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ABSTRACT:

The reconstruction of 3D scenes from images has usually been addressed with two different strategies, namely stereo and multi-
view. The former requires rectified images and generates a disparity map, while the latter relies on the camera parameters and
directly retrieves a depth map. For both cases, deep learning architectures have shown an outstanding performance. However, due
to the differences between input and output data, the two strategies are difficult to compare on a common scene. Moreover, for
remote sensing applications multi-view data is hard to acquire and the ground truth is either sparse or affected by outliers. Hence, in
this article we evaluate the performance of stereo and multi-view architectures trained on synthetic data resembling remote sensing
images. The data has been and processed and organized to be compatible with both kind of neural networks. For a fair comparison,
training and testing are done only with two views. We focus on the accuracy of the reconstruction, as well as the impact of the depth
range and the baseline of the stereo array. Results are presented for deep learning architectures and non-learning algorithms.

1. INTRODUCTION

Within the computer vision community, the research into 3D
reconstruction has been a recurrent topic. By having two or
more images from the same scene, the task is to reconstruct a
3D representation of such scene based on the matching of cor-
responding points between the images. This concept is help-
ful for many fields, as additional sensors to estimate the dis-
tance to the objects in the area of interest are not required, just
the information captured by the cameras. In the particular case
of remote sensing, sensors to retrieve distance such as LiDAR
or Synthetic-aperture radar (SAR) are expensive and produce a
sparse ground truth with many outliers. Additionally, if the ac-
quisition times of the these sensors differ largely from the one
of the cameras, the measurements might not correspond to the
content of the images. This discrepancy could happen due to
factors such as city growth, seasonal changes, natural disasters,
among others. Therefore, an accurate algorithm for 3D recon-
struction relying only on optical cameras is a valuable resource
for the processing of aerial and satellite images.

Most of the algorithms use either the stereo matching or the
multi-view stereo (MVS) approach. For stereo matching, pairs
of epipolar rectified images are given as input to compute a
disparity map, which will be later converted into a depth map
according to the configuration of the stereo array. The stereo
algorithms generally follow a pipeline consisting of matching
cost computation, cost aggregation, disparity estimation and
disparity refinement (Scharstein and Szeliski, 2002). Contrar-
ily, MVS algorithms deal with two or more views and directly
work in 3D space. A common strategy for computing the depth
is the plane sweep algorithm, where a plane is swung in the 3D
space in front of the camera and depth is computed at each loc-
ation from the different views based on the 2D projections of
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such plane. A widely known pipeline for MVS based on the
plane sweep algorithm is COLMAP (Schönberger et al., 2016).

Lately, deep learning algorithms are leading in terms of ac-
curacy and completeness. However, the stereo matching and
MVS architectures have been developed separately due to the
nature of the datasets and and the output domain (disparity and
depth maps respectively). Even when both would be a viable
solution for the reconstruction of the same scene, this has not
been explored yet. In addition, learning models require large
amounts of data and ground truth, which is hard to acquire and
the ground truth is often incomplete. Hence, using synthetic
data is an option to evaluate the performance of the networks,
as we can generate data in different formats and retrieve all the
required parameters, such as camera extrinsics and intrinsics,
and the configuration of the stereo rig. Thus, synthetic data can
be suitable for both stereo and MVS frameworks.

In this article, we present an evaluation of stereo and MVS deep
learning algorithms applied to the same scenes. We train the al-
gorithms in the same datasets to set a fair comparison, for which
the datasets have been properly adapted. We utilise the SyntCit-
ies dataset from our previous work (Fuentes Reyes et al., 2022),
as this resembles remote sensing aerial imagery and provides all
necessary input data for the selected algorithms and the Scene-
Flow (Mayer et al., 2016) dataset, which has been widely used
for training. Non-learning algorithms are considered as well for
a comparable baseline. As accuracy is a very important factor
in remote sensing applications, such as the generation of Digital
Surface Models (DSMs), we evaluate the prediction error with
a margin of 3 and 1 meters.

