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Abstract—In this work, we investigate cache placement strate-
gies for layered video content. We consider a library of video
files that can be requested in different quality levels, according
to a specific distribution. The study involves formulating and
solving two distinct optimization problems to determine the most
effective approach to cache placement. Our aim is to compare the
following strategies: placement strategy which reduces congestion
on the backhaul link by minimizing the number of transmissions
necessary to meet user requests, and placement strategy which
maximizes the probability of users being fully served from cached
content. As shown in the solutions, these two performance metrics
lead to different solutions for content that needs to be cached.

I. INTRODUCTION

The increasing demand for multimedia video content with
varying quality definitions, low latency constraints, and the
need to conserve valuable backhaul resources has presented
new design challenges to network operators. Edge caching is
a key technology solution to relieve network core congestion,
and is gaining momentum in both the research and industry
communities. This technique involves caching intended con-
tent at the edge of the network [1]–[3], which significantly
reduces backhaul traffic, latency, and power consumption.
Two-step caching strategy is employed to achieve this goal,
involving pre-fetching content at the edge (e.g. at small base
stations, relays or helpers) during network off-peak periods
(placement phase) to serve users without consuming backhaul
capacity during network congestion (delivery phase).

Extensive research has been focused to developing methods
for optimizing video content caching based on specific net-
work metrics. Users often specify their desired video quality,
such as a certain resolution for streaming services like Netflix
or YouTube [4]. To address this demand, scalable video coding
(SVC) is an encoding technique that offers multiple spatial
resolutions, frame rates, and signal-to-noise ratios [5].

SVC divides a video into a sequence of ordered layers that
define varying qualities, starting with a base layer (layer one)
and followed by a number of enhancement layers. A user who
requests the basic layer should only receive layer one, while
those who request higher quality should receive all previously
encoded lower levels. However, due to the limited capacity of
caches and the vast amount of available content, it’s necessary
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to develop suitable placement schemes to efficiently select
which SVC-encoded video content should be cached.

Several studies have investigated the optimization of video
content placement for non-uniform demands in order to
improve cache hit probability and network throughput. For
instance, [6]–[8] examined the placement optimization of
video content. In [9], the distribution of layered video over
the Internet via caching was investigated with the aim of
maximizing the revenue of a streaming service. Another
optimization placement problem was studied in [10], which
focused on minimizing the average user download time in a
layered video streaming service over a heterogeneous wireless
network. Layered video caching schemes were also explored
in [11], where a popularity priority scheme was compared
to a random caching scheme. The results of both schemes
showed improvement in backhaul offloading and reduction
of video transmission delay. Finally, [4] investigated layered
video caching for distributed networks, proposing caching
policies to optimize the average user delay while allowing
cooperation between different operators.

While various solutions to basic caching problems for
layered video content have been proposed in previous studies
[4], [6]–[11], there is still a gap in the literature regarding
the comparison and evaluation of cache policies aimed at
minimizing backhaul transmissions versus those focused on
maximizing cache hits.

This study aims to explore various optimization metric
targets and examine their placement solutions in a cache-
aided network with layered video content. Specifically, we
formulate two optimization problems for SVC videos. The
first problem aims to reduce the average transmissions over
the backhaul link (i.e., transmissions from the server), while
the second problem focuses on maximizing the probability that
users are fully served by the content already present in the
cache. The network under consideration is a two-tier system
comprising a server, a cache-aided transmitter, and multiple
users. Although the network appears simple, we demonstrate
that the placement problem’s solution is not straightforward.
The main question we seek to answer is whether the cache
should be filled with all layers of the most popular videos
or the lower layers of all videos. We address this question
by formulating two different optimization problems and pre-
senting algorithms to solve them. In the results section, we
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Fig. 1. System model: cache-aided transmitter is connected to the server
through the backhaul link (dashed red) and multiple users are connected to
the cache.

examine the behavior of each placement scheme and compare
their performances. Additionally, we analyze the sensitivity of
the proposed optimization problems to the distribution of video
requests. Specifically, we investigate the impact of popularity
skewness on the performance of each proposed solution.

II. SYSTEM MODEL

We consider a two-tier network composed by a server and
a cache-aided transmitter that provides video services to a
number of users, as depicted in Fig 1. The link between the
server and the cache-aided transmitter is referred to backhaul
link, which is illustrated with a dashed red line in the figure.
We assume that users has no direct connection to the server.

The server possesses a library of N videos denoted by
V . Each video v has up to Q different quality levels,
with the l-th level of the i-th video represented as v(i, l).
The base layer with l = 1 contains essential informa-
tion, while the higher layers correspond to increased video
quality. The cache-aided transmitter has a finite capacity
and can store up to M > 0 base levels. The set of layers
is denoted as L = {1, 2, ..., Q}, while the video library
containing all qualities of each video can be expressed as
V = {v(1, 1), ..., v(1, Q), ..., v(N, 1), ..., v(N,Q)} with a car-
dinality of |V| = N ·Q. The successful reception of video
i of quality l requires the reception of all layers up to the
lth, i.e. content v(i, 1) to v(i, l). We assume that all videos
of the same quality level have the same size, denoted by
s(i, l)1, where the size of the basic level is normalized to
one, i.e. s(i, 1) = 1 ∀i. The size of higher quality levels is
a fraction of the base level and typically decreases with l,
i.e. s(i, 1) ≥ s(i, 2) ≥ ... ≥ s(i, Q) [5]. When the l-th quality
level is requested, the network must deliver a certain amount
of content, which is equal to the sum of the sizes of all the
layers up to and including the l-th layer, i.e.

∑l
j=1 s(i, j).

The probability of the i−th video being requested, indepen-
dently from its quality, γi follows the Zipf distribution with
parameter α leading to

γi =
1/iα∑N
j=1 1/j

α
i = 1, ..., N. (1)

1Bytes are the standard unit of measure, but they can be abstracted within
the context of our problem.

The probability of requesting the quality l of the i-th video
v(i, l) is denoted by β(i, l) and for a given video i, implies
that

∑Q
l=1 = β(i, l) = 1.

The caching strategy consists of two phases. Firstly, during
the placement phase, the cache is filled with content based
on the selected optimization strategy, and this is done offline.
Secondly, during the delivery phase, user demands are served
by the network. If the requested content is present in the cache,
users are directly served from the transmitter. However, if the
content is not available in the cache, it is sent from the server to
the cache, which acts as relay to the users, using the backhaul
link.

To formulate our optimization problems, we require a
decision variable. We use the binary variable x(i, l), which
is defined as follows:

x(i, l) :=

{
1, if the i-th video of quality l is placed in cache
0, otherwise.

We represent the cache placement decisions using the matrix
X, where the value of x(i, l) indicates whether the video v(i, l)
is present in the cache or not.

In this context, we study the placement optimization with
the two different strategies. The first strategy focuses on
minimizing the average amount of content to be transmitted via
the backhaul link, and is referred as average transmission rate
(ATR) scheme. The second strategy prioritizes maximizing
the probability that users can be served entirely from cached
content, referred as layered cache hit ratio (LCP) scheme. Let
us illustrate the difference between the two strategies through
the following example.

Example 1. Consider a unique video with three different
quality versions, V = {v(1, 1), v(1, 2), v(1, 3)}, with request
probabilities given by

β(1, 1) = 0.3, β(1, 2) = 0.6, β(1, 3) = 0.1.

Assume that the size of each version is

s(1, 1) = 1, s(1, 2) = 0.75, s(1, 3) = 0.25

while the memory size is M = 1. Let us now analyze each
placement strategy:
(i) ATR: minimize the average transmission rate, the optimal
solution is to place the content v(1, 2) and v(1, 3) in cache.
However, none of the user requests is fully served by the cache,
and hence the hit probability is

Phit = 0.

