...’, which
may become unmanageable for multiple cases with the same name. Therefore, a name management tool
should be implemented to address this issue.

After the couples have been added, a newly added button at the bottom of the command list, as shown
in figure 5.3b, provides access to them. Clicking on this panel displays the current list of executable
couples, as seen in figure 5.3c. The list is filtered to show only the available sequences by checking for
the availability of the first command of the sequence.

When executing a command couple, a status indicator, as shown in figure 5.4, will appear on the top
left of the UI. The indicator will show the icon of the currently active robot, along with a progress bar
located underneath. The progress bar will display a small bar for each command in the sequence. The bar
corresponding to the currently executed command will appear in yellow and turn green once the command
is finished. All other commands will be presented in a light grey color. To stop the execution of the current
sequence, simply press the small x located in the top right corner of the indicator. This way, progress can
be tracked and commands can be managed with ease.

Figure 5.4 Progress Icon for Command Couple Handler

The command handler operating in the back of the system is capable of operating with multiple se-
quences simultaneously. However, this requires some adaptations to the current UI, as it can only handle
the execution of one command at a time. The reason for this implementation is that the efficiency of
multi-robot control would improve if the robots could execute commands simultaneously. To allow for the
execution of multiple command sequences, an indicator is added to the right of the current one for each
command couple added to execution. When the operator initiates the execution of a sequence, the first
command begins immediately as soon as the handler is added. Once the first command has been exe-
cuted, the robot will reply with the "Command Reply" message. At this point, the handler will check which
currently active handler has been executing this command and will try to start the following command. If
the command is unavailable at that time, the handler will try to start the command multiple times within the
next 2.5 seconds. This adaptation is necessary in case of a bad connection on some occasions where
the available commands are not updated on time. If the command remains unavailable within this time
frame, the indicator will start blinking, indicating that an interaction with the handler is necessary. When
the operator clicks on the indicator, the handler tries to send the command one last time and outputs an
error message stating that the requested command is not available if it is not. This error message will be
presented in the top middle of the screen, as shown in figure 5.5. The progress bar of the currently active
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command will also turn red to indicate the event. Upon receiving this message, the operator can choose
to continue the current sequence by manually commanding the robot to a state where it can execute the
following command and execute it. This manual adaptation might include more than one additional com-
mand or teleoperation mode. Alternatively, the operator can cancel the command couple by clicking the
small x in the indicator.

Figure 5.5 Full overview of the implementation for Coupled Commands including the error message for a unavailable
next command

In addition to detecting errors, user interaction is also required for executing a parameterized command.
Currently, there are no automated methods for handling parameters, so the operator still needs to define
the values that correspond to the current command. The system will indicate this requirement by a blink-
ing indicator. When the operator clicks on the indicator, a window will open, allowing them to enter the
necessary parameter values and proceed with the rest of the command sequence. If the first command in
the sequence requires parameterization, the window will open automatically without any further input from
the operator.

5.4 Test environment

In order to ensure a smooth and efficient testing process, a simplified simulation of the robot has been
created for testing purposes as the actual robots may not always be readily available. This is where the
Surface Avatar Virtual Test Robot (Surav) comes into play. It was initially developed as an example of
the data that needs to be published and how to implement the DDS framework in collaboration with the
European Space Agency (ESA).

However, at this stage, the framework was incapable of transmitting video data or sending data for
multiple robots. Therefore, Surav was modified to send simulated data for each presented robot, including
Justin, LAMA, the Rover, and Bert, with the latter serving as a placeholder until it becomes part of the
team. To accomplish this, a parent robot class was created, which sets up a basic robot without much
functionality, but with the capability to send all the necessary data to the UI.

Within the Justin class, which is designed to simulate a basic version of the actual robot, a state machine
was added, enabling the simulated robot to perform three primary tasks and controls the information sent
for each. This approach is based on a basic state machine that includes several actions, states, and a few
world parameters. The robot can perform the following tasks: "Clean Panel3," "Seismometer Placement,"
and "Update Firmware."
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Simulating the entire scenario in Unreal Engine would require a significant amount of work, primarily
due to the multitude of parameters involved, including all 19 of Justin’s joints. Therefore, the necessary
actions were recorded during execution on the real robot using the RTI recording service.

As infinite action recording was not feasible, certain parameterized commands such as "drive_around"
and "look_around" were restricted to two options each. This limitation meant that it was only possible to
move to two fixed positions within the map and look either up or down with Justin.

Due to time constraints, creating a multi-robot state machine was impossible. Therefore, the testing
was mainly done with Justin alone, but the framework has also been tested on some randomly created
multi-robot data recorded during test runs.

To provide a basic overview of the implemented commands, the corresponding objects, and the pa-
rameters used within the state machine, they will be stated and explained in the following. For similar
commands that have been independently implemented for different objects, those commands will not be
stated individually. Instead, each variation will be stated in curly brackets. The same is done for similar
commands like activate and deactivate, where the deviation is stated in brackets, as in the following exam-
ple: (de)activate. The commands are designed so that the command’s white spaces are replaced by ’_’ to
differentiate the objects that correspond to the command.

Objects

• Solar Panel Unit (SPU) - Responsible for any computation and storage of solar panel energy man-
agement

• DIP - Data interface probe (interface to connect Justin with SPU)

• LAMA - Lander Mounted Arm (as described in section 4), also command-able as robot in full setup

• Seismometer - A device that detects and records ground noises and vibrations

Parameters

• string location - Current location of the Robot

• string look_at - All objects whose April Tag is currently visible, separated by space

• string gaze_direction - Indicates whether Justin is looking in the "Center" or "Down" direction cur-
rently

• string localized - Current object, which is localized with high accuracy

• bool seis_picked - Indicates whether Justin has the Seismometer in his hand

• bool spu_active - Indicates whether the SPU is active or shut down

• bool dip_connected - Indicates whether Justin is connected to the SPU currently

• bool panel_turned - Indicates whether the panel is in standard alignment or turned to the left

• bool panel_locked - Indicates whether panel is currently locked

Actions

• localize {SPU3, LAMA, SPU3, Panel3, Seismometer} - Tries to localize the specified object with
respect to Justin. This task is successful if one of its April-Tags is recognizable in the camera.

