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Motivation

Grounding lines are subsurface geophysical features that represent the boundary between grounded
iIce and floating ice shelves. Here, ice shelves experience flexure due to tidal forcing, which results in a ¢1

temporary displacement of the grounding line. y InS:R1 ; ’/A¢>12 = A1z ice vetocity + A1z tides

Differential Interferometric SAR (DINSAR) captures the vertical deformation that occurs at the b DINSAR

grounding zone due to tidal forcing. The current approach of manually delineating the grounding line | INSAR;

location (GLL) on DINSAR interferograms is unfeasible on a large scale and inconsistent due to the H 32 = ¢ — b3 H o 4d8
subjective interpretation of human operators. b3 " Grounded ice|
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We developed a workflow that utilizes a deep neural network to automatically delineate grounding lines
In DINSAR interferograms.
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The feature stacks were split into 4142 training tiles and 558 test tiles of dimension 256 x 256 pixels —
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The deviation between predictions and ground truth was computed using e %
the metric for polygons and line segments (PoLiS) [7] .
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Results

 Real and imaginary interferogram components contribute more
towards GLL detection than phase and pseudo coherence

« The network does not fully capture pinning points, small islands and
sharp curves

 The network is robust against mislabeled samples

Features subset Median Median Absolute
deviation [m] Deviation [m]
Phase & pseudo coherence + 209.56 152.24
non-interferometric features
Phase & pseudo coherence 217.04 156.74
Real & imaginary components 139.70 84.10
+
non-interferometric features
Real & imaginary components 163.90 104.60
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