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Abstract

Deep Learning Methods for Hand Gesture Recognition via High-Density Surface
Electromyogram (HD-sEMG) Signals

Mansoorehsadat Montazerin

Hand Gesture Recognition (HGR) using surface Electromyogram (sEMG) signals can be considered as

one of the most important technologies in making efficient Human Machine Interface (HMI) systems. In par-

ticular, sEMG-based hand gesture has been a topic of growing interest for development of assistive systems

to improve the quality of life in individuals suffering from amputated limbs. Generally speaking, myoelectric

prosthetic devices work by classifying existing patterns of the collected sEMG signals and synthesizing in-

tended gestures. While conventional myoelectric control systems, e.g., on/off control or direct-proportional,

have potential advantages, challenges such as limited Degree of Freedom (DoF) due to crosstalk have re-

sulted in the emergence of data-driven solutions. More specifically, to improve efficiency, intuitiveness, and

the control performance of hand prosthetic systems, several Artificial Intelligence (AI) algorithms ranging

from conventional Machine Learning (ML) models to highly complicated Deep Neural Network (DNN) ar-

chitectures have been designed for sEMG-based hand gesture recognition in myoelectric prosthetic devices.

In this thesis, we, first, perform a literature review on hand gesture recognition methods and elaborate on

the recently proposed Deep Learning/Machine Learning (DL/ML) models in the literature. Then, our uti-

lized High-Density sEMG (HD-sEMG) dataset is introduced and the rationales behind our main focus on

this particular type of sEMG dataset are explained. We, then, develop a Vision Transformer (ViT)-based

model [1] for gesture recognition with HD-sEMG signals and evaluate its performance under different con-

ditions such as variable window sizes, number of electrode channels, and model’s complexity. We compare

its performance with that of two conventional ML and one DL algorithm that are typically adopted in this

domain. Furthermore, we introduce another capability of our proposed framework for instantaneous train-

ing, which is its ability to classify hand gestures based on a single frame of HD-sEMG dataset. Following
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that, we introduce the idea of integrating the macroscopic and microscopic neural drive information obtained

from HD-sEMG data into a hybrid ViT-based framework for gesture recognition, which outperforms a stan-

dalone ViT architecture in terms of classification accuracy. Here, microscopic neural drive information (also

called Motor Unit Spike Trains) refers to the neural commands sent by the brain and spinal cord to individual

muscle fibers and are extracted from HD-sEMG signals using Blind Source Separation (BSP) algorithms.

Finally, we design an alternative and novel hand gesture recognition model based on the less-explored topic

of Spiking Neural Networks (SNN), which performs spatio-temporal gesture recognition in an event-based

fashion. As opposed to the classical DNN architectures, SNNs are of the capacity to imitate human brain’s

cognitive function by using biologically inspired models of neurons and synapses. Therefore, they are more

biologically explainable and computationally efficient.
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Chapter 1

Thesis Overview

Hand Gesture Recognition (HGR) is a cutting-edge technology that has proven to have a sig-

nificant effect on revolutionizing Human Machine Interface (HMI) systems. Thanks to the recent

emergence of Artificial Intelligence (AI), sophisticated algorithms and advanced Machine Learning

(ML) techniques have been developed to enable computers to automatically interpret and learn the

gestures made by individuals, transforming them into meaningful commands or responses. This

innovative field has caught considerable attention across various industries, ranging from Aug-

mented/Virtual Reality (AR/VR) to robotics, exoskeletons and smart devices. As technology pro-

gresses, the ability to recognize hand gestures automatically opens the door to a more natural and

intuitive way of communicating with machines, bridging the gap between human expressions and

digital interfaces. This introductory paragraph only scratches the surface of the vast potential and

exciting possibilities that hand gesture recognition holds for the future.

Owing to the development of state-of-the-art AI algorithms, more and more learning-based

models have been proposed in the literature to perform automatic HGR with the aim of developing

real-time, robust and user adaptable HMI devices with low latency. Cutting-edge advancements in

Deep Learning (DL), neural networks, and data augmentation techniques are further pushing the

boundaries of gesture recognition systems, propelling them toward even higher levels of perfor-

mance and real-world applicability. However, gesture recognition still faces several challenges that

need to be addressed to enhance its practicality and efficiency. Among the most important chal-

lenges are data scarcity which happens when the amount of labelled data for each gesture is not
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enough for the DL model to learn them effectively. Furthermore, achieving real-time performance

in resource-constrained systems, such as smartphones or wearable devices, can be demanding due

to the computational complexity of some ML/DL algorithms. Some hand gestures, also, may have

ambiguous interpretations and patterns leading to inaccurate gesture classification especially when

the utilized dataset has a vast number of gestures with multiple degrees of freedom (DoF).

Accordingly, a large number of strategies are adopted with respect to the technology, data collec-

tion and algorithm design of HGR to solve the above-mentioned issues. Collecting comprehensive

datasets, adopting data augmentation techniques, suggesting different pre-processing methods on

the raw dataset and continuously exploring and fine-tuning existing ML/DL models are the com-

mon approaches mostly used in the literature.

1.1 Thesis Objectives

In brief, this thesis focuses mainly on development of automatic DL-based frameworks for hand

gesture recognition via HD-sEMG signals using the following two different approaches:

1.1.1 Gesture Recognition based on Macroscopic Neural Drive Information

Generally speaking, hand gesture recognition has been investigated in the literature through the

following two main directions: (i) The Vision-based approach in which RGB or depth cameras are

used to track and recognize different hand gestures by analyzing the visual appearance of hands,

and; (ii) The Sensor-based approach in which the signals related to position, orientation and move-

ment of the hands are recorded through a set of touchless (e.g., infrared or ultrasonic) or touch-based

(e.g., Electromyography (EMG) electrodes) sensors [3]. According to [4–6], the vision-based meth-

ods, compared to their sensor-based counterparts, often suffer from the following drawbacks: (a)

Requiring excessive preprocessing and segmentation steps; (b) Being sensitive to the environment

where the signals are being recorded, and; (c) Having higher latency and response time due to in-

direct estimation of the physical properties of various hand movements. Therefore, in this thesis,

our focus is only on the sensor-based approach of gesture recognition and we dive specifically into

the touch-based HD-sEMG electrodes that comprise a two-dimensional (2D) grid of densely placed
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electrodes recording the electrical activity of the muscle’s Motor Unit Action Potentials (MUAPs)

in response to the neural signals.

HD-sEMG signals are considered as macroscopic neural drive information that collect the over-

all neural input sent from the central nervous system (brain and spinal cord) to the muscle’s sur-

face [7, 8]. These signals are commonly used to record the electrical signals from multiple muscles

simultaneously. By studying sEMG signals, researchers can gain insights into muscle activation pat-

terns and the timing of muscle recruitment during different hand gestures. In the recent literature,

there has been a vast research on various ML/DL models for automated or semi-automated gesture

recognition from HD-sEMG signals. These models span from traditional ML models that require

a handcrafted feature extraction process as in References [9–12] to simpler or more complex end-

to-end DL architectures such as Convolutional [13,14] and Recurrent [15] Neural Networks (CNNs

and RNNs), Transformers [16, 17] and hybrid architectures [18]. Despite their demonstrated suc-

cess in many applications of hand gesture recognition, the aforementioned models suffer from major

drawbacks such as not fully exploiting the temporal, spatial and neurophysiological characteristics

of sEMG signals or being computationally complex and expensive. Moreover, they often need large

amounts of data to generalize well and their overall training time and resource requirements make

them unviable to be used in real-time HMI systems. Therefore, in order to tackle many of the

above-mentioned issues with the existing hand gesture recognition models, we propose two distinct

DNN architectures for gesture recognition using macroscopic neural drive information. First of

all, we capitalize on the recent breakthrough role of the transformer architecture by introducing a

standalone Vision Transformer (ViT)-based architecture which can accurately classify a large num-

ber of hand gestures from scratch without any need for data augmentation and/or transfer learning.

Thanks to their parallelized structure and the underlying attention mechanism, ViTs have less train-

ing time and consume smaller system’s memory with fewer number of trainable parameters. Since

HD-sEMG datasets have a 3-Dimensional (3D) structure (one dimension in time and two dimen-

sions in space), Vision Transformers (ViT) [19] can be considered as an appropriate architecture to

be applied on them. The proposed ViT-based architecture is evaluated in terms of its classification

accuracy, training time, testing time, memory usage and the number of trainable parameters using

3



various settings of the input signals. Our proposed framework is also compared with two conven-

tional ML models each fed with two different sets of features and a 3D CNN model which is a

Neural Network typically applied on 3D data.

In our second experiment, we develop an alternative and novel hand gesture recognition model

based on the less-explored topic of Spiking Neural Networks (SNN), which performs spatio-temporal

gesture recognition in an event-based fashion [20, 21]. An event-based processing approach, refers

to a type of data processing in which the system is susceptible to the occurrence of events rather

than the static input [22]. Unlike traditional neural networks, which use continuous-valued acti-

vation functions and propagate information through real-valued weights, SNNs operate on discrete

events that represent the timing and rate of neuron’s firing. SNNs imitate human brain’s cogni-

tive function by using biologically inspired models of neurons and synapses [21]. Accordingly,

SNNs become more biologically explainable and computationally efficient requiring remarkably

less amount of memory and processing units for their even-triggered processing and low-precision

computation [22, 23]. SNNs have been the topic of interest for many computer vision-related tasks

such as image classification [24], object tracking [25] and gesture recognition [21]. However, there

is a limited number of works [26–28] on utilizing SNNs for EMG-based hand gesture recognition.

therefore, in this part, we focus on developing a light (compact) two-layer MLP model with Leaky

Integrate and Fire (LIF) spiking neurons to classify a set of 1 DoF gestures via HD-sEMG signals.

In our work, HD-sEMG signals are normalized, windowed and fed to the spiking MLP model. This

is a more straight-forward approach in comparison with using energy-density maps, spike coding

and feature extraction as in [26, 28] to provide inputs for SNN architectures. We show that by

considering each sample in the HD-sEMG dataset as a single time step, and inputting a batch of

normalized values of HD electrode channels to the network at each time, the SNN model can differ-

entiate between different hand gestures with maximum accuracy of around in a number of subjects.

In this way, the network can work well on a quite limited amount of data with no need for data

augmentation, preprocessing and spike coding.
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1.1.2 Gesture Recognition based on Microscopic Neural Drive Information

The focus, in this part, is on HD-sEMG decomposition to extract microscopic neural drive infor-

mation. HD-sEMG signals have encouraged emergence of sEMG decomposition algorithms in the

last decade [29] as they provide a significantly high-resolution 2D image of Motor Unit (MU) activ-

ities in each time point. sEMG decomposition refers to a set of Blind Source Separation (BSS) [30]

methods that extract discharge timings of motor neuron action potentials from raw HD-sEMG data.

Single motor neuron action potentials are summed to form Motor Unit Action Potentials (MUAPs)

that convert neural drive information to hand movements [31]. Motor unit discharge timings, also

known as Motor Unit Spike Trains (MUSTs), represent sparse estimations of the MU activation

times with the same sampling frequency and time interval as the raw HD-sEMG signals [32]. Ex-

tracted MUSTs are used in several domains such as identification of motor neuron diseases [33],

analysis of neuromuscular conditions [34], and myoelectric pattern recognition [35]. HD-sEMG

signals can be modelled as a spatio-temporal convolution of MUSTs, which provide an exact physi-

ological description of how each hand movement is encoded at neurospinal level [36]. Thus, MUSTs

are of trustworthy and discernible information on the generation details of different hand gestures.

Throughout this approach, we design a hybrid ViT-based architecture that classifies hand ges-

tures using a combination of macroscopic and microscopic neural drive information. We, first,

extract MUSTs of HD-sEMG signals via a BSS technique comprising of the two commonly used

approaches in the literature, i.e. gradient Convolution Kernel Compensation (gCKC) and fast In-

dependent Component Analysis (fastICA). Then, MUAPs are derived from spike trains using the

Spike-Triggered Averaging method and their peak-to-peak values are computed. Two independent

ViT-based architectures similar to those utilized in the previous section are fed with HD-sEMG sig-

nals and peak-to-peak MUAPs. The two models combine useful information from both of the ViTs

and classify hand gestures based on the learned information. In this way, the whole architectures

surpasses standalone ViT-based models that work solely with either macroscopic or microscopic

neural drive information. This implies that both HD-sEMG signals that are collected from skin’s

surface and MUAPs that well represent physiological characteristics of the system of neurons and

synapses carry valuable information about intended hand gestures that can be integrated to achieve
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higher classification accuracy.

1.2 Contributions

The primary objective of this thesis is to design automated DL-based frameworks for hand ges-

ture recognition via HD-sEMG signals. More specifically, this thesis proposes automated frame-

works to classify a large number of hand gestures comprising one, two or multiple DoFs and eval-

uates the performance of these frameworks based on the classification accuracy, train/test time,

memory usage and complexity. Besides model development, this thesis compares the performance

of the proposed frameworks with that of two conventional ML models and a 3D CNN model, ex-

plaining in what aspects the proposed architecture functions more efficiently. In another part of this

thesis, a more complex, hybrid architecture is designed integrating two different types of informa-

tion obtained from HD-sEMG signals to achieve higher accuracy. This and the above-mentioned

models are compared both numerically and statistically to have a clearer view of each model’s func-

tion compared to the other models. The main contributions of this thesis research work are briefly

outlined below:

(1) The ViT-HGR Framework [1]: Here, we investigate and design a Transformer-based archi-

tecture [37] to perform hand gesture recognition from HD-sEMG signals. Intuitively speak-

ing, we capitalize on the recent breakthrough role of the Vision Transformer architecture

together with its great potential for employing more input parallelization with attention mech-

anism. In this approach, we resort only to the transformer encoder and add a Fully Connected

(FC) layer to its end to convert latent features to our labels. As direct application of ViT to

HD-sEMG is not possible and straightforward, a particular signal processing step is developed

to convert the HD-sEMG signals to a specific format that is compatible with ViTs. In other

words, the proposed ViT-based ViT-HGR framework can learn from HD-sEMG signals rather

than images. The signal processing approach, here, includes 3 consecutive steps, namely win-

dowing, low-pass filtering and normalization. Each one of these steps is required to convert

raw HD-sEMG signals to a waveform that is shorter in the time domain and more understand-

able for the ViT-based network. We utilize a specific normalization function, which is called
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µ-law normalization and is different from the commonly-used Min-Max normalization, to

increase the discriminative power of the proposed framework. Furthermore, the proposed

framework can accurately classify a large number of hand gestures from scratch without any

need for data augmentation and/or transfer learning.

(2) The CT-HGR Framework [38]: We show that the proposed CT-HGR architecture which

is a similar framework to ViT-HGRachieves near baseline accuracy using instantaneous HD-

sEMG data samples that are single frames of HD-sEMG images in a single time point. This

is considered as a significant milestone as it paves the way for real-time learning from HD-

sEMG signals. The proposed CT-HGR model is also evaluated using different window sizes

and number of electrode channels. The capacity of the network is also increased and its per-

formance is compared to the simpler CT-HGR model’s. Cosine similarities of the positional

embedding vectors for each model and different window sizes are sketched and the model’s

performance in assigning correct positions to the patches of HD-sEMG data is assessed. In

addition to the classification accuracy, other metrics like recall, precision and F1-score for

a specific case of the CT-HGR network is reported to show a better estimation of the net-

work’s ability to make accurate positive predictions. We also introduce the idea of integrating

macroscopic and microscopic neural drive information through a hybrid DNN framework.

The proposed variant of the CT-HGR framework, is a hybrid model that simultaneously ex-

tracts a set of temporal and spatial features through its two independent ViT-based parallel

architectures (the so called Macro and Micro paths). The Macro Path is the baseline CT-HGR

model, while the Micro path is fed with the peak-to-peak values of the extracted MUAPs of

each source. The two independent Macro and Micro models are connected with two FC layers

that perform final classification via the features derived from both models. We demonstrate

that the proposed hybrid architecture outperforms standalone CT-HGR models in classifying

a large number of hand gestures. Finally, a comprehensive comparison of our own method

with other proposed models that utilized the same dataset is carried out in respect of the uti-

lized window size, number of electrode channels, how the train/test splits are created and the

classification accuracy.
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(3) The SNN-based Framework [39]: In this part, We proposed an SNN-based model for hand

gesture recognition from HD-sEMG signals by decoding neuromuscular information into

spikes. We introduce a more straight-forward approach in comparison with using energy-

density maps, spike coding and feature extraction as in [26, 28] to provide inputs for SNN

architectures. We show that by considering each sample in the HD-sEMG dataset as a single

time step, and inputting a batch of normalized values of HD electrode channels to the net-

work at each time, the SNN model can well differentiate between different hand gestures in a

number of subjects. This is considered as a well-suited and interpretable approach for sEMG

signal classification considering the way they are generated through a convolutive mixture

of a set of impulse trains (also known as spikes) with Motor Unit Action Potentials [17].

Moreover, our method is a compact SNN model that works efficiently for a small number of

data samples with no need for huge pre-processing tasks, spike encoding and feature extrac-

tion. This can remarkably decrease the required time and memory for processing the data and

training the SNN model.

It is worth mentioning that in all parts of the thesis, since the paper [2] on the HD-sEMG dataset

did not refer to the train and test sets as a basis for comparison, we performed a 5-fold cross-

validation as there are 5 sessions in the dataset. In this way, one (out of 5) repetition is considered

as the test set and the remaining are assigned to the train set. Each time, the test set is changed until

all the repetitions have been tested. Finally, the accuracy of each fold together with the average

accuracy across all the folds are reported.

1.3 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 provides a literature review on Hand Gesture Recognition. In addition, this chap-

ter provides the background material required to follow the developments presented in the

remainder of the thesis. Furthermore, the detailed description of the dataset and the pre-

processing procedures used in this thesis are presented in this chapter.
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• Chapter 3 presents the proposed ViT-HGR framework developed for automatic gesture recog-

nition from HD-sEMG signals.

• Chapter 4 presents the proposed CT-HGR architecture which is a similar model to the ViT-

HGR and is evaluated using different settings of the HD-sEMG signal. In addition, a hy-

brid variant of the CT-HGR is introduced in this chapter which works based on a combina-

tion of macroscopic and microscopic neural drive information and outperforms a standalone

CT-HGR structure.

• Chapter 5 provides a detailed description of the proposed SNN-based model that performs

spatio-temporal gesture recognition in an event-based fashion. As opposed to the classical

DNN architectures in previous chapters, SNNs are of the capacity to imitate human brain’s

cognitive function by using biologically inspired models of neurons and synapses which

makes them more biologically explainable.

• Chapter 6 concludes the thesis and explains some directions for future research studies.
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Chapter 2

Literature Review and Background

As stated previously, in the last few years, there has been a surge of significant interest on

application of Deep Learning (DL) models to autonomously perform hand gesture recognition using

surface Electromyogram (sEMG) signals. In this chapter, recent DL/ML-related research works

proposed in the literature for HGR are presented. Background materials, which are widely used

throughout this thesis and required to follow the subsequent chapters are also provided. Finally, an

overview of the dataset used in this thesis is presented.

2.1 Hand Gesture Recognition

Hand gesture recognition using surface Electromyogram (sEMG) signals can be considered as

one of the most important technologies in making efficient Human Machine Interface (HMI) sys-

tems. Hand gesture recognition-based HMI systems are applicable to a wide range of applications

including prosthetics, neurorobotics, exoskeletons, and in Mixed (Augmented/Virtual) Reality set-

tings, some of which targeting able-bodied individuals. In particular, sEMG-based hand gesture

has been a topic of growing interest for development of assistive systems to help individuals with

amputated limbs. Generally speaking, myoelectric prosthetic devices work by classifying existing

patterns of the collected sEMG signals and synthesizing the intended gestures [40]. While con-

ventional myoelectric control systems, e.g., on/off control or direct-proportional, have potential

advantages, challenges such as limited Degree of Freedom (DoF) due to crosstalk have resulted in
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the emergence of data-driven solutions. More specifically, to improve efficiency, intuitiveness, and

the control performance of hand prosthetic systems, several Artificial Intelligence (AI) algorithms

ranging from conventional Machine Learning (ML) models to highly complicated Deep Neural

Network (DNN) architectures have been designed for sEMG-based hand gesture recognition in

myoelectric prosthetic devices [41–44]. The ML-based models encompass traditional approaches

such as Support Vector Machines (SVMs), Linear Discriminant Analysis (LDA), and k-Nearest

Neighbors (kNNs) [9–12], and DNN-based models consist of frameworks such as Convolutional

Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transformer-based architec-

tures [14, 45–49].

sEMG signals represent the electrical activities of the muscles and are recorded by a set of non-

invasive electrodes that are placed on the muscle tissue [7,8]. Broadly speaking, there are two types

of sEMG acquisition systems, called sparse and high-density [50, 51]. Both of these groups are

obtained by placing electrodes on the surface of the muscle and recording the electrical activity of

the muscle’s Motor Unit Action Potentials (MUAPs) in response to the neural signals. Unlike sparse

sEMG acquisition that involves a limited number of electrodes to record muscle activities, High-

density sEMG (HD-sEMG) signals are obtained through a two-dimensional (2D) grid of electrodes,

which cover an area of the muscle tissue and a large number of associated motor units [52, 53].

When comparing HD and sparse sEMG signals, it can be stated that more computational power

is required for the signal processing and training stages when using HD-sEMG signals in contrast

to the scenario where sparse sEMG signals are used. This point has also been observed in the

prior works [40, 54], where it is stated that HD-sEMG-based interfaces result in more complex

analog front-end and processing facilities leading to increase of the computation demand. It is,

therefore, more difficult to design an ML/Deep Learning (DL)-based algorithm for hand gesture

recognition from HD-sEMG signals. However, HD-sEMG signals are considered more potent than

their sparse counterparts because of their ability to include both temporal and spatial information

of muscle activities, which provides a high-resolution 3-dimensional (3D) signal (two dimensions

in space and one in time) [55]. The HD-sEMG signal acquisition can evaluate functionality of

the underlying neuromuscular system more precisely in terms of spatial resolution. Accordingly,
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developing an efficient DNN-based framework that can effectively learn from a comprehensive HD-

sEMG dataset is of great importance in neuro-rehabilitation research and clinical trials [56], which

is the focus of this thesis.

Conventional ML models, such as SVMs and LDAs, utilized for sEMG-based hand gesture

recognition, typically work well when dealing with small datasets. These methods, however, de-

pend on manual extraction of handcrafted (engineered) features, which limits their generalizability

as human knowledge is needed to find the best set of features [57]. Increasing the number of uti-

lized electrodes and the number of gestures entails extracting more features, therefore, the feature

extraction process becomes significantly complex and time-consuming. This is because more trials

and efforts are required to boost the discriminative power of the model. Dependence on engineered

features is partially/fully relaxed by utilization of DNN-based models. Among the most frequently

used DNN architectures for the task of hand gesture recognition is the CNN-based frameworks. For

example, Reference [14] converts sEMG signals to 3D images and uses transfer learning to feed

them to a popular CNN trained on a database of natural images. CNNs, however, are designed

to concentrate on learning spatial features of the input signals and fail to extract temporal features

of the sEMG data. Accordingly, authors in [58] introduced an RNN-based network to catch the

temporal features of HD-sEMG signals. This network contains dilated Long Short-Term Memories

(LSTMs) to classify hand gestures from the transient phase of HD-sEMG signals. To overcome the

issue of watching solely the spatial or temporal features of HD-sEMG data, researchers turned their

attention to hybrid CNN-RNN frameworks that were designed to take both spatial and temporal in-

formation of the time-series sEMG datasets into account [18, 59]. For instance, Hu et al. [18] have

applied attention mechanism on top of a hybrid CNN-LSTM (Long Short-Term Memory) model to

perform hand gesture recognition based on sEMG signals with relatively large window sizes (i.e.

150 ms and 200 ms). They achieved classification accuracy of up to 87% using the largest window

size. In [59], a dimensionality reduction method is proposed and assumed to enhance the classi-

fication accuracy when used with a hybrid CNN-LSTM architecture. In this framework [59], the

classification accuracy is 88.9% on the same dataset as that of [18] for the 250 ms window size.

Nonetheless, as well as not allowing entire input parallelization, hybrid CNN-RNN frameworks are

usually computationally demanding and reveal important limitations with respect to the memory
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usage and large training times. To alleviate the problem of lacking input parallelization in the afore-

mentioned networks, References [16, 49] proposed transformer-based models for gesture recogni-

tion via sparse sEMG signals. For instance, in [16] a Vision Transformer (ViT) network is stacked

to CNNs for gesture classification using the frequency domain information (Fourier Transform) of

a set of sparse sEMG signals.

In this thesis, we develop and evaluate functionality of different DL methods for gesture recog-

nition from HD-sEMG signals. On the one hand, DL models are more complicated than conven-

tional ML solutions and the latter requires operator interventions for feature engineering, which is a

burdensome procedure. On the other hand, gesture recognition based on sparse sEMG requires pre-

cisely locating the electrodes over the muscle to make sure that the same MUs are being recorded.

Different from sparse sEMG, for HD-sEMG acquisition, a little change in the position of the elec-

trode grid still records the MU activities with no significant change in the characteristics of the sig-

nal. This is why we aimed to focus on a series of DNN architectures explained in Chapters 3, 4, 5

that work based on HD-sEMG signals. In Chapters 3, 4 by eliminating the complexity of simulta-

neously exploiting CNNs/RNNs or merging them with transformers, we aim to construct a compact

and stand-alone framework with reduced computational overhead. When it comes to real-time HMI

devices, we hypothesized that by introducing a compact DL-based model developed based on HD-

sEMG signals that has the capacity to classify a large number of hand gestures with a small amount

of memory and training time, we can put a step forward towards development of more dextrous

control interfaces. In Chapter 4 we also introduce the idea of integrating the macroscopic and mi-

croscopic neural drive information obtained from HD-sEMG data into a hybrid transformer-based

framework for gesture recognition. Differently, in Chapter 5, we aim to develop an alternative and

novel hand gesture recognition model based on the less-explored topic of Spiking Neural Networks

(SNN), which performs spatio-temporal gesture recognition in an event-based fashion [20, 21]. An

event-based processing approach refers to a type of data processing in which the system is suscepti-

ble to the occurrence of events rather than the static input [22]. It is worth noting that as opposed to

the classical DNN architectures, SNNs are of the capacity to imitate human brain’s cognitive func-

tion by using biologically inspired models of neurons and synapses [21]. Section 2.2 explains the

structure and mathematical representation of our proposed Vision Transformer (ViT) framework.
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Figure 2.1: Overview of the ViT-HGR network. (a) The windowed HD-sEMG signal is fed to the ViT-HGR and
split into smaller patches. The patches go through a linear projection layer which converts them from 3D to 2D data
samples. A class token is added to the patches and the N + 1 patches are input to a transformer encoder. Ultimately,
the first output of the transformer corresponding to the class token is chosen for the multi-class classification part. (b)
The transformer encoder which is the fundamental part of the ViT, responsible for processing the input patches with its
main part called Multi-head Self Attention (MSA). (c) The Multi-head Self Attention (MSA) Structure. (d) The Scaled
Dot-Product module in the MSA block.

Detailed structure and functionality of SNNs is clarified in Chapter 5.

2.2 The Proposed Vision Transformer Framework

In this section, description of our proposed ViT framework(referred to as ViT-HGR), its main

building blocks, and its adoption for the task of hand gesture recognition are presented. The pro-

posed ViT-HGR framework is developed based on the ViT network in which the attention mecha-

nism is utilized to understand the temporal and spatial connections among multiple data segments

of the input. In this thesis, we demonstrate that attention mechanism can work independently of

any other network and achieve high accuracy when trained from scratch with no data augmentation.

We also show that the proposed framework can be trained even on small window sizes and more

importantly on instantaneous data samples.
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An overall illustration of the ViT-HGR is indicated in Fig. 2.1. After completion of the pre-

processing steps discussed in the previous section, we have 3D signals of shape W × Nch × Ncv,

where W is the window size and Nch and Ncv are the number of horizontal and vertical channels

respectively. As an intuitive approach for patching the input data with 32, 64 or 128 electrode chan-

nels, we considered window sizes that are powers of two (in samples), which allows to smoothly

divide input into smaller patches [60]. Therefore, the utilized window sizes in our experiments are

of 64, 128, 256, and 512 data points (31.25, 62.5, 125, and 250 ms respectively considering 2, 048

Hz sampling frequency of the dataset). Furthermore, we have assessed the effect of changing the

number of electrode channels by using 32, 64 and 128 out of the whole 128 channels. Therefore,

we set Nch to 4, 8, and 16 each time while Ncv remains constant at 8. In what follows, the ma-

jor blocks of the proposed ViT-HGR network, namely “Patch Embedding”, “Position Embedding”,

“Transformer Encoder”, and the “Multilayer Perceptron (MLP)” blocks.

Patch Embedding

In this block, the 3D signals are divided into N small patches either horizontally, vertically or

both. Therefore, we have N patches of size H × V × Ncv that are then linearly flattened to 2D

signals of size N ×HVNcv where, N is equal to WNch/HV and is the effective sequence length

of the transformer’s input and terms H and V represent the horizontal and vertical patch sizes,

respectively. Consequently, there are N patch vectors xp
i , for (1 ≤ i ≤ N ). Using a trainable linear

projection layer, the xp
i vectors are embedded with the model’s dimension d. The linear projection

is shown with matrix E, which is multiplied to each of the xp
i and yields N vectors of dimension d.

Moreover, a class token named xp
0 similar to what was previously used in the Bert framework [61]

is prepended to the aforementioned vectors to gather all the useful information learned during the

training stage and is used in the final step when different hand gestures are classified. The final

sequence length of the transformer after adding the class token is N + 1.

Position Embedding

Unlike RNNs that process their inputs sequentially, transformers apply the attention mechanism

to all of the data segments in parallel, which deprives them of the capacity to intrinsically learn about
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the relative position of each patch of a single input. Because sEMG signals are time-series sequences

of data points in which the location of each point matters for hand gesture classification tasks, we

need to train the network to assign a specific position to each sample. Generally speaking, positional

embedding is an additional piece of information that is injected into the network, helping it to

identify how data points are ordered. There are different types of positional embeddings offered such

as relative, 1D, 2D, and sinusoidal positional embeddings that may be learnable or non-learnable.

In this context, we use a learnable 1D positional embedding vector that is added to each of the

embedded xp
i vectors to maintain and learn the position of each patch during the training phase.

The final output z0 of the “Patch + Position Embedding” blocks is given by

z0 = [xp
0;x

p
1E;xp

2E; . . . ;xp
NE] +Epos, (1)

where Epos is an (N +1)× d matrix, holding the relative position of each patch in a d-dimensional

vector.

Transformer Encoder

A typical transformer model consists of two major parts called encoder and decoder. In this

paper, we aim to utilize only the former part. The transformer encoder is where the attention mech-

anism tries to find the similarities among the N + 1 patches that arrive at its input. As can be seen

in Fig. 2.1(b), there are L identical layers of transformer encoder in the ViT-HGR network and each

has three separate blocks, named as “Layer Norm”, “Multi-head Self Attention (MSA)” and “MLP”.

The z0 sequence of patches that is explained above is first fed to a normalization layer to improve

the generalization performance of the model and accelerate the training process [62]. The “Layer

Norm block” is then followed by the MSA module, which incorporates h parallel blocks (heads) of

the scaled dot-product attention (also known as self attention). In the context of self attention, three

different vectors Keys(K), Queries(Q) and V alues(V ) of dimension d are employed for each

input patch. For computing the self attention metric, the dot product of Queries and all the Keys

are calculated and scaled by 1/
√
d in order to prevent the dot products from generating very large

numbers. This matrix is then, converted into a probability matrix through a softmax function and
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is multiplied to the V alues to produce the attention metric as follows

Attention = softmax(
QKT

√
d

)V. (2)

In the MSA block (Fig. 2.1(c)), instead of dealing with d-dimensional Queries, Keys and V alues,

we split them into h parallel heads and measure the self attention (Fig. 2.1(d)) metric on these heads

independently. Finally, after finding the corresponding results for each head, we concatenate them

to obtain the d-dimensional vectors of patches. As indicated in Fig. 2.1(b), residual paths from

the encoder’s input to the output of the MSA block are employed to avoid the gradient vanishing

problem. The formulations for the above explanations are as follows

z
′
l = MSA(LayerNorm(zl−1)) + zl−1, (3)

zl = MLP (LayerNorm(z
′
l)) + z

′
l , (4)

where zl is the lth transformer layer’s output and l = 1, . . . , L. The final output of the transformer

encoder is given by

zL = [zp
L0; z

p
L1; . . . ; z

p
LN ], (5)

where zp
Li is the final layer’s output corresponding to the ith patch and i = 1, . . . , N . As mentioned

before, among all the above vector of patches, the zp
L0 vector matching the class token is chosen for

gesture classification. Authors in [19] claim that the learned features in the sequence of patches will

eventually be included in the class token, which has a decisive role in predicting the model’s output.

