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Abstract17

A promising method for improving the representation of clouds in climate mod-18

els, and hence climate projections, is to develop machine learning-based parameteriza-19

tions using output from global storm-resolving models. While neural networks can achieve20

state-of-the-art performance within their training distribution, they can make unreliable21

predictions outside of it. Additionally, they often require post-hoc tools for interpreta-22

tion. To avoid these limitations, we combine symbolic regression, sequential feature se-23

lection, and physical constraints in a hierarchical modeling framework. This framework24

allows us to discover new equations diagnosing cloud cover from coarse-grained variables25

of global storm-resolving model simulations. These analytical equations are interpretable26

by construction and easily transferable to other grids or climate models. Our best equa-27

tion balances performance and complexity, achieving a performance comparable to that28

of neural networks (R2 = 0.94) while remaining simple (with only 11 trainable param-29

eters). It reproduces cloud cover distributions more accurately than the Xu-Randall scheme30

across all cloud regimes (Hellinger distances < 0.09), and matches neural networks in31

condensate-rich regimes. When applied and fine-tuned to the ERA5 reanalysis, the equa-32

tion exhibits superior transferability to new data compared to all other optimal cloud33

cover schemes. Our findings demonstrate the effectiveness of symbolic regression in dis-34

covering interpretable, physically-consistent, and nonlinear equations to parameterize cloud35

cover.36

Plain Language Summary37

In climate models, cloud cover is usually expressed as a function of coarse, pixe-38

lated variables. Traditionally, this functional relationship is derived from physical assump-39

tions. In contrast, machine learning approaches, such as neural networks, sacrifice in-40

terpretability for performance. In our approach, we use high-resolution climate model41

output to learn a hierarchy of cloud cover schemes from data. To bridge the gap between42

simple statistical methods and machine learning algorithms, we employ a symbolic re-43

gression method. Unlike classical regression, which requires providing a set of basis func-44

tions from which the equation is composed of, symbolic regression only requires math-45

ematical operators (such as +, ×) that it learns to combine. By using a genetic algorithm,46

inspired by the process of natural selection, we discover an interpretable, nonlinear equa-47

tion for cloud cover. This equation is simple, performs well, satisfies physical principles,48

and outperforms other algorithms when applied to new observationally-informed data.49

1 Introduction50

Due to computational constraints, climate models used to make future projections51

spanning multiple decades typically have horizontal resolutions of 50–100 km (Eyring et52

al., 2021). The coarse resolution necessitates the parameterization of many subgrid-scale53

processes (e.g., radiation, microphysics), which have a significant effect on model fore-54

casts (Stensrud, 2009). Climate models, such as the state-of-the-art ICOsahedral Non-55

hydrostatic (ICON) model, exhibit long-standing systematic biases, especially related56

to cloud parameterizations (Crueger et al., 2018; Giorgetta et al., 2018). A fundamen-57

tal component of the cloud parameterization package in ICON is its cloud cover scheme,58

which, in its current form, diagnoses fractional cloud cover from large-scale variables in59

every grid cell (Giorgetta et al., 2018; Mauritsen et al., 2019). As cloud cover is directly60

used in the radiation (Pincus & Stevens, 2013) and cloud microphysics (Lohmann & Roeck-61

ner, 1996) parameterizations of ICON, its estimate directly influences the energy bal-62

ance and the statistics of water vapor, cloud ice, and cloud water. The current cloud cover63

scheme in ICON, based on Sundqvist et al. (1989), nevertheless makes some crude em-64

pirical assumptions, such as a near-exclusive emphasis on relative humidity (see Grundner65

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

et al. (2022) for further discussion). These assumptions may impede the search for a pa-66

rameterization that faithfully captures the available data.67

With the extended availability of high-fidelity data and increasingly sophisticated68

machine learning (ML) methods, ML algorithms have been developed for the parame-69

terization of clouds and convection (e.g., Brenowitz and Bretherton (2018); Gentine et70

al. (2018); Krasnopolsky et al. (2013); O’Gorman and Dwyer (2018); see reviews by Beucler71

et al. (2022) and Gentine et al. (2021)). High-resolution atmospheric simulations on storm-72

resolving scales (horizontal resolutions of a few kilometers) resolve deep convective pro-73

cesses explicitly (Weisman et al., 1997), and provide useful training data with an improved74

physical representation of clouds and convection (Hohenegger et al., 2020; Stevens et al.,75

2020). There are only few approaches that learn parameterizations directly from obser-76

vations (e.g., McCandless et al. (2022)), as these are challenged by the sparsity and noise77

of observations (Rasp et al., 2018; Trenberth et al., 2009). Therefore, a two-step process78

might be required, in which the statistical model structure is first learned on high-resolution79

modeled data before its parameters are fine-tuned on observations (transfer learning),80

leveraging the advantage of the consistency of the modeled data for the initial training81

stage before having to deal with noisier observational data.82

Neural networks and random forests have been routinely used for ML-based pa-83

rameterizations. Unlike traditional regression approaches, they are not limited to a par-84

ticular functional form provided by combining a set of basis functions. They are usually85

fast at inference time and can be trained with very little domain knowledge. However,86

this versatility comes at the cost of interpretability as explainable artificial intelligence87

(XAI) methods still face major challenges (Kumar et al., 2020; Molnar et al., 2021). Given88

this limitation, we ask: Can we create data-driven cloud cover schemes that are inter-89

pretable by construction without renouncing the high data fidelity of neural networks?90

Here, we use a hierarchical modeling approach to systematically derive and eval-91

uate a family of cloud cover (interpreted as the cloud area fraction) schemes, ranging from92

traditional physical (but semi-empirical) schemes and simple regression models to neu-93

ral networks. We evaluate them according to their Pareto optimality (i.e., whether they94

are the best performing model for their complexity). To bridge the gap between simple95

equations and high-performance neural networks, we apply equation discovery in a data-96

driven manner using state-of-the-art symbolic regression methods. In symbolic regres-97

sion, as opposed to regular regression, the user first specifies a set of mathematical op-98

erators instead of a set of basis functions. For instance, including division as a mathe-99

matical operator may introduce rational nonlinearities, whose ubiquity and importance100

have been illustrated, e.g., in Kaheman et al. (2020). Based on these operators, the sym-101

bolic regression library creates a random initial population of equations (Schmidt & Lip-102

son, 2009). Inspired by the process of natural selection in the theory of evolution, sym-103

bolic regression is usually implemented as a genetic algorithm that iteratively applies ge-104

netically motivated operations (selection, crossover, mutation) to the set of candidate105

equations. At each step, the equations are ranked based on their performance and sim-106

plicity, so that the top equations can be selected to be included in the next population107

(Smits & Kotanchek, 2005). Advantages of training/discovering analytical models in-108

stead of neural networks include an immediate view of model content (e.g., whether phys-109

ical constraints are satisfied) and the ability to analyze the model structure directly us-110

ing powerful mathematical tools (e.g., perturbation theory, numerical stability analysis).111

Additionally, analytical models are straightforward to communicate to the broader sci-112

entific community, to implement numerically, and fast to execute given the existence of113

optimized implementations of well-known functions.114

To our knowledge, Zanna and Bolton (2020) marks the first usage of automated,115

data-driven equation discovery for climate applications. Training on highly idealized data,116

they used a sparse regression technique called relevance vector machine to find an an-117

alytical model that parameterizes ocean eddies. In sparse regression, the user defines a118
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library of terms, and the algorithm determines a linear combination of those terms that119

best matches the data while including as few terms as possible (Brunton et al., 2016; Rudy120

et al., 2017; Zhang & Lin, 2018; Champion et al., 2019). In a follow-up paper, Ross et121

al. (2023) employed symbolic regression to discover an improved equation, again trained122

on idealized data, that performs similarly well as neural networks across various met-123

rics and has greater generalization capability. Nonetheless, they had to assume that the124

equation was linear in terms of its free/trainable parameters and additively separable125

as their method included an iterative approach to select suitable terms. For the selec-126

tion of terms, they took a human-in-the-loop approach rather than solely relying on the127

genetic algorithm. Additionally, the final discovered equation relied on high-order spa-128

tial derivatives, which may not be feasible to compute in a climate model. To prevent129

this issue, we only permit features we can either access or easily derive in the climate130

model.131

Guiding questions for this study include: Using symbolic regression, can we auto-132

matically discover a physically consistent equation for cloud cover whose performance133

is competitive with that of neural networks? Given that modern symbolic regression li-134

braries can handle higher computational overhead, we want to relax prior assumptions135

of linearity or separability of the equation. Then, what can we learn about the cloud cover136

parameterization problem by sequentially selecting performance-maximizing features in137

different predictive models? Finally, how much better do simple models generalize and/or138

transfer to more realistic data sets?139

We first introduce the data sets used for training, validation and testing (Sec 2),140

the diverse data-driven models used in this study (Sec 3), and evaluation metrics (Sec 4),141

before studying the feature rankings, performances and complexities of the different mod-142

els (Sec 5.1). We investigate their ability to reproduce cloud cover distributions (Sec 5.2),143

transfer to higher resolutions (Sec 5.3), and adapt to the ERA5 reanalysis (Sec 5.4). We144

conclude with an analysis of the best analytical model we found using symbolic regres-145

sion (Sec 6).146

2 Data147

In this section, we introduce the two data sets used to train and benchmark our148

cloud cover schemes: We first use storm-resolving ICON simulations to train high-fidelity149

models (Sec 2.1), before testing these models’ transferability to the ERA5 meteorolog-150

ical reanalysis, which is more directly informed by observations (Sec 2.2).151

2.1 Global Storm-Resolving Model Simulations (DYAMOND)152

As the source for our training data, we use output from global storm-resolving ICON153

simulations performed as part of the DYnamics of the Atmospheric general circulation154

Modeled On Non-hydrostatic Domains (DYAMOND) project. The project’s first phase155

(‘DYAMOND Summer’) included a simulation starting from August 1, 2016 (Stevens156

et al., 2019), while the second phase (‘DYAMOND Winter’) was initialized on January157

20, 2020 (Duras et al., 2021). In both phases, the ICON model simulated 40 days, pro-158

viding three-hourly output on a grid with a horizontal resolution of 2.47 km.159

Following the methodology of Grundner et al. (2022), we coarse-grain the DYA-160

MOND data to an ICON grid with a typical climate model horizontal grid resolution of161

≈ 80 km. Vertically, we coarse-grain the data from 58 to 27 layers below an altitude of162

