
Technische Universität München
TUM School of Engineering and Design

Deep Learning for Time-Series Analysis of Optical
Satellite Imagery

Lukas Johannes Kondmann

Vollständiger Abdruck der von der TUM School of Engineering and Design der
Technischen Universität München zur Erlangung eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz:

Prof. Dr. phil. nat. Urs Hugentobler

Prüfer:innen der Dissertation:

1. Prof. Dr.-Ing. habil. Xiaoxiang Zhu

2. Prof. Dr.-Ing. habil. Michael Schmitt

3. Prof. Devis Tuia, Ph.D.

Die Dissertation wurde am 20.04.2023 bei der Technischen Universität München
eingereicht und durch die TUM School of Engineering and Design am 19.08.2023

angenommen.



Lukas Johannes Kondmann: Deep Learning for Time-Series Analysis of
Optical Satellite Imagery, Ph.D. Thesis , © April 2023



Dedicated to life. Arguably one of the more interesting things to
happen in a while.





A B S T R A C T

Significant progress has been made in deep learning for Earth obser-
vation data in recent times. However, multi-temporal applications of
satellite images such as change detection and agriculture still face a
dataset bottleneck. This does not only hinder training performance
but prevents standardized and transparent evaluation protocols. In
this cumulative thesis, I cover four papers that aim to improve dataset
availability and make use of these resources for methodological inno-
vation in change detection. The contribution is split in two parts. The
first one introduces DENETHOR and DynamicEarthNet, two land-
mark datasets with high-quality ground truth data for agricultural
monitoring and change detection respectively. The baseline experi-
ments on both datasets point towards a need for tailored methods
since current methods seem unable to effectively use the data’s high
temporal and spatial resolution.

Second, I introduce SiROC and SemiSiROC, two methodological
contributions to label-efficient change detection. SiROC is an unsu-
pervised method based on distant neighborhood analysis for binary
change detection in optical images. SiROC performs competitively
on four datasets from a range of change detection applications. With
SemiSiROC, I exploit an insightful confidence measure built-in in
SiROC for pseudo labeling of unlabeled scenes. The confidence mea-
sure allows prioritization of relevant scenes for pretraining deep learn-
ing based change detection methods with pseudo labels. Then, ac-
tual labels can be reserved for finetuning the model further. Overall,
our results underline that this semi-supervised pipeline boosts over-
all performance notably for all methods we explore. This finding is
robust to various ablation studies and underlines how the advantages
of traditional methods and deep learning can be combined for maxi-
mized change detection performance.
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Z U S A M M E N FA S S U N G

Der Einsatz von tiefen neuronalen Netzen in der Zeitreihenanalyse
von Erdbeobachtungsdaten nimmt in den letzten Jahren stetig zu.
Allerdings erfordern diese Methoden große Mengen an Referenzda-
ten, die aktuell nur begrenzt vorhanden sind. Diese Lücke verhindert
nicht nur ein besseres Training der Methoden, sondern macht die Eva-
luation aktueller Methoden intransparent und nicht standardisiert. In
dieser Doktorarbeit fasse ich die Beiträge vier verschiedener Aufsätze
zusammen, die die Datenverfügbarkeit und Methodik für Zeitreihen-
analyse optischer Satellitendaten verbessern. Strukturell ist die Arbeit
in zwei Teile unterteilt. Der erste Teil präsentiert die Referenzdatensät-
ze DENETHOR für die Landwirtschaft und DynamikEarthNet für die
Veränderungsanalyse. Beide Datensätze markieren einen erheblichen
Fortschritt in der Verfügbarkeit von hochqualitativen Referenzdaten
für die Zeitreihenanalyse. Erste Experimente auf beiden Datensätzen
zeigen, dass aktuelle Methoden der temporalen Tiefe der Daten bis-
her nur bedingt gerecht werden und es spezifische Methoden für die-
sen Einsatz benötigt.

Im zweiten Teil lege ich methodische Innovationen für die Verän-
derungsanalyse unter beschränkter Verfügbarkeit von Referenzdaten
dar. SiROC ist eine Methode, die gänzlich ohne Referenzdaten aus-
kommt und auf der Modellierung von Pixeln auf Basis entfernter
Nachbarn beruht. SemiSiROC kombiniert SiROC mit tiefen neuro-
nalen Netzen in einem semi-überwachten Ansatz. Zunächst werden
potentielle Veränderungen in Szenen ohne verfügbare Referenzdaten
mit Hilfe von SiROC vorhergesagt. Diese Vorhersagen werden für das
initiale Training von neuronalen Netzen als Referenzdaten behandelt,
obwohl es sich technisch gesehen um Vorhersagen handelt. Dies er-
möglicht allerdings mit erheblich mehr Daten zu trainieren und die
echten Referenzdaten für die Feinarbeit im Training zurückzuhalten.
Somit können erhebliche Gewinne in der Genauigkeit tiefer neurona-
ler Netze für die Veränderungsanalyse erreicht werden. Die Verbesse-
rungen durch SemiSiROC sind äußerst robust und bleiben auch bei
der Veränderung verschiedener Parameter bestehen. Somit zeigt Se-
miSiROC auf wie neuronale Netze und traditionelle Methoden in der
Erdbeobachtung kombiniert werden können, um die Genauigkeit der
Methoden zu maximieren.
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I N T R O D U C T I O N A N D F O U N D AT I O N





1
I N T R O D U C T I O N

Remote sensing is entering a new era of time-series analysis. The
paradigm shifts from mapping to monitoring our Earth thanks to the
increasing capabilities of new satellites and the expansion of satellite
constellations. In the eye of the climate crisis, the need to monitor
the effects of natural and human activity on the Planet becomes ever
more relevant. Artificial Intelligence can help to process and make
sense of large amounts of satellite data and support many applica-
tions [137]. Many of these use cases are collected under the term
‘change detection’ which refers to finding differences in multitempo-
ral satellite imagery. This includes many impactful scenarios such as
damage detection after natural disasters, deforestation, or urbaniza-
tion monitoring. Particularly for multi-temporal applications, how-
ever, the availability of large-scale, high-quality reference data is lim-
ited. This constrains methodological progress for AI in change detec-
tion or agricultural applications for several reasons. At first, the lack
of training data simply leads to worse results since many AI methods
are data-hungry. Second, missing benchmark datasets often lead to
intransparent evaluation standards. This is because many researchers
then evaluate their methods on different datasets which makes it dif-
ficult to compare them against each other. Therefore, this thesis aims
to accomplish two main objectives:

1. Improve the availability of large-scale datasets for deep learning
in multi-temporal Earth observation.

2. Push the frontier of change detection with label-efficient tech-
niques.

These two objectives are described in two separate sections cover-
ing the work across four publications:

• L. Kondmann, A. Toker, M. Rußwurm, A. Camero Unzueta, D.
Peressuti, G. Milcinski, N. Longépé, P.-P. Mathieu, T. Davis, G.
Marchisio, L. Leal-Taixé, and X.X. Zhu “Denethor: The Dynamic-
EarthNet dataset for harmonized, inter-operable, analysis-ready,
daily crop monitoring from space,” in Thirty-fifth Conference
on Neural Information Processing Systems Datasets and Bench-
marks Track, 2021

• A. Toker*, L. Kondmann*, M. Weber, M. Eisenberger, A. Ca-
mero, J. Hu, A. P. Hoderlein, C. Senaras, T. Davis, D. Cremers,
G. Marchisio, X. X. Zhu, and L. Leal-Taixé, “DynamicEarthNet:
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4 introduction

Daily multi-spectral satellite dataset for semantic change seg-
mentation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022

• L. Kondmann, A. Toker, S. Saha, B. Schölkopf, L. Leal-Taixé, and
X. X. Zhu, “Spatial context awareness for unsupervised change
detection in optical satellite images,” IEEE Transactions on Geo-
science and Remote Sensing, 2021.

• L. Kondmann, S. Saha, and X. X. Zhu, “SemiSiROC: Semi-Super-
vised Change Detection With Optical Imagery and an Unsuper-
vised Teacher Model” IEEE Journal of Selected Topics in Ap-
plied Earth Observation and Remote Sensing, 2023 (accepted).

Some of the ideas and Figures in this thesis have also appeared in
the publications above which are appended to this thesis. After the
discussion of foundations, section 3 describes the first two publica-
tions which are related to the dataset objective. Section 4 summarizes
the methodological advances in the second pair of papers for change
detection. Finally, section 5 concludes and describes potential for fu-
ture research.



2
F O U N D AT I O N S

2.1 a primer on deep learning

The goal of this primer is not an exhaustive review of the history of
deep learning. Instead, my aim is to review recent methodological
developments which are relevant for this thesis. A key moment for
the popularity of deep learning in image recognition was the land-
mark victory of the AlexNet [62] architecture in the ImageNet com-
petition of 2012. It represents the first instance of a deep neural net-
work successfully trained on more than a million images and almost
halved the error rate for object recognition [65]. AlexNet was based on
methodological advances in convolutional neural networks (CNNs)
[66] and fueled by the increasing performance of graphical processing
units (GPUs). This kickstarted a variety of new convolutional archi-
tectures which became popular over the following years. The Visual
Geometry Group (VGG) Net [112] further developed AlexNet’s ad-
vances in 2014 into a deeper architecture and is still a popular model.
ResNets [49] popularized the use of skip connections. In deep neural
networks, the features can become abstract and complex which may
hinder straightforward decisions and deeper networks do not neces-
sarily lead to better performance from a certain point on. The idea
behind skip connections is to allow alternative shorter paths through
the network so that certain parts may be skipped and replaced with
an identity mapping. Therefore, it becomes possible to add even more
layers to the network compared to previous architectures.

Convolutional networks can transfer to other tasks and domains
given the right conditions. This means that a model that was trained
for one task may still be used as a starting point for another applica-
tion. It may need to be finetuned for this new use but the previous
model can still be utilized. Therefore, the rise of CNNs for image
classification also fueled advances in related computer vision tasks
such as semantic segmentation. Fully convolutional networks (FCNs)
relieve the restriction of standard CNNs that are bound to a fixed
input size and exploit this for semantic segmentation. The UNet ar-
chitecture [98] was originally proposed for biomedical image segmen-
tation but has become widely popular in other segmentation tasks as
well. It contains a contracting path that is comparable to a CNN for
image classification and an expansion path where the learned rep-
resentations are gradually upsampled to the original image size for
a segmentation output. This upsampling procedure is based on an
up-convolution operation.

5



6 foundations

While convolutional networks have drastically improved computer
vision performance across a variety of tasks they do not natively han-
dle sequential data. This, however, is a crucial element of time-series
analysis. One way to deal with this limitation in a bi-temporal set-
ting is a siamese structure. Both inputs are processed separately with
shared weights and the extracted features are further processed and
compared afterwards to reach a final decision. This could be deter-
mining a change or if the same person is visible in both input images.

As longer sequences are common in Earth observation, however,
a class of networks with high relevance is recurrent neural networks
(RNNs). RNNs can process sequential data as they have built-in loops
on top of a feed-forward architecture. However, standard RNNs have
fairly short memory. This means that it becomes ever harder for the
model to remember early inputs of the sequence the longer it is. Long
short-term memory networks [51] are designed to counter this weak-
ness with specific cells that include a constant error carousel. This
connection across the sequence makes it easier for information to per-
sist across long sequences within the model.

In recent years, transformers have surpassed LSTMs for many se-
quential applications [119]. They are purely based on self-attention en-
tirely without the use of convolutions or recurrence. While initially pi-
oneered in natural language processing, transformers are fairly com-
mon also in image recognition applications by now. Vision transform-
ers [33] achieve new heights in image recognition performance with-
out using convolutions which laid the groundwork for a lot of current
research. While transformers can be more efficient than CNNs, they
are typically data hungry which means a lot of pretraining is essen-
tial. Therefore, CNNs can often still be practical alternatives when
data availability is limited. In the absence of labels, vision transform-
ers require a lot of compute for self-supervised pretraining. Current
research with transformers under limited labels, for example, suc-
cessfully combines vision transformers with masked autoencoders
[48]. Alternatively, better data availability can guide methodological
progress which is a primary goal of this thesis.

2.2 multispectral satellite imagery

Multispectral images are the result of optical instruments on board
of satellites that orbit the Earth while imaging it. The collected data
is transferred to ground stations which allows us to get a perspec-
tive on Earth from above. The on-board instrument is able to sepa-
rate reflections in different wavelengths of the electromagnetic spec-
trum. In many cases, this includes more channels than the red, green,
and blue (RGB) wavelengths human eyes capture. For example, near-
infrared (NIR) emissions increase with the heat of on an object which
can be helpful to distinguish objects on the ground. In this thesis,



2.3 in-situ data 7

two different kinds of multispectral satellite data sources are used:
Sentinel-2 and Planet Fusion. Sentinel-2 is operated by the European
Space Agency (ESA) and is part of the Copernicus Programme [2].
The Copernicus Programme has an open data policy which implies
that the collected data is shared for free for scientific research or
commercial purposes. Sentinel-2 collects 13 different spectral bands
with a resolution varying from 10-60m per pixel. RGB bands and one
NIR band are, for example, captured at 10m spatial resolution. Two
Sentinel-2 satellites are in sun-synchronous orbit which means that
they visit the same spots on Earth during the same time of day. Ev-
ery larger landmass on Earth is reimaged by one of the satellites at
least every five days. The closer to the poles the area is, the shorter
the revisit intervals. This is because the satellites pass over or close to
the poles on every orbit but can capture only a fraction of the Earth
at the equator at each pass [34]. Planet Fusion is a commercial prod-
uct offered by Planet Labs based on the Planetscope constellation. It
comes in 3m resolution and with four spectral channels (RGB+NIR).
One image a day is available which makes its spatial and temporal
resolution significantly higher compared to Sentinel-2. The data is
shipped heavily preprocessed and is advertised as an ‘analysis-ready’
product. If clouds obstruct observations on certain days, the miss-
ing areas are gap-filled from the closest available date. The data is
harmonized across time for temporal consistency and shadows are
removed. Additionally, the spectral channels are calibrated to be con-
sistent with Landsat and Sentinel data. This is important since there
are small differences in the precise wavelength each of the sensors
collects. For example, the wavelength of the red channel may slightly
differ among the sensors. Fusion data is a harmonized Landsat Sen-
tinel (HLS) product that aims to resolve these differences and make
the data interoperable with these public sources of optical imagery.

2.3 in-situ data

2.3.1 Agricultural Field Data

The Common Agricultural Policy (CAP) of the European Union re-
quires farmers to self-report the crops they plant in order to receive
subsidies [43]. Some regions make the collected geodata around field
boundaries and planted crops openly available which can be used for
the creation of crop type datasets in conjunction with Earth observa-
tion data.

The EIONET Action Group on Land Monitoring (EAGLE) defines
a common classification standard for agricultural activity. This the-
sis uses an aggregated version of this with nine classes: Wheat, rye,
barley, oats, corn, oil seeds, root crops, meadows, and forage crops.
Most of these are fairly distinct but oil seeds contain, for example,
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sunflower or soy. Potatoes or sugar canes belong to root crops and
forage crops are used for animal food.

2.3.2 Change Detection

Based on the Corine Land Cover (CLC) [13] classification scheme,
five different types of land cover can be distinguished at the highest
level: Impervious surfaces, agriculture, solid natural areas, wetlands,
and water. In this thesis, I split solid natural areas into its subclasses
forests and soil and additionally treat snow and ice as a separate class
to create a more meaningful classification task with 7 categories. For
the purpose of this thesis, a change is defined as a transition from
one of the land cover classes to the other if not mentioned otherwise.
Changes are generally rare but are often events of interest. This is
particularly the case if the change of land cover is unexpected or un-
intended with events such as natural disasters.



Part II

C O N T R I B U T I O N S





3
T I M E - S E R I E S D ATA S E T S

Multitemporal analysis is at the core of many relevant applications
of Earth observation data. The time-series can be operationalized in
different ways, however. In change detection, the explicit task is to de-
termine what happened between two images from the same location
at different times. In crop type mapping, a time-series of images from
a growing season is typically used as an input to determine what was
planted in the field. Here, the multitemporal analysis serves as means
to an end in a classification task rather than being the explicit target.
Both areas have been known fields for decades but they have been
heavily influenced by recent advances in deep learning [137]. How-
ever, deep learning methods require suitable large-scale benchmark
datasets which are scarce in both of these applications as outlined
below.

3.1 crop type mapping : methods and datasets

3.1.1 Motivation

Agricultural analysis is among the premier uses of remote sensing
data [84]. Satellites can shed light on a variety of aspects starting
from identifying agricultural areas [121], the planted crops [95], or
yield potential [126]. Further, they can inform about soil moisture [44],
vegetation cycle indicators [56] and also sustainable farming practices
[134]. In crop type mapping, the boundaries of a field are typically
assumed as given and the task is to determine its crop type based on
remote sensing imagery. Often, the input data will be multitemporal
as the evolution of a crop over time is a key element for the prediction
[85]. In its early steps, the amount of data to be processed was often
a challenge so many approaches relied on feature extraction.

Tucker (1979) [93] was among the first to develop a feature-based
approach to study vegetation with satellite data based on the Normal-
ized Difference Vegetation Index (NDVI). NDVI is commonly defined
as

NDVI = (NIR− RED)/(NIR+ RED) (1)

where NIR stands for the reflectance value in the near-infrared spec-
trum and red for the red spectrum respectively. Since plants absorb
red but barely any infrared light during photosynthesis, a high NDVI
close to one is indicative of vegetation activity on the ground. If the
NDVI is close to zero, the ratio of reflected NIR and red light are
similar and therefore not indicative of photosynthetic activity.

11
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Figure 1: Average daily NDVI values for ten wheat and meadow fields in
Brandenburg, Germany.

Figure 1 gives an intuition how temporal features of the NDVI can
be used to differentiate crop types. It shows an NDVI time-series
based on Planet Fusion for wheat and meadow fields in Branden-
burg, Germany. The temporal patterns are distinct particularly be-
tween days of year 150 and 250 which helps algorithms to distinguish
the two crop types. Many crop types therefore are not only distinct in
their visual appearance in satellite images. Their temporal vegetation
activity during the growing season is a critical input to classification
models.

3.1.2 Early Methods

Many approaches make use of a version of vegetation indices for crop
classification [25, 26, 36, 47, 89] One popular approach for crop type
mapping with vegetation indices is the combination with random
forests [87, 117]. The time-series can, for example, be aggregated by
determining temporal features of the average field pixel such as its
mean, median or also extreme values [60, 102]. One advantage of this
approach is its ability to scale [59]. Support Vector Machines are also
frequently used in combination with vegetation index features [31, 63,
135]. Additionally, Dynamic Time Warping (DTW) [81] is a popular
tool in the analysis of phenological stages with remote sensing data.
[8, 27, 78].

3.1.3 Deep Learning Methods

The increasing popularity of deep learning [65] has inspired many in-
novations in crop type classification. Convolutional neural networks
(CNNs) [66] can also be modified to incorporate temporal dimen-
sion in crop type mapping [88]. The resulting TempCNN [88] applies
convolutions also to the temporal dimension. Recurrent neural net-
works have the capacity to operate on sequential data which makes
them particularly suitable for time-series classification of crops [99,
100, 111]. Self-attention based mechanisms have surpassed the perfor-
mance of CNNs and RNNs for many vision tasks in recent years [119].
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Table 1: Existing Datasets for Crop Type Classification.

Inputs GSD RT #Fields Size[GB]

Breizhcrops (FR) [102] S2 10m 5 days 768,000 17.4

TimeSen2Crop (AUT) [122] S2 10m 5 days 1,200,000 2.1

CV4A Kenya [91] S2 10m 5 days 4,700 3.5

Crop Type Uganda [10] S2 10m 5 days 52 59.4

Spot the Crop Challenge (SA) [92] S1+S2 10m 5 days 35,300 52.1

DENETHOR (Contribution) PF+S2+S1 3m Daily 4,500 254.5

Rußwurm et al. [101] study the application of self-attention to raw op-
tical time-series data since the attention mechanism helps to prioritize
relevant scenes. A pixel set encoder with temporal self-attention (Pse-
Tae) has shown promising results for temporal applications including
crop type mapping [108]. In this work, a small window is randomly
sampled from a given field to increase spatial variability.

3.1.4 Available Datasets

Deep learning methods are generally data-hungry [65]. Therefore,
they require large-scale datasets to be trained effectively which can
often be an issue in remote sensing applications where reference data
is typically scarce [137]. For Europe, EuroCrops [109] aims to collect
and harmonize publicly available data through the CAP policy. Still,
benchmark datasets that combine crop type data with remote sensing
imagery are scarce. BreizhCrops [102] is a Sentinel-2 based dataset
from the Brittany region in France with around 800,000 parcels from
one growing season. TimeSen2Crop [122] covers large parts of Aus-
tria but contains only average pixel information per field. For Africa,
some small competition datasets exist [10, 91, 92] mainly through the
work of the Radiant Earth Foundation. Overall, however, the capacity
of deep learning for crop type classification is limited by the avail-
ability of large-scale benchmark datasets. This becomes even more
critical when looking at geographic or temporal generalization which
is often a challenge in crop type mapping [83].

3.2 denethor : a dataset for crop-type mapping from daily

data

3.2.1 Dataset Motivation and Description

As part of this thesis, the DENETHOR dataset for crop type mapping
from daily data is presented. It stands for the DynamicEarthNET
dataset for Harmonized, inter-Operable, analysis-Ready, daily crop
monitoring from space. It provides the first opportunity to explore
analysis-ready data (ARD) from Planet Fusion for open scientific re-
search. The area of interest is in Brandenburg, Germany and the
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dataset contains Earth observation data, field boundaries and crop
types for about 4500 fields in the years 2018 and 2019. The fields are
from two spatially distinct areas where one is used for training with
2018 data and the other for testing with 2019 data. This aims to in-
centivize spatial as well as temporal generalization. Additional to the
Planet Fusion data, the dataset contains Sentinel-1 and 2 imagery for
the respective fields as well. Sentinel-2 is included at preprocessing
level L2A. This implies that images have, among other steps, under-
gone atmospheric correction, orthorectification and spatial registra-
tion. 12 bands are given at 10m resolution which means that lower
resolution bands have been resampled to 10m. No observations are
excluded because of cloud coverage. For Sentinel-1 radar data that is
not obstructed by clouds, we use the Ground Range Detected (GRD)
product. Since a share of the radar waves may be repolarized when
they interact with the surface, we include vertical-vertical (VV) and
vertical-horizontal (VH) polarization values.

To understand why DENETHOR can extend the scope of method-
ological research in crop type mapping, Table 1 presents specifica-
tions of current datasets for crop type mapping together with DE-
NETHOR. Current datasets, such as BreizhCrops or TimeSen2Crop
are based primarily on Sentinel-2 data which has a resolution of
10m and a revisit time of 5 days. However, next-generation Earth ob-
servation products such as Planet Fusion can deliver data daily in
higher resolution. Therefore, the opportunities for dense time-series
data in conjunction with deep learning for agriculture are underex-
plored because of missing datasets. Denethor aims to bridge this
gap between high-cadence time-series and deep learning. For addi-
tional experiments with Copernicus data, the dataset also contains
Sentinel-1 and 2 data. This can shed light on the practical usefulness
of Fusion imagery compared to common data sources for crop type
mapping. While particularly TimeSen2Crop covers more fields than
DENETHOR, their dataset provides only an average pixel per field.
On the other hand, one goal of DENETHOR is to provide the full
field every day to allow the community to explore methodological
approaches for this. This results, however, in a notably larger dataset
size. In summary, DENETHOR has the following advantages com-
pared to previous datasets:

• Higher spatial resolution with 3m vs 10m

• Higher processing level as a harmonized and gap-filled product

• Higher temporal resolution with daily data.

• Data from two seasons and two locations which allows testing
for spatial and temporal generalization
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∑

Figure 2: Three ways to operationalize the crop type mapping task with the
field boundaries and satellite images as inputs

3.2.2 Baselines

To understand how current methods in crop type mapping perform
on this novel dataset, a variety of baselines are tested in three cate-
gories shown in Figure 2. As fields vary in size and shape, we explore
different ways to break down this issue. At first, one can average the
pixels in space and only use the mean pixel per field over time as
an input. This scales comparably well since the input size per field is
minimized in space. However, large parts of spatial information are
discarded.

Second, one can take images of the fields in a constant pixel size
(here 32 × 32) which requires downsampling of large fields and zero-
padding of smaller ones. This increases data input size but allows
to process spatial as well as temporal characteristics of a field. We
use separate encoders for the spatial and temporal dimension. As
spatial encoders we rely on small models such as ResNet18 [49], Mo-
bileNetv3 [52], and SqueezeNet [53]. One of the temporal encoders
we use is TempCNN [88] which is a competitive model for temporal
learning for crop type mapping discussed above. Further, we compare
against a transformer [101] and an LSTM baseline [99] for the tempo-
ral encoding. Finally, MultiScale ResNet (MSResNet) has also shown
promising results for crop type mapping in [102] and is included as
a temporal encoder as well.

Third, PseTae [108] samples an equal number of pixels from each
field which combines some spatial variation with the temporal com-
ponent. The pixel set encoder transforms the field window into a rep-
resentation with a multi-layer perceptron which is further processed
by a temporal attention encoder. Additional to PseTae we also test a
lightweight version of the model which is called PseLTae [39].

Besides the deep learning baselines, we further evaluate attempts
based on random forests. This gives a reference point based on more
traditional methods. For this, we use explicit temporal features of
the mean pixel per field and not the time-series itself. We obtain the
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Table 2: Accuracy of Benchmark Models with Planet Fusion data on the 2019

test set trained with 2018 data.

Spatial Encoder Temporal Encoder

TempCNN [88] MSResNet [120] LSTM [100] Transformer [101]

ResNet18 [49] 52.22% 49.53% 44.64% 43.61%

SqueezeNet [53] 53.94% 49.78% 35.89% 42.58%

MobileNetv3 [52] 53.20% 54.33% 43.46% 48.06%

Pixel Average [100] 64.46% 58.83% 48.40% 52.56%

Pixel-Set Encoding + Self-Attention

PseLTae [39] 67.25%

PseTae [108] 64.95%

Ablation Scores

PseLTae (2018) 78.77%

PseLTae (Val) 88.02%

minimum, maximum, argmin, argmax, mean, median, and the stan-
dard deviation for all available bands and additionally the respective
NDVI. For example, as Planet Fusion has only 4 channels, this results
in 35 features. With Sentinel-2, the number of features is 91. Since this
approach is more focused on spectral depth rather than temporal or
spatial resolution, it should benefit the Sentinel data more. However,
one intention is also to explore data fusion of the different sources in
this approach which may be fruitful because of their different modal-
ities.

All models are trained until convergence with a cross-entropy loss
and with imagenet weights as a starting point. All spatial and tem-
poral encoders use defaults from their Breizhcrops or torchvision im-
plementation respectively. We evaluate results based on accuracy and
macro-averaged F1 score. Accuracy is defined as the number of cor-
rectly classified samples over all samples. An F1 score balances pre-
cision and recall. For the macro-average, the individual F1 scores per
class are calculated separately and then averaged with equal weights.
Alternatively, one could also use a weighted average by the number
of samples per class but this score is easily distorted by the majority
classes.

3.2.3 Baseline results

Table 2 contains scores of the deep learning based experiments with
Planet Fusion data. In the first panel, results for spatial (vertical) and
temporal (horizontal) are shown. Pixel average is the first approach
from Figure 2 in which the field is spatially averaged instead of using
an additional spatial encoder. Even though the pixel average strat-
egy is simple, it performs better than all three other spatial encoders
explored here which is somewhat surprising. It seems that it is not
straightforward for the spatial encoders to extract meaningful infor-
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Table 3: Accuracy of different modalities with hand-designed features and a
random forest classifier on the 2019 test set trained with 2018 data

Data Type # Features Accuracy Macro F1-Score

Sentinel-1 (S1) 42 0.58 0.43

Sentinel-2 (S2) 91 0.59 0.42

Planet (PL) 35 0.37 0.12

S1 + S2 133 0.62 0.46

S1 + PL 77 0.60 0.42

S2 + PL 126 0.59 0.41

S1 + S2 + PL 168 0.63 0.46

mation from the 32 × 32 field images. Between the three encoders, it
seems that MobileNet v3 is on average slightly better than ResNet18

or SqueezeNet but performance is similar.
Looking at temporal encoders, TempCNN reaches the highest score

in the first panel with an accuracy of 64.46% followed by MSResNet.
The LSTM as well as the transformer model do not seem competitive
here with scores ranging from about 36% to 53%.

The best model overall is PseLTae with 67.25% which is visible in
the second panel. It performs even slightly better than its heavier
sibling model PseTae with 64.95%. It appears that the temporal self-
attention mechanism can exploit discriminatory temporal features
much better if fields are not resized or padded but pixels are sam-
pled. Even if the whole field is averaged, however, the transformer
model is not competitive to PseTae. The combination of some spatial
variation together with temporal self-attention in the PseTae frame-
work seems to make the initial difference here.

As the test results are obtained on 2019 data, we further test the
effects of spatial and temporal shifts on accuracy in the third panel.
PseLTae achieves 88% accuracy on validation data which is from the
same year and the same tile. If we move to the test tile which is in the
same geographic area the performance drops by 9 percentage points
(p.p.). A key factor here is that the distribution of crop types shifts
slightly between the two tiles even though they are geographically
close. This is likely a factor in the observed performance drop. Inter-
estingly, the performance drop becomes even larger by another 10.52

p.p. when we use the test data for 2019. This outlines the challenge of
temporal generalization in crop type mapping. Through differences
such as the weather, the vegetation cycles can differ significantly from
year to year. This makes comparisons such as Figure 1 more difficult
when comparing different years.

Table 3 contains the scores for feature-based experiments with ran-
dom forests. At first, we compare data sources separately in the first
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part. Temporal features from Sentinel-1 and 2 perform similarly with
58% and 59% in accuracy and 43% and 42% in macro F1 score respec-
tively. Expectedly, temporal feature extraction with random forests
seems to have few advantages with Planet Fusion on its own with
comparatively low scores. This is because this approach prioritizes
spectral depth over temporal and spatial resolution which is a rela-
tive weakness of the Planet Fusion data here.

In the second part, results from fusion experiments are reported
where we use the same features from all respective input sources.
Combining S1 and S2 yields an improvement of 3-4 p.p. accuracy
over only using one of them. Combining PL with S1 improves S1

scores by 2 p.p. but combining PL with S2 yields no effect. This seems
intuitive since the modalities of S1 and PL are different but similar
for PL and S2 since they are both multispectral satellites operating in
similar spectra. Finally, combining all three satellite types has again
little effect compared to only using S1 and S2 since spectral features
from PL are likely somewhat redundant if S2 is already included.

In comparison to the deep learning results of Table 2, the margin
is fairly small. Only the best deep learning models surpass a random
forest baseline even if only S2 or S1 is used. This suggests that current
methods may not be cut out for this kind of data and there is ample
potential for improvements to exploit the spatial and temporal depth
better.

To summarize, DENETHOR provides the community with the first
opportunity to explore next generation Earth observation products
with daily inputs with deep learning. We show that current baselines
are suboptimal to deal with the spatial and temporal depth of the
data. This is because their edge over Sentinel-based random forest
models is small even though these baselines disregard large parts of
the spatial and temporal information. Additionally, we outline the
hurdles of spatial and temporal generalization in crop type mapping
as a starting point for future research. Beyond crop type mapping, DE-
NETHOR could also be used, for example, for declouding or super-
resolution experiments given the different kinds of EO data provided.
It will be exciting to see what the scientific community builds on top
of this dataset. Additional details on the dataset and baselines are
provided in Appendix A.1.

3.3 change detection

3.3.1 Motivation

Change detection commonly refers to the task of identifying changes
between images of the same location in multitemporal satellite im-
ages. This task supports monitoring of natural disasters [46, 73, 74,
80, 82, 128], forests [14, 17, 110], urban [54, 71] or mountain areas [23,
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57] as well as sea and ice [38, 96]. The task is typically performed
either as a classification task or segmentation task. The goal of a clas-
sification task is to determine if something between the two points in
time has changed that fulfills the respective criteria. It is not necessar-
ily determined how many changes happened or where in the image
a specific event occurred. This is different with change segmentation
where for every pixel in the time-series a decision is made if the pixel
has changed since the last observation.

What makes change detection challenging is that differences be-
tween two images over time do not necessarily indicate a change.
Varying acquisition conditions of the images can play a role because
of different viewpoints, illumination conditions or clouds and shad-
ows. Additionally, it is not necessarily straightforward what consti-
tutes a change for a certain use case. Some applications only try to
identify changes of a certain kind such as urban changes [16] or forest
changes [30, 58] and may disregard other kinds of changes. Further,
some changes on the ground do not always constitute a change in
the corresponding land cover class. An example can be an agricul-
tural field where the visual appearance changes significantly over the
growing season but the blooming and harvest of crops are not unex-
pected. In some applications, this is not seen as a change. However, in
other cases, the harvesting of crops may be the event of interest and
therefore the primary goal of the change analysis.

