DEPENDENCE OF ECH WAVE-INDUCED SCATTERING RATES ON THE ELECTRON DISTRIBUTION

Magnetospheric formation processes of the diffuse aurora Katja Stoll^{1,2}, Leonie Pick¹, Dedong Wang³, Xing Cao⁴, Binbin Ni⁴, Yuri Shprits^{2,3,5}

¹ Institute for Solar-Terrestrial Physics, German Aerospace Centre (DLR), Neustrelitz, Germany ² Institute of Physics and Astronomy, University of Potsdam, Rotadam, Germany ³ GFZ German Research Centre for Geosciences, Potsdam, Germany ⁴ Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan, China ⁵ Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, USA

Katja Stoll, Institute for Solar-Terrestrial Physics, July 15, 2023

Introduction

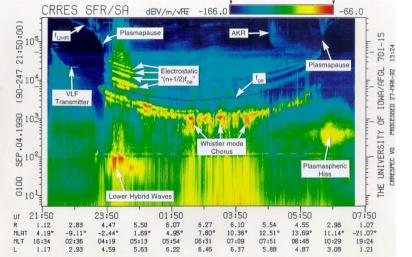
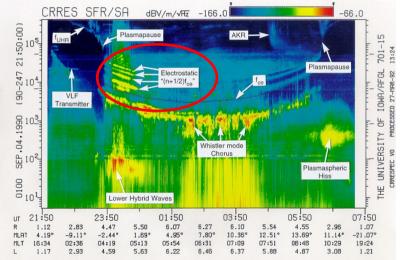

- Resonant wave-particle interactions: $\omega - k_{\parallel} v_{\parallel} = \frac{n\Omega_{\sigma}}{\gamma}, \Omega_{\sigma} = \frac{|q|B}{mc}$
- Violation of the 1st adiabatic invariant by plasma waves ⇒ Pitch-angle scattering into the loss cone and precipitation
- Precipitating electrons with energies of 0.1 to 10s of keV can produce diffuse aurora

Image courtesy of the Earth Science and Remote Sensing Unit, NASA Johnson Space Center


Electrostatic electron cyclotron harmonic waves

Electrostatic electron cyclotron harmonic waves

Katja Stoll, Institute for Solar-Terrestrial Physics, July 15, 2023

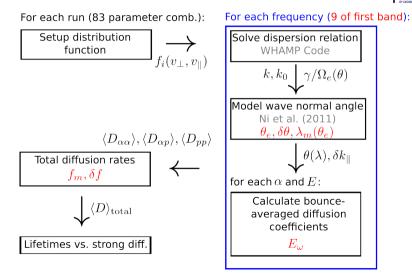
- Use WHAMP and Full Diffusion Code to calculate bounce-averaged momentum and pitch angle diffusion coefficients (Ni et al., 2008; Shprits and Ni, 2009)
- Solve the hot plasma dispersion relation along with the resonance condition
- Depends on:
 - Wave power spectrum
 - Wave normal angle distribution
 - Number of resonances
 - Background magnetic field
 - Plasma density
 - Properties of the hot plasma sheet electrons responsible for wave excitation

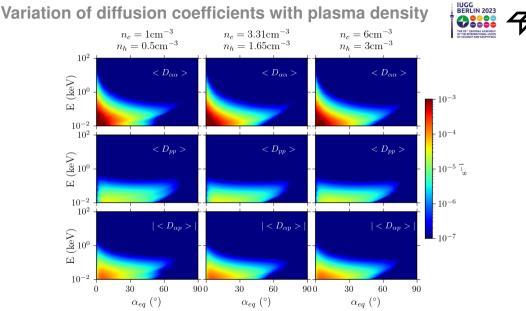
- Use WHAMP and Full Diffusion Code to calculate bounce-averaged momentum and pitch angle diffusion coefficients (Ni et al., 2008; Shprits and Ni, 2009)
- Solve the hot plasma dispersion relation along with the resonance condition
- Depends on:
 - Wave power spectrum
 - Wave normal angle distribution
 - Number of resonances
 - Background magnetic field
 - Plasma density
 - Properties of the hot plasma sheet electrons responsible for wave excitation

Model the electron distribution by (Ashour-Abdalla & Kennel, 1978)

$$f(\mathbf{v}_{\perp}, \mathbf{v}_{\parallel}) = \sum_{i=1}^{m} \frac{n_i}{\pi^{3/2} a_{\perp,i}^2 a_{\parallel,i}} \exp\left(-\frac{\mathbf{v}_{\parallel}^2}{a_{\parallel,i}^2}\right) \cdot \left\{\Delta_i \exp\left(-\frac{\mathbf{v}_{\perp}^2}{a_{\perp,i}^2}\right) + \frac{1 - \Delta_i}{1 - \beta_i} \left[\exp\left(-\frac{\mathbf{v}_{\perp}^2}{a_{\perp,i}^2}\right) - \exp\left(-\frac{\mathbf{v}_{\perp}^2}{\beta_i a_{\perp,i}^2}\right)\right]\right\}$$