21 km, which is the maximum altitude with clouds in the data set. For cloud cover, we163

first estimate the vertically maximal cloud cover values in each low-resolution grid cell164

before horizontally coarse-graining the resulting field. For all other variables, we take a165

three-dimensional integral over the high-resolution grid cells overlapping a given low-resolution166

grid cell. For details, we refer the reader to Appendix A of Grundner et al. (2022). Due167
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to the sequential processing of some parameterization schemes in the ICON model, condensate-168

free clouds can occur in the simulation output. To instead ensure consistency between169

cloud cover and the other model variables, we follow Giorgetta et al. (2022) and man-170

ually set the cloud cover in the high-resolution grid cells to 100% when the cloud con-171

densate mixing ratio exceeds 10−6 kg/kg and to 0% otherwise.172

We remove the first ten days of ‘DYAMOND Summer’ and ‘DYAMOND Winter’173

as spin-up, and discard columns that contain NaNs (3.15% of all columns). From the re-174

mainder, we keep a random subset of 28.5% of the data, while removing predominantly175

cloud-free cells to mitigate a class imbalance in the output (‘undersampling’ step). We176

then split the data into a training and a validation set, the latter of which is used for early177

stopping. To avoid high correlations between the training and validation sets, we divide178

the data set into six temporally connected parts. We choose the union of the second (≈179

Aug 21–Sept 1, 2016) and the fifth (≈Feb 9–Feb 19, 2020) part to create our validation180

set. For all models except the traditional schemes, we additionally normalize models’ fea-181

tures (or ‘inputs’) so that they have zero mean and unit variance on the training set.182

We define a set of 24 features F that the models (discussed in Sec 3) can choose

from. For clarity, we decompose F into three subsets: F def
= F1 ∪ F2 ∪ F3. The first

subset, F1
def
= {U, qv, qc, qi, T, p,RH} groups the horizontal wind speed U [m/s] and ther-

modynamic variables known to influence cloud cover, namely specific humidity qv [kg/kg],
cloud water and ice mixing ratios qc [kg/kg] and qi [kg/kg], temperature T [K], pressure
p [Pa] , and relative humidity RH with respect to water, approximated as:

RH ≈ 0.00263
p

1Pa
qv exp

[
17.67(273.15K− T )

T − 29.65K

]
. (1)

The second subset F2 contains the first and second vertical derivatives of all features in183

F1. These derivatives are computed by fitting splines to every vertical profile of a given184

variable and differentiating the spline at the grid level heights to obtain derivatives on185

the irregular vertical grid. Finally, the third subset F3
def
= {z, land, ps} includes geo-186

metric height z [m] and the only two-dimensional variables, i.e., land fraction and sur-187

face pressure ps [Pa].188

In Grundner et al. (2022) we found it sufficient to diagnose cloud cover using in-189

formation from the close vertical neighborhood of a grid cell. By utilizing vertical deriva-190

tives to incorporate this information, we ensure the applicability of our cloud cover schemes191

to any vertical grid. Since our feature set F contains all features appearing in our three192

baseline ‘traditional’ parameterizations (see Sec 3.1), we deem it comprehensive enough193

for the scope of our study.194

2.2 Meteorological Reanalysis (ERA5)195

To test the transferability of our cloud cover schemes to observational data, we also196

use the ERA5 meteorological reanalysis (Hersbach et al., 2018). We sample the first day197

of each quarter in 1979–2021 at a three-hourly resolution. The days from 2000–2006 are198

taken from ERA5.1, which uses an improved representation of the global-mean temper-199

atures in the upper troposphere and stratosphere. Depending on the ERA5 variable, they200

are either stored on an N320 reduced Gaussian (e.g., for cloud cover) or a T639 spec-201

tral (e.g., for temperature) grid. Using the CDO package (Schulzweida, 2019), we first202

remap all relevant variables to a regular Gaussian grid, and then to the unstructured ICON203

grid described in Sec 2.1. Vertically, we coarse-grain from approximately 90 to 27 lay-204

ers.205

The univariate distributions of important features such as cloud water and ice do206

not match between the (coarse-grained) DYAMOND and (processed) ERA5 data. The207

maximal cloud ice values that are attained in the ERA5 data set are twice as large as208
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Figure 1. A comparison of the univariate distributions of four variables from the coarse-

grained DYAMOND and ERA5 data sets. The y-axes are scaled logarithmically to visualize the

distributions’ tails. While cloud ice is often larger in our processed ERA5 data set, cloud water

tends to be smaller than in the DYAMOND data. The distributions of temperature and relative

humidity are comparable.

in the DYAMOND data. We illustrate this in Fig 1, next to a comparison of the distri-209

butions of cloud water, relative humidity and temperature. Due to differences in the dis-210

tributions of cloud ice, cloud water and relative humidity, we consider our processed ERA5211

data a challenging data set to generalize to.212

3 Data-Driven Modeling213

We now introduce a family of data-driven cloud cover schemes. We adopt a hier-214

archical modeling approach and start with models that are interpretable by construc-215

tion, i.e., linear models, polynomials, and traditional schemes. As a second step, we mostly216

focus on performance and therefore train deep neural networks (NNs) on the DYAMOND217

data. To bridge the gap between the best-performing and most interpretable models, we218

use symbolic regression to discover analytical cloud cover schemes from data. These schemes219

are complex enough to include relevant nonlinearities while remaining interpretable.220
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3.1 Existing Schemes221

We first introduce three traditional diagnostic schemes for cloud cover and train
them using the BFGS (Nocedal & Wright, 1999) and Nelder-Mead (Gao & Han, 2012)
unconstrained optimizers (which outperform grid search methods in our case), each time
choosing the model that minimizes the mean squared error (MSE) on the validation set.
Before doing so, we multiply the output of each of the three schemes by 100 to obtain
percent cloud cover values. The first is the Sundqvist scheme (Sundqvist et al., 1989),
which is currently implemented in the ICON climate model (Giorgetta et al., 2018). The
Sundqvist scheme expresses cloud cover as a monotonically increasing function of rel-
ative humidity. It assumes that cloud cover can only exist if relative humidity exceeds
a critical relative humidity threshold RH0, which itself is a function of the fraction be-
tween surface pressure and pressure: If

RH > RH0
def
= RH0,top + (RH0,surf − RH0,top) exp(1− (ps/p)

n
), (2)

then the Sundqvist cloud cover is given by

CSundqvist
def
= 1−

√
min{RH,RHsat} − RHsat

RH0 − RHsat
. (3)

The Sundqvist scheme has four tunable parameters {RH0,surf ,RH0,top,RHsat, n}. As prop-222

erly representing marine stratocumulus clouds in the Sundqvist scheme might require223

a different treatment (see e.g., Mauritsen et al. (2019)), we allow these parameters to dif-224

fer between land and sea, which we separate using a land fraction threshold of 0.5.225

The second scheme is a simplified version of the Xu-Randall scheme (Xu & Ran-
dall, 1996), which was found to outperform the Sundqvist scheme on CloudSat data (Wang
et al., 2023). It additionally depends on cloud water and ice, ensuring that cloud cover
is 0 in condensate-free grid cells. It can be formulated as

CXu−Randall
def
= min{RHβ(1− exp(−α(qc + qi))), 1}. (4)

The Xu-Randall scheme has only two tuning parameters: {α, β}.226

The third scheme was introduced in Teixeira (2001) for subtropical boundary layer
clouds. Teixeira arrived at a diagnostic relationship for cloud cover by equating a cloud
production term from detrainment and a cloud erosion term from turbulent mixing with
the environment. We can express the Teixeira scheme as

CTeixeira
def
=

Dqc

2qs(1− R̂H)K

−1 +

√
1 +

4qs(1− R̂H)K

Dqc

 , (5)

where R̂H
def
= min{RH, 1− 10−9} bounds relative humidity to 1− 10−9 to ensure rea-227

sonable asymptotics, qs = qs(T, p) is the saturation specific humidity (Lohmann et al.,228

2016), and {D,K} are the detrainment rate and the erosion coefficient, which are the229

two tuning parameters of the Texeira scheme.230

Besides those three traditional schemes, we additionally train the three neural net-231

works (cell-, neighborhood-, and column-based NNs) from Grundner et al. (2022) on the232

DYAMOND data. These three NNs receive their inputs either from the same grid cell,233

the vertical neighborhood of the grid cell, or the entire grid column. Thus, they differ234

in the amount of vertical locality that is assumed for cloud cover parameterization. As235

the ‘undersampling step’ has to be done at a cell-based level, we omit it when pre-processing236

the training data for the column-based NN. Nevertheless, the column-based NN is eval-237

uated on the same validation set as all other models.238

Now that we have introduced three semi-empirical cloud cover schemes, which can239

be used as baselines, we are ready to derive a hierarchy of data-driven cloud cover schemes.240
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3.2 Developing Parsimonious Models via Sequential Feature Selection241

Our goal is to develop parameterizations for cloud cover that are not only perfor-242

mant, but also simple and interpretable. Providing many, possibly correlated features243

to a model may needlessly increase its complexity and allow the model to learn spuri-244

ous links between its inputs and outputs (Nowack et al., 2020), impeding both interpretabil-245

ity (Molnar, 2020) and generalizability (Brunton et al., 2016). Therefore, we instead seek246

parsimonious models. As our feature selection algorithm we use (forward) sequential fea-247

ture selection (SFS).248

3.2.1 Sequential Feature Selection249

SFS starts without any features and carefully selects and adds features to a given
type of model (e.g., a second-order polynomial) in a sequential manner. At each itera-
tion, SFS selects the feature that optimizes the model’s performance on a computation-
ally feasible subset of the training set, which is sufficiently large to ensure robustness (see
also Sec 2.1). More specifically; let F contain all potential features of a model (type) M .
Let us further assume that the SFS approach has already chosen n features Pn ⊆ F
at a given iteration (note that P0 := ∅). In the next iteration, the SFS method adds
another feature Pn+1 = Pn∪{f̂}, such that f̂ ∈ F \Pn maximizes the model’s perfor-
mance as measured by the R2-value. Thus, the SFS method tests whether

R2(MPn∪{f̂}) ≥ R2(MPn∪{ĝ})

indeed holds on the training subset for all features ĝ ∈ F\Pn. With the SFS approach,250

we discourage the choice of correlated features and enforce sparsity by selecting a con-251

trolled number of features that already lead to the desired performance. However, if two252

highly correlated features are both valuable predictors (as will be the case with RH and253

∂zRH), the SFS NN would pick them nonetheless. Another benefit is that by studying254

the order of selected variables, optionally with the corresponding performance gains, we255

can gather intuition and physical knowledge about the task at hand. On the way, we will256

obtain an approximation of the best-performing set of features for a given number of fea-257

tures. There is however no guarantee of it truly being the best-performing feature set258

due to the greedy nature of the feature selection algorithm, which decreases its compu-259

tational cost. Due to the high cost, we could only verify that the models would pick the260

same first two features (or four features in the case of the linear model) using a non-greedy261

selector. However, we found that for some random data subsets the second-order poly-262

nomial temporarily outperforms the third-order polynomial due to the earlier pick of a263

third-order feature that decreased the score later on.264

3.2.2 Linear Models and Polynomials265

We allow first-order (i.e., linear models), second-order, and third-order polynomi-
als. For each of these model types, we run SFS using the SequentialFeatureSelector of
scikit-learn (Pedregosa et al., 2011). In the case of linear models, the pool of features
F1 to choose from is precisely F (see Sec 2.1). For second-order polynomials, F2 also in-
cludes second-degree monomials of the features in F , i.e.,

F2 = {xy |x, y ∈ F} ∪ F .

