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Abstract

Increasing PV capacities has a crucial role to reach carbon-neutral energy
systems. To promote PV expansion, policy designs have been developed
which rely on energy yield maximization to increase the total PV energy
supply in energy systems. Focusing on yield maximization, however, ig-
nores negative side-effects such as an increased variability due to similar-
orientated PV systems at clustered regions. This can lead to costly an-
cillary services and thereby reduces the acceptance of renewable energy.
This paper suggests to rethink PV portfolio designs by deriving mean-
variability hedged PV portfolios with smartly orientated tilt and azimuth
angles. Based on a data-driven method inspired from modern portfolio the-
ory, we formulate the problem as a biobjective, non-convex optimization
problem which is solved based on automatically differentiating the physical
PV conversion model subject to individual tilt and azimuth angles. To il-
lustrate the performance of the proposed method, a case study is designed
to derive efficient frontiers in the mean-variability spectrum of Germany’s
PV portfolio based on representative grid points. The proposed method al-
lows decision-makers to hedge between variability and yield in PV portfolio
design decisions. This is the first study highlighting the problem of ignor-
ing variability in PV portfolio expansion schemes and introduces a way to
tackle this issue using modern methods inspired by Machine Learning.

1 Introduction

The large-scale deployment of renewable energy is the key pillar to achieve carbon-neutral
energy systems and as part of this transition, PV has a crucial role to provide affordable,
clean energy with expected increasing expansion rates in the coming years to meet climate
targets (IEA, 2022). In the past, countries have decided on a multitude of different incentive
schemes to increase the individual’s willingness to invest in PV systems. Feed-in tariffs are
the most prominent policy tool in Europe and show a positive track to increase PV shares
over the last years (Sun and Nie, 2015; Lipp, 2007). However, remunerating each generated
energy unit equally, as achieved by feed-in tariffs, only focuses on maximizing annual PV
yield and therefore assumes that annual yield is the single important metric. This leads,
however, to similar PV system orientations at regions with large solar irradiance potential
and therefore to clusters of highly correlated PV systems. Meteorological events relevant
for solar irradiance, such as clouds and fog, then more likely affect the same clustered region
of PV systems which leads to large PV feed-in variability. These events often can not
be reliably forecasted which results into a large mismatch between planned and available
solar energy in these clustered regions. Energy systems need to balance this mismatch
through costly ancillary services within the electrical grid. Whereas there is a large body
of literature describing solar energy variability of existing PV farms (Hoff and Perez, 2012;
Perez et al., 2012; Ranalli and Peerlings, 2021; Lave and Kleissl, 2013; Lave et al., 2013;
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Widén, 2015; Elsinga, 2017), there is to the best of the authors knowledge no literature yet
about how variability can be integrated into the investors decision to hedge between yield
and variability.

We argue that the design of decentralized, smart PV portfolios have the potential to reduce
the portfolio variability maintaining large levels of yield. We therefore formulate the PV
portfolio decision as a non-convex PV portfolio optimization problem inspired from the well-
known mean-variance portfolio optimization problem. Based on the advances in Machine
Learning to design efficient batch-wise optimization algorithms for non-convex optimization
problems, we formulate the optimization problem including the non-convex PV conversion
process in a data-driven fashion and automatically differentiate based on the azimuth and tilt
angles which are the most important controllable parameters of the PV conversion process
(Saint-Drenan, 2015). In a case study covering Germany, we show that the proposed method
can derive well-balanced PV portfolios in terms of risk and reward. This paper aims to create
awareness for smarter PV portfolios in the mean-variability spectrum to create system-
friendlier solar energy feed-ins by introducing an easy-to-use method based on automatic
differentiation which can be relevant for academia and policy designers.