• navigate_to {SPU3, LAMA, placement_position} - When the object is localized in sufficient accu-
racy, Justin navigates to the object, such that the standard interactions with the objects are within its
reachability range, where the option placement_position is usually a drive_around action
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• drive_to - Is the restricted form of drive_around, where one can choose a position and its rotation
within the map and navigate to it. Here, it will enable the operator to pick from two options, including
a pose where the SPU3 is visible and one where the LAMA is visible.

• look_in_direction - Is the restricted form of look_around, where the operator could define the angles
to which Justin’s head would tilt. Here, the operator can look down or center the view.

• (dis)connect DIP - (Dis)connects the DIP to the SPU

• download_data - Loads the stored data from the SPU to Justin

• update_firmware - Justin installs the newest firmware on the SPU

• (de)active SPU - Turns SPU on/(off)

• (un)lock Panel - (Enables)/disables rotation of the mounted solar panel

• rotate panel - Rotates the panel to the given rotation value (only supports 90° turn and back within
the simulation, where the robot decides which way to turn, based on internal state)

• clean Panel - cleans the given solar panel

• pick Seismometer - The correctly localized Seismometer will be picked up

• prepare_for_placement - Justin bends down his upper body such that the picked Seismometer can
be placed on the floor afterward

The state machine has been implemented to make the corresponding commands available for each
state, as shown in figure 5.6. With this implementation, one can see that the state machine covers 14
distinct states, which enable the robot to navigate through the given environment. The state IDs are
defined within the curly brackets for each state. To ensure ease of handling, states with the same set of
commands have not been merged into a single state.

To begin, the simulation always starts on the start state 0. This state comes with an according parameter
set stating an active SPU, an unturned and locked panel, and a pose at the position ’start0’ (where LAMA
is visible) with no connected or picked objects. From there, one can navigate through the scene with the
corresponding commands for each state. Within the overview figure, only the state transition commands
are given, meaning that the rest of the available commands can change the system’s internal state, which
is represented by the given parameters. On execution of one of those, the state machine’s state remains
the same.

As an additional transition, one can see that one circular object can be seen right below the start state,
which has a star sign within. This sign is a simple representation for each state, which offers the command
drive_to. On execution of this command, one can transition to the start state by executing this command,
which will also move the robot to either the start position in front of LAMA or the SPU.

It is important to note that the same action can also lead to multiple states depending on the internal
state. For each transition where that applies, there is a condition for the transition stated in brackets
on the corresponding arrow. As all transitions depend on boolean parameters, the transitions where the
parameter must be false are stated with an exclamation mark in front and without otherwise, as this is
common practice in programming.

The state machine has three final states, which cover the end states of the previously mentioned tasks.
At those, the machine has valid exit points that leave the system stable. Nevertheless, as the system is
only a simulation in this case, there exists no risk if the system is left at any other state.
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Figure 5.6 Basic overview of the implemented state-machine
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6 Evaluation

Given the detailed description of the system and its various processes, it becomes imperative to evaluate
the effectiveness of the proposed setup. In order to validate the efficacy of the system, it is necessary to
conduct a comprehensive evaluation. As such, this part of the thesis delves into the setup and evaluation of
a user study, wherein multiple participants were given the opportunity to work with the system and assess
its usability based on standardized questionnaires such as NASA TLX [32] and PSSUQ [45]. These
questionnaires measure the perceived task load and the quality of information displayed within the UI.

In addition to the standardized questionnaires, data was also collected on the usage speed and accuracy
of the models during the execution time of each participant. This data will be evaluated and presented in
this section as well. Furthermore, participants were given an additional questionnaire that included open-
ended questions, allowing them to express their thoughts and opinions on various aspects of the system.

Overall, this evaluation is critical in determining the effectiveness of the proposed system and its ability
to meet the intended goals. By analyzing the feedback received from the participants, it will be possible to
identify areas of improvement and make necessary changes to enhance the system’s functionality.

6.1 User Study

6.1.1 Setup

The participants in the user study were kindly requested to perform three tasks, namely "Clean Panel3,"
"Seismometer Placement," and "Update Firmware," which were implemented in Surav within the given
simulation. For each task, they were provided with a written explanation of the task, as stated in the
following.

Seismometer Placement: Localize LAMA and navigate to it, then localize the Seismometer Placement
and pick it. As soon as you have the Seismometer, you can back off into the placement position. Finally,
you prepare the robot for the Seismometer placement on the floor.

Update Firmware: Localize SPU3 and navigate to it, then connect the DIP to download the current data
and update the firmware. To finalize the procedure, deactivate and then reactivate the SPU. After that, you
can disconnect the DIP.

Clean Panel: Localize SPU3 and navigate to it. Unlock the panel and rotate it to have it accessible for
cleaning. After re-locking it, you can let the robot clean the panel.

In the study, participants were asked to perform a series of tasks using the recommender system. The
first task was completed without any additional help from the system to have a baseline measure. The
second task was completed with the assistance of command prioritization, which reordered the commands
based on their probability. Finally, participants attempted to complete the last task with the help of the
system’s coupled commands.

During this final task, participants were presented with the top-10 detected command couples within
the recorded log data. They could either accept or decline these suggestions, choosing to add them to a
saved list or discard them. Participants were encouraged to use the added command couples to complete
the task, and the command prioritization continued to be active throughout.
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The tasks were reordered for each run to prevent any false conclusions based on the difficulty of a par-
ticular task. However, the order of the given recommendations remained the same for each participant, as
the learning effect was deemed marginal due to the changing tasks. Due to that reason, the improvement
in speed performance is not solely attributable to the help of the command probability for that reason.
It’s worth noting that some participants were already familiar with the interface, as they were part of the
development team. The speed improvement was similar in this group in comparison to other participants.
Hence, one can infer the minimum learning effect to be proved.

Questionnaires In order to provide a better understanding of the user study results, we will present an
overview of the questionnaires given to participants. For each task, participants completed the TLX and
PSSUQ, which were structured in the following manner.

• TLX - rate on a scale from 1 to 20, where 1 is very low, and 20 is very high

– Mental Demand - How mentally demanding was the task?