Analogously we also consider third-degree monomials

F3 = {xyz |x, y, z ∈ F} ∪ F2

in the case of third-order polynomials. Thus, the set of possible terms grows from 25 to
325 for the second-order and would grow to 2925 for the third-order polynomials. How-
ever, to circumvent memory issues for the third-order polynomials, we restrict the pool
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of possible features to combinations of the ten most important features. The choice of
these ten features is informed by the SFS NNs (Sec 3.2.3), which are able to select in-
formative features for nonlinear models. In addition to these ten features, we also incor-
porate air pressure to later classify samples into physically interpretable cloud regimes.
To be specific, this implies that

F3 = {xyz |x, y, z ∈ {1,RH, qi, qc, T, ∂zRH, ∂zzp, ∂zp, ∂zzRH, ∂zT, ps, p}}.

By considering combinations of only eleven features, we reduce the total amount of pos-266

sible terms from 2925 to 364. After obtaining sequences of selected features for each of267

the three model types, we fit sequences of models with up to ten features each using or-268

dinary least squares linear regression.269

3.2.3 Neural Networks270

We train a sequence of SFS NNs with up to ten features using the “mlxtend” Python271

package (Raschka, 2018). As in the case of the linear models, the pool of possible fea-272

tures is F . We additionally train an NN with all 24 features in F for comparison pur-273

poses. As our regression task is similar in nature (including the vertical locality assump-274

tions it makes for the features), we use the “Q3 NN” model architecture from Grundner275

et al. (2022) for all SFS NNs. “Q3 NN”’s architecture has three hidden layers with 64276

units each; it uses batch normalization and its loss function includes L1 and L2-regularization277

terms following hyperparameter optimization. After deriving the sequence of ten features278

on small training data subsets (see Sec 5.1.1) we train the final SFS NNs on the entire279

training data set, always limiting the number of training epochs to 25 and making use280

of early stopping. Without the greedy assumption of the SFS approach we would already281

need to test more than 2000 NNs for three features.282

Due to the flexibility of NNs, when combining SFS with NNs, we obtain a sequence283

of features that is not bound to a particular model structure. In Sec 3.2.2 and 3.3, we284

therefore reuse the SFS NN feature rankings for other nonlinear models to restrict their285

set of possible features. The combination of SFS with NNs also yields a tentative up-286

per bound on the accuracy one can achieve with N features: If we assume that i) SFS287

provides the best set of features for a given number of features N ; and ii) the NNs are288

able to outperform all other models given their features, one would not be able to out-289

perform the SFS NNs with the same number of features. Even though the assumptions290

are only met approximately, we still receive helpful upper bounds on the performance291

of any model with N features.292

3.3 Symbolic Regression Fits293

To improve upon the analytical models of Sec 3.1 and 3.2.2 without compromis-294

ing interpretability, we use recently-developed symbolic regression packages. We choose295

the PySR (Cranmer, 2020) and the default GP-GOMEA (Virgolin et al., 2021) libraries,296

which are both based on genetic programming. GP-GOMEA is one of the best symbolic297

regression libraries according to SRBench, a symbolic regression benchmarking project298

that compared 14 contemporary symbolic regression methods (La Cava et al., 2021). PySR299

is a very flexible, efficient, well-documented, and well-maintained library. In PySR, we300

choose a large number of potential operators to enable a wide range of functions (see Ap-301

pendix C for details). We also tried AIFeynman and found that its underlying assump-302

tion that one could learn from the NN gradient was problematic for less idealized data.303

Other promising packages from the SRBench competition, such as DSR/DSO and (Py)Operon,304

are left for future work. PySR and GP-GOMEA can only utilize a very limited number305

of features. Regardless of the number of features we provide, GP-GOMEA only uses 3−306

4, while PySR uses 5−6 features. For this reason, PySR also has a built-in tree-based307

feature selection method to reduce the number of potential features. Since the SFS NNs308

from Sec 3.2.3 already provide a sequence of features that can be used in general, non-309
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linear cases, we instead select the first five of these features to maximize comparability310

between models. The decision to run PySR with five features is also motivated by the311

good performance (R2 > 0.95) of the corresponding SFS NN (see Sec 5.1.2). Each run312

of the PySR or GP-GOMEA algorithms adds new candidates to the list of final equa-313

tions. From ≈ 600 of resulting equations, we select those that have a good skill (R2 >314

0.9), are interpretable, and satisfy most of the physical constraints that we define in the315

following section. The search itself is performed on the normalized training data (see also316

Sec 2.1). As a final step, we refine the free parameters in the equation using the Nelder-317

Mead and BFGS optimizers (as in Sec 3.1).318

4 Model Evaluation319

4.1 Physical Constraints320

To facilitate their use, we postulate that simple equations for cloud cover C(X) ought321

to satisfy certain physical constraints (Gentine et al., 2021; Kashinath et al., 2021): 1)322

The cloud cover output should be between 0 and 100%; 2) an absence of cloud conden-323

sates should imply an absence of clouds; 3-5) when relative humidity or the cloud wa-324

ter/ice mixing ratios increase (keeping all other features fixed), then cloud cover should325

not decrease; 6) cloud cover should not increase when temperature increases; 7) the func-326

tion should be smooth on the entire domain. We can mathematically formalize these phys-327

ical constraints (PC):328

1) PC1: C(X) ∈ [0, 100]%329

2) PC2: (qc, qi) = 0 ⇒ C(X) = 0330

3) PC3: ∂C(X)/∂RH ≥ 0331

4) PC4: ∂C(X)/∂qc ≥ 0332

5) PC5: ∂C(X)/∂qi ≥ 0333

6) PC6: ∂C(X)/∂T ≤ 0334

7) PC7: C(X) is a smooth function335

While these physical constraints are intuitive, they will not be respected by data-driven336

cloud cover schemes if they are not satisfied in the data. In the DYAMOND data, the337

first physical constraint is always satisfied, and PC2 is satisfied in 99.7% of all condensate-338

free samples. The remaining 0.3% are due to noise induced during coarse-graining. In339

order to check whether PC3–PC6 are satisfied in our subset of the coarse-grained DYA-340

MOND data, we extract {qc, qi,RH, T}. We then separate the variable whose partial deriva-341

tive we are interested in. Bounded by the min/max-values of the remaining three vari-342

ables, we define a cube in this three-dimensional space, which we divide into N3 equally-343

sized cubes. In this way, the three variables of the samples within the cubes become more344

similar with increasing N . If we now fit a linear function in a given cube with the sep-345

arated variable as the inputs and cloud cover as the output, then we can use the sign of346

the function’s slope to know whether the physical constraint is satisfied.347

On one hand, the test is more expressive the smaller the cubes are, as the samples348

have more similar values for three of the four chosen variables and we can better approx-349

imate the partial derivative with respect to the separated variable. However, we only guar-350

antee similarity in three variables (omitting e.g., pressure). On the other hand, as the351

size of the cubes decreases, so does the number of samples contained in a cube, and noisy352

samples may skew the results. We therefore only consider the cubes that contain a suf-353

ficiently large number of samples (at least 104 out of the 2.9 · 108).354

We collect the results in Table 1, and find that the physical constraint PC3 (with355

respect to RH) is always satisfied. The other constraints are satisfied in most (on aver-356

age 76%) of the cubes. Thus, from the data we can deduce that the final cloud cover scheme357

should satisfy PC1–PC3 in all and PC4–PC6 in most of the cases.358
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Table 1. The percentage of data cubes that fulfill a given physical constraint. Only the cubes

with a sufficiently large amount of samples are taken into account. The last column shows the

proportion of cubes (across all sizes we consider) in which the constraint is satisfied on average.

(Maximum) Number of data cubes

1 23 33 43 53 63 73 Average (%)

PC3 100 100 100 100 100 100 100 100
PC4 100 100 83 90 73 78 71 77.5
PC5 100 100 85 50 81 83 68 73.8
PC6 100 50 100 67 72 89 75 77.7

To enforce PC1, we always constrain the output to [0, 100] before computing the
MSE. With the exception of the linear and polynomial SFS models, we already ensure
PC1 during training. For PC2, we can define cloud cover to be 0 if the grid cell is condensate-
free. We can combine PC1 and PC2 to define cloud fraction C (in %) as

C(X) =

{
0, if qi + qc = 0

100 ·max{min{f(X), 1}, 0}, otherwise,
(6)

and our goal is to learn the best fit for f(X). In the case of the Xu-Randall and Teix-359

eira schemes, ensuring PC2 is not necessary since they satisfy the constraint by design.360

4.2 Performance Metrics361

We use different metrics to train and validate the cloud cover schemes. We always
train to minimize the mean squared error (MSE), which directly measures the average
squared mismatch of the predictions f(xi) (usually set to be in [0, 100]%) and the cor-
responding true (cloud cover) values yi:

MSE
def
=

1

N

N∑
i=1

(C(xi)− yi)
2. (7)

The coefficient of determination R2-value takes the variance of the output Y = {yi}Ni=1

into account:

R2 def
= 1− MSE

Var(Y )
. (8)

To compare discrete univariate probability distributions P and Q, we use the Hellinger
distance

H(P,Q)
def
=

1√
2
∥
√
P −

√
Q∥2. (9)

As opposed to the Kullback-Leibler divergence, the Hellinger distance between two dis-362

tributions is always symmetric and finite (in [0, 1]).363

As our measure of complexity we use the number of (free/tunable/trainable) pa-364

rameters of a model. A clear limitation of this complexity measure is that, e.g., the ex-365

pression f(x) = ax is considered as complex as g(x) = sin(exp(ax)). However, in this366

study, most of our models (i.e., the linear models, polynomials, and NNs) do not con-367

tain these types of nested operators. Instead, each additional parameter usually corre-368

sponds to an additional term in the equation. In the case of symbolic regression tools,369

operators are already taken into account (see Appendix C) during the selection process,370

and we find that the number of trainable parameters suffices to compare the complex-371

ity our symbolic equations in their simplified forms. Finally, this complexity measure is372

one of the few that can be used for both analytical equations and NNs.373
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4.3 Cloud Regime-Based Evaluation374

