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Abstract 

 

This study presents the algorithm SAR-SeaStaR (SAR Sea State Retrieval) for estimating series 

of integrated sea state parameters from satellite-borne synthetic aperture radar (SAR): total 

significant wave height Hs, dominant and secondary swell and windsea wave heights, first and 

second moment wave periods, mean wave period and period of wind sea. SAR-SeaStaR applies 

a combination of classical approach using linear regression with machine learning. It comprises 

the complete processing chain with a series of steps each needed to reach high accuracy: 

denoising, filtering image artefacts, SAR features estimation and control, model functions 

(linear regression and machine learning models) for estimation of sea state parameters and 

control of results using filtering procedures. SAR-SeaStaR is applied to C-band Sentinel-1 (S1) 

Interferometric Wide Swath Mode (IW), Extra Wide (EW) and Wave Mode (WM) Level-1 

(L1) and to X-band TerraSAR-X (TS-X) StripMap (SM) products. The wide scenes are 

processed in raster format, resulting in continuous sea state fields. For each S1 WV 

20 km × 20 km imagette, averaged values of each sea state parameter are derived. Validated 

with worldwide data the reached RMSE for Hs is 0.25 m for S1 WV, ~0.35 m for TS-X SM, 

~0,50 m for the coarser S1 IW and ~0.60 m for S1 EW. The method was realized in Sea State 

Processor (SSP) software using modular architecture and allowing processing SAR-data from 

different satellites and modes in near real time (NRT). 

In scope of ESA’s SARWave study [1] the S1 IW archive was processed for 2020 with a raster 

of 5 km (ca. 1,600 subscenes/image). The validation with MFWAM (CMEMS, [2]) model 

results in an RMSE=0.51 m for significant wave height (Hs) and 0.78 s for crossing zero wave 

period (Tm2).  

 

1. Methodology  
 

The ongoing development of space-borne SAR sensors together with corresponding data 

transfer and data processing infrastructures has made a series of oceanographic applications 

possible in near real time (NRT), e.g. [3,4,5]. Also, in the past few years, machine learning 

techniques have taken a leading position in science, as their results are superior to those of 

analytical and simple empirical solutions when sufficiently large databases are available. Even 

though a few years ago, these applications did not noticeably provide more accurate solutions 

than the classical approaches, today they already exceed them. For example, in 2017, the 

accuracy of Hs obtained by applying neural networks (NN) in comparison to a traditional 

CWAVE [6] method had not improved significantly (RMSE of ca. 0.50 m for Hs) [7], whereas 

by using a deep learning technique in 2020 the accuracy had significantly been improved to an 

RMSE of around 0.30 m [8]. In last year, the accuracy of ca. 0.25 m was reached [9].  

 

When comparing the application of the empirical approaches based on linear regression (LR) 

models and machine learning (ML) models, the following can be noted: the advantage of the 

LR is that an analytical solution exists. The coefficients can be obtained comparatively quickly, 

extensive machine learning training is not necessary. Although the linear solution is inferior in 

accuracy to that obtained by adding ML, this solution is already stable with around 1/10 samples 

needed for ML by a normal distribution of data used for tuning. In addition, as practice shows, 
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LR extrapolates much more successfully, if the modelled conditions are outside the training 

data conditions while the ML models can give an error with outliers significantly exceeding 

three times the RMSE.  

 

Further, in addition to ML training (can take months), the developed ML model is many orders 

of magnitude larger (takes Gigabytes) than the list of coefficients for the LR model (takes 

Kilobytes). LR outperforms ML in terms of parsing speed of the model, which is important for 

NRT services. This point is important, as a migration of the sea state processing for direct 

installation on a satellite for on-board-processing has been developed [10]. In this case, no huge 

amount of SAR raw data will be transferred from satellite to earth, before the processing can 

be done, but only already derived sea state parameters. This technology will significantly 

simplify the data transfer and reduce the delay. 

 

Based on all these reasons, the proposed SAR-SeaStaR algorithm combines both: LR (based on 

CWAVE approach [6] extended by series of additional features [9]) and ML model (using 

support vector machine (SVM) technique) for sea state processing. The solution of LR model 

(Hs) is used as first guess value for ML (additional feature) and also is applied for control of 

results. 

 

2. Algorithm basic parameters  
 

In a classic way, the estimation of sea state parameters is based on a normalized radar cross-

section (NRCS) analysis of subscenes. One of the basic variables represents the SAR image 

spectrum obtained using fast Fourier transformation FFT applied to the ground range detected, 

radiometrically calibrated, filtered, denoised land-masked and normalised subscenes with a size 

of 1,024×1,024 pixels in wave number domain as introduced in [5]. SAR features estimated from 

a subscene are of five different types: 

 

− NRCS and NRCS statistics (variance, skewness, kurtosis, etc.).  

− Geophysical parameters (wind speed using CMOD-5 algorithms for C-band [11] and 

XMOD-2 for X-Band [11]).  

− Grey Level Cooccurrence Matrix (GLCM) parameters (entropy, correlation, homogeneity, 

contrast, dissimilarity, energy, etc.). 

− Spectral parameters, based on image spectrum integration of different wavelength domains (0-

30 m, 30-100 m, 100-400 m, etc.) and spectral width parameters (Longuet-Higgins, Goda). 

− Spectral parameters using products of normalized image spectrum with orthonormal functions 

(CWAVE approach) and cutoff wavelength estimated using autocorrelation function (ACF). 

 

3. Sea state processor (SSP)  
 

SSP was designed in a modular architecture for S1 IW, EW, WV and TS-X SM/SL modes. The 

DLR Ground Station “Neustrelitz” applies the SSP as part of a near real-time demonstrator 

service that involves a fully automated daily provision of surface wind and sea state parameters 

estimated from S1 IW images of the North and Baltic Sea. Due to implemented parallelization, 

a fine raster can be processed. For example, S1 IW image with coverage of 200 km × 250 km 

can be processed using a raster with 1 km sized grid cells (~50,000 subscenes) during minutes. 

Each of maritime information products, i.e. sea state retrieval, wind speed retrieval, ship 

detection and AIS defines each one independent data layer. The data layers are combined for 

processor-internal information exchange and presentation to the operator [9].  

 



 
Figure 1: Example of eight sea state fields processed from S-1 IW scene with ~1600 km by ~200 km coverage 

acquired during a storm in North Atlantic with Hs reaching ~14 m 

 

Using the SSP, the complete archive of S1 WV data from December 2014 until February 2021 

with around 60 overflights/day, each including around 120 imagettes, was processed. The 

validation using the WFWAM/CMEMS [2] model resulted in an RMSE of 0.245/0.273 m for 

wv1/wv2 imagettes, respectively. Comparisons to 61 NDBC buoys [13], collocated at distances 

shorter than 50 km to worldwide S1 WV imagettes, result into an RMSE of 0.41 m. The data is 

available to the public within the scope of ESA’s climate change initiative CCI [14].  
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