Therefore, zp
L0 is passed to a linear layer which outputs the predicted gesture’s label as

ypredicted = Linear(zp
L0). (6)
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2.3 Dataset

In this section, the HD-sEMG dataset used for model development and evaluation in this thesis is

described in detail. Furthermore, additional information on the pre-processing operations performed

on raw HD-sEMG data is explained in detail.

The dataset [2] used in this study is a recently released HD-sEMG dataset that contains two

64-electrode square grids (8 × 8) with an inter-electrode distance of 10 mm, which were placed

on extensor and flexor muscles. The HD-sEMG acquisition setup is shown in Fig. 2.2. According

to [2], the two HD-sEMG electrode grids covered the dorsal and the volar muscles of the forearm,

specifically full or partial parts of flexor digitorum profundus and flexor digitorum superficialis,

which is for flexion of fingers D2-D5, extensor digitorum communis for extension of fingers D2-

D5, flexor carpi radialis and flexor carpi ulnaris for wrist flexion, extensor carpi radialis longus and

extensor carpi ulnaris for wrist extension, pronator teres, supinator, and flexor pollicis longus for

thumb flexion, extensor pollicis longus for thumb extension and abductor pollicis longus. Data from

20 participants is provided through the dataset. One of the subjects is not included in the study from

the beginning due to its incomplete information. The participants performed 65 hand gestures that

are combinations of 16 basic single degree of freedom movements. One of the gestures is carried out

twice, therefore, there are 66 movements in total. The subjects performed each gesture 5 times with

5 seconds rest in between. Fig. 2.3 illustrates how the raw dataset is organized. The red plot shows

the acquired HD-sEMG signal for one single channel of one specific hand movement. The blue

line shows the repetition number of that gesture and the rest intervals. The signals were recorded

through a Quattrocento (OT Bioelettronica, Torino, Italy) bioelectrical amplifier system with 2, 048

Hz sampling frequency. Signals of the successive channels were subtracted from each other (i.e.,

the sEMG data is acquired in a bipolar fashion) to lower the amount of common-mode noise. The

rational behind selection of this publicly available dataset is that it comprises of a large number of

gestures and electrodes, which allows development of a generalizable framework by investigating

different settings of the input data. Additionally, this dataset provides straightforward instructions

on how to deploy the dataset for different evaluation purposes. However, since the paper [2] on this
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Figure 2.2: Representation of the HD-sEMG acquisition setup [2]: (a) The (8 × 8) HD-sEMG grid of electrodes. (b)
The flexion and extension electrodes positioned on supinated and fully pronated forearm muscles.

Figure 2.3: Illustrative example of the raw HD-sEMG dataset. The red plot is the sEMG signal for one single channel
and one single movement and the blue plot shows the repetition number and the rest intervals for that movement.

dataset did not refer to the train and test sets as a basis for comparison, we performed a 5-fold cross-

validation as there are 5 sessions in the dataset. In this way, one (out of 5) repetition is considered

as the test set and the remaining are assigned to the train set. Each time, the test set is changed until

all the repetitions have been tested. Finally, the accuracy of each fold together with the average

accuracy across all the folds are reported.
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Data Pre-processing

The raw HD-sEMG dataset is pre-processed following the common practice before being fed

to the proposed ViT-HGR framework. More specifically, there is a consensus in the literature that

pre-processing of sEMG signals should involve the following steps: (i) Band pass filtering; (ii)

Rectification; (iii) Linear envelope computation, and (iv) Normalization. The utilized dataset is

band-pass filtered with a hardware high-pass filter at 10 Hz and a low-pass filter at 900 Hz during

recordings. All filter types are second order butterworth filters. Prior to the filtering step, full

wave rectification is performed, i.e., absolute value of the signal is computed. The rectification

step coupled with the low-pass filtering results in getting the shape or “envelope” of the sEMG

signal. The envelope obtained by low-pass filtering is used to acquire active segment data [63, 64].

The purpose of the low pass filtering is to attenuate higher frequencies present in the signal while

keeping the DC and low frequency values. In this regard, a low-pass first-order butterworth filter at

1 Hz is applied separately to each of the 128 channels of the data. We would like to mention that

the utilized low-pass filtering approach is common in the literature, e.g., References [65–68] also

applied a low-pass filter with cutoff frequency of 1 or 2 Hz and then windowed the signal. Shallower

filters are widely recommended as they produce less signal distortions and spread them less in the

time domain due to a shorter impulse response. Using the Fourier transform of the HD-sEMG

signals [63,69], we observed that the cut-off frequencies up to 10 Hz are reasonable, as such we have

also tested the ViT-HGR model’s performance for 5 and 10 Hz low-pass filters in Chapter 4.1. It is

worth nothing that low-pass filtering can be seen, more or less, to smoothing the data with a sliding

averaging window. In this regard, theory predicts that a moving average filter will have a cutoff

frequency equal to f = 0.443
Tw

(e.g., a moving average filter with 1 Hz cutoff frequency corresponds

to a 443 ms window size). Having said that, Butterworth filter in the time domain has an infinite

impulse response with positive and negative lobes in contrast to the moving average filter, which is

a finite positive window with constant values in time. Intuitively speaking, the positive and negative

lobes of the butterworth filter neutralize the effect of averaging over time instants. In final pre-

processing phase, the filtered signals are normalized by the µ-law normalization algorithm, which

reduces significant changes in the dynamic range of the signals acquired from different electrodes.
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The µ-law normalization is performed based on the following formulation

F (xt) = sign(xt)
ln
(
1 + µ|xt|

)
ln
(
1 + µ

) , (7)

where xt is the time-series sEMG signal for each electrode channel, and µ is the extent to which the

signals are scaled down and is determined empirically. According to [41, 70], µ-law normalization

helps the network to learn gestures more effectively. Fig. 2.4 shows the effects of the µ-law nor-

malization. As can be seen from Fig. 2.4, original signals are closely spaced and their amplitudes

change in a very small range (i.e. ≈ 0-0.02 V). They are, however, apparently separated after apply-

ing the µ-law normalization, which results in the sEMG signals ranging from ≈ 15-50 V. Having

separated values provide the network with better learning capabilities to discriminate between dif-

ferent gestures. Finally, the sEMG signals are segmented following the common approach in the

literature [71–74]. More specifically, after removing the rest intervals from the dataset, the signals

are segmented with a specific window size creating the main 3D input of the ViT-HGR with shape

W × Nch × Ncv, where W is the window size and Nch and Ncv are the number of horizontal and

vertical channels respectively. It is worth mentioning that the window length should be less than 300

ms to satisfy the acceptable delay time [75], which is the real-time response required for practical

myoelectric prosthetic control. Therefore, the window length for the classification purpose cannot

surpass 300 ms [75]. This completes our discussion on the pre-processing stage.

2.4 Summary

In this chapter, an overview of hand gesture recognition, sEMG signals and the existing gesture

recognition networks proposed in the literature is provided together with a detailed description of

the background materials, the HD-sEMG dataset and the data pre-processing stages used in this

thesis. The limitations and advantages of the existing DL/ML-based solutions for the gesture recog-

nition task are also discussed in this chapter. In brief, the existing solutions require time-consuming

manual extraction of handcrafted features, usually attend to either temporal or spatial information of

the HD-sEMG signals and are computationally demanding in respect of training time and memory

usage. Furthermore, this chapter features recent surges of interest in the context of hand gesture
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Figure 2.4: The impact of the µ-law normalization on the sEMG signals: (a) Low-pass filtered sEMG signals of 8
different electrode channels of the extensor grid before normalization. (b) Low-pass filtered sEMG signals of 8 different
electrode channels of the extensor grid after normalization.

recognition as well as the variety of frameworks that have been suggested in the literature for this

specific task. Finally, details and mathematics of the proposed ViT framework (ViT-HGR) are pro-

vided and the main building blocks of a ViT called the Multi-head Self Attention (MSA) and the

Scaled Dot-Product are illustrated.
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Chapter 3

Vision Transformer-based Hand Gesture

Recognition from High Density Surface

EMG Signals

Thanks to the recent evolution in the field of Artificial Intelligence (AI), specifically Deep Neu-

ral Networks (DNNs), significant advancements are expected on development of highly functional

hand prostheses for upper limb amputees. Generally speaking, such advanced prosthesis systems

are, typically, designed using surface Electromyogram (sEMG) signals [41, 44, 76, 77], represent-

ing action potentials of the muscle fibers [78]. The sEMG signals, after passing through a pre-

processing stage, could be a valuable input for DNN architectures to perform different tasks includ-

ing but not limited to motor control, prosthetic device control, and/or hand motion classification.

Researchers are, therefore, turning their attention to development of DNN-based Human Machine

Interface (HMI) algorithms using sEMG signals to design more accurate and more efficient myo-

electric prosthesis control systems.

As mentioned before, sEMG signals are generally classified into two main categories, i.e., sparse

and high-density [79–81]. Although using a large number of electrodes makes the computational

process challenging, there has been a surge of recent interest in the use of High-Density sEMG
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(HD-sEMG) signals which is the focus of this thesis. Recently, there has been a surge of signifi-

cant interest on application of Deep Learning (DL) models to autonomously perform hand gesture

recognition using surface Electromyogram (sEMG) signals. Many of the existing DL models are,

however, designed to be applied on sparse sEMG signals. Furthermore, due to the complex struc-

ture of these models, typically, we are faced with memory constraint issues, require large training

times and a large number of training samples, and; there is the need to resort to data augmentation

and/or transfer learning. In this chapter, we investigate and design a Vision Transformer (ViT)-

based architecture to perform hand gesture recognition from High Density (HD-sEMG) signals.

Intuitively speaking, we capitalize on the recent breakthrough role of the transformer architecture

in tackling different complex problems together with its potential for employing more input par-

allelization via its attention mechanism. The proposed Vision Transformer-based Hand Gesture

Recognition (ViT-HGR) framework can overcome the aforementioned training time problems and

can accurately classify a large number of hand gestures from scratch without any need for data

augmentation and/or transfer learning. Our experiments with 64-sample (31.25 ms) window size

yield average test accuracy of 84.62± 3.07%, where only 78, 210 learnable parameters are utilized

in the model. The compact structure of the proposed ViT-based ViT-HGR framework (i.e., hav-

ing significantly reduced number of trainable parameters) shows great potentials for its practical

application for prosthetic control. Since HD-sEMG data sets have a 3-Dimensional (3D) structure,

Vision Transformers (ViT) [19] can be considered as an appropriate architecture to address the chal-

lenges identified above. The proposed ViT-HGR framework can overcome training time problems

and evaluation accuracy that we mostly face while working with other similar networks such as con-

ventional ML algorithms or more advanced DNNs such as Long Short-Term Memories (LSTMs).