– Physical Demand - How physically demanding was the task?

– Temporal Demand - How hurried or rushed was the pace of the task?

– Performance - How successful were you in accomplishing what you were asked to do?

– Effort - How hard did you have to work to accomplish your level of performance?

– Frustration - How insecure, discouraged, irritated, stressed and annoyed were you?

• PSSUQ - rate on a scale from 1 to 7 where 1 is equal to strong agreement and 7 to strong disagree-
ment

– 1. Overall, I am satisfied with how easy it is to use this system.

– 2. It was simple to use this system.

– 3. I was able to complete the tasks and scenarios quickly using this system.

– 4. I felt comfortable using this system

– 5. It was easy to learn to use this system.

– 6. I believe I could become productive quickly using this system.

– 7. The system gave error messages that clearly told me how to fix problems.

– 8. Whenever I made a mistake using the system, I could recover easily and quickly.

– 9. The information (such as online help, on-screen messages, and other documentation) pro-
vided with this system was clear.

– 10. It was easy to find the information I needed.

– 11. The information was effective in helping me complete the tasks and scenarios.

– 12. The organization of information on the system screens was clear.

– 13. The interface of this system was pleasant.

– 14. I liked using the interface of this system.

– 15. This system has all the functions and capabilities I expect it to have.

– 16. Overall, I am satisfied with this system.

To assess the data in the PSSUQ, a shortened version is available, which involves averaging scores
from four different sections of the questionnaire. These sections include evaluating overall performance (all
questions), system usefulness (questions 1-6), information quality (questions 7-12), and interface quality
(questions 13-16).
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As part of the study, participants were asked to complete an additional questionnaire that utilized the
same rating system as the PSSUQ. This questionnaire included questions about the general system and
both recommendation system modules. Participants were also invited to share any additional feedback
they had about each component of the system here.

• General

– I would like to have more Help and Info Pages within the system in general.

– I would like to have an Info-Page for each of the commands.

– I would like to have more automatic recommendation systems.

– I would like to have more manually executable recommendation systems.

• Command Probabilities

– I think this system helps me achieve my task.

– I find the reordering of the commands irritating.

– I would rather like to have a High Lighting of the most probable next command.

• Command Coupling

– I find the "Detected Command Couple" pop-up irritating.

– I would prefer a user-controlled pop-up with an indicator (light bulb).

– I would like to be able to create and add my own Couples.

6.1.2 Participant Overview

Fifteen people voluntarily participated in this study, with three being female and twelve being male (see
Figure 6.1a). The age range of participants was between 19 and 36, with an average age of 27.7.

Figure 6.1c shows the corresponding levels of education, rated on an 8-level scale according to the DQR
[50]. Bachelor’s degrees and similar diplomas are on level six, while a master’s degree is on level seven.
No participant had achieved level eight, which is a finished PhD or doctorate. The majority of participants
had a completed bachelor’s degree, followed by an equal number of participants with a master’s degree or
Abitur. This also applies to other degrees of similar value for each statement.

(a) Gender (b) Occupation (c) Level of education

Figure 6.1 Overview of User Study Participants
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The participants’ occupations were varied across many fields (see Figure 6.1b), including six people in
research or still studying in an research related area, and an additional two in a tech-related field. With
another two in handiwork, the average expertise in operating and maintaining technical applications is
high.

Figure 6.2 Levels of education according to the DQR

After carefully analyzing the overview of the participants, it is evident that the selection of participants
is diverse, covering a wide range of experience in the technical field. Many different occupation fields and
levels of education are represented, providing a diverse representation of potential users. It is worth noting
that the variation in age could use some more coverage, and it would be beneficial if the gender assignment
were more equally distributed. Despite this, a general first impression of how well people respond to the
proposed system should be feasible. Overall, the selection of participants provides a valuable insight into
the technical field, and their experience and feedback will undoubtedly contribute to the success of the
proposed system.

6.1.3 Results

In Figure 6.3, the diagrams show that both examples had a positive impact on the user. To clarify the
information presented in the diagrams, each bar represents the average answer given by participants to
the questions, with the standard error also visualized for each bar. The blue bar represents the first round
of the experiment with no additional help, while the orange bar represents the second round with command
prioritization in the form of reordering commands. The gray bars show the same answers for the coupled
commands, with the rating including both adding the commands and their execution.

Moving on to the results in this chapter, we begin with a quick overview of the overall outcome. The TLX
showed an average improvement of 1.73 points when comparing the command prioritization to the no-help
model, which equals an improvement of 8.67 percent on the 20-point scale. The PSSUQ also showed an
average improvement of 0.44 points, which equals 6.32 percent on the seven-point scale. However, the
command coupling did not perform quite as well, with an average improvement of 0.77 points for the TLX
and 0.23 points for the PSSUQ, equaling 3.83 percent and 3.36 percent improvement, respectively.

With this first overview of the results, the outcome can be discussed in more detail. Firstly, the outcome of
the TLX (figure 6.3a) will be covered, mainly focusing on how high the task load was. The most significant
improvement for the prioritization is available in mental demand (2.13 p.) and the effort (2.53 p.) needed
to execute the task. This improvement shows that prioritization is a well-responded measure to reduce
mental demand.

The most significant improvement for the coupling focused on the temporal demand, with a 1.93-point
improvement. This is mostly due to the fact that the execution of the coupled command is comparatively
fast and easy. On the other hand, many people had problems adding the proposed couples at the begin-
ning of the third round. The adding process can be very demanding when the operator has not yet worked
with the system, as the suggestions can be overwhelming if the routines are unknown. However, many
participants claimed that they would feel much more comfortable using this system if they were familiar
with the UI and the robots. Due to that, it can also be seen that, on average, the participants rated their
performance improvement as the lowest here, with only a 0.13-point difference. One can also note here
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(a) Results NASA Task Load Index (b) Short Results of PSSUQ

Figure 6.3 User Study Result Charts

that the participants who were part of the team could interact with the coupled commands very easily and
rated the improvement higher than participants who were not. This divergence in the perceived ease of
use can also be seen in the data, as the variance for the coupled commands is significantly higher than for
the other two experiments.

Next, the PSSUQ will be discussed, which mainly measures the information availability on display and its
overall ease of use. The outcome can be seen in figure 6.4 for a summarized overview and figure 6.3b for
an in-detail overview, including each available question as answered. In the combined version, the system
usefulness did increase the most, with 0.69 points for prioritization and 0.44 points for coupling. This
minor increase is probably a result of the interface not changing much in both cases. Hence, the additional
functionalities are mainly for easier use of the UI. The information interface quality did only improve slightly
for the coupling and had a minor but slightly more significant effect on the prioritization experiments. A
reason for the higher improvement in information quality for prioritization can be the fact that the learning
effort for the coupled commands is higher than for the prioritization system. In contrast, prioritization
makes finding the most valuable and helpful commands easier. Regarding the specific questions, the
improvement in command prioritization was highest on the questions about satisfaction with the system
and the ability to learn to use the system, making it a good addition for new users. For the couples, it was
also observed that the most considerable improvement lies in satisfaction with the system. In contrast, the
learning of it was not as easy. Hence, this is better added as a system that comes into play after some
experience with the system.

Based on the results of the additional questions that were provided at the end of the study, it can be
inferred that the participants had varying opinions and were somewhat undecided on most of the questions

Figure 6.4 Full results of PSSUQ
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(as shown in figure 6.5). In general, the participants gave an average rating of around three to four points
for these questions.

However, it is interesting to note that the highest approval rating with an average of 1.73 points was
obtained for the question on whether the command prioritization in the form of reordering is helpful in
achieving the given task. Similarly, the participants stated that the reordering did not cause any irritation
with an average rating of 5.8 points.

On the other hand, the participants showed a slight disagreement (ranging from 4 to 5 points) with
regards to the need for manually executable recommendation systems and the manual call for the Coupled
Command pop-ups. This suggests that the participants may have slightly favored autonomous systems
compared to manually executable ones.

Lastly, there was a slightly more pronounced disagreement among the participants regarding whether
the pop-up was irritating, with an average rating of 5.2 points. However, overall it can be concluded that
the pop-up was well-perceived by the participants.

During the study, participants provided valuable feedback on the general system as well as the two
support systems. With regards to the general system, many participants expressed a desire for addi-
tional information on the currently executed command, particularly for those without visual feedback on the
screen. Participants also requested a history system for notifications to provide a better overview of the
current state. On the other hand, some participants preferred user preference options, such as the ability
to disable or enable each support system. This would allow for greater customization and control over the
system, which could lead to a more efficient and personalized experience.

Regarding command prioritization, participants had mixed feelings about highlighting the most proba-
ble next command within the predefined questions. While some preferred a combination of highlighting
and reordering the commands, others found the highlighting distracting and felt it could lead to potential
decision-making errors. Also, one participant suggested that displaying probabilities next to the commands
would make decision-making easier and more accurate.

Most of the feedback concerned command coupling, with participants requesting more help to distin-
guish which sequences might be useful. Some participants suggested an overview of the sequences
rather than one request after another, while others requested a "Start again" button placed on the screen
to reiterate the given examples. Additionally, a "Decline all" button was suggested to provide an option for
participants to reject all suggested couples. Participants also requested a quality check before the couples
were sent, which would provide an extra layer of assurance and accuracy.

One team member suggested an option to switch the levels of autonomy for the commands, putting
additional development requirements on the robots’ side. This would allow for greater flexibility and cus-
tomization in the execution of tasks for the requirements of each robot, as the internal planning can be
used for the creation of higher level commands.

Despite the various areas for improvement, participants were generally pleased with the ease of execut-
ing tasks with the given command couples and were inclined to work with such a system. With continued
feedback and improvements, the system has the potential to become even more effective and user-friendly.

Figure 6.5 Results of additional questions
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6.2 Effectiveness and Accuracy

During the User Study, in addition to the questionnaires, a system was implemented to record the user
data. This system comprised of various parameters such as time-frames between events, model accuracy
represented in the form of quadratic error, and the assignment of whether the chosen command fell within
the first three, five, or ten calculated commands. It’s important to note that this assignment to the top-k
commands applies to the unfiltered state where each command was valid as the following command. Ad-
ditionally, each option’s average value was calculated on every run, including the cases with no assistance,
with the command prioritization, and with the couples. Furthermore, an additional calculation was done for
the combined average. To ensure that the runs between different participants were comparable, the state
of the prediction and coupling models were saved on the first participant, and those saved models were
used for all other participants. Specifically, the prefix-span algorithm was used for the command coupling,
where the detected couples were stored. The models for sequence prediction were defined as follows
during the User Study:

• 1. CPT+ - Command Sequence

• 2. CPT+ - Command Class Sequence

• 3. Subseq - Command Sequence

• 4. Subseq - Command Class Sequence

The results of the command-sequence-based algorithms showed a promising outcome with a low squared
error of 0.023 for CPT+ and 0.022 for subseq. However, the accuracy for the classified sequences was
much lower, with an error of 0.22 for both algorithms. Despite this, they still managed to predict the correct
class most of the time. Overall, the Subseq models had a slightly higher accuracy than CPT+.

From the recordings of whether the executed command belonged to the top-k commands, it was found
that CPT+ had better accuracy. However, this could be due to a higher variance over the commands for
CPT+ than subseq, or a computation error, and requires further research to confirm.

In future user studies, the measure of the top-k command class should be adapted as the current
implementation lists all class assignments for commands. This means that the top-k depends on the
number of commands assigned to a particular class, and the fraction of commands assigned to this class
listed on top of the list can vary. As such, the measure does not provide valuable information in its current
form. Unfortunately, this error was only detected after the execution of this user study, and therefore, no
valid conclusions could be drawn from it.

