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Abstract—In recent history, normalized digital surface models
(nDSMs) have been constantly gaining importance as a means
to solve large-scale geographic problems. High-resolution surface
models are precious, as they can provide detailed information for
a specific area. However, measurements with a high resolution
are time consuming and costly. Only a few approaches exist to
create high-resolution nDSMs for extensive areas. This article
explores approaches to extract high-resolution nDSMs from low-
resolution Sentinel-2 data, allowing us to derive large-scale models.
We thereby utilize the advantages of Sentinel 2 being open access,
having global coverage, and providing steady updates through
a high repetition rate. Several deep learning models are trained
to overcome the gap in producing high-resolution surface maps
from low-resolution input data. With U-Net as a base architecture,
we extend the capabilities of our model by integrating tailored
multiscale encoders with differently sized kernels in the convolution
as well as conformed self-attention inside the skip connection gates.
Using pixelwise regression, our U-Net base models can achieve a
mean height error of approximately 2 m. Moreover, through our
enhancements to the model architecture, we reduce the model error
by more than 7%.

Index Terms—Deep learning, multiscale encoder, sentinel,
surface model.

I. INTRODUCTION

H EIGHT information as provided by normalized digital
surface models (nDSMs) is important for various ap-

plication fields related, for example, to energy consumption
optimization [1], population assessment [2], natural hazard risk
assessment [3], [4], or urban planning [5], among others. Both
spaceborne remote sensing and airborne remote sensing are
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well-established sources to derive nDSM data. The former in-
cludes missions such as TanDEM-X (TDM), a radar interfer-
ometer, which delivers a digital surface model (DSM) with an
unprecedented spatial resolution of 0.4 arcseconds at a global
level [6], [7], which seamlessly processes into an nDSM. The
latter comprises remotely sensed data from two or more viewing
directions or light detection and ranging (LiDAR) measurements
to compute nDSM data with a spatial resolution of up to cen-
timeters [8]. However, nDSM data with a fairly high spatial
resolution (<= 10 m) exist solely with spatially fragmented
coverage or cannot be queried globally on an open-source ba-
sis. The realization of flight campaigns is costly, and the time
continuous monitoring of areas to capture changes in the land
surface requires further resources.

In contrast to this, we focus on the estimation of nDSM
data from globally available Sentinel-2 imagery. Thereby, we
introduce a methodology to predict high-resolution height im-
ages (0.5 × 0.5 m) from Sentinel-2. We utilize the multispectral
bands of Sentinel-2 with a resolution of 10 × 10 m and inves-
tigate whether deep neural networks can overcome this jump
in scale of a factor of 20. To this end, we propose a tailored
convolutional neural network (CNN) regression architecture,
building upon the well-known U-Net model [9], which has
proven to perform well across many scientific fields including
the interpretation of satellite images. In this context, Zhang
et al. [10] have proposed several improved versions of U-Net
used for building segmentation in urban areas. Many others
have used it not only for urban but also for countryside mapping
tasks [11], [12]. The U-Net architecture has mostly been used
for segmentation, differentiating between multiple classes of ob-
jects. However, U-Net can also be used for pixelwise regression,
naturally also in the case of satellite imagery [13].

Our proposed neural network architecture is based on several
substantial extensions and enhancements of U-Net: Besides
residual connections, we propose a multiscale encoder to tackle
the problem that artifacts occurring on the surface differ in
size and shape. The multiscale encoder consists of two parallel
encoders with different kernel sizes. With this newly used tech-
nique of duplicating the encoder with differently sized kernels
(i.e., fanning the encoder), we are able to learn differently sized
features in both encoders separately. In addition, we integrate
attention mechanisms when merging the different encoders,
which enhances our model even more. By integrating these
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new elements, we not only achieve better overall performance
with respect to the considered numerical metrics but also attain
more coherent outputs regarding the visual representation of the
results. The latter can then be combined via a mosaic to generate
nDSM data for larger areas.

The rest of this article is organized as follows. Section II
presents related work. Section III details the proposed modeling
methodology. Section IV presents the deployed datasets and
explains the experimental setup. Section V provides experimen-
tal results as a validation of our modeling approach, merged
with a detailed evaluation and discussion of the results. Finally,
Section VI concludes this article.