We define four cloud regimes based on air pressure p and the total cloud conden-375

sate qt (cloud water plus cloud ice) mixing ratio:376

1. Low air pressure, little condensate (cirrus-type cloud regime)377

2. High air pressure, little condensate (cumulus-type cloud regime)378

3. Low air pressure, substantial condensate (deep convective-type cloud regime)379

4. High air pressure, substantial condensate (stratus-type cloud regime)380

Pressure or condensate values that are above their medians (78 787 Pa and 1.62·10−5
381

kg/kg) are considered to be large, while values below the median are considered small.382

Each regime has a similar amount of samples (between 35 and 60 million samples per383

regime). In this simplified data split, based on Rossow and Schiffer (1991), air pressure384

and total cloud condensate mixing ratio serve as proxies for cloud top pressure and cloud385

optical thickness. These regimes will help decompose model error to better understand386

the strengths and weaknesses of each model, discussed in the following section.387

5 Results388

5.1 Performance on the Storm-Resolving (DYAMOND) Training Set389

In this section, we train the models we introduced in Sec 3 on the (coarse-grained)390

DYAMOND training data and compare their performance and complexity on the DYA-391

MOND validation data. We start with the sequential feature selection’s results.392

5.1.1 Feature Ranking393

We perform 10 SFS runs for each linear model, polynomial, and NN from Sec 3.3.
Each run varies the random training subset, which consists of O(105) samples in the case
of NNs and O(106) samples in the case of polynomials (as polynomials are faster to train).
We then average the rank of a selected feature and note it down in brackets. We omit
the average rank if it is the same for each random subset. By Pd, d ∈ {1, 2, 3} we de-
note polynomials of degree d (e.g., P1 groups linear models). The sequences in which the
features are selected are:

P1: RH → T → ∂zRH → qi[4.3] → ∂zzp[4.7] → qc → U → ∂zzqc → ∂zqv → zg

P2: RH → T → qcqi → RH∂zRH → T∂zRH[5.6] → qvRH[6.4] → TRH[7.4] →
RH2[7.9] → ∂zqv[9.2] → U [10.1]

P3: RH → T → qcqi → T 2RH[4.4] → RH2[5.4] → T 2[6.7] → RH∂zRH[7.4] →
∂zRH[8.3] → p2∂zzp[8.8] → T∂zRH[9.4]

NNs: RH → qi → qc → T [4.1] → ∂zRH[4.9] → ∂zzp[6.7] → ∂zp[8.1] →
∂zzRH[8.3] → ∂zT [10.0] → ps[10.1]

Regardless of the model, the selection algorithm chooses RH as the most informa-394

tive feature for predicting cloud cover. This is consistent with, e.g., Walcek (1994), who395

considers RH to be the best single indicator of cloud cover in most of the troposphere.396

Considering that the cloud cover in the high-resolution data was only derived from the397

cloud condensate mixing ratio, the models’ prioritization of RH is quite remarkable. From398

the feature sequences, we can also deduce that cloud cover depends on the mixing ra-399

tios of cloud condensates in a very nonlinear way: The polynomials choose qiqc as their400

third feature and do not use any other terms containing qi or qc. The NNs choose qi and401

qc as their second and third features, and are able to express a nonlinear function of these402
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two features. The linear model cannot fully exploit qi and qc and hence attaches less im-403

portance to them.404

Since RH and T are chosen as the most informative features for the linear model,405

we can derive a notable linear dependence of cloud cover on these two features (the cor-406

responding model being f(RH, T ) = 41.31RH − 15.54T + 44.63). However, given the407

possibility, higher order terms of T and RH are chosen as additional predictors over, for408

instance, p or qv. Finally, ∂zRH is an important recurrent feature for all models. Depend-409

ing on the model, the coefficient associated with ∂zRH can be either negative or posi-410

tive. If ∂zRH ̸= 0, one can assume some variation of cloud cover (i.e., cloud area frac-411

tion) vertically within the grid cell. Thus, ∂zRH is a meaningful proxy for the subgrid412

vertical variability of cloud area fraction. Since the effective cloud area fraction of the413

entire grid cell is related to the maximum cloud area fraction at a given height within414

the grid cell, this could explain the significance of ∂zRH.415

5.1.2 Balancing Performance and Complexity416

In Fig 2, we depict all of our models in a performance × complexity plane. We mea-417

sure performance as the MSE on the validation (sub)set of the DYAMOND data and use418

the number of free parameters in the model as our complexity metric. We add the Pareto419

frontier, defined to pass through the best-performing models of a given complexity. The420

SFS sequences described above are used to train the SFS models of the corresponding421

type. The only exception is the swapped order of ∂zp and ∂zzp for the NNs, as we base422

the sequence shown in Fig 2 on a single SFS run. For the SFS NNs with 4–7 features,423

it was possible to reduce the number of layers and hidden units without significant per-424

formance degradation, which reduced the number of free parameters by about an order425

of magnitude and put them on the Pareto frontier.426

For most models, we train a second version that does not need to learn that condensate-427

free cells are always cloud-free, but for which the constraint is embedded by equation (6).428

For such models, condensate-free cells are removed from the training set. In addition to429

the schemes of Xu-Randall and Teixeira (see Sec 4.1), we find that it is also not neces-430

sary to enforce PC2 in the case of NNs, since they are able to learn PC2 without degrad-431

ing their performance. PC1 is always enforced by default for all models.432

We find that, even though the Sundqvist and Teixeira schemes are also tuned to433

the training set, linear models of the same complexity outperform them. However, these434

linear models do not lie on the Pareto frontier either. The lower performance of the Teix-435

eira scheme is most likely due to the fact that it was developed for subtropical bound-436

ary layer clouds. However, its MSE only experiences a slight reduction (to 290 (%)2) when437

evaluated exclusively within the subtropics (from 23.4 to 35 degrees north and south).438

Among the existing schemes, only the Xu-Randall scheme with its two tuning param-439

eters set to {α, β} = {0.9, 9·105} is on the Pareto frontier as the simplest model. With440

relatively large values for α and β, cloud cover is always approximately equal to relative441

humidity (i.e., C ≈ RH0.9) when cloud condensates are present. The next models on442

the Pareto frontier are third-order SFS polynomials P3 with 2–6 features with PC2 en-443

forced. To account for the bias term and the output of the polynomial being set to zero444

in condensate-free cells, the number of their parameters is the number of features plus445

2. We then pass the line with R2 = 0.9 and find three symbolic regression fits on the446

Pareto frontier, each trained on the five most informative features for the SFS NNs. All447

symbolic regression equations that appear in the plot are listed in Appendix D. We will448

analyze the PySR equation with arguably the best tradeoff between complexity (11 free449

parameters when phrased in terms of normalized variables) and performance (MSE =450

103.95 (%)2, improved spatial distribution as illustrated in Fig S2) in Sec 6. The remain-451

ing models on the Pareto frontier are SFS NNs with 4–10 features and finally the NN452

with all 24 features defined in Sec 2.1 included (MSE = 30.51 (%)2).453

–13–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 2. All models described in Sec 3 in a performance × complexity plot. The dashed ver-

tical lines mark the R2 = 0.95- and R2 = 0.9-boundaries. Models marked with a cross satisfy the

second physical constraint PC2 (using equation (6)). Only the best PySR and GP-GOMEA sym-

bolic regression fits are shown. The NNs in cyan are the column-, neighborhood- and cell-based

NNs when read from left to right. The SFS NN with the lowest MSE contains all 24 features

described in Sec 2.1. For the SFS NNs, the last added feature is specified in curly brackets. Since

the validation MSE of the SFS NNs decreases with additional features, we can extract the fea-

tures for a given SFS NN by reading from right to left (e.g., the features of the SFS NN marked

with {qc} are {qi, qc,RH}).
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Interestingly, the (quasi-local) 24-feature NN is able to achieve a slightly lower MSE454

(30.51 (%)2) than the (non-local) column-based NN (33.37 (%)2) with its 163 features.455

The two aspects that benefit the 24-feature NN are the additional information on the456

horizontal wind speed U and its derivatives, and the smaller number of condensate-free457

cells in its training set due to undersampling (Sec 2.1 and 3.1). The SFS NN with 10 fea-458

tures already shows very similar performance (MSE = 34.64 (%)2) to the column-based459

NN with a (12 times) smaller complexity and fewer, more commonly accessible features.460

Comparing the small improvements of the linear SFS models (up to MSE = 250.43 (%)2)461

with the larger improvements of SFS polynomials (up to MSE = 190.78 (%)2) with in-462

creasing complexity, it can be deduced that it is beneficial to include nonlinear terms in-463

stead of additional features in a linear model. For example, NNs require only three fea-464

tures to predict cloud cover reasonably well (R2 = 0.933), and five features are suffi-465

cient to produce an excellent model (R2 = 0.962) because they learn to nonlinearly trans-466

form these features.467

The PySR equations can estimate cloud cover very well (R2 ∈ [0.935, 0.940]). How-468

ever, while the PySR equations depend on five features, the NNs are able to outperform469

them with as few as four features (R2 = 0.944). This suggests that the NNs learn bet-470

ter functional dependencies than PySR, as they do better with less information. How-471

ever, the improved performance of the NNs comes at the cost of additional complexity472

and greatly reduced interpretability.473

5.2 Split by Cloud Regimes474

In this section, we divide the DYAMOND data set into the four cloud regimes in-475

troduced in Sec 4.3. In Fig 3, we compare the cloud cover predictions of Pareto-optimal476

models (on Fig 2’s Pareto frontier) with the actual cloud cover distribution in these regimes.477

We evaluate the models located at favorable positions on the Pareto frontier (at the be-478

ginning to maximize simplicity, at the end to maximize performance, or on some corners479

to optimally balance both). Of the two PySR equations, we consider the one with the480

lowest MSE (as in Sec 6 later). Furthermore, we explore benefits that arise from train-481

ing on each cloud regime separately and whether using a different feature set for each482

regime could ease the transition between regimes.483

In general, we find that the PySR equation (except in the cirrus regime) and the484

6-feature NN can reproduce the distributions quite well (Hellinger distances < 0.05),485

while the 24-feature NN shows excellent skill (Hellinger distances ≤ 0.015). However,486

all models have difficulty predicting the number of fully cloudy cells in all regimes (es-487

pecially in the regimes with fewer cloud condensates).488

Focusing first on the predictions of the Xu-Randall scheme, we find that the dis-489

tributions exhibit prominent peaks in each cloud regime. By neglecting the cloud con-490

densate term and equating RH with the regime-based median, we can approximately re-491

derive these modes of the Xu-Randall cloud cover distributions in each regime using the492

Xu-Randall equation (4). With our choice of α = 0.9, this mode is indeed very close493

(absolute difference at most 8% cloud cover) to the median relative humidity calculated494

in each regime. By increasing α, we should therefore be able to push the mode above495