Our main contributions are as follow:

• We prepared synthetic data to be compatible with stereo
and MVS frameworks, setting similar training conditions.



• We trained different models and evaluated the performance
in terms of the accuracy for the predicted depth.

• We study the effect of the baseline and occlusions in the
depth predictions.

2. RELATED WORK

In this section we describe some of the existing reconstruction
algorithms as well as the related datasets, some of which are
also used as benchmarks. Detailed differences between stereo
and MVS frameworks are also discussed.

2.1 Stereo networks

Before deep learning frameworks, most of the algorithms fol-
lowed the pipeline mentioned above with matching cost com-
putation, cost aggregation, disparity estimation and disparity
refinement. In these cases, a cost volume is created for the dis-
parity candidates and those disparities with the smallest cost are
selected and refined for the final disparity map. A well known
algorithm derived from this principle is Semi-Global Matching
(SGM) (Hirschmuller, 2008) thanks to its trade-off between ac-
curacy and computational cost. SGM computes the cost along
different paths and penalizes large disparity changes. Similarly,
More Global Matching (MGM) (Facciolo et al., 2015) takes
into account more than one direction for the cost computation
and achieves higher performance than SGM, with slightly more
computational resources.

MC-CNN (Zbontar and LeCun, 2016) was the first deep learn-
ing architecture used in the stereo matching and conceived only
to replace the cost volume generation part, while the refine-
ment was still conducted with no-learning algorithms such as
SGM. After that, some end-to-end networks were designed to
encompass the whole stereo pipeline and generate directly the
disparity map as output. DispNet (Mayer et al., 2016) utilized
an encoder-decoder architecture, whereas GC-Net (Kendall et
al., 2017) included 3D convolutions to enhance the contextual
information. PSMNet (Chang and Chen, 2018) additionally in-
troduced a spatial pyramid pooling module to collect inform-
ation from different scales. GA-Net (Zhang et al., 2019) in-
corporated layers which are a differentiable form of SGM and
led to a performance boost in accuracy, smooth results and im-
proved the estimation on textureless areas. AANet (Xu and
Zhang, 2020) replaced 3D convolutions with intra- and cross-
scale cost aggregation layers, reducing significantly the com-
putational costs, inference times and with little impact on the
accuracy. RAFT-Stereo (Lipson et al., 2021) combined gated
recurrent units (GRUs) and a correlation pyramid, showing a
robust result for textureless and overexposed areas. Newer ar-
chitectures such as STTR (Li et al., 2021) contain Transformers
and offer a good generalization across domains.

For our experiments we selected GA-Net and AANet due to its
accuracy and reduced computational cost respectively. They are
also a common framework to compare with new architectures
and both are based on a cost-volume network.

2.2 Multi-view networks

Multi-view stereo algorithms take two or more views into ac-
count while estimating the depth of the objects in the scene.
The input images do not need to be stereo-rectified and can be
taken from different points of view, but extrinsic and intrinsic

parameters are required to know how the cameras relate to one
another. Normally, the views are sorted according to the camera
position and orientation, so views close together are preferred
as input for the algorithm. For a reference image, n-additional
views are selected to estimate the depth map of the reference
image.

COLMAP (Schönberger et al., 2016) selects the views accord-
ing to the geometric and photogrammetric information, and
then computes the depth estimation through multi-view geo-
metric consistency and further refinement. GIPUMA (Galliani
et al., 2015) generates random 3D planes in space and the most
suitable ones are iteratively propagated to get an accurate depth
map, which is estimated efficiently thanks to its GPU imple-
mentation.