However, we cannot directly provide HD-sEMG signals as input to the ViTs, and particular signal

processing steps are required to modify the signal into a format that is compatible with the ViT’s

input. Therefore, the proposed ViT-HGR architecture converts the main signal into smaller portions

using a specific window size and then feeds each of these portions to the ViT for further analy-

sis. To develop and evaluate the proposed ViT-HGR framework, we used the HD-sEMG dataset

explained in 2.3 consisting of 65 isometric hand gestures and 128 distinct channels for recording

the signals [2]. Our results show superior performance of the ViT-HGR framework compared to its
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counterparts illustrating reduced training time and increased testing accuracy.

The remainder of the chapter is organized as follows: The proposed ViT-HGR framework to-

gether with steps used to prepare HD-sEMG signals to be fed to the ViT architecture are concisely

discussed in Section 3.1. Experimental results are presented in Section 3.2. Finally, Section 3.3

concludes the chapter.

3.1 The proposed ViT-HGR Framework

The proposed ViT-HGR framework in this chapter is implemented based on the transformers

and attention mechanism [19] and explained in detail in Chapter 2.2. The attention mechanism

incorporated with CNNs and LSTMs were formerly used for the hand movement classification tasks

because of their proven ability to leverage temporal information of the sEMG signals [18]. However,

in this work, we indicate that the attention framework itself is sufficient to surpass the other networks

and because of our data preparation approach, there is no need for data augmentation.

The overall structure of the proposed ViT-HGR architecture is shown in Fig. 3.1. In this chap-

ter, we focused on a 64-sample (31.25 ms considering the 2, 048 Hz sampling frequency) sliding

window size with a skip_step equal to 32 samples and utilized 64 electrode channels to convert the

HD-sEMG signals to the acceptable input for the ViT. Although using a larger window size po-

tentially leads to better performance, use of shorter windows (e.g., 31.25 ms) is preferred allowing

extra necessary time for practical implementation in real scenarios.

After the windowing step, each of the (window_size, Nch, Ncv) sequences, where Nch is the

number of horizontal channels and Ncv is the number of vertical channels, are considered as the 3D

input of the ViT and is divided into N small square patches in the Patch Embedding block. Ncv and

Nch parameters are both set to 8 in this work. The sequence of patches is then fed to the transformer

encoder clarified in 2.2 for gesture classification.

3.2 Experiments and Results

The raw dataset consists of plenty of sharp fluctuations that commonly occur in the EMG sig-

nals. Not only are these fluctuations required for an accurate gesture recognition task but they also
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Figure 3.1: Overview of the ViT-HGR network. (a) The windowed HD-sEMG signal is fed to the ViT-HGR and
split into smaller patches. The patches go through a linear projection layer which converts them from 3D to 2D data
samples. A class token is added to the patches and the N + 1 patches are input to a transformer encoder. Ultimately,
the first output of the transformer corresponding to the class token is chosen for the multi-class classification part. (b)
The transformer encoder which is the fundamental part of the ViT, responsible for processing the input patches with its
main part called Multi-head Self Attention (MSA). (c) The Multi-head Self Attention (MSA) Structure. (d) The Scaled
Dot-Product module in the MSA block.

prevent the network from training the useful information and increasing its accuracy. As a result, a

set of pre-processing tasks explained in Chapter 2.3 are performed on the HD-sEMG data.

We evaluate our proposed framework on all the 65 various hand gestures of the dataset and

considered 3 distinct models, in which MLP size and the Embedding dimension are different. For

each model a window size of 64 samples (31.25 ms) is tested to assess the impact of increasing the

window size on performance of ViTs. The patch size, models’ depth and the number of heads in

all of the models are set to (4, 4), 1 , 12 respectively. Adam optimization method is deployed with

(β1 , β2) equal to (0.9, 0.999), with the learning rate of 0.0001 and the weight decay of 0.001. We

fix the batch size and the number of epochs to 128 and 30 respectively and use the Cross-entropy

loss function for calculating the models’ performance. The Model IDs and their corresponding

parameters are presented in Table 3.1.

Table 3.2 demonstrates the average accuracy over 19 subjects for each repetition, the average

accuracy after performing 5-fold cross validation (i.e., Acc. F1 to Acc. F5) and the corresponding
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Table 3.1: Model IDs and their parameters

Model ID MLP Size Embed Dimension

I 384 192

II 96 96

III 48 48

Standard Deviation (STD) for each model. It also shows how many parameters are trained for

each specific model. As can be seen, the highest accuracy, in general, pertains to the 3rd repetition

and the lowest to the 1st one. The average accuracy rises by 0.38% from model I to model II

although the number of parameters in the former is roughly 4 times as large as that in the latter.

This indicates that to obtain decent accuracy in ViTs, there is no need to increase the number of

parameters and hence the complexity and the training time when this accuracy is achieved with

almost 78, 000 parameters. The STD also decreases by a minimal amount when increasing the

number of parameters, leading to a reasonable trade-off between the number of parameters on the

one hand and the acquired accuracy and STD on the other hand. Fig. 3.2 visualizes the results from

Table 3.2. According to the Wilcoxon signed-rank test, the difference in accuracy between models

I, III and models II , III is statistically significant. The ns, **, *** signs in Fig. 3.2 correspond to

the following p-values:

• Not significant (ns): 5.00e − 02 < p ≤ 1.00e + 00

• ∗∗ : 1.00e − 03 < p ≤ 1.00e − 02

• ∗∗∗ : 1.00e − 04 < p ≤ 1.00e − 03

For comparison purposes, the proposed ViT-HGR framework is evaluated against the LDA ap-

proach, which is among the most popular conventional ML algorithms that has been widely used

for sEMG gesture recognition. We should mention that at the time of preparing the [1] paper, as

the utilized dataset had been released very recently, there were only couple of other works [71, 82]

developed based on this dataset. Reference [71] focused on the same task as our work but used tradi-

tional ML methods such as LDA. The test-train split, however, was not mentioned in Reference [71]
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Table 3.2: Comparison of the average/overall accuracy for each fold over 19 participants for each ViT model

Model ID Acc. F1 (%) Acc. F2 Acc. F3 Acc. F4 Acc. F5 Avg. Acc. STD (%) # Parameters

I 75.92 87.79 88.47 87.71 83.22 84.62 3.07 340,866

II 75.21 87.34 88 87.88 82.78 84.24 3.14 78,210

III 73.92 87.09 87.56 87.09 81.65 83.46 3.17 25,314

Table 3.3: Comparison of the average/overall accuracy for each repetition over 19 participants for the LDA model.

Acc. F1 (%) Acc. F2 Acc. F3 Acc. F4 Acc. F5 Avg. Acc. STD (%)

82.58 69.65 84.21 82.74 75.27 78.89 11.15

Figure 3.2: Accuracy boxplots and Wilxocon test’s results of 3 different models of the ViT-HGR framework. Each
boxplot represents the Interquartile Range for 19 subjects. The accuracy for each subject is the average accuracy after
performing 5-fold cross validation.

rendering direct comparison inapplicable. Reference [82], on the other hand, only focused on the

dynamic and transient phase of gesture movements when the signals are not stabilized or plateaued,

which is a different task as this work. A thorough comparison of our proposed framework’s accu-

racy with that of the the similar works on the same dataset is done in Chapter 4.3.6. Consequently,

to have a fair comparison in Reference [1], we have implemented an LDA method similar to that
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of [71] based on the same setting as our proposed ViT framework. Five key features for classi-

fication of sEMG signals including Mean Absolute Value (MAV), the number of Zero Crossings

(ZC), Waveform Length (WL), Root Mean Square (RMS) and Slope Sign Change (SSC) along with

four auto regressive coefficients of each cropped window are fed to the LDA algorithm [71, 83]. In

Table 3.3, the above-mentioned results obtained from the LDA model are presented. Evidently, the

average accuracy in the ViT is around 5% bigger and STD is around 8% smaller than that in the

LDA, which highlights the great power of ViTs in solving HD-sEMG hand movement classification

problems. Furthermore, the signal processing + training time for both ViT-HGR and LDA and for

each repetition of one subject is measured. This time is 168 seconds for the ViT-HGR model I and

367 seconds for the LDA, which means for achieving the total average accuracy over all the 19

subjects, we require 4.4 hours while this will be 9.6 hours for the LDA.

3.3 Discussion and Summary

In this chapter, we introduced a Vision Transformer-based framework, referred to as the ViT-

HGR, for application on HD-sEMG signals for the task of hand gesture classification. To implement

the ViT-HGR framework, we capitalize on the recent breakthrough of Transformers in different ML

domains and their potentials for employing more input parallelization, therefore, reducing com-

plexity of the underlying model. As direct application of ViT to HD-sEMG is not straightforward, a

particular signal processing step is developed to convert the HD-sEMG signals to a specific format

that is compatible with ViTs. The proposed ViT-HGR framework can overcome the training time

problems associated with recurrent networks and can accurately classify a large number of hand

gestures from scratch without any need for data augmentation and/or transfer learning. By com-

paring the test accuracy associated with three unique variants of the ViT-HGR network, we showed

that it could reach average accuracy of 84.24% (for 65 various hand gestures over 19 participants)

with no more than 78, 000 parameters. Also, there is a significant discrepancy between the accu-

racy obtained for models I & III and models II & III, implying that the smallest ViT-HGR model

produces statistically different results from the other two ones and that increasing the capacity of

the ViT-HGR framework can have significant effect on the produced results. Moreover, the average
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accuracy for the LDA model is 5% lower and its signal processing + training time is more than

twice that of the ViT-HGR. This illustrates potentials of the proposed ViT-HGR framework to act as

a feasible substitute for LDAs in hand gesture recognition tasks. This is because the ViTs are more

straightforward to be implemented on HD-sEMG data sets with no need for any additional feature

extraction calculations and it also takes far less training time, which is a significantly critical issue

when working with large data sets. Our primary focus in this chapter was on 64-sample portions of

the flexor signals because our purpose was to assess the proposed network’s performance on small

patterns of the HD-sEMG dataset. In the next chapter, we aim to extend the number of channels

and the variety of the window size to evaluate their impact on the framework’s efficacy in terms

of the train time, test time, required memory, average accuracy, STD, and the number of learnable

parameters.
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Chapter 4

Transformer-based Hand Gesture

Recognition from Instantaneous to

Fused Neural Decomposition of

High-Density sEMG Signals

Designing efficient and labor-saving prosthetic hands requires powerful hand gesture recogni-

tion algorithms that can achieve high accuracy with limited complexity and latency. In this context,

this chapter proposes a Compact Transformer-based Hand Gesture Recognition framework referred

to as CT-HGR, which employs a vision transformer network to conduct hand gesture recognition

using HD-sEMG signals. This model is an extension of the ViT-HGR model described in the pre-

vious section. Attention mechanism in the proposed model identifies similarities among different

data segments with a greater capacity for parallel computations and addresses the memory limitation

problems while dealing with inputs of large sequence lengths. One of the differences between the

ViT and a typical transformer is that the ViT is generally designed to be applied on 2D RGB images

that have an additional dimension (the 3rd dimension) as the color channel rather than 2D time-series

signals. Considering the fact that HD-sEMG signals comprise of two dimensions in space and one

in time (3 dimensions in total), they can be an appropriate input to a ViT. The CT-HGR architecture
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is very similar to the ViT-HGRframework expounded in Chapter 2.2. In this chapter, a comprehen-

sive evaluation of the proposed ViT-based framework for hand gesture classification on HD-sEMG

dataset is carried out. Here, we assess performance of our proposed ViT-based architecture in more

detail and report accuracy results of utilizing different window sizes and electrode channels with

two different versions of the CT-HGR framework. Additionally, as mentioned in [84], instanta-

neous training with HD-sEMG signals refers to training the network with a 2D image depicting