100% cloud cover and thus remove the spurious peak. However, this comes at the cost496

of increasing the overall MSE of the Xu-Randall scheme.497

For the PySR equation (and also the 24-feature NN), the cirrus regime distribu-498

tion is the most difficult to replicate. The Hellinger distances suggest that it is the model’s499

functional form, and not its number of features that limits model performance in the cir-500

rus regime. Indeed, the decrease in the Hellinger distance between the PySR equation501

and the 6-feature NN is larger (0.049) than the decrease between the 6- and the 24-feature502

NN (0.02). Technically, the PySR equation has the same features as the 5-feature and503
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Figure 3. Predicted cloud cover distributions of selected Pareto-optimal models evaluated on

the DYAMOND data, divided into four different cloud regimes. The numbers in the upper left

indicate the Hellinger distance between the predicted and the actual cloud cover distributions for

each model and cloud regime.
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not the 6-feature NN, but the Hellinger distances of these two NNs to the actual cloud504

cover distribution are almost the same (difference of 0.003 in the cirrus regime). We want505

to note here that, while the PySR equation features a large Hellinger distance, it actu-506

ally achieves its best R2 score (R2 = 0.84) in the cirrus regime as the coefficient of de-507

termination takes into account the high variance of cloud cover in the cirrus regime. In508

the condensate-rich regimes, the PySR equation is as good as the 6-feature NN and even509

able to outperform it on the stratus regime. To improve the PySR scheme further in terms510

of its predicted cloud cover distributions, and combat its underestimation of cloud cover511

in the cirrus regime, we now explore the effect of focusing on the regimes individually.512

By training SFS NNs just like in Sec 5.1.1 but now on each cloud regime separately, we513

find new feature rankings:514

Cirrus regime: qi → RH → T [3.4] → ∂zRH → ∂zzRH[6.4]

Cumulus regime: qi → qc → RH → ∂zRH[4.5] → ∂zzp[5.1]

Deep convective regime: RH → T → ∂zRH → ps[5.5] → ∂zzRH[5.6]

Stratus regime: RH → ∂zRH → ∂zzp → ∂zzRH[5.9] → qc[6.3]

By rerunning PySR within each regime and allowing its discovered equations to515

depend on the newly found five most important features, we find equations that are bet-516

ter able to predict the distributions of cloud cover. In the supplementary information517

(SI), we present one of the equations per regime that strikes a good balance between per-518

formance and simplicity and show the predicted distributions of cloud cover.519

As expected, cloud water is not an informative variable in the cirrus regime (with520

an average rank of 9.5). Based on qi,RH and T alone, we are able to discover equations521

that reduce the number of cloud-free predictions and improve the distributions for low522

cloud cover values (Hellinger distances of ≈ 0.05). We do not attribute these improve-523

ments to new input features, but rather to the ability of the equation to adopt a novel524

structure. Similarly, the features qi, qc and RH are sufficient to decrease the Hellinger525

distance from 0.049 to 0.041 within the cumulus regime.526

In the condensate-rich regimes (deep convective and stratus), cloud water and/or527

ice are already present, making the exact amount of cloud condensates less pertinent.528

By focusing on the three most significant features RH, T and ∂zRH, we find equations529

with an enhanced distribution of cloud cover within the deep convective regime (with530

Hellinger distances of only 0.02). The equations specific to the deep convective regime531

display strong nonlinearity, with the equation selected for the SI including a fourth-order532

polynomial of relative humidity and temperature. While the five most important fea-533

tures of the stratus regime also differ from the SFS NN features of Sec 5.1.1, we were not534

able to improve upon the Hellinger value of our single PySR equation through exclusive535

training within the stratus regime. A notable aspect of the stratus regime is the increased536

significance of ∂zRH, which is discussed later (see Sec 6.2).537

While the approach of deriving distinct equations tailored to each cloud regime,538

emphasizing regime-specific features, holds potential for improving predicted cloud cover539

distributions, the resulting MSE across the entire dataset is lower (≈ 113 (%)2) com-540

pared to our chosen single PySR equation (≈ 104 (%)2). Moreover, the number of free541

parameters increases to 33, which is three times the count of our single PySR equation.542

Lastly, formulating distinct equations for each cloud regime requires special attention543

at the regime boundaries to ensure continuity across the entire domain. Therefore, we544

henceforth focus on equations that generalize across cloud regimes.545
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Figure 4. Selected Pareto-optimal models evaluated on DYAMOND data (Aug 11–20, 2018),

coarse-grained horizontally to three different resolutions. Only data below an altitude of 21 km is

considered.

5.3 Transferability to Different Climate Model Horizontal Resolutions546

Designing data-driven models that are not specific to a given Earth system model547

and a given grid is challenging. Therefore, in this section we aim to determine which of548

our selected Pareto-optimal ML models are most general and transferable. We explore549

the applicability of our schemes at higher resolutions, nowadays also typical for climate550

model simulations.551

To evaluate the performance of our models at higher resolutions, we coarse-grain552

some of the DYAMOND data to horizontal resolutions of ≈ 20 km (R2B7) and ≈ 40 km553

(R2B6) to complement our coarse-grained data set at ≈ 80 km (R2B5). For simplicity,554

in this section, we omit any coarse-graining in the vertical and do not retune the schemes555

for the higher resolutions. In Fig 4 we present R2-values for each resolution for the same556

models as in the previous section. We note that the lack of vertical coarse-graining can557

explain the slight decrease in performance on 80 km when compared to the results de-558

picted in Fig 2.559

We observe a clear, almost linear, tendency of all schemes to improve their R2-score560

on the coarse-grained data sets as we increase the resolution. The increasing standard561

deviation σ of cloud cover by ≈ 1.6% per doubling of the resolution (with σ ≈ 23.8%562

at 80 km) is not sufficient to explain this phenomenon. On the one hand, we find these563

improvements surprising, considering that the schemes were trained at a resolution of564

80 km. On the other hand, at the low resolution of 80 km, the inputs are averaged over565

wide horizontal regions and bear very little information about how much cloud cover to566

expect. At higher resolution, large-scale variables and cloud cover are more closely re-567

lated. Cloud water and ice reach larger values and become more informative for cloud568

cover detection. This is evident in the Xu-Randall scheme, which relies heavily on cloud569

condensates and shows a significant increase in its ability to predict cloud cover at higher570

resolutions. Our analysis reveals that the most skillful schemes at 20 km are the 6-feature571

NN and our chosen PySR equation. The 24-feature NN relies on many first- and second-572

order vertical derivatives in its input, so its deteriorated performance could be an arti-573

fact of not vertically coarse-graining the data in this section.574

Overall, the schemes exhibit a noteworthy capacity to be applied at higher reso-575

lutions than those used during their training.576
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Figure 5. Performance of DYAMOND-trained Pareto-optimal cloud cover schemes on the

ERA5 data set after transfer learning. The labels on the x-axis denote how many grid columns

taken across how many time steps make up the transfer learning training set. Each setting is run

with six different random seeds and the diamond-shaped markers indicate the respective medians.

5.4 Transferability to Meteorological Reanalysis (ERA5)577

To our knowledge, there is no systematic method to incorporate observations into578

ML parameterizations for climate modeling. In this section, we take a step towards trans-579

ferring schemes trained on SRMs to observations by analyzing the ability of the Pareto-580

optimal schemes to transfer learn the ERA5 meteorological reanalysis from the DYA-581

MOND set.582

To do so, we take a certain number (either 1 or 100) of random locations, and col-583

lect the information from the corresponding grid columns of the ERA5 data over a cer-584

tain number of time steps in a data set T . Starting from the parameters learned on the585

DYAMOND data, we retrain the cloud cover schemes on T and evaluate them on the586

entire ERA5 data set. In other words, the free parameters of each cloud cover scheme587

are retuned on T . The retuning method is the same as the original training method, the588

difference being that the initial model parameters were learned on the DYAMOND data.589

We can think of T as mimicking a series of measurements at these random locations, which590

help the schemes adjust to the unseen data set. Fig 5 shows the MSE of the Pareto-optimal591

cloud cover schemes on the ERA5 data set after transfer learning on data sets T of dif-592

ferent sizes.593

The first columns of the three panels show no variability because the schemes are594

applied directly to the ERA5 data without any transfer learning (T = ∅). None of the595

schemes perform well without transfer learning (R2 < 0.15), which is expected given596

the different distributions of cloud ice and water between the DYAMOND and ERA5597

data sets (Fig 1). That being said, the SFS NNs retain their superior performance (MSE598

≈ 300 (%)2 without retraining), especially compared to the non-retrained SFS polyno-599

mials, which exhibit MSEs in the range of 1375±55 (%)2 and are therefore not shown600

in Panel c.601
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For most schemes, performance increases significantly after seeing one grid column602

of ERA5 data, with the exception of the SFS NNs with more than 6 features and the603

GPGOMEA equation. The performance of the GPGOMEA equation varies greatly be-604

tween the selected grid columns, and the SFS NNs with many features appear to under-605

fit the small transfer learning training set. The models with the lowest MSEs are (1) the606

slightly more complex of the two PySR equations (median MSE = 148 (%)2); and (2)607

the SFS NNs with 5 and 6 features (median MSE = 200 (%)2). While we cannot con-608

firm that fewer features (5-6 features) help with off-the-shelf generalizability of the SFS609

NNs, they do improve the ability to transfer learn after seeing only a few samples from610

the ERA5 data.611

After increasing the number of time steps to be included in T to 32 (correspond-612

ing to one year of our preprocessed ERA5 data set), the performances of the models start613

to converge and the SFS NNs with 5 and 6 features and its large number of trainable614

parameters outperform the PySR equation (with median ∆MSE ≈ 35 (%)2). From the615

last column we can conclude that a T consisting of 100 columns from all available time616

steps is sufficient for the ERA5 MSE of all schemes to converge. Remarkably, the order617

from best- to worst-performing model is exactly the same as it was in Fig 2 on the DYA-618

MOND data set (in addition, Fig S3 visually demonstrates the improved spatial distri-619

bution of predicted cloud cover by the fully tuned PySR equation). Thus, we find that620

the ability to perform well on the DYAMOND data set is directly transferable to the abil-621

ity to perform well on the ERA5 data set given enough data, despite fundamental dif-622

ferences between the data sets. This suggests a notable degree of structural robustness623

of the cloud cover models.624

A useful property of a model is that it is able to transfer learn what it learned over625

an extensive initial dataset after tuning only on a few samples. We can quantify the abil-626

ity to transfer learn with few samples in two ways: First, we can directly measure the627

error on the entire data set after the model has seen only a small portion of the data (in628

our case the ERA5 MSEs of the 1/1-column). Second, if this error is already close to the629

minimum possible error of the model, then few samples are really enough for the model630

to transfer learn to the new data set (in our case, the difference of MSEs in the 1/1-column631

and the 100/1368-column). In terms of the first metric (MSEs in (%)2), the leading five632

models are the more complex PySR equation (147.6), the 5- and 6-feature NNs (199.6/199.8),633

the simpler PySR equation (216.8), and the 6-feature polynomial (254.6). In terms of634

the second metric (difference of MSEs in (%)2), the top five models are again the more635

complex PySR equation (86.0), the 6-, 5-, and 4-feature polynomials (149.1/149.4/150.5),636

and the simpler PySR equation (152.3). If we add both metrics, weighing them equally,637

then the more complex PySR equation has the lowest inability to transfer learn with few638

samples (233.7), followed by the simpler PySR equation (369.1) and the 5- and 6-feature639