II. RELATED WORK

In the past, methods have been proposed to estimate surface
height data such as height information from more abundant
optical and synthetic aperture radar (SAR) acquisitions. The es-
timation problem has been dominantly modeled as a supervised
learning problem. The goal is to find a mapping between an
incoming vector (i.e., more ubiquitously available optical and
SAR acquisitions) and an observable output (i.e., a training set
including nDSM data derived over spatially limited areas). In
particular, height estimations from single aerial images with
a very high spatial resolution (< 1 m) have been the focus
of numerous method-oriented works. The underlying problem
has also been mapped to a very well known image translation
task [14], that is, monocular depth estimation [15], [16]. Ghamisi
and Yokoya [17] deploy conditional generative adversarial net-
works whose architecture is based on an encoder–decoder net-
work with skip connections (generator) and penalizing structures
at the scale of image patches (discriminator). To learn an image-
to-nDSM translation rule, the network is trained on scenes where
both the nDSM and the optical data are available. Subsequently,
the trained network is utilized to estimate elevation information
on a single optical image target scene. Paoletti et al. [18] propose
an unpaired model (i.e., not requiring aligned pairs of optical
nDSM data) based on variational autoencoders and generative
adversarial networks to perform image-to-image translation.
Besides the aforementioned generative models, discriminative
models have also been heavily deployed. This also constitutes
the field in which our model takes place. However, first, Amirko-
laee and Arefi [19] deploy a CNN-based network for estimating
height information. They employ an encoder–decoder network,
where the encoding part is using a deep residual network and the
decoding part is designed to map the abstract feature maps into
height images. Xing et al. [20] design a gated feature aggregation
module to effectively combine low- and high-level features for
height estimation. Li et al. [21] propose to divide height values
into spacing-increasing intervals and model the regression prob-
lem as an ordinal regression problem, using also an ordinal loss
for network training. Beyond, Recla and Schmitt [22] deploy
very high spatial resolution SAR intensity data for DSM gen-
eration, and the authors of [23], [24], [25], and [26] model the
estimation problem as a multitask optimization objective. They
present dedicated networks whereby semantic segmentation is
integrated into the nDSM regression task. This enables the use

of a shared backbone network that can extract complementary
features from each objective to improve the performance of the
individual task.

In parallel to the above, approaches have been developed
that focus on large-scale height estimates based on supervised
learning methods: Geiß et al. [27] use automatically compiled
built-up height information either from TDM surface height
data [28], [29] or from cadastral sources and design a multi-
strategy ensemble regression approach to map built-up heights
on an urban neighborhood scale from Sentinel-2 features. Subse-
quently, also a multitasking model is designed to jointly estimate
built-up height and built-up density in a beneficial manner [30].
Li et al. [31] use features computed from various optical, SAR,
and ancillary geospatial datasets and regress building height
with an ordinary random forest approach for 1 × 1 km grid
cells across Europe, the USA, and China. Frantz et al. [32]
combine Sentinel-1 and Sentinel-2 time-series data with very
high resolution 3-D building models, mapping building heights
for Germany on a 10-m grid with an ordinary support vector
regression model. Cao and Huang [33] build upon ZY-3 multi-
view images to estimate building height at a spatial resolution
of 2.5 m for 42 Chinese cities with a network that internalizes
multispectral, multiview, and multitask properties. Concerned
with the natural environment, Lang et al. [34] employ a CNN to
regress countrywide canopy height for Gabon and Switzerland
from Sentinel-2 images, using reference values obtained from
airborne LiDAR scans and photogrammetric stereo matching as
training data.

III. MODELING APPROACH

In this section, we present our U-Net-based architecture.
Taking the original U-Net model of Ronneberger et al. [9] as a
starting point, we propose several enhancements to improve its
ability to detect and predict artifacts and their respective heights.
In total, we propose and evaluate three different variants of the
architecture: a baseline U-Net with only small modifications
(V1), a multiscale fanned U-Net (V2), and an attention-enriched
multiscale fanned U-Net (V3). Thereby, one architecture builds
upon and extends the previous one in a progressive way. For
illustration, Fig. 1 shows the final model, that is, the attention-
enriched fanned U-Net.

A. Baseline U-Net (V1)

The architecture V1 refers to a baseline U-Net similar to
the one proposed by Ronneberger et al. [9], that is, it follows
an encoder–decoder structure with skip connections between
corresponding levels of the encoder and the decoder path. By
means of these shortcuts, valuable spatial information from all
encoding stages is available during the upscaling process. In
more detail, the network uses double convolution blocks with
a kernel size of 3 × 3 at each level of the encoder to derive the
respective feature maps, where the current level output of the
two blocks is saved and passed along the skip connection to
the corresponding decoder block. Whenever we perform such a
convolution operation, we use a reflection padding of size one
for the incoming image or feature map in order to keep the spatial
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Fig. 1. Schematic diagram of the proposed fanned U-Net with soft attention gates along the skip connections between the encoder and the decoder part of the
network as well as at the bottleneck. The contraction path consists of two parallel encoders with different kernel sizes, where each set of convolution blocks, BN,
and ReLU activations is supported by an additional residual connection depicted in purple. In the expansion path, the decoder first fuses the information of the
corresponding outputs of each of the two encoder components by means of a soft attention gate, and afterward, it upsamples the feature maps with a transposed
convolution while halving the number of channels. At each decoder level, the information from the level below and the output of the soft attention gate belonging
to the corresponding encoder level is concatenated and further processed by two convolution-BN-ReLU sequences. Again, additional residual connections allow
the network to bypass these two blocks. After the double convolution, a transposed convolution increases the size of the feature maps while reducing the number of
channels by half. The feature maps are displayed as blue rectangles with the channel amount being indicated on the top and the spatial dimensions being displayed
on the bottom left.

dimensions and avoid shrinking. Furthermore, we employ batch
normalization (BN) and a rectified linear unit (ReLU) activation
after every convolution layer. After every encoder component
containing the two previously described convolution-BN-ReLU
blocks, a max-pooling layer with kernel size 2 × 2 follows.