The average transmission rate RATR can be evaluated as
follows

RATR = s(1, 1) · β(1, 1) = 0.3.

(ii) LCP: the optimal solution to maximize the layered hit
probability is to place the content v(1, 1) in cache. The
probability that a user is fully served by the cache corresponds
to the probability that v(1, 1) is requested and that is

Phit = 0.30.



Instead in this setup the average transmission rate RLCP from
the master node is

Phit = 0.30.

However, this strategy may lead to a higher average transmis-
sion rate RLCP from the master node compared to the ATR
scheme, indeed

RLCP = s(1, 2) · β(1, 2) + s(1, 3) · β(1, 3)
= 0.75 · 0.6 + 0.25 · 0.1 = 0.4735

In practical scenarios, implementing the ATR scheme can
potentially reduce congestion and improve network efficiency.
On the other hand, the LCP scheme can enhance the user ex-
perience, especially when the backhaul link is not accessible.

This example illustrates how the choice of caching optimiza-
tion strategy can significantly impact performance outcomes.

III. AVERAGE TRANSMISSION RATE OPTIMIZATION

We define the average transmission rate R as the average
amount of traffic that the server needs to transmit to fulfill
users requests. If a requested content is not present in the
cache, then the server transmits it through the backhaul link.
We note that x(i, l) = 1 when the i-th video of quality l is in
the cache, and x(i, l) = 0 otherwise. Therefore, the amount
of traffic that the master has to send can be expressed as

[1− x(i, l)] s(i, l).

If we consider the probability of each content being requested,
we can calculate the expected amount of transmission that the
server needs to support. Thus, we can express the average
transmission rate as the sum of the product of the probability
of a video of a particular quality being requested and the size
of the content that needs to be transmitted if it is not present
in the cache

R =

N∑
i=1

Q∑
l=1

γi β(i, l) [1− x(i, l)]s(i, l). (2)

In this scheme, the objective is to minimize the transmission
from the server, which is represented by the objective function
(2). The optimization problem for minimizing the average
transmission rate over the backhaul link can be formulated
as follows

min

N∑
i=1

Q∑
l=1

γi β(i, l) [1− x(i, l)] s(i, l) (3)

N∑
i=1

Q∑
l=1

s(i, l)x(i, l) ≤ M (4)

x(i, l) ∈ {0, 1} ∀i∀l (5)

where constraint (4) ensures that the total size of the cached
content does not exceed the cache size M. Without loss of
generality, in (4) is assumed that

∑N
i=1

∑Q
l=1 s(i, l) > M,

otherwise, the problem is trivial. Constraint (5) accounts for
the binary nature of the decision variable.

The problem described in (3)-(5) can be can be reformulated
as the Knapsack problem (KP) [12]. The KP involves a set of
items characterized by a profit pi, a weight wi, and a bin
of capacity b. The goal is to select a subset of items that fit
into the bin and maximize the overall profit. In our caching
scenario, each item corresponds to a video quality level, the
profit represents the probability of being requested, and the
weight represents the video size. To transform our objective
function into a maximization function like in the Knapsack
problem, we can write it as follows

min

N∑
i=1

Q∑
l=1

γi β(i, l) [1− x(i, l)] s(i, l)

= max

N∑
i=1

Q∑
l=1

γi β(i, l)x(i, l) s(i, l)

The optimization problem presented in (3)-(5) can be solved
using the algorithm proposed by Dantzig [12] as a simple
solution to the Knapsack problem. The algorithm involves
sorting the items in decreasing order according to their profit
(probability) and gradually filling the available space until it is
full. Algorithm 1 shows the version of the algorithm adopted
for our caching scenario.