3.3.2 Available Datasets

Available datasets for change detection are still small and lack geo-
graphic diversity [103]. Among them is the Onera Satellite Change
Detection Dataset (OSCD) [28]. It contains Sentinel-2 image pairs
from 24 locations across the globe with manually annotated changes
in varying image sizes. HRSCD [29] is based on aerial imagery but
labels are automatically generated from a public registry which is
known to be faulty at times. Another aerial change detection dataset
is Hi-UCD [115] but its geographic focus is limited to Estonia with
annual revisits. The MUDS [118] dataset provides monthly revisits
with Planet imagery and building segmentations. LEVIR-CD [19] in-
cludes very-high resolution bi-temporal images from Google Earth
(GE) from 20 different regions from Texas, USA. Similarly, DSIFN-
CD [130] uses five large GE image pairs from cities in China for urban
change detection. Many of these datasets are small, have a strong geo-
graphic limitation, cover only two or few steps in time and come with
binary ground truth only which significantly limits change detection
research.
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Figure 3: Locations of the DynamicEarthNet dataset.

3.4 dynamicearthnet : monthly semantic change detec-
tion from daily data

3.4.1 Motivation

To overcome dataset limitations in change detection we present the
DynamicEarthNet dataset. It contains data from 75 areas of interest
(AOIs) across the globe for the years 2018 and 2019 which are visible
in Figure 3. AOIs are taken from all inhabited continents and cover a
broad variety of changes such as deforestation, shoreline loss, or ur-
banization. The spatial dimensions of each AOI are 1024 × 1024 pix-
els with daily Planet Fusion inputs. This adds up to an area of about
10km² per image with the 3m resolution. For every AOI, the dataset
contains monthly, multi-class ground truth data which was manu-
ally annotated. Additionally, we provide monthly Sentinel-1 and 2

imagery for all locations for additional experiments.
Table 4 explores the specifications in more depth and compares

them to existing datasets for change detection. The OSCD dataset is
based on Sentinel-2 and is small with only 24 AOIs and two points
in time. MUDS has monthly ground truth based on Planetscope im-
agery but only for buildings. Technically, they do not provide seg-
mentation masks but building polygons but the task can be con-
verted to change segmentation as well. LEVIR-CD and DSIFN-CD are
bi-temporal very-high resolution CD datasets obtained from Google
Earth imagery but cover long intervals and are spatially limited to a
small number of cities in Texas (LEVIR) and China (DSIFN). Change
detection datasets based on satellites thus lack temporal coverage,
multi-class annotations, scale and spatial diversity.

A second pillar of change detection datasets comes from aerial
imagery. The imagery for these datasets comes from dedicated cam-
paigns with limited spatial extent. The imagery for the WHU dataset
comes from New Zealand and has binary ground truth on urban
changes. The SECOND dataset in comparison is larger in scale and
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Table 4: Existing Datasets for Change Detection.

Inputs GSD AI RT # Images Seg. Mask Objects

OSCD [28] S2 10m 2-3 years 2-3 years 48 Binary Buildings

MUDS [118] Planet 3m Monthly Monthly 2,389 Binary Buildings

LEVIR-CD [19] Google 0.5m 5-14 years 5-14 years 637 Binary Buildings

DSIFN-CD [130] Google 0.5m Varies Varies 788 Binary Urban

WHU [55] Aerial 0.3m Yearly Yearly 928 Binary Urban

SECOND [127] Aerial <0.5m Yearly Yearly 9324 Semantic Urban

HRSCD [29] Aerial 0.5m Yearly Yearly 582 Semantic Multiple

Hi-UCD [115] Aerial 0.1m Yearly Yearly 2586 Semantic Multiple

DynamicEarthNet PF+S2+S1 3m Monthly Daily 54,750 Semantic Multiple

contains semantic changes from several Chinese cities. Still, the obser-
vation times are long apart. HRSCD is based in France and the corre-
sponding ground truth can at best serve a weak label [29]. Hi-UCD
collects changes in Estonia with semantic ground truth but again the
observation points are far apart and beyond the one in Estonia there
is no AOI. Aerial data has the additional disadvantage that in the
case of an event such as a natural disaster it is not collected for the
whole globe in recurring circles but drones or planes have to be ac-
tively flown over the region of interest. Still, aerial imagery can pro-
vide valuable inputs to these situations but given the resolution dif-
ference, its use to train satellite based change detection methods is
limited. Overall, Table 4 calls for a large benchmark dataset for CD
with frequent observation times, multiple classes and global coverage.
This is what we deliver with DynamicEarthNet. The monthly multi-
class ground truth is a clear differentiator from other datasets. On
top, the community can explore up to daily imagery for this purpose
as supplementary input together with S2 and S1. Overall the dataset
contains over 50,000 1024x1024 images for scientific analysis and we
hope the dataset will allow CD research to transition from detection
to continuous monitoring.

3.4.2 Multitemporal Semantic Segmentation Baselines

To provide a starting point for research on the DynamicEarthNet
dataset, we benchmark a variety of methods for multi-temporal se-
mantic segmentation. Change detection is conceptually related to mul-
titemporal semantic segmentation as the change maps can be com-
puted directly from the semantic predictions between two points in
time. Our goal is to analyze if current time-series segmentation meth-
ods for satellite imagery are competitive for change detection on our
dataset. At first, we provide a basic U-Net baseline [98] which uses
monthly images to segment the respective land cover classes of each
month. Beyond a one-to-one relationship of input and output, we also
explore a number of time-series segmentation tasks where we use up
to 31 images per month as input to map the land cover classes. Based
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on a U-Net [98] feature extractor, U-ConvLSTM [75] is a U-Net seg-
mentation model with an LSTM based temporal backbone. Similarly,
3D-UNet [75] makes use of 3D convolutions to process the temporal
dimension. Finally, U-TAE uses self-attention for the temporal dimen-
sion following [107]. This model shares a similar temporal backbone
to the PseTae [108] model used for crop type mapping above but is
designed for segmentation tasks. Beyond these supervised baselines,
we also benchmark a semi-supervised approach. In this baseline, ad-
ditional imagery between the labeled scenes is exploited for consis-
tency regularization during training following [64] with DeepLabv3+
[22] as segmentation backbone.

3.4.3 Evaluation Metric

We report the performance of supervised and semi-supervised base-
lines on DynamicEarthNet with mean intersection of union (MIOU)
and a Semantic Change Segmentation (SCS) metric which we specif-
ically design based on the requirements of the task at hand. SCS al-
lows us to distinguish between detecting a change away from the
current land cover class but incorrectly identifying the new class. In
this case, a change would be recognized correctly in a binary setting
which is arguably better than missing it completely. Formally, we de-
fine SCS therefore as the arithmetic mean of a binary Intersection
over Union (‘Binary Change’: BC) and a per-class IoU of the semantic
change (SC) scores.

SCS(y, ŷ) =
1

2

(
BC(b, b̂) + SC(y, ŷ|b)) (2)

where y is the actual semantic change map, ŷ the corresponding
prediction and b is analogously defined but for change/no-change
only. Details about the formal definition of BC and SC can be found
in Appendix A.2.

3.4.4 Results

Table 5 presents the results of baseline experiments in three panels
separated by input data. The first panel contains results for monthly
inputs where CAC is the consistency regularization baseline with
DeepLabv3+. The CAC model performs marginally better than the
U-Net baseline with an edge of 0.4 p.p. in SCS. It segments both bi-
nary and semantic change slightly better than the U-Net. The insights
of the SCS metric are also confirmed with mIoU. Going from monthly
to weekly inputs does not improve the CAC baseline. A small gain
in semantic change performance is offset by weaker binary change
performance. This also points to a strength of our SCS metric: It al-
lows for a more fine-grained understanding of change segmentation
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performance. For the other weekly baselines, we combine the U-Net
with a temporal backbone to process the time-series input. U-TAE
reaches a high score in SCS with 19.1 because of a high semantic
change score of 28.7. Similarly, the ConvLSTM temporal backbone
reaches an SCS score just below U-TAE but is notably better in the bi-
nary category. The 3D-UNet performs slightly above yet in the range
of the monthly U-Net. This implies that the additional temporal in-
formation is not effectively used in comparison to the TAE or ConvL-
STM temporal backbone with weekly inputs. However, both CAC and
3D-UNet improve notably when going to daily data. CAC reaches a
mIOU high score with a significant margin and 3D-UNet reaches the
best binary change detection performance. On the other hand, per-
formances of U-TAE and particularly U-ConvLSTM decline in com-
parison to weekly data. For the ConvLSTM temporal backbone, the
performance even falls below the monthly U-Net baseline which uses
30x fewer inputs. These baseline experiments underline a number of
things. First, current methods for multi-temporal semantic segmen-
tation do not transform well off-the-shelf to change detection. Par-
ticularly, binary change accuracies are often only around 10%. This
underlines the necessity of datasets like ours to offer opportunities
to develop methods specifically tailored to the spatial and temporal
depth of recent Earth observation advances. Second, much is yet to be
understood about when and how the temporal depth is useful. In the
cases of 3D-Unet and CAC going to daily data improved results no-
tably but effects were the opposite for U-TAE and U-ConvLSTM. For
research on these issues and many more, our dataset is well-tailored
and we are excited about the kind of research advances that will be
possible in the community with it. For additional details, please refer
to Appendix A.2.
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Table 5: Monthly, weekly and daily baselines on DynamicEarthNet’s Seman-
tic Change Segmentation test set

SCS (↑) BC (↑) SC (↑) MIOU (↑)

Monthly Images

CAC [64] 17.7 10.7 24.7 37.9

U-Net [98] 17.3 10.1 24.4 37.6

Weekly Images

CAC [64] 17.8 10.1 25.4 37.9

U-TAE [107] 19.1 9.5 28.7 39.7

U-ConvLSTM [75] 19.0 10.2 27.8 39.1

3D-Unet [75] 17.6 10.2 25.0 37.2

Daily Images

CAC [64] 18.5 10.3 26.7 43.6

U-TAE [107] 17.8 10.4 25.3 36.1

U-ConvLSTM [75] 15.6 7.0 24.2 30.9

3D-Unet [75] 18.8 11.5 26.1 38.8



4
M E T H O D O L O G I C A L C O N T R I B U T I O N S T O
C H A N G E D E T E C I O N

4.1 state-of-the-art

Beyond improving the availability of large-scale datasets for time-
series analysis of optical satellite imagery, the second ambition of this
thesis is advancing the methodological frontier in change detection.
At first, this requires a thorough review of current change detection
methods and their challenges. Significant methodological progress
has been made in recent times in change detection fueled by better
data availability [2] and progress in deep learning for image recog-
nition [65]. Change detection methods can, among other things, be
differentiated by their propensity to use labeled data about changes
during training.

4.1.1 Unsupervised Methods

Unsupervised change detection methods do not rely on labels during
training. Since large-scale annotated data for change detection is still
scarce [116], unsupervised methods can therefore be advantageous.
One early example of such a method is change vector analysis (CVA)
[76]. The image pair is subtracted from one another to obtain a differ-
ence image (DI). The absolute value of the difference image is thresh-
olded to obtain a binary change segmentation. CVA has been refined
and extended for several purposes. Robust CVA (RCVA) [114] aims
to make CVA less sensitive to potential coregistration errors. Object
size is modeled with histograms in object-based CVA (OCVA) [68]
to transition from the image to the object level. A different approach
to bridge the gap between pixels and objects is combining CVA with
morphological operations [35]. Parcel CVA (PCVA) [11] is aimed at
high-resolution imagery and operates at multiple scales. It combines
hierarchical segmentations with the use of spatial context in compar-
ison to standard CVA. Other methods such as local binary patterns
[50] or graph structures of an image [113] were also explored to use
the neighborhood information of a pixel for change detection. For ex-
ample, local binary similarity patterns (LBSP) [9] compute a similarity
between points of interest and if the similarity between two points in
time is low, this can be indicative of a change [45].

More recently, however, the rise of deep learning has also ignited
progress among unsupervised change detection methods. Within the
CVA framework, Deep CVA (DCVA) [104] extracts features with a

25
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neural network from the pre and post images. The difference image
comparison is then calculated based on the deep feature difference
rather than on the images themselves. As DCVA was originally de-
signed for high-resolution imagery with lower spectral depth, an ex-
tension for Sentinel-2 which has more channels but lower resolution
also exists [106]. I refer to this method as DCVAMR. In similar spirit,
feature change analysis (FCA) [133] combines feature extraction from
a deep belief network with a difference analysis on the extracted fea-
tures. The difference image can also be predicted with a generative
adversarial network (GAN) [42]. GANs can also refine the coregis-
tration of images for change detection prior to the actual prediction
which improves unsupervised change detection methods [94].

A number of approaches take the route of predicting an initial
change map that is further refined with additional steps [37]. In [129],
superpixels are segmented on the difference image as a first step. In
the second step, high-confidence predictions are used as pseudo la-
bels for training a different classifier. Similarly, Lv et al. [72] rely on
clustering of features obtained with stacked contractive autoencoders
that are used as pseudo labels in a superpixel set-up. Pseudo labels
are obtained based on saliency guided deep neural networks and pri-
oritized with hierarchical clustering in [40]. The final change predic-
tion is obtained with an autoencoder based model.

4.1.2 Supervised Methods

If labels are indeed available during the training stage, supervised
change detection methods can exploit them. After the landmark suc-
cess of AlexNet and other convolutional methods, CNNs have been
widely applied to change detection problems. U-Net [98] is a popu-
lar fully convolutional neural network which has provided a starting
point for a number of change detection algorithms. A Siamese U-
Net is proposed in [15] where the siamese structure jointly takes pre
and post images as an input. In two different versions of the method,
the extracted features are either concatenated (FC-Siam-Conc) or sub-
tracted (FC-Siam-Diff). U-Net++ is an extension of U-Net and was
adapted to a change detection framework for very-high resolution
imagery in [90]. Superpixel segmentation and CNNs are combined
in ESCNet [132] ReCNN employs a recurrent model together with
CNNs for multiple change detection [79].

In recent years, attention-based mechanisms have gained popular-
ity over CNNs in general image recognition [119] which resulted
in the creation of the vision transformer architecture [70]. Bitempo-
ral Image Transformer [18] provides a siamese deep features extrac-
tion framework based on transformer encoder and image differenc-
ing. ChangeFormer [6] is based on related ideas. It contains a hier-
archical transformer encoder and a lightweight multi-layer percep-
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tron as a decoder. Feature difference modules are employed at sev-
eral depths of the siamese structure to obtain the final change seg-
mentation. In ChangeMask, a transformer network is inserted in be-
tween a semantic-aware encoder and a multi-task decoder for se-
mantic change detection [136]. SwinTransformers [70] are a popular
transformer architecture for segmentation and have been explored
for change detection in [131]. Transformer models and convolutional
models can also be combined for improved change detection perfor-
mance [20, 32, 130].

4.1.3 Semi-Supervised Methods

A variety of approaches try to merge supervised and unsupervised
methods. Semi-supervised methods exploit large quantities of unla-
beled data to support the supervised training process and are also
popular in change detection. Bovolo et al. [12] design a support vector
machine (S³VM) based on semi-supervision and Bayesian threshold-
ing. Consistency regularization is exploited in [7] to constrain the out-
put change probability map by adding an unsupervised element to a
cross-entropy loss. This allows going beyond the necessity of available
image pairs in semi-supervised change detection. A Self-Organizing
Feature Map (SOFM) is presented in [41] where only a small number
of labels is used initially and soft labels for unlabeled data are then
generated with fuzzy set theory. One of the findings of the review
of unsupervised methods was that some predicted an initial change
map that is further refined by another method. In semi-supervised
learning, a similar tendency exists. For example, [21] obtain an ini-
tial classification of change with Gaussian Processes (GP) which is
then further processed with a Markov Random Field. This is concep-
tually related to student-teacher models [124]. The teacher model is
trained first with available labels and obtains additional predictions,
so-called pseudo labels, on unlabeled scenes. Typically, the student is
then trained with the pseudo labels first which are of lower quality
than the real labels. However, there is enough signal in the pseudo
labels to enrich the training with the real labels. Pseudo labels in the
semi-supervised context have, for example, been successfully used
for hyperspectral image classification [123].

4.2 siroc : sibling-regression for optical change detec-
tion

4.2.1 Motivation

Detecting changes between two images naturally is not a task that
is exclusive to remote sensing per se. This matters, for example, in
autonomous driving [1] where up-to-date maps require continuous
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change detection. One potentially surprising domain where similar
problems pose a challenge is exoplanet detection in astrophysics. This
is because a change in the light intensity of distant stars in a telescope
can be indicative of a transient object between the sensor and the
light source. A method that makes use of this logic is Half-Sibling
Regression (HSR) or sometimes also called the Causal Pixel Model.
It models a pixel as a function of its distant neighborhood of pixels.
This is because changes are typically local in an image and distant
pixels are likely unaffected by the same change. For an image later in
time, the model predicts a pixel of interest based on its neighbors at
a later point in time with the relationship learned from the previous
image. If the deviation of the predicted pixel value from its actual
value is large, this is indicative of a change.

Although a few methods include neighborhood information for
change detection in Earth observation such as LBSP [9] the use of the
distant neighborhood of a pixel is limited until now. We therefore ap-
ply and refine HSR to unsupervised change detection in Earth obser-
vation as Sibling Regression for Optical Change Detection (SiROC).

4.2.2 Methodology

The first part of this section outlines Half-Sibling Regression Image
Differencing whereas the second part explores our modifications for
Earth observation data.

(a) (b) (c)

Figure 4: Half-Sibling Regression (HSR) for Change Detection

Half-Sibling Regression Image Differencing: HSR was originally de-
signed for time-series data of the Kepler telescope and its core princi-
ple is outlined in Figure 4. At time t in Figure 4a, the pixel of interest
is fitted as a linear combination based on the neighbors outside of the
square. In practice, the number of pixels used is much higher but is
limited here for visualization purposes. Figure 4b shows t+1 where
the neighboring pixels in t+1 are used to obtain a prediction for the
center pixel. Then, the predicted image in t+1 is subtracted from the
actual image and thresholded which results in the change segmenta-
tion of Figure 4c.
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Formally, we estimate the residual of the predicted image Ît+1 and
It+1 as

et+1 = Ît+1 − It+1 (3)

where the prediction for the pixel with coordinates x and y is given
as:

Îx,y,t+1 ≡ gt+1Ix,y,t =
∑

(i,j)∈Nx,y

βi,j,x,yIi,j,t+1 (4)

where gt+1 resembles a growth rate of pixels between t and t+ 1

in the neighborhood of Ix,y. The model assumes that the growth rate
of Ix,y should be similar if nothing changed. More explicitly, Îx,y,t+1

is defined as the sum over all selected neighborhood points from N

with coordinates i and j times the respective linear coefficient βi,j,x,y.
Here, β depends on the pixel of interest Ix,y, the respective neighbor-
ing pixel for which β is estimated and the squared sum of all other
neighbors. This is the closed-form solution of the least squares prob-
lem:

βi,j,x,y =
Ii,j,t∑

(i ′,j ′)∈Nx,y
I2i ′,j ′,t

Ix,y,t (5)

This definition of β allows us to directly obtain Îx,y,t+1 without the
explicit calculation of β as:

Îx,y,t+1 =

∑
(i,j)∈Nx,y

Ii,j,t+1Ii,j,t∑
(i,j)∈Nx,y

I2i,j,t
Ix,y,t (6)

Here, the resemblance of the fraction to a growth rate becomes
more obvious: The numerator is a sum over the product of neighbor-
hood pixels in t and t+ 1. On the other hand, the denominator rep-
resents only pixels in t in a similar term. While this is not an explicit
growth rate, the changes in the neighborhood pixel values dictate
whether the factor becomes larger or smaller than one. Depending on
this factor, the model expects Ii,j in a similar intensity and predicts
Îx,y,t+1 based on this. This can be extended to multi-channel images
by summing over the absolute change signal per channel.

Sibling Regression for Optical Change Detection: In comparison to HSR,
we make two major modifications for change detection in Earth ob-
servation.

1. We iterate over mutually exclusive neighborhoods and use the
ensemble of resulting models to estimate an uncertainty of our
predictions
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2. We combine the pixel-level segmentations with morphological
profiles (MP) to bridge the gap to the object level

Algorithm 1 : SiROC

Input: It, It+1, s, n_max,e_start
Output: Binary Change Segmentation

1: e = e_start, n = e_start+s
2: Uncertainty_CM = zeros_like(It)
3: while n < n_max do
4: for (channel in channels) do
5: for (pixel in It) do
6: Apply HSR(n,e) to get Ît+1

7: end for
8: Channel_Difference_Image = Ît+1 - It+1

9: end for
10: Diff_Image = Sum(|Channel_Difference_Images|)
11: Binary_CM = Otsu_Thresholding(Diff_Image)
12: Binary_CM_Object = Morph_Profile(Binary_CM)
13: Uncertainty_CM = Uncertainty_CM + Binary_CM_Object
14: n = n + s
15: e = e + s
16: end while
17: Final_Segmentation = Threshold(Uncertainty_CM)

Algorithm 1 presents SiROC in Python style pseudocode. We aim
to output a binary change segmentation of a pair of bi-temporal im-
ages It and It+1. As additional parameters, e_start is the initial size
of the exclusion window, s the step size, and n_max the maximum
size of the neighborhood. All these parameters are measured in the
number of rows/columns from the pixel of interest. For example, if
n_max=20 and s=e_start=5, any pixel that is more than five but less
than twenty-one rows and columns away will be included in a model.
Note that this criterion has to be fulfilled for both, rows and columns.
In this case, there are three models which consider the distance 5-
10,10-15, and 15-20 respectively.

We start with defining an uncertainty map filled with zeros in the
shape of the pre or post image. As long as the current neighborhood
window of interest has not reached its maximum (line 3), we obtain
HSR change predictions given the current neighborhood window for
every pixel in the image and repeat this for all channels. Then, we
take the difference of the predicted and actual image in t+1 based
on equation 3. After this, we sum the absolute value of the change
signal across channels and threshold this with Otsu thresholding [86].
The result is a binary change prediction for every pixel. To transition
to the object level we apply a morphological profile which removes
spurious predictions and closes gaps in larger objects. Finally, we add
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the resulting binary predictions at the object level to the uncertainty
change maps and update the neighborhood parameters. After the it-
eration over the neighborhoods has concluded, the uncertainty map
is similar to a voting map where every pixel has an integer between
0 and the number of models. The higher the number of votes, the
more models view this pixel as changed based on mutually exclusive
neighborhoods. The final binary segmentation is obtained by apply-
ing a threshold to this number of votes. The idea behind using mutu-
ally exclusive neighborhoods is to exploit different trends at varying
distances to the pixel.

4.2.3 Data

For our experiments, we use four different binary change detection
datasets which cover a variety of different applications: Urban expan-
sion, disaster response, agriculture, and alpine regions.

OSCD: At first, we rely on OSCD [28] with its 24 bi-temporal pairs
of Sentinel-2 imagery and manual change annotations from across
the globe. To be consistent with other evaluations on this dataset, we
follow their standard train (14 cities) and test (10 cities) split. The
dataset is focused on urban areas and mainly contains annotations of
new roads or buildings.

Beirut Harbor Explosion Dataset (BHED): Additionally, we construct
a dataset around the Beirut Harbor explosion of August 2020. We
base this on a pair of cloud-free Planetscope images from before
and after the explosion. This allows us to explore SiROC also with
higher resolution data than Sentinel-2. The destruction reference data
comes from the Center for Satellite-based Crisis Information (ZKI).
ZKI bases this annotation on ground reports and manual inspection
of very-high resolution satellite imagery.

Agriculture Dataset: Based on [104], this dataset explores manually
annotated agricultural changes in Barrax, Spain. The imagery comes
from Sentinel-2 with a size of 600 × 600 pixels. Pictures are taken 10

days apart. Annotated events here are changes in the visual appear-
ance of the field. Note that this may not necessarily align with a land
cover/use change but can still be an event of interest (e.g. harvest).

Alpine Dataset: This dataset is also explored in [104] and concerns
a fire close to Trento in the Italian Alps. The imagery is also based on
Sentinel-2 with a pixel size of 350 × 350 and heavily influenced by
winter conditions in the respective region.

4.2.4 Experiments

First, I describe the selection of competing methods. The second part
concerns evaluation criteria and selected hyperparameters.
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Competing Methods: We select a number of competitive unsuper-
vised change detection baselines from traditional as well as deep
learning methods which are described in section 4.1.1. In terms of tra-
ditional methods, we benchmark RCVA [114] and PCVA [11] which
are more recent versions of CVA. On the deep learning side, we in-
clude DCVA [104] and its extension for multispectral imagery, DC-
VAMR [106]. For the BHED dataset, we also use a high-resolution
version that is based on self-supervised learning which we call SSD-
CVA here [105].

Evaluation Criteria: To be consistent with previous evaluations on
the used datasets, we select four criteria. At first, we use F1 score
which was already described in section 3.2. However, previous con-
tributions often only inspect the F1 score of the change class and we
follow this convention here. Additionally, we include sensitivity and
specificity. Sensitivity is defined as

Sensitivity =
TP

TP+ FN
(7)

and specificity as

Specificity =
TN

TN+ FP
(8)

Sensitivity is equivalent to recall which is also a commonly used
expression. Both criteria have elements of a per-class accuracy since
they consider all positive (sensitivity) or negative (specificity) samples
and assess what fraction was correctly classified. The recall is often
also combined with precision which is our final criterion:

Precision =
TP

TP+ FP
(9)

Precision reports how many of the change predictions are actually
changing. Together with sensitivity/recall, the F1 score is calculated
as described earlier.

Hyperparameters: Based on tuning on the OSCD training set, we
select the following hyperparameter configuration:

1. Maximum neighborhood size: n_max=200

2. Initial exclusion window: e_start=0

3. Step size of ensemble: s=8

4. Filter Size of Morphological Operations: p=5

In contrast to standard HSR, we find an initial exclusion window
of zero to be optimal in our case. Our ensembling approach poten-
tially incorporates the advantages of using distant neighborhoods in
some of the models already. Therefore, the necessity to exclude close
neighbors may be limited in our case here. For details on the hyper-
parameter tuning and a sensitivity analysis, please refer to Appendix
A.3 section III.C
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Table 6: Quantitative Results OSCD Test Set

Specificity Sensitivity Precision F1

SiROC 88.31% 70.71% 24.80% 36.72%

DCVAMR 78.38% 64.63% 14.01% 23.03%

DCVA 76.96% 69.02% 14.03% 23.33%

PCVA 75.61% 47.00% 9.50% 15.81%

RCVA 76.96% 64.08% 13.16% 21.84%

Ablation Scores

No MP 80.64% 69.88% 16.44% 26.62%

HSR 79.45% 70.24% 15.70% 25.66%

4.2.5 Results

Table 6 shows the results of SiROC and other baselines on the OSCD
test set. Overall, SiROC is superior to the evaluated baselines from the
deep learning side as well as CVA-based models with high scores in
all categories for OSCD. The gap for specificity is at least 10 p.p. with
DCVAMR coming in second place. This implies that SiROC captures
the no-change class notably better than the other methods here. The
edge for sensitivity is smaller where DCVA is a close second about 2

p.p. behind but the gap to other methods remains large. The gap is
substantial for precision and F1 score as well.

The ablation scores evaluate the effectiveness of the morphological
profiles and ensembling in SiROC on OSCD. Without morphologi-
cal operations, the performance of SiROC drops mostly in specificity
but also marginally in sensitivity. It seems that the morphological op-
erations mostly help to reduce spurious false positives rather than
adding in false negatives here. Still, even without the morphologi-
cal operations, SiROC surpasses the competing models although by
a small margin only. Not ensembling over mutually exclusive neigh-
borhoods reduces performance marginally in precision and F1 but the
effect is small here. HSR as a baseline method is also quite compet-
itive here and also surpasses the scores of competing models which
points to the effectiveness of the underlying logic to also use distant
neighbors.

Qualitative results in Figure 5 on the Las Vegas scene from OSCD
confirm the impressions of Table 6. Panel 5a shows the confidence
outputs of SiROC which are the number of votes from the ensemble
methods. The thresholded, final prediction is in Panel 5b, Panel 5c
is equivalent to 5b without morphological operations, 5d - 5g are
competing models and the reference data is in 5h.

Comparing the SiROC predictions to the ground truth, changes
seem to generally be identified well. This is based not only on identi-
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(a) SiROC Confi-
dence

(b) SiROC (Ours) (c) SiROC (No MP) (d) DCVAMR

(e) DCVA (f) PCVA (g) RCVA (h) Ground Truth

Figure 5: Qualitative Comparison OSCD - Las Vegas.

fying the locations of changes but also fitting their shape comparably
well. One could argue that this is merely thanks to the morphological
operations but 5c shows that the shapes are also well identified before
that. Rather, the MP removes spurious false positives. The competing
methods struggle more with these scenes for different reasons. DCVA
and DCVAMR identify changing regions generally but fit blops rather
than refined shapes to these areas. RCVA and PCVA, on the other
hand, seem capable of identifying object shapes on the ground here.
However, they largely overestimate the number of changes on the
ground. Therefore, SiROC seems best to extract changing buildings
accurately here.

To analyze the correspondence of the confidence measure in 5a
within SiROC to classification performance, Figure 6 plots a calibra-
tion curve for several AOIs in the OSCD test set. We separate our pre-
dictions by confidence levels and evaluate these buckets separately.
Performance seems generally non-decreasing for all four cities which
is most pronounced for Las Vegas. This implies that beyond accurate
predictions, SiROC also returns a built-in confidence that corresponds
well to its actual classification performance. This can help in practical
applications to prioritize results of high confidence and verify predic-
tions with low confidence.

Beyond OSCD, Table 7 outlines score for the Beirut Harbor Explo-
sion dataset. This is based on 3m resolution imagery which is why we
include SSDCVA instead of DCVAMR as the latter is tailored more to-
wards medium-resolution imagery. We apply SiROC with its defaults
calibrated on OSCD to this dataset without tuning it. Again SiROC is
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Figure 6: Confidence-Performance Plots on four cities of the OSCD Dataset.
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Table 7: Quantitative Results Beirut Explosion

Specificity Sensitivity Precision F1

SiROC 92.01% 83.38% 19.89% 32.12%

DCVA 91.87% 79.85% 11.37% 19.93%

SSDCVA 88.25% 81.08% 8.80% 15.95%

PCVA 88.61% 58.56% 6.74% 12.10%

RCVA 86.56% 66.71% 6.52% 11.89%

Ablation Scores

SiROC (p=10) 92.34% 91.89% 22.20% 35.76%

no MP 88.02% 79.67% 13.65% 23.30%

HSR 86.65% 71.63% 11.31% 19.54%

the strongest model on this dataset. Compared to DCVA, specificity
is similar here but sensitivity is higher with about a 3 p.p. margin.
Therefore, SiROC misses fewer changes here but handles false pos-
itives similarly well to DCVA. SSDCVA falls behind in both criteria
and PCVA and RCVA are not really competitive here. The gap be-
comes more obvious when looking at precision and F1 where the
margin is even larger.

As the image resolution is significantly higher in the input here,
we test a version of SiROC with doubled size of morphological op-
erations as an ablation study. This is because objects will be notably
larger with increased input resolution which the SiROC defaults do
not reflect automatically. The scores improve further which under-
lines that there is likely more potential in SiROC for this dataset. We
restrain from tuning this, however, because only one scene is avail-
able for testing. Again, we disentangle the effect of SiROC compared
to baseline HSR. In this case, both ensembling and MPs are effective
and combine for optimized performance. MPs improve precision and
F1 scores particularly while ensembling mostly helps with sensitiv-
ity. Therefore, both components play an important role in SiROC’s
effective use for Earth observation data.

Outside of urban applications, Table 8 outlines that SiROC can
also be useful in agricultural applications. In line with [106], we re-
strict the input to vegetation and near-infrared channels of Sentinel-2.
Again, SiROC is merely applied with its OSCD defaults to this dataset.
SiROC with near-infrared input reaches the highest specificity and
precision but falls short of DCVAMR in sensitivity and F1. While
DCVAMR arguably has a slight edge here, SiROC still performs com-
petitively just with its defaults.

SiROCs effectiveness for alpine applications is evaluated in Table
9. In accordance with [106], we stick to NIR and SWIR channels here
as inputs for SiROC. SiROC outperforms RCVA and PCVA but falls
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Table 8: Quantitative Results Agriculture Dataset

Specificity Sensitivity Precision F1

SiROC (VEG) 90.69% 86.38% 73.53% 79.44%

SiROC (NIR) 90.81% 88.70% 74.28% 80.85%

DCVAMR 88.88% 94.26% 71.73% 81.47%

PCVA (VEG) 88.83% 83.18% 69.04% 75.45%

PCVA (NIR) 86.60% 84.56% 65.38% 73.74%

RCVA (VEG) 88.91% 91.95% 71.28% 80.31%

RCVA (NIR) 87.39% 92.36% 68.67% 78.77%

Table 9: Quantitative Results Alpine Dataset

Specificity Sensitivity Precision F1

SiROC (NIR) 98.92% 75.71% 52.28% 61.85%

SiROC (SWIR) 99.28% 59.51% 56.10% 57.76%

DCVAMR 99.06% 94.99% 61.23% 74.46%

PCVA (NIR) 98.95% 46.99% 41.04% 43.82%

PCVA (SWIR) 95.48% 35.80% 10.98% 16.80%

RCVA (NIR) 99.22% 63.99% 56.20% 59.84%

RCVA (SWIR) 86.56% 66.71% 6.52% 11.89%
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short of DCVAMR on this dataset. While it reaches the highest speci-
ficity, DCVAMR is superior in three out of four evaluation criteria.
However, the overall results with SiROC defaults are still decent over-
all which underlines the versatility of our method even with its de-
faults.

4.2.6 Discussion

Our experiments show that SiROC can be an effective method for
change detection in medium as well as high-resolution optical im-
agery. Further, it scores competitively across applications in urban ex-
pansion, disaster response, agricultural monitoring and alpine change
detection. Compared to other image differencing techniques, SiROC
enables the inspection of local trends in an image. On the other hand,
CVA and versions of it, often assume that a trend affects the whole
image similarly. This may be intuitive for some aspects but for shad-
ows or small clouds the necessity to analyze local trends is essential.
This may explain a large part of the performance advantage of SiROC
compared to other image differencing methods.

In comparison to unsupervised deep learning methods, SiROC still
performs well. This may be different on larger datasets as OSCD
is still comparably small. However, large-scale reference data is still
scarce in change detection so the scenario of limited input data is not
necessarily unlikely. Our intention is also not to compete with deep
learning methods but rather to augment them. The calibrated con-
fidence of SiROC combined with its performance makes it an inter-
esting candidate for use in combination with deep learning methods.
As the method is fast and performant, it can, for example, be used
for pseudo labeling. In this scenario, SiROC is used to obtain pseudo
labels which are technically predictions but can get larger methods al-
ready far in training. Then, the actual labels are used to finetune the
models to maximize performance. This is explored in the following
section below.

4.3 semisiroc : semi-supervised change detection with

optical imagery

4.3.1 Motivation

As the previous section outlined, SiROC can potentially be effectively
combined with deep learning based methods for semi-supervised
student-teacher learning. This is because SiROC’s unsupervised pre-
dictions are not only accurate but come with an insightful confidence
score.

This is related to other teacher-student set-ups in earth observation
[69]. However, we focus on an unsupervised teacher model here. While
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this may sound counterintuitive at first, the motivation is to reduce
the label dependency of change detection for generalization purposes.
Transitioning from one dataset to the other can sometimes be an issue
in change detection [103]. This is because different datasets consider
different regions, applications and class balances, among other things.
SiROC is a versatile method that is not tailored to a specific applica-
tion or trained with a specific set of labels. Our hypothesis is that this
may foster generalization abilities.

4.3.2 Methodology

Figure 7: An overview of SemiSiROC.

Figure 7 visualizes the methodology behind SemiSiROC. SiROC
is applied to obtain unsupervised predictions for unlabeled imagery.
On the left, we see the pre and post pair where most of the change
happens in the upper left corner. Then, the top quarter of AOIs in
terms of confidence is used to train a deep learning model before
using the actual ground truth. Therefore, the confidence score can be
used to prioritize the pseudo labels.

In the second step, high-confidence pseudo labels are used for pre-
training a student model. This allows deep learning models to learn
from more reliable pseudo labels before going onto the real labels.
Finally, the student model is finetuned with ground truth data in the
third step. Note that only the student model uses the ground truth
in our approach which is different from many other teacher-student
approaches [125].

More formally, assume there are two collections of bi-temporal im-
age pairs D and U. D contains change segmentation masks for every
pair while U does not. Typically U would be much larger than D

since labeled data is scarce. Therefore, the goal is to make effective
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use of U and support the training of a change detection model with
this. This could be done, for example, with consistency regulariza-
tion during training with unlabeled scenes as explored in section 5

for DynamicEarthNet baselines. Here, we take a different approach
within semi-supervision. We employ an unsupervised teacher model
to label U with its change predictions. Therefore, a student model can
exploit the label space D ∪U instead of just D although the pseudo
labels for U will be of lower quality. Particularly in the early stages
of training, however, pseudo labels can be beneficial and the higher
quality of real labels only becomes more important in later stages of
the training [125]. However, we do not label all of U since our ambi-
tion is to restrict the pseudo label training process to examples where
the teacher model is fairly certain. Therefore, we only include the top
quarter of AOIs by confidence.

As a teacher model, we use SiROC which is described at length
in the previous section. As student models, we employ a number of
competitive supervised change detection models.

• FC-Siam-Diff [15] is a UNet-based change detection method. It
has a siamese structure with shared weights for post and pre
images. Features extracted from the image pair are joined after
the convolutional layers and then subtracted from each other.
The approach to use temporal differences of deep features is
common in change detection and also finds use, for example,
in the unsupervised method DCVA [104] discussed in the pre-
vious section. For supervised approaches, such as FC-Siam-Diff,
however, the decision layers after the feature difference can be
explicitly trained with labeled data.

• ChangeFormer [6] is a transformer based siamese network. It pro-
cesses image feature differences at multiple spatial scales with a
hierarchical transformer encoder. This way, the model can scan
for changes at several abstraction levels. The final decision de-
coder is a multi-layer perceptron which is fairly lightweight.

• Bitemporal Image Transformer (BIT) [18] also uses a siamese struc-
ture with a transformer encoder but the initial feature extrac-
tion is still based on a CNN backbone whereas ChangeFormer
is purely transformer based. For BIT, the transformer encodes
and decodes semantic tokens that are produced based on the
CNN features. The siamese output of the transformer decoder
is subtracted from one another which is fed into a shallow CNN
for the final change segmentation. In a way, the transformer el-
ements here are embedded by CNNs which is in contrast to [6]
who remove CNNs completely.
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4.3.3 Data and Evaluation

Figure 8: DynamicEarthNet spatial split

We rely on two datasets for our semi-supervised experiments. At
first, we use the DynamicEarthNet dataset discussed in section 3.4.
For this purpose, we take the first and last scene for each AOI and
compute a binary change map from the ground truth data. Figure
8 shows our train/val/test split in more detail. We simulate a sce-
nario where labeled data is scarce and primarily from specific regions
which is the US in our case. From this, we try to generalize to unseen
regions using validation data from Central America and the rest is
withheld for global testing. If not mentioned otherwise, this is our
baseline split although we evaluate a number of alternative scenar-
ios below. We split the original 1024 × 1024 scenes into 16 256 ×
256 chips to be consistent with [6]. The second dataset is OSCD [28]
which is described in Table 4. From OSCD, only the test set is used for
evaluation purposes here to evaluate if a model trained on Dynamic-
EarthNet can generalize to this new dataset as well. However, OSCD
images do not have consistent sizes and further are not square. There-
fore, we pad the images to the next multiple of 256 and exclude the
padded pixels during evaluation.

To test the effectiveness of SemiSiROC, we make two main com-
parisons. At first, we compare to finetuning only with the real labels
where no pseudo label pretraining is involved. Second, as additional
baselines, we include DCVA and CVA as competing pseudo label
sources. In additional ablation studies, we further test the robustness
of our results against a larger training set, alternative training loss
choices, and splitting the locations of pseudo label pretraining and
finetuning.

Each model is trained for 50 epochs with ADAM as an optimizer,
a batch size of 32, an initial learning rate of 0.0001, and linear weight
decay. Pseudo label pretraining is based on a focal loss. Models are
scored based on accuracy, mean F1 score, and MIOU which have been
introduced above. However, note that to be consistent with [6, 18] we
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Table 10: Quantitative Results DynamicEarthNet grouped by pseudo label
use.

Model PL Loss PL Loss Accuracy MIOU MF1

FC-Siam-diff [15] ✓ FL MIOU 0.7812 (+-0.0104) 0.4854 (+-0.0037) 0.6029 (+-0.0018)

FC-Siam-diff [15] MIOU 0.6359 (+-0.0405) 0.419 (+-0.0288) 0.5706 (+-0.0244)

ChangeFormer [6] ✓ FL MIOU 0.736 (+-0.0448) 0.4586 (+-0.0185) 0.584 (+-0.0101)

ChangeFormer [6] MIOU 0.4848 (+-0.0923) 0.305 (+-0.0627) 0.4545 (+-0.0644)

BIT [18] ✓ FL MIOU 0.7303 (+-0.0158) 0.4598 (+-0.0086) 0.5887 (+-0.0058)

BIT [18] MIOU 0.6242 (+-0.0418) 0.4074 (+-0.0227) 0.5587 (+-0.0151)

SiROC [61] 0.6946 0.4408 0.5769

report the mean of the F1 score for the change and the no change
class. This is in contrast to section 4.2 where only the change class is
reported for consistency with [15, 104]. Each experiment is executed
five times with different seeds and we report the mean as well as the
standard deviation for each criterion.

4.3.4 Results

Table 10 shows scores on DynamicEarthNet and compares the use
of pseudo labels against just training with real labels. Pseudo label
training is done with a focal loss, while the finetuning uses a MIOU
loss for all specifications. For all three models, pseudo label pretrain-
ing notably improves performance. FC-Siam-Diff gains about 15 p.p.
in accuracy while the gap for ChangeFormer is even larger. It seems
that ChangeFormer without pseudo label pretraining is even not re-
ally applicable here as accuracy falls below 50%. For BIT, the gap is
smaller but still significant at about 11 p.p. This result is confirmed by
MIOU and MF1 as well. As an additional baseline, the performance
of SiROC on this dataset is about 69% accuracy which is larger than
the supervised models with real labels here. This may be the case be-
cause the amount of training data is comparably low here with 128

image pairs for training only. However, the training set of OSCD is
even smaller where FC-Siam-Diff performs well so parts of this gap
may also be due to distribution shift in the regions.

Still, our approach shows how the spatial robustness of the unsu-
pervised approach and the ability to learn from labeled data com-
bine nicely in SemiSiROC. The pseudo labels provide an effective
way to push performance significantly compared to the supervised
baselines.

Figure 9 adds a qualitative perspective to the results of Table 10 for
8 sample images from a rural region that is affected by deforestation.
Changes are particularly present on the left and in the center of the
rows as visible in the ground truth (9c). FC-Siam-Diff with pseudo
label pretraining (9d) fits the scene better than without pseudo labels
(9e). Particularly, without pseudo labels there are more false positives
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(a) Pre Images

(b) Post Images

(c) Ground Truth

(d) FC-Siam-diff PL

(e) FC-Siam-diff No PL

(f) ChangeFormer PL

(g) ChangeFormer No PL

(h) BIT PL

(i) BIT No PL

Figure 9: Qualitative results of 8 sample image pairs in a rural setting
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which may stem from illumination differences between the pre and
post images. This observation is even stronger for ChangeFormer (9f
& 9g) and BIT (9h & 9i). Particularly, ChangeFormer seems much
more sensitive to differences in acquisition conditions rather than ac-
tual changes on the ground. Pseudo label pretraining eliminates a
large fraction of this oversensitivity for more robust change detection.

Figure 9 visualizes results for a rural scene with few but large
and fairly distinct changes. In contrast, Figure 10 inspects more com-
plex urban scenes with building and road changes as visible in the
pre image (10a), the post image (10b), and the ground truth (10c).
These scenes are more challenging overall. FC-Siam-Diff with pseudo
labels is still arguably the best model here but misses some large
changes for example on the bottom left. The no pseudo label ver-
sion is less distinct in shapes but seems to identify changing regions
generally. For ChangeFormer and BIT, the shapes of the changes get
blurry and overestimated in size without pseudo label pretraining.
This seems to suggest that pseudo label pretraining particularly helps
supervised models to have a better understanding of the shapes of
potential changes. This could be related to the morphological opera-
tions within SiROC since they provide prior understanding of change
shapes. Overall, the qualitative inspection of scenes confirms the im-
pressions of Table 10 that SemiSiROC is an effective strategy com-
pared to its supervised baselines.

Table 11 compares SemiSiROC predictions to different pseudo la-
bel sources where DCVA and CVA are used to obtain alternative pre-
dictions. SiROC scores are identical to Table 10. For FC-Siam-Diff,
SiROC pseudo labels reach the highest accuracy and MIOU but fall
slightly behind on MF1. Further, the gap on MIOU is marginal at
best. Therefore, it seems that there is no clear favorite for this model.
SiROC pseudo labels nudge more towards higher accuracy whereas
CVA and DCVA pseudo labels result in slightly more balanced deci-
sions. On the other hand, for ChangeFormer former there is a notable
difference in accuracy of up to 8 p.p. SiROC pseudo labels result
in higher. MIOU is also higher with SiROC and the model reaches
similar MF1 scores. The picture is similar for BIT. SiROC pseudo la-
bels result in higher accuracy, slightly higher MIOU and similar MF1

scores. In total, it seems that SiROC pseudo labels give an advantage
particularly for accuracy which is especially apparent with BIT and
ChangeFormer.

One could argue, however, that the edge of our strategy is due to
the limited availability of actual labels. Therefore, Table 12 inspects
using more training data. Our initial split includes 8 but we test 16,
32, and 64 cubes out of 75 for training here. Note that the scores are
not comparable to previous Tables here because they were obtained
on different test sets. They are, however, consistent within the Table
meaning that the rows can be compared against each other.
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(a) Pre Images

(b) Post Images

(c) Ground Truth

(d) FC-Siam-diff PL

(e) FC-Siam-diff No PL

(f) ChangeFormer PL

(g) ChangeFormer No PL

(h) BIT PL

(i) BIT No PL

Figure 10: Qualitative results of 8 sample image pairs in an urban setting
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Table 11: Quantitative Results DynamicEarthNet with different pseudo la-
bels

Model PL Loss PL Loss Accuracy MIOU MF1

FC-Siam-diff [15] SiROC FL MIOU 0.7812 (+-0.0104) 0.4854 (+-0.0037) 0.6029 (+-0.0018)

FC-Siam-diff [15] CVA FL MIOU 0.7599 (+-0.0124) 0.4853 (+-0.0072) 0.6121 (+-0.0048)

FC-Siam-diff [15] DCVA FL MIOU 0.7553 (+-0.0077) 0.4838 (+-0.0015) 0.6121 (+-0.002)

ChangeFormer [6] SiROC FL MIOU 0.736 (+-0.0448) 0.4586 (+-0.0185) 0.584 (+-0.0101)

ChangeFormer [6] CVA FL MIOU 0.6589 (+-0.0414) 0.4232 (+-0.0254) 0.5666 (+-0.0196)

ChangeFormer [6] DCVA FL MIOU 0.678 (+-0.0264) 0.4423 (+-0.0193) 0.5864 (+-0.0166)

BIT [18] SiROC FL MIOU 0.7303 (+-0.0158) 0.4598 (+-0.0086) 0.5887 (+-0.0058)

BIT [18] CVA FL MIOU 0.6886 (+-0.0091) 0.4437 (+-0.006) 0.5839 (+-0.0049)

BIT [18] DCVA FL MIOU 0.7004 (+-0.0117) 0.4543 (+-0.006) 0.594 (+-0.0038)

Table 12: Ablation Study: Varying the Training Set Size

Model PL # Training Cubes Loss Accuracy MIOU MF1

FC-Siam-diff [15] ✓ 64 MIOU 0.9227 (+-0.0038) 0.5376 (+-0.0012) 0.6127 (+-0.0028)

FC-Siam-diff [15] 64 MIOU 0.8538 (+-0.0076) 0.4865 (+-0.0055) 0.5685 (+-0.0048)

ChangeFormer [6] ✓ 64 MIOU 0.813 (+-0.0113) 0.4613 (+-0.0098) 0.5494 (+-0.0102)

ChangeFormer [6] 64 MIOU 0.7792 (+-0.0277) 0.4528 (+-0.0239) 0.5516 (+-0.0449)

FC-Siam-diff [15] ✓ 32 MIOU 0.9159 (+-0.0115) 0.5324 (+-0.0094) 0.6082 (+-0.0088)

FC-Siam-diff [15] 32 MIOU 0.8215 (+-0.0715) 0.4764 (+-0.031) 0.5681 (+-0.0328)

FC-Siam-diff [15] ✓ 16 MIOU 0.9162 (+-0.0127) 0.5338 (+-0.007) 0.6101 (+-0.0047)

FC-Siam-diff [15] 16 MIOU 0.8488 (+-0.0205) 0.4851 (+-0.0107) 0.569 (+-0.0074)

For all given numbers of training cubes here, the pseudo label vari-
ant remains more effective than pure supervised training. This even
holds for using the sizeable maximum amount of training data with
64 cubes which amount to over 1000 image pairs. It seems that FC-
Siam-Diff reaches much of its potential already with 16 cubes as per-
formance increases only marginally - if at all - when we increase train-
ing data. One may argue that this could be an effect of the pseudo la-
bels however similar trends can also be observed without them. Over-
all, Table 12 underlines that SemiSiROC still has potential to improve
methods when more training data is available where the gap is still
notable even with over 1000 training pairs.

Further, we validate our results against the choice of the finetun-
ing loss and test for all three models not only a focal loss but also
a MIOU and a cross-entropy (CE) loss in Table 13. For FC-Siam-Diff
with pseudo labels, the finetuning loss seems to have limited effects
only. As expected, a CE loss pushes the model more towards the ma-
jority class which results in marginally higher accuracy but substan-
tially lower MIOU and MF1 scores. A focal loss changes little com-
pared to the baseline of MIOU loss with and without pseudo labels.
For ChangeFormer, the choice of the loss seems more relevant but the
main finding of the effectiveness of SemiSiROC remains unchanged.
For all three losses, the ChangeFormer model performs notably bet-
ter with pseudo labels. A focal loss also paints a similar picture to
the MIOU loss for BIT. Again, the supervised CE baseline gains ac-
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Table 13: Ablation Study: Robustness to Finetuning Loss

Model PL Loss PL Loss Accuracy MIOU MF1

FC-Siam-diff [15] ✓ FL FL 0.787 (+-0.0088) 0.4858 (+-0.0021) 0.6008 (+-0.0051)

FC-Siam-diff [15] FL 0.693 (+-0.0657) 0.4426 (+-0.0246) 0.5798 (+-0.0163)

FC-Siam-diff [15] ✓ FL MIOU 0.7812 (+-0.0104) 0.4854 (+-0.0037) 0.6029 (+-0.0018)

FC-Siam-diff [15] MIOU 0.6359 (+-0.0405) 0.419 (+-0.0288) 0.5706 (+-0.0244)

FC-Siam-diff [15] ✓ FL CE 0.7945 (+-0.0088) 0.4868 (+-0.0043) 0.5987 (+-0.0096)

FC-Siam-diff [15] CE 0.7988 (+-0.0233) 0.4466 (+-0.0219) 0.5304 (+-0.0483)

ChangeFormer [6] ✓ FL FL 0.6762 (+-0.0538) 0.4355 (+-0.034) 0.5769 (+-0.027)

ChangeFormer [6] FL 0.5644 (+-0.0164) 0.3548 (+-0.0085) 0.5036 (+-0.0088)

ChangeFormer [6] ✓ FL MIOU 0.736 (+-0.0448) 0.4586 (+-0.0185) 0.584 (+-0.0101)

ChangeFormer [6] MIOU 0.4848 (+-0.0923) 0.305 (+-0.0627) 0.4545 (+-0.0644)

ChangeFormer [6] ✓ FL CE 0.8068 (+-0.0122) 0.4399 (+-0.0158) 0.5155 (+-0.0321)

ChangeFormer [6] CE 0.7735 (+-0.0471) 0.4237 (+-0.0088) 0.5067 (+-0.0178)

BIT [18] ✓ FL FL 0.7133 (+-0.0203) 0.4531 (+-0.0088) 0.5864 (+-0.0066)

BIT [18] FL 0.6673 (+-0.0774) 0.412 (+-0.0318) 0.5447 (+-0.0222)

BIT [18] ✓ FL MIOU 0.7303 (+-0.0158) 0.4598 (+-0.0086) 0.5887 (+-0.0058)

BIT[18] MIOU 0.6242 (+-0.0418) 0.4074 (+-0.0227) 0.5587 (+-0.0151)

BIT [18] ✓ FL CE 0.7593 (+-0.0145) 0.4639 (+-0.0027) 0.581 (+-0.0098)

BIT [18] CE 0.7876 (+-0.0256) 0.4236 (+-0.0055) 0.4984 (+-0.0139)

SiROC 0.6946 0.4408 0.5769

Table 14: Ablation Study: PL Training not on Test Images with SiamUNet

Model PL Loss PL Loss Accuracy MIOU MF1

FC-Siam-diff [15] ✓ FL MIOU 0.7541 (+-0.0115) 0.4621 (+-0.004) 0.581 (+-0.0017)

FC-Siam-diff [15] MIOU 0.5965 (+-0.0419) 0.3902 (+-0.0286) 0.5448 (+-0.0246)

curacy on the pseudo label version but this is largely overfitting to
the majority class and the model lacks far behind in other criteria. To
summarize, our results are robust to a variety of loss choices.

One advantage for the pseudo labels may stem from the fact that
test scenes are in some cases already visible during pseudo label pre-
training. Table 14 explores this and restricts the images from the test
set not to appear during pseudo label pretraining. For this purpose,
we split the cubes in Figure 8 into the west for pseudo label training
and the east for evaluation. Still, SemiSiROC remains substantially
more effective than its supervised baselines with a gap of over 15 p.p.
in accuracy.

Finally, we apply the models of Table 10 to the OSCD test set as an
additional validation exercise. The respective scores are reported in
Table 15. For all three models, the margins to the supervised baselines
are substantial. The minimum accuracy gap is at 15% for FC-Siam-
Diff and is even larger for the other models. The range of accuracy is
even in the range of supervised models in [28] which were trained on
the OSCD training set while our model was not. The ChangeFormer
model without pseudo models seems to collapse at times for this
application. Even when focusing on better runs, however, the maxi-
mum accuracy is below 75%. In terms of balance, BIT reaches the best
model here with high scores in MIOU and MF1 when using pseudo
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Table 15: Quantitative Results OSCD Test Set trained on DynamicEarthNet
and grouped by pseudo label use.

Model PL Loss PL Loss Accuracy MIOU MF1

FC-Siam-diff [15] ✓ FL MIOU 0.9575 (+-0.0096) 0.5547 (+-0.0185) 0.6206 (+-0.0252)

FC-Siam-diff [15] MIOU 0.8083 (+-0.1035) 0.4927 (+-0.0892) 0.5966 (+-0.082)

ChangeFormer [6] ✓ FL MIOU 0.8592 (+-0.0692) 0.5145 (+-0.0457) 0.6085 (+-0.0356)

ChangeFormer [6] MIOU 0.384 (+-0.2976) 0.2139 (+-0.1703) 0.2984 (+-0.1892)

BIT [18] ✓ FL MIOU 0.9248 (+-0.0154) 0.5585 (+-0.0115) 0.6422 (+-0.012)

BIT [18] MIOU 0.7273 (+-0.059) 0.4082 (+-0.0321) 0.5066 (+-0.0238)

labels with a large gap to the no pseudo label baseline. All in all,
SemiSiROC scores on OSCD as an unseen dataset look convincing.
Particularly, the gaps to the supervised baselines are substantial.

4.3.5 Discussion

In our experiments, SemiSiROC appears to be an effective strategy
for semi-supervised learning which is robust to different losses and
training set choices. Its performance is competitive on two benchmark
datasets and against other pseudo label sources. Its off-the-shelf per-
formance for an unseen dataset such as OSCD is particularly promis-
ing and it seems more robust to unseen regions than supervised base-
lines.

The mechanism with which these improvements materialize seems
largely related to less sensitivity to false positives. Particularly, the
use of pseudo labels made the models less sensitive to different illu-
mination conditions in Figure 10. Further, the pseudo labels seem to
help in fitting the shape of changes better. This seems natural since
this is one of the key strengths of SiROC which may be passed down
from the teacher to the student.

A second noteworthy thing is the relative weakness of the two
transformer models in our experiments. As these models are data-
hungry, one reason could be the limited availability of labels. Change-
Former reached competitive performance on the LEVIR-CD dataset
which has about 10x as many labeled pixels as the version of Dynamic-
EarthNet we use. However, ChangeFormer is also a top model on the
DSIFN-CD dataset which only contains 25% more labeled pixels than
our version of DynamicEarthNet. Still, however, they are all from the
same region of the Earth and focused on the same application. So
the amount of training data per use case is still substantially larger
which is likely the reason for our observations. In either case, the
SemiSiROC strategy helps the Transformer models to bridge large
parts of this gap by providing synthetic, additional training labels.
SemiSiROC can be used in many applications potentially since its
teacher model is application and label agnostic by design.
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C O N C L U S I O N A N D O U T L O O K

5.1 conclusion

This thesis set out to achieve two main goals:

1. To improve the dataset landscape for time-series applications of
optical satellite images for deep learning.

2. To advance label-efficient change detection approaches with op-
tical satellite imagery.

Section 3 addresses the first goal of dataset availability. I introduce
two large-scale datasets: Denethor and DynamicEarthNet. Denethor
is the first dataset for crop type mapping with daily data. It also
presents the first opportunity to use novel Planet Fusion data for re-
search purposes. Its use cases are not necessarily restricted to agricul-
ture as other potential applications of the dataset are in declouding
or super-resolution. This is because Sentinel-1 and 2 data are also
provided as part of Denethor.

Our baseline experiments on the dataset explore the applicability
of current methods for spatial and temporal generalization in crop
type mapping. We test three categories of temporal models for Planet
Fusion data: Spatial average of pixels per field, padded or upsam-
pled snapshot of the full field with lightweight spatial encoder, and
randomly sampled pixels per field.

Interestingly, simple pixel averages outperform our lightweight spa-
tial encoders such as MobileNet. This underlines that there is signifi-
cant information in the temporal evolution of the field alone. This is
because the spatial average discards any spatial variation within the
field. The strongest results are, however, obtained with spatial sam-
pling of a small number of pixels per field. Here, we explore PseTae
and its lightweight version which are based on temporal self-attention
and reached the highest scores in our baseline experiments.

Still, random forest baselines with Sentinel data were competitive
and surpassed most but not all deep learning models. What makes
Denethor challenging for all baseline models is the spatial and tem-
poral shift from training to test set. This is because the test dataset is
not only a different (but geographically close) tile but the data also
comes from a different year.

Our results underline that current models do not transform well
off-the-shelf to the novel Planet Fusion data on this task. Custom
models will potentially have to be developed to deal with the high
spatial and temporal cadence of next-generation EO products.

51
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As the second dataset, DynamicEarthNet is presented. It contains
Planet Fusion and Sentinel-1 and 2 imagery for 75 AOIs across the
globe with monthly, manually annotated, semantic ground truth for
2 years. This presents a significant step forward for change detection
datasets since no other dataset so far provides multi-temporal and
multi-class annotations of change events from across the globe. Many
of the current change detection datasets hardly fulfill several of these
aspects while DynamicEarthNet offers them several sources of input
data and daily Planet Fusion imagery.

For the benchmark experiments on DynamicEarthNet, we explore
a variety of multi-temporal semantic segmentation methods. We eval-
uate baselines with monthly, weekly and daily input imagery for
semantic segmentation every month. Our supervised methods take
inspiration from UNet. Weekly and daily supervised methods are ex-
tensions of UNet with a temporal backbone such as a ConvLSTM,
temporal self attention or 3D convolutions. Additionally, we add a
semi-supervised baseline built on DeepLabv3+ with a consistency
loss during training. Additionally, we propose the Semantic Change
Score (SCS) which combines binary and semantic change detection
performance as a new metric.

A semi-supervised consistency element during training seems to
only pay off with daily imagery but does not have much effect in
the weekly case compared to the monthly baseline. In the supervised
case for weekly inputs, U-TAE and U-ConvLSTM have an edge over
the standard UNet with monthly data. However, this edge seems to
disappear with daily inputs. On the contrary, 3D convolutions are
not particularly effective with additional inputs in the weekly case
but this flips with daily data.

Our results outline that much is yet to be understood about these
next-generation products in multitemporal Earth observation. It ap-
pears that current methods can not yet effectively extract potentially
relevant information from dense temporal inputs for these tasks. This
is somewhat consistent with the findings on Denethor. Current meth-
ods leave ample potential for methodological innovation on both pre-
sented datasets since existing methods do not seem tailored to the
abundance of temporal input. Before Denethor and DynamicEarth-
Net, this was not necessarily clear and the possibility to tailor meth-
ods to these applications not given. We therefore encourage the com-
munity to make use of these datasets and develop custom approaches
for next-generation time-series tasks in Earth observation.

The second ambition of this thesis is the advancement of label-
efficient change detection methods. In this scope, section 4 presents
two contributions. At first, I introduce Sibling Regression for Opti-
cal Change Detection (SiROC). The method is inspired by exoplanet
search in astronomy and models pixels as a function of their distant
neighborhood. In subsequent time periods, this relationship can be



5.2 outlook 53

used to predict a pixel based on its neighboring pixels at that time.
Then, the predicted pixel value can be compared to its actual value
at that time. The absolute value of the difference contains a change
signal as large differences point towards a potential update in the
relationship between the pixel and its neighborhood.

We ensemble over mutually exclusive neighborhoods and add mor-
phological operations to transition from pixel to object level. With
SiROC, we achieve competitive results on four different change de-
tection datasets which include urban, alpine and agricultural applica-
tions. Even without morphological profiles or ensembling, the effec-
tiveness of SiROC is still high compared to recent baselines.

SiROC also offers a confidence score which allows for an effective
combination with data-hungry deep learning methods. SemiSiROC is
the second contribution in section 4. It is a semi-supervised method
that uses SiROC predictions and its confidence score for pseudo label
generation and prioritization.

We test this framework with a binary version of DynamicEarth-
Net and OSCD. SemiSiROC improves change detection performance
compared to the supervised baseline by a substantial margin. This is
robust to training set size, loss choices or splitting pseudo labels and
actual training labels geographically. Additionally, the performance
is still competitive when compared to other pseudo label sources or
on OSCD where the method was not trained. It seems that the chan-
nel through which SemiSiROC works is that it is less sensitive to
false positives and learns change shapes more accurately. This is intu-
itive since SiROC, its teacher, relies on morphological operations for
shape refining. It seems that this knowledge is passed down by the
teacher to the student to some extent. SemiSiROC is an effective com-
bination of the advantages of traditional methods such as efficiency
and spatial robustness with deep learning. By combining their advan-
tages, SemiSiROC builds a bridge between these areas and pushes
the methodological frontier in optical change detection further.

5.2 outlook

This thesis presents four advancements in multitemporal Earth obser-
vation. Particularly in change detection, the contributions include a
first-off-its-kind dataset and two methodological contributions. Still,
as change detection is a complex problem much is yet to be explored
in this area. This section suggests promising avenues for future re-
search and discusses potential stepping stones.

At first, next-generation Earth observation products as explored in
this thesis will likely play a larger role in multi-temporal Earth obser-
vation research. Effectively utilizing higher spatial and temporal res-
olutions remains a research challenge with many unknowns. Particu-
larly, Planet Fusion for example is a commercial product and Sentinel-
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2 data is openly available. This begs the question under which circum-
stances commercial data has an advantage over public data also in
cost-effectiveness. This may depend on the specific application and
the relevance of timely observations. Even if commercial products
may result in better performance, it may not be worth the additional
cost or scalability issues. Our datasets provide a starting point for
researchers in this regard since they provide an opportunity to ex-
plore this kind of data without cost with baseline models and results.
We hope that this can guide future inquiries in research and practice
disentangling public versus commercial data in Earth observation.

A second opportunity for future work lies in semantic change de-
tection. Available ground truth data provided a significant bottleneck
for this application. While this remains an issue, DynamicEarthNet
provides a significant step towards better availability of global, multi-
class change detection data from satellites. The baseline experiments
show that off-the-shelf approaches struggle for multi-temporal appli-
cations on this dataset which points to a clear need for designated
methods for this. Given the ongoing advance of image recognition
and a better understanding of tailoring these methods to Earth obser-
vation, there may be significant potential for semantic change detec-
tion in upcoming years.