At the bottleneck (i.e., after the last encoder layer), the up-
scaling process starts. Here, a transposed convolution layer with
a 2 × 2 kernel and a stride of two is employed for increasing the
spatial dimensions of the feature maps while halving the number
of channels. In addition, a set of two 3 × 3 convolution blocks
follows after each upscaling step. Repeating this operation flow
several times, the size of the feature maps is successively in-
creased up to the original input size. In the end, an additional
1 × 1 convolution layer is used after the two final convolution
blocks. This aims at attaining a single-channel output feature
map, which is required for performing pixelwise regression.

Despite the similarities to the original U-Net version, a major
difference regarding our architecture lies in the introduction
of additional residual connections, which we place around the
double convolution blocks at each level of both the encoder and
the decoder, as depicted in Fig. 2. According to He et al. [35],
such residual blocks allow the network to become more complex
and deeper without losing reference to earlier learned features
by offering the possibility to bypass one or more blocks via
identity skip connections. Driven by the successes achieved by

Fig. 2. Structural representation of a residual block. Each block uses a skip
connection to allow the feature maps to bypass the subsequent convolution
operations, where the copied and unchanged maps are added to the convolutional
output afterward. While for the first convolution, BN and a ReLU activation
follow directly, for the second, the ReLU function is applied only after the
addition. α denotes the amount of channels and β the width/height of the tensor.

employing this concept in deep neural networks developed in
many different scientific domains, we save the incoming feature
maps before the double convolution block and add them again to
its output after the last BN operation but before the final ReLU
activation (cf. Fig. 2).
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B. Fanned U-Net (V2)

To tackle the problem of many different-sized and shaped
artifacts that occur on the earth’s surface, we introduce a multi-
scale encoder (V2), that is, we fan the encoder part out. To this
end, we mirror the encoder described above, where the mirrored
version differs from the original one in that a different kernel
size of 7 × 7 is used for the convolution filters. Moreover, for
the bigger kernels, a reflection padding of size 3 is employed,
while the padding size of one is maintained for the encoder path
with (3 × 3)-sized kernels.

To connect both encoder components, we combine their
learned feature maps by adding them up. This applies to the
horizontal skip connections from each encoder level to the
corresponding decoder level as well as to the bottleneck, that is,
we also add the feature maps of the two encoder paths after the
last encoder layer. Instead of an addition, we also implemented
concatenation as a merge operation, but this did not lead to model
improvements and was, thus, not further considered.

The concept of using several parallel encoders was proposed
earlier by us in the context of time-series data [36]. With this
approach, more different features can be learned by enabling
the network to better extract patterns of different resolutions
or sizes. In our context, it can be imagined as using several
different scan sizes for attaining different abstraction levels,
with the 3 × 3 kernels focusing on local patterns (i.e., smaller
objects like corners) and the 7 × 7 kernels capturing more global
patterns (i.e., larger objects like longer axes of buildings). Each
encoder component alone would either oversee and, thus, not
learn smaller artifacts (only 7 × 7 kernels) or fail to account for
the entire object (only 3 × 3 kernels).

C. Attention Enriched Fanned U-Net (V3)

In recent years, the concept of attention has become increas-
ingly popular. Since the initial introduction of the attention
mechanism by Bahdanau et al. [37], the concept has been
continuously developed (e.g., multihead attention proposed by
Vaswani et al. [38]) and has become more and more established
in the deep learning domain. During the learning process, atten-
tion helps the network to identify and focus on important parts
of the input image. In our case, the model will greatly benefit
from taking into account important features such as buildings
and vegetation more than less important ones such as bare areas
or flat fields.

Technically, the adding operations of fanned U-Net (V2),
that is, the ones along the horizontal skip connections of each
encoder–decoder level as well as at the bottleneck, are replaced
by the so-called attention gates. In this way, we can assign
importance weights to the features at each encoding stage. A
graphical illustration of the attention-enriched version of the
model (V3) is shown in Fig. 1, while Fig. 3 provides details
about the realization of the attention gates themselves.

Analogously to the previous multiscale version (V2), each
attention gate first adds up the learned feature maps that are
passed along the two skip connections from both the encoders.
The result is cached via a skip connection, and in parallel,
it is further processed as follows: First, a ReLU function is

Fig. 3. Lambda attention gate consisting of a sequence of several layers. The
gate takes the outputs of the double convolution block of both encoders (E1 and
E2) as input, adds them up, and retains the result for later uses in the form of a
skip connection. In parallel, the result is further processed by a ReLU function,
a 1× 1 convolution with BN, and a Sigmoid activation. Afterward, the gate
performs a multiplication based on the attention weights to merge both paths,
that is, the saved result of the addition and the one of the further processing
pipeline. The skip connection is then used again to re-add the original feature
maps to the attention-generated output. Finally, a final 5 × 5 convolution is
performed. The amount of channels α is indicated on top of the blue rectangles,
and the size β (i.e., the width and height of the feature maps) is at the bottom
left.

applied, followed by a 1 × 1 convolution to break down the
number of channels to one. For retrieving the attention weights,
a Sigmoid activation function is then employed to distinguish
between high and low importance while avoiding infinitely high
values. After a transposed convolution to restore the original
amount of channels, we merge both paths by multiplying the
output of the processing path with the result of the previous
summation. Finally, a BN layer is used to complete the attention
gate. Overall, the attention-driven combination of the learned
feature maps of both encoder components aims to highlight
important artifacts while suppressing activations of less relevant
unoccupied fields.

IV. EXPERIMENTAL SETUP

This section starts by introducing the two main datasets used
for the experimental evaluation of our modeling approach; it
then provides a detailed description of the conducted experi-
ments, i.e., the applied preprocessing steps and the experimental
setup. Afterward, the evaluation results are presented in the next
section, and the overall potential of the proposed methodology
is discussed.

A. Datasets

In this work, two different datasets are mainly used, namely,
an nDSM dataset of North Rhine-Westphalia (NRW) and a
matching Sentinel-2 dataset of the same region.

1) NRW nDSM data: We acquire the nDSM data for NRW
from the open data platform of the Institute of Information
and Technology of North Rhine-Westphalia [39]. The
dataset contains 35.860 tiles with a size of 1 km2, where
each tile has a resolution of 2000 px × 2000 px, that is,
one pixel covers an area of 0.5 m × 0.5 m. More specifi-
cally, the data were obtained as the difference between an
image-based nDSM and an airborne laser scanner-based
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digital terrain model. In total, the calculated nDSM yields
a horizontal and a vertical error of ±5 dm. For detailed
information, we refer to [40].

2) NRW multispectral Sentinel-2 data: The Sentinel-2 data
are provided by the German Aerospace Center. To consis-
tently account for the highest spatial resolution provided
by Sentinel-2, we only use the four 10 × 10 m bands,
i.e., 2 (blue), 3 (green), 4 (red), and 8a (NIR) from all
13 bands available. The dataset contains Level 3A surface
reflectance derived from the WASP processor [41], which,
in turn, utilizes Level 2A products. The latter consists
of surface reflectance corrected for atmospheric effects
and clouds by means of the MAJA processor [42]. Given
that each of these four tiles has a size of 10 980 px ×
10 980 px, this results in an area coverage of more than
12.000 km2 per tile.

B. Preprocessing

Before the data can be inserted tile by tile into the neural
network, we apply several preprocessing steps, where the down-
loaded nDSM data serve as the baseline, and the corresponding
Sentinel bands are retrieved during the rest of the preprocessing
process: First, the Sentinel-2 and the nDSM data are aligned with
respect to their coordinate system. Subsequently, we split each
of the (2000 px × 2000 px)-sized nDSM tiles into 16 smaller
pieces of size 500 px × 500 px to decrease the computational
effort on the hardware side.

In the next step, the corresponding Sentinel excerpts have to be
identified for each of these 16 subtiles per nDSM tile. Apart from
the location based on the coordinates, the matching of the time
component is important. Since the nDSM tiles were measured
independently every month from 2016 to 2022, we need to
choose the Sentinel excerpts for every nDSM subtile according
to the nDSM measurement time stamps in order to achieve a
matching for every month. This is necessary since an nDSM tile
measured in a particular month (e.g., August) would not match
the vegetation heights of the Sentinel data for another month
(e.g., January). After searching for temporally and spatially
matched Sentinel sections for a given 500 px × 500 px nDSM
subtile, we retrieve the Sentinel data belonging to band 2 (blue),
3 (green), 4 (red), and 8a (NIR), while the remaining Sentinel
bands are ignored. At this point, one could argue to use more
channels to have more features available in the original input.
However, Lang et al. [34] found that using only the combination
of the R, G, B, and NIR bands performs almost equally well if not
often better than using all bands in terms of vegetation. Further-
more, the remaining bands of Sentinel provide only even coarser
resolutions than 10 m × 10 m, leading to the fact that only very
coarse objects would also benefit from additional channels,
while computational efforts increase exponentially. However,
the resolution of the selected Sentinel bands (10 m × 10 m)
differs from the one of the nDSM data (0.5 m × 0.5 m). Thus,
the lower resolution Sentinel data have to be upscaled to the
higher spatial resolution of the nDSM tiles. For that purpose,
we use spline interpolation with nearest neighbor resampling
order [43], as we work with discrete data. Besides this, we also

experimented with bilinear interpolation and cubic convolution;
however, the nearest-neighbor-based approach worked best in
preserving realistic transitions between different elevated pixels
of the image.