CPT - Command CPT - Command Class Subseq - Command Subseq - Command Class
Top 3 0.76580688 0.06396605 0.72835097 0.27574956
Top 5 0.80364859 0.24697972 0.75229277 0.32783289
Top 10 0.84276896 0.25045194 0.78118386 0.43982584

Table 6.1 Top-k accuracy for different models

The time between the commands drops from 47 seconds to 38.1 sec for the prioritization and 28.2 sec
for the couples. This equals an 18.9% improvement for the prioritization and a 40% improvement for the
coupled commands. Here, the quite pronounced reduction for the couples is mainly due to the automatic
execution of the following command on availability. Here it also is to note that the time to the first command
increased by an average of 3:26 minutes in comparison to the prioritization round. The time to the first
command for the first round has been omitted here due to the time the participants needed to get familiar
with the interface. This significant difference is due to the previous task of adding the command couples.
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Hence, adding the couples enhances productivity and efficiency if at least eleven commands are executed
based on this framework after adding. However, this number will probably reduce once the users are
familiar with the system. Frequently, there were questions about the system during the study run.

Regarding model performance, the current speed of the models is sufficient, with an average prediction
time of 1.41 seconds, including updates for both recommendations. It is sufficient due to an execution
time of at least five seconds for any command implemented in the surveyed context. The time has been
measured on a contemporary Linux PC. It shows room for improvement, in any case. One major part would
be the exchange of the spmf-library used for the CPT+, NOSEP, and QCSP algorithms, as the plugin is
not developed for a speedy performance. A native library or a wrapper, considering time constraints,
would improve the system here. The slowness of those algorithms can also be seen in comparing the two
currently implemented ones. The library for the Subseq algorithm has an average execution time of 1.83
milliseconds (ms), whereas the CPT+ algorithm takes about 553.9 ms.

6.3 Summary

The study demonstrated that both support systems implemented are effective in assisting operators with
their tasks. While each system has a positive impact on the operator’s performance, they are beneficial
in different ways. The command prioritization system reduces cognitive load, while the coupling system
improves the execution speed of commands. Feedback received during the study highlighted areas for
improvement, such as providing a better overview of recommended options and added sequences for
command couples.

There is room for improvement in terms of system speed, as external libraries used in the models are
slowing it down. This issue can be resolved by writing new libraries or finding native ones. The models
performed well in terms of accuracy, based on squared error, but require further investigation regarding
the top-k evaluation. Evaluating the performance differences between implemented algorithms within the
coupled commands was not possible due to time constraints and should be part of future research.

Overall, the prioritization and coupling functionalities have the potential to improve system usability and
reduce task load. However, some participants experienced difficulty with the coupling system, indicating
a need for additional training or familiarization. The study provides valuable insights into the system’s
usability and can be used to enhance its functionality and user experience. Participants’ opinions and
preferences were gathered through additional questions at the study’s end, revealing positive feedback
regarding the reordering feature and Coupled Command pop-ups.
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7 Discussion

Throughout this thesis, the current status of controlling a team of heterogeneous robots and how to make
this process easier has been elaborated on in great detail. The topic has been covered from various
angles, including different UI layouts, physical input devices, and knowledge representations. The goal
was to explore the different modalities in which the available data in those systems can aid the operator in
achieving their tasks. To achieve this objective, a range of standard approaches, mostly part of the data
mining research field, and a few neural network-based approaches were discussed.

In the concept, an approach for the creation of a support system trained on historical user data was
presented. The first part was implementing a logging system. This was followed by processing steps
to create the desired information. The information was then translated into a code description in the
implementation part, which was based on the previously discussed robotic system architecture and its
limitations. However, some functions will only be available in future adaptations of the User Interface.

The User Study conducted showed that both implemented modules had a positive effect on the user.
The current progress status of the framework was surveyed, and it provided points to improve on and
possible future development ideas.

It was stated that there are many possibilities for reducing the operator’s workload. However, the work-
load is not the only parameter one should optimize, as the level of immersion and the operator’s awareness
of the surroundings also play an essential role. It was specifically noticed during the testing of the Coupled
Commands that participants lost interest in the provided camera stream and overall interface due to longer
command sequences. This loss of interest resulted in a lower level of immersion. Also, the cognitive load
does not always decrease when systems operate autonomously. A survey about self-driving cars found
that the perceived workload decreased during automated driving, but monitoring caused a higher cognitive
load than manual driving [89]. Therefore, a frequently received suggestion of the user study participants
was that the support systems should be manually activatable.

In conclusion, significant progress in cognitive load reduction can be achieved for operating robotic
systems of one or more robots by setting the following goals:

• Increasing the operator’s immersion in the environment

• Increasing the operator’s situational awareness

• Improving intuitiveness of the interface

• Deflecting information on the system to haptic feedback or similar input devices

• Creating support systems for decision-making in the control process

By reducing the cognitive load one needs, those approaches can also increase the usability of the
given system. It is evident that the changes and developments made during the course of this thesis fall
under the fourth point. As previously mentioned, the primary obstacles in creating a support system are
selecting relevant data to gather and processing it in a way that can benefit the user. In this field, numerous
processing options are available, each with several applications. Therefore, the following section provides
a brief overview of the most significant options.
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• Natural Language Processing

– based on written input

– based on verbal input

• Task classification for prediction

• Creating a Knowledge database

– User Behaviour Knowledge:

* Sequence Prediction

* Extraction of frequent item-sets or sequences within the system

– System/Robot Knowledge:

* World representation

* Task ontologies

The proposed system is designed to create a comprehensive knowledge database of the user’s behavior
within the processing options, including the inference from the acquired data to support the user. For
instance, the "Command Prioritization" can be seen as an example of sequence prediction, while the
"Command Coupling" extracts frequent sequences of commands from the user’s behavior. The system
has been built on a small training data set, as it has been tested on a data set of approximately 25
recorded UI runs in the given simulated environment performed by experienced users. The accuracy rate
of the system for placing in the top 3 predicted commands is 77

During the evaluation phase, mostly positive feedback was retrieved with the given setup, including this
small data set. Most users part of the user study would like to work with the given system. A positive effect
was shown on both the workload and the user interface rating of the users for both systems. The use of
the TLX and the PSSUQ questionnaires has retrieved this information.

However, the coupling of the commands could have been more well-perceived, as the information given
on-screen still needs to be improved here. The users were asking for more options to display the gained
knowledge and a way to iterate back and forth between the extracted sequences. It was also stated that
the sequences of commands should be visualized again before execution, such that the operator is better
aware of what the robots will do.