Algorithm 1: Average transmission rate (ATR) opti-
mization
Input: γi, β(i, l), s(i, l),M
Output: X

1 for each v(i, l) associate the following values:
2 pk = γi · β(i, l) nk = i , tk = l
3 sort items according to: p1 ≥ p2 ≥ ... ≥ pNQ

4 M̄ = M residual cache capacity
5 x(i, l) = 0, i = 1, ..., N, l = 1, ..., Q
6 for i = 1, ..., NQ do
7 if s(ni, ti) ≤ M̄ then
8 x(i, l) = 1
9 M̄ = M̄− s(ni, ti)

10 else
11 x(i, l) = M̄

s(ni,ti)

12 return X
13 end
14 end

IV. LAYERED CACHE HIT PROBABILITY OPTIMIZATION

We define the layered cache hit probability as the probability
that a request for a video of quality l is fully served by cached
content, denoted as Phit. In a layered caching system, a layered
cache hit occurs when a user receives from the cache all l lay-
ers related to the i-th content, i.e., v(i, 1), ..., v(i, l − 1), v(i, l).
The layered cache hit ratio can be calculated as follows

Phit =

N∑
i=1

Q∑
l=1

γi β(i, l)x(i, l). (6)



Note that optimizing the layered cache hit schemes implies
that if video v(i, l) is present in cache, i.e x(i, l) = 1, then
all lower qualities versions of the same video should be also
present, i.e. x(i, 1) = 1, ..., x(i, l − 1) = 1. This scheme is
justified by the fact that a service operator might choose this
strategy, for example, when there is an expected significant
increase in network traffic, and the backhaul link may not
have the capacity to handle it. Additionally, this strategy can
be suitable in cases where the backhaul link is unavailable, and
the priority is to satisfy users with as much cached content as
possible.

We aim to optimize the content placed in the cache in order
to maximize the layered cache hit ratio. The objective function
of our optimization problem is represented by Equation (6),
which can be defined as follows

max

N∑
i=1

Q∑
l=1

γi β(i, l)x(i, l) (7)

N∑
i=1

Q∑
l=1

s(i, l)x(i, l) ≤ M (8)

x(i, l − 1) ≥ x(i, l) ∀i ∀l (9)
x(i, l) ∈ {0, 1} ∀i ∀l (10)

Constraint (8) ensures that the total size of the content cached
does not exceed the size of the cache M. It is assumed, without
loss of generality, that the sum of the sizes of all cached
content is greater than M, otherwise the problem is trivial.
Constraint (9) ensures that if the l-th level of a video content
is cached, then all previous levels of that content must also be
cached. Lastly, constraint (10) accounts for the binary nature
of the decision variable.

We present an algorithm to solve the optimization problem
defined by (7)-(10). The first step is similar to the previous
algorithm, where each video i of quality l is sorted in descend-
ing order according to the probability of being requested. The
video with the highest probability that is not yet in cache is
referred to as v(i, l), and it is examined at each step of the
algorithm while taking into account the remaining space in
cache. The main point of the algorithm lies in two key checks
before deciding to cache the video under examination. First, if
the video has a quality level greater than one (i.e. v(i, l > 1)),
all of the previous levels must also be cached. Second, if the
video under consideration is of the base quality level (i.e.
v(i, 1)), the algorithm checks whether, for each video already
placed in cache, the sum of probabilities of higher layers is
greater than the probability of requesting v(i, l). If the sum
is greater, the upper levels of content already cached are also
cached. Otherwise v(i, 1) is cached. Whenever a content is
allocated to the cache, it is no longer taken under account in
the algorithm. Algorithm 2 provides a pseudocode of how to
implement the algorithm

TABLE I
SYSTEM MODEL PARAMETERS

l s(i, l) β(i, l)
1 1 0.25
2 0.7 0.10
3 0.15 0.15
4 0.15 0.50

V. BACKHAUL OFFLOADING INDEX

To gain a more comprehensive understanding of the opti-
mized caching schemes, we also consider the backhaul of-
floading index metric and investigate their performance when
the distribution of requested videos changes.