In a similar way to stereo matching, deep learning has also
achieved an outstanding performance for MVS. MVSNet (Yao
et al., 2018) proposed to create a depth volume approach based
on the plane sweep algorithm, where the best candidate of the
volume for each pixel is selected as the depth value. MVSNet is
also the base for the development of newer architectures. Cas-
MVSNet (Gu et al., 2020) improved the efficiency in terms of
computational costs by using a coarse to fine scheme. Here, the
predictions at the coarse volume are taken as a starting point
to build a small volume around the estimated value for the next
stages, reducing the number of simultaneous candidates. In Vis-
MVSNet (Zhang et al., 2020) an additional uncertainty estima-
tion is computed for the visibility of each pixel, including in that
way the information related to the occlusions. Such occluded
pixels are then avoided in the fusion process and generated a
more robust result. Another case is UniMVSNet (Peng et al.,
2022), where a coarse to fine scheme similar to CasMVSNet
is enhanced by a unified representation that deals with the pre-
diction as a regression and a classification task simultaneously.
UniMVSNet did not only show a very good performance, but
can handle the computational resources efficiently.

Another two important cases are R-MVSNet (Yao et al., 2019)
and PatchMatchnet (Wang et al., 2021), although these two are
not based on a depth-volume strategy as the previous cases. R-
MVSNet applies a regularization through a GRU network se-
quentially, reducing the memory requirements with a higher
performance than MVSNet. PatchMatchNet follows an idea
based on PatchMatch (Barnes et al., 2009) similar to GIPUMA,
leading to both good performance and efficient memory. In our
analysis we decided to use UniMVSNet because of its accuracy
and memory efficiency. Besides, it is based on a cost volume
strategy as GANet and AANet.

2.3 Datasets

Deep learning strategies are not only known for their perform-
ance, but also for being data demanding. In the autonomous
driving field for example, the KITTI 2012 (Geiger et al., 2012)
and KITTI (Menze and Geiger, 2015) datasets are regularly not
enough to train a neural network model because of their size
and the incomplete ground truth. To help overcome this, syn-
thetic data can be generated with thousands of samples and ac-
curate ground truth, as the geometric details of the 3D mod-
els can be retrieved by the rendering software. Hence, it is a
common strategy to pre-train the model in a extensive synthetic
dataset and later apply a fine-tuning stage to compensate for the
domain gap. A notable example of synthetic data is the Scene-
Flow dataset, the main reference to train stereo networks. The



dataset comprises more than 35k stereo pairs with correspond-
ing ground truth and a large variety of shapes and textures.

In parallel, datasets have also been developed for the MVS ar-
chitectures. The DTU dataset (Aanæs et al., 2016) made use
of a robot arm to take pictures of small objects from different
directions. Various lighting conditions are also included to en-
hance the color distribution of the images. Another remarkable
case is the Tanks and Temples (T&T) dataset (Knapitsch et al.,
2017) with images taken from real indoors and outdoors en-
vironments, making the 3D reconstruction a challenging task.
Both DTU and T&T are a common benchmark to evaluate the
performance of MVS architectures. However, the ground truth
is not accurate for all the pixels due to the sensor and scene
properties. Same as for stereo matching, the synthetic data also
represent a solution to train or at least pre-train the models. In
this context, BlendedMVS (Yao et al., 2020) is a computer gen-
erated dataset with a large variety of textures, shapes and points
of view that is compatible with MVS frameworks, being a com-
mon reference for training as SceneFlow is for stereo frame-
works.

Still, available large datasets have a format not compatible for
the two studied frameworks. Stereo datasets would require ad-
ditional views from the same scene and the respective camera
parameters to be used in a MVS algorithm. Contrariwise, MVS
datasets would require epipolar rectification to be applied to a
stereo algorithm, which might affect the quality of the ground
truth due to the rectification process. Given this situation, we
refer to the SyntCities dataset, as the stereo pairs also include
the camera parameters, facilitating both stereo and MVS applic-
ations.

3. METHODOLOGY

In the present section we describe how the datasets have been
processed to be compatible with the selected neural networks,
as well as the series of experiments and considerations aiming
to carry a fair comparison of the algorithms.

3.1 Data preparation

As discussed above, available datasets in their current formats
cannot be directly implemented in both stereo and MVS archi-
tectures. Therefore, we have selected only two cases, Scene-
Flow and SyntCities to be processed in a compatible format.

3.1.1 SceneFlow preparation The images included in the
SceneFlow dataset are already paired and fulfill the epipolar
constraints. To apply them for a MVS algorithm we require to
include the camera parameters, which can be derived from the
information provided by the authors. Focal length, as well as
the principal points and the baseline (defined as 1 in Blender
units) are provided for all the images, which helps to create the
intrinsic matrices. For the extrinsic matrices, we simplify the
parameters to a basic position and rotation. Since the images
are taken originally form a video sequence, two pairs of images
do not show the exact same scene. Thus, the camera translation
between frames is not relevant, as a full reconstruction from the
scene is not even possible. For the rotation part, both left and
right views can be assumed to come from a camera that has no
rotations, as the camera planes are co-planar. Therefore, we can

use as extrinsic matrices:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 1

 (1)

for the left and right images, respectively. To generate the depth
ground truth, we compute the depth maps from the provided
disparities with the formula:

z = f ∗ b/d, (2)

where z = depth, f = focal length, b = baseline and d = dispar-
ity. MVS approaches make use of a pre-defined depth range for
each image, which is usually given by the sensor and acquisi-
tion conditions. For SceneFlow, we take the depth map values
of each image and we set the depth range to 2th percentile as
minimum and µ + σ as maximum, being µ and σ the mean
and standard deviation respectively. This also helps to focus on
objects that are close to the camera.

3.1.2 SyntCities preparation SyntCities is a dataset to
train stereo matching networks with patches resembling re-
mote sensing scenes and under controlled simulated condi-
tions. Three 3D city models are used to render the data-
set: Paris, Venice and New York. The samples are given for
ground sample distances (GSD) of 10cm, 30cm and 100cm and
provided with training and testing subsets. Although not origin-
ally designed to work in a MVS framework, the camera para-
meters are available and samples along the same epipolar line
can be used as the additional views. For the current article, we
do not use the additional views simultaneously for the recon-
struction, but we use the views to create diverse stereo pairs and
study the effect of the baseline, which also implies differences
in terms of occlusion.

In Figure 1 we can observe how the samples are selected for
both the stereo and MVS implementation. Within the SyntCit-
ies dataset, many samples are rendered with the same condi-
tions but different base height ratios (bhr) for the stereo rig,
which helps us to study the effects of the baseline. By default,
SyntCities images are given in pairs, which are represented for
simplicity by the legends Baseline 1, Baseline 2 and Baseline
3 in Figure 1. From there, we take the left sample from the
largest baseline as a reference (R) and use the other images as
additional views (V) for stereo pairing. The base height ra-
tio determines the baseline b from the height h as bhr = b/h,
where h =2000m for all cases. Bhr values are 0.1, 0.2, 0.3,
0.4 and 0.5 (with baselines of 200m, 400m, 600m, 800m and
1000m respectively) for the Paris and Venice models. For a
bhr = 0.5, the simulated camera resembles an acquisition field
of view (FOV) around 28°. Images from the New York samples
were not used, as these have a smaller baseline. In Figure 2,
examples for Paris are given for a reference image with its re-
spective 5 additional views. As expected, bigger changes in the
images occur at larger baselines, which also implies larger oc-
cluded areas.

3.2 Conducted experiments

We utilized few well-known algorithms to test stereo pairs from
SyntCities with different baselines. Both learn-based and tra-
ditional algorithms were considered. For the traditional part
we selected SMG and MGM, as these are a common refer-
ence to compare other algorithms. The used SGM implement-
ation is the one in the CATENA pipeline (Krauß, 2014) and for



Figure 1. Selected geometry for SyntCities samples. All images
lie on the same epipolar line with different baselines. For a

reference view (R), 5 additional views (V) are available.
Baseline distances are given for each view.

MGM we utilized the one provided by the author 1. We used
P1 = 400 and P2 = 800 with 16 directions and a Census-
cost (Zabih and Woodfill, 1994) for SGM. In the case of MGM,
we used P1 = 8 and P2 = 32. Both SGM and MGM were
given [-10, 192] as disparity range. Disparity maps are com-
puted before and after applying the left-right consistency (LRC)
check. Similar to the neural network results, the case before
LRC check produces values for most of the pixels, so we used
these results for the comparison. The results after LRC are also
relevant, as these show the refinement effect.

We trained all the selected networks (GANet, AANet and Un-
iMVSNet) on the SceneFlow dataset, as this is a common prac-
tice for stereo algorithms and it has a large pool of images.
Testing, on the other hand, was done for SyntCities images.
By avoiding training and testing on the same domain, we do
not give additional advantage to the learning algorithms. We
trained UniMVSNet with 2 views, so all models are based on
the same training dataset with the paired images. GANet was
trained for 27 epochs with a disparity range of [0,192] in 4 x
GeForce RTX 2080 GPU. AANet was trained with the same
conditions but 350 epochs, having a similar training time. Un-
iMVSNet was trained for 16 epochs with 192 depth planes in
1x GeForce RTX 2080 GPU.

An important point to note here is to differentiate between the
disparity and depth ranges. From the equation 2, we can see
that disparity and depth are inversely related. The deep learn-
ing MVS frameworks already perform in the 3D space based
on the plane sweep algorithm, where the planes hypotheses are
uniformly distributed in the space of the camera. Contrarily, the
stereo networks search for the disparity candidates in a uniform
sampling, which is later non-uniform when the disparities are
converted into depth values. This relation also discussed in de-
tail in the CIDER (Xu and Tao, 2020) network. Because of this
non-linear relationship, stereo and MVS algorithms are affected
by the distribution of the depth values in space. In the figure 3,
such relationship is displayed for an image of the SceneFlow
dataset with f = 450 and b = 1 for the disparity range [0, 192].
As we can see, the depth values are sparsely sampled for the

1 https://github.com/gfacciol/mgm

low disparities and densely sampled for high disparities in ste-
reo algorithms. We have adapted the depth ranges of the images
to cover most of the content and alleviate the problem given by
the depth - disparity range inconsistencies.

4. EVALUATION

To asses the results in terms of accuracy, completeness and ef-
fect of the baseline, we tested the algorithms:

• SGM: SGM result before LRC check.
• SGM w/LRC: SGM result after LRC check.
• MGM: MGM result before LRC check.
• MGM w/LRC: MGM result after LRC check.
• AANet: result of AANet converted to depth.
• GANet: result of GANet converted to depth.
• UniMVSNet: UniMVSNet result directly as depth map.

The first metric used to analyze the results is the Median Abso-
lute Deviation (MAD), as this is a robust metric for skew distri-
butions (Höhle and Höhle, 2009). This is computed as:

MADdiff = median(| Xdiff − X̃diff |), (3)

where X̃diff = median(Xdiff), and Xdiff = X − X̄ , being X
the ground truth, X̄ the generated result and Xdiff the difference
between both.

Similarly to disparity maps evaluations, we also compared the
error rate of the prediction but in this case oriented to the depth
values. We computed the error rate 3 meters (ER-3), which
is the percentage of pixels where the prediction error is larger
than 3 meters. Similarly, we compute the error rate 1 meter
(ER-1) following the same principle. The latter is critical for
remote sensing, where accuracy within 1 meter is expected for
applications such as DSM generation. The thresholds are based
also on the influence of the disparity - depth relationship. We
took an image with 600m baseline, its respective camera para-
meters and d = 1, 2. The corresponding depth values were
z = 1999.01, 1998.01, having a difference of 1m. In any case,
considering that the objects are located at 2000m from the cam-
era, 1m error is a strict margin, so we also evaluate for 3m.

Completeness is also a desired feature for the reconstruction al-
gorithms. Non-learning based approaches like SGM or MGM
routinely refine the predicted disparity map with LRC to re-
trieve only the pixels where the disparities are more reliable and
thus shortening the presence of outliers. However, this refine-
ment reduces sometimes significantly the density of the result,
creating a lot of no defined regions in the disparity maps. Neural
networks on the other hand generate a prediction for each pixel
in the image, but this allows the outliers to remain in the pre-
dicted disparity map. Hence, we do also report the percentage
of pixels that were used for the metrics.

We also study the performance with and without occluded
areas. As we have a dense ground truth for disparities, we also
created LRC masks from them to identify the occluded areas.
Such masks apply to pixels that are only visible in one of the im-
ages. While it is expected that the algorithms cannot estimate
the correct depth value in such areas, the prediction can still be
satisfactory due to the neighbouring context. For instance, deep
learning approaches gather contextual information to smoothly
interpolate on the occluded areas. Besides, we want to observe
how large is the error in the non-occluded areas, where the error
is assumed to be low.



(a) Reference Image (b) bhr=0.1 (c) bhr=0.2 (d) bhr=0.3 (e) bhr=0.4 (f) bhr=0.5

Figure 2. Examples of paired images from SyntCities along a common epipolar line. For the reference image (a), images with 5
different base height ratios (b-f) are given.

With occluded pixels Non-occluded pixels
Algorithm Baseline(m) ER-1(↓) ER-3(↓) MAD(↓) Val.pix.(↑) ER-1(↓) ER-3(↓) MAD(↓) Val.pix.(↑)

200 24.86 11.58 0.50 99.53 23.26 10.04 0.48 97.08
400 22.18 14.33 0.28 98.63 15.79 9.25 0.25 89.31

SGM 600 25.91 19.38 0.24 97.53 14.71 9.85 0.18 82.29
800 30.77 24.76 0.23 96.76 15.19 10.52 0.16 76.39

1000 35.52 29.62 0.27 95.83 16.14 11.40 0.14 70.82
200 23.67 9.03 0.49 99.76 21.86 7.20 0.48 97.05
400 21.90 13.45 0.30 99.71 15.00 7.60 0.26 89.31

MGM 600 28.23 21.53 0.27 99.67 14.97 9.06 0.20 82.31
800 34.54 28.50 0.29 99.67 16.27 10.64 0.17 76.41

1000 40.53 34.57 0.39 99.67 18.47 12.45 0.16 70.85
200 32.43 12.71 0.54 100.00 31.37 11.95 0.52 97.11
400 30.93 14.88 0.43 100.00 25.57 10.28 0.37 89.36

AANet 600 32.41 17.30 0.43 100.00 23.37 9.25 0.33 82.35
800 34.27 20.25 0.45 100.00 22.57 10.08 0.31 76.45

1000 38.18 23.62 0.55 100.00 23.65 10.67 0.31 70.88
200 36.04 12.32 0.68 100.00 34.80 11.22 0.66 97.11
400 24.78 13.02 0.41 100.00 18.25 7.42 0.36 89.36

GANet 600 24.95 15.87 0.36 100.00 13.81 6.37 0.28 82.35
800 27.16 18.91 0.36 100.00 13.11 7.06 0.25 76.45

1000 29.90 21.75 0.36 100.00 13.07 7.54 0.23 70.88
200 26.94 12.00 0.42 100.00 25.50 10.95 0.40 97.11
400 26.52 14.21 0.35 100.00 20.09 9.14 0.31 89.36

UniMVSNet 600 29.83 17.66 0.37 100.00 19.01 8.69 0.28 82.35
800 34.52 21.87 0.43 100.00 20.36 9.72 0.29 76.45

1000 39.52 26.80 0.55 100.00 21.87 10.82 0.29 70.88
200 20.81 7.86 0.46 93.35 20.15 7.39 0.46 92.24
400 12.86 6.51 0.23 85.52 10.81 5.37 0.23 82.45

SGM 600 11.69 7.11 0.17 78.05 8.21 4.57 0.16 73.83
w/LRC 800 11.64 7.65 0.14 71.16 6.73 3.59 0.13 66.12

1000 12.31 8.73 0.13 65.00 6.18 3.43 0.11 59.42
200 19.47 5.32 0.45 92.54 18.95 4.95 0.45 91.63
400 10.82 4.06 0.24 82.81 9.52 3.41 0.23 80.70

MGM 600 9.80 4.76 0.17 74.60 7.71 3.18 0.17 72.13
w/LRC 800 11.02 6.65 0.15 67.85 7.33 3.40 0.14 64.39

1000 13.08 8.82 0.13 61.63 7.63 3.72 0.12 57.22

Table 1. Experiments results for Paris and Venice images. MAD represents the Median Absolute Deviation, ER-3 the 3 meters error
rate, ER-1 the 1 meter error rate and Val. pix. the percentage of pixels with a valid value generated by the algorithm. Underlined bold

numbers show the best result (cases w/LRC excluded) for MAD, ER-3 and ER-1.