In order to create a more robust approach, it is necessary to increase the size of the training data.
Additionally, it was suggested that instead of just coupling commands in sequences, it would be beneficial
to offer a range of different levels of autonomy for the available commands. For example, one setting could
present the commands as they are in this thesis, while another could offer complete tasks from the user
study as individual commands, such as "Clean panel." However, this approach would require more from
the operating robots, as they would need to be able to provide commands within the corresponding level
of autonomy. As the approach for this thesis aims to be primarily independent of the robots’ capabilities,
this option was not chosen in this scope.

The reduced immersion in the execution of sequences also resulted in a loss of situational awareness,
particularly in cases where execution errors occurred. In these instances, the operator needed time to
understand the robot’s current state and identify the problem causing the non-availability of the following
command. To address this issue, a potential solution could be autonomous error management, which
would allow the robot to recover from errors and continue executing the given sequence autonomously. To
achieve this, the robot would need to be aware of the complete sequence of commands from the beginning
of execution and capable of processing this new input.
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7.1 Possible improvements on present system

Based on the previous section, there are several areas in which this system can be improved and extended.
One of the most prominent areas that should be improved is the handling of Command Couples within the
UI. The testers have requested more options for dealing with additional data, so adding more information
and options to the interface is a viable solution. To start with, an overview of the given suggestions from the
recommender system should be added so that the user can switch back and forth between the proposed
options. This overview enables the user to compare the options and then make an informed decision. It
is better than the current method of adding the couples by guessing whether the current one is the most
ideal.

Furthermore, an info window on execution start that displays the commands to be executed in that
sequence should be added. This feature will give the users a clear idea of what commands will be executed
and when. Finally, more options should be added to the handler, including error handling capabilities. For
example, a system like the one proposed in Filthaut’s thesis [21] could be added. She suggested several
options for implementing error handling, including a system that informs the user about possible solutions
for solving the error state on occasion.

Another great addition would be an overview of the command names by clicking the indicator. In the
current version, it can be challenging to infer which progress bar corresponds to which command. Given
these additional adaptations, the system will likely enhance the current setup even more. On the algo-
rithm side, the detection of "Command Couples" could be combined with a knowledge ontology for all the
connections of actions with objects and more. This addition would enable a first check of the feasibility of
the send couples, such that the operator can be more sure about his decisions. The given examples are
already tested prior to sending, so it makes it easier for the operator to make an informed decision.

The ontology could also be used to infer a possible parameterization of any parameterizable command.
Another option for parameterization, at least in cases where the parameters available contain options
to choose form, would be creating a sequence including this information. This enables the additional
prediction to infer on which parameter was most likely used in this case. For cases where the parameters
are floating point values or strings, this process might be a bit more complex. An example here would be
to store the command sequence must in conjunction with their parameters, where one can then extract
all options in the prediction tree and infer on the parameter by, for example extracting the most prominent
cluster centroid from the data for floating point values. For strings, one can check for similarity and propose
an option where many similar items are available in the data.

The couples could also be adapted so that the sequence includes a call to teleoperate a robot. This
addition is beneficial for actions that still need to be implemented and are usually conducted via teleopera-
tion. It also makes it easier to create long sequences if the sequence informs the operator as soon as the
teleoperation is necessary and proposes the kind of teleoperation needed.

With regards to improving the command prioritization process, another critical advancement would in-
volve creating a more extensive database of user data. This database would enable neural network-
based approaches for time series forecasting, which could be used independently or as an addition to the
currently implemented forecasting algorithms. Additionally, an exciting opportunity here would lie in an
ontology-based reasoning system, which could predict the following command based on a set of (proba-
bilistic) rules defined in this ontology.

To adapt the current implementation, it would also be beneficial to extend the training database for
command classification and test the classification for accuracy, given a couple of text classification options.
In this regard, it can be useful to test some different options for text classification, some of which have
already been stated in the bibliographic research.

Since the modular approach permits new modules to be added, one option here would include adding
prompt-based support systems. For example, a conversational system proposed in Zheng et al. [105]
could be implemented, allowing users to interact with the robot conversationally. This addition would
extend the current status of the recommender system to be a framework that enables more natural com-
munication between the human operator and the robotic system. Unlike the current approach, where the
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recommender system operates independently of the robot’s systems, this would entail direct communica-
tion with the robots. Also, in some cases, it might be a better approach to implement such a system directly
on the robot. However, it is worth noting that this is only one possible option, as many more options have
already been stated in the bibliographic research.

Regarding these systems, it is important to note that enabling them should always be voluntary. Many
operators prefer a system that is consistent in the offered interaction possibilities. As these recommenda-
tion systems often adapt the interface of the running system, they should not be forced on the operators if
they are already familiar with the current system and prefer to keep the status quo.

7.2 Outlook on Recommendation or Support Systems in Multi-Robot
Scenarios

As highlighted in the preceding sections, the realm of recommendation and support systems offers a
plethora of options. However, most of these systems are currently unable to handle more than one robot
at a time. To make many of the proposed systems usable for multi-robot scenarios, one must be able
to adapt the current system. Nonetheless, the most significant challenge is testing. The development
of the robotic team and the support system typically occurs simultaneously. Therefore, it is crucial to
work on a standard for test beds that allows developers to test their proposed frameworks before applying
them to an actual robotic team. Michael, Fink, and Kumar conducted a survey for different applications,
providing this opportunity [58]. They also proposed a framework developed primarily for large robotic teams
that can efficiently conduct studies on how to improve in the field of multi-robot systems. On the robots’
planning sides, there are also many options for future work. Blumenkamp et al.’s graph-neural-network-
based navigation for multiple robots would be an excellent addition for any robotic team supporting many
mobile ones [9].

Moreover, the proposed system can handle the commands of multiple robots. However, during the
master thesis, both modules were only tested in a single-robot environment. Additionally, testing each new
function and algorithm added to the current framework was not possible. Therefore, for future development,
the current framework must be tested for multiple parameterizations of the algorithms and during the
support in different tasks. A study conducted on experienced users would also help determine whether the
modules become more effective as a later addition to the system. Overall, it is evident that the development
of multi-robot support systems and testing frameworks will significantly contribute to the advancement of
robotics in the future.