In this way, we obtain a set of quadruples consisting of a
(500 px × 500 px)-sized nDSM subtile and the four correspond-
ing (500 px × 500 px)-sized sentinel sections, each of the four
having a resolution of (0.5 m × 0.5 m) after resampling. In the
next preprocessing step, we then mirror the edges of each quintu-
ple element by six pixels on each side, yielding tiles with a size
of 512 px × 512 px, that is, power-of-two-sized input images,
which are subsequently processed independently. This approach
follows the overlap-tile strategy of Ronneberger et al. [9], who
proposed this method to be able to seamlessly segment arbitrary
large images and prevent the loss of pixels when applying
pooling operations at deeper levels of the network. However,
losses and results will be calculated using only the original
500 px × 500 px image size through center cropping.

Combining all these steps, we obtain 520.368 spatially and
temporally aligned quintuples, each containing a high-resolution
nDSM tile and four matching Sentinel crops. We store each tuple
into a compressed.npz file, which makes the data manageable
for further processing.

In the last preprocessing step, the 520.368 extracted quintu-
ples were subjected to some correction routines, filtering out
5.828 of them. Hence, the final number of quintuples available
for the subsequent training, validation, and testing amounts to
514.540. In more detail, we first filtered out measurement and
transformation errors in the nDSM dataset itself by searching for
nonlogical patterns like tiles containing only zero values, values
within an unrealistic range (difference between the min and the
max value of more than 400), too small values (at least one value
< −50), or a too high proportion of negative pixel values (i.e.,
more than 20% of values < −12). Notably, for the tiles that
contain negative values in a ratio below the 20% threshold, all
negative values are set to 0 on-the-fly during processing by the
neural network.

Apart from the constraints mentioned above, we filter out
quadruples containing nonrectangular subtiles; that is, we re-
move nDSM data without a complete match in the Sentinel tiles.
This may occur in the case when the nDSM coordinates are on
the edge of the Sentinel tiles, and therefore, the nDSM tile can
only be partially matched. Finally, further errors are sorted out
manually by visually inspecting suspicious images.

As a summary for this section, we include Fig. 4. It sums up
the steps we take from matching the nDSM with the Sentinel-2
data to the final processed and filtered dataset.

C. Implementation Details

Regarding the technical realization, we use the Python-based
PyTorch framework on the software side combined with a parti-
tioned NVIDIA A100 graphics card on the hardware side, with
40 GB of dedicated memory available for the experiments. For
evaluating and tuning our network, several metrics are utilized.
In this work, we mainly use the mean absolute error (MAE)
and the root-mean-square error (RMSE) metrics, given that
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Fig. 4. Preprocessing chain that we use to acquire our samples to feed into the
network. From the upper left on, we start by matching an nDSM tile spatially
and timewise to a larger Sentinel scene. After cropping its respective part, we
split the tiles into 16 smaller pieces. We then resample the Sentinel-2 crops to
match the pixel size of the nDSM and join all layers to a quintuple. Moving on,
we extrapolate the quintuple in order to receive a width and height of a power
of two. With additional filtering of value-specific errors, we then feed the.npz
packages into either U-Net-V1, U-Net-V2, or U-Net-V3 (U-Net-Vx).

they are widely used in related work (see, e.g., [26] and [44]).
Their mathematical definition is given in (1), where x denotes
a pixel of our prediction and y represents the ground truth
value. By means of the index parameter i, we iterate over the
whole image consisting of N pixels in total. With respect to the
implementation, the TorchMetrics library (domain “regression”)
is used [45]

MAE =
1

N

N∑
i=1

|xi − yi|

RMSE =

√
1

N

∑N

i=1
(xi − yi)2. (1)

In addition to these two metrics, we use the structural simi-
larity index (SSIM) [46], again using the TorchMetrics library
(domain “image”) for the implementation [47]. While neither
MAE nor RMSE indicates whether pixels belong to the same
region or object but rather considers each pixel independently,
the SSIM explicitly takes this into account via a sliding window
approach. By analyzing individual structures within each win-
dow, human-perceivable visual features and arrangements can be
captured. With the goal of creating elevation maps that are easily
recognizable and processable by humans, we systematically test
the different approaches to maximize these accuracy measures.

In more detail, the SSIM performs each computation based
on a window with index i, as defined in (2). Here, we choose a
window size of 5, which corresponds to the average of the (3 ×
3)- and (7 × 7)-sized convolution kernels of the two encoder
components used. In the formula, μix/y

and σix/y
denote the

local mean and standard deviation of the respective windows x
and y at position i, respectively, σixy

represents the covariance
between both windows, and C1 and C2 are small constants to
stabilize the division with small denominators

SSIM =
(2μixμiy + C1)(2σixy

+ C2)

(μ2
ix

+ μ2
iy
+ C1)(σ2

ix
+ σ2

iy
+ C2)

. (2)

To further evaluate the performance of our network, we calcu-
late the zero-mean normalized cross-correlation (ZNCC) [48].
Unfortunately, despite being used in an increasing amount of
papers, there are no ZNCC implementations in standard libraries
yet. Thus, we implement it from scratch, following the definition
of Ghamisi and Yokoya [17] given in (3). In our approach, we
add a safety factor eps to avoid encountering any division by 0

ZNCC =
1

n

n∑
i=1

1

σxσy + eps
(xi − μx)(yi − μy). (3)

Finally, to obtain a metric stable against outliers and hard-
to-predict tiles, we also calculate the absolute median error
[MedAE; (4)] for each image in the test set

MedAE = median

(
|x1 − y1|, . . ., |xN − yN |

)
. (4)

Again, x and y both denote the prediction and ground truth
value at position i, which iterates from index 1 to the number of
pixelsN . To derive a single metric score for the entire test set, we
finally average the respective medians of the images contained
within.

As a loss function, we selected theL1Loss function as imple-
mented in Python [49], whose definition equals the MAE metric
shown in (1). We also added other metrics like the structural
similarity in the form of a combined loss function instead of
solely relying on MAE. However, these metrics were found
to provide worse results. Finally, we use 70% of the dataset
for training, 20% for validation, and 10% for testing purposes.
Assigning the quadruples randomly to the different subsets, we
ensure an equal distribution of the different area types (urban,
suburban, countryside, industrial, and so on). During training,
we use an early stopping approach based on the validation loss
with a patience of five training and validation alternations. More-
over, PyTorch [50] is employed as our optimizer, using an initial
learning rate of 5e-06 and a weight decay of 5e-04. We provide
our code of the implementation details and the neural network
architectures via GitHub at [51]. For completeness, we train the
famous Adabins architecture by Bhat et al. [52] as a comparison
to our models on our dataset. In Section I, we introduced our
problem also as one of the fields of depth estimation. Since
Adabins is in this context and has an encoder–decoder structure
similar to U-Net as its baseline, it suits best for comparison.
However, a few tweaks are necessary to fit our data into the
model. We modify the first convolution layer to handle a fourth
image channel (NIR) by increasing its channel input from three
to four. Furthermore, Adabins does not allow a one-on-one
comparison regarding the size of its input and output images,
so we upsample the outcome (256 × 256) to the original input
size of (512 × 512) in a bilinear fashion. Finally, due to hardware
limitations, we set the number of adaptive bins to 25.

With the setup described, we finally input our preprocessed
Sentinel-2 patches with a size of 512 × 512 pixels and the
corresponding four image channels with a 10 × 10 m resolution
of Sentinel-2 (R, G, B, NIR). We receive an nDSM prediction and
compare it via the loss function to its matching nDSM ground
truth tile.
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TABLE I
RESULTING MEAN OF THE EARLY STOPPING SELECTED EPOCH OF THE

METRICS AND INDICES FOR V1, V2, V3, AND THE ADABINS COMPARISON

V. EVALUATION AND DISCUSSION

In this section, we outline the results of our experiments with
all three versions of our proposed model.

In Table I, we present the results of all three model variants
with the train, validation, and test dataset. We calculated the
MAE, RMSE, SSIM, and ZNCC metrics for all experiments.
For the test run, we additionally calculated MedAE, which we
discuss later. Variant V1, as a plain U-Net model with minor
adaptations for our use case, serves as the baseline model in
our experiments. As presented in Table I, it achieves an MAE of
2.2 m on the test set. Meanwhile, our modified versions of U-Net,
V2 and V3, improve on all metrics in comparison to the baseline
model. With them, the absolute difference in the accuracy of
which they predict elevation is almost exactly 2 m. Therefore,
already, the numerical point of view underlines the fundamental
validity of our methodology in the application domain of surface
model creation. For a visual impression, we depict several tiles
of different land cover types in Fig. 5.

However, besides excellent results, we observe general chal-
lenges for all model variants. Mostly, the network cannot predict
small single-surface objects such as transmission towers or
stand-alone trees. This is due to the fact that with low input data
resolution of 10 × 10 m, such structures are only present in the
ground truth data, given that it is of high resolution. Hence, those
few but special structures are ignored by our model not seeing
an indicator for a structure in the input, leading to a significant
performance decrease in our metrics. This is underlined by the
fact that the MedAE error values in Table I are only half the
size of the original MAE, stressing the impact of this case. For
completeness, we depict the mentioned “pinpoint” problem in
Fig. 6.