SFS NNs (370.5/374.5, where all numbers have units (%)2). As the more complex PySR640

equation is leading in both metrics, we can conclude that it is most able to transfer learn641

after seeing only one column of ERA5 data, and we further investigate its physical be-642

havior in the next section.643

6 Physical Interpretation of the Best Analytical Scheme644

We find that the two PySR equations on the Pareto frontier (see Fig 2) achieve
a good compromise between accuracy and simplicity. Both satisfy most of the physical
constraints that we defined in Sec 4.1. In this section, we analyze the (more complex)
PySR equation with a lower validation MSE as we showed that it generalized best to ERA5
data (see Fig 5). We also conclude that the decrease in MSE is substantial enough (∆MSE
= 3.04%2) to warrant the analysis of the (one parameter) more complex equation. The
equation for the case with condensates can be phrased in terms of physical variables as

f(RH, T, ∂zRH, qc, qi) = I1(RH, T ) + I2(∂zRH) + I3(qc, qi), (10)
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where

I1(RH, T )
def
= a1 + a2(RH− RH) + a3(T − T ) +

a4
2
(RH− RH)2 +

a5
2
(T − T )2(RH− RH)

I2(∂zRH)
def
= a36

(
∂zRH+

3a7
2

)
(∂zRH)

2

I3(qc, qi)
def
=

−1

qc/a8 + qi/a9 + ϵ
.

To compute cloud cover in the general case, we plug equation (10) into equation (6), en-
forcing the first two physical constraints (C(X) ∈ [0, 100]% and in condensate-free cells
C(X) = 0). On the DYAMOND data we find the best values for the coefficients to be

{a1, . . . , a9, ϵ} = {0.4435, 1.1593,−0.0145K−1, 4.06, 1.3176 · 10−3 K−2,

584.8036m, 2 km−1, 1.1573mg/kg, 0.3073mg/kg, 1.06}.

Additionally, RH = 0.6025 and T = 257.06K are the average relative humidity and645

temperature values of our training set.646

In this section, we use our symbolic model to elucidate the fundamental physical647

components that facilitate the parameterization of cloud cover from storm-resolution data,648

following the themes outlined in the subsequent subsections.649

6.1 Relative Humidity and Temperature Drive Cloud Cover, Especially650

in Condensate-Rich Environments651

The function I1(RH, T ) can be phrased as a Taylor expansion to third order around
the point (RH, T ) = (RH, T ). The first coefficient a1 specifies I1’s contribution to cloud
cover for average relative humidity and temperature values, i.e., a1 = I1

(
RH, T

)
. While

C(X) = a1 at (RH, T ) if I2 ≈ I3 ≈ 0, the I3-term dominates when cloud condensates
are absent, setting C(X) to 0. The following two parameters a2 and a3 are the partial
derivatives of equation (10) at (RH, T ) w.r.t. relative humidity and temperature, i.e.,
a2 = (∂I1/∂RH)|(RH,T ) and a3 = (∂I1/∂T )|(RH,T ). As a2 is positive, cloud cover gen-
erally increases with relative humidity (see Fig 6a and 7a). To ensure PC3 (∂C/∂RH ≥
0) in all cases, we replace RH with

max{RH, c1 − c2(T − T )2}, (11)

where c1 = RH − a2/a4 ≈ 0.317 and c2 = a5/(2a4) ≈ 1.623 · 10−4 K−2. We derive652

equation (11) by solving ∂f/∂RH = 0 for RH. Condition (11) of replacing RH triggers653

in roughly 1% of our samples. It ensures that cloud cover does not increase when decreas-654

ing relative humidity in cases of low relative humidity and average temperature (see Fig 7).655

Modifying the equation (10) in such a way does not deteriorate its performance on the656

DYAMOND data. Fig 7b illustrates how the modification ensures PC3 in an average set-657

ting (in particular for T = T ). It would be difficult to apply a similar modification to658

the NN, which in our case violates PC3 for RH > 0.95. We can also directly identify659

another aspect of equation (10): the absence of a minimum value of relative humidity,660

below which cloud cover must always be zero (the critical relative humidity threshold).661

Since a3 = (∂I1/∂T )|(RH,T ) is negative, cloud cover typically decreases with tem-662

perature for samples of the DYAMOND data set (see Fig 6f)). However, I1 does not en-663

sure the PC6 (∂C/∂T ≤ 0) constraint everywhere. For instance, in the hot limit limT→∞ I1(RH, T ),664

whether conditions are entirely cloudy or cloud-free conditions depends upon relative hu-665

midity (in particular, whether RH > RH).666

The coefficient a4 = (∂2I1/∂RH
2)|(RH,T ) is precisely the curvature of I1 w.r.t. RH,

causing the equation to flatten with decreasing RH (taking (11) into account). It is con-
sistent with the Sundqvist scheme that changes in relative humidity have a larger im-
pact on cloud cover for larger relative humidity values. The final coefficient a5 of I1 is
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d) e) f)
g)

Figure 6. Top row: 1D- or 2D-plots of the three terms I1, I2, I3 as functions of their inputs.

In Panels a and b, the axis-values are bound by the respective minima and maxima in the DYA-

MOND data set, while those minima/maxima were divided by 5000 in Panel c. The vertical

black lines indicate the region of values covered by Panels d–g. Bottom row: Conditional average

plots of cloud cover with respect to relative humidity and temperature (Panels d–f) or ∂zRH

(Panel g).
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Figure 7. Panel a: Contour plot of ∂RHf as a function of relative humidity and temperature.

The contour marks the boundary where ∂RHf = 0. Panel b: Predictions of the PySR equation

(10) with and without the modification (11) as a function of relative humidity. For comparison,

the predictions of the SFS NN with 24 features are shown. The other features are set to their

respective mean values.

a third-order partial derivative of I1 w.r.t. T and RH. More precisely,

a5 =

(
∂3I1

∂T 2∂RH

)∣∣∣∣
(RH,T )

.

The corresponding term becomes important whenever the temperature and relative hu-667

midity deviate strongly from their mean. In the upper or lower troposphere, where tem-668

perature conditions differ from the average tropospheric temperature, the a5-term either669

further increases cloud cover in wet conditions (e.g., the tropical lower troposphere) or670

decreases it in dry conditions (e.g, in the upper troposphere or over the Sahara). The671

contribution of the a5-term for selected vertical layers is illustrated in the second row672

of Fig A1. When fit to the ERA5 data, the coefficients of the linear terms are found to673

be stable, while the emphasis on the non-linear terms is somewhat decreased; a4 is 1.53674

and a5 is 2.5 times smaller.675

6.2 Vertical Gradients in Relative Humidity and Stratocumulus Decks676

The second function I2(∂zRH) is a cubic polynomial of ∂zRH. Its magnitude is con-677

trolled by the coefficient a6. If a6 were 50% smaller (which it is when fit to ERA5 data),678

it would decrease the absolute value of I2 by 87.5%. We introduce a prefactor of 1.5 for679

a7 so that −a7 describes a local maximum of I2 (found by solving I ′2(∂zRH) = 0). We680

will now focus on the reason for this distinct peak of I2 ≈ 0.8 at ∂zRH = −a7.681

Removing the I2-term, we find that the induced prediction error is largest, on av-682

erage, in situations that are i) relatively dry (RH ≈ 0.6), ii) close to the surface (z ≈683

1000m), iii) over water (land fraction ≈ 0.1), iv) characterized by an inversion (∂zT ≈684

0.01K/m), and v) have small values of ∂zRH (∂zRH ≈ −2 km−1 = −a7; compare also685

to the cloud cover peak in Fig 6g). Using our cloud regimes of Sec 5.2, we find the av-686

erage absolute error is largest in the stratus regime (4% cloud cover). Indeed, by plot-687

ting the globally averaged contributions of I1, I2 and I3 on a vertical layer at about 1500m688

–23–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

altitude (Fig A1), we find that I2 is most active in regions with low-level inversions where689

marine stratocumulus clouds are abundant (Mauritsen et al., 2019). From this, we can690

infer that the SFS NN has chosen ∂zRH as a useful predictor to detect marine stratocu-691

mulus clouds and the symbolic regression algorithm has found a way to express this re-692

lationship mathematically. It is more informative than ∂zT (rank 10 in Sec 5.1.1), which693

would measure the strength of an inversion more directly. Indeed, stratocumulus-topped694

boundary layers exhibit a sharp increase in temperature and a sharp decrease in spe-695

cific humidity between the cloud layer to the inversion layer. Studies by Nicholls (1984)696

and Wood (2012) reveal a notable temperature increase of approximately 5−6K and697

a specific humidity decrease of about 4− 5 g/kg. In ICON’s grid with a vertical spac-698

ing of ≈ 300m at an altitude of 1000−1500m, the decrease in relative humidity would699

attain values of ≈ −2.5 km−1. It is important to note that the vertical grid may not pre-700

cisely separate the cloud layer from the inversion layer, making it reasonable to maxi-701

mize the parameter I2 at a relative humidity gradient of ∂zRH = −2 km−1. Vertical702

gradients of relative humidity below −3, km−1 are extremely sporadic and confined to703

the lowest portion of the planetary boundary layer, where the vertical spacing between704

grid cells can get very small. In such cases, the attenuating effect of I2 is unlikely to have705

significant physical causes. In contrast, vertical relative humidity gradients exceeding 1 km−1
706

are common in the marine boundary layer due to evaporation and vertical mixing of moist707

air in the boundary layer. In this context, I2 generally increases cloud cover which aligns708

with the fact that cloud cover is typically 5−15% greater over the ocean compared to709

land (Rossow & Schiffer, 1999). With the estimated values for a6 and a7, relative hu-710

midity would need to increase by 10% over a height of 260m to increase cloud cover by711