2 Mean-variability optimization of PV capacity factors

2.1 PV portfolio simulation

To simulate PV systems, a physical model is required which describes the energy conversion
from incoming solar irradiance to actual usable PV feed-ins. This includes the calculation of
the total irradiance reaching the tilted surface of the PV system and how much of it the PV
system can transform into electricity. For this purpose, we use a simple PV capacity factor
model inspired by the atlite (Hofmann et al., 2021) library and translate the capacity factor
model into the pytorch (Paszke et al., 2019) library to allow automatic differentiation.
This avoids to manually derive any gradients and allows to benefit from the rich set of
optimization algorithms implemented in pytorch. Further information on the formulation
of the PV model is provided in the appendix. The output of the PV conversion model
represents the maximum potential energy at given time t and site s which we refer to as
the capacity factors ct,s. The variables of interest within this study are the orientation of
the PV system which includes the orientation (azimuth angle γpv) and the slope of the PV
system (tilt angle βpv).

2.2 Mean-variability optimization

The major goal of PV system investors is to derive PV configurations which maximize the
annual PV yield and thereby maximize profits. This can be expressed by the total annual
energy yield whereas we refer to the mean annual yield in alignment with mean-variance
optimization literature. Maximizing annual yield at given site unsurprisingly received large
attention in academic literature and heuristics based on particle swarm optimization, ge-
netic algorithms and simulated annealing have been proposed (Yadav and Chandel, 2013).
Considering variability is usually not part of the investment decision which also reflects in
no mention in the academic literature about PV investment optimization. We therefore
propose to consider variability in the expansion decision in accordance with the academic
consensus of its crucial relevance for energy systems (Hoff and Perez, 2010; Ranalli and
Peerlings, 2021; Perez et al., 2016; Lohmann and Monahan, 2018). Solar energy variability
is defined in accordance with Hoff and Perez (2010) as the spread of the feed-in differences

∆ct,s = σ(ct,s(β
pv
s , γpv

s )− ct−1,s(β
pv
s , γpv

s )) (1)

Note that maximizing the PV yield is a spatially separable optimization problem whereas
optimizing variability is not due to the interaction between correlated sites. Maximizing an-
nual yield and minimizing variability are conflicting objective functions as simple reflections
can show: Without any electricity generation, there is no variability whereas only maxi-
mizing yield leads to similar PV configurations which amplifies overall variability due to
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accumulation. To find a good compromise between these two goals, we define a biobjective
optimization problem which formulates

min
δs,ξs

z =

{
(1− λ)σ(∆ct,s(β

pv
s , γpv

s ))︸ ︷︷ ︸
variability

−λ
1

TS

∑
t,s

ct,s(β
pv
s , γpv

s )︸ ︷︷ ︸
mean

}
∀t ∈ {2, 3, ..., T},

(2)

with decision variables βpv
s ∈ {0◦, 90◦}, γpv

s ∈ {0◦, 360◦}. The parameter λ specifies the
risk preference of the decision-maker meaning that λ = 1 reduces the optimization problem
to a yield-maximization problem and λ = 0 to a variability-minimization problem. The
premise of formulating the problem as a biobjective optimization problem is that between
the competing objective terms, there are promising PV orientation combinations in terms
of risk and reward. A single value of λ is difficult to determine as no knowledge about
risk preference is available and scaling factors of the objective terms need to be considered.
Testing multiple values of λ is a strategy to obtain more information about the yield-
variability spectrum and allows to derive the efficient frontier which expresses the maximum
possible yield at given risk.

Note that a brute-force approach to derive a robust PV portfolio by simply simulating
all possible PV portfolio configurations quickly exceeds the computational limits. For this
purpose, consider the discretized case of simulating 900 different tilt angles {0◦, 0.1◦, ..., 90◦}
and 360 different azimuth angles {0◦, 1◦, .., 360◦} for 10,000 sites. This would require around
3 billion simulations which, when considering around 0.1 seconds per simulation, would take
around 10 years to simulate.

The proposed method contains the physical conversion process and does not rely on learning
the actual PV conversion process by using, for instance, neural networks as in comparable
studies Yadav and Chandel (2013). This has the advantage that the model remains phys-
ically valid and the optimization solution aligns with the solution obtained by running
physical PV conversion simulations with the same parameters.