A. Multiscale Improvement

Another challenge we observe is the prediction of large
human-made structures. These mostly include large industrial
halls. Extensive vegetation across large areas instead is detected
seamlessly. The multiscale V2 version of U-Net shows enhance-
ments consistently across all metrics. Moreover, despite the
overall better numeric results, the multiscale approach mainly
supports the visual domain realm. Given the usage of larger
kernels, V2 predicts areas of larger contiguous heights more
accurately. Here, the bigger kernels come into play, as they
can learn larger scaled features. In addition, through bigger
convolution areas, more pixels are combined into one mass. This
clears out further disturbances we observe in V1, as large height
areas form tissue-like bugs. We depict such a scenario in Fig. 7.

Nonetheless, we still discover the need for our U-Net-based
model to detect large human-made structures in a more reliable
manner, even predicting with V2. In some cases, there is no sig-
nificant difference in the spectral features between human-made
flat-roofed structures and natural structures. To be more precise,
we suspect the spectral features of flat-roofed large buildings
to be similar to those of a ground area, mainly when greening
was used for the roof. Furthermore, the roof spectral responses
match the ones of asphalt. This leads to false classifications
of areas as ground or flat vegetation and, thus, to false height
estimations. To overcome this issue, using different bands with
better reflection properties in materials of mentioned structures
could increase the classification performance of the network.
Another solution to this issue would be incorporating auxiliary
data, such as cadastral data.

B. Attention Effect

To further support the height prediction accuracy of the V2
multiscale encoder, we implemented self-attention inside of
the skip connections, resulting in V3. As clearly observable
in Table I, V3 exhibits better performance over almost every
metric in every dataset compared to V2. Despite the improved
numerical realm, we again observe struggles in areas with large
human-made buildings, as discussed previously.

We, therefore, again depict the example already described in
Fig. 7. However, this time, we put aside the prediction of V3,
as shown in Fig. 8. Furthermore, we provide an attention map
(with 256 channels) taken out of the V3 network in order to see
what the model is focusing on and why it struggles.

As shown, the attention mechanism is heavily biased by the
spectral properties of the input. The above example depicts a
clear difference in the roof’s material as the lower part is metal,
and the upper part consists of dark, rough roof plates. Hence,
the focus is on only the lower part of the building, preventing
our large 7 × 7 encoder kernels from capturing the elevated
area.

C. External Comparison

In comparison to our models, Adabins performs well regard-
ing the SSIM and ZNCC values, even outperforming V1 in some
cases. However, it lacks behind in the absolute and squared meter
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Fig. 5. We depict the predictions of our model variants V1-baseline, V2-multiscale, and V3-attention with their input data and ground truth tile, respectively. We
thereby depict imagery from different types of landscapes. Note that all three models are producing decent results despite the low-resolution input data. From left
to right: Input Sentinel-2 data (10 × 10 m), ground truth nDSM (0.5 × 0.5 m) image as well as the V1, V2, V3, and Adabins prediction. All predictions also have
a spatial resolution of 0.5 × 0.5 m.

error metrics. The adaptive thresholding module of Adabins
seems so to complement the similarity of the input and output.
Nevertheless, V2 and V3 also clearly perform better not only in
the case of the raw height information but also on both similarity
metrics SSIM and ZNCC. Again, this shows the power of our
multiscale and attention components. The numerical deficit of
the MAE and RMSE values especially unfolds in the visual
domain, as shown in Fig. 5. Here, the network predicts too low
values in almost all examples. Moreover, through its adaptive
binning module, it seems not to differentiate between height
changes within one shape itself. One here could argue that
we only use 25 bins when building the architecture due to

computational limits, as the standard is 100 bins in the original
implementation. Anyhow, even with 25 bins, the model took
25% longer to train per epoch than our computationally heaviest
version V3-attention. We conclude that just increasing the bins
without tweaking the architecture itself more is not reasonable.

D. Morphological Class Differentiation

As shown in Table I, V2 performed almost as good on the
MAE metric as V3, only lacking roughly 0.02 m in the absolute
error domain. Moreover, also better or equal scores can be
achieved with the ZNCC metric in the training and testing
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Fig. 6. Prediction for a vegetation area with a “pinpoint” structure, which
could be a transmission tower. On the right-hand side, it shows the ground truth
containing the tower with around 140 m. The prediction of V1 on the left side
thereby yields high error metric values. This is due to the fact that the input is
originally sampled with 10 × 10 m, which means that it might actually not even
contain the pinpoint structure. Clearly, V2 and V3 will produce similar results,
as they are fed with the same input.