Third, recent innovations in self-supervised learning may provide
ample opportunities for change detection research. Earth observa-
tion imagery is practically abundant. With decreasing computational
constraints and additional metadata stored with satellite imagery, a
well-designed pretext task can achieve a lot without the necessity for
ground truth data. Two developments could be particularly useful
in this regard. First, ongoing efforts provide more insights into us-
ing metadata in satellite imagery for self-supervised learning more
effectively. For example, images from the same location in different
seasons are contrasted in [77]. This way, the model learns season-
invariant representations of multi-temporal Earth observation data.
Among other results, they manage to reach competitive performance
on OSCD. Overlapping patches are identified as a pretext task in [67]
which could be seen as a version of spatial positives. In similar spirit,
contrastive methods are also used in combination with temporal pos-
itives and geography-awareness for remote sensing data in [3].

The second beneficial trend is the rise of masked autoencoders,
a widely popular self-supervised technique in language processing,
also for images [48]. These autoencoders mask patches of the input
which natively fits to Vision Transformers where images are split
into patches anyway. In contrast to language, however, masking large
parts of the image is the key in image recognition. First attempts
to customize these advances for Earth observation data are already
appearing with likely many more in the making. SatMAE [24] in-
cludes temporal embeddings as well as coordinate and date infor-
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mation in pretraining. AdaMAE [5] prioritizes beneficial patches for
masking with spatio-temporal data. With their auxiliary sampling
network, they manage to get masking ratios up to 95% compared
to 75% in regular MAE. This further enhances the training efficiency
of spatiotemporal MAEs without compromising performance. MAEs
are by no means the only self-supervised technique with promise
for change detection. Pretrained diffusion models, for example, are
taking many applications in image processing by storm [97]. While
they are a generative method in principle, they can still be utilized
in a self-supervised way with pretraining on unlabeled data. For ex-
ample, a denoising diffusion probabilistic model is pretrained on a
large-scale unlabeled Earth observation data set for change detection
in [4]. In summary, the abundance of Earth observation data, the rich-
ness of the available metadata and progress in self-supervised tech-
niques such as MAEs for spatio-temporal data provide significant op-
portunities for future change detection research. In combination with
the availability of next-generation EO data and large-scale semantic
change detection datasets such as DynamicEarthNet, this will likely
fuel a range of methodological developments in change detection.

Even if data availability and methods are increasing, however, some
fundamental pitfalls for change detection research remain. At first,
change detection is an umbrella term used to describe a variety of
different applications. In each of these use cases, the definition of
what constitutes a change may vary and even contradict each other.
Recall the example of harvesting crops from section 3. What some
may consider the change event of interest here could be disregarded
by others because it represents no difference in the land cover class.
This is a fundamental roadblock for any ‘generic’ change detection
method. Therefore, a one-method-fits-all approach for change detec-
tion may be hard to realize in practice without finetuning at least
somewhat to the designated application.

A second roadblock is differences in benchmark datasets and prac-
tical applications of change detection. Any change detection dataset
will typically abstract from the real world as changes are extremely
rare in practice. A Copernicus report1 randomly samples pixels for
change analysis and finds a change rate of about 0.4% between 2015

and 2018. This is hardly a meaningful ratio for a benchmark dataset
where the fraction of changes is typically at least in the single digits.
Often, the frequency of changes varies between the datasets as well
which may lead to the fact that pretraining on one of them may be
harmful for other evaluations let alone practical applications. Evalu-
ations on multiple datasets are becoming the norm for new methods
but transparency, data and code sharing could still be more frequent
to overcome this. Common benchmark datasets are a first starting

1 https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_VR_LC100m-
V3.0_I1.10.pdf
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point to overcome this but the use of open-source best practices will
be critical to achieving common goals in better change detection meth-
ods.

All in all, there are exciting developments likely ahead of us in
change detection fueled by methological innovation and dataset avail-
ability. This thesis contributes to both of these pillars. While there is
still a significant way to go for change detection, the contributions to-
wards dataset availability and label-efficient learning provide a step
towards this vision.
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Abstract

Recent advances in remote sensing products allow near-real time monitoring of
the Earth’s surface. Despite the increasing availability of near-daily time series
of satellite imagery, there has been little exploration of deep learning methods to
utilize the unprecedented temporal density of observations. This is particularly
interesting in crop monitoring where time series remote sensing data has been
used frequently to exploit phenological differences of crops in the growing cycle
over time. In this work, we present DENETHOR: The DynamicEarthNET2

dataset for Harmonized, inter-Operable, analysis-Ready, daily crop monitoring
from space. Our dataset contains daily, analysis-ready Planet Fusion data together
with Sentinel-1 radar and Sentinel-2 optical time series for crop type classification
in Northern Germany. Our baseline experiments underline that incorporating the
available spatial and temporal information fully may not be straightforward and
could require the design of tailored architectures. The dataset presents two main
challenges to the community: Exploit the temporal dimension for improved crop
classification and ensure that models can handle a domain shift to a different year.3

1 Introduction

Remote sensing is entering a new era of time series analysis. A growing number of commercial and
public satellites take the pulse of our planet in unprecedented frequency and resolution. Modern
satellites reimage the Earth in ever-shorter time intervals generating petabytes of data every year
[49]. Additionally, the open data policy of the Landsat program in the USA [46] and the Copernicus
program by the European Space Agency (ESA) [1] have enabled the use of Earth observation (EO)
data for many applications.

∗Corresponding author: xiaoxiang.zhu@dlr.de.
2DynamicEarthNET is the larger project under which our institutions collaborate to make multi-temporal

Earth observation (EO) data more accessible.
3All model implementations and data are available at https://github.com/lukaskondmann/DENETHOR
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One task at the heart of remote sensing efforts is vegetation monitoring. Particularly for the study
of vegetation, access to frequent time series data is essential for accurate and timely monitoring of
forests [47] and agricultural activities [26, 29]. The Sentinel-2 mission, which collects multispectral
data at up to 10 m resolution at least every 5 days, has become particularly popular for crop type
classification since its launch in 2015 [27, 33, 34, 38].

Recent advances in remote sensing have, however, made it possible to go beyond the spatial and
temporal resolution of Sentinel-2. The Planet Fusion product, for instance, provides daily coverage
of the Earth in 3m resolution and is part of a larger group of next-generation EO products that deliver
analysis-ready data in dense time intervals. In the future, high temporal acquisition frequencies
with near-daily intervals may become the norm in vegetation monitoring. This allows observing the
growing cycle of crops in near real-time which provides significant potential for this field. However,
the current methods in crop type classification are not designed to make use of daily temporal imagery,
particularly in combination with high spatial resolution.

Therefore, in this paper, we present the dataset DENETHOR which provides the first opportunity to
explore analysis-ready, daily data for crop type mapping. We provide a combination of harmonized,
declouded, daily Planet Fusion data at 3m resolution together with Sentinel-1 and 2 time series for
high-quality field boundaries and crop ids in Northern Germany. Train and test tiles are spatially
separated and taken from different years to encourage out-of-year generalization.

We explore three types of benchmark methods on the dataset with the daily data: At first, we take the
mean per pixel per field over time as input to a temporal encoder which discards spatial information
but scales well [36]. Second, we include a spatial encoder in combination with the temporal encoder.
Third, we follow [38] by randomly sampling pixels from a parcel as input to a temporal self-attention
model. We compare these approaches to a random forest baseline with handcrafted spectral features
from Sentinel-1 and 2.

Our experiments with the daily time series provide a starting point for future methodological ap-
proaches and underline that current methods may not yet be able to use the full potential of available
information. We find that simply including a spatial encoder in addition to the temporal backbone does
not improve performance compared to a simple mean of pixels per field. Second, many competitive
deep learning models tested struggle to surpass the random forest baseline based on Sentinel-1 and 2
on our test set. One of the only approaches which manage this is based on pixel-set encoding and
temporal self-attention [12, 38] with a high score of about 2/3 in accuracy. Finally, we underline that
the performance drop in out-of-year evaluation from 2018 and 2019 can be substantial and amounts
to 12 percentage points in accuracy on DENETHOR. To summarize, our contribution is threefold:

• We introduce the first publicly available benchmark dataset that includes daily, analysis-
ready remote sensing data. With this, we aim to incentivize the community to study when
and how this data source can be useful for crop type monitoring.

• Our experiments outline that mapping crops from daily imagery may require new methods
since exploiting the full potential of the inputs seems to be a hurdle for many baseline
models. Therefore, the dataset provides a challenging opportunity for the machine learning
community with a novel type of input data.

• We emphasize the necessity of crop type models to be robust to domain shift not only along
the spatial but also along the temporal dimension. This may be an underestimated problem
in practice which we outline in our baseline results.

2 Related Work

Crop type classification is a special case of land cover classification in agricultural monitoring where
field boundaries are typically assumed to be known. Because of its necessity for yield prediction
and food security estimations, the task has received considerable attention in the past. Especially,
multitemporal EO data has been a primary source for crop type classification for decades [26, 29].
Initially, however, the temporal scale of information provided a computational challenge. Therefore,
early methods relied mostly on feature extraction from the time series [35]. Popular approaches
include the computation of vegetation indices [5, 6, 11, 13, 28] that are often combined with Random
Forest Classifiers [42] or Support Vector Machines [8, 20, 48]. Further, Dynamic Time Warping
(DTW) [25] has found many applications in phenological studies with time series EO data [2, 7, 24].
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More recently, however, the rise of deep learning in artificial intelligence [21] has also fueled
improvements in crop type classification. Recurrent neural networks such as LSTMs [15] are
well-suited to capture the temporal dynamics of crop types in a satellite time series [33, 40, 34].
Conversely, convolutional approaches can exploit the spatial dependency of the data. Further, [27]
introduce the use of temporal convolutional neural networks (TempCNNs) in crop type mapping
where convolutions are applied also along the temporal dimension. Convolutional and recurrent
approaches have also been combined to leverage spatial as well as temporal information [18].

Attention mechanisms can further improve upon the capabilities of recurrent models [43]. Self-
attention can be particularly effective when applied to raw optical time series as attention mechanisms
can distinguish between informative and cloudy images [35]. A temporal attention encoder with
pixel-set encoders (PSE) is successfully applied to randomly sampled pixels of crop parcels in [38].

The majority of recent methodological developments are based on publicly available medium-
resolution satellite data from Sentinel-2 (S2). S2 has a spatial resolution of up to 10m per pixel and
collects 13 spectral bands. Its revisit time is 5 days meaning that any region on Earth with a size
larger than 100km² will be reimaged at least every 5 days [9]. The S2 mission has driven substantial
methodological progress in remote sensing, especially because of its open data policy [49]. Still,
on average 55% of the earth’s surface is covered by clouds [19]. This can decrease the temporal
resolution in practice notably and impede the aim of missions, such as Copernicus, to provide frequent
and reliable observations [10].

Recent advances in remote sensing technology have induced the next-generation of optical EO
products with superior temporal coverage compared to S2. The increased temporal resolution can be
especially helpful against clouds since it improves the chance of a cloud-free observation substantially.
Commercial missions such as the Planetscope constellation achieve near daily revisit times. The
spatial and temporal resolution of next-generation EO products holds great promise for a variety
of applications in monitoring our planet. However, current methods in deep learning have not
been designed to fully exploit the available temporal information at scale. This may be primarily
an issue of available temporal resolution in current benchmark datasets. Benchmark datasets for
crop type mapping are scarce in remote sensing and are mostly based on S2 data. The rarity of
datasets may primarily be a result of the low availability of high-quality reference data at scale.
Large-scale products of crop types such as the Cropland Data Layer (CDL) [4] in the US exist for
some regions. However, the CDL is technically still a prediction and may not provide sufficient
quality for benchmark purposes.

Table 1 presents an overview of available benchmark datasets for crop type classification from
multi-temporal EO data. Two datasets based in Europe provide a large evaluation ground for newly
developed crop type mapping models. At first, Breizhcrops [36] is based on S2 and reference data
from almost 800,000 fields from the Brittany region in France. Similarly, the TimeSen2Crop [45]
dataset covers a large fraction of fields in Austria with S2 input data at about 1,200,000 parcels.
Satellite data is averaged at the field level which makes it possible to include a high number of fields.
This averaging, however, discards a lot of spatial information per field, essentially reducing each field
to one averaged pixel. Both of these datasets prioritize geographical size since there are natural limits
to the temporal resolution through the S2 revisit rate and cloud obstruction.

Further, several datasets from Africa have been open-sourced as competitions through the work of the
Radiant Earth Foundation together with Zindi Africa and local governments. The first dataset from
Kenya was part of the challenge at the computer vision for agriculture workshop at the International
Conference for Learning Representations (ICLR) in 2020. Similarly, datasets from Uganda, Rwanda
and South Africa have been or are used in competitions to develop innovative methods for crop type
mapping based on S2 (Uganda), aerial images (Rwanda) and a combination of Sentinel-1 and 2
(South Africa).

None of these datasets, however, include the opportunity to push the frontier of current models further
by including next-generation EO data. Our dataset DENETHOR aims to change this by releasing
daily, declouded and harmonized Planet Fusion data in combination with S1 and S2 inputs for 4,500
fields in Germany. With this, we aim to incentivize the remote sensing and the machine learning
community to develop methods to improve current approaches based on rich data for a challenging
and relevant problem. Naturally, the focus on temporal and spatial resolution of images comes with
the necessity to restrict the spatial scale of the dataset to keep access to it democratic and feasible.
Still, the daily data with 3m resolution is the main driver of dataset size which sums up to about

3



Table 1: Existing Datasets for Crop Type Classification. GSD = Ground Sampling Distance, RT =
Revisit Time

Inputs GSD RT #Fields Size[GB]

Breizhcrops (FR) [36] S2 10m 5 days 768,000 17.4
TimeSen2Crop (AUT) [45] S2 10m 5 days 1,200,000 2.1
CV4A Kenya [30] S2 10m 5 days 4,700 3.5
Crop Type Uganda [3] S2 10m 5 days 52 59.4
Crop Type Rwanda [32] UAV 3cm Monthly 2,611 26.9
Spot the Crop Challenge (SA) [31] S1+S2 10m 5 days 35,300 52.1

DENETHOR (Ours) PF+S2+S1 3m Daily 4,500 254.5

255GB. The inclusion of S1 and S2 enables users of the dataset to further explore multi-modal
combinations of input data.

Our dataset is the first of its kind to publish a daily product for scientific development at the intercept
of machine learning and remote sensing. This does not only hold in the context of crop type mapping
but in EO in general to the best of our knowledge. DENETHOR will be released under a CC-BY
license to encourage widespread use and adoption.

3 DENETHOR: Daily Time Series for Crop Type Classification

Crop Type Classes. Our dataset includes field boundaries and crop type information from Northern
Germany. This data is collected as part of the Common Agricultural Policy of the European Union.
Farmers self-report the crops they grow in their fields to receive subsidies. The data is not only
geographically precise but also of high quality since a variety of checks via in-situ measurements or
EO data can potentially expose cheating.

Given the high spatial and temporal resolution of our dataset, we restrict our focus to two tiles. Both
tiles are identical in size with 24km × 24km. One tile is used for training and validation, the other
for testing. For the training tile, we include field masks and crop types from the year 2018 together
with the respective satellite imagery. Test evaluations are based on the 2019 data. With this, we aim
to encourage methodological development that incorporates not only a spatial but also a potential
temporal shift in the input data. We will further release the 2018 test tile data and 2019 training tile
data for future ablation studies.

The raw crop information provides the fields in vector format with a crop id coded between 1-999.
Fields with areas below 1000m² are excluded since they are often broken in shape and can not easily
be incorporated. This affects around 1% of all fields. We aggregate the crop type into a limited set of
high-level classes which is common practice in crop type mapping [36]. The nine classes with the
respective number of fields in the training set in brackets are: Wheat (305), Rye (276), Barley (137),
Oats (45), Corn (251), Oil Seeds (201), Root Crops (23), Meadows (954) and Forage Crops (339).
The class imbalance provides a challenge for machine learning algorithms but it is representative of
the geographic region and an imbalance is generally common in real-world crop type mapping tasks
[36]. Crops that do not fit into these categories are rare in the reference data but in these instances,
we remove the respective fields instead of collecting them in a tenth ‘Other’ class.

Planet Fusion Imagery. The main source of imagery is the Fusion Monitoring product4 by Planet
Labs, a commercial provider of high-resolution satellite imagery. It is based on the Planetscope
constellation of Cubesats which collect images of the Earth from over 180 small satellites. The
product has a spatial resolution of 3m and collects 4 spectral bands (RGB + Near-infrared (NIR)).
Although Fusion imagery is primarily used for early crop detection, plant health monitoring and the
classification of phenological plant cycles, it has several features that may make it promising for crop
type classification. At first, it provides imagery in a unique daily time interval which allows studying
the evolution of crops in unprecedented temporal density. Especially in combination with the high
spatial resolution, this could enable classification methods to pick up on small, crop-specific details
of the growing cycle.

4https://www.planet.com/pulse/planet-announces-powerful-new-products-at-planet-explore-2020/
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Figure 1: Examples of meadow and wheat parcels from the training dataset. The upper images show
two parcels at four (of 365) acquisition times. The bottom plots shows the Normalized Difference
Vegetation Index NDVI [41] averaged over all pixels of these parcels across the years 2018 (above)
and 2019 (below). For reference, other fields meadow and wheat fields are plotted in thin lines
which illustrates that wheat and meadow vary systematically between day 180 and 240 in both years.
However, the vegetation activity varies notably between the years.

Second, it delivers a temporally consistent collection of images with removed clouds and shadows
which in remote sensing is referred to as an analysis-ready (ARD) product. Potential gaps because
of clouds are filled with different points in time. The data also includes quality assurance (QA)
information that underlines from which source any pixel is taken from together with a confidence
score if the observation is gap-filled. This may be particularly useful in combination with machine
learning techniques since observation could be prioritized by their confidence measure.

Third, it is a Harmonized Landsat Sentinel-2 (HLS) time series.5 To ensure interoperability with
Landsat and Sentinel-2 data, the Fusion data is calibrated to the HLS spectrum which eliminates
differences in the spectral signatures. These differences are subtle but important because they may,
for example, lead to the fact that the red channel a Planetscope sensor collects is slightly different
from the red band in Sentinel-2. The removal of these differences may also enable additional potential
through data fusion. As Planet Fusion data is typically not freely available, our dataset provides an
opportunity for the academic community to explore advantages and disadvantages of this data.

Figure 1 illustrates an example of what kind of signal multispectral time series data carry to map
vegetation activity with two neighboring fields in our dataset. The two rows plot the normalized
difference vegetation index (NDVI) around the meadow (top) and wheat (below) field for four points
in time in a year. The 1D timelines at the bottom add the mean NDVI for the two selected parcels
(thick lines) and other fields of the same crop (thin lines) in 2018 (above) and 2019 (below). After
day 180 in the year, wheat has been harvested with a systematic decline in photosynthetic activity.

5https://earthdata.nasa.gov/esds/harmonized-landsat-sentinel-2

5



In contrast, meadows are still active with a high NDVI which - among many other features - can
be captured by algorithms. Comparing the NDVI across 2018 and 2019 underlines the difficulty of
out-of-year generalization in crop type mapping. While patterns show some similarity across years,
there are also significant differences, particularly for meadows in the middle of the year.

Sentinel data. To combine and compare Planet and the publicly available Sentinel data, we include
imagery from Sentinel-1 and Sentinel-2 to the train and test tile. While the spatial and temporal
depth of S2 is comparably low, the combination of spectral depth (S2) with spatial and temporal
depth (Planet Fusion) may provide additional opportunities for crop type mapping. The S2 data is
downloaded from Sentinel Hub 6 at processing level L2A. No observations are filtered because of
cloud cover (maxcc=1) to maximize temporal coverage. We provide 12 bands - all resampled at 10m
resolution - together with the valid data mask, scene classification (SCL) band and the s2cloudless
probability map (SCP).

Sentinel-1 (S1) is a radar-based sensor with a revisit time of 6 days [49]. We provide S1 Ground
Range Detected (GRD) data with included orthorectification from Sentinel Hub. Orthorectification
is the removal of terrain distortions in raw satellite images which stem from the fact that satellites
rarely take images directly above the area of interest (‘off-nadir’). We include both, vertical-vertical
(VV) and vertical-horizontal (VH) polarization. The distinction stems from the fact that radar-based
sensors collect information from electromagnetic waves that may be repolarized when they reach
the surface. HH measures the share of waves that were emitted in vertical polarization and return
to the sensor in the same polarization. Conversely, HV measures the fraction of the waves which
are repolarized. Radar-based sensors are not obstructed by clouds and provide information about
vegetation from a different perspective. Hence, a multi-modal approach based on optical and radar
data could be informative of phenological trends on the ground.

Possible tasks. While the main focus of this study is crop type classification, the uniquely
high cadence of the data sources can be used for continuous monitoring of crop vigor and precise
identification of crop growth stages and drive progress in sustainable agricultural practices. It may
also be particularly insightful to study approaches for early crop detection in the season when the
full time series is not yet available. Further, instead of taking field boundaries as given, the direct
segmentation of crops and fields [37] provides a higher level of difficulty for models. This could
also be seen in the context of instance segmentation and connected to approaches to the MS coco
challenge [22] where the different modalities of inputs may provide an interesting challenge. Further,
arable land classification could be an intermediary step towards the direct segmentation of crops.

Beyond applications in crop monitoring, DENETHOR could provide validation exercises in super-
resolution and declouding since we provide long time series of multi-modal data at different res-
olutions. For declouding, downsampled Planet Fusion data could be treated as the desired output
with raw and cloudy sentinel inputs. On the other hand, cloud-free sentinel images could be used as
input for a superresolution network that tries to upsample to 3m resolution. Finally, declouding and
superresolution could also be combined in a single task.

4 Model Descriptions

Deep learning models. The listed models are evaluated only with Planet data as inputs. When
training solely on S2 inputs, models did not converge. This is likely because S2 models may need
a higher number of fields to enable training because of missing temporal and spatial resolution.
The Planet multi-temporal satellite image sequence provides data at high spatial (3m) and temporal
resolution (1 day). We benchmark three different ways of operationalizing the crop type mapping
task from field boundaries and daily satellite images as visible in Figure 2.

Following a common practice in crop type mapping [27, 34], we consider a simple pixel average
encoder (Figure 2 left) fspat(Xt) = 1

hw

∑
r,c∈mask xr,c,t over a field mask that averages each D-

dimensional pixel xr,c,t of a field into a D dimensional vector. This discards spatial information for
scalability.

Second, we include a rectangular image of each field (Figure 2 middle) at identical size (32x32).
We sample down larger fields and zero pad smaller parcels. This preserves spatial and temporal
information at the cost of increased input data of a factor of about 10³. We extract spatial and

6https://www.sentinel-hub.com
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Figure 2: Three ways to operationalize the crop type mapping task with the field boundaries and
satellite images as inputs (top): 1. Take the spatial mean of pixels within the field (left) 2. Take a
rectangular image of identical size for all fields which can require padding or downsampling (middle)
since fields vary in size. 3. Sample an identical number of random pixels from each field (right).

temporal features separately with two dedicated encoders. The spatial encoder fspat : Rh×w×D 7→
RH maps a single D-dimensional image of certain height h and width w into a H-dimensional
feature vector while the temporal encoder ftemp : RT×H 7→ [0, 1]C maps a sequence of T H-
dimensional feature vectors directly into a probability for one of C classes. The complete model
{yc}Cc=1 = ftemp({fspat(Xt)}Tt=1) joins spatial encoder and temporal encoders such that the spatial
encoder maps each image Xt into a H-dimensional representation that is then mapped to a class
probability yc by the temporal encoder. In our case, T = 365 because we use daily observations and
C = 9. H depends on the model of the spatial encoder that is used.

For spatial encoders, we resort to standard, light-weight torchvision models [23], such as
mobilenetv3 [16], squeezenet [17], and resnet18 [14]. We use imagenet pre-trained weights
but replace the first layer to accommodate D = 4 input channels and use features before the classifier.
The pixel average can be seen as a simple but scalable version of a spatial encoder.

For the temporal encoder, we utilize the provided implementations from the BreizhCrops [36]
repository. We test the TempCNN [27] model that is based on three 1D-convolutions on the temporal
dimension that are flattened and projected to class probabilities with a final dense layer. The 1D-
Multi-Scale ResNet (MSResNet) model7, is a variant of the CSI Net [44] for pose estimation and
uses three CNN streams each with a different kernel size of 3, 5, 7. Features in the CNN streams are
joined by residual skip connections. A fixed-size feature vector is obtained by global max pooling
before the decision layer. We also compare to a recurrent neural network with multiple stacked LSTM
layers[15], as explored early for crop type mapping by [34] and a Transformer Encoder [43], as
tested in [35].

A third variant of spatial and temporal encoding has been proposed by [12, 38] where fspat is
implemented as a Pixel Set Encoder (Pse). It transforms a set of random pixels (Figure 2 right)
within a field parcel into a fixed representation by a pixel-wise MLP-based neural network with
pooling. This strategy achieves good results when paired with a Temporal Attention Encoder
(Tae) that is inspired by the self-attention-based Transformer architecture. This combination yields
the PseTae [38] and a light-weight variant PseLTae [12].

Data Fusion Baseline. We compare the model accuracy with a random forest baseline on hand-
designed features on openly available optical (Sentinel 2) and radar (Sentinel 1) data. For the 12-band
Sentinel 2 and the 4-band RGB+NIR Planet data, we average all pixels of one field and consider only
cloud-free observations which discards around 55% of S2 observations effectively cutting temporal
resolution in half. Alongside the 12 or 4 spectral bands, we add the normalized difference vegetation
index (NDVI) which is an index strongly related to vegetation. We calculate max, min, mean, median,

7https://github.com/geekfeiw/Multi-Scale-1D-ResNet
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Table 2: Accuracy of Benchmark Models with Planet Fusion data on the 2019 test set trained with
2018 data by spatial (rows) and temporal encoder (columns). Naively using standard spatial encoders
such as ResNet18, SqueezeNet or MobileNet is not sufficient to lift performance over a simple pixel
average. PselTae is the best deep learning model but we observe a notable drop in performance
of more than 20% compared to the validation set. The majority of this drop can be attributed to
out-of-year prediction rather than the spatial shift.

Spatial Encoder Temporal Encoder

TempCNN [27] MSResNet [44] LSTM [34] Transformer [35]

ResNet18 [14] 52.22% 49.53% 44.64% 43.61%
SqueezeNet [17] 53.94% 49.78% 35.89% 42.58%
MobileNetv3 [16] 53.20% 54.33% 43.46% 48.06%
Pixel Average [34] 64.46% 58.83% 48.40% 52.56%

Pixel-Set Encoding + Self-Attention

PselTae [12] 67.25%
PseTae [38] 64.95%

Ablation Scores

PselTae (2018) 78.77%
PselTae (Val) 88.02%

and standard deviation statistics on the resulting time series, as well as the date of max and min values
for each of the 12 bands/4 bands plus NDVI index. For the Sentinel 1 radar data, we similarly average
all pixels of one field at each time and calculate the same min, max, mean, median, std statistics on
the vertical-vertical (VV) and vertical-horizontal (VH) polarisations. We additionally add the V V

V H
ratio as the third band. We calculate these features for ascending and descending orbits separately
and concatenate the features from each orbit type.

5 Benchmark Results

All temporal encoder models were trained with their BreizhCrops [36] defaults and all spatial encoders
are initialized with pretrained imagenet weigths from torchvision. We train with cross-entropy loss
until convergence which typically occurs between epoch 50-100. Among the models, PselTae trained
fastest with about 6 min per epoch with a batch size of 64 on a Nvidia GeForce GTX 1060.

Table 2 presents the accuracy test scores of our benchmarked approaches with the daily Planet data
on the field level. The spatial encoder is given in the rows and the respective temporal encoder in the
columns. Peak performances in this comparison group are reached by convolutional approaches with
pixel average encoders with an accuracy of 64.46% for TempCNN and 58.83% for MSResNet. This
stands in contrast to the results of [35] where self-attention outperforms convolutional approaches as
temporal encoder. The notable difference is in the input data: When cloudy and raw Sentinel-2 data
is used, convolutions may struggle to identify the relevant observations. In well-prepared, declouded
images, temporal convolutions seem to excel and may hence be better suited for our dataset. All
tested temporal encoders perform best with a simple pixel average as a spatial encoder. In alternatives
to pixel averages, the choice of the spatial encoder seems to only make a marginal difference. This
underlines that just including a deep-learning based spatial encoder does not work off-the-shelf and
this kind of data may require more tailored approaches.

The highest score is reached by the light version of pixel-set encoding and self-attention (PselTae)
with an accuracy of 67.25%. Given the validation accuracy of PselTae of 88.02%, this score is
surprisingly low with a drop of over 20 percentage points (p.p.) between validation and test set. To
split up this difference into a spatial and temporal shift, we evaluate PselTae as well on the test set in
2018 which results in 78.77% accuracy. Therefore, the spatial shift to a new tile accounts for about
9 p.p. and the temporal shift for 12 p.p. which is about 60% of the drop in total. Since accuracy
scores may hide effects of class imbalance we also report macro-averaged F1 scores in the appendix
in Table A1 which leaves the main impressions of Table 2 unchanged.
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Table 3: Accuracy of different modalities with hand-designed features and a random forest classifier
on the 2019 test set trained with 2018 data. Features are composed of 7 statistics (min, max,
argmax, argmin, mean, median, std), for each band. Our Sentinel 2 data has 12 spectral bands plus a
normalized red/near infrared ratio (7*(12+1)), Planet has 4 bands plus normalized red/near infrared
ratio. Sentinel 1 has two bands plus the band ratio.

Data Type # Features Accuracy Macro F1-Score

Sentinel 1 (S1) 42 0.58 0.43
Sentinel 2 (S2) 91 0.59 0.42
Planet (PL) 35 0.37 0.12
S1 + S2 133 0.62 0.46
S1 + PL 77 0.60 0.42
S2 + PL 126 0.59 0.41
S1 + S2 + PL 168 0.63 0.46

Table 3 provides the scores of basic fusion experiments with random forests on the 2019 test set. S1
and S2 with hand-crafted features on their own reach accuracies of 58% and 59% respectively and
62% combined which surpasses all deep-learning models but PseLTae, PseTae and TempCNN with
pixel average. The Random Forest approach does not work as well with the Planet data which is not
surprising because it is tailored specifically for spectral rather than temporal or spatial depth. Beyond
spectral features, textural features extracted from 3m data would likely contribute significantly to the
differentiation of vegetation with Planet imagery. These textural features were not exploited in the
current study but they could be highly complementary to the higher S2 spectral coverage.

The addition of Planet Fusion features to S1, S2 or to both adds some information that can be used
by the random forest model but performance improves only marginally - if at all - in comparison
to the models without PL. While the best deep learning models can surpass the performance of the
Sentinel fusion baseline, this is not the case for most models implemented. Even if they do, the gap is
fairly narrow at 2-5 p.p. accuracy. Extracting more advanced features from the Planet Fusion data
with deep learning is therefore a promising route. Currently, however, it seems there may still be
methodological potential in exploiting these novel kinds of inputs effectively at scale.

6 Discussion

The Planet Fusion data is a uniquely rich data source in the spatial and temporal dimension. However,
our benchmark experiments suggest that our deep-learning baseline approaches may not be ideal
to deal with the combination of high temporal and spatial resolution. The development of tailored
architectures is opened as a challenge to the community to fully exploit the available information.
One shortcoming of the tested models is that directly including spatial encoders before the temporal
encoder makes performance worse compared to a simple spatial pixel average. PselTae/PseTae with
Planet Fusion data are the best performing models but only reach an accuracy of about two-thirds.
Therefore, much potential may be in improving current deep learning methods for daily input data.
One promising route might be to experiment with pixel-set encoders with temporal convolutions since
they were superior to attention networks as temporal encoders in our dataset. Likely, performance
from daily data could also be improved notably with the inclusion of a larger geographic area as the
models encounter this type of data for the first time. Nevertheless, a large geographic scale may not
always be available in practice which underlines the necessity to develop approaches that can also
learn from smaller regions and adds to the items that make our dataset challenging.

Further, we find a significant performance drop of 21 percentage points between our validation data
in 2018 taken from the training tile and the 2019 test tile. We show that in our case about 60% of this
decrease can be attributed to the temporal shift of just one year which is about 12 percentage points
in accuracy. This is large in magnitude and documents a challenge of crop type mapping in practice.
Since the weather and growing cycles can vary notably from year to year, out-of-year generalization
provides a challenge. The size of the performance drop shows that this could be underestimated in
real-world applications of crop type mapping since the potential magnitude of this phenomenon seems
not well documented yet. Therefore, it is a necessity that models incorporate this potential domain
shift in the future to contribute to applications of crop type mapping in practice. To summarize, our
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dataset presents two main challenges to the community: First, design new architectures which can
effectively use spatial and temporal information for crop type mapping at scale. Second, ensure that
models manage to generalize out of the year they have been trained on to make them applicable in
real-world settings.