2.3 Relationship to modern portfolio theory

The proposed method is heavily inspired by the mean-variance optimization literature as
introduced by Markowitz (1952) which is widely used to derive asset portfolios to maximize
expected returns at given levels of risk. Both PV portfolios and stock portfolios estimate
balanced portfolios based on historic performance, measured through historical weather
years or stock performance respectively. Diversification can be achieved in asset portfolios
through uncorrelated assets which would translate in the PV context to distant PV systems
with different orientations. Mathematically, mean-variance optimization in the context of
asset portfolio optimization is formulated as a convex optimization problem whereas the
physical model of the PV system is non-convex making the problem much harder to solve.
The proposed method is able to derive, however, sophisticated solutions as shown in the
case study despite no global optimality can be guaranteed.

3 Case Study: Germany’s PV portfolio

The mean-variability optimization method is evaluated based on a case study covering Ger-
many’s PV portfolio. As input data, solar irradiance data is retrieved from the satellite-based
SARAH-2 data (Pfeifroth et al., 2019) and temperature data from the ERA5 reanalysis
model (Hersbach et al., 2020). To match satellite with reanalysis data, the satellite data is
temporally averaged to hourly values and spatially to the ERA5 grid (0.25◦ × 0.25◦) which
represents approximately 30 km distance. When applied on Germany, this translates into
1147 sites as representative grid points s. The training period covers 5 years (2012-2016)
whereas one batch covers one entire year with 8760 hours. The results are evaluated on the
left-out year 2017. The optimization problem is solved using the Adam optimizer (Kingma
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Figure 1: Performance and result of the proposed method for the test year 2017

and Ba, 2015) with a cyclical learning rate derived from the range test as proposed by Smith
(2015).

Performance of randomly sampled portfolios: To compare the optimization results
to alternative PV portfolios, random PV portfolios are generated around fixed tilt angles.
Randomly sampling around near-optimal angles is a common method to reproduce historical
feed-in time series due to missing site information (Pfenninger and Staffell, 2016). Therefore,
for each fixed tilt angle (0◦, 5◦, ..., 90◦), 10,000 PV configurations are sampled from a normal
distribution with varying standard deviations for tilt and azimuth angles between 0 and 20◦

which approximately aligns with distributions of existing PV systems in Germany (Killinger
et al., 2018). The randomly simulated portfolios are illustrated in Figure 1a) which leads
to a boomerang-alike shape of the sampled PV portfolios. More specifically, low tilt angles
(< 45◦) show large mean yield with moderate variability whereas large tilt angles (> 50◦)
show a steep decrease of mean annual yield while remaining high variability levels. Flat
PV portfolios are therefore more preferable in the mean-variability spectrum compared to
steeper tilt angles.

Performance of the proposed method: The black line in Figure 1a) shows the efficient
frontier which illustrates the best trade-off between risk and reward derived by running
the proposed method with a range of different risk preferences (λ ∈ {0, 0.05, ..., 1.}). The
efficient frontier always sits above the randomly simulated points which shows that the
automatic differentiation is constantly able to derive better configurations of PV tilt and
azimuth angle orientations. This is particularly evident at mean capacity factors above 0.11
at which the distance between the best sampled portfolio and the efficient frontier increases.
The course of the efficient frontier shows that the mean-variability spectrum is valuable to
be exploited even for small spatial extents such as Germany. For example, the comparison
of λ = 0.6 with λ = 0.9 only looses 1.5% of the mean yield while reducing variability around
6.5%.

Interpretation of the tilt and azimuth angle distributions: Figure 1b) shows the
tilt and azimuth angle distributions for λ = 0.6 and λ = 0.9. The azimuth angles for
both cases show similar spatial distributions, yet the lower variability portfolio (λ = 0.6)
shows a more pixelated situation with a slightly larger range of azimuth angles (160◦-170◦

vs. 154◦-162◦) and therefore a larger spread of orientations. There is a shift towards east
facing systems noticeable which may indicate a better exploitation of morning hours than
evening hours which is physically explainable due to the rising thermals from solar heating
over the course of the day which leads to often more cloudy afternoons than mornings.
The tilt angle distribution between both mean-variability hedged portfolios show different,
distinct patterns. The low-variability portfolio (λ = 0.6) shows structures similar to waves
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particularly in the northern part of Germany where no large changes of topography are.
A plausible explanation for this pattern is that in case of western wind conditions, which
are dominant in Western Europe, the determined distribution of tilt angles shown in the
upper left image of Figure 1b) is then orthogonal to this wind direction. Cloud conditions
then affect a region with a larger spread of tilt angles which smoothes the variability. The
larger-variability portfolio (λ = 0.9) illustrates no such waves and therefore less smoothing
and larger variability.