MUAP activities under a grid of electrodes at a single time point. In this chapter, we also show

that there are reproducible patterns among instantaneous samples of a specific gesture which could

also be a physiological representation of muscle activities in each time point. We demonstrate that

the proposed framework can perform instantaneous hand gesture classification using sEMG image

spatially composed from HD-sEMG signals. In other words, it can achieve acceptable accuracy

when receiving, as an input, a single frame of the HD-sEMG image. A variant of the CT-HGR is

also designed to incorporate microscopic neural drive information in the form of Motor Unit Spike

Trains (MUSTs) extracted from HD-sEMG signals using Blind Source Separation (BSS). This vari-

ant is combined with its baseline version via a hybrid architecture to evaluate potentials of fusing

macroscopic and microscopic neural drive information. The utilized HD-sEMG dataset is the HD-

sEMG dataset explained in Chapter 2.3. Briefly speaking, the proposed CT-HGR framework is

applied to 31.25, 62.5, 125, 250 ms window sizes of the above-mentioned dataset utilizing 32, 64,

128 electrode channels. Our results are obtained via 5-fold cross-validation by first applying the

proposed framework on the dataset of each subject separately and then, averaging the accuracies

among all the subjects. The average accuracy over all the participants using 32 electrodes and a

window size of 31.25 ms is 86.23%, which gradually increases till reaching 91.98% for 128 elec-

trodes and a window size of 250 ms. The CT-HGR achieves accuracy of 89.13% for instantaneous

recognition based on a single frame of HD-sEMG image. The proposed model is also statistically

compared with a 3D Convolutional Neural Network (CNN) and two different variants of Support

Vector Machine (SVM) and Linear Discriminant Analysis (LDA) models. The accuracy results for

each of the above-mentioned models are paired with their precision, recall, F1 score, required mem-

ory, and train/test times. The results corroborate effectiveness of the proposed CT-HGR framework

compared to its counterparts.
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The rest of the chapter is structured as follows: Our proposed framework is presented in Sec-

tion 4.1. Our experiments and evaluations of implementing the proposed framework are discussed

in Section 4.3, a detailed discussion of the acquired results is generated in Section 4.4 and finally,

Section 4.5 concludes the paper.

4.1 The proposed ViT-HGR Framework

The proposed CT-HGR framework in this chapter is implemented based on the transformers

and attention mechanism [19] and explained in detail in Chapter 2.2. The CT-HGR is developed

based on the ViT network in which the attention mechanism is utilized to understand the temporal

and spatial connections among multiple data segments of the input. As stated previously, several

studies have employed the attention mechanism together with hybrid CNN-RNN models to force

the network to learn both spatial and temporal information of the signals [18, 42]. However, in this

chapter, we demonstrate that attention mechanism can work independently of any other network

and achieve high accuracy when trained from scratch with no data augmentation. We also show

that the proposed framework can be trained even on small window sizes and more importantly on

instantaneous data samples. this chapter’s work has been published in [38]. It is worth noting that

in the recent literature, there are some works [71,84] that focused on small windows sizes achieving

accuracies in the range of 89.3 - 91.81 %. We, in this chapter, try to compare our proposed CT-HGR

model with other suggested models in terms of the classification accuracy in instantaneous gesture

recognition. The overall structure of the proposed CT-HGR architecture is shown in Fig. 4.1.

The dataset [2] used in this study is the HD-sEMG dataset that is explained in Chapter 2.3. The

raw HD-sEMG dataset is pre-processed following the common practice described in Chapter 2.3

before being fed to the proposed CT-HGR framework. Using the Fourier Transform of the HD-

sEMG signals [63, 69], we observed that the cut-off frequencies up to 10 Hz are reasonable for

low-pass filtering, as such we have also tested the model’s performance for 5 and 10 Hz low-pass

filters as shown in Table 4.1.

After completion of the pre-processing steps discussed in Chapter 2.3, we have 3D signals of

shape W ×Nch ×Ncv, where W is the window size and Nch and Ncv are the number of horizontal
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Figure 4.1: Overview of the CT-HGR network. (a) The windowed HD-sEMG signal is fed to the CT-HGR and split
into smaller patches. The patches go through a linear projection layer which converts them from 3D to 2D data samples.
A class token is added to the patches and the N+1 patches are input to a transformer encoder. Ultimately, the first output
of the transformer corresponding to the class token is chosen for the multi-class classification part. (b) The transformer
encoder which is the fundamental part of the ViT, responsible for processing the input patches with its main part called
Multi-head Self Attention (MSA). (c) The Multi-head Self Attention (MSA) Structure. (d) The Scaled Dot-Product
module in the MSA block.

Table 4.1: Comparison of classification accuracy and STD for each fold and their average for W = 64, 128 electrode
channels (CT-HGR-V1), and different cutoff frequencies for the low-pass filter. The accuracy and STD for each fold is
averaged over 19 subjects.

# Channels Window size (samples) Cutoff freq(Hz) Fold1(%) Fold2 (%) Fold3 (%) Fold4 (%) Fold5 (%) Average (%)

128 64
1 82.14 (±3.26) 93.30 (±2.14) 93.75 (±2.08) 93.39 (±2.11) 90.07 (±2.55) 90.53 (±2.43)
5 81.94 (±3.74) 92.74 (±2.46) 93.48 (±2.12) 93.33 (±2.10) 89.64 (±2.95) 90.23 (±2.67)
10 80.40(±3.44) 91.42 (±2.38) 92.27 (±2.28) 91.98 (±2.28) 88.30 (±2.80) 88.87 (±2.64)

and vertical channels respectively. As an intuitive approach for patching the input data with 32, 64

or 128 electrode channels, we considered window sizes that are powers of two (in samples), which

allows to smoothly divide input into smaller patches [60]. Therefore, the utilized window sizes in

our experiments are of 64, 128, 256, and 512 data points (31.25, 62.5, 125, and 250 ms respectively

considering 2, 048 Hz sampling frequency of the dataset). Furthermore, we have assessed the effect

of changing the number of electrode channels by using 32, 64 and 128 out of the whole 128 channels.

Therefore, we set Nch to 4, 8, and 16 each time while Ncv remains constant at 8.
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4.2 Power Spectral Density (PSD) Analysis

One of the experiments we did in [38] and in this chapter is comparing performance of our

proposed CT-HGR architecture with that of the conventional ML and a 3D CNN models. For

the former, we design two sets of traditional ML algorithms based on SVMs and LDAs, which

are commonly [10, 85–88] used for hand gesture recognition tasks. In the first experiment and

following [10, 85, 86], we trained SVM and LDA models based on the following set of classical

features: Root Mean Square (RMS), Zero Crossings (ZC), Slope Sign Change (SSC), and Wave-

length (WL). To observe effects of recently proposed feature extraction methods, we did a second

experiment based on features introduced in Reference [88]. These features are a rough estimate

of the Power Spectral Density (PSD) of the signal by finding an approximate relation between the

PSD in the frequency domain and the time-domain signal utilizing characteristics of the Fourier

transform and the Parseval’s theorem. According to Parseval’s theorem, the sum of squares of a

function is equal to the sum of squares of its Fourier transform, i.e.,

N−1∑
j=0

|x [j]|2 = 1

N

N−1∑
k=0

|X [k]X ∗ [k]| =
N−1∑
k=0

P [k] (1)

where x is the original sEMG signal, X , its discrete Fourier transform, X∗, the conjugate of X , P

is the power spectrum, and terms j, k are the time and frequency indices, respectively. The utilized

set of features are m0, m1 −m0, m2, m3 −m2, and m4 −m3, which are defined as follows

m0 =
Aλ

λ
, m1 =

Bλ

λ
, and m2 =

Cλ

λ
m3 =

Dλ

λ
and m4 =

Eλ

λ
,

where

A =

√∑N−1
j=0 |x [j]2|

N
, B =

√∑N−1
j=0 |∆ • x [j]|2

N
, D =

√∑N−1
j=0 |∆2 • x [j] |2

N
,

C =

√∑N−1
j=0 ∆d21
N

, and E =

√∑N−1
j=0 ∆d22
N

,
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Table 4.2: Comparison of classification accuracy and STD for each fold and their average for different window sizes
and number of channels (CT-HGR-V1). The accuracy and STD for each fold is averaged over 19 subjects.

# Channels Window size (samples) Fold1 (%) Fold2 (%) Fold3 (%) Fold4 (%) Fold5 (%) Average (%)

32
64 76.85 (±3.83) 89.30 (±2.61) 89.91 (±2.54) 89.62 (±2.67) 85.49 (±3.07) 86.23 (±2.94)
128 77.21 (±3.56) 89.48 (±2.60) 90.05 (±2.63) 90.00 (±2.61) 85.83 (±2.96) 86.51 (±2.87)
256 77.63 (±3.50) 90.51 (±2.52) 90.79 (±2.45) 90.99 (±2.42) 86.66 (±2.97) 87.32 (±2.77)

64
64 79.64 (±3.38) 91.92 (±2.41) 92.55 (±2.18) 92.37 (±2.32) 88.16 (±2.77) 88.93 (±2.61)
128 80.26 (±3.44) 92.32 (±2.27) 92.94 (±2.20) 92.48 (±2.22) 88.46 (±2.77) 89.29 (±2.58)
256 81.43 (±3.31) 92.89 (±2.15) 93.42 (±2.13) 93.05 (±2.18) 89.29 (±2.69) 90.02 (±2.49)

128

64 82.14 (±3.26) 93.30 (±2.14) 93.75 (±2.08) 93.39 (±2.11) 90.07 (±2.55) 90.53 (±2.43)
128 82.80 (±3.22) 93.47 (±2.13) 93.98 (±2.03) 93.82 (±2.10) 90.30 (±2.48) 90.87 (±2.39)
256 83.20 (±3.21) 94.19 (±2.00) 94.25 (±1.97) 94.42 (±1.91) 90.70 (±2.46) 91.35 (±2.31)
512 83.87 (±3.21) 94.62 (±1.88) 95.26 (±1.80) 94.89 (±1.85) 91.26 (±2.37) 91.98 (±2.22)

Table 4.3: Comparison of classification accuracy and STD for each fold and their average for different window sizes
and 128 electrode channels (CT-HGR-V2). The accuracy and STD for each fold is averaged over 19 subjects.

# Channels Window size (samples) Fold1 (%) Fold2 (%) Fold3 (%) Fold4 (%) Fold5 (%) Average (%)

128

64 83.82 (±3.22) 94.03 (±2.02) 94.58 (±1.9) 94.29 (±2.05) 90.84 (±2.58) 91.51 (±2.35)
128 83.98 (±3.17) 94.09 (±2.00) 94.82 (±1.86) 94.65 (±1.94) 90.89 (±2.45) 91.69 (±2.28)
256 84.74 (±3.13) 94.60 (±1.92) 95.19 (±1.80) 95.06 (±1.86) 91.59 (±2.44) 92.24 (±2.23)
512 85.27 (±3.12) 95.55 (±1.70) 95.81 (±1.65) 95.60 (±1.73) 92.16 (±2.32) 92.88 (±2.10)

where ∆•,∆2• are the signs for the first and second derivatives and d1, d2 are the first and second

derivatives of the original sEMG signal.