While we believe DENETHOR presents a significant step towards phenological monitoring near
real-time, it has two main limitations. First, the area covered by our dataset is comparably small
because we prioritize a high spatial and temporal resolution. Second, crop type datasets often lack
geographic diversity because of label availability and class compatibility issues and our dataset is
no exception. This limits the ability of developed algorithms to generalize to different geographies.
Although resource-intense initiatives begin to tackle this problem [39], this remains an obstacle with
ample potential for future dataset work. One option for users interested in spatial generalization is to
combine our dataset with a corpus of similar built for South Africa which is linked on our GitHub
repository.

7 Conclusion

In this paper, we present DENETHOR: The DynamicEarthNET dataset for Harmonized, inter-
Operable, analysis-Ready, daily crop monitoring from space. It is based on daily, analysis-ready
Planet Fusion data in combination with Sentinel-1 and Sentinel-2 imagery. Ground truth of crop
fields and types is taken from a public registry of farmer reports. We deliberately take the test data
from a different year to ensure models that incorporate this temporal shift. Our experiments underline
that the effects of this shift can be large and reduce performance by around 12 percentage points in
accuracy.

Additionally, we point out that exploiting temporal, spatial and spectral information at scale is not a
trivial task with current methods in crop type mapping. Tests with an off-the-shelf spatial encoder in
combination with widely used temporal models fall short of simple pixel averages across a field with
the same temporal model. Further, the best deep learning models tested barely outperform a random
forest baseline of manually curated spectral features from S1 and S2 time series. Therefore, our
dataset presents a challenging task to the machine learning community that may require the design of
novel methods to push the frontiers of crop type mapping with next-generation EO data.
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DynamicEarthNet: Daily Multi-Spectral Satellite Dataset
for Semantic Change Segmentation
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Figure 1. Visualization of the DynamicEarthNet dataset. For a specific area of interest, we show two satellite observations, 2019-08-01
and 2019-08-31, as well as the corresponding monthly ground-truth annotation (top left). The complete dataset consists of daily samples
in the range from 2018-01-01 to 2019-12-31. We consider 75 separate areas of interest, spread over six continents (top right).

Abstract

Earth observation is a fundamental tool for monitoring
the evolution of land use in specific areas of interest. Ob-
serving and precisely defining change, in this context, re-
quires both time-series data and pixel-wise segmentations.
To that end, we propose the DynamicEarthNet dataset that
consists of daily, multi-spectral satellite observations of 75
selected areas of interest distributed over the globe with im-
agery from Planet Labs. These observations are paired with
pixel-wise monthly semantic segmentation labels of 7 land
use and land cover (LULC) classes. DynamicEarthNet is
the first dataset that provides this unique combination of
daily measurements and high-quality labels. In our experi-
ments, we compare several established baselines that either
utilize the daily observations as additional training data
(semi-supervised learning) or multiple observations at once
(spatio-temporal learning) as a point of reference for future
research. Finally, we propose a new evaluation metric SCS
that addresses the specific challenges associated with time-
series semantic change segmentation. The data is available
at: https://mediatum.ub.tum.de/1650201.

Making peace with nature is the defining task of the
21st century.

António Guterres, UN Secretary General

* Authors share first authorship. † Authors share senior authorship. ‡
Corresponding author: xiaoxiang.zhu@dlr.de.

1. Introduction

Society is rapidly becoming more aware of the human
footprint on the world’s climate. Overwhelming evidence
shows that climate change has both short-term and long-
term effects on almost every aspect of our lives [27]. Us-
ing simulations and global climate metrics, it is nowadays
possible to observe changes at a global scale, like the ris-
ing sea levels or changes of the gulf stream. In contrast,
precise predictions of local changes are much harder to ob-
tain. Common examples include land use by agriculture,
deforestation, flooding, wildfires, growth of urban areas,
and transportation infrastructure. It is of critical importance
to monitor such local changes since these are the factors that
ultimately exacerbate the global climate crisis.

Satellite images are a powerful tool in this context to
track local changes to the environment in specific regions.
Observing change at a local scale requires two conditions:
high frequency of satellite observations and pixel-precise
understanding of the observed surface. Existing datasets
often fail to provide these conditions. Whenever pixel-
wise annotations are provided, only static images can be
used [43] or the revisit frequency is limited to once a
year [14, 36]. Datasets with coarser annotations have ei-
ther an irregular [11] or monthly revisit frequency [38]. As
an example of land changes, in 2020, 46km2 of the rainfor-
est in Brazil were destroyed every day [29]. This suggests
that if we analyze the satellite images of that area once per
month, we potentially miss deforestation of the equivalent
of the city of Los Angeles, California. As Brazil alone has
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millions of square kilometers of forest, automatic methods
are required to detect these and other kinds of land changes.
Current pixel-precise automatic methods are predominantly
based on deep learning and thus require annotated data to
learn.

In this work, we present DynamicEarthNet, a time-series
satellite imagery dataset with daily revisits of 75 local re-
gions across the globe. The dataset comprises consistent,
occlusion-free daily observations with multi-spectral im-
agery over the span of two years (2018-2019). We further
provide annotated monthly semantic segmentation labels.
The main focus is to segment and detect changes in the
development of general land use and land cover (LULC).
Specifically, we focus on the following LULC classes: im-
pervious surfaces, water, soil, agriculture, wetlands, snow
& ice, and forest & other vegetation.

In comparison to semantic segmentation on standard
computer vision benchmarks, satellite imagery is subject to
various additional challenges. Most prominently, labeled
areas in satellite images typically have very intricate shapes
that are significantly more complex than everyday objects.
We show that well-performing methods [10, 32] on stan-
dard vision benchmarks do not necessarily transfer well to
this domain. Furthermore, common segmentation metrics
are not optimal for quantifying the performance on the task
of semantic change segmentation. We alleviate this issue
by proposing a new evaluation protocol that captures the
essence of semantic change segmentation. DynamicEarth-
Net and the proposed evaluation protocol encourage the de-
velopment of more specialized algorithms that can handle
the particular challenges of daily time-series satellite im-
agery. In summary, our contributions are as follows:

• We present a large-scale dataset of multi-spectral satel-
lite imagery with daily observations of 75 separate ar-
eas of interest around the globe.

• We provide dense, monthly annotations of 7 land use
and land cover (LULC) semantic classes.

• We propose a novel evaluation protocol that models
two central properties of semantic change segmenta-
tion: binary change and semantic segmentation.

• We evaluate multiple baseline approaches on our data
for the task of detecting semantic change. We show
how the time-series nature of our data can be leveraged
for optimal performance.

2. Related work
For our discussion of related work, we provide an

overview of publicly available satellite imagery datasets,
see also Tab. 1. Furthermore, we summarize existing work
on the tasks of semantic segmentation and change detection.

2.1. Earth observation datasets

Segmentation and detection. Semantic segmentation of
land cover classes for satellite imagery was originally pio-
neered by the ISPRS project [30, 37]. Similarly, the Deep-
Globe [15] and SpaceNet [39] challenges provide datasets
for building detection, road extraction, and land cover clas-
sification. In contrast to ours, such early works have a rela-
tively small number of areas of interest.

Subsequently, the main focus started to shift towards
large-scale aerial imagery [43, 46]. To that end, DOTA [46]
proposes to detect objects on a large collection of images
cropped from Google Earth. iSAID [43] extends this con-
cept to the task of instance segmentation. Along the same
lines, SpaceNet MVOI [44] proposes a benchmark on build-
ing detection for multi-view satellite imagery. Our bench-
mark, on the other hand, provides semantic annotations that
are dense, i.e. defined for every single pixel.

Change detection. Several works aim at predicting change
between observations of the same area of interest at differ-
ent times. Most relevant datasets focus on binary change de-
tection which is agnostic to specific types of change [3,13].
HRSCD [14] and Hi-UCD [36] propose a multi-class se-
mantic change detection datasets. In comparison to time-
series data, these benchmarks show only one observation
per year, for 2-3 years in total, rather than a full sequence.
Moreover, the diversity is limited – HRSCD [14] and Hi-
UCD [36] cover specific regions of France and Tallinn, Es-
tonia, respectively. More recently, QFabric [41] presented
a large-scale multi-temporal dataset, with polygonal anno-
tations for change regions. In contrast, our dataset contains
daily observations and pixel-wise LULC classes.

Time-series analysis. In recent times, time-series satel-
lite datasets gained increasing attention [11, 31, 38]. For
instance, Earthnet2021 [31] presents a surface forecasting
dataset based on public Sentinel-2 imagery with a revisit
rate of 5 days. Since the intended applications are quite
dissimilar to ours, no land cover annotations are provided.
fMoW [11] provides temporal satellite imagery with bound-
ing box annotations. Similarly, MUDS [38] aims at moni-
toring urbanization by tracking buildings for several areas
of interest that are annotated with polygons. Varying acqui-
sition conditions make it challenging to consistently collect
data over an extended period of time. Consequently, exist-
ing datasets often contain irregular revisit frequencies [11]
or infrequent (monthly) observation intervals [38]. In con-
trast, our DynamicEarthNet dataset provides high-quality,
consistent daily observations.

2.2. Considered tasks

Semantic segmentation. There are countless recent deep
learning methods [2, 8–10, 24, 32, 42] that address gen-
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Dataset Temporal Revisit Time # Images Sources GSD (m) Annotation Objects

SpaceNet [39] ✗ ✗ >24,586 Maxar 0.31 Polygon Buildings and Roads
DOTA [46] ✗ ✗ 2,806 Google Earth 0.15-12‡ Oriented Bbox Various
fMoW [11] ✓ irregular >1,000,000 Maxar 0.31-1.60 BBox Various
SpaceNet MVOI [44] ✗ ✗ 60,000 Maxar 0.46-1.67 Polygon Buildings
MUDS [38] ✓ monthly 2,389 Planet 4.0 Polygon Buildings
DOTA-v2.0 [16] ✗ ✗ 11,268 Google Earth 0.15-12‡ Oriented Bbox Various
DeepGlobe [15] ✗ ✗ 1,146 Maxar 0.5 Seg. Mask Various LULC
iSAID [43] ✗ ✗ 2,806 DOTA 0.15-12‡ I. Seg Mask Various
HRSCD [14] ✓ yearly 582 BD ORTHO 0.5 Seg. Mask Various LULC
Hi-UCD [36] ✓ yearly 2,586 ELB† 0.1 Seg. Mask Various LULC
DynamicEarthNet ✓ daily 54,750 PlanetFusion 3.0 Seg. Mask Various LULC

† Estonian Land Board, ‡ Google Earth gathers information from various sensors, so the resolution is diverse [44].

Table 1. An overview of public satellite datasets. For each dataset, we compare key characteristics like the revisit time, the number of
images, data source, ground sample distance (GSD), types of annotations, and annotated objects. Most closely related are DeepGlobe [15],
iSAID [43], HRSCD [14] and Hi-UCD [36] which, like ours, provide dense semantic annotations for various land cover classes. However,
they either provide no time-series data or merely yearly revisit times. Closely related datasets are highlighted in blue and yellow.

eral semantic segmentation. In comparison to most com-
mon computer vision applications, segmentation of satellite
images is subject to specific challenges, such as irregular
sizes and shapes of segmented regions. Recent approaches
show that encoder-decoder architectures [18, 23] can help
to address the foreground-background imbalance of satellite
data [22,48]. Most existing algorithms focus on segmenting
individual, static images. A few works leverage the addi-
tional information from time-series satellite images for the
case of crop-type classification [19,26,34]. We believe that
the DynamicEarthNet dataset will encourage researchers to
develop specialized algorithms that can handle the particu-
lar challenges of time-series satellite imagery.

Change detection. Change detection is an extensively
studied topic in earth observation. Classical approaches
define axiomatic, pixel-based [4–6, 20, 35] algorithms to
obtain change whereas many recent approaches are data-
driven [7, 12, 33, 47]. The development of new algorithms
is often inhibited by a lack of high-quality data and expert
annotations. Most methods focus on binary change and are
usually limited to two distinct observations in time (bitem-
poral) [4–7,20,35,47]. Moreover, datasets and metrics used
for evaluation differ widely and are often not public.

These considerations underline the necessity for a stan-
dardized benchmark with a consistent evaluation protocol.
Up to now, there are few approaches suitable for multi-
class change detection. Most of them typically consider two
snapshots, often years apart. Among these works, [25, 28]
directly predict the multi-class change map whereas, [36]
define change as the difference between two semantic maps.
We follow the latter approach in our evaluations since exist-
ing work on multi-class change detection is not primarily
designed to handle high temporal frequencies. Therefore,
we benchmark state-of-the-art semantic segmentation algo-
rithms on our dataset and compare differences in the pre-
dicted multi-class semantic masks over time.

class name % #AOIs color

impervious surface 7.1 70
agriculture 10.3 37
forest & other vegetation 44.9 71
wetlands 0.7 24
soil 28.0 75
water 8.0 58
snow & ice 1.0 2

Table 2. LULC class distribution. The distribution of LULC
classes averaged over all 24 × 75 = 1800 semantic maps in the
dataset. Additionally, we report the absolute number of AOIs with
any occurrences of a given LULC class. We visualize the colors
we use for each class throughout the paper.

3. The DynamicEarthNet dataset

We present the DynamicEarthNet dataset that contains
daily, cloud-free satellite data acquired from January 2018
to December 2019. It consists of images from 75 areas of
interest (AOIs) across the globe, as illustrated by the world
map in Fig. 1. The dataset covers a wide variety of environ-
ments with diverse types of land cover changes. For each
region, we provide a sequence of images with daily revisits.
Furthermore, we present pixel-wise semantic labels for the
first day of each month. These serve as ground-truth to de-
fine land cover changes over the span of two observed years.
In the remainder of this section, we provide details on the
imagery, semantic labels, and statistics of the dataset.

3.1. Multi-spectral imagery

The primary source of our dataset is the Fusion Mon-
itoring product1 from Planet Labs, which provides multi-

1https://www.planet.com/pulse/planet-announces-powerful-new-
products-at-planet-explore-2020/
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Figure 2. An example of a changing surface. We show four sample frames of one AOI from our dataset at different times. Two sub-
regions are magnified that highlight two types of change we encounter in practice (top row). The daily nature of our data allows us to
observe new buildings being built (green) or to track deforestation (yellow). Additionally, we can monitor the long-term effects of such
changes over the span of multiple months, e.g. the changes to the forest patch here are persistent.

spectral time-series satellite imagery. Each snapshot con-
tains four channels (RGB + near-infrared) with a ground
sample distance (GSD), i.e. pixel granularity, of 3 meters
and a resolution of 1024x1024.

Beyond the raw observational data, Planet applies a com-
bination of post-processing techniques to ensure data qual-
ity and consistency: For once, all images are processed to
remove occlusions by weather, overcast and related visual
artifacts. The data is gap-filled, which means that missing
information due to cloud coverage is filled with suitable ob-
servations from the closest available point in time. More-
over, the Fusion bands are calibrated to the Harmonized
Landsat-Sentinel (HLS)2 spectrum to make them compat-
ible with other publicly available datasets such as Landsat
8 [45] or Sentinel 2 [1, 17].

To encourage the exploration of data fusion, we provide
monthly Sentinel-2 (S2) imagery from the same 75 AOIs for
reference. The main idea of this auxiliary set of images is to
allow for comparisons with publicly available data. More-
over, the additional data potentially gives rise to interesting
multi-modal settings in future experiments. For more de-
tails, we refer the reader to our supplementary material.

3.2. Pixel-wise labels

Having described the raw satellite imagery, we now pro-
vide more details on the monthly ground-truth annotations.
They comprise a collection of pixel-wise semantic segmen-
tation labels corresponding to the first day of each month.
These labels are defined as the common LULC classes, i.e.,
impervious surfaces, agriculture, forest & other vegetation,
wetlands, soil, water, snow & ice. The resolution of each
annotation is 1024x1024 with a pixel granularity of 3 me-
ters, just like the corresponding satellite images.

2https://earthdata.nasa.gov/esds/harmonized-landsat-sentinel-2

The annotation procedure was rigorous with an emphasis
on the temporal consistency of the labels. The first image
was manually annotated for each AOI and used as a basis for
the following months. Subsequent maps are updated if there
is a perceptible change in a certain region that is evident to
the human annotator. Three quality control gates, each with
a different annotator, ensure accurate annotations, topolog-
ical correctness, and format correctness, respectively.

3.3. Dataset statistics

The DynamicEarthNet dataset contains 75 different
AOIs across the globe, each of which consists of a sequence
of 730 images covering two years from January 2018 to De-
cember 2019. We provide semantic LULC classes for the
first day of each month, 24 per sequence in total. In total,
this amounts to 54750 satellite images and 1800 ground-
truth annotations.

We illustrate the distribution of LULC classes over the
whole dataset in Tab. 2. Due to the nature of the data, oc-
currences of certain semantic classes are imbalanced with
forest & other vegetation and soil dominating less frequent
classes like wetlands. Such general ambient classes often
take up large portions of a considered region, see the bot-
tom third of the images in Fig. 2.

We split our data into train, validation, and test sets with
55, 10, and 10 AOIs, respectively. The number of distinct
classes per AOI ranges from 2 to 6. For instance, some
AOIs from the dataset contain only forest & other vegeta-
tion and soil, whereas others include impervious surfaces,
water, soil, agriculture, wetlands, and forest & other vege-
tation. No single AOI contains all 7 classes. For an optimal
balance, we ensure that the splits’ classes are distributed as
equally as possible. We refrain from providing more fine-
grained statistics on the class distribution to avoid disclos-
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ing any additional information on the (currently concealed)
test set. Since the snow & ice class occurs in only 2 cubes,
see Tab. 2, we have no such examples in the validation or
test sets. Consequently, we also do not consider this class
in our quantitative evaluations presented in Sec. 5.

3.4. Advantages over existing benchmarks

In comparison to other publicly available, annotated
satellite datasets, DynamicEarthNet has a number of cru-
cial distinguishing features, see Tab. 1. First and foremost,
it is the first to provide daily observations from a large di-
versity of AOIs. The closest work to ours in terms of revisit
rates is [38] with monthly observations. Yet, they have a
narrower focus with the main objective of tracking build-
ings to monitor urbanization. Other related change detec-
tion datasets [14, 36, 41] show merely one observation per
year, see Tab. 1. In our dataset, we provide consistent daily
observations for two years allowing the study of both short-
term and long-term change. Fig. 2 highlights the potential
of such data: We can observe the change of new buildings
being built day by day. At the same time, we can pin down
exact dates of deforestation, and successively observe long-
term effects over the span of multiple months.

4. Semantic change segmentation
One key application of our dataset is to measure how

a given local region changes over time. For the standard
task of binary change detection, we classify each pixel into
change or no-change. This definition, however, disregards
semantic information. We, therefore, generalize this clas-
sical notion to a multi-class segmentation task, which we
refer to as semantic change segmentation.

For time-series satellite data, changes are usually caused
by external forces, such as weather and climate effects or
human destruction and creation. Compared to standard vi-
sion benchmarks, they often appear gradually over time and
with a limited spatial extent. When predicting semantic
labels for a whole observed region, such rare changes be-
tween frames have a low influence on the overall segmen-
tation score. In our dataset, only 5% of all pixels change
from month to month on average. Hence, standard evalua-
tion metrics defined on the full image like the Jaccard index
(IoU) are not suitable to express how accurately semantic
classes of changed areas are predicted. We, therefore, pro-
pose a new metric to quantify the performance of methods
in semantic change segmentation of satellite images.

4.1. Problem definition

Let x ∈ RT×H×W×4 be an input time-series of satel-
lite images consisting of T frames with a spatial size of
H × W and 4 input channels (RGB + near-infrared). For
each such time-series, we further provide semantic annota-
tions y ∈ CT×H×W that assign each pixel in x to one of the

7 LULC classes C := {0, . . . , 6} defined in Sec. 3.2. Given
two consecutive frames at times t and t + 1, we can define
the binary change b ∈ {0, 1}(T−1)×H×W as a binary label-
ing of all pixels for which the ground-truth semantic label
changes:

bt,i,j :=

{
1, if yt,i,j ̸= yt−1,i,j ,

0, else.
(1)

When evaluating semantic change segmentation, both the
binary change map b̂ and the semantic map ŷ need to be
predicted. This requires methods to answer which pixels
change and what class do these pixels change to.

4.2. Evaluation protocol

There are two distinct types of errors that are common
in the context of semantic change segmentation: failing to
detect the binary change and predicting the wrong semantic
class for a changed pixel. Our goal is to design an eval-
uation protocol that captures both of these errors in a sin-
gle signal. Thus, the resulting semantic change segmen-
tation (SCS) metric consists of two components, a class-
agnostic binary change score (BC) and a semantic segmen-
tation score among changed pixels (SC).

Binary change (BC). The standard approach to measure
the quality of a predicted change map b̂ is comparing its
overlap with the ground-truth change b. This is com-
monly defined as the Jaccard index or intersection-over-
union score

BC(b, b̂) =
|{b = 1} ∩ {b̂ = 1}|
|{b = 1} ∪ {b̂ = 1}|

(2)

where we use the short hand-notation

{b = 1} := {(t, i, j) | bt,i,j = 1} (3)

for the indicator set of indices with binary change.

Semantic change (SC). The second component of our met-
ric measures semantic change accuracy. It is defined as the
segmentation score, conditioned on the set of pixels where
any change occurs in the ground-truth maps, i.e. b = 1. On
this subset of pixels, we compute the Jaccard index between
the ground-truth labels y and predicted labels ŷ (averaged
over all classes c):

SC(y, ŷ|b) = 1

|C|
∑

c∈C

∣∣{b = 1} ∩ ({y = c} ∩ {ŷ = c})
∣∣

∣∣{b = 1} ∩ ({y = c} ∪ {ŷ = c})
∣∣ .

(4)

Semantic change segmentation (SCS). The total SCS
score is the arithmetic mean of the binary change and the
semantic change:

SCS(y, ŷ) =
1

2

(
BC(b, b̂) + SC(y, ŷ|b)

)
. (5)
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In practice, we first accumulate confusion matrices of all
time-series before computing the final SCS score.

Metric properties. In the following, we summarize a few
distinguishing features of the proposed SCS metric.

i. Focus on change. In comparison to standard metrics,
like the Jaccard index, the SCS metric specifically em-
phasizes accurate change predictions.

ii. Separation of errors. It separates the problems of de-
tecting areas where change occurs (BC) and predicting
the correct semantic labels for changed areas (SC).

iii. Single output signal. Both signals contribute equally
to the final SCS score.

5. Experiments
In this section, we demonstrate the utility of our dataset

with various experiments on land cover segmentation and
semantic change segmentation. We first give an overview
of considered baseline methods in Sec. 5.1 and then present
corresponding results in Sec. 5.2 and Sec. 5.3.

5.1. Baselines

DynamicEarthNet contains daily images and dense se-
mantic annotations for the first day of each month. This
raises the question of how one can leverage additional un-
labelled examples to improve the results when training on
the labeled data. We study two separate approaches in this
work: spatio-temporal and semi-supervised semantic seg-
mentation. The former addresses the time-series nature of
our data by combining spatial information with temporal ar-
chitectures. The latter uses the annotated images (first day
of each month) as supervision while taking advantage of the
additional unlabeled samples in an unsupervised manner.

Spatio-temporal baselines. The first class of baselines we
consider are spatio-temporal methods. The main idea is to
fuse individual observations of an input time series and pro-
duce a single output prediction – the monthly semantic map.
As a backbone, we use the U-Net feature extractor [32].
Following [26, 34], we compare different temporal archi-
tectures. First, we apply a U-ConvLSTM network [26]. As
a second method, we utilize 3D convolutions that process
spatial and temporal information at once [26]. Finally, we
employ U-TAE [34] that encodes temporal features in the
latent space via self-attention [40].

Semi-supervised baselines. As an alternative to model-
ing the input images as sequences, we can interpret them
as an unordered collection of training samples. Analo-
gous to standard supervised learning, the labeled examples
are used directly as training data. To extract information
from the remaining set of unlabeled training examples, we
employ the recent state-of-the-art consistency-based semi-
supervised segmentation method by Lai et al. [21]. The
main idea is to randomly crop unlabeled images into pairs

of patches and enforce consistent outputs for the overlap of
both sub-regions. Robustness to varying contexts is crucial
for our data since the surrounding of an overlapping region
is generally an unreliable predictor for its class label. For
example, water occurs in quite different environmental con-
texts in our dataset, like forests, agriculture, or impervious
surfaces. We evaluate this method [21] with the segmenta-
tion backbone DeepLabv3+ [10].

5.2. Land cover and land use segmentation

The first task we consider is semantic segmentation of
land cover classes. Specifically, the goal is to predict one of
the LULC labels described in Sec. 3.2. We compare the per-
formance of the two classes of baseline methods discussed
in the previous section. For each setting, we evaluate the
intersection-over-union score averaged over all 6 evaluation
LULC classes (mIoU). Due to its overall scarcity, we ex-
clude the snow & ice class from the evaluations, see Sec. 3.3
for more details.

Spatio-temporal results. Results of spatio-temporal
methods are summarized in Tab. 3. As a first reference
point, we consider the purely supervised setting. Here, we
train a standard U-Net architecture only on the monthly la-
beled samples. It achieves 33.5% mIoU on the validation
and 37.6% mIoU on the test set.

We further assess whether existing spatio-temporal ar-
chitectures benefit from the time-series nature of our data.
All three considered architectures improve the performance
over the supervised baseline for weekly temporal inputs
on the validation set. U-TAE and U-ConvLSTM show the
strongest generalization performance on the test set.

On the other hand, when using daily sequences of 28-31
images, the performance drops considerably. This suggests
that generic spatio-temporal techniques are not necessarily
optimal for extracting information from daily satellite data.
The individual images of such daily time series are often
highly correlated. Consequently, when labeled data is lim-
ited, increasing the length of a sequence at some point leads
to unstable training. For our benchmark, using weekly sam-
ples is optimal for the considered baselines. We conclude
that more specialized techniques are needed to allow for ro-
bust learning on daily time-series satellite imagery.

Semi-supervised results. We report the performances of
our the baseline [21] in combination with DeepLabv3+ [10]
in Tab. 4. Similar to the spatio-temporal experiments, we
consider different temporal densities. For the purely super-
vised setting, all unlabeled images are discarded (monthly).
Additionally, we compare different semi-supervised set-
tings with 6 (weekly), 28-31 (daily) unlabelled samples per
month. Both, daily and weekly data help to improve over
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Sample per class IoU (↑) Val Test
Frequency Imp. Surface Agriculture Forest Wetlands Soil Water mIoU (↑) mIoU (↑)

U-Net [32] monthly 28.6 6.9 76.4 0.0 38.4 50.5 33.5 37.6

U-TAE [34] weekly 31.8 8.0 77.3 0.0 39.1 58.1 35.7 39.7
daily 26.3 6.5 73.7 0.0 35.7 51.2 32.2 36.1

U-ConvLSTM [26] weekly 31.4 2.2 77.7 0.0 36.1 58.6 34.3 39.1
daily 14.4 0.6 72.1 0.0 32.0 58.8 29.7 30.9

3D-Unet [26] weekly 32.4 2.1 77.4 0.0 35.3 65.5 35.5 37.2
daily 31.1 1.8 75.8 0.0 34.1 66.0 34.8 38.8

Table 3. Quantitative results of spatio-temporal methods. We compare the performance of different spatio-temporal architectures on
the task of LULC segmentation. Individual values denote the intersection-over-union score for individual classes (cols. 3-8), as well as the
averaged scores over the whole validation set (9th col.) and test set (10th col.). The monthly U-Net baseline is generally less accurate than
the considered temporal architectures.

All per class IoU (↑) Val Test
labelled? Imp. Surface Agriculture Forest Wetlands Soil Water mIoU (↑) mIoU (↑)

CAC [21]
monthly ✓ 18.1 4.8 74.7 0.0 33.9 55.9 31.2 37.9
weekly ✗ 28.0 7.2 75.7 8.3 38.9 51.0 34.9 37.9
daily ✗ 28.9 4.0 75.5 0.5 39.0 55.6 33.9 43.6

Table 4. Quantitative results of semi-supervised methods. The table shows the semantic segmentation results of using the context-aware
consistency-based semi-supervised approach [21] on our DynamicEarthNet dataset. We further present the IoU scores per class for the
validation set. ‘Monthly’ indicates that the architecture is trained in a supervised manner. Using unlabelled satellite images improves the
results over the fully supervised baseline.

SCS (↑) BC(↑) SC(↑) mIoU (↑)

m
on

t. CAC [21] 17.7 10.7 24.7 37.9
U-Net [32] 17.3 10.1 24.4 37.6

w
ee

kl
y

CAC [21] 17.8 10.1 25.4 37.9
U-TAE [34] 19.1 9.5 28.7 39.7
U-ConvLSTM [26] 19.0 10.2 27.8 39.1
3D-Unet [26] 17.6 10.2 25.0 37.2

da
ily

CAC [21] 18.5 10.3 26.7 43.6
U-TAE [34] 17.8 10.4 25.3 36.1
U-ConvLSTM [26] 15.6 7.0 24.2 30.9
3D-Unet [26] 18.8 11.5 26.1 38.8

Table 5. Quantitative results of semantic change segmentation
on our test set. This table shows semantic change segmentation
results of all methods on our DynamicEarthNet dataset.

the supervised baseline. A detailed analysis of these quanti-
tative results shows that the agriculture and wetland classes
prove to be difficult for all baselines. Agricultural areas are
often confused with forest or soil, see Fig. 3, whereas wet-
lands get confused with soil and water. This is, to a cer-
tain degree, expected due to the visual similarity of these
classes. Notably, training on daily data achieves the overall
best result. The obtained accuracy is 43.6% mIoU on the
test set, with a considerable improvement over the monthly
and weekly results of 37.9%.

5.3. Semantic change segmentation

In the following, we compare the performance of our
considered baseline methods on the metrics that we intro-
duced in Sec. 4, see Tab. 5 for results. Similar to Sec. 5.2,
we use different degrees of temporal densities with monthly,
weekly, and daily observations. As a general trend, the ad-
ditional weekly observations improve the performance over
the purely supervised, monthly baselines. For the semi-
supervised approach [21] the performance on the test set
further improves with daily samples. On the other hand, the
benefits from additional daily observations are less consis-
tent for spatio-temporal baselines. In this case, increasing
the sequence length is inherently subject to a trade-off be-
tween providing more information and decreasing the train-
ing stability. Since daily observations are highly correlated,
optimal results are achieved for a weekly sampling.

Overall, our results suggest that detecting change (BC) is
particularly challenging for our considered baselines. Most
obtained accuracies are around 10%. Considering that the
ground-truth change maps cover only 5% of all pixels on
average, there exist a high number of potential false posi-
tives. Oftentimes, change occurs between two classes that
are visually very similar, like forest & other vegetation to
soil. The results further confirm that the mIoU metric alone
is not sufficient to measure the performance of semantic
change segmentation. A high LULC segmentation score
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Figure 3. Qualitative results on validation set. Semantic maps (bottom row) of the semi-supervised baseline CAC [21] trained on
daily images. The input sequence consists of 5 images (middle row) from September to October, spanning one month. For the first and
last semantic map of the considered sequence, we show ground-truth labels (bottom right, bottom left). The three middle columns show
predictions of [21]. For each sample, we magnify a specific area to highlight the temporal transition from forest & other vegetation to
soil, marked red for ground-truth and pink for baseline predictions [21]. Notably, this development is captured with high fidelity by our
baseline [21]. On the other hand, in certain areas, it is not able to distinguish between the generic forest & vegetation class and the
ground-truth label agriculture. For the color representation of segmentation maps see Tab. 2.

(mIoU) does not guarantee optimal performance in terms of
the change segmentation score (SCS). When compared di-
rectly, the semantic change and binary change performance
are somewhat decoupled which warrants the split of our
SCS metric into binary change BC and semantic change SC.

6. Conclusion

We presented DynamicEarthNet, a novel dataset that
provides daily, multi-spectral satellite imagery for a broad
range of areas of interest. Beyond the raw imagery, it com-
prises monthly semantic annotations of 7 common LULC
classes. This unique combination of dense time-series data
and high-quality annotations distinguishes DynamicEarth-
Net from existing benchmarks, see Tab. 1, which are either
temporally sparse or do not provide comparable ground-
truth labels. We showed that this gives rise to previously
unexplored settings like semi-supervised learning, as well
as spatio-temporal methods with an unprecedented tempo-
ral resolution. We further devised a new evaluation protocol
for semantic change segmentation. It involves several met-

rics that focus on distinct, common errors in the context of
multi-class change prediction. We believe that our bench-
mark has the potential to spark the development of more
specialized techniques that can take full advantage of daily,
multi-spectral data. Finally, we highlight in several com-
pelling case-studies how high frequency satellite data can
be used to track land cover evolution, e.g. due to deforesta-
tion, and assess both its short and long-term effects.
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Abstract— Detecting changes on the ground in multitemporal
Earth observation data is one of the key problems in remote
sensing. In this article, we introduce Sibling Regression for
Optical Change detection (SiROC), an unsupervised method for
change detection (CD) in optical satellite images with medium
and high resolutions. SiROC is a spatial context-based method
that models a pixel as a linear combination of its distant neigh-
bors. It uses this model to analyze differences in the pixel and its
spatial context-based predictions in subsequent time periods for
CD. We combine this spatial context-based CD with ensembling
over mutually exclusive neighborhoods and transitioning from
pixel to object-level changes with morphological operations.
SiROC achieves competitive performance for CD with medium-
resolution Sentinel-2 and high-resolution Planetscope imagery on
four datasets. Besides accurate predictions without the need for
training, SiROC also provides a well-calibrated uncertainty of
its predictions.

