Universality in low-dimensional three-body systems

Maxim A. Efremov

German Aerospace Center (DLR),
Institute of Quantum Technologies, and
Institute of Quantum Physics, Ulm University

Minerva-Gentner Symposium on
Coherent manupulation of few-body complexes
Weizmann Institute, 23.02.2023

ưulm

Deutsches Zentrum
für Luft- und Raumfahrt German Aerospace Center

Outline

1D three-body system
The ground-state resonance: universality for energy and wave-functions
The excited-state resonance: universality for energy and wave-functions
Universality in 2D three-body system
Summary and open questions

1D three-body problem

$$
\begin{aligned}
& {\left[-\frac{\alpha_{x}}{2} \frac{\partial^{2}}{\partial x^{2}}-\frac{\alpha_{y}}{2} \frac{\partial^{2}}{\partial y^{2}}+v_{0} f\left(x+\frac{y}{2}\right)+v_{0} f\left(x-\frac{y}{2}\right)\right] \psi_{n}=\mathcal{E}_{n}^{(3)} \psi_{n}} \\
& \quad \alpha_{x}=\frac{m+2 M}{2(m+M)} \quad \alpha_{y}=\frac{2 m}{m+M}
\end{aligned}
$$

Question: is there universality, $f(\xi)$-independence, in the system?

The limit $v_{0} \rightarrow 0: f(\xi)=\delta(\xi)$

Common wisdom:

$$
\begin{aligned}
\mathcal{E}_{0}^{(2)} & \rightarrow 0 \\
f(\xi) & \simeq \delta(\xi)
\end{aligned}
$$

Universal constants:

$$
\epsilon_{n}^{\star}=\frac{\mathcal{E}_{n}^{(3)}}{\left|\mathcal{E}_{0}^{(2)}\right|}=\epsilon_{n}^{\star}\left(\frac{M}{m}\right)
$$

	Atomic mixture (M / m)		
	${ }^{87} \mathrm{Rb}-{ }^{40} \mathrm{~K}(2.2)$	${ }^{87} \mathrm{Rb}-{ }^{7} \mathrm{Li}(12.4)$	${ }^{133} \mathrm{Cs}-{ }^{6} \mathrm{Li}(22.2)$
ϵ_{0}^{\star}	-2.1966	-2.5963	-2.7515
ϵ_{1}^{\star}	-1.0520	-1.4818	-1.6904
ϵ_{2}^{\star}		-1.1970	-1.3604
ϵ_{3}^{\star}		-1.0377	-1.1479
ϵ_{4}^{\star}	-1.0002	-1.0525	
ϵ_{5}^{\star}			-1.0040

L Happ et al., Phys. Rev. A 100, 012709 (2019)

The limit $v_{0} \rightarrow 0: f(\xi)=\delta(\xi)$

Universal wave functions:
$\psi_{n}(x, y)=\psi_{n}^{\star}\left(\sqrt{2\left|\mathcal{E}_{0}^{(2)}\right|} x, \sqrt{2\left|\mathcal{E}_{0}^{(2)}\right|} \mid y\right)$

L Happ et al., Phys. Rev. A 100, 012709 (2019)

General potential $\boldsymbol{f}(\xi)$

$$
\epsilon_{n}=\frac{\varepsilon_{n}^{(3)}}{\left|\varepsilon_{0}^{(2)}\right|} \quad \mathscr{F}_{n}=\left(\left\langle\psi_{n} \mid \psi_{n}^{\star}\right\rangle\right)^{2}
$$

(d)
ほ

The limit $v_{0} \rightarrow 0$: general $f(\xi)$

$$
\begin{aligned}
& \xrightarrow{\AA^{v_{0} f(\xi)}} F(p) \equiv \int e^{-i p \xi} f(\xi) d \xi \\
& \int v_{0} f(\xi) d \xi<0 \\
& \int v_{0} f(\xi) d \xi=0 \\
& \mathcal{E}_{0}^{(2)}\left(v_{0} \rightarrow 0\right)=-v_{0}^{2}[F(0)]^{2} \\
& \mathcal{E}_{0}^{(2)}\left(v_{0} \rightarrow 0\right)=-v_{0}^{4}\left[\int \frac{d p}{\pi} \frac{|F(p)|^{2}}{p^{2}}\right]^{2}
\end{aligned}
$$

Universality: $\mathcal{E}_{n}^{(3)}=-\epsilon_{n}^{\star}\left|\mathcal{E}_{0}^{(2)}\right|$

$$
\left(v_{0} \rightarrow 0\right) \quad \psi_{n}(x, y)=\psi_{n}^{\star}\left(\sqrt{2\left|\mathcal{E}_{0}^{(2)}\right|} x, \sqrt{2\left|\mathcal{E}_{0}^{(2)}\right| y}\right)
$$

1D three-body problem: excited states

$$
\mathcal{E}_{r=1}^{(2)}\left(v_{0}^{(1)} \rightarrow v_{1}\right) \rightarrow 0
$$

3-body energies
(Faddeev equations): $\mathcal{E}_{n, 1}^{(3)}$
Universality:

$$
\mathcal{E}_{r=2}^{(2)}\left(v_{0}^{(2)} \rightarrow v_{2}\right) \rightarrow 0
$$

3-body energies
(Faddeev equations): $\mathcal{E}_{n, 2}^{(3)}$

$$
\frac{\mathcal{E}_{n, r}^{(3)}}{\left|\mathcal{E}_{r}^{(2)}\right|}=-\epsilon_{n}^{\star}
$$

$$
\text { as for } f^{\star}(\xi)=\delta(\xi)
$$

$$
\mathcal{E}_{r=3}^{(2)}\left(v_{0}^{(3)} \rightarrow v_{3}\right) \rightarrow 0
$$

3-body energies
(Faddeev equations): $\mathcal{E}_{n, 3}^{(3)}$

Role of the deeply-bound two-body states

$$
\mathcal{E}_{r=2}^{(2)}\left(v_{0}^{(2)} \rightarrow v_{2}\right) \rightarrow 0
$$

$$
f_{G}(\xi)=e^{-\xi^{2}}
$$

$$
f_{L}(\xi)=\frac{1}{\left(1+\xi^{2}\right)^{3}}
$$

3D case:
P. M. A. Mestrom, T. Secker, R. M. Kroeze, and S. J. J. M. F. Kokkelmans, Phys. Rev. A 99, 012702 (2019)

1D three-body problem: excited states

Universality for even or odd $r: \mathcal{E}_{n, r}^{(3)}=-\epsilon_{n}^{\star}\left|\mathcal{E}_{r}^{(2)}\right|, \psi_{n, 2 l}(x, y)=\psi_{n}^{\star}\left(\sqrt{2 \mid \mathcal{E}_{2 l}^{(2)}}\left|x, \sqrt{2 \mid \mathcal{E}_{2 l}^{(2)}}\right| y\right)$

$$
\psi_{n, 2 l+1}(x, y)=\psi_{n, 2 l+3}(x, y)
$$

Summary and outlook

1D M-m-M system:

If M-m subsystem has a shallow ground state:

$$
\text { As } \quad \mathcal{E}_{0}^{(2)} \rightarrow 0: \quad \mathcal{E}_{n, 0}^{(3)}=-\epsilon_{n}^{\star}\left|\mathcal{E}_{0}^{(2)}\right|, \psi_{n, 0}(x, y)=\psi_{n}^{\star}\left(\sqrt{2\left|\mathcal{E}_{0}^{(2)}\right|} x, \sqrt{2\left|\mathcal{E}_{0}^{(2)}\right| y}\right)
$$

If M-m subsystem has a shallow excited state:

$$
\begin{aligned}
& \text { As } \quad \mathcal{E}_{2 l}^{(2)} \rightarrow 0: \quad \mathcal{E}_{n, 2 l}^{(3)}=-\epsilon_{n}^{\star}\left|\mathcal{E}_{2 l}^{(2)}\right|, \psi_{n, 2 l}(x, y)=\psi_{n}^{\star}\left(\sqrt{2 \mid \mathcal{E}_{2 l}^{(2)}} \mid x, \sqrt{2\left|\mathcal{E}_{2 l}^{(2)}\right| y}\right) \\
& \text { As } \quad \mathcal{E}_{2 l+1}^{(2)} \rightarrow 0: \quad \mathcal{E}_{n, 2 l+1}^{(3)}=-\epsilon_{n}^{\star}\left|\mathcal{E}_{2 l+1}^{(2)}\right|, \psi_{n, 2 l+1}(x, y)=? \\
& f^{\star}(\xi)=\frac{d}{d \xi} \delta(\xi) ?
\end{aligned}
$$

2D M-m-M system:

If \boldsymbol{M} - \boldsymbol{m} subsystem has a shallow ground state: universality for energies and wave-functions
J Thies, MT Hof, M Zimmermann and M Efremov, J. Comp. Science 64, 101859 (2022)

Summary and outlook

F F Belotti et al., J. Phys. B 46, 055301 (2013)
S Moroz and Y Nishida, PRA 90, 063631 (2014) M Efremov et al., PRL 111, 113201 (2013)
P M A Mestrom et al., PRA 103, L051303 (2021)

Many thanks for your attention

Few-body team

Lucas Happ
(Uni Ulm)

Matthias Zimmermann (Uni Ulm, DLR-QT)

Moritz T. Hof (DLR-SC)

Jonas Thies (TU Delft)