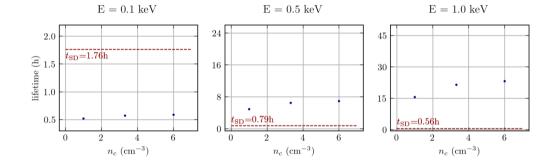
with electron density n_i , loss cone parameters Δ_i and β_i , and perpendicular and parallel thermal velocity $a_{\perp,i}$ and $a_{\parallel,i}$ (related to plasma temperature)




Model electron distribution with one cold and one hot plasma component

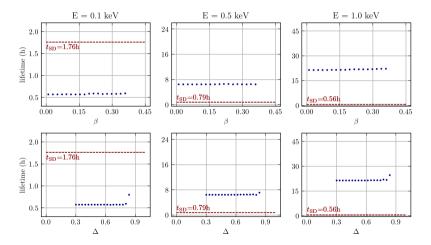
Component	T_{\perp} (eV)	T_{\parallel} (eV)	<i>n</i> (cm ⁻³)	Δ	β
1 (cold)	1	1	3.31	1	-
2 (hot)	621	621	1.65	0.5	0.02
range of variation					
1 (cold)	-	-	1 to 6	-	-
2 (hot)	100 to 10000	100 to 10000	0.5 to 3	0.3 to 0.9	0.01 to 0.4

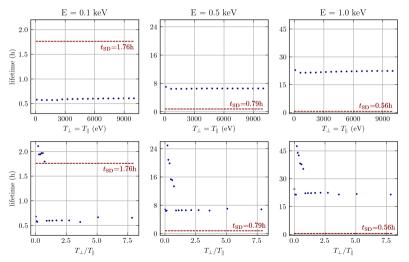
based on Horne and Thorne (2000), Ni et al. (2011), Fukizawa et al. (2020), Lou et al. (2022)

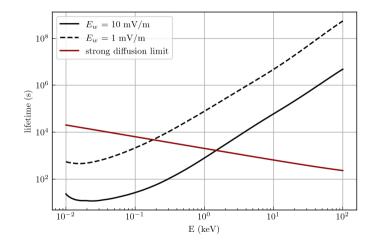


DLR

Katja Stoll, Institute for Solar-Terrestrial Physics, July 15, 2023

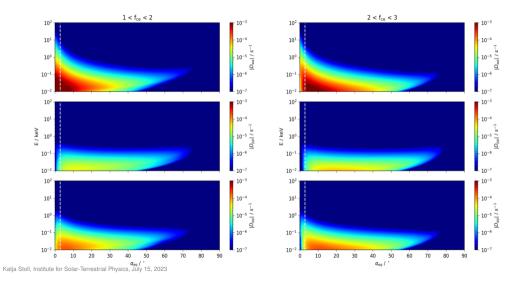

Variation of electron lifetimes with plasma density


Variation of electron lifetimes with loss cone parameters


Variation of electron lifetimes with hot plasma temperature

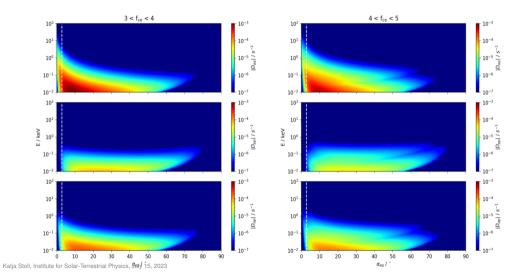
Variation of lifetime with wave amplitude

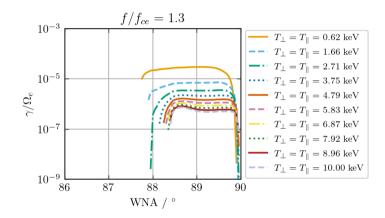
Summary and conclusions


- Pitch angle scattering by ECH waves significantly contributes to diffuse auroral precipitation of electrons with energies of a few hundred eV
- During disturbed conditions, lifetimes can become comparable to the strong diffusion limit for electron energies up to several keV
- Plasma density and temperature anisotropy influence the loss of electrons

Outlook

- Calculate event-specific diffusion coefficients
- Implement diffusion coefficients in codes for radiation belt dynamics


Second harmonic band


Third and fourth harmonic bands

Growth rate vs. wave normal angle