Index Terms— Change detection (CD), multitemporal, optical
images, unsupervised, urban analysis.

I. INTRODUCTION

CHANGE detection (CD) is at the heart of many impactful
applications of remote sensing. Studying differences in

land cover and land use over time with remote sensing imagery
can shed light on urbanization trends [1], [2], ecosystem
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dynamics [3], surface water and sea ice trends [4], [5], and
damages through natural disasters [6]–[8]. Because of rising
spatial and temporal resolutions of Earth observation imagery,
the possibilities of multitemporal analysis have increased
significantly [9]. Combined with the open data policy of the
Copernicus program, it is, for example, possible to acquire
a Sentinel-2 image with 10-m resolution per pixel of any
region of interest on any continent every five days [10] free
of charge. Commercial providers of satellite imagery can even
offer almost daily coverage with high-resolution imagery for
large parts of the planet [11]. These trends emphasize the
increasing opportunities in monitoring Earth from space and
the relevance of CD as a field within remote sensing. Obtaining
labeled data for CD, however, is costly in terms of time and
effort, especially at scale. Therefore, a large focus of attention
in the design of CD algorithms is unsupervised methods that
do not require ground truth [12].

The applicability of unsupervised CD methods in mul-
tispectral satellite images varies depending on the spatial
resolution of input images. For very-high-resolution (VHR)
imagery with a spatial resolution up to 0.5 m, deep-learning-
based methods tend to be in general preferable because of
their elaborate capacity to model spatial context [12] although
most of the work in this area focuses on supervised meth-
ods [13]–[18]. Since, for VHR imagery, an object, such as
a building, consists of a number of pixels, modeling spatial
context is essential to provide accurate unsupervised change
segmentations. Saha et al. [12] introduce deep change vector
analysis (DCVA), a VHR CD framework that combines ideas
from image differencing with feature extraction based on pre-
trained neural networks. DCVA has also been combined with
self-supervised pretraining of the feature extractor specifically
for remote sensing images [19]. MSDRL [20] is a scale-driven
unsupervised method that uses deep feature extraction to
obtain a pseudoclassification of change superpixels. Superpix-
els with high certainty pseudolabels are then taken as input to
train a support vector machine, which eventually classifies the
uncertain superpixels. Such preclassification schemes where
pseudolabels are obtained based on another method have also
been presented in conjunction with methods for unsupervised
CD in synthetic aperture radar images [4], [21], [22], such
as PCANet [23], [24]. Gong et al. [25] introduced modeling
the difference image with a generative adversarial network
(GAN). While the deep learning methods above were primarily
designed for high-resolution imagery, some of them can be
applied to medium-resolution imagery as well. In the case of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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DCVA, there also exists a variant adjusted to the spatial and
spectral scales of Sentinel-2 [26].

For medium-resolution CD, nondeep learning methods
based and improved on change vector analysis (CVA) can still
compete. CVA takes the difference of radiometric values or
features derived from it over time [12] and applies a threshold
to this difference image. Examples of features that have been
derived from radiometric values as input for image differenc-
ing are vegetation indices [27] or tasseled cap transformation
features [28]. Otsu thresholding [29] has been shown to be
effective for thresholding the difference image [30] although
a variety of approaches exist [31]–[33]. Beyond binary CD,
the signal in the CVA difference image can also be used to
uncover the type of change [34], [35].

CVA-based methods can still be insightful especially with
medium resolution because the size of objects in these images
is typically assumed to be similar to the spatial resolution
of a pixel. However, extensions of CVA still fall short of the
deep-learning-based DCVA for unsupervised CD on the OSCD
benchmark. Still, the relative performance of traditional meth-
ods based on CVA improves with medium-resolution imagery
compared to higher resolutions. More recent versions of CVA
that can also be applied to higher resolution imagery tend to
include close spatial context of pixels to some extent. Parcel
CVA (PCVA) includes surrounding information of pixels by
independent hierarchical segmentation at several scales [36].
Robust CVA (RCVA) improves on potential coregistration
errors in the CVA framework by replacing a point in the
difference image with the difference to a neighboring pixel
if the difference to this neighbor is smaller [30]. Object
CVA (OCVA) computes histograms of object sizes in an image
and incorporates this information into a CVA framework [37].
Image differencing methods have also been successfully com-
bined with morphological operations that allow transitioning
from the pixel to the object level [38].

Although neighboring pixels are somewhat included in the
change analysis of a pixel in these extensions of CVA, the
spatial extent of incorporated information is small compared
to the effective window of sequential convolutional operations
in neural networks. Neighborhood in this context is defined not
only as the immediate neighbors to a pixel of interest but also
its larger spatial context up to a distance measure. The distant
neighborhood of a pixel may help to identify changes because
it is also affected by local trends in the image but unaffected
by the change itself. For example, consider an explosion of
a building between preimage and postimage, such as in the
Beirut dataset used in the following. Analyzing the distant
neighborhood allows to separate the actual change (destroyed
building) from local trends, such as dust and dirt, which
remains on surrounding buildings stirred by the explosion.
However, the use of distant neighborhood context has only
found limited application in CD thus far. This is particularly
surprising since applications of image differencing in other
domains, such as astronomy emphasize the importance of the
relation of a pixel to its neighborhood [39].

Wang et al. [39] present the causal pixel model (CPM) for
the study of multitemporal Kepler data that is used to spot
transiting exoplanets in front of distant stars observed by the

space telescope. The method is also more generally known as
half-sibling regression (HSR) [40] Their task is conceptually
related to a CD problem in remote sensing since it is also
centered around spotting changes in multitemporal reflection
intensities, which should be unrelated to the acquisition con-
ditions. In their case, these deviations hint toward a transient
object in front of a distant star rather than a change on the
ground, but the fundamental principle is similar. They solve
this task by modeling pixels as a function of their distant
neighbors. With this model, it is possible to obtain a prediction
for pixels in subsequent time steps based on their distant
neighbors and compare the prediction to the actual value of
the pixel. The size of the difference between predictions of
pixels and their actual values is interpreted as the strength of
the change signal.

HSR is related to the application of local binary pat-
terns [41] for CD in more traditional image recognition
problems. Bilodeau et al. [42] design a method based on
local binary similarity patterns (LBSPs) to separate the image
background from changes in multitemporal images. In their
method, a binary similarity measure is computed between a
pixel of interest and its closest neighbors within an image.
If the binary similarity pattern updates notably between
images, this is considered to be a change signal. A version
of LBSPs has also been applied to CD in remote sensing
where multitemporal images are split into overlapping blocks,
and LBSPs of these blocks are compared across time [43].
Similarly, the graph structure of image patches across time
has been used for homogenous and heterogenous CD [44].
The shared principle between LBSP and HSR is the approach
to compare a pixel to its neighborhood and inspect how this
relationship changes over time to discover potential changes.
However, HSR relies mostly on distant neighborhood informa-
tion rather than a small set of close neighbors and models this
relationship explicitly to obtain a prediction for subsequent
time periods.

One key property of HSR is the fact that it is by design com-
parably robust to registration errors and varying acquisition
conditions for a given sensor [39]. This is because variations
in the acquisition conditions can also affect distant neighbors
in an image, whereas actual changes at the pixel level should
be independent of distant context. Changing acquisition con-
ditions and registration errors, however, are two of the primary
sources of false positives (FPs) in CD [45]. Since HSR deals
comparably well with these issues, it may work especially well
for CD in remote sensing time-series data. In this article, we,
therefore, apply HSR for CD in remote sensing. When we
know from astronomy that distant spatial context can improve
resilience against varying acquisition conditions, this might be
particularly helpful in remote sensing CD.

We modify HSR in two major ways to apply it as SiROC for
CD in remote sensing. First, we design an ensemble version
of HSR based on mutually exclusive neighborhoods. Second,
we make use of morphological operations to transition from
pixel-level changes to object-level changes. SiROC is tested
for urban CD in medium-resolution images on the Onera
Satellite CD Dataset (OSCD) and high-resolution images from
the Beirut Harbor Explosion of 2020 [Beirut Harbor Explosion
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Dataset (BHED)]. Outside the urban context, we test SiROC
on the Barrax Agriculture dataset and the Lamar Alpine
dataset. Our main contributions are threefold.

1) We introduce SiROC, a robust method for unsupervised
CD in optical remote sensing that combines ideas from
HSR with ensembles over mutually exclusive neighbor-
hoods and morphological operations.

2) SiROC achieves competitive performance for medium-
and high-resolution unsupervised CDs with optical
images.

3) SiROC also returns a built-in, well-calibrated uncertainty
score with its change segmentation. The uncertainty
measure allows distinguishing the predictions of the
model by confidence, which is an important feature for
pseudolabeling or detecting distribution shift.

II. METHOD

A. Half-Sibling Regression Image Differencing

The foundation of our method is HSR, which was origi-
nally developed for time-series analysis of the Kepler data in
astronomy [39], [40], [46], [47]. Fig. 1 displays the intuition
of HSR and how it is applied to obtain signals of changing
pixels across time in three steps.

First, HSR models the pixel value of a star at time t as
a linear combination of the pixel values of many other stars
from the distant neighborhood of the pixel [see Fig. 1(a)].
The result of this first step is a linear coefficient for every
included neighborhood pixel. In the second step [see Fig. 1(b)],
predictions for the pixel at time t + 1 are obtained with HSR
based on the neighboring pixels at t + 1 and the respective
linear coefficients from step 1. If steps 1 and 2 are executed
for the whole image, there is a prediction for any pixel at
t +1 and its actual value. The predicted image at t +1 is then
subtracted from the actual image value to obtain a change
signal for every pixel [see Fig. 1(c)]. Intuitively, one expects
a change in the pixels where the predictions based on the
pixel’s relation to its neighborhood in the past divert from the
actual realization of the pixel. In the following, we elaborate on
the formal definition of the three steps described. We restrict
our description of HSR to the case of two time periods for
simplicity since this is how we apply the method to remote
sensing as well.

Step 1: Let Ix,y,t be a pixel in a single-channel, 2-D image
time series (I ) at time t with coordinates (x, y). HSR models
the pixel Ix,y,t as a linear combination of a set of distant
neighbors N from I . The neighborhood set has the points
Ii, j,t as elements such that (i, j) ∈ Nx,y

Ix,y,t =
∑

(i, j)∈Nx,y

βi, j,x,y Ii, j,t + �x,y,t (1)

where βi, j,x,y is the coefficient of neighbor Ii, j,t to model
the point of interest Ix,y,t . �x,y,t is the residual of the model.
Neighbors are chosen from the distant neighborhood because
they might be subject to the same noise as the pixel of interest
when they are selected to close to it. Wang et al. [39] require
that an eligible neighbor has a distance of at least 20 pixels
from the pixel of interest to be considered. This ensures that

the pixel of interest and the chosen neighbors have practically
no overlap in stellar illumination. The number of neighboring
pixels considered is generally large, and Wang et al. [39]
select 4000 neighboring pixels in their original proposal of
HSR to model one pixel of interest for Kepler data. Given the
high temporal density of observations for each pixel (every
30 minutes) in Wang et al. [39], this is still solvable because
the number of observed time periods exceeds the number of
neighboring pixels used.

However, in the bitemporal case, where only one period is
used for fitting, there are many potential combinations of β,
which solves (1). We derive β as the closed form solution
of the least-squares problem. It is a function of the pixel of
interest Ix,y , the respective neighbor Ii, j , and the quadratic
sum of all neighbors Ii �, j �

βi, j,x,y = Ii, j,t∑
(i �, j �)∈Nx,y

I 2
i �, j �,t

Ix,y,t . (2)

Step 2: With the coefficients obtained in step 1, Ix,y,t+1 can
be predicted as

Îx,y,t+1 =
∑

(i, j)∈Nx,y

βi, j,x,y Ii, j,t+1. (3)

With the expression for β from (2), (3) can be rearranged
to

Îx,y,t+1 =
∑

(i, j)∈Nx,y
Ii, j,t+1 Ii, j,t∑

(i, j)∈Nx,y
I 2
i, j,t

Ix,y,t ≡ gt+1 Ix,y,t (4)

where gt+1 resembles a growth rate of the sum of pixel values
in the selected neighbors from t to t + 1. In essence, the
assumption is that, if the pixel values around Ix,y,t increase
by a factor gt+1 and no changes occurred at this location,
Ix,y,t+1 should be close to Ix,y,t gt+1. We can circumvent the
explicit calculation of beta and directly obtain Îx,y,t+1 based
on (4), which is computationally efficient.

Step 3: The difference between Ix,y,t+1 and Îx,y,t+1 is taken
as the change signal for pixel Ix,y between t and t + 1

Ix,y,t+1 = Îx,y,t+1 + �x,y,t+1 . (5)

After obtaining Ix,y,t+1 for all (x, y) ∈ It+1, the residual is
given as the difference of the image matrices

�t+1 = Ît+1 − It+1. (6)

Note that this is slightly different from the standard appli-
cation of image differencing in CVA in multitemporal remote
sensing. We do not directly take the difference of the image
vectors at t and t+1. Instead, we predict how the image would
have looked like in t + 1 if the local neighborhood relations
persisted. Then, we use this predicted image as input for image
differencing with the actual image in t + 1. The extension of
HSR to images with several channels is straightforward as one
can directly sum the absolute values of � for each channel
to incorporate HSR information from all channels. Let �t+1,c

be the residual of channel c of a multispectral image with C
channels. Then, the aggregated chance signal can be computed
as

�t+1 :=
C∑

c=1

|�t+1,c|. (7)
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Fig. 1. HSR. (a) Set of neighbors is fit to a pixel of interest as a linear combination at time t . (b) At t + 1, the pixel values of the neighbors are used
together with the coefficients obtained at time t to predict the pixel of interest in t + 1. (c) Predicted pixel values are compared with the actual pixel values
at t + 1 to obtain a change signal.

Algorithm 1 SiROC
Input: It , It+1, s, n_max,e_start
Output: Binary Change Segmentation
1: e = e_start, n = e_start + s
2: Uncertainty_CM = zeros_like(It)
3: while n < n_max do
4: for (channel in channels) do
5: for (pixel in It ) do
6: Apply HSR(n, e) to get Ît+1

7: end for
8: Channel_Difference_Image = Ît+1 − It+1

9: end for
10: Diff_Image = Sum(|Channel_Difference_Images|)
11: Binary_CM = Otsu_Thresholding(Diff_Image)
12: Binary_CM_Object = Morph_Profile(Binary_CM)
13: Uncertainty_CM = Uncertainty_CM +

Binary_CM_Object
14: n = n + s
15: e = e + s
16: end while
17: Final_Segmentation = Threshold(Uncertainty_CM)

B. HSR for Earth Observation Data (SiROC)

We improve and adapt the standard HSR image differencing
model to apply it effectively for CD in remote sensing as
Sibling Regression for Optical CD (SiROC). Algorithm 1
outlines SiROC in pseudocode. In summary, there are two
major differences between SiROC and HSR image differenc-
ing. First, we redesign the notion of included and excluded
pixels in the neighborhood selection to create an ensemble
version of HSR over mutually exclusive neighborhoods. This
does not only improve performance but also allows us to
obtain an uncertainty along with the prediction. The rationale
of splitting neighborhoods by distance is to inspect trends at
different distances separately instead of pooling the trends
together. For example, two trends at different spatial scales
might offset each other when pooling them although both
may be a signal for change. Second, we combine HSR with
morphological profiles to move from pixel- to object-level

changes since changes in remote sensing typically occur at
the object level.

1) Ensembling: The starting point for SiROC is applying
HSR to It to obtain Ît+1 based on a set of neighboring pixels.
We use all pixels that have a distance of at least e but at most
n rows or columns from the pixel of interest. Graphically, this
corresponds to all points in a square with width 2n and Ix,y,t

in its center, which are not in the smaller square with width
2e around Ix,y,t . Formally, a pixel Ix� ,y�,t is included in the set
of neighbors for Ix,y,t if

e < max
{∣∣x � − x

∣∣,
∣∣y � − y

∣∣} ≤ n. (8)

With Ît+1, a channel-level difference image is obtained by
taking the difference Ît+1 − It+1. The absolute value of the
change signal is summed across the channels. We apply Otsu-
thresholding [29] to the resulting difference image that has
been successfully used for thresholding difference images in
CD before [30]. Furthermore, the evaluation of competing
methods is also based on this thresholding approach. This
allows for comparing relevant methods in a fixed setting.
Nevertheless, Otsu-thresholding is a design choice here with
a variety of alternatives that can also be used in conjunction
with SiROC, including the T-point method [48], the Rosin
method [49], or the expectation–maximization (EM) algo-
rithm [50], [51].

The result of the thresholding step is a binary segmentation
of the difference image on the pixel level. However, in remote
sensing applications, changes such as the construction of roads
or buildings tend to occur at the object level. This is why
object-based methods often tend to be superior for these
applications [52]. We rely on morphological profiles that are an
established tool to bridge the gap between pixel-level change
segmentations and the object level [53].

2) Morphological Profile: A morphological profile is the
sequential application of morphological opening and closing
to an image [53]. We employ morphological opening and
closing at one spatial filter size p. Intuitively, morphological
closing helps to fill in missed pixels in detected change
objects as changed. On the other hand, morphological
opening removes spurious FPs when there are no other
changes around them. After obtaining an object-level change
segmentation for a given neighborhood size n and exclusion



KONDMANN et al.: SPATIAL CONTEXT AWARENESS FOR UNSUPERVISED CD IN OPTICAL SATELLITE IMAGES 5614615

window e, we repeat the procedure and use new neighbors that
are further away than the current set. Both n and e increase
by the same added factor s. In the next iteration, the previous
neighborhood window becomes the exclusion window, and
a new binary segmentation based on more distant neighbors
is obtained. This procedure is repeated until a maximum
neighborhood size is reached. The number of models F is
given as F = ((n_ max −n_ min)//s) + 1. Every model in
the ensemble classifies each pixel either as change (1) or no
change (0), which can be interpreted as a voting mechanism
among models. Voting mechanisms across spatial scales [54]
or different bands [26] are a common aggregation mechanism
in CD. The number of votes per pixel ranges between 0 and F .

3) Majority Voting: The matrix of votes per pixel can be
visualized as a heatmap of agreement between different sets of
neighbors if a change occurred. This also directly transports a
measure of uncertainty embedded in SiROC. If a pixel has no
or the maximum number of votes, the agreement is high, and
the method is confident in its prediction. If the number of votes
is split, the model shows low confidence in its prediction for
this point. We threshold these votes with a predefined voting
share 0 ≤ v ≤ 1 that is required to classify a pixel as changed.
v is the sensitivity of our model toward change. The choice
of v contains a tradeoff between objectives. With a higher v,
the number of false negatives rises but FPs decline (and vice
versa). Since all models are equally weighted in the voting
process, the importance of a single neighbor is decreasing in
its distance to the pixel of interest. This is because the number
of neighbors used per model is increasing in n. The underlying
assumption is that pixels closer to the point of interest carry
more information about its potential change. This assumption
is domain-specific to Earth observation and stands in contrast
to the idea of HSR in astronomy where there is no weighting
based on distance. The application of the voting threshold is
the last step of SiROC to obtain the final change segmentation.
The voting matrix is normalized by the number of models
before the percentage threshold is applied.

To summarize, SiROC has the following hyperparameters.
1) Maximum Neighborhood Size: n_max.
2) Initial Exclusion Window: e_start.
3) Step Size of Ensemble: s.
4) Filter Size of Morphological Operations: p.
5) Voting Threshold: 0 ≤ v ≤ 1.
The initial size of the neighborhood window n_start is given

as e_start + s.

III. EXPERIMENTS AND RESULTS

Section III-A describes the datasets used to assess the per-
formance of SiROC and competing methods. The competing
methods used as a benchmark and the evaluation criteria are
described in more detail in Section III-B. The results on
OSCD, BHED, the Agriculture Dataset, and the Alpine Dataset
are presented in depth in Sections III-C–III-F, respectively.

A. Description of Datasets

1) Onera Change Detection Dataset: OSCD is a benchmark
for bitemporal urban CD based on multispectral Sentinel-2

images [55]. It contains manual annotations of binary changes
for 24 cities across the globe where 14 are used for training
and 10 for testing. The labels focus on urban changes, such
as newly constructed buildings, and natural changes, such as
sea-level rise or differences in vegetation, are not annotated.
The two images per city are selected to be cloud-free and are
generally taken about one to three years apart. While there
are 13 bands available in Sentinel-2 images, we restrict our
focus to the RGB channels here. Although SiROC is able to
handle channels outside of the visible spectrum as well, our
experiments show that the inclusion of the NIR band does not
add value in the urban applications considered here. This may
be different in vegetation monitoring where NIR bands tend
to be more insightful. Spatial bands beyond RGB and NIR
do not have a spatial resolution of 10 m and are, therefore,
excluded as well.

2) Beirut Harbor Explosion Dataset: On August 4, 2020,
a devastating explosion of large amounts of ammonium nitrate
occurred in the port of Beirut in Lebanon. It led to over
200 deaths and left more than 300 000 people homeless
because of heavy damages to buildings in the city.1 We collect
a pair of cloud-free Planetscope images with 3 m per pixel
resolution on August 1 and 5 before and after the explosion.
We combine these images with ground truth on destroyed
buildings provided by the Center for Satellite Based Crisis
Information (ZKI), German Aerospace Center.2 The building
destruction map is based on manual annotation of very-high
resolution images and field reports on the ground. Note that the
annotations contain building destruction rather than building
damage. Therefore, partial damages to buildings that withstood
the explosion are not included. With this dataset, we aim to
test the applicability of SiROC not only in medium but also in
higher resolution images in problems where fast and accurate
annotations are essential.

3) Agriculture Dataset: To test SiROC also outside the
urban domain, we include two other test datasets from
Saha et al. [12] as reference points. The first one, the Agri-
cultural dataset, is a scene with bitemporal Sentinel-2 images
from July 2015 over Barrax, Spain, with 600 × 600 pixels
in size. Between the two images is a time period of 10 days
between which agricultural field activity changed notably. The
reference map was manually annotated by Saha et al. [12].

4) Alpine Dataset: The second dataset consists of pre and
post Sentinel-2 images of a fire in an alpine region close
to Trento, Italy, in spring 2019. A variety of other seasonal
vegetation trends, such as ice and snow, complicate this
dataset. The scene has a size of 350 × 350 pixels with ground
truth annotated manually by Saha et al. [12].

B. Competing Methods and Criteria

We compare our results to a variety of state-of-the-art
unsupervised methods for optical CD in remote sensing. Since
SiROC needs no training and does not rely on pretrained
neural networks, its primary group of comparison consists of
other image differencing-based methods. This makes SiROC

1https://en.wikipedia.org/wiki/2020_Beirut_explosion
2https://activations.zki.dlr.de/en/activations/items/ACT148.html
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fast compared to deep learning methods with comparable
speed to traditional methods. We include several frameworks
that improve on classical CVA. RCVA [30] incorporates close
neighborhood information to make CVA more robust against
misregistration. PCVA [36] uses CVA of multilevel parcels to
improve on CVA. DCVA is based on deep feature extraction
with a deep neural network pretrained on imagenet [12]. While
DCVA was originally developed for high-resolution images,
it is a resolution-agnostic framework relying on deep feature
extraction from RGB channels. We also include a version of
this method that we call DCVAMR specifically adjusted for
medium-resolution, multispectral Sentinel-2 imagery [26] for
the OSCD dataset. For BHED, we include DCVA, RCVA,
and PCVA as baselines as DCVAMR is not capable of han-
dling Planetscope input channels. The most recent advance-
ment in unsupervised CD for high-resolution imagery is
Saha et al. [19] who employ self-supervised pretraining on
remote sensing images in combination with a DCVA frame-
work. We call this refined version of DCVA “SSDCVA” and
include it as the primary baseline besides general DCVA for
BHED.

In line with previous evaluations on OSCD [26], [55],
we analyze the performance of SiROC against the state-
of-the-art binary change segmentation based on specificity
and sensitivity. Specificity is defined as the number of true
positives (TPs) over the sum of TPs and FPs: specificity =
TN/(TN + FP). Sensitivity is the number of TP over the sum
of TP and false negatives: sensitivity = TP/(TP + FN). This
criterion is also known as recall. A method that is sensitive
toward changes has a high sensitivity but a low specificity
(and vice versa). A superior method should balance these
objectives and evaluate better in both criteria. To further
elaborate on the balance of change and no change class,
we also report precision = TP/(TP + FP) and F1-score =
(2 ∗ Precision ∗ Recall)/(Precision + Recall).

C. Results on OSCD

1) Parameters: We tune the parameters of SiROC on the
OSCD training set resulting in the following parameter spec-
ifications.

1) Maximum Neighborhood Size: n_max = 200.
2) Initial Exclusion Window: e_start = 0.
3) Step Size of Ensemble: s = 8.
4) Filter Size of Morphological Operations: p = 5.

The maximum neighborhood size is 200 with stepsize 8.
Contrary to the original idea of HSR in astronomy, we do not
find it to be optimal to exclude direct neighbors of the pixel
of interest from the analysis resulting in an initial exclusion
window of zero. While neighboring pixels may be subject
to the same kind of object-level change on the ground, they
still can contribute important information if their weight is
moderate. We find the best results with morphological opening
and closing with a filter size of 5. We do not tune the voting
threshold because this parameter does not influence the change
signal directly but rather how the method balances FPs and
false negatives.

TABLE I

QUANTITATIVE RESULTS’ OSCD TEST SET

2) Quantitative Results: Table I reports specificity and
sensitivity scores of SiROC and competing methods on the
OSCD test set. Scores are averaged on the city level. SiROC
with a voting threshold of v = 1/2 achieves a specificity of
88.31% with a sensitivity of 70.71% and 24.80 % precision
and 36.72% F1-score. This is a high score in all four categories
by a significant margin. The difference to DCVAMR is about
6–13 percentage points (p.p.) depending on the category.
DCVA achieves a sensitivity that is slightly below but close to
SiROC but lacks behind in specificity, sensitivity, and F1-score
by more than 10 p.p. Compared to the best results of methods
without deep-learning-based feature extraction, SiROC gains
about 12 p.p. in specificity, 7 p.p. in sensitivity, 12 p.p.
in precision, and 15 p.p. in F1 on RCVA.

To understand the origin of the performance difference to
the previous state of the art in more detail, we provide two
ablation scores of SiROC. First, we remove the morphological
operations in SiROC. While morphological profiles help to
transition to an object-level change mask, SiROC still exceeds
previous unsupervised performance without them. No MP
performance improves by 2 p.p. in specificity and 5 p.p.
in sensitivity versus DCVAMR and by 4 p.p. in specificity
and 1 p.p. in sensitivity versus DCVA. The resulting F1-score
is 3–4 p.p. higher than deep-learning-based methods and
5–10 p.p. higher than traditional methods here. To evaluate
the effectiveness of ensembling, we also provide a score for a
vanilla HSR with the same neighborhood size and no exclusion
window. The Vanilla HSR performs slightly better but in the
range of DCVA and DCVAMR with a specificity of 79.45%
and a sensitivity of 70.24%. The F1-score is about 1 p.p. lower
without ensemble voting.

Therefore, the majority voting mechanism is an effective
tool to extract a more granular signal from the general HSR
predictions. Furthermore, the use of wide spatial context
pioneered in astronomy is advantageous for CD in remote
sensing as well. In summary of Table I, SiROC sets a new
state-of-the-art unsupervised CD in medium-resolution images
on OSCD. Even without morphological filters, the method still
notably outperforms previous scores, which points to a strong
signal for change information in the original HSR method and
the effectiveness of the majority voting mechanism. Combined
with ensembling over different neighborhoods and morpholog-
ical profiles, this exceeds previous quantitative results on the
OSCD dataset.
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3) Qualitative Results: The edge of SiROC compared to
other unsupervised methods in the quality of change anno-
tations for medium-resolution imagery is also visible when
inspecting the predictions for specific scenes. Fig. 2 dis-
plays exemplary change masks for Las Vegas. For SiROC,
a threshold of v = 1/2 was used to obtain the images with a
specificity of 95.28%, a sensitivity of 78.75%, and a precision
of 58.14% for this scene. Fig. 2(a) visualizes the confidence
of SiROC in the change propensity of a pixel as a heatmap
from dark purple (0% votes) to yellow (100% votes). When
comparing this to the ground truth on the bottom right, one
can see that change confidence is strongly associated with the
occurrence of a change. Fig. 2(b) shows the binary change
map after applying the threshold to the uncertainty map.
Not only does SiROC pick up on the changed areas in the
image but it also fits the shapes of changing buildings fairly
well. The visual similarities between Fig. 2(b) and (h) are
striking, especially compared to the other segmentations of
competing methods. Also, before applying the morphological
operations, SiROC identifies the areas of interest in the image
well although the predicted mask is naturally slightly more
spurious. The morphological operations help to remove these
spurious changes, but the change signal in the predictions is
in line with the ground truth [see Fig. 2(c)]. DCVAMR is
generally able to discover the changing regions of an image but
struggles to identify the shapes of changing objects and rather
fits round blobs [see Fig. 2(d)]. DCVA tends to discover large
changes and overestimate their size, whereas smaller changes
go undetected [see Fig. 2(e)]. This might be related to the
fact that DCVA was originally designed for high-resolution
optical imagery in which building changes are larger in terms
of pixel size. This is in line with the fact that DCVAMR,
which is explicitly adjusted for Sentinel 2, tends to fit the size
of changes better even though it also struggles with change
shapes. PCVA and RCVA seem to extract building footprints
rather than building changes here, which leads to overcrowding
of the segmentation mask.

A similar picture emerges when inspecting results for Dubai
in Fig. 3, which is a slightly more complex scene since
the shapes of changes differ widely. SiROC detects changing
regions again well but seems to struggle with the shape of
changes in the upper part of the image. The newly constructed
road is identified well. Consequently, the quantitative scores on
this scene are slightly lower compared to the Las Vegas Scene
with 86.87 % specificity, 76.61% sensitivity, and 39.14%
precision. The struggles of the competing methods are similar
to the Las Vegas Scene: DCVAMR fits round shapes to any
kind of change [see Fig. 3(d)], DCVA overestimates the size
of large changes [see Fig. 3(e)], and PCVA extracts a spurious
change map that rather looks, such as building footprints [see
Fig. 3(f)]. Therefore, the quality inspection of visual results
confirms that SiROC obtains superior results on OSCD.

4) Uncertainty Estimation: To properly analyze if the con-
fidence of SiROC also corresponds to well-calibrated uncer-
tainties, we test this with calibration curves. For this, we split
pixels into subsets based on the SiROC confidence and analyze
the respective performance for a level of confidence. If the
performance of SiROC is in principle increasing with the

TABLE II

SENSITIVITY TO HYPERPARAMETERS (OSCD TRAINING SET)

TABLE III

THRESHOLDING CHOICE (OSCD TRAINING SET)

confidence, the uncertainty levels, in fact, correspond to the
certainty of the prediction that the model has. Fig. 4 plots these
confidence–performance curves for four cities in the OSCD
test set. For all four cities, we see that model precision is
nondecreasing in the confidence of the SiROC. Most of the
time, the prediction increases notably in the confidence, which
means that SiROC not only performs well for this task but also
returns well-calibrated uncertainties as part of its prediction.

5) Sensitivity to Hyperparamenters: To allow effective use
of SiROC in practice, we offer a sensitivity analysis of the
hyperparameter choice on OSCD along with recommenda-
tions for this choice in other applications. This sensitivity
analysis is executed on the training set to avoid multiple
evaluations on the test set. The results are shown in Table II.
While the performance of the method naturally varies with
the choice of hyperparameters, SiROC looks fairly robust
against its hyperparameter choices. The first row gives the
training set performance based on the selected parameters
described in this section as a comparison point. Varying
only the maximum neighborhood N_max, the number of
rows excluded e_start and the stepsize s at the selected
parameter specification influences the training performance
marginally, at most. For all three parameters, the average speci-
ficity decreases, while average sensitivity increases slightly.
These three parameters essentially navigate how to group and
prioritize neighborhoods. Excluding close context (e_start),
including more distant context (N_max), and aggregating
neighborhoods into larger groups (s), therefore, do not seem
to matter notably in practice to achieve good performance.
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Fig. 2. Qualitative Comparison OSCD—Las Vegas. This figure visualizes the number of change votes per pixel in SiROC (a) and the corresponding binary
predictions after (b) and before morphological operations (c). Competing models are visible in (d)–(g) and the ground truth in (h). SiROC predicts change
regions and shapes of the ground truth well while competing methods struggle either with identifying the shapes visible in (d) and (e) or the areas of change
in (f) and (g) for the Las Vegas Pair.