10%.712

6.3 Understanding the Contribution of Cloud Condensates to Cloud Cover713

The third function I3(qc, qi) is always negative and decreases cloud cover where there714

is little cloud ice or water. It ensures that PC4 and PC5 are always satisfied. First of715

all, in condensate-free cells, ϵ serves to avoid division by zero while also decreasing cloud716

cover by 100%. Furthermore, the values of a8 or a9 indicate thresholds for cloud water/ice717

to cross to set I3 closer to zero. When tuned to the ERA5 data set, the values for both718

a8 and a9 are roughly six times larger, making the equation less sensitive to cloud con-719

densates. As larger values for cloud water are more common for cloud ice, we already720

expect I3 to be more sensitive to cases when cloud ice actually does appear. By com-721

paring the distributions of cloud ice/water at the storm-resolving scale, we provide a more722

rigorous derivation in Appendix B for why a9 should indeed be smaller than a8. A sim-723

ple explanation is that we usually find ice clouds in the upper troposphere, where con-724

vection is associated with divergence, causing the clouds to spread out more.725

Given that equation (10) is a continuous function, the continuity constraint PC7726

is only violated if and only if the cloud cover prediction is modified to be 0 in the condensate-727

free regime (by equation (6)), and would be positive otherwise. The value of ϵ dictates728

how frequently the cloud cover prediction needs to be modified. In the limit ϵ → 0 we729

could remove the different treatment of the condensate-free case. In our data set, equa-730

tion (10) yields a positive cloud cover prediction in 0.35% of condensate-free samples.731

Thus, the continuity constraint PC7 is almost always satisfied (in 99.65% of our condensate-732

free samples).733

6.4 Ablation Study Confirms the Importance of Each Term734

To convince ourselves that all terms/parameters of equation (10) are indeed rel-735

evant to its skill, we examine the effects of their removal in an ablation study (Fig 8).736

We found that for the results to be meaningful, removing individual terms or parame-737

ters requires readjusting the remaining parameters; in a setting with fixed parameters738

the removal of multiple parameters often led to better outcomes than the removal of a739
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Figure 8. Ablation study of equation (10) on the DYAMOND and ERA5 data sets. The

removal of the function I1 leads to a very large decrease of MSE (of 1300/763 (%)2) on the DYA-

MOND/ERA5 data sets and is therefore not shown.

single one of them. The optimizers (BFGS and Nelder-Mead) used to retune the remain-740

ing parameters show different success depending on whether the removal of terms is ap-741

plied to the equation formulated in terms of normalized or physical features (the latter742

being equation (10)). Therefore, each term is removed in both formulations, and the bet-743

ter result is chosen each time. To ensure robustness of the results, this ablation study744

is repeated for 10 different seeds on subsets with 106 data samples.745

We find that the removal of any individual term in equation (10) would result in746

a noticeable reduction in performance on the DYAMOND data (∆MSE ≥ 3.4 (%)2 in747

absolute and (MSEabl − MSEfull)/MSEabl ≥ 3.2% in relative terms). Even though748

Fig 6g) suggests a cubic dependence of cloud cover on ∂zRH, it is the least important749

term to include according to Fig 8. Applied to the ERA5 data, we can even dispense with750

the entire I2 term. Furthermore, we find that the quadratic dependence on RH can be751

largely compensated by the linear terms. The most important terms to include are those752

with cloud ice/water and the linear dependence on temperature. Coinciding with the SFS753

NN feature sequences in Sec 5.1.1, cloud ice (∆MSE = 96/102 (%)2) is more impor-754

tant to take into account than cloud water (∆MSE = 88/63 (%)2), especially for the755

ERA5 data set in which cloud ice is more abundant (see Fig 1). More generally, out of756

the functions I1, I2, I3 we find I1(RH, T ) to be most relevant (∆MSE = 1300/763 (%)2),757

followed by I3(qc, qi) (∆MSE = 119/123 (%)2) and lastly I2(∂zRH) (∆MSE = 18/0 (%)2),758

once again matching the order of features that the SFS NNs had chosen.759

7 Conclusion760

In this study, we derived data-driven cloud cover parameterizations from coarse-761

grained global storm-resolving simulation (DYAMOND) output. We systematically pop-762

ulated a performance × complexity plane with interpretable traditional parameteriza-763

tions and regression fits on one side and high-performing neural networks on the other.764

Modern symbolic regression libraries (PySR, GPGOMEA) allow us to discover interpretable765

equations that diagnose cloud cover with excellent accuracy (R2 > 0.9). From these766

equations, we propose a new analytical scheme for cloud cover (found with PySR) that767

balances accuracy (R2 = 0.94) and simplicity (10 free parameters in the physical for-768

mulation). This analytical scheme satisfies six out of seven physical constraints (although769

the continuity constraint is violated in 0.35% of our condensate-free samples), provid-770
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ing the crucial third criterion for its selection. In a first evaluation, the (5-feature) an-771

alytical scheme was on par with the 6-feature NN in terms of reproducing cloud cover772

distributions (Hellinger distances < 0.05) in condensate-rich cloud regimes, yet under-773

estimating cloud cover more strongly in condensate-poor regimes. While discovering dis-774

tinct equations in each cloud regime can improve the Hellinger distances, both the over-775

all complexity and mean squared error of a combined piecewise equation increase. This776

supports choosing a single continuous analytical scheme that generalizes across cloud regimes.777

When applied to higher resolutions than their training data we find that the cloud cover778

schemes further improve their performance. This finding opens up possibilities for lever-779

aging their predictive capabilities in domains with increased resolution requirements.780

In addition to its interpretability, flexibility and efficiency, another major advan-781

tage of our best analytical scheme is its ability to adapt to a different data set (in our782

case, the ERA5 reanalysis product) after learning from only a few of the ERA5 samples783

in a transfer learning experiment. Due to the small amount of free parameters and the784

initial good fit on the DYAMOND data, our new analytical scheme outperformed all other785

Pareto-optimal models. We found that as the number of samples in the transfer learn-786

ing sets increases, the models converged to the same performance rank on the ERA5 data787

as on the DYAMOND data, indicating strong similarities in the nature of the two data788

sets that could make which data set serves as the training set irrelevant. In an ablation789

study, we found that further reducing the number of free parameters in the analytical790

scheme would be inadvisable; all terms/parameters are relevant to its performance on791

the DYAMOND data. Key terms include a polynomial dependence on relative humid-792

ity and temperature, and a nonlinear dependence on cloud ice and water.793

Our sequential feature selection approach with NNs revealed an objectively good794

subset of features for an unknown nonlinear function: relative humidity, cloud ice, cloud795

water, temperature and the vertical derivative of relative humidity (most likely linked796

to the vertical variability of cloud cover within a grid cell). While the first four features797

are well-known predictors for cloud cover, PySR also learned to incorporate ∂zRH in its798

equation. This additional dependence allows it to detect thin marine stratocumulus clouds,799

which are difficult, if not impossible to infer from exclusively local variables. These clouds800

are notoriously underestimated in the vertically coarse climate models (Nam et al., 2012).801

In ICON this issue is somewhat attenuated by multiplying, and thus increasing relative802

humidity in maritime regions by a factor depending on the strength of the low-level in-803

version (Mauritsen et al., 2019). Using symbolic regression, we thus found an alterna-804

tive, arguably less crude approach, which could help mitigate this long-standing bias in805

an automated fashion. However, we need to emphasize that in particular shallow con-806

vection is not yet properly resolved on kilometer-scale resolutions. Therefore, shallow807

clouds such as stratocumulus clouds are still distorted in the storm-resolving simulations808

we use as the source of our training data (Stevens et al., 2020). To properly capture shal-809

low clouds it could be advisable to further increase the resolution of the high-resolution810

model, training on coarse-grained output from targeted large-eddy simulations (Stevens811

et al., 2005) or observations.812

A crucial next step will be to test the cloud cover schemes when coupled to Earth813

system models, including ICON. We decided to leave this step for future work for sev-814

eral reasons. First, our focus was on the equation discovery methodology and the anal-815

ysis of the discovered equation. Second, our goal was to derive a cloud cover scheme that816

is climate model-independent. Designing a scheme according to its online performance817

within a specific climate model decreases the likelihood of inter-model compatibility as818

the scheme has to compensate the climate model’s parameterizations’ individual biases.819

For instance, in ICON, the other parameterizations would most likely need to be re-calibrated820

to adjust for current compensating biases, such as clouds being ‘too few and too bright’821

(Crueger et al., 2018). Third, the metrics used to validate a coupled model remain an822

active research area, and at this point, it is unclear which targets must be met to accept823
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a new ML-based parameterization. That being said, the superior transferability of our824

analytical scheme to the ERA5 reanalysis data not only suggests its applicability to ob-825

servational data sets, but also that it may be transferable to other Earth system mod-826

els.827

In addition to inadequacies in our training data (see above), which somewhat ex-828

acerbate the physical interpretation of the derived analytical equations, our current ap-829

proach has some limitations. Symbolic regression libraries are limited in discovering equa-830

tions with a large number of features. In many cases, five features are insufficient to un-831

cover a useful data-driven equation, requiring a reduction of the feature space’s dimen-832

sionality. To measure model complexity, we used the number of free parameters, disre-833

garding the number of features and operators. Although the number of operators in our834

study was roughly equivalent to the number of parameters, this may not hold in more835

general applications and the complexity of individual operators would need to be spec-836

ified (as in Appendix C).837

Our approach differs from similar methods used to discover equations for ocean sub-838

grid closures (Ross et al., 2023; Zanna & Bolton, 2020) because we included nonlinear839

dependencies without assuming additive separability, instead fitting the entire equation840

non-iteratively. By simply allowing for division as an operator in our symbolic regres-841

sion method, we found rational nonlinearities in the equation whose detection would al-842

ready require modifications such as Kaheman et al. (2020) to conventional sparse regres-843

sion approaches. Despite our efforts, the equation we found is still not as accurate as an844

NN with equivalent features in the cirrus-like regime (the Hellinger distance between the845

analytical scheme and the DYAMOND cloud cover distribution was more than twice as846

large as for the NN). Comparing the partial dependence plots of the equation with those847

of the NN could provide insights and define strategies to further extend and improve the848

equation, while reducing the computational cost of the discovery. There are various meth-849

ods available for utilizing NNs in symbolic regression for more than just feature selec-850

tion, one of which is AIFeynman (Udrescu et al., 2020). While AIFeynman is based on851

the questionable assumption that the gradient of an NN provides useful information, a852

direct prediction of the equation using recurrent neural networks presents a promising853

avenue for improved symbolic regression (Petersen et al., 2021; Tenachi et al., 2023).854

Nonetheless, our simple cloud cover equation already achieves high performance.855

Our study thus underscores that symbolic regression can complement deep learning by856

deriving interpretable equations directly from data, suggesting untapped potential in other857

areas of Earth system science and beyond.858
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Figure A1. The first row shows maps of I1(RH, T ), I2(∂zRH) and I3(qc, qi) on a vertical

layer with an average height of 1490m. In the second row we zoom in on the contribution of the

term in I1 corresponding to the a5-coefficient on three different height levels (roughly at 11 km,

4 km, 320m). All plots are averaged over 10 days (11 Aug–20 Aug, 2016). The data source is the

coarse-grained three-hourly DYAMOND data.