Fig. 7. Upper row is filled with the input data (left) and the ground truth
(right). Then, the lower left picture depicts Base U-Net (V1) prediction on a
larger building. It misses out on parts of it and creates tissue-like disturbances.
On the contrary, the lower right image shows multiscale U-Net prediction on the
same tile. Due to bigger kernels included in the structure, it clears out tissue-like
disturbances. In addition, it is able to learn larger features allowing it to predict
bigger geometric forms. In this example, it predicts the long lines (edges of the
building) correctly. However, V1 discontinues the line and falls apart.

set. Considering a reduced amount of two million trainable
parameters and a decreased training time of 6 h per epoch of
V2 compared to V3 revealed the effectiveness of our multiscale
encoder. To furthermore investigate on the behavior that one
version of either V2 or V3 is not clearly outperforming the
other, we differentiate our result calculations via discrete classes,
which describe the morphology of the environment. We, thus,
measure each metric for the individual classes, respectively.

Therefore, we separate the height and density of the ground
truth tiles into three classes, respectively. For the actual sepa-
ration, we calculate the distribution of both and use the Jenks
natural breaks [53] algorithm to figure out where to set up bound-
aries for class distinction. We thereby use the implementation in
Python of [54]. The distribution of the height ĥ for each tile is

Fig. 8. We depict (from left to right) the input for a large industrial hall in
the east of Krefeld, the prediction of V2-attention, the attention map taken (256
channels), and the Google Maps reference image.

defined as a 0.95 quantile, as described in the following equation:

ĥ = Q0.95(target). (5)

For the distribution of the build-up density d̂, we calculate all
pixels being elevated above 1 m over all pixels of the image. The
threshold of 1 m is used to decrease fluctuations in very small
vegetation heights or agricultural fields. Moving human-made
objects like cars are already filtered out of the provided nDSM.
We depict a more detailed formula as follows:

d̂ =

∑N
i=1(height(i) > 1)

N
. (6)

We denote the amount of all pixels in the target as N and the
height value of a pixel at position i as height(i). As a result,
we receive nine different classes out of the combinations of low,
medium, high density, and low, medium, high height. We can
then calculate our results for each class separately and depict
the difference between V2 and V3 in a heatmap in Fig. 9. As the
metrics have different ranges, we utilize the z-score (standard-
score) [55] for comparing the single metrics in one heatmap.
This allows a fair comparison of different model variants and
metrics. In the figure, positive values state an improvement of
the V2 model over the V3. Moreover, we depict our formula
used for each metric, respectively, as follows:

zm,c =
(xm,c − μm)

σm
. (7)

We denote our z-score for metric m and class c as the value
of the metric minus its mean divided by the standard deviation.

Here, we observe a clear picture from the heatmap in Fig. 9.
With a lower height density of the tile, V2 slightly improves over
V3. However, with increasing height density, V3 outperforms
V2. Therefore, overall, the attention mechanism can do more
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Fig. 9. Metrics calculated on the result set and differentiated by the combina-
tions of the three different density and height borders, yielding nine classes in
total. A positive value indicates an improvement in this specific class and metric
of V2 over V3.

work, as with higher density, more areas are available to focus
on if spectral signals are not disrupting the encoder, as shown
previously in Fig. 8. Furthermore, we obtain V3 scores best if
the tile is of the class “Height 0” (Low). V2 shows the smallest
improvements in those cases, and V3 the strongest. The height
class distribution is determined by the 95th quantile ĥ. This
yields the fact that if the height is low (ĥ < 8.187 m, defined by
the natural Jenks algorithm), the attention mechanism detects
low-level surface structures that V2 is not able to capture. Hence,
this effect enlarges with higher density, resulting in even stronger
numeric improvements.

VI. CONCLUSION

Our models proved to be able to predict high-resolution
nDSM images from low-resolution optical satellite data. Indeed,
deep neural networks are capable to handle this scalene jump.
Furthermore, our results revealed the effectiveness of both our
developed multiscale encoder and our attention gates in the
application domain of neural-network-driven nDSM creation.
As mentioned, with better generalization, we pursue the goal of
building up an nDSM on national scale through low-resolution
input data. This map can further be improved through the use
of auxiliary data. Especially, cadastral footprint data would be
of great interest for data fusion opportunities to fix building
outlines for future works. This would also help even smaller
individual objects to be detected by the network, although it
is not visible in the Sentinel-2 data. However, implementing
auxiliary data into our methodology is not trivial and will require
careful revision of multiple challenges. Hence, this task would
be a predestined future work manuscript. Furthermore, since
common resampling methods did not improve our results, one
could investigate on supersampling by artificial intelligence
algorithms to help overcome the dilemma of the coarse input
resolution. As an exemplary workflow, we suggest [56]. Fur-
thermore, as mentioned in Section V, an adaptive threshold
module as proposed in the Adabins comparison model could
potentially be beneficial for the similarity of the input and output

images. Given more computational power to handle a higher
number of bins, one could also be attached to our multiscale and
attention-enhanced models.

To conclude our work, despite its struggles with certain build-
ing types, our developed models proved to provide very good
results, especially from the viewpoint of the input it gets. Finally,
to once more demonstrate the potential of our models, we reflect
back to Fig. 5, depicting our results for different types of land
cover.
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