Fig. 3. Qualitative comparison OSCD—Dubai. The structure is identical to Fig. 2, but predictions and ground truth are presented for Dubai. Also, for this
scene, SiROC predicts changing areas and their shape comparably well even. In contrast, competing methods miss the shapes of changing areas, such as the
street in the lower part of the image or struggle to detect relevant regions.

The performance is slightly more sensitive toward the size
of the morphological profile (p) where average specificity
increases marginally and sensitivity drops by 9 p.p. if this is

varied leaving other parameters untouched. Similarly, when
varying all four parameters simultaneously in 75 random
draws, performance drops with a difference of about 8 p.p.
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Fig. 4. Confidence–performance plots on four cities of the OSCD dataset. On the x-axis, points in the image are sorted into buckets by SiROC confidence.
For each of these buckets, the performance is estimated separately. Since performance is generally nondecreasing in confidence, the uncertainty measure is
considered well calibrated.

in sensitivity with similar specificity. In terms of magnitude,
this performance drop is only a fraction of the difference
between SiROC and its closest competitors on the OSCD test
set. This implies that SiROC would likely outperform com-
peting methods on this dataset for a variety of hyperparameter
choices. To understand the sensitivity of the results to different
thresholding techniques, we also benchmark SiROC based
on the selected hyperparameters with EM-based threshold-
ing [50], [51] and triangle thresholding following the OpenCV
implementation.3 Results are presented in Table III. While the
results are similar, the different techniques balance the tradeoff
between FPs and false negatives in a slightly different fashion.
This may be relevant to consider for applications of SiROC
in practice where this balance plays an important role.

For potential applications of SiROC in the future, we sug-
gest using the obtained parameter combination initially. This
provides a starting point for further analysis in different
contexts. Since the performance seems to be comparably sus-
ceptible to the size of the morphological profile, this parameter
may deserve special attention during tuning. In the following,
results on the remaining three datasets are obtained with this
parameter combination, which was the result of tuning on
OSCD. Even though this may not necessarily give the best
possible performance, we aim to validate that SiROC achieves
convincing results in other applications without fine-tuning on
single scenes.

3https://docs.opencv.org/4.5.3/d7/d1b/group__imgproc__misc.html

TABLE IV

QUANTITATIVE RESULTS BEIRUT EXPLOSION

D. Results on BHED

1) Quantitative Results: Table IV displays specificity, sensi-
tivity, precision, and F1-scores on the scene. Generally, scores
on BHED are higher than on OSCD since the changes are
centered around the same area and have similar shapes. SiROC
with default parameters achieves a specificity of 92.01% and
a sensitivity of 83.38%. DCVA achieves a similar specificity
with 91.87% but falls short in terms of sensitivity by about
4 p.p. with a score of 79.85%. SSDCVA places slightly
below DCVA with a specificity of 88.25% and a sensitivity of
81.08%. SiROC beats SSDCVA by about 3 p.p. in sensitivity
and about 2 p.p. in sensitivity. PCVA and RCVA clearly fall
behind SiROC and also DCVA-based methods. F1-score and
precision results confirm the previous impressions with a gap
of 12–20 p.p. in F1 and 9–13 p.p. in precision, respectively.
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Fig. 5. Qualitative comparison Beirut explosion. This figure shows the Planetscope image pairs (a) and (b), change ground truth (c), and model predictions
(d)–(i) for the Beirut explosion scene. SiROC with main parameters (d) identifies the area of destroyed buildings around the epicenter correctly with few
FPs although the shapes are lacking some granularity. Increasing the size of morphological operations improves accuracy but tends to fit one large blob with
missing building shapes (e). Excluding morphological operations increases FPs although the main changes in the center are still identified well (f). Competing
methods struggle not only with the shape of change but also detect a number of FPs far away from the explosion (g)–(i).

When we adjust the scale of morphological operations to
10, SiROC performs significantly better, which suggests that
there may be notable tuning potential for higher resolution
inputs. Still, the baseline parameters perform well on this
scene. Therefore, SiROC demonstrates its usefulness beyond
medium-resolution images and can also be used in conjunction
with high-resolution images for CD.

The other ablation scores again point toward the most
important steps within SiROC to achieve this performance.
Without morphological profiles, the scores of SiROC drop
about 4–9 p.p. in all four categories. Still, it achieves slightly
superior precision and F1-scores but falls short to DCVA
with a difference of about 3 p.p. in specificity and similar
sensitivity. This is a notable difference to medium-resolution
imagery on OSCD where the exclusion of morphological
filters decreased the performance of SiROC, but it was still
superior to DCVA-based methods. This is not necessarily
surprising since deep-learning-based methods tend to rela-
tively improve their CD performance compared to traditional
methods with increasing spatial resolution. Without majority
voting over different neighborhoods, the Vanilla HSR version
performs better but in the range of RCVA and PCVA. Again,
it is the combination of HSR, ensembling over different
neighborhoods and transitioning to the object level with
morphological operations that all contribute significantly to
the overall performance of SiROC.

2) Qualitative Results: Fig. 5 shows visual comparisons of
the discussed methods on BHED. The first row of images
presents the preexplosion image [see Fig. 5(a)], the post
image [see Fig. 5(b)], and the ground truth [see Fig. 5(c)].
The heart of the explosion in the port can be found in the
middle of the image with almost the entirety of buildings
completely destroyed around it. Fig. 5(d) presents the binary
SiROC segmentation with baseline parameters obtained on
OSCD. While SiROC is missing some granularity in its
segmentation of destroyed building footprints, the changing
areas are well identified with few FPs outside of the port.
For a larger morphological filter size ( p), the main area is
identified more densely with better quantitative results, but
the shapes of buildings vanish [see Fig. 5(e)]. Without mor-
phological operations, the core change is still well-segmented
although the number of FPs in the outer regions of the image
increases [see Fig. 5(f)]. SSDCVA shows similar tendencies
to summarize the port area as one large change with a
number of spurious FPs [see Fig. 5(g)]. DCVA shows fewer
salt and pepper noise than SSDCVA here and generally
segments the exploded buildings similar to SiROC, however,
with a slightly more perforated shape [see Fig. 5(h)]. The
segmentation by RCVA is not really competitive here since
the maps are spurious and changes are not well identified [see
Fig. 5(i)]. Results for PCVA are similar to RCVA and, hence,
omitted.
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Fig. 6. Qualitative results agriculture dataset. Pre- (a) and post -GB (b) image with changing agricultural fields. The ground truth (c) shows high similarity
to SiROC (d) but also to DCVA (f) and RCVA (h) while PCVA (g) has some FP areas and spurious change predictions. Change segmentations without
morphological profiles (e) for SiROC still works well which is line with the quantitative results of Table V.

E. Results on Agriculture Dataset

1) Quantitative Results: Table V displays the results of
SiROC and competing methods on the agriculture scene.
SiROC is applied to the dataset with the parameters obtained
on Onera without further adjustment. Hence, the results that
we provide are a validation exercise in the different context of
nonvisible parts of the spectrum without parameter fine-tuning.

To be consistent with previous evaluations on this
dataset [12], we compare SiROC with PCVA and RCVA based
on vegetation (VEG) and near-infrared (NIR) channels of
Sentinel-2 as inputs. The score for DCVAMR is based on the
full Sentinel-2 input images as the method was deliberately
designed to incorporate all channels.

While SiROC achieves the top score in terms of specificity
and precision with 90.81% and 74.23%, respectively, it falls
short of DCVAMR on sensitivity (88.70% versus 94.26%) and
F1-score (80.85% versus 81.47%). DCVAMR seems to lean
slightly more toward the change class, whereas SiROC rather
classifies a pixel as no change in unclear cases. SiROC is
superior to PCVA and comparable to RCVA in performance
for both VEG and NIR channels as inputs.

The ablation scores underline that morphological profiles
still help although the effects are smaller than in urban
applications with an average difference in about 1–2 p.p.
in all four criteria. Furthermore, excluding the majority voting
mechanism does not hurt performance but actually improves it
slightly here. The vanilla HSR performs slightly worse but in
the range of RCVA and better than PCVA on its own. Smaller
benefits of including majority voting and morphological pro-
files could be linked to the fact that parameters for these
operations were tuned in an urban RGB context. Although
already quite effective, the accuracy of SiROC could likely be
further improved with parameter fine-tuning.

TABLE V

QUANTITATIVE RESULTS AGRICULTURE DATASET

2) Qualitative Results: Fig. 6 presents pre and post RGB
images [see Fig. 6(a) and (b)], the ground truth [see Fig. 6(c)],
and change predictions [see Fig. 6(d)–(h)]. The visual impres-
sion of change predictions confirms the quantitative results.
Predictions are fairly accurate on this scene, which suggests
a comparably easy task relative to the more complex OSCD
scenes. SiROC segments changing regions well and struggles
with the varying field shapes only in rare instances. Similarly,
the results of DCVAMR and RCVA are also fairly accurate
with a slightly higher tendency to predict the change class.
In comparison, the mask by PCVA produces some FP regions.
Overall, SiROC shows similar performance to highly effective
methods also in the agriculture domain.

F. Results on Alpine Dataset

1) Quantitative Results: Results for the Alpine dataset can
be found in Table VI. Even though SiROC reaches the highest
specificity, it does not quite pass the overall performance of
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Fig. 7. Qualitative results Alpine dataset. The area of the fire can be seen in purple in the false color composite in (a) with the reference map in (b). SiROC
(NIR) (c) and SiROC (SWIR) (e) both identify the changing area well although the shape is better approximated with NIR inputs. Without morphological
profiles SiROC picks up more FPs (d). DCVAMR shows the most convincing results here (f). RCVA is roughly comparable (h) to SiROC while PCVA falls
behind slightly (g).

DCVAMR from [12] on this dataset. Nevertheless, SiROC
ranks highly also in sensitivity, precision, and F1-score, par-
ticularly based on NIR inputs with total scores of 98.92%,
75.71%, 52.28%, and 61.85%. RCVA with NIR inputs is
comparable in performance, but SiROC is the only method
that makes effective use of SWIR inputs compared to PCVA
and RCVA.

The ablation scores underline the effectiveness of morpho-
logical transformations with about a 20 pp. drop in F1-score
compared to SiROC for both NIR and SWIR. Removing the
ensembling leads to a notable drop in F1-scores, particularly
with NIR inputs.

2) Qualitative Results: Fig. 7 plots prediction masks for
selected models for the Alpine dataset. In Fig. 7(a), the false
color composite shows the annotated area of change affected
[see Fig. 7(b)] by a fire in purple on the right. SiROC identifies
this well although it is tempted to also classify a small number
of FPs as change. While it is hard to control for seasonality in
a bitemporal setting, SiROC (NIR) [see Fig. 7(c)] still excludes
most other vegetation updates that are not the result of actual
change here. The morphological profiles help on this scene
to exclude spurious predictions [see Fig. 7(d)]. Compared to
SiROC (SWIR) [see Fig. 7(e)], SiROC (NIR) segments the
changing area slightly better although the shape is identified
more clearly by DCVAMR [see Fig. 7(f)]. PCVA (NIR) [see
Fig. 7(g)] seems to struggle slightly more with the shape of the
burned area, whereas the results of RCVA (NIR) [see Fig. 7(h)]
look similar to the results of SiROC (NIR), which is in line
with the quantitative scores of Table VI.

TABLE VI

QUANTITATIVE RESULTS ALPINE DATASET

IV. DISCUSSION

SiROC is an effective method for CD in medium- and
high-resolution optical imageries, which achieves competitive
performance on four datasets. In the following, we elaborate
on the intuition of SiROC’s performance. When contrasting
SiROC to image differencing methods, SiROC can be inter-
preted as an improvement over standard image differencing
techniques because it does not assume the same changes in the
acquisition conditions across time for the whole image. Rather,
it allows for local changes in acquisition conditions. In stan-
dard CVA or RCVA, for example, an implicit assumption
is that changes in the acquisition conditions across time
affect each pixel similarly. SiROC releases this restriction and,
instead, allows for local trends in regions of the image. If a
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pixel deviates from the local trend around it, it is likely to
undergo a change in SiROC. In RCVA or CVA, one would
compare this pixel against trends in the whole image and
not against its surrounding only. This might be unrealistic in
complex scenes where pixels values highly depend on local
trends in the surroundings. This is, for example, the case when
a new building casts a shadow on a previously illuminated
pixel. Similarly, a cloudy pixel in t + 1 that was unobstructed
in t might not necessarily be changing and is rather influenced
by the local trend of a cloud rather than general image trends
if large parts of the image are not obstructed by clouds. Hence,
SiROC allows for a more granular analysis of deviations from
trends in an image time series because, compared to previous
methods, it makes full use of multitemporal information in
close and distant neighbors. Although we compare our results
to deep-learning-based methods, our intention is rather to
augment these models than replace them, especially with high-
resolution images. SiROC provides an efficient and accurate
way to obtain change labels that could also be infused into
deep learning models. One application of SiROC could be in
self-supervised learning where pseudolabels are often obtained
based on traditional image differencing techniques, such as
CVA [56]. SiROC is not only superior in performance com-
pared to image differencing. It also comes with a built-in, well-
calibrated uncertainty of predictions. This could be especially
beneficial in self-supervised settings since it automatically
allows discriminating pseudolabels by confidence. For exam-
ple, one could train only based on pseudolabels with high
certainty and discard uncertain data points. Similarly, in some
unsupervised methods, such as MSDRL for VHR imagery,
an initial pseudoclassification is separated by confidence where
high confidence examples are used for training a classifier
that, subsequently, obtains predictions for leftover uncertain
pixels [20]. In these methods, SiROC could also be used
to obtain initial predictions and uncertainties to potentially
improve not only the initial classification but maybe also the
uncertainty categorization. The combination of deep-learning-
based methods and SiROC may hence open up new poten-
tial for CD methods. While we restrict our focus to CD
with optical images here, the framework of SiROC may be
extended for applications on other multitemporal CD problems
in remote sensing as well.

V. CONCLUSION

We present SiROC, an efficient and accurate unsupervised
method for CD in medium- and high-resolution optical images.
SiROC is inspired by HSR that is used for exoplanet search
in astronomy. It models a pixel of interest in t as a linear
combination of its neighbors and applies this model to t +1 to
obtain a prediction for the pixel based on its neighbors. The
difference of the prediction for t +1 and the actual pixel value
in t + 1 is interpreted as the change signal. If the prediction
is far from the actual value, trends in the neighboring pixels
divert from the difference in the pixel of interest over time,
which is seen as an indicator for change on the ground.

We refine and extend HSR in two major ways to apply it
to optical satellite images as SiROC. First, we iterate over

several, mutually exclusive neighborhoods and apply HSR
with all of these neighborhoods as input to obtain a distribution
of change predictions. We combine these predictions with
majority voting, which improves performance significantly
and also returns a heatmap of votes per pixel, which can be
interpreted as a well-calibrated uncertainty. Second, we use
morphological opening and closing at one spatial filter scale
to transition from pixel- to object-level predictions.

The results of SiROC are validated on four datasets. For
urban CD with medium-resolution images, we verify the
effectiveness of our method on OSCD, which contains binary
change annotations for 24 cities across the globe. SiROC
sets a new state-of-the-art unsupervised CD on OSCD, which
surpasses previous methods by 10 p.p. in terms of specificity,
2 p.p. in sensitivity, 11 p.p. in precision, and 13 p.p. in
F1-score. We further validate the performance of SiROC on
high-resolution images with a dataset on the Beirut Harbor
Explosion (BHED). Also, in this dataset, SiROC surpasses
the performance of competing methods and underlines its
abilities to segment urban change accurately at several scales.
Furthermore, we provide two validation exercises on nonurban
data with Sentinel-2 inputs. SiROC segments the effects of a
fire in the Italian Alps accurately and in the range of competing
methods. On the Agriculture dataset, SiROC falls short of
DCVAMR in overall scores but still identifies the changing
crop activity correctly.

While SiROC compares well against current deep-learning-
based unsupervised methods in CD, SiROC should rather be
seen as a complement than a substitute to these methods. Since
it provides an accurate way to predict change signals with a
built-in, well-calibrated uncertainty, it may be especially useful
in conjunction with deep-learning-based methods to generate
pseudolabels. Although we apply SiROC primarily to changes
with multispectral data, the model may be applicable to other
CD problems as well, which we plan to explore in future
research.
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SemiSiROC: Semi-Supervised Change Detection
With Optical Imagery and an Unsupervised Teacher

Model
Lukas Kondmann , Sudipan Saha , and Xiao Xiang Zhu

Abstract—Change detection is an important yet challenging
task in remote sensing. In this paper, we underline that the
combination of unsupervised and supervised methods in a semi-
supervised framework improves change detection performance.
We rely on Half-Sibling Regression for Optical Change Detection
(SiROC) as an unsupervised teacher model to generate pseudo
labels and select only the most confident pseudo labels for
pretraining different student models. Our results are robust to
three different competitive student models, two semi-supervised
pseudo label baselines, two benchmark datasets and a variety of
loss functions. While the performance gains are highest with
a limited number of labels, a notable effect of pseudo label
pretraining persists when more labeled data is used. Further,
we outline that the confidence selection of SiROC is indeed
effective and that the performance gains generalize to scenes that
were not used for pseudo label training. Through the pseudo
label pretraining, SemiSiROC allows student models to learn
more refined shapes of changes and makes them less sensitive to
differences in acquisition conditions.

Index Terms—Change Detection, semi-supervised, unsuper-
vised, optical images, multitemporal

I. INTRODUCTION

CHANGE DETECTION (CD) is the task of segmenting
changing pixels over time in multitemporal Earth ob-

servation data. In the face of a changing planet, CD is at
the core of many relevant monitoring tasks. It allows us to
study the temporal evolution of forests [1]–[3], urban areas
[4], [5], coastal and maritime regions [6], [7] and the effects
of natural disasters [8]–[12]. Change detection methods face
a number of hurdles related to the acquisition conditions
between the different times the images are collected. This
includes but is not limited to illumination conditions, clouds
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and shadows, acquisition angles and the definition of what
constitutes a change [13]. Despite these challenges, several
trends have been beneficial for the methodological progress in
change detection in recent years. First, open data policies for
example in the Copernicus program [14] increase accessibility
and availability of multitemporal Earth observation data [15].
Second, technological progress results in increasing spatial and
temporal resolution of satellite data with up to daily imagery
[16]. Third, methodological progress in image recognition,
particularly deep learning [17], has also fueled a variety of
improvements in Artificial Intelligence (AI) for Earth obser-
vation including change detection [18]–[20].

Many recent advances are in supervised learning for binary
change detection from optical imagery [21]–[29]. Following
the success of convolutional neural networks (CNNs) in a
variety of computer vision problems [17], CNNs have been
used frequently for change detection problems as well. Daudt
et al. [23] introduce a siamese change detection architecture in-
spired by UNet [30]. ESCNET is a combination of superpixel
enhancement and a deep CNN [31]. For change detection in
aerial images, Xu et al. [32] design a pseudo-siamese capsule
network.

More recently, the success of vision transformers [33],
[34] has induced increasing attention also from the remote
sensing community. For example, Bandara and Patel [21]
design ChangeFormer, a siamese transformer network for
building change detection. In a similar spirit, Chen et al. [25]
employ a self-attention based transformer method. Further,
many approaches also combine convolutional and attention-
based approaches with promising results [22], [35], [36].

However, obtaining large-scale labeled data for change de-
tection remains a challenge. Unsupervised CD methods [37]–
[41] therefore learn without labeled data to circumvent this
issue. Many methods also utilize the advances in deep learning
for unsupervised CD. For example, Saha et al. introduce Deep
Change Vector Analysis (DCVA) for high-resolution imagery
which combines ideas from classical image differencing with
a deep convolutional feature extractor [37]. DCVA has also
been further extended in combination with self-supervised pre-
training [42] and refined further for medium-resolution images
[38]. A generative approach is used in [43] to model the
difference image in an unsupervised fashion. Zhan et al. [44]
rely on an initial classification of changing superpixels with a
fully convolutional neural network. These superpixels are then
categorized by uncertainty and used to train a classifier in a
second step.
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Still, in unsupervised change detection, particularly with
lower resolution, many methods reach high performance also
without the use of deep features. SiROC [39] is inspired by
exoplanet search and compares pixels against their distant
neighborhood to identify changes in optical imagery. Further,
image differencing also called change vector analysis [45] and
its extensions [46]–[48] still play a role in practice.

Semi-supervised approaches bridge the gap between unsu-
pervised and supervised approaches. These methods try to
combine labeled data with larger amounts of unlabeled data
to support the training process. Among the first to apply
semi-supervised learning in change detection were Bovolo
et al [49]. They use a Bayesian thresholding mechanism to
set up an adequately defined binary semi-supervised support
vector machine (S³VM). Modified Self-Organizing Feature
App (SOFM) uses only a limited set of initial labels to
compute soft labels for unlabeled additional input [50]. Chen
et al [51] rely on probabilistic Gaussian Processes (GP) as
a first step with labeled and unlabeled data. The outputs of
the GP classifier are then refined with a Markov Random
Field regularizer. A Laplacian Regularized Metric Learning
mechanism is used in [52] to exploit unlabeled training data
at scale for hyperspectral image change detection. For very
high spatial resolutions, graph convolutional networks (GCNs)
are also effective for semi-supervised learning by encoding
multitemporal images as a graph [53].

One particularly effective direction in semi-supervised
learning in general image recognition is student-teacher mod-
els [54]. Typically, there is a teacher model that is trained
on labeled data and predicts additional labels for images
where ground truth is not available. Then, a student model
uses these additional labels, referred to as pseudo labels
(PL), during the training. With Earth observation data, pseudo
labels have also been shown to be effective for hyperspectral
image classification [55]. Pseudo labels are also related to
unsupervised CD approaches for small scenes which rely
on an initial difference image or change classification and
finetune this further with another unsupervised method [43],
[56], [57]. This is similar to using pseudo labels although
these approaches are purely unsupervised and are applied
only to single scenes instead of large-scale training. Li et al.
[58] use pseudo labels explicitly for change detection in SAR
images but stay in the unsupervised domain. Similarly, Gao
et al [59] train convolutional wavelet neural networks with
automatically generated labels for sea ice change detection
with SAR images.

In many student-teacher settings, the actual labels are used
at least in some capacity in the pseudo labeling. However,
this can be somewhat challenging in scenarios with limited
labels as in change detection. Additionally, applications of
methods in regions outside their training data often require
some robustness to unseen regions [60]. In this paper, we
therefore propose SemiSiROC where we use an unsupervised
method with well-calibrated uncertainties for pseudo label
training. The uncertainty score for each prediction allows us
to filter only high-quality pseudo labels for pretraining. In the
second step of the semi-supervised method, we finetune stu-
dent models with the actual labels to improve optical change

detection performance. We evaluate our results on a binary
version of the DynamicEarthNet benchmark [61] as well as
the OSCD dataset [24] and compare the effectiveness of our
strategy with five competitive change detection models as
students: ChangeFormer [21], BIT [25], DTCDSCN [29], FC-
Siam-Diff [23] and FC-Siam-Conc [23]. Although SemiSiROC
is most effective in limited label scenarios we also find that
even with a sizeable amount of 1000 labeled image pairs,
SemiSiRoc boosts performance for all tested models notably.
While student-teacher models themselves are not new in re-
mote sensing, our ingenuity lies in the components specifically
designed for change detection on large-scale datasets and
further validation on a global dataset of such scale. We have
three main contributions:

1) We present SemiSiROC, a semi-supervised change de-
tection method in optical remote sensing that combines
advanced supervised models with unsupervised pseudo
labeling.

2) Building on the confidence filtering of SiROC, we devise
a mechanism to prioritize relevant scenes during pseudo
label filtering.

3) We propose a detailed experimental setup for change
detection subject to geographic disparity, based on the
recently launched publicly available DynamicEarthNet
dataset [61]. This experimental setup will be helpful for
other researchers to pursue research in this direction. Our
experiments on this setup and the OSCD [23] benchmark
show that semisupervised learning is indeed helpful.

II. METHOD

A. SemiSiROC

Let us assume, we have two different collections of images,
D and U . D is a collection of ND bi-temporal pairs with
associated pixelwise change/unchanged label. On the other
hand, U is a collection of NU unlabeled bi-temporal pairs.
Generally NU > ND, however this is not a strict assumption.
The U and D can be acquired over different geographic
areas/continents, thus they need not be representing the same
geographic distribution. Our goal is to exploit both D and U
to learn a change detection model. Towards this, we design a
semisupervised pipeline that allows exploiting U for model
training even if labels for it are not available. We exploit
a teacher-student model where the teacher model labels the
images and selects relevant samples from U . This allows
its student to exploit the label space D ∪ U instead of D.
Therefore, we train with pseudo labels first before we go on to
real labels. This is consistent with semi-supervised literature
[62] and has the underlying assumption that the model can
immensely benefit from pseudo labels as a first step of training,
which can be subsequently refined with actual labels.

The pseudo labels for pretraining are based on SiROC
[39], an unsupervised method for optical change detection.
We average the confidence on the cube level and as a default
choice use the top 25%. Then, we train a student model
with the preselected locations and pseudo labels first before
finetuning with the actual labels. Since the teacher model
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exploits SiROC in a semi-supervised setting, we call our
approach SemiSiROC.

Algorithm 1 outlines SemiSiROC in pseudocode in more
depth. Given the unlabeled collection U , the labeled collection
D, the corresponding labels L and a supervised change detec-
tion model, the desired output is a binary change segmentation.
At first, we define a collection of confidence scores C and
pseudo labels P . Then, we loop over the elements of U and
obtain pseudo labels and confidence scores with SiROC for
each image pair. Before semi-supervised pretraining we filter
P and U to only use the scenes with the highest confidence
which is defined as UP . These scenes are used as input for
the pretraining of the CD model before training with actual
labels in the final step.

While the proposed SemiSiROC approach is similar to
many semi-supervised learning strategies [62], note that our
approach is distinct in three ways: (i) how we generate the
pseudo labels with an unsupervised CD method, (ii) how
we select the samples for student training based on a well-
calibrated uncertainty, (iii) how we exploit them for global
change detection.

Algorithm 1 : SemiSiROC
Input: U , D, L, model
Output: Binary Change Segmentation

1: C = [],P = []
2: for (u in U ) do
3: Pu, Cu = SiROC(u)
4: C.append(Cu)
5: P .append(Pu)
6: end for
7: UP = CP .top quarter(C)
8: PP = P .top quarterC)
9: model.train(UP ,PP ) {Pseudo label training}

10: model.train(D,L) {Finetuning}

B. Unsupervised teacher model

The goal of the teacher model is to assign pseudo labels
to some samples from U with reasonable confidence that they
can be used later for training the change detection (student)
model. Since U and D may not necessarily be from the
same distribution, the teacher model may use its learning
from D and bias the distribution of pseudo labels for U by
overfitting to D. This is particularly relevant in the geo context
where different locations and points in time can quickly
change the data-generating distribution [63]. We argue that
the teacher label should refrain from using the actual labels
in any form to obtain the pseudo labels. If the pseudo label
extraction process uses the actual labels, this would make them
interdependent and hamper generalization. Thus, the teacher
model should be based on unsupervised learning in this case.
Additionally, semi-supervised pretraining is more flexible with
unsupervised pseudo labels and our pretrained model can serve
as a starting point for other CD applications without the need
to retrain the teacher model on new datasets with new labels
to obtain other pseudo labels. Therefore, we propose to use an

unsupervised teacher model to incentivize more robustness to
spatial generalization in the pseudo labels. This is in contrast
to many other semi-supervised approaches with pseudo labels
which rely on teacher models which have seen at least some
of the actual labels [62].

As unsupervised teacher model, we employ SiROC [39].
While the method is highly performant, we pick it as pseudo
label source or so-called teacher model mainly because it
comes with a built-in well-calibrated confidence score ranging
from 0 (low) to 1 (high) with its prediction for each pixel. This
allows us to filter pseudo labels based on their confidence and
only train on high confidence labels. As this confidence score
is closely connected to the quality of the pseudo label, we
hypothesize that algorithms should learn better with selected
pseudo labels only. Out of NU total samples in U , N ′

U

are chosen after confidence filtering for pretraining. In the
following, we explore SiROC in more depth.

SiROC. SiROC models a pixel as a linear combination of a
set of neighboring pixels n at a certain time t in a time series.
At time t + 1, the value of the respective pixel is predicted
based on the neighbors n at t+ 1. The deviation between the
actual and the predicted pixel value is interpreted as a change
signal. If the difference is high, this is seen as an indication
of change as the pixel seems to have undergone a change
compared to its neighborhood. The comparison against the
neighborhood serves to eliminate local or image-wide trends
as sources of false positives for changes.

More formally, given a channel of a multispectral image I at
time t and t+1, the core of the predicted change segmentation
P̂ is based on the following equation:

P̂ =

{
1, if Ît+1 − It+1 > o

0, otherwise
(1)

where o is the Otsu-Threshold [64]. Ît+1 is the predicted
image at time t+1 based on half-sibling regression. To extend
this to multiple channels C, the absolute sum of the difference
between the predicted and the actual image is taken:

P̂ =

{
1, if

∑C
c=1 |̂It+1,c − It+1,c| > o

0, otherwise
(2)

For formal details on how Ît+1,c is obtained given a set
of neighbors we refer to [39]. SiROC ensembles over many
mutually exclusive neighborhoods and relies on majority vot-
ing between the models for its final prediction. This iterative
process uses mutually exclusive sets of neighboring pixels
that are increasingly more distant from the pixel of interest
itself. Relevant parameters for this process are the maximum
neighborhood size and the step size of the ensemble. The
number of ensembles is given as the maximum neighborhood
size divided by the step size. We use SiROC with its presented
defaults in [39]. The respective parameter values are:

1) Maximum neighborhood size: n max=200
2) Initial exclusion window: e start=0
3) Step size of ensemble: s=2
4) Filter Size of Morphological Operations: p=5
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One deviation is to reduce the step size of the ensemble
from 8 to 2. This results in 100 models with a maximum
neighborhood size of 200 and allows for more variation in the
uncertainty estimates.

The number of votes, as shown in [39], can be interpreted
as a well-calibrated uncertainty and is used in this work as a
confidence score. This is because the performance of SiROC
is increasing in its confidence. Therefore, we use SiROC in
combination with three supervised student models for change
detection.

C. Student model
Once the teacher model is used to select the pseudo samples

from U , ideally any machine learning based classifier model
can be used to train the student model. The training involves
two steps: 1) Training with pseudo labeled N ′

U samples from
U , obtained in Section II-B and 2) Fine-tuning with the labeled
dataset D.

To illustrate that our SemiSiROC can work with a diverse set
of classifiers, we chose several competitive supervised change
detection architectures. They are outlined in more detail as
follows:

FC-Siam-diff [23] is a fully convolutional Siamese neural
network inspired by the UNet architecture [30]. Pre and post
images are processed in two separate, parallel streams with
shared weights which are only merged after the convolutional
layers of the network. In contrast to a classic concatenation
of features, this network takes the absolute difference of
the encoding streams. This allows the model to focus on
temporal differences in the image pair which is well suited for
change detection tasks. These differences are infused as inputs
to the upsampling steps. Allowing feature differences to be
passed without further processing far into the network allows
the network to treat simple decisions without unnecessary
complexity.

FC-Siam-conc [23] is similar to FC-Siam-diff with one
major distinction. Instead of taking feature differences of the
encoding streams, the features are concatenated. This gives
the model more flexibility but nudges it less directly towards
a temporal comparison of features.

DTCDSCN [29] stands for Dual Task Constrained Deep
Siamese Convolutional Network. It is a convolutional model
which performs semantic segmentation and change detection
simultaneously. This is helpful for change detection since a
prior understanding of objects and their size from semantic
segmentation can be utilized for the change detection task.

ChangeFormer [21] is also a Siamese network with a
transformer-based encoder that reaches competitive perfor-
mance on the LEVIR-CD [65] and DSIFN-CD [22] bench-
marks. The hierarchical transformer encoder uses four trans-
former blocks in with shared weights in each branch. After ev-
ery transformer block, a difference module is taken to compare
differences at different abstraction levels. These differences are
then passed to a lightweight multi-layer perceptron decoder
which samples the features up and computes the final predicted
change map.