The backhaul offloading index, denoted as O, quantifies
the fraction of requested video traffic that can be transmitted
directly from the cache without involving the backhaul link.
We have that

O =

∑N
i=1 γi

∑Q
l=1 β(i, l) s(i, l)x(i, l)∑N

i=1 γi
∑Q

l=1 β(i, l) s(i, l)
(3)

where the numerator represents the traffic offloaded from the
backhaul link, while the denominator represents the total traffic
requested, including both the content served by the cache and
the content transmitted via the backhaul link. A higher value
of the backhaul offloading index indicates better performance
of the caching placement scheme.

We show in the results how the behavior of the cache
placement solutions when the distribution of requested videos
deviates from the distribution used for optimizing the LCP
or the ATR. Such deviations can arise due to inaccuracies
in estimating the distribution or infrequent updates of the
cache leading to a mismatch between the distribution from
the last placement period and the actual distribution of user
demands. Recalling the Zipf distribution given in (1) and its
skew parameter α then the new skew parameter ω which can
change resulting in a new skew parameter

ω > α or ω < α.

A change in α can cause requests to be concentrated in fewer
popular files or, conversely, to be distributed more uniformly
across more files.

VI. NUMERICAL RESULTS

We evaluate the average transmission load, the layered cache
hit probability and the backhaul offload for both LCP and
ATR schemes. In our scenarios, unless otherwise specified,
it is assumed that each file is requested according the Zipf
distribution with skew parameter α = 0.8. We consider to have
N = 100 different video content each with Q = 4 different
quality level. For simplicity, we assume the l-th quality level,
independently from the video, has the same size and the same
probability to be requested. In table I are reported the values
assumed for each quality level.

In Fig. 2 the average transmission rate R over the backhaul
link as a function of the memory size M for different values
of the skew parameter α of the Zipf is plotted. Blue curves



Algorithm 2: Layered cache hit prob optimization
Input: γi, β(i, l), s(i, l),M
Output: X

1 for each v(i, l) associate the following values:
2 pk = γi · β(i, l); nk = i ; tk = l
3 sort items according to: p1 ≥ p2 ≥ ... ≥ pNQ

4 L← n1, n2, ..., nNQ add the index of sorted to a list
5 M̄ = M residual cache capacity
6 x(i, l) = 0; i = 1, ..., N ; l = 1, ..., Q
7 create a empty check list: C
8 while M̄ > 0 do
9 nk ← L.index(1)

10 if s(nk, tk) ≥ M̄ then
11 if tk > 1 then
12 for q = 1, ..., tk do
13 if s(nk, q) ≤ M̄ then
14 x(nk, q) = 1
15 M̄ = M̄− s(nk, q)
16 else
17 x(nk, tk) = M̄/s(nk, tk)
18 end
19 end
20 if tk < Q then
21 C.add(nk)
22 end
23 else
24 for ∀c ∈ C do
25 pmin = 1
26 nk ← C.index(1)
27 Mcheck = M̄ xcheck = 0 Pcheck = 0
28 for i = tk + 1, ..., Q do
29 if s(nk, i) ≤Mcheck then
30 Pcheck = Pcheck + pi
31 Mcheck = Mcheck − s(nk, i)
32 xcheck(nk, i) = 1
33 end
34 if Pcheck ≤ pmin then
35 pmin = Pcheck,
36 xmin = xcheck

Mmin = Mcheck
37 end
38 end
39 if pmin ≤ pk then
40 x = x+ xmin, M = Mmin

41 delete from C and L cached content
42 else
43 x(nk, tk) = 1, M = M− s(nk, tk)
44 C.add(nk)
45 end
46 end
47 end
48 else
49 x(nk, tk) = M̄/s(nk, tk)
50 end
51 end
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Fig. 2. Average transmission rate R over the backhaul link in function of the
cache memory size M for LCP and ATR algorithm, and different values of
skew distribution parameter α.
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Fig. 3. Layered cache hit probability Phit in function of the cache memory
size M for LCP and ATR algorithm, and different values of skew distribution
parameter α.