In the next section, the results corresponding to running conventional ML models using the

above-mentioned sets of features are shown. Moreover, we will describe all other various experi-

ments performed in this study and present the obtained results and their explanations in detail.

4.3 Results

We perform several experiments to evaluate performance of the proposed framework under dif-

ferent configurations. In the following, each of the conducted experiments and their corresponding

results are presented separately. The implemented models are evaluated on all the 66 gestures of the

HD-sEMG dataset performed by 19 healthy subjects. The implementations were developed in the

PyTorch framework and the models are trained using an NVIDIA GeForce GTX 1080 Ti GPU.

4.3.1 Overall Performance Evaluation under Different Configurations

In this experiment, we employ 4 different window sizes together with 3 different combination of

electrodes of the HD-sEMG dataset and report the achieved accuracy for each of the 5 test folds and
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Table 4.4: The number of learnable parameters for different number of electrodes and window sizes.

# Channels Window size (samples) # Parameters (CT-HGR-V1) # Parameters (CT-HGR-V2) # Parameters (3D CNN)

32
64 46,530 - -

128 47,042 - -
256 48,066 - -

64
64 62,914 - 294,914

128 63,426 - 311,298
256 64,450 - 319,490

128

64 95,682 273,346 -
128 96,194 274,370 -
256 97,218 276,418 -
512 99,266 280,514 -

the overall averaged accuracy. In the first model, referred to as the CT-HGR-V1, the simplest and

smallest CT-HGR model that gives acceptable results is chosen. The length of windowed signals,

in this model, is set to 64, 128, 256 and 512 (31.25, 62.5, 125, 250 ms respectively) with skip step

of 32 except for the window size of 512 for which the skip step is set to 64. To measure effects

of increasing the number of channels on the performance of the proposed architecture, we consider

three different settings using all, half, and 1/4 of the 128 electrodes. In the half mode, electrodes

of multiple of 2 and in the 1/4 mode, electrodes of multiple of 4 were chosen. In this regard, we

chose one electrode out of four adjacent electrodes to make sure that the utilized electrodes still

cover the whole recorded area and the only thing that changes is the distance among the chosen

electrodes. In such a scenario (which intuitively speaking can be interpreted as an unbiased way

of choosing the electrodes), we make sure that we do not miss much of the information that high

density grids usually provide and the model do not lose its generalizability when being fed with

the data from fewer number of electrode channels. As stated previously, the number of horizontal

electrode channels in the CT-HGR’s input is 4, 8, and 16 while the number of vertical channels is

8. Regarding the hyperparameters of the model, the model’s (embedding) dimension is 64, and the

patch size is set to (8, 4), (8, 8), and (8, 16) for 32, 64, and 128 number of channels, respectively.

The CT-HGR-V1 model contains only 1 transformer layer and 8 heads. The MLP block’s hidden

size is set to 64, the same as its input size. The CT-HGR-V1 model is trained with 20 epochs and

batch size of 128 for each subject independently. The optimization method used is Adam with

β1 = 0.9 and β2 = 0.999 parameters, learning rate of 0.0001 and weight decay of 0.001. Learning

rate annealing is deployed after the first 10 epochs for faster convergence. The cross-entropy loss

function is considered as the objective function. Table 4.2 represents the acquired accuracy and
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standard deviation (STD) for each individual window size and number of channels. It is worth

noting that the 512 window size is only tested with the whole electrode channels of the dataset to

indicate the potential best performance of the network.

A second variant of the CT-HGR model, referred to as CT-HGR-V2, is also tested where the

model’s dimension and the number of hidden layers in the MLP layer are twice those of CT-HGR-

V1. We apply the CT-HGR-V2 model on the data samples derived from the whole 128 electrodes to

compare it with the last 4 rows of Table 4.2. The results are shown in Table 4.3. Table 4.4 illustrates

the number of learnable parameters for each window size and number of channels in both models.

Fig. 4.2 demonstrates the box plots for the accuracy of CT-HGR-V1 obtained for each individual

fold and different window sizes from W = 64 to W = 512 (Fig. 4.2(a-d)). The box plots are drawn

based on the Interquartile Range (IQR) of accuracy for 19 subjects when all the 128 electrodes are

included in the experiment. The black horizontal line represents the median accuracy for each fold.

In Fig. 4.3, the Wilcoxon signed rank test is applied for CT-HGR-V1 and CT-HGR-V2 separately

when the number of channels is fixed at 128. The box plots show the IQR for each window size that

decreases minimally from CT-HGR-V1 to CT-HGR-V2. The Wilcoxon test’s p-value annotations

in Fig. 4.3 are as follows:

• ns: 5.00e− 02 < p <= 1.00e+ 00

• *: 1.00e− 02 < p <= 5.00e− 02

• **: 1.00e− 03 < p <= 1.00e− 02

• ***: 1.00e− 04 < p <= 1.00e− 03

• ****: p <= 1.00e− 04

Although the average accuracy does not change significantly, the STD in CT-HGR-V2 with W =

512 declines significantly compared to CT-HGR-V1.

The gestures in the HD-sEMG dataset are ordered according to their DoF and similarity in

performance. The simple 1 DoF gestures are labeled from 1 to 16, 2 DoF gestures are from 17 to

57 and the most complex ones are from 58 to 66. To be more specific, the confusion matrices for

38



Figure 4.2: Comparison of the accuracy CT-HGR-V1 obtains for each fold and window sizes of (a) W = 64 (b)
W = 128 (c) W = 256 and (d) W = 512. The number of utilized electrode channels in these plots is 128.

Figure 4.3: Statistical analysis of training over different window sizes, i.e., W = 64, W = 128, W = 256, and
W = 512 for (a) CT-HGR-V1, and (b) CT-HGR-V2. The box plots are drawn based on the Interquartile Range (IQR) of
the accuracy for all the subjects and all the electrodes.
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Figure 4.4: Average confusion matrix of Model CT-HGR-V1 with W = 512 and 128 number of electrodes over
repetition 3 of 19 subjects.

Figure 4.5: Representation of Precision, Recall and F1 Score of Model CT-HGR-V1 with W = 512 and 128 number
of electrodes over repetition 3 of 19 subjects. These measures are obtained from the confusion matrix of Fig. 4.4 and
shown for each class separately.

Model CT-HGR-V1 with W = 512 and 128 number of channels are obtained for repetition 3 of

all the subjects. The matrices are summed and normalized row-wise. The final confusion matrix is

shown in Fig. 4.4. The diagonal values show the average accuracy acquired for each hand gesture

among 19 subjects. The average accuracy for most of the gestures is above 94%. The density of

the non-zero elements in Fig. 4.4 is utmost near the diagonal, which implies that the possibility

of the network making mistakes in gesture classification is higher in gestures that have the same

DoF and are performed similarly. Fig. 4.5 represents precision, recall, and F1 score associated with
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(a)

(b)

Figure 4.6: Representation of Precision, Recall and F1 Score with W = 256 and 64 number of electrodes over
repetition 3 of all 19 subjects: (a) Model SVM-V1. (b) CT-HGR-V1.

Model CT-HGR-V1 for each gesture based on the confusion matrix shown in Fig. 4.4. This figure is

included to provide the readers with a better sense of the gestures for which the above metrics were

significantly high or low. Corresponding results for each gesture are illustrated in Table 4.5 and the

average Matthews Correlation Coefficient (MCC) measure among all the subjects is calculated as

95.2%.

4.3.2 Comparisons with a Conventional ML and a 3D Convolutional Model

In the first part of this sub-section, we design two sets of traditional ML algorithms based on

SVMs and LDAs, which are commonly [10, 85–88] used for hand gesture recognition tasks. In

the first experiment and following [10, 85, 86], we trained SVM and LDA models based on the

following set of classical features: Root Mean Square (RMS), Zero Crossings (ZC), Slope Sign

Change (SSC), and Wave-length (WL). This experiment resulted in two models called SVM-V2

and LDA-V2. There are, however, some promising new feature extraction methods proposed in

the recent literature [87–91]. To observe effects of recently proposed feature extraction methods,

we did a second experiment based on features introduced in Reference [88]. These features are a

rough estimate of the Power Spectral Density (PSD) of the signal by finding an approximate relation

between the PSD in the frequency domain and the time-domain signal utilizing characteristics of
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Table 4.5: Average Precision, Recall and F1 Score of Model CT-HGR-V1 with W = 512 and 128 number of electrodes
over repetition 3 of all 19 subjects.