4 Concluding discussion

This paper proposes a novel method to estimate robust PV portfolios with smartly selected
tilt and azimuth angles by exploiting the mean-variability spectrum of PV feed-ins. We
show that making the connection between yield and variability can be valuable even for
smaller regions such as Germany as only small yield losses are noticeable while reducing the
variability largely.

A limitation of this study is that no global optimality can be guaranteed as the problem is
non-convex. Further research avenues may be to benchmark the solution against alternative
algorithms in the literature to derive tilt angles to maximize annual yield as described in
Section 2.2. Furthermore, more meteorological understanding is needed about the relation-
ship between tilt and azimuth angles and the underlying meteorological phenomena. We
have provided plausible physical explanations, yet more scientific significance is needed. A
further promising research avenue is the consideration of different capacities at the sites as
an additional degree of freedom.
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A PV capacity factor model

To calculate the total irradiance on a tilted plane, we use a simple trigonometric model
based on Sproul (2007). The total irradiance ITglob on a tilted plane consists of the direct

ITDir and diffuse irradiance ITDif

ITglob = ITDir + ITDif (3)
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The direct irradiance on a tilted surface ITDir can be derived in accordance with Sproul
(2007) following

ITDir = INDir cos θ (4)

where INDir represents the direct irradiance on a plane normal to the direct beam irradiance
and θ the sun incidence angle of the direct irradiance. Following the simple vector analysis
in Sproul (2007), the last term can be calculated from

cos θ = sinβpv cosαs cos(γpv − γs) + cosβ sinαs (5)

with βpv PV tilt angle, αs sun altitude, γpv azimuth angle of the PV system and γs azimuth
angle of the sun.

The diffuse irradiance on the tilted plane is retrieved from Reindl et al. (1990) through

ITDif =
1 + cosβpv

2
INDif + ρINGlob

1− cosβpv

2
(6)

with IGlob
n total influx on a horizontal plane, ρ the ground albedo which is derived in

accordance with Hofmann et al. (2021) through

ρ =
INGlob − INNet

INGlob

(7)

whereas INNet represents the solar radiation reaching a horizontal plane minus the ground
albedo. This parameter can be retrieved from reanalysis models, as from the ERA5 model
(Hersbach et al., 2020) used in this study, and allows a more accurate description of the
ground albedo than commonly used constant values as in comparable studies Pfenninger
and Staffell (2016).

The tilted irradiance is next translated into PV energy using the PV module performance
model from Huld et al. (2010) which only depends on the module temperature and the
in-plane irradiance through

P (ITglob, Tmod) = PSTC

ITglob
ISTC

ηrel(I
′, T ′) (8)

with PSTC indicating the power at standard test conditions (STC) of ISTC = 1000W/m2

and Tmod,STC = 25 respective temperature. The relative efficiency ηrel is calculated as
proposed by Huld et al. (2010)

ηrel(I
′, T ′) = 1 + k1 ln I

′ + k2[ln I
′]2 + T ′(k3 + k4 ln I

′ + k5[ln I
′]2) + k6T

′2 (9)

where I ′ and T ′ are normalized parameters to STC values with I ′ = ITglob/1000 and T ′ =

Ta+0.035G−298.15 (Huld et al., 2010). The parameters k1, ..., k6 are empirical coefficients
which are fitted in in practice to modules (Huld et al., 2010) but in this study are based
on the standard carbon silicon PV module from the atlite library Hofmann et al. (2021).
The last step in the physical model, the energy is reduced by the inverter efficiencies which
are assumed to be 90% in accordance with Hofmann et al. (2021).

Within this study all the described parameters are fixed except the tilt angle βpv and the
azimuth angle γpv in Equation 5.
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