Bitemporal Image Transformer (BIT) [25] also relies on
self-attention rather than only deep convolutional features in a

transformer framework. It has three main elements: A siamese
semantic tokenizer, a transformer encoder and a transformer
decoder. The siamese backbone extracts convolutional features
and inputs them into the semantic tokenizer. Inspired by
advances in language processing, the tokenizer pools the image
features into a compact set of vocabulary. The compact tokens
are converted back to the pixel space and fed into a CNN
prediction head. As a CNN backbone for the feature extraction,
ResNet18 is used following the main paper.

III. EXPERIMENTAL VALIDATION

A. Data

DynamicEarthNet: We base our analysis on a modified
version of the DynamicEarthNet dataset [61]. This is because it
allows benchmarking change detection algorithms with areas
of interest (AOIs) across the globe and covers a variety of
different changes that are not specific to a certain use case such
as buildings or urban regions only. Both of these properties
make the dataset well-tailored to binary change detection in
an application-agnostic way. It contains monthly, manual land
cover annotations for two years with Planet imagery for 75
AOIs across the globe. The locations were selected to include
a wide spectrum of land cover changes across seven classes.

We pick the labels of the first and last month of each AOI
and compute a binary mask of changing land cover. This
maximizes change and also ensures a certain difference in the
scenes. The corresponding Planet Fusion images are highly
preprocessed as an analysis-ready product which includes a
variety of steps including temporal gap-filling of clouds and
shadow removal. Each scene is 1024 × 1024 pixels with 3m
resolution per pixel in size which results in an area per scene
of about 10km². To be consistent with the image size in [21],
we split each scene into 16 256 × 256 pixels RGB images.
This results in a total of 1200 pairs of pre and post images
taken 2 years apart. The class balance in the resulting dataset
is about 80% no change and 20% change.

Our baseline train, validation, and test split is visible in
Figure 1. Locations are available across the globe which
is relevant to test generalizability to unseen regions where
all continents except Antarctica are covered. Following the
DynamicEarthNet terminology, we refer to the locations also
as cubes given that the 2d images also vary in time. The cubes
do not only differ by their geography but also by the type
of change. The dataset covers locations from coastal areas,
islands, urban regions, agricultural areas, and forests. This
shows the diversity of change in practical applications which
makes this dataset challenging.

The cubes based in the continental US are used as training
(blue), the validation data is taken from central America
(green) and we test with the remaining cubes from across
the globe. This simulates label scarcity in global change
detection tasks where generalizability to unseen regions is
a key requirement. Particularly, annotated data in low and
middle-income countries are often relatively rare. However,
to validate our results against this choice we use other splits
with more training data (16, 32, 64 cubes) as an ablation study
below.
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Onera Satellite Change Detection (OSCD) [23]: As a sec-
ondary dataset, we rely on OSCD which in total contains 24
before and after pairs of Sentinel-2 images in urban areas
across the globe but we only use the 10 pairs in the test set. To
be consistent with our training efforts on DynamicEarthNet,
we only include the RGB channels and crop 256 × 256 images
from the original scenes. As OSCD image pairs are not square
and vary in size, we pad the images to the next multiple of
256 and mask the added points during evaluation of the change
prediction.

B. Training and Evaluation

Our goal is to evaluate the effectiveness of a pseudo label
pretraining step. Therefore, we compare SiROC confidence
pretraining for a variety of specifications including the above-
mentioned models but also different choices of training sets,
pseudo label sets and training losses. We train each model
until convergence with and without a pretraining step. For
this study, experiments were conducted with a single NVIDIA
Quadro P4000. We acknowledge that semi-supervised pretrain-
ing requires an additional computational effort compared to
finetuning. Pseudo label training for 50 epochs with the top
quarter of scenes by confidence takes about 15 min with the
P4000 for the FC-Siam-diff model. However, pseudo label
training has to be done only once and allows for all kinds
of change detection applications.

The following specifications are used for all experiments
to ensure comparability. We train with Adam as an optimizer
with a batch size of 32 and a starting learning rate of 0.0001
and linear weight decay. We evaluate our results based on
three popular criteria: Accuracy, mean IOU (MIOU) and mean
F1 Score. Formally, in terms of false positives (FP), true
positives (TP), false negatives (FN), and true negatives (TN)
these criteria have the following definitions:

Accuracy = (TP + TN)/(TP + TN + FN + FP ) (3)

Accuracy is simply asking how often is our prediction correct
relative to the total number of predictions.

MIOU = (IOU1 + IOU0)/2 (4)

with IOU = TP/(TP + FP + FN). In comparison to
accuracy, the IOU criterion eliminates TN from the picture
per class. Similarly,

MF1 = (F11 + F10)/2 (5)

with F1 balancing precision and recall. F1 = (2 ∗
precision∗recall)/(precision+recall). Precision is defined
as TP/(TP + FP ) and recall as TP/(TP + FN). Every
model is run for five different seeds and reported scores are
therefore a mean with the respective standard deviation in
brackets.

C. DynamicEarthNet Results

Table I outlines the main results of our paper. Overall, we
test pseudo label pretraining with SiROC with four different
competitive models. Each pair of rows for one model compares

the scores with and without pretraining on the confident
pseudo labels (PL). All specifications are run five times with
different seeds to increase the robustness of the result against
an unrepresentative seed. Pseudo label training is done with a
focal loss (FL) and training with the real labels with the split
of Figure 1 and a MIOU loss with only the top 25% of cubes
based on average SiROC confidence per cube.

At first, FC-Siam-diff with pseudo label pretraining reaches
an overall accuracy of 0.7812 with a MIOU score of 0.4854
and a Mean F1 Score of 0.6029. This makes it the best model
in the Table overall according to all three criteria and notably
better than its counterpart without pretraining. FC-Siam-diff
without SiROC pretraining is about 15 percentage points (p.p.)
lower in accuracy, 7 p.p. lower in MIOU and about 3 p.p. lower
in terms of mean F1 score. Further, standard deviations of
performance are visibly lower with confidence-filtered pseudo
label pretraining for FC-Siam-diff. FC-Siam-Conc does not
seem competitive here in comparison with a fairly low ac-
curacy of around 62% with pseudolabels and 56% without
them. It seems that without the explicit feature difference the
model is not incentivized to pay enough attention to temporal
differences for the final change segmentation. Therefore, it
has trouble to distinguish changes from non-changes. This is
improved by the use of pseudo labels but the issue remains
large in comparison to FC-Siam-diff.

Similarly, the scores of ChangeFormer improve and stabilize
notably by an even larger margin although the baseline per-
formance is comparably bad. The general effectiveness is also
confirmed when looking at BIT and DTCDSCN although the
margins seem slightly lower. Given that DTCDSCN and par-
ticularly FC-Siam-conc seem weaker convolutional baselines
then FC-Siam-diff, we focus on the latter, ChangeFormer and
BIT for the remainder of the paper for the sake of brevity. As
an additional baseline, the performance of SiROC on the test
set is given as a reference point.

Generally, SiROC places decently on the dataset given that
it is an unsupervised method and often even outscores the su-
pervised baselines with few labels. The information contained
in the pseudo labels and the capacity of the methods combine
effectively in our semi-supervised strategy. The respective
scores are consistently substantially higher than in the SiROC
baseline with the pseudo labels.

Figure 2 visualizes model predictions for eight image pairs
of the models in Table I. On top are the pre (2a) and post
image (2b) samples together with the ground truth (2c) from
left to right. Large forest changes are for example visible in
the image on the left or in middle. Notably, the illumination
conditions between the pre and post images differ slightly
which is often a challenge in change detection problems [37].
The first comparison is for FC-Siam-Diff with training on
pseudo labels in 2d and the corresponding version without
it in 2e. 2d was the best performing model quantitatively in
Table I which is confirmed by the visual inspection of the
predictions.

The location and the shape of large changes are segmented
well with limited mistakes. While the model does miss some
smaller changes on the right, regions in the middle are
segmented well. In comparison to 2e without pseudo labels,
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Fig. 1. Spatial Train/Validation/Test split used as a default. The limited amount of training data simulates real-world scenarios where training data is scarce
and mainly from specific regions.

TABLE I
QUANTITATIVE RESULTS DYNAMICEARTHNET GROUPED BY PSEUDO LABEL USE

Model PL Loss PL Loss Accuracy MIOU MF1

FC-Siam-diff [23] ✓ FL MIOU 0.7812 (+-0.0104) 0.4854 (+-0.0037) 0.6029 (+-0.0018)
FC-Siam-diff [23] MIOU 0.6359 (+-0.0405) 0.419 (+-0.0288) 0.5706 (+-0.0244)
FC-Siam-conc [23] ✓ FL MIOU 0.6174 (+-0.0306) 0.3862 (+-0.0146) 0.5288 (+-0.0109)
FC-Siam-conc [23] MIOU 0.5592 (+-0.0892) 0.3481 (+-0.0366) 0.4942 (+-0.0156)
ChangeFormer [21] ✓ FL MIOU 0.736 (+-0.0448) 0.4586 (+-0.0185) 0.584 (+-0.0101)
ChangeFormer [21] MIOU 0.4848 (+-0.0923) 0.305 (+-0.0627) 0.4545 (+-0.0644)
DTCDSCN [29] ✓ FL MIOU 0.7208 (+-0.0286) 0.4602 (+-0.0099) 0.5935 (+-0.002)
DTCDSCN [29] MIOU 0.6844 (+-0.0393) 0.441 (+-0.0236) 0.5815 (+-0.0206)
BIT [25] ✓ FL MIOU 0.7303 (+-0.0158) 0.4598 (+-0.0086) 0.5887 (+-0.0058)
BIT [25] MIOU 0.6242 (+-0.0418) 0.4074 (+-0.0227) 0.5587 (+-0.0151)

SiROC [39] 0.6946 0.4408 0.5769

the results are visibly better in 2d. The plain FC-Siam-Diff is
thrown off by different shades of green which results in false
positives in the middle and on the right. The pseudo label
version helps to reduce these false positives due to acquisition
conditions and further seems to improve not only the location
but also the shapes of segmented changes.

As also visible in Table I, the segmentation performance
of ChangeFormer and BIT is generally worse in comparison
to FC-Siam-Diff. SiROC pseudo labels brought the biggest
improvement for ChangeFormer in Table I which is also
visible in 2f and 2g. The no pseudo label version predicts
change for virtually all grassland regions since it interprets the
change in illumination as change. It is therefore too sensitive
to the change class and struggles to extract meaningful change.
This improves visibly with the pseudo label training. For
example, the shapes in the middle are fit notably better.

Similarly, the pseudo labels bring improvement with BIT as
shapes get more refined and there are fewer false positives on
the right.

The impressions of Figure 2 are generally confirmed when
inspecting predictions for a more complex urban scene in
Figure 3. Again, the upper panels for each method show pre

and post images as well as the ground truth. For all three
models, the upper prediction with pseudo label pretraining
shows more refined shapes. This becomes particularly visible
for ChangeFormer (3f, 3g) and BIT (3h, 3i) where the predic-
tions without pseudo labels are visibly more blurry and overall
worse. The difference is smaller for FC-Siam-diff but the no
pseudo label version 3i predicts a number of false positives
that are predicted correctly with pseudo labels 3d particularly
on the left and center-right. On the other hand, both models
miss key changes in this complex scene where the no pseudo
label variant seems keener on classifying something as a
change. Overall, the qualitative inspection of scenes confirms
our finding that confidence-filtered pseudo labels help increase
change detection performance.

Table I shows that pseudo label training is effective in
addition to supervised use of labels. Table II outlines what
happens when other pseudo labels based on CVA or DCVA
are used as semi-supervised baselines. The training set-up is
identical to Table I and the scores for SiROC PL are the same.
What varies is the source of the pseudo labels in the pretraining
step listed in the second column. FC-Siam-Diff with SiROC
pseudo labels reaches high scores in accuracy and MIOU.
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(a) Pre Images

(b) Post Images

(c) Ground Truth

(d) FC-Siam-diff PL

(e) FC-Siam-diff No PL

(f) ChangeFormer PL

(g) ChangeFormer No PL

(h) BIT PL

(i) BIT No PL

Fig. 2. Qualitative results of 8 sample image pairs with ground truth and respective model predictions with and without pseudo labels. In general, the pseudo
labels seem to help the models reduce false positives based on illumination differences. Examples of this are deforestation in the middle and on the right.
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(a) Pre Images

(b) Post Images

(c) Ground Truth

(d) FC-Siam-diff PL

(e) FC-Siam-diff No PL

(f) ChangeFormer PL

(g) ChangeFormer No PL

(h) BIT PL

(i) BIT No PL

Fig. 3. Qualitative results of 8 sample image pairs with ground truth and respective model predictions with and without pseudo labels here for a complex
urban scene.
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TABLE II
QUANTITATIVE RESULTS DYNAMICEARTHNET WITH DIFFERENT PSEUDO LABELS

Model PL Loss PL Loss Accuracy MIOU MF1

FC-Siam-diff [23] SiROC FL MIOU 0.7812 (+-0.0104) 0.4854 (+-0.0037) 0.6029 (+-0.0018)
FC-Siam-diff [23] CVA FL MIOU 0.7599 (+-0.0124) 0.4853 (+-0.0072) 0.6121 (+-0.0048)
FC-Siam-diff [23] DCVA FL MIOU 0.7553 (+-0.0077) 0.4838 (+-0.0015) 0.6121 (+-0.002)
ChangeFormer [21] SiROC FL MIOU 0.736 (+-0.0448) 0.4586 (+-0.0185) 0.584 (+-0.0101)
ChangeFormer [21] CVA FL MIOU 0.6589 (+-0.0414) 0.4232 (+-0.0254) 0.5666 (+-0.0196)
ChangeFormer [21] DCVA FL MIOU 0.678 (+-0.0264) 0.4423 (+-0.0193) 0.5864 (+-0.0166)
BIT [25] SiROC FL MIOU 0.7303 (+-0.0158) 0.4598 (+-0.0086) 0.5887 (+-0.0058)
BIT [25] CVA FL MIOU 0.6886 (+-0.0091) 0.4437 (+-0.006) 0.5839 (+-0.0049)
BIT [25] DCVA FL MIOU 0.7004 (+-0.0117) 0.4543 (+-0.006) 0.594 (+-0.0038)

Accuracy is 2-3 p.p. higher compared to other pseudo labels
which is significant but the MIOU edge is rather small. For
MF1 it seems that CVA and DCVA pseudo labels, although
lacking behind in accuracy, reach a slightly more balanced
classification with 61.21% MF1 each. For ChangeFormer and
BIT the scores are again lower on average. Compared to CVA,
the Change Former SiROC combination scores visibly better
across all three categories (+ 8 p.p. accuracy,+ 3 p.p. MIOU, +
2 p.p. MF1). ChangeFormer with SiROC pseudo labels notably
exceeds accuracy and MIOU compared to its DCVA baseline
and obtains a similar MF1 score. The picture for BIT is similar
with higher accuracy and MIOU and slightly better (CVA) or
marginally worse (DCVA) F1 scores. Overall, SiROC pseudo
labels perform visibly better in accuracy and MIOU where the
edge is particularly apparent for ChangeFormer and BIT.

D. DynamicEarthNet Ablation Studies

Amount of training data. One may be concerned that the
edge of our approach is limited by the small number of training
cubes with real labels. Therefore, we iteratively add more
training cubes to explore differences in the edge depending on
this parameter. Table III presents these scores on a harmonized
test set for this Table. As we use up to 64 cubes for training
and aim to keep the scores comparable, we use the respective
test set for all specifications in this Table. All pseudo label
specifications are again pretrained with the top 25% of cubes
in confidence. We use all available training cubes with FC-
Siam-diff and Change Former in the upper panel. Despite
the increasing amount of training data, FC-Siam-diff remains
better than ChangeFormer by a significant margin. In both
specifications, SemiSiroc exceeds the no pseudo label baseline
again visibly.

In the lower panel, we compare FC-Siam-diff against ver-
sions with fewer training data (25% and 50% of the above
training set). Interestingly, the performance of SemiSiROC
increases only marginally with additional real training data.
This may indicate that a large part of potential gains through
additional training data could already have been exploited by
the pseudo labels. Conversely, the gap between PL and no PL
gets smaller with 16 training cubes. Then, performance from
16 to 32 cubes drops slightly which is unexpected. One reason
could be that the additional training cubes are somewhat more
unrepresentative of the remaining cubes on the other side of the
globe compared to the previous cubes. The highest scores with

and without pseudo labels are achieved with the maximum
number of training cubes of 64 which is about 85% of our
dataset with over 1000 image pairs where the rest is used
for testing and validation. Still, the pseudo label specification
remains better than its baseline with a sizeable gap. Overall,
the main takeaway remains unaffected. With both a few and a
larger amount of labels, SemiSiroc is an effective strategy for
change detection on this dataset.

Varying the finetuning loss. However, the edge of our strat-
egy may be specific to the loss combination used. Therefore,
we test the robustness of our results with other losses at
the finetuning step in Table IV for ChangeFormer, BIT and
FC-Siam-diff. We do not vary the pseudo label loss here
as this would leave the baselines without SiROC pretraining
unaffected. In total, there are six specifications per model given
three loss combinations each. The MIOU scores are identical
to Table I.

The choice of the finetuning loss leaves SemiSiROC largely
unaffected with minor differences in scores. It is marginally
better in accuracy and MIOU compared to the MIOU loss and
slightly lower in terms of Mean F1. The focal loss baseline
with FC-Siam-diff is slightly stronger than with MIOU but
still lacks behind the comparable SemiSiROC specification by
about 9 p.p. in accuracy, 4 p.p. in MIOU and 2 p.p. in Mean
F1.

Expectedly, training with a cross-entropy (CE) loss pushes
the FC-Siam-diff baseline to almost exclusively predict the
majority no change class. This results in an accuracy high
score of almost 0.80 which even marginally surpasses the
respective SemiSiROC score although with a higher standard
deviation. However, the corresponding Mean F1 score which
is comparably sensitive to large discrepancies in predictive
performance across the classes falls behind by almost 7 p.p.
to the SemiSiROC CE score.

For the ChangeFormer model, the observations of the MIOU
finetuning seem to be confirmed. Similar to FC-Siam-diff, CE
training leads to the prediction of mostly no change. The FL
results are somewhat better than the MIOU results but still
comparably bad. Overall, Table IV confirms the impression of
the effectiveness of our semi-supervised strategy.

At last, the results for the BIT model mirror the above
results. Pseudo labeling is highly effective across all categories
with an FL or MIOU loss. With CE the model again tends
to overfit largely to the no-change class which is why the



ACCEPTED FOR THE IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 10

TABLE III
ABLATION STUDY: VARYING THE TRAINING SET SIZE

Model PL # Training Cubes Loss Accuracy MIOU MF1

FC-Siam-diff [23] ✓ 64 MIOU 0.9227 (+-0.0038) 0.5376 (+-0.0012) 0.6127 (+-0.0028)
FC-Siam-diff [23] 64 MIOU 0.8538 (+-0.0076) 0.4865 (+-0.0055) 0.5685 (+-0.0048)
ChangeFormer [21] ✓ 64 MIOU 0.813 (+-0.0113) 0.4613 (+-0.0098) 0.5494 (+-0.0102)
ChangeFormer [21] 64 MIOU 0.7792 (+-0.0277) 0.4528 (+-0.0239) 0.5516 (+-0.0449)

FC-Siam-diff [23] ✓ 32 MIOU 0.9159 (+-0.0115) 0.5324 (+-0.0094) 0.6082 (+-0.0088)
FC-Siam-diff [23] 32 MIOU 0.8215 (+-0.0715) 0.4764 (+-0.031) 0.5681 (+-0.0328)
FC-Siam-diff [23] ✓ 16 MIOU 0.9162 (+-0.0127) 0.5338 (+-0.007) 0.6101 (+-0.0047)
FC-Siam-diff [23] 16 MIOU 0.8488 (+-0.0205) 0.4851 (+-0.0107) 0.569 (+-0.0074)

TABLE IV
ABLATION STUDY: ROBUSTNESS TO FINETUNING LOSS

Model PL Loss PL Loss Accuracy MIOU MF1

FC-Siam-diff [23] ✓ FL FL 0.787 (+-0.0088) 0.4858 (+-0.0021) 0.6008 (+-0.0051)
FC-Siam-diff [23] FL 0.693 (+-0.0657) 0.4426 (+-0.0246) 0.5798 (+-0.0163)
FC-Siam-diff [23] ✓ FL MIOU 0.7812 (+-0.0104) 0.4854 (+-0.0037) 0.6029 (+-0.0018)
FC-Siam-diff [23] MIOU 0.6359 (+-0.0405) 0.419 (+-0.0288) 0.5706 (+-0.0244)
FC-Siam-diff [23] ✓ FL CE 0.7945 (+-0.0088) 0.4868 (+-0.0043) 0.5987 (+-0.0096)
FC-Siam-diff [23] CE 0.7988 (+-0.0233) 0.4466 (+-0.0219) 0.5304 (+-0.0483)
ChangeFormer [21] ✓ FL FL 0.6762 (+-0.0538) 0.4355 (+-0.034) 0.5769 (+-0.027)
ChangeFormer [21] FL 0.5644 (+-0.0164) 0.3548 (+-0.0085) 0.5036 (+-0.0088)
ChangeFormer [21] ✓ FL MIOU 0.736 (+-0.0448) 0.4586 (+-0.0185) 0.584 (+-0.0101)
ChangeFormer [21] MIOU 0.4848 (+-0.0923) 0.305 (+-0.0627) 0.4545 (+-0.0644)
ChangeFormer [21] ✓ FL CE 0.8068 (+-0.0122) 0.4399 (+-0.0158) 0.5155 (+-0.0321)
ChangeFormer [21] CE 0.7735 (+-0.0471) 0.4237 (+-0.0088) 0.5067 (+-0.0178)
BIT [25] ✓ FL FL 0.7133 (+-0.0203) 0.4531 (+-0.0088) 0.5864 (+-0.0066)
BIT [25] FL 0.6673 (+-0.0774) 0.412 (+-0.0318) 0.5447 (+-0.0222)
BIT [25] ✓ FL MIOU 0.7303 (+-0.0158) 0.4598 (+-0.0086) 0.5887 (+-0.0058)
BIT [25] MIOU 0.6242 (+-0.0418) 0.4074 (+-0.0227) 0.5587 (+-0.0151)
BIT [25] ✓ FL CE 0.7593 (+-0.0145) 0.4639 (+-0.0027) 0.581 (+-0.0098)
BIT [25] CE 0.7876 (+-0.0256) 0.4236 (+-0.0055) 0.4984 (+-0.0139)

SiROC 0.6946 0.4408 0.5769

accuracies are higher. Even though the no PL version with
CE loss reaches the highest accuracy among BIT models, the
results are visibly unbalanced. While the PL version lacks
behind 3 p.p. in accuracy, it makes more balanced choices
with more than 8 p.p. more MF1.

Results on unseen geographic areas. Note that for the two
previous Tables, we did not restrict the pseudo labels to be
outside of the test set. While during training no model sees
any actual labels from the test set, one could argue that the
images of the test set may be advantageous for our strategy.

To ensure that our strategy is effective also on cubes that
were also not part of the pseudo label training, we split the
former test set in two where we use the western half from
the perspective of Figure 1 for pseudo label training and the
eastern half for testing with the FC-Siam-diff as the most
effective model overall. The respective scores are reported in
Table V and can not be directly compared to the scores of
previous Tables anymore because of the difference in the test
cubes. Still, the pseudo label step remains better in comparison
by a wide margin that seems even bigger than in previous
comparisons. The gap is substantial at 15 p.p. in accuracy and
7 p.p. in MIOU.

Pseudo label filtering. Another ablation study concerns the
effectiveness of the pseudo label filtering. Since labels are

limited, the preselection discards additional information which
may be useful in training. Therefore, we mix up the cube
selection with a random selection and the lowest 25% in
confidence. The respective results are reported in Table VI.
The top 25% cubes score best in terms of accuracy and
MIOU and fall just short of the random selection in terms
of MF1. Still, with a difference of almost 3 p.p. with similar
MIOU and F1 values, it seems that the confidence prefiltering
indeed extracts meaningful pseudo labels which result in more
effective learning. Additionally, we notice decreasing marginal
returns of adding a higher fraction of pseudo labels in our
case. Using the top half or even all cubes with their respective
pseudo labels results in similar performance than only using
the top quarter. Therefore, we choose the threshold of 25%
for more efficient training. Even though SiROC pseudo labels
improve performance already without filtering, the confidence
selection further pushes change detection performance.

E. OSCD results

To further investigate the transferability and generizability
of the proposed approach, we evaluate SemiSiROC also on
OSCD [23] which is a widely-used binary change detection
benchmark based on Sentinel-2 with a focus on urban regions.
The results of our experiments are presented in Table VII.
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TABLE V
ABLATION STUDY: PL TRAINING NOT ON TEST IMAGES WITH SIAMUNET

Model PL Loss PL Loss Accuracy MIOU MF1

FC-Siam-diff [23] ✓ FL MIOU 0.7541 (+-0.0115) 0.4621 (+-0.004) 0.581 (+-0.0017)
FC-Siam-diff [23] MIOU 0.5965 (+-0.0419) 0.3902 (+-0.0286) 0.5448 (+-0.0246)

TABLE VI
ABLATION STUDY: DIFFERENT CONFIDENCE SPLITS

Model PL Split Loss PL Loss Accuracy MIOU MF1

FC-Siam-diff [23] Top 25% FL MIOU 0.7812 (+-0.0104) 0.4854 (+-0.0037) 0.6029 (+-0.0018)
FC-Siam-diff [23] Random 25% FL MIOU 0.7541 (+-0.0113) 0.4801 (+-0.002) 0.6074 (+-0.003)
FC-Siam-diff [23] Bottom 25% FL MIOU 0.7576 (+-0.0093) 0.4767 (+-0.005) 0.6009 (+-0.0075)
FC-Siam-diff [23] Top 50% FL MIOU 0.7794 (+-0.0067) 0.4839 (+-0.004) 0.6016 (+-0.0031)
FC-Siam-diff [23] All FL MIOU 0.787 (+-0.0055) 0.4824 (+-0.0043) 0.5958 (+-0.0054)

TABLE VII
QUANTITATIVE RESULTS OSCD TEST SET TRAINED ON DYNAMICEARTHNET AND GROUPED BY PSEUDO LABEL USE. THESE ARE THE MODELS OF

TABLE I APPLIED TO THE OSCD TEST SET WITHOUT RETRAINING.

Model PL Loss PL Loss Accuracy MIOU MF1

FC-Siam-diff [23] ✓ FL MIOU 0.9575 (+-0.0096) 0.5547 (+-0.0185) 0.6206 (+-0.0252)
FC-Siam-diff [23] MIOU 0.8083 (+-0.1035) 0.4927 (+-0.0892) 0.5966 (+-0.082)
ChangeFormer [21] ✓ FL MIOU 0.8592 (+-0.0692) 0.5145 (+-0.0457) 0.6085 (+-0.0356)
ChangeFormer [21] MIOU 0.384 (+-0.2976) 0.2139 (+-0.1703) 0.2984 (+-0.1892)
BIT [25] ✓ FL MIOU 0.9248 (+-0.0154) 0.5585 (+-0.0115) 0.6422 (+-0.012)
BIT [25] MIOU 0.7273 (+-0.059) 0.4082 (+-0.0321) 0.5066 (+-0.0238)

The models used are identical to the ones in Table I. We
merely apply them to the OSCD test set instead of the Dy-
namicEarthNet test set directly to analyze the transferability of
models. Similar to Table I, we test a variation with additional
pseudo label pretraining and without it for each model. At
first, FC-Siam-diff [23] remains a strong model and achieves
an average accuracy of above 95% with a MIOU of 55.47%
and a MF1 score of 62.06% across the five runs. There is
a notable difference across all three scoring criteria between
the pseudo label and the no pseudo label version. Most signifi-
cantly, accuracy drops about 15 p.p. without DynamicEarthNet
based pseudo label pretraining. This is the case even though
both models were trained with real DynamicEarthNet labels.
Interestingly, the accuracies are in the range (94-96%) of FC-
Siam models in [23] based on supervised training on OSCD
whereas our approach does not use OSCD labels at all. The
contrast to no pseudo labels gets even larger for ChangeFormer
although some of the ChangerFormer models seem to tilt
towards predicting mostly change on this dataset which results
in unstable average performance. Even when excluding these
runs, however, the maximum performance of ChangeFormer
on the OSCD test set is 74.13% accuracy, 41.86% MIOU
and 51.71% which is substantially below the average with
pseudo labels. Third, BIT model pseudo labels is arguably the
best model here since it is only slightly inferior to FC-Siam-
diff in accuracy but achieves high scores in MIOU and MF1
with 55.85% and 64.22% respectively. Again, the difference
to no pseudo labels is large across all categories. Overall, the

OSCD results confirm the previous impression that pseudo
label pretraining with SemiSiROC can be highly effective in
optical CD applications.

IV. DISCUSSION

Comparing teacher and students The previous section out-
lines the effectiveness of SiROC as an unsupervised teacher
model for change detection with limited labels. This is because
it is an effective method and can prioritize pseudo labels based
on a well-calibrated confidence. The mechanism for these
improvements seems to be higher robustness to false positives
because of acquisition conditions and more refined shapes of
changes.

Since SiROC models analyze how much a pixel changes
in comparison to its neighborhood, it seems intuitive that it
would guide a student model towards higher robustness to false
positives. Consider the example of Figure 2. Grassland seems
much greener in the post images but since this affects virtually
all pixels in the grassland neighborhood of a pixel, SiROC
would not necessarily view this as change. This is something
the student models seem to pick up on without modeling this
explicitly. Another property of SemiSiROC seems to be more
refined change shapes which is also a strength of the initial
SiROC model [39]. This may incentivize the student model
to learn more about likely shapes and spatial dependencies of
changes.

Relative weakness of transformer models Second, we notice
that throughout our results the two transformer models seem
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to perform worse compared to the siamese UNet. This results
in large gains through pseudo label pretraining and underlines
the effectiveness of our strategy. There are several possible
explanations for this relative weakness. A likely candidate is
model size and label availability. ChangeFormer, in particular,
is a large model which makes it data hungry and its success on
other datasets such as Levir-CD in [21] may be related to the
fact that more labels are available there. This seems plausible
for Levir-CD which was about 10x more labeled pixels than
the binary DynamicEarthNet we use here.

However, DSIFN only has 25% more labeled pixels than
our dataset. Therefore, another reason could be that both
of these methods have been tested in the context of urban
change detection only with a focus on buildings. Maybe
the different kinds of change applications across the globe
within DynamicEarthNet pose a challenge to these models
and the smaller siamese model adjusts to this more quickly.
Nevertheless, the SemiSiROC framework shows effectiveness
for all the methods we tested here and shows promise for
change detection applications with optical data in practice.
Our model pre-trained with pseudo labels converges faster
during fine-tuning (i.e., training with actual labels). Thus, our
proposed method reduces the time requirement of the training
phase with actual samples.

V. CONCLUSION

Monitoring changes of the Earth’s surface over time with
satellite imagery is an integral part of remote sensing. In
this paper, we combine unsupervised and supervised tech-
niques in a semi-supervised framework. This framework,
called SemiSiROC, relies on pretraining a student model with
pseudo labels that we filter by confidence. This enables the
student model to learn from additional, meaningful high-
confidence examples in a pretraining step before finetuning
with actual labels. We evaluate SemiSiROC with three differ-
ent supervised backbones: FC-Siam-Diff, ChangeFormer, and
BIT. We evaluate the models with and without filtered pseudo
label pretraining on a binary version of the DynamicEarthNet
benchmark that is based on Planet Fusion imagery with 3m
resolution. We pick only the cubes with the 25% highest
confidence scores during pretraining. For all three models,
we find a notable boost in performance for our baseline
specification in Table I with 8 cubes which corresponds to
124 training scene pairs with real labels. Additionally, we
outline that SemiSiROC remains competitive in the eye of
semi-supervised student-teacher baselines based on DCVA and
CVA pseudo labels.

Further, we evaluate the SemiSiROC models on scenes not
seen during pseudo label training which results in similar
performance gains. This ensures that the learned features are
not specific to scenes close to the pseudo labels. Even with 64
training cubes with over 1000 labeled pairs, SemiSiROC is ef-
fective compared to its non-pseudo label baseline where gains
are still large. Additional evaluations on the OSCD benchmark
confirm the effectiveness of our SemiSiROC strategy also on
an urban CD dataset based on Sentinel-2. Qualitative inspec-
tions of the predictions shed light on what the teacher model

seems to teach its students: Compared to its no pseudo label
counterparts, the SemiSiROC models predict more refined
shapes and seem to be less sensitive to false positives.

Our results point towards several potentially promising fu-
ture research directions. At first, our work could be applied to
related tasks such as multi-class change detection or different
input sensors. Second, more experiments are necessary to
understand the role of teacher models in spatial generalization
generally and particularly in change detection.
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