MAGNETOSPHERIC FORMATION PROCESSES OF THE DIFFUSE AURORA

Sensitivity of wave-induced electron scattering to the hot electron distribution Katja Stoll^{1,2}, Leonie Pick¹, Dedong Wang³, Yuri Shprits^{2,3}, Xing Cao⁴, Binbin Ni⁴

¹Institute for Solar-Terrestrial Physics, German Aerospace Centre (DLR), Neustrelitz, Germany ²Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany ³GFZ German Research Centre for Geosciences, Potsdam, Germany ⁴Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan, China

Katja Stoll, Institute for Solar-Terrestrial Physics, March 23, 2023

- 1. Diffuse aurora
- 2. Basic concept of wave-induced electron scattering
- 3. Calculation of wave-induced diffusion coefficients
- 4. Results
- 5. Summary

Different types of aurora

Discrete aurora

- Localized regions of intense auroral arcs
- Associated with field-aligned currents and acceleration of the electrons
- Diffuse aurora
 - Broad regions of lower intensity emissions
 - Precipitation of magnetospheric plasma involving wave-particle interactions

Image courtesy of the Earth Science and Remote Sensing Unit, NASA Johnson Space Center

Different types of aurora

Discrete aurora

- Localized regions of intense auroral arcs
- Associated with field-aligned currents and acceleration of the electrons
- Diffuse aurora
 - Broad regions of lower intensity emissions
 - Precipitation of magnetospheric plasma involving wave-particle interactions

Image courtesy of the Earth Science and Remote Sensing Unit, NASA Johnson Space Center

Adiabatic invariants

- 3 types of cyclic motion for particles trapped in the geomagnetic field:
 - Gyration around magnetic field line
 - Bounce motion between the mirror points
 - Azimuthal drift around the Earth
- Approximate conservation law associated with each cyclic motion: adiabatic invariants

Walt (1994)

Adiabatic invariants

- 3 types of cyclic motion for particles trapped in the geomagnetic field:
 - Gyration around magnetic field line
 - Bounce motion between the mirror points
 - Azimuthal drift around the Earth
- Approximate conservation law associated with each cyclic motion: adiabatic invariants
- Electrons with $lpha > lpha_{
 m LC}$ remain trapped
- Electrons with $\alpha < \alpha_{\rm LC}$ are lost to the atmosphere: precipitation

Plasma waves

- Waves can interact resonantly with particles: $\omega k_{\parallel} v_{\parallel} = \frac{n\Omega_{\sigma}}{\gamma}$, $\Omega_{\sigma} = \frac{|q|B}{mc}$
- Describe the effect of wave-particle interactions on the particle distribution by quasi-linear diffusion
- Diffusion coefficient $D_{\alpha\alpha}$ captures the effects of pitch-angle scattering

Violation of 1st adiabatic invariant by plasma waves \Rightarrow Pitch-angle scattering into the loss cone and precipitation

Electrostatic electron cyclotron harmonic waves

7

Electrostatic electron cyclotron harmonic waves

- Use Full Diffusion Code to calculate bounce-averaged momentum and pitch angle diffusion coefficients (Ni et al., 2008; Shprits et al., 2009)
- Solve the hot plasma dispersion relation along with the resonance condition
- Depends on:
 - Wave power spectrum
 - Wave normal angle distribution
 - Number of resonances
 - Background magnetic field

} Lou et al. (2022)

- Plasma density
- Properties of the hot plasma sheet electrons responsible for wave excitation

- Use Full Diffusion Code to calculate bounce-averaged momentum and pitch angle diffusion coefficients (Ni et al., 2008; Shprits et al., 2009)
- Solve the hot plasma dispersion relation along with the resonance condition
- Depends on:
 - Wave power spectrum
 - Wave normal angle distribution
 - Number of resonances
 - Background magnetic field

⁴ } Lou et al. (2022)

- Plasma density
- Properties of the hot plasma sheet electrons responsible for wave excitation

Model the electron distribution by

$$f(\mathbf{v}_{\perp}, \mathbf{v}_{\parallel}) = \sum_{i=1}^{m} \frac{n_{i}}{\pi^{3/2} a_{\perp,i}^{2} a_{\parallel,i}} \exp\left(-\frac{\mathbf{v}_{\parallel}^{2}}{a_{\parallel,i}^{2}}\right) \cdot \left\{\Delta_{i} \exp\left(-\frac{\mathbf{v}_{\perp}^{2}}{a_{\perp,i}^{2}}\right) + \frac{1 - \Delta_{i}}{1 - \beta_{i}} \left[\exp\left(-\frac{\mathbf{v}_{\perp}^{2}}{a_{\perp,i}^{2}}\right) - \exp\left(-\frac{\mathbf{v}_{\perp}^{2}}{\beta_{i} a_{\perp,i}^{2}}\right)\right]\right\}$$

with electron density n_i , loss cone parameters Δ_i and β_i , and perpendicular and parallel thermal velocity $a_{\perp,i}$ and $a_{\parallel,i}$ (related to hot plasma temperature)

9

Model electron distribution with one cold and one hot plasma component

Summary

- Precipitation of electrons with 0.1 10s keV produces diffuse aurora
- Resonant wave-particle interactions ⇒ Pitch-angle scattering into the loss cone
- Model the process by quasi-linear theory \Rightarrow calculate diffusion coefficients
- Diffusion coefficients depend on several wave and plasma properties, including the hot plasma sheet electrons responsible for wave excitation
- Hot electron temperature changes the resonant pitch angle and energy range of the pitch angle diffusion coefficients

Summary

- Precipitation of electrons with 0.1 10s keV produces diffuse aurora
- Resonant wave-particle interactions ⇒ Pitch-angle scattering into the loss cone
- Model the process by quasi-linear theory ⇒ calculate diffusion coefficients
- Diffusion coefficients depend on several wave and plasma properties, including the hot plasma sheet electrons responsible for wave excitation
- Hot electron temperature changes the resonant pitch angle and energy range of the pitch angle diffusion coefficients

Outlook

- Use observational data to calculate event-specific diffusion coefficients
- Implement diffusion coefficients in radiation belt simulations