Supported by:

on the basis of a decision by the German Bundestag

FAST CALIBRATION OF HELIOSTATS

Julian Krauth 26th Cologne Solar Colloquium June 22, 2023

- High number of heliostats
- High pointing accuracy required
- Faster calibration → shorter commissioning time!

Many different methods

Sattler et al. – Solar Energy 207, 110 (2020)

3

Many different methods

Sattler et al. – Solar Energy 207, 110 (2020)

Alternative technique from NREL

Example Technique: Non-Intrusive Optical (NIO) Tool

Objectives

- In-situ technology suitable for utilityscale heliostat fields
- Measure slope error, canting error and tracking error

• Approaches

- Drone-driven camera
- Reflectometry
- Automated image-processing through computer vision and machine learning

• Status

- Entered into demonstration stage
 - NSTFF (done)
 - Crescent Dunes (done)
 - Cerror Dominador (planned)

Guangdong Zhu, NREL

5

The measurement principle (HelioPoint method)

- LED and camera fitted to a drone
- Normal vector is bisector of LED and camera

The setup

- RTK
- calibrated camera
- strong LED

Tested at the solar tower in Jülich

Solar tower Jülich, DLR

The Image Data

Flight Route Planning

Steps:

1. Definition parameter set

Calibration points by time and date

Flight Route Planning

Steps:

- 1. Definition parameter set
- 2. Building clusters of heliostats

Divide field into subgroups

300

250

200

150

100

50

۲ [m]

Flight Route Planning

Steps:

- 1. Definition parameter set
- 2. Building clusters of heliostats
- 3. Creating the flight pattern

heliostat

0

X[m]

2

3

Uncertainty margin

-1

-2

-3

4

-1

-2

-3

Julian Krauth, DLR, June 22, 2023

Flight Route Planning

Steps:

- Definition parameter set 1.
- Building clusters of heliostats 2.
- Creating the flight pattern 3.
- Deriving flight routes 4.
- → Applicable to industry-sized heliostat fields
- → Effort for 50 MW reference-scenario is feasible

3 flights for one calibration point of entire heliostat field

Image analysis

Image analysis

Julian Krauth, DLR, June 22, 2023

18

Heliostat surface with local normal vectors

Calculate normal vectors using drone position and heliostat position

80.

Extract heliostat normal vectors

-50

Ω

50

100

150

Measured heliostat orientations

Results and Conclusion

DLR and CSP Services have developed a fast method for heliostat calibration

- Projected calibration time of a few weeks for a common 50 MW plant
- No further infrastructure required (but the heliostats)
- Arbitrary calibration points can be measured at any time
- Validation tests conducted in early 2023:
 - 5 heliostats were measured with HelioPoint method and compared against precise data obtained with local QDec-H system
 - Average deviation was <0.5 mrad (with 0.2 mrad STD).
- Industrial application readiness within common research project HelioPoint-II until end of 2023

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

Outlook

Development and optimization is ongoing

Imprint

Topic:	Fast calibration of Heliostats Development of a fast airborne method for efficient and accurate calibration of entire fields of heliostats.
Date:	2023-06-22
Author:	Julian J. Krauth, Christoph Happich, Niels Algner, Rafal Broda, Andreas Kämpgen, Alexander Schnerring, Steffen Ulmer, and Marc Röger
Institute:	Institute of Solar Research, DLR, in collab. with CSP Services
Image credits:	All images "DLR (CC BY-NC-ND 3.0)" or from CSP Services GmbH unless otherwise stated The presentation has been designed using icons from Flaticon.com
Acknowledgements: Felix Göhring (DLR), Oliver Kaufhold (DLR), BMWK	

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag