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ABSTRACT

In this study, we examine the potential of several self-
supervised deep learning models in predicting forest at-
tributes and detecting forest changes using ESA Sentinel-
1 and Sentinel-2 images. The performance of the proposed
deep learning models is compared to established conventional
machine learning approaches. Studied use-cases include
mapping of forest disturbance (windthrown forests, snowload
damages) using deep change vector analysis, forest height
mapping using UNet+ based models, Momentum contrast
and regression modeling. Study areas were represented by
several boreal forest sites in Finland. Our results indicate that
developed methods allow to achieve superior classification
and prediction accuracies compared to traditional methodolo-
gies and mimimize the amount of necessary in-situ forestry
data.

Index Terms— forest management, deep learning, forest
height, boreal zone, satellite image, Sentinel-1, Sentinel-2.

1. INTRODUCTION

Using satellite Earth Observation (EO) data along with in-situ
forest measurements is an established approach that allows
producing spatially explicit forest variable predictions and
forest aerial estimates at various scales [1]. Within model-
based forest inference, a model describing the relationship
between forest reference and EO sensor-measured signature
or its change is used [2]. In wide-area forest mapping, sta-
tistical, physics-based, and machine learning (ML) method-
ologies were used for modeling and prediction purposes,
primarily with satellite optical and imaging radar sensors.
Deep learning (DL) methodologies are widely adopted for

This work was financed by the European Space Agency under contract
4000137253/22/1-DT, Non-supervised representation learning for Sentinels
(RepreSent).

various image classification, and semantic segmentation tasks
[3, 4, 5]. To date, several fully convolutional and recurrent
neural networks were demonstrated in forest remote sensing
[6, 7, 8,9, 10, 11]. These models often provide improved
accuracy in forest classification or predicting forest variables,
as well as in forest change mapping. Training of DL models
often requires a fully segmented reference label, such as Lidar
based forest maps that are costly and not available over wide
areas.

On the other hand, a typical scenario in forest manage-
ment is collecting a sample of forest plots to be further used
in forest resource inference. Also, an image-patch level esti-
mate can be available. Within the DL context, such reference
data can be considered weak labels [12] and require transfer
learning techniques for model fine-tuning.

This paper briefly summarizes our recent advances in
developing semi-supervised DL models for forest inventory
and change mapping. We consider several use-cases utilizing
Sentinel-2 (S2) and Sentinel-1 (S1) images and forest mea-
sured plots from Finnish Forest Centre, comparing achieved
results with more traditional mapping approaches.

2. USE-CASES : DATA AND METHODS

2.1. Forest disturbance mapping using Deep Change Vec-
tor Analysis

In the context of forest disturbance caused by natural haz-
ards (such as windstorm and snow-load), training labels are
often missing or challenging to collect. Deep Change Vector
Analysis (DCVA) [13] provides a viable solution for map-
ping damaged areas without training a DL model. DCVA is
an unsupervised learning technique that utilizes a pre-trained
network to extract deep features from bi-temporal images en-
abling delineation of image-change areas. The main benefit of
DCVA is that it does not require prior information and com-



pares deep features extracted from the bi-temporal images on
a pixel-by-pixel basis. We examine the potential of DCVA in
forest disturbance mapping in two separate use-cases.

First use-case focuses on mapping wind-thrown forest
area using Copernicus images. A major windstorm caused
severe forest damages in Puolanka area in Finland on June
22nd, 2021 (see Figure 1). We use S2 images acquired before
and immediately after the forest windfall for developing the
forest damage area mapping method.
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Fig. 1. Forest study sites in Finland

In another use-case study, a series of 12 S1 images are
collected to delineate damaged forest areas caused by heavy
snowload during winter 2017-2018 in the Kainuu province of
Finland [14]. Noteworthy, this type of damage is continuous
and can get severe within this time frame. Additionally, other
types of changes can be visible in SAR images over boreal
forests in connection with weather and seasonal conditions.

2.2. Forest variable prediction using self-supervision and
regression methods

In this use case, we predict forest canopy height at the
Hyytiild site using S1 and S2 imagery. We use self-supervised
pretraining with fine-tuning on a selection of in-situ forestry
parameter samples to learn a regression model for this task.

First we apply Momentum Contrast (MoCo) [15] to train
modality-specific (S1 and S2) encoder networks. These net-
works are trained with a cross-modality contrastive loss on
the Sen12MS dataset [16]. The pretrained encoders subse-
quently form the backbone of our regression network. The
output representations from these encoders are merged into a
1024-dimensional vector, which is then regressed via a single
linear projection layer. For training this layer in a supervised
fashion, we utilize a dataset composed of 340 forest plots with
confirmed and validated canopy heights.

Furthermore, we tested a Model Agnostic Meta Learning
(MAML) approach [17]. MAML is a few-shot transfer learn-
ing approach that extracts common knowledge from a collec-
tion of different-but-related tasks. Each task is represented
by a small set of annotated samples. Training over thousands
of iterations with different batches of source tasks yields a
meta-model with parameters that are optimized to previously
unseen tasks with few training samples. Here, we fine-tune
the meta-model on S2 image patches and minimize the mean
squared error to the reference tree height target variable.

The training dataset uses 40m x 40m (4px), 120m x 120m
(12px) and 240m x 240m (24px) image patches extracted
from both S1 and S2 imagery, with 2 and 13 bands, respec-
tively. In-situ measured forest plots are used as training data.

2.3. Forest mapping using UNet+ and transfer learning

A UNet+ model pretrained over sparse taiga forest (Lapland
site) using fully segmented reference labels was used in for-
est height prediction in southern Finland where only a lim-
ited number of forest plots are available for calibrating the
model. An improved semi-supervised deep learning UNet+
model allows to produce a spatially explicit pixel-level for-
est inventory. A Squeeze-and-Excitation attention module
is used to recalibrate the multi-source features using chan-
nel self-attention [8]. The UNet+ model is firstly pretrained
using accessible Lidar based forest data over Lapland and fur-
ther fine-tuned using a small sample of forest plots from the
target study site (Kotka site in Figure 1). The EO datasets are
represented by 14-channel tensor with S2 image bands, S1
yearly composite bands, as well as ALOS-2 PALSAR-2 and
TanDEM-X image features. The model training uses image
patches with size 256 px x 256 px, all input images prepro-
cessed and resampled to 10m x 10m spacing.

3. RESULTS AND DISCUSSION

Developed methodologies have consistently produced better
results than conventional ML methods or required smaller
amount of training data. Further we briefly discuss results
of each studied use-case and developed methodologies.

3.1. Forest disturbance mapping using DCVA

Examples of produced forest damage maps due to snow-load
damage and windstorm are shown in Figure 2. In snow-load
damage mapping, using the available set of validation stand-
level labels, up to 77.5.% accuracy has been achieved in the
initial experiments using the DCVA approach. Importantly,
tested DCVA approach allows change detection between bi-
temporal S2 images. Baseline methodologies using multitem-
poral stand-level features report accuracy levels in the range
of 71-90 % depending on the method (logistic regression, sup-
port vector machines or improved kNN) [14]. While DCVA



results already appear competitive, further work will concen-
trate on extending the analysis to adapt DCVA to deal with
S1 image time series, as well as to integrate elements of con-
trastive learning into methodology.
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Fig. 2. Forest damage maps produced using DCVA: snow
damage mapping using S1 images (left); windstorm damage
mapping using S2 images (right).

In mapping windtrown forests, our initial results show
74.6% accuracy for identifying the damage through zero-shot
learning using DCVA. The observations derived from Fig-
ure 3 suggest that snow damage assessment necessitates the
utilization of more complex features compared to windstorm
damage assessment. This inference is drawn from the finding
that the higher layers of the Resnet-18 model, which capture
intricate and abstract representations, prove to be more signif-
icant in the context of snow damage assessment. In contrast,
windstorm damage assessment relies on the lower layers of
the architecture, which likely capture more basic and fun-
damental features. These findings highlight the varying na-
ture and requirements of assessing damage caused by differ-
ent phenomena, emphasizing the need for tailored approaches
and feature extraction techniques in remote sensing applica-
tions. Further research plans include incorporating S1 time
series into the analysis and also aiming at combined use of S1
and S2 images for damage area assessment.
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Fig. 3. Accuracy performance of DCVA using various layers
of ResNet-18: for snow damage detection (left) and for wind-
storm damage detection (right).

3.2. Forest variable prediction using self-supervision and
regression methods

The prediction accuracy of the MoCo-based network with
combined S1 & S2 images (RMSE of 4.01 m and a R? of
0.65) was improved compared to baseline kNN regression
and additionally tested MAML model when evaluated on an
independent test set of forest plots. This was also the case
when only S2 data were used in the model fine-tuning. Such
performance can be attributed to the strong representations
MoCo learns during the pretraining phase, which enhances
the model’s capacity to generalize to new tasks. Furthermore,
adding Sentinel-1 had a limited impact on model performance
and the main regression signal is coming from Sentinel-2.
Achieved prediction accuracies were in line or better than in
other reported studies in boreal forests using S1 and S2 (or
Landsat) images and in-situ forest plot data [6]. Scatterplots
illustrating performance for various models and image patch
sizes are shown in Figure 4, and an example of the predicted
forest height maps is shown in Figure 5.
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Fig. 4. Forest height prediction performance using self-
supervision and baseline models: (a) and (b) show fine-tuned
S1 and S2 MoCo model with 4px and 12 px image patches;
(c) The 24x patch MAML model; (d) kNN regression method

3.3. Forest mapping using UNet+ and tranfer learning

In model pretraining with ALS data, achieved prediction ac-
curacies were high with RMSE of 3.7m on pixel-level out-
performing traditional forest mapping approaches, such as k-
nearest neighbours, random forests or multiple linear regres-
sion (RMSE of 3.9-4.7m). Comparison of methodologies was
done in scenario when traditional ML methods were trained
with forest plots and EO data over the target site. Gain in
accuracy was in range of 2-6 % units. Moreover, use of pre-
trained UNet+ model and further fine-tuning the model with
plots demonstrated better stability when number of plots was
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Fig. 5. MoCo based height prediction usig S1 & S2 images,
5km x bkm area: (a) S2 image natural color composite, b)
Lidar forest height, c) produced forest height map.

reduced to tens (instead of hundreds), or specific forest strata
(tall trees or small trees) were completely missing. In such
scenarios, kNN or random forests typically failed to provide
meaningful predictions, while fine-tuned UNet+ models per-
fomed much better, provided that initial model pretraining
was done using representative forest inventory data.

4. CONCLUSIONS

Our results indicate that semi-supervised DL methodologies
enable the effective use of weak labels in EO image based
semantic segmentation and regression tasks for several key
forest management applications.
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