We selected 20 images for our study from our two virtual cities:
15 from Paris and 5 from Venice. For all the test images, we
selected 30cm as GSD and 5 additional views with different
baselines Since the images of Paris and Venice have the same
baselines, these are averaged for the metrics.

5. RESULTS

From the set of experiments and metrics described above, we
present all our results in Table 1. We split the SGM and MGM
results depending on whether we used the LRC refinement or
not, having the former at the end of the table. In all the remain-
ing cases, the generated results covers most of the pixels. In the
figure 4 we have visual results for the ER-3 metric in all tested

algorithms for one of the tested images, which corresponds to a
200m baseline case.

We analyse first the results considering occluded areas. In
terms of density, all cases (excepting those w/LRC refinement)
achieve almost a complete depth map having at least 98%
coverage. Looking at MAD, SGM and MGM have the best
performance, although it is important to remember that some
pixels have no defined values. For ER-3 the traditional meth-
ods perform better than the learning ones in the small baselines
such as 200m, similar for 400m and worse for 600m, 800m
and 1000m. Hence, non-learning algorithms still outperform
neural networks but only for small baselines. Nonetheless, non-
learning algorithms have the advantage that no training time is
required, just fine-tuning of the parameters to enhance the res-



Figure 3. Non-linear relationship between disparity and depth
values for an image of the SceneFlow dataset. The disparity

range was set to [0, 192], which is common for many
implementations.

ult. If we compare ER-1 the trend is similar, where good results
for large baselines are given for learning algorithms. Interest-
ingly, GANet is the approach with the best performance in this
metric for baselines of 600m and above.

Taking into account the results w/LRC refienement (which ap-
plies only to SGM and MGM) we notice much better values in
ER-3, ER-1 and MAD. However, this also has a costly price
as large sections of the images become undefined. For real ap-
plications on the other hand, it is helpful to have an algorithm
that delivers only those areas where the estimation offers a good
quality, so SGM and MGM are a valuable resource.

For the non-occluded results, in all cases the density is below
100% as expected and for SGM and MGM even lower, as some
additional areas are discarded. MAD is better for SGM and
MGM, while for neural networks GANet and AANet perform
best and worst respectively. Considering ER-3, MGM is the
best for a small 200m baseline but GANet outperforms in all the
other cases. AANet and UniMVSNet behave similarly. For the
strict ER-1, MGM achieves the best result for the small 200m
and 400m baselines and GANet for the rest of the cases. In this
part, we notice that UniMVSNet overcomes AANet for larger
baselines.

Having analysed the dense results, we focus on the SGM
w/LRC and MGM w/LRC cases. Accuracy is very high as can
be seen from ER-3 and ER-1 values being mostly below 10%.
This may be misleading as accuracy has increased while dens-
ity has decreased. In fact, for the large baselines the depth maps
cover less than 60% of the image.

If we look at the LRC check effect more in detail, we can no-
tice that the removed pixels between the before and after results
belong mostly to the occluded areas, thus dismissing efficiently
the unreliable predictions. For instance, if we compare the case
for the 1000m baseline, we notice that ER-1 for SGM goes
from 16.14% to 6.18%, while the percentage of valid pixels
goes from 70.82% to 59.42%, close to 10% for both values. A
similar trend is observed for MGM, where ER-1 values for the
1000m baseline are reduced from 18.47% to 7.63% and the per-
centage of valid pixels from 70.85 to 57.22, having differences
of 10.84% and 13.63% respectively. In figure 4, we can eas-
ily notice how most of the pixels with an error larger than 3m

are removed by the LRC check, although these regions become
undefined outputs.