7.3 Summary

Upon conducting a comprehensive analysis of the thesis, it has become apparent that there are several
areas that could benefit from further refinement. Nevertheless, we are pleased to report that the proposed
system was well-received by the majority of participants in the user study. As a result, we firmly believe that
both modules have the potential to make a significant contribution to the current state of the user interface.
This thesis serves as an adequate starting point for the implementation of decision support systems within
the context of the Surface Avatar project. Thus, incorporating such systems can confidently be deemed a
valuable addition to the already installed haptic feedback teleoperation systems. Overall, we are optimistic
about the potential impact of this thesis and its contribution to the field.
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A Appendix A - User Study data

Table A.1 Participant Data

id date time age occupation lvl of ed. Gender teleoperation team member
7 25.08.2023 16:40 24 handiwork 6 M N N
6 25.08.2023 15:55 26 Service 4 M N N
5 25.08.2023 15:15 25 Health 6 M N N
2 24.08.2023 17:30 36 Education 7 M N N
1 23.08.2023 12:30 19 Study 4 M L Y
4 25.08.2023 13:06 24 Study 6 F N N
16 01.09.2023 16:34 32 handiwork 3 M N N
14 30.08.2023 18:47 27 Tech 4 M N N
13 30.08.2023 18:00 27 Tech 6 F N N
12 30.08.2023 16:17 32 Food M L N
11 30.08.2023 11:03 27 Research 6 M N N
8 29.08.2023 13:09 32 Food 4 M N N
10 28.08.2023 13:00 29 Research 7 M Y Y
3 28.08.2023 09:30 30 Research 7 M Y Y

Table A.2 TLX - No support

Task Mental Physical Temporal Performance Effort Frustration
1 1 1 1 17 1 1
1 2 1 3 19 4 1
2 7 1 2 19 6 7
2 5 1 3 16 4 1
1 7 3 15 5 8 4
3 8 3 2 19 6 2
3 4 4 4 11 5 3
2 5 1 10 20 3 4
1 11 2 6 15 12 10
1 12 1 1 18 3 1
2 5 1 4 16 8 3
2 1 1 1 16 5 2
3 13 3 8 18 13 7
3 6 1 1 20 11 5
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Table A.3 PSSUQ - No support

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 2 2 1 1 1 1 1 1 1 1 2 2 1 1
1 1 1 1 1 1 1 4 2 2 1 1 1 1 1 1 1
2 1 2 1 2 2 2 5 1 4 2 2 1 3 2 1 1
2 2 2 1 2 2 1 1 2 2 2 2 1 2
1 5 4 3 3 3 4 6 5 6 5 5 5 6 5 5 4
3 1 1 1 1 2 1 4 2 1 1 1 2 2 1 2 1
3 2 2 3 1 2 1 4 2 1 2 2 1 2 2 2 2
2 2 2 2 1 1 1 1 1 3 1 2 1 3 2
1 5 4 4 4 3 3 3 3 4 3 3 2 3 3 3 3
1 1 1 1 1 1 1 4 1 1 1 1 1 1 2 1 1
2 2 3 2 2 3 2 5 2 3 2 3 3 2 2 3 2
2 3 2 1 4 1 2 4 4 4 4 4 4 2 2 4 2
3 5 4 5 4 4 3 4 4 6 5 4 3 3 3 5 4
3 3 3 3 3 3 2 3 2 2 2 2 2 2 2 2 2

Table A.4 TLX - Prioritization

Task Mental Physical Temporal Performance Effort Frustration
2 1 1 1 20 1 1
3 4 1 1 20 3 3
1 2 1 2 20 2 2
3 2 1 3 20 3 2
2 7 3 3 18 4 2
2 10 2 1 20 8 2
2 2 2 2 16 5 2
3 3 1 4 20 4 1
2 7 2 6 14 11 11
3 14 1 1 16 5 2
1 2 1 3 18 2 2
3 1 1 1 16 1 1
2 6 3 5 18 4 3
1 2 1 3 20 4 1

Table A.5 PSSUQ - Priorization

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 2 2 2 1 1 1 1 1 1 1 1 2 2 1 1
3 1 1 1 1 1 1 4 2 2 2 1 1 1 1 1 1
1 1 2 1 1 1 1 5 1 5 3 2 2 1 1 2 1
3 2 2 1 1 1 1 1 2 2 2 2 2
2 2 2 1 2 2 2 4 4 4 3 4 2 2 2 1 1
2 2 2 1 1 1 1 4 4 2 2 1 1 2 1 2 1
2 1 2 2 2 1 2 4 2 2 2 2 2 2 2 1 1
3 1 1 1 1 1 1 1 1 1 1 2 1 3 2
2 3 3 3 3 3 3 4 4 4 5 4 4 4 4 3 4
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Table A.5 PSSUQ - Priorization

3 2 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1
1 1 1 2 1 2 1 4 1 3 1 2 1 2 2 1 2
3 1 1 1 1 1 1 4 4 4 4 4 4 5 2 4 4
2 2 2 2 2 1 2 3 4 2 2 3 3 3 3 2 2
1 2 2 1 1 1 1 3 2 2 1 1 1 1 1 2 2

Table A.6 TLX - Couples

Task Mental Physical Temporal Performance Effort Frustration
3 1 1 1 20 1 1
2 2 1 2 20 2 3
3 15 1 4 10 16 11
1 13 1 6 5 5 3
3 1 1 2 17 3 1
1 14 3 2 20 11 2
1 3 3 3 10 3 2
1 13 1 3 20 11 3
3 12 2 8 11 12 13
2 1 1 1 20 1 1
3 2 1 2 19 2 2
1 1 1 1 12 8 5
1 2 2 4 19 2 2
2 1 1 2 20 1 1