Appendix A Global Maps of I1, I2, I3859

In this section, we plot average function values for the three terms I1, I2, and I3860

of equation (10). We focus on the vertical layer roughly corresponding to an altitude of861

1500m to analyze if one of the terms would detect thin marine stratocumulus clouds.862

Due to their small vertical extent, these clouds are difficult to pick up on in coarse cli-863

mate models, which constitutes a well-known bias. To compensate for this bias, the cur-864

rent cloud cover scheme of ICON has been modified so that relative humidity is artifi-865

cially increased in low-level inversions over the ocean (Mauritsen et al., 2019).866

Analyzing Fig A1, we find that the regions of high I2-values correspond with re-867

gions typical for low-level inversions and low-cloud fraction (Mauritsen et al., 2019; Muhlbauer868

et al., 2014). These I2-values compensate partially negative I1- and I3-values in low-cloud869

regions of the Northeast Pacific, Southeast Pacific, Northeast Atlantic, and the South-870

east Atlantic. The I3-term decreases cloud cover over land and is mostly inactive over871

the oceans due to the abundancy of cloud water. The I1-term is particularly small in the872

dry and hot regions of the Sahara and the Rub’ al Khali desert and largest over the cold873

poles. The a5-term is the only term in I1 that cannot be explained as a linear or a cur-874

vature term. In the upper troposphere, the term is negative due to relatively cold and875

dry conditions. In August, temperatures are coldest in the southern hemisphere, so the876

term has a strong negative effect, especially over the South Pole. In the middle tropo-877

sphere, temperatures are near the average of 257K, weakening the term overall. Neg-878

ative patches in the subtropics are due to the dry descending branches of the Hadley cell.879

The lower troposphere is relatively warm, especially in the tropics, resulting in a large880

positive a5-term under humid conditions, and a negative term under dry conditions.881
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Figure B1. The distributions of cloud water and cloud ice on storm-resolving scales (2.5 km

DYAMOND Winter data). For positive values we approximate these distributions very loosely

with exponential distributions.

Appendix B The Sensitivity of Cloud Cover to Cloud Water and Ice882

883

In Equation (10), cloud cover is more sensitive to cloud ice than cloud water. In884

this section, we show that we can explain this difference in sensitivity from the storm-885

scale distributions of cloud water and ice alone (Fig B1). On storm-resolving scales, a886

grid cell is fully cloudy if cloud condensates qt exceed a small threshold a > 0. Oth-887

erwise it is set to be non-cloudy. We can thus express the expected cloud cover as the888

probability of qt exceeding the threshold a889

E[C] = P[qt > a] =

∫ ∞

a

fqt(qt)dqt, (B1)

where fx is the probability density function of some variable x. As we can express cloud890

condensates as a sum of cloud water qc and cloud ice qi, we can also derive fqt from fqc891

and fqi by fixing qt and integrating over all potential values for qc892

fqt(qt) =

∫ qt

0

fqc(z)fqi(qt − z)dz. (B2)

In the following, we introduce the subscript s as a placeholder for either liquid or ice.
According to Fig B1, the storm-resolving cloud ice/water distributions feature distinct
peaks at qs = 0, which can be modeled by weighted dirac-delta distributions. For qs >
0, we can approximate fqc and fqi with exponential distributions. After normalizing the
distributions so that their integrals over qs ≥ 0 yield 1 we arrive at

fqs(qs) = (λs exp(−λsqs) + wsδ(qs))/(ws/2 + 1).

By rephrasing ws in terms of λs and µs, the mean of fqs , we get

fqs(qs) = λsµs(λs exp(−λsqs) + (−2 + 2/(λsµs))δ(qs)). (B3)

By plugging in the expressions (B3) and (B2) into equation (B1) and letting a → 0+

we find the expected cloud cover to be a function of the shape parameters λs and the
means µs for cloud water and ice

E[C] = −3λiλcµiµc + 2λiµi + 2λcµc. (B4)
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We can relate this expression to a8 and a9 by expanding I3 to first order around the ori-
gin

I3(qc, qi) ≈ −1/ϵ+ qc/(a8ϵ
2) + qi/(a9ϵ

2)− qcqi/(a8a9ϵ
3). (B5)

By comparing (B4) and (B5) we arrive at the following analogy for qs ≈ µs:

2λl ≈ 1/(a8ϵ
2) and 2λi ≈ 1/(a9ϵ

2).

We conclude that the larger the shape parameter, i.e., the faster the distribution tends893

to zero, the smaller we expect the associated parameter to be. Based on Fig B1 we have894

λi > λc, which explains why a9 is smaller than a8. In other words, why I3 is more sen-895

sitive to cloud ice than cloud water.896

Appendix C PySR Settings897

First of all, we do not restrict the number of iterations, and instead restrict the run-
time of the algorithm to ≈ 8 hours. We choose a large set of operators O to allow for
various different functional forms (while leaving out non-continuous operators). To aid
readability we show the operators applied to some (x, y) ∈ R2 which we denote by su-
perscripts. To account for the different complexity of the operators, we split O into four
distinct subsets

O
(x,y)
1 = {x · y, x+ y, x− y,−x}

O
(x,y)
2 = {x/y, |x|,

√
x, x3,max(0, x)}

O
(x,y)
3 = {exp(x), ln(x), sin(x), cos(x), tan(x), sinh(x), cosh(x), tanh(x)}

O
(x,y)
4 = {xy,Γ(x), erf(x), arcsin(x), arccos(x), arctan(x), arsinh(x), arcosh(x), artanh(x)}

of increasing complexity. The operators in O2/O3/O4 are set to be 2/3/9 times as com-898

plex as those in O1. In this manner, for instance x3 and (x ·x) ·x have the same com-899

plexity. Furthermore, we assign a relatively low complexity to the operators in O3 as they900

are very common and have well-behaved derivatives. With the factor of 9, we strongly901

discourage operators in O4. We expect that for every occurrence of a variable in a can-902

didate equation it will also need to be scaled by a certain factor. We do not want to dis-903

courage the use of such constant factors or the use of variables themselves and leave the904

complexity of constants and variables at their default complexity of one.905

We obtain the best results when setting the complexity of the operators in O1 to906

3 and training the PySR scheme on 5000 random samples. Other parameters include the907

population size (set to 20) and the maximum complexity of the equations that we ini-908

tially set to 200 and reduced to 90 in later runs.909

Appendix D Selected Symbolic Regression Fits910

This section lists all equations found with the symbolic regression libraries GP-GOMEA
or PySR that are included in Fig 2, ranked in increasing MSE order. In brackets we pro-
vide the MSE/number of parameters. We list the equations according to their MSE. The
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equations that lie on the Pareto frontier are highlighted in bold:

1) PySR [103.95/11] :

f(RH, T, ∂zRH, qc, qi) = 203RH2 + (0.06588RH− 0.03969)T 2 − 33.87RHT + 4224.6RH

+ 18.9586T − 2202.6 + (2 · 1010∂zRH+ 6 · 107)(∂zRH)2 − 1/(8641qc + 32544qi + 0.0106)

2) PySR [104.26/19] :

f(RH, T, ∂zRH, qc, qi) = (1.0364RH− 0.6782)(0.0581T − 16.1884)(−44639.6∂zRH+ 1.1483T − 262.16)

+ 171.963RH− 1.4705T + 158.433(RH− 0.60251)2 + (∂zRH)2(2 · 1011qc − 8 · 107RH+ 7 · 107) + 316.157

+ 93319qi − 1/(12108qc + 39564qi + 0.0111)

3) PySR [106.52/12] :

f(RH, T, ∂zRH, qc, qi) = (57.2079RH− 34.4685)(3.0985RH + 73.1646(0.0039T − 1)2 − 1.8669) + 123.175RH

− 1.4091T + 1.5 · 107(∂zRH)2(10619qc − 4.9155RH + 4.7178) + 333.1− 1/(10367qc + 35939qi + 0.0111)

4) PySR [106.95/11] :

f(RH, T, ∂zRH, qc, qi) = 19.3885(3.0076RH− 1.8121)(3.2825RH + 73.1646(0.0039T − 1)2 − 1.9777)

+ 118.59RH− 1.423T + 1.5 · 107(3.0125− 1.0129RH)(∂zRH)2 + 339.2− 1/(9325qc + 34335qi + 0.0109)

5) PySR [106.99/10] :

f(RH, T, ∂zRH, qc, qi) = (58.189RH− 35.0596)(3.3481RH+ 73.1646(0.0039T − 1)2 − 2.0172)

+ 116.873RH− 1.4211T + 3.6 · 107(∂zRH)2 + 339.9− 1/(9237qc + 34136qi + 0.0109)

6) PySR [111.76/15] :

f(RH, T, ∂zRH, qc, qi) = (3.2665RH− 2.9617)(0.0435T − 9.0274)(16073.2∂zRH+ 0.3013T − 68.4342)

97.5754RH− 0.6556T + 175 + 123823qi − 1/(9853qc + 36782qi + 0.0112)

7) GP-GOMEA [121.89/13] :

f(RH, T, qc, qi) = 8.459 exp(2.559RH)− 33.222 sin(0.038T + 109.878) + 24.184

− sin(3.767
√
|98709qi − 0.334|)/(30046qi + 5628qc + 0.01)

8) GP-GOMEA [136.64/11] :

f(RH, T, qc, qi) = (8.65RH− 0.22T − 93.14)
√
|0.62T − 414.23|+ 2368− 1/(28661qi + 4837qc + 0.01)

9) GP-GOMEA [159.80/9] :

f(RH, qc, qi) = 0.009e8.725RH + 12.795 log(229004qi + 0.774(e11357qc − 1))− 178246qc + 66

10) GP-GOMEA [161.45/12] :

f(RH, T, qc, qi) = (0.028e6.253RH + 5RH− 0.076T + 4)/(183894qi + 0.73e6565qc−91207qi − 0.62) + 92.3

Note that the assessed number of parameters is based on a simplified form of the911

equations in terms of its normalized variables. The amount of parameters in a given equa-912

tion is at least equal to the assessed number of parameters minus one (accounting for913

the zero in the condensate-free setting).914

Open Research915

The cloud cover schemes and analysis code are preserved (Grundner, 2023). DYAMOND916

data management was provided by the German Climate Computing Center (DKRZ) and917

supported through the projects ESiWACE and ESiWACE2. The coarse-grained model918

output used to train and evaluate the neural networks amounts to several TB and can919

be reconstructed with the scripts provided in the GitHub repository.920
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