Comparing only SGM and MGM we notice a similar perform-
ance, being MGM slightly improved for small baselines and
SGM for the large ones. Cases with or without occlusions, as
well as with or without LRC check show a similar behaviour
between these two methods. Fine-tuning of the penalty para-
meters P1 and P2 might lead to a better performance, but these
have to be set empirically.

Between the two learning stereo methods, namely AANet and
GANet, we notice how GANet has the best metrics for all cases
except for the 200m baseline, where AANet leads for the ER-1
metric. In general, both show a competitive reconstruction res-
ult. In addition, the conversion from disparity to depth, which
would represent sparsity in the depth space does not have a
strong effect when compared to the UniMVSNet results, being
even similar.

With regard to the main objective of this paper, we also study
the performance differences between the stereo (GANet and
AANet) and MVS (UniMVSNet) frameworks. The obtained
results show that:

• In general, all cases have a comparable performance and
are suitable for 3D reconstruction, as ER-3 considering
occlusions are between 12% and 27% depending on the
baseline

• Overall, for ER-3 the performance degrades when the
baseline increases if occluded areas are also counted.

• If we focus only on the non-occluded areas, algorithms
tend to perform best for ER-3 in intermediate baselines,
while for ER-1 all except the smallest case have a similar
performance.

• UniMVSNet is the best for all cases where the baseline is
200m, highlighting its focus on close range views.

• GANet is the best for ER-3 and ER-1 in all baselines ex-
cept 200m, which shows the best accuracy and is partic-
ularly good for ER-1 in the non-occluded regions hav-
ing a significantly difference with respect to the other al-
gorithms. The matching itself of visible pixels performs
the best in this case.

• The prediction for occluded areas in all learning ap-
proaches yields better results than the non-learning cases,
which shows good capabilities to interpolate from the reli-
able pixels. Predicted depth maps tend to include smooth
regions with sharp boundaries, specially if the baselines
are not that large. Such interpolation effect is superior in
the stereo networks as the ER-3 scores are lower.

Last but not least, we note the domain gap effect of training
and testing in the different datasets. Due to such gap, the per-
formance of the networks is not as high as it can be when it is
fine-tuned in the same domain. It is of interest that the non-
learning algorithms have a similar performance to the learning
ones when the domain gap is present. Thus, for unseen data
both options are a valuable resource.

6. CONCLUSIONS

In the present article we conducted a lot of experiments to com-
pare the performance of learning-based stereo and multi-view
approaches on a similar setting. We noticed that stereo net-
works lead to a better reconstruction, especially GANet. Des-



(a) Reference Image (b) AANet (c) GANet (d) UniMVSNet

(e) SGM (f) SGM w/LRC (g) MGM (h) MGM w/LRC

Figure 4. Error maps for a Paris sample. For the reference image (a), we show the error maps for the algorithms AANet (b), GANet
(c), UniMVSNet (d), SGM (e), SGM w/LRC (f), MGM(g) and MGM w/LRC (h). Scale bar for the errors given as a reference. Errors

are clipped to a maximum of 3m. Regions in black correspond to undefined pixels by the algorithms.

pite a slightly lower performance, MVS networks are also com-
petitive and are even better for small baselines than stereo net-
works, but the accuracy drops for the large baselines.

We evaluated first considering also occluded areas in the ste-
reo pairs to observe the robustness of the methods in this chal-
lenging regions, observing that the interpolation capabilities to
predict these values is working reasonably well and is margin-
ally better for the stereo networks. In non-occluded areas we
noticed a good performance for most of the cases, which shows
that the matching itself is not a problem. Besides, we also in-
cluded non-learning algorithms in our comparison, which also
yielded good results but reduced the number of valid pixels in
the predicted depth maps. For future work, we plan to further
evaluate the fusion of multiple stereo pairs against the direct
MVS result, and add confidence measures to enhance the fu-
sion process.
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