Table A.7 PSSUQ - Couples

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
2 1 1 1 1 1 1 5 2 2 2 2 2 1 1 1 2
3 4 4 5 3 5 5 6 3 4 4 5 3 3 4 6
1 2 2 3 2 2 1 6 2 2 2 3 1
3 1 1 1 1 2 2 4 4 4 3 3 3 3 2 1 1
1 1 1 2 2 2 1 2 4 2 2 2 2 1 1 2 1
1 1 1 2 2 1 2 3 2 2 2 2 1 2 2 2 2
1 2 2 1 2 2 1 1 4 1 4 2 2 1 2
3 3 3 3 3 3 3 4 3 5 4 4 3 4 4 3 3
2 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1
3 1 2 1 1 2 1 4 2 2 1 2 1 2 1 2 2
1 2 1 3 3 2 2 5 5 4 4 4 4 5 3 4 3
1 2 2 1 2 2 1 3 4 2 2 1 2 2 1 2 1
2 1 1 1 1 1 1 2 1 2 1 1 2 1 1 1 1
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Table A.8 General Questions

more help cmd info auto rec. exec rec. helps irritating highlight controlled create
7 7 7 7 1 7 7 7 7
5 6 6 6 2 6 3 6 5
3 3 6 3 3 4 2 3 4
5 2 2 2 2 6 2 4 1
1 1 1 4 1 5 2 4 2
6 5 5 5 2 3 5 6 2
3 2 2 1 1 6 2 6 7
6 3 6 4 1 7 3 2 1
3 2 3 3 3 5 2 3 3
3 4 7 7 1 6 7 7 1
3 2 1 6 1 6 2 2 2
3 5 6 6 4 6 5 6 2
2 1 2 3 2 6 2 2 2
2 2 1 5 1 7 3 6 3

Additional Remarks:

• General:

– I would like to have information of the command that is being executed, or it’s status.

– Support Systems dis-enable function in user pref.

– hover highlight for the commands, add history to shown notifications

• Prioritization:

– combining reordering and highlighting

– I think having a highlighting of the most probable command could make the user make mistakes,
since they could be making decisions driven by visual stimuli.

– show command probabilities on UI

• Couples:

– Start again button to reiterate the couples, with experience it would be easier to evaluate the
quality of the suggested couples

– have a list of the couples other than seeing them one after another

– command overview for added couples, as in which commands will be executed

– going through suggestions was a little cumbersome, but it was easy afterwards, other than
coupling commands switching between levels of autonomy would be nice

– add a decline all button for the couples

– getting an overview over all sequences first, instead of showing one after the other, would be
nice

– additional button to navigate to previously shown command coupling, would be nice

– It would be great to have the feasibility of the coupled tasks as well as what the sequence
achieves/goal
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Recorded Data

Model accuracy
[0.02417346 0.23044763 0.02395105 0.23632046]
[0.02283204 0.22366086 0.02168186 0.22848287]
[0.02253351 0.21541931 0.01959171 0.2102533 ]

[0.02302233 0.22219291 0.02143135 0.22364165]

Top 3
[0.62946429 0.0875 0.57113095 0.11230159]
[0.74851852 0.0587037 0.69806878 0.32097884]
[0.86965812 0.05555556 0.86004274 0.3241453 ]

[0.76580688 0.06396605 0.72835097 0.27574956]

Top 5
[0.7139881 0.22619048 0.64761905 0.13313492]
[0.78685185 0.24304233 0.71473545 0.37097884]
[0.87820513 0.26431624 0.86004274 0.39786325]

[0.80364859 0.24697972 0.75229277 0.32783289]

Top 10
[0.73482143 0.22619048 0.72728175 0.29077381]
[0.83074074 0.25137566 0.7415873 0.47291005]
[0.92307692 0.26431624 0.86004274 0.49337607]

[0.84276896 0.25045194 0.78118386 0.43982584]

Time to first command
0:02:54.961911
0:01:32.284854
0:04:58.167440

0:03:00.879170

Time between commands
0:00:47.020309
0:00:39.131454
0:00:28.198252

0:00:37.187896

Model computation times
[datetime.timedelta(microseconds=554917)
datetime.timedelta(microseconds=558469)
datetime.timedelta(microseconds=1756)
datetime.timedelta(microseconds=2008)]
[datetime.timedelta(microseconds=566015)
datetime.timedelta(microseconds=561436)
datetime.timedelta(microseconds=1937)
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datetime.timedelta(microseconds=1609)]
[datetime.timedelta(microseconds=539903)
datetime.timedelta(microseconds=543118)
datetime.timedelta(microseconds=1689)
datetime.timedelta(microseconds=2071)]

[datetime.timedelta(microseconds=553866)
datetime.timedelta(microseconds=554103)
datetime.timedelta(microseconds=1803)
datetime.timedelta(microseconds=1874)]

Full Prediction Time
0:00:01.397940
0:00:01.426325
0:00:01.400882

0:00:01.410244

Prediction to command
0:00:39.695265
0:00:37.667307
0:00:26.781195

0:00:34.245613
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B Appendix B - User Study Questionaires



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

    

    

 

 

   

    

   

  

   

  

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  

  

 

 

   
                    

 

 

   
                    

 

 

   
                    

 

 

   
                    

 

 

   
                    

 

 

   
                    

 

 

 



 

 
 

 
 

 
 

  
  

 

  

   
       

 

  

   
       

 

  

   
       

 

  

   
       

 

  

   
       

 

  

   
       

 

  

   
       

 



   
       

 

 
 

   
       

 

  

   
       

 

  

   
       

 

  

   
       

 

  

   
       

 

  

   
       

 

  

   
       

 

  

   
       

 



 

 

   
       

 

 

   
       

 

 

   
       

 

 

   
       

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

   
       

 

 

   
       

 

 

   
       

 

 

 

 

 

 

   
       

 

 

   
       

 

 

   
       

 

 

 

 



Task description 

 

Seismometer Placement: 

Localize LAMA and navigate to it, then localize the Seismometer Placement and 

pick it. As soon as you have the Seismometer you can back off into the 

placement position. Finally, you prepare the robot for the Seismometer 

placement on the floor. 

 

Update Firmware: 

Localize SPU3 and navigate to it, then connect the DIP to download the current 

data and update the firmware. To finalize the procedure, deactivate and then 

reactivate the SPU. After that, you can disconnect the DIP. 

 

Clean Panel: 

Localize SPU3 and navigate to it. Unlock the panel and rotate it to have it 

accessible for cleaning. After relocking it you can let the robot clean the panel.  
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