represent results for α = 0.4, red for α = 0.8 while green for
α = 1.2. The black curve represents a random policy which
fills the cache without any optimization. Squared markers
represent the caching scheme for optimizing R, i.e. ATR, while
circle markers for optimizing Phit, LCP. As expected, the
average transmission from the server R decreases when the
dimension of the transmitter cache M increases. We observe
the effectiveness of the ATR scheme since, given a value of
M and for each value of α, the ATR scheme requires less
transmission from the backhaul than the LCP scheme. For
fixed value of M and increasing values of α, the average
transmission rate decreases. The reason is that the majority
of request are concentrated into a small number of files. Note
that, for the same reason when the skew parameter increases
we have that the LCP tends to the results of the ATR scheme.

In Fig. 3 the layered cache hit probability as a function
of the memory size M for different values of the skew
parameter α of the Zipf distribution is plotted. Also in this
case, we can observe that there is a gain in terms of hit
probability by placing the content according the LCP instead
of the ATR scheme. For a given cache size M, layered hit
probability is higher when the values of α are higher. The
trend of performance between the LCP and ATR when the
skew parameter increases is also observed in this plot. Both



0 10 20 30 40 50 60 70 80 900

0.2

0.4

0.6

0.8

1

M, cache size

O
,b

ac
kh

au
lo

ffl
oa

di
ng

LCP ω = 1.2 LCP α = 0.8 LCP ω = 0.4
LCP ω = 1.2 ATR α = 0.8 ATR ω = 0.4
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Fig. 2 and Fig. 3 show the importance of an appropriate
caching placement algorithm to obtain better performance in
the network. Specially when the parameter α is low, the gain
in terms of average transmission in the case of ATR and in
layered cache probability in the case of LCP are notable.

In Fig. 4 the backhaul offloading traffic as a function of the
memory size M is plotted. In all curves presented in this plot,
we assume that the placement given by the LCP and the ATR
schemes are fixed and were derived for a scenario of Zipf
distribution α = 0.8. Red curve represent the results obtained
by the LCP and ATR schemes with α = 0.8. Blue curves rep-
resent the performance when a change of distribution occurs,
i.e. ω = 0.4 while green curves represent a distribution with
ω = 1.2. We first observe that the ATR placement solution
achieves higher values of the backhaul offload with respect
to the LCP for each scenario depicted. Interestingly, the plot
shows that if the Zipf distribution changes from α = 0.8 to
ω = 1.2 then better results are obtained and the network
amount of offloaded traffic in the backhaul is higher. This
is always because of the effect of a smaller set of files are
requested with higher probability. The opposite effect occurs
for a change to ω = 0.4 and in this case the amount of traffic
in the backhaul decreases with respect to α = 0.8.

Finally, we show the validity of the optimized results given

by LCP and ATR in our last plot of Fig. 5. We also assumed
in this case the system parameters given in Table I. We reduced
the a library video content to N = 10 due to the expensive
computation time that Monte-Carlo needs. The red markers
indicates the result obtained for optimizing the layered cache
hit probability while blue markers indicates the result obtained
for optimizing the average transmission rate. Circle markers
indicate results obtained with our algorithm proposed while
crosses the Monte-Carlo simulations. In both cases, we can
see the perfect match between the solution of the algorithm
proposed and the simulation results.

VII. CONCLUSIONS

We have presented two caching optimization problems for
layered video content. The first problem aims to minimize
the average transmission through the backhaul link, while
the second problem seeks to maximize the probability of
completely serving users with cached content.

To solve them, we proposed efficient algorithms, whose
effectiveness was cross-checked through Monte-Carlo sim-
ulations. Results showed that different caching placement
strategies can lead to diverse outcomes concerning the average
transmission, layered hit probability, and offloaded backhaul
traffic. These findings offer valuable insights into achieving a
balanced allocation of memory and backhaul resources when
designing a cache-enabled network.
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