Class # Precision(%) Recall(%) F1 Score(%) Class # Precision(%) Recall(%) F1 Score(%)
1 97.6 (±3.8) 97.8 (±5.3) 97.7 (±3.7) 34 97.5 (±4.8) 94.2 (±12.3) 95.8 (±8.3)
2 94.5 (±7.2) 97.9 (±9.7) 96.1 (±7.0) 35 97.2 (±4.4) 98.1 (±5.4) 97.7 (±3.9)
3 96.8 (±9.2) 95.4 (±15.3) 96.1 (±13.0) 36 97.5 (±4.7) 99.4 (±1.4) 98.4 (±2.5)
4 94.1 (±12.0) 95.6 (±9.4) 94.8 (±9.6) 37 96.7 (±8.7) 82.6 (±27.8) 89.1 (±23.2)
5 95.9 (±23.6) 92.5 (±23.7) 94.2 (±23.5) 38 90.6 (±12.7) 95.4 (±10.0) 92.9 (±9.9)
6 97.4 (±3.5) 95.2 (±11.2) 96.3 (±6.9) 39 90.4 (±13.7) 93.5 (±13.1) 92.0 (±12.7)
7 94.1 (±12.1) 98.4 (±3.5) 96.2 (±8.3) 40 96.0 (±7.3) 94.7 (±12.8) 95.4 (±10.4)
8 97.2 (±6.6) 98.7 (±2.1) 97.9 (±4.3) 41 94.8 (±6.7) 97.2 (±5.9) 96.0 (±5.3)
9 93.6 (±8.7) 95.9 (±9.1) 94.8 (±8.3) 42 95.6 (±7.8) 98.3 (±2.7) 96.9 (±4.8)
10 96.9 (±7.5) 93.4 (±11.4) 95.1 (±8.3) 43 98.3 (±2.6) 96.9 (±10.3) 97.6 (±6.9)
11 91.4 (±12.0) 96.9 (±12.7) 94.1 (±11.1) 44 98.0 (±3.3) 96.1 (±12.6) 97.0 (±8.8)
12 97.6 (±5.7) 98.7 (±2.9) 98.1 (±3.3) 45 97.4 (±8.3) 92.5 (±16.9) 94.9 (±13.3)
13 98.8 (±2.7) 99.4 (±1.2) 99.1 (±1.4) 46 93.7 (±9.1) 95.4 (±8.7) 94.5 (±8.2)
14 96.6 (±6.5) 99.0 (±2.0) 97.8 (±3.8) 47 96.9 (±4.5) 98.9 (±1.8) 97.9 (±2.6)
15 98.9 (±2.2) 99.7 (±1.0) 99.3 (±1.2) 48 98.0 (±22.4) 92.8 (±22.2) 95.3 (±22.1)
16 98.7 (±2.0) 99.5 (±1.5) 99.1 (±1.2) 49 98.7 (±2.0) 98.5 (±3.7) 98.6 (±2.3)
17 95.5 (±9.0) 97.5 (±4.8) 96.5 (±6.0) 50 98.0 (±3.5) 99.5 (±1.1) 98.7 (±1.9)
18 95.4 (±6.6) 97.4 (±9.5) 96.4 (±7.1) 51 98.6 (±2.8) 99.0 (±1.7) 98.8 (±1.7)
19 97.7 (±6.5) 93.5 (±9.7) 95.5 (±6.9) 52 93.7 (±11.4) 97.5 (±4.6) 95.6 (±8.1)
20 93.8 (±12.5) 97.2 (±6.2) 95.4 (±10.0) 53 97.6 (±3.9) 97.0 (±5.8) 97.3 (±4.4)
21 99.0 (±1.4) 97.5 (±5.0) 98.2 (±3.1) 54 96.6 (±19.1) 83.5 (±27.3) 89.6 (±26.3)
22 93.9 (±22.4) 90.7 (±23.1) 92.3 (±22.2) 55 97.2 (±7.6) 96.2 (±11.0) 96.7 (±9.2)
23 95.5 (±7.6) 99.1 (±3.0) 97.3 (±4.7) 56 89.3 (±15.3) 94.0 (±11.5) 91.6 (±12.7)
24 96.9 (±3.3) 94.2 (±12.4) 95.5 (±8.1) 57 92.3 (±14.2) 91.9 (±11.1) 92.1 (±12.6)
25 97.5 (±4.3) 99.1 (±1.2) 98.3 (±2.3) 58 82.2 (±15.2) 82.4 (±27.9) 82.3 (±25.6)
26 95.5 (±14.0) 88.8 (±25.4) 92.0 (±23.6) 59 92.5 (±11.5) 89.1 (±19.5) 90.7 (±15.7)
27 89.0 (±15.8) 94.5 (±10.0) 91.6 (±12.3) 60 84.6 (±15.3) 84.8 (±24.9) 84.7 (±20.5)
28 96.6 (±5.7) 97.0 (±5.1) 96.8 (±4.4) 61 97.6 (±4.0) 93.7 (±17.1) 95.6 (±13.2)
29 95.1 (±5.6) 94.5 (±14.4) 94.8 (±10.5) 62 92.3 (±11.5) 97.7 (±6.6) 94.9 (±8.1)
30 98.4 (±3.1) 88.8 (±19.6) 93.4 (±15.0) 63 98.5 (±2.7) 98.4 (±4.9) 98.5 (±2.9)
31 93.0 (±9.6) 98.2 (±2.4) 95.5 (±5.6) 64 93.3 (±8.8) 95.2 (±8.4) 94.2 (±7.0)
32 91.8 (±23.4) 89.9 (±25.4) 90.8 (±23.9) 65 93.2 (±8.2) 94.8 (±8.2) 94.0 (±6.7)
33 94.7 (±10.6) 98.0 (±3.5) 96.3 (±7.2) 66 94.4 (±9.2) 97.5 (±6.7) 96.0 (±6.6)

Table 4.6: Comparison of classification accuracy and STD for different window sizes and 64 electrode channels using
CT-HGR-V1, 3D CNN, SVM-V1, SVM-V2, LDA-V1, and LDA-V2 models. The accuracy and STD are averaged over
all the 5 folds and 19 subjects.

# Channels Window size (samples) CT-HGR-V1 (%) 3D CNN (%) SVM-V1 (%) SVM-V2 (%) LDA-V1 (%) LDA-V2 (%)

64
64 88.93 (±2.61) 86.15 (±2.95) 86.01 (±7.05) 74.49 (±11.56) 83.05 (±7.35) 71.40 (±12.45)

128 89.29 (±2.58) 86.68 (±2.85) 89.95 (±5.19) 83.4 (±8.66) 87.97 (±5.38) 81.10 (±9.59)
256 90.02 (±2.49) 87.45 (±2.77) 90.71 (±4.88) 87.77 (±5.84) 90.85 (±4.46) 86.72 (±7.37)

the Fourier transform and the Parseval’s theorem. The procedures on how to extract these features

from raw HD-sEMG data is explained in Section 4.2.

In the second part, we implement a 3D CNN model that is originally utilized for video-based
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Figure 4.7: Box plots and IQR of CT-HGR-V1, 3D CNN, SVM-V1, SVM-V2, LDA-V1, and LDA-V2 for different
window sizes (W = 64 W = 128 and W = 256) and 64 number of channels.

hand gesture recognition tasks [92] and is found effective by authors in [54] to be applied on HD-

sEMG datasets as they resemble video data in having one dimension in time and two dimensions in

space. Therefore, in spite of a typical 2D CNN model, a 3D CNN architecture is able to extract both

the temporal and spatial features in HD-sEMG datasets. The 3D signals of shape W ×Nch ×Ncv

go through the 3D CNN architecture that has two consecutive 3D CNN layers with 16 and 32

respective filters of size (5, 3, 3), each followed by a GELU activation function, a dropout and a

max pooling layer. Then, two fully connected (FC) layers of size 256 and 128 are deployed before

the output layers which consists of an MLP head similar to the one used in our CT-HGR models

followed by a softmax function for classification. The other hyperparameters of the network are

set similar to those of the CT-HGR model. The stride values in both 3D CNN layers are 1. Table 4.6

shows the acquired results for the ML and 3D CNN models in which the number of channels in

the dataset is set to 64. For the case of ML models, Fig. 4.6 compares precision, recall, and F1

score metrics obtained from the best performing ML model (SVM-V1) with that of our proposed

CT-HGR-V1 with the same settings (W = 256 and 64 number of electrode channels). The average

MCC measure for SVM-V1 is calculated as 94.2% and for CT-HGR-V1 as 93.1%. Fig. 4.7 shows

the box plots and the results of Wilcoxon signed rank statistical test that is conducted for comparing

43



Table 4.7: Comparison of train time, test time, and the maximum allocated memory for W = 256 and 64 electrode
channels using CT-HGR-V1, 3D CNN, SVM-V1, SVM-V2, LDA-V1, and LDA-V2 models.

# Channels Window Size (samples) Parameter CT-HGR-V1 3D CNN SVM-V1 SVM-V2 LDA-V1 LDA-V2

64 256
Train Time (s) 382.9 1228.9 203.2 187.4 149.3 160
Test Time (s) 69 8 237.3 374.7 31.6 36.2

Memory (GB) 14.80 14.81 40.60 21.47 40.60 21.47

CT-HGR-V1, 3D CNN, SVM-V1, SVM-V2, LDA-V1, LDA-V2 model’s performance accuracy

on 19 subjects. In this experiment, the window sizes for all the models are changed (W = 64,

W = 128 and W = 256), but the number of channels is fixed at 64. Therefore, only the models

accepting the same window size as the input are compared to assess the discrepancy between two

different models with the same input data.

When it comes to evaluation of the computational cost for DL models, the ultimate objective is

to measure the needed amount of resources in training and inference. Computational cost can be

measured in a variety of ways, among which time, memory and number of Floating Point Operations

(FLOPs) are the common metrics. To evaluate computational cost of the proposed framework, in

addition to the number of trainable parameters shown in Fig. 4.4, we have calculated the train time,

test time and maximum allocated memory for each of the CT-HGR-V1, 3D CNN, SVM-V1, SVM-

V2, LDA-V1, and LDA-V2 models, which are shown in Table 4.7. Please note that the train/test

times reported in Table 7 correspond to the whole train/test data containing all segments of 256-

sample windows. Considering 4 repetitions in the train set and 1 repetition in the test set for each

subject, we have approximately 73, 000 and 18, 000 samples in the train and test set, respectively.

This means that, CT-HGR-V1 for which the test time is reported as 69 seconds, needs 3.8 ms

to predict each 256-sample window’s corresponding gesture. We should point out that different

factors, such as the GPU memory, how the code is organized, and the utilized batch size, can affect

test time specifically in the small scale of each window size. It is also worth noting that memory

bandwidth is considered instead of FLOPs because on existing hardware architectures, a single

memory access is much slower than a single computation.
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Table 4.8: Accuracy and STD for the shuffled dataset of all the 5 repetitions and different window sizes (CT-HGR-V1).

# Channels Window size (samples) # Avg accuracy (%)

64
64 98.05 (±1.19)
128 98.43 (±1.05)
256 98.79 (±0.96)

Table 4.9: Accuracy and STD of each fold and their average for instantaneous training.

# Channels Window size (samples) Fold1 (%) Fold2 (%) Fold3 (%) Fold4 (%) Fold5 (%) Average (%)
64 1 80.02 (±3.45) 92.33 (±2.27) 92.47 (±2.26) 92.16 (±2.31) 88.69 (±2.74) 89.13 (±2.61)

4.3.3 Performance Evaluation based on Shuffled Data

In the previous sub-sections, a 5-fold cross-validation technique was applied on the HD-sEMG

dataset in which the test set (repetition) is entirely unseen and is not included in the train set (rep-

etitions). However, another approach followed in the literature [12, 93] to split the train/test sets is

to shuffle the whole dataset with n repetitions and assign an arbitrary portion to the train set and the

remaining to the test set. Along the same line, in some of the previous works [71, 72, 74] either the

train/test splits were not specified or it was mentioned that data for each subject was shuffled and

then randomly divided into train/test sets. Intuitively speaking, by shuffling the dataset across differ-

ent repetitions, the model can better catch variations of the underlying signals and provide improved

performance. In practice, the overall objective would be to have a generalizable model that works

under different conditions as such one can acquire different repetitions and train the model over

all to boost the performance. To observe effects of such a training approach on the overall achiev-

able accuracy, we have decided to include such an experiment by shuffling the dataset. The results

and observations are on a par with those reported in the aforementioned reference [71, 72, 74].The

obtained average accuracy over 19 participants using 64, 128, 256 window sizes using the hyperpa-

rameters of CT-HGR-V1 are summarized in Table 4.8.

4.3.4 Instantaneous Performance Evaluation

In this sub-section, our objective is to assess the functionality of the proposed framework on

instant HD-sEMG data points. In other words, we consider window size of only 1 sample as the

input to our model, which requires no patching. We set the number of electrodes to 64. The
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Figure 4.8: The fused CT-HGR framework. In the first stage, the ViT-based models in the Macro and Micro paths are
trained based on 3D, HD-sEMG and 2D, p-to-p MUAP images, respectively. In the second stage, the Macro and Micro
weights are frozen (not being updated with gradient descent during training). The final Micro and Macro class tokens
are concatenated and converted to a 1, 024-dimensional feature vector, which is fed to a series of FC layers for gesture
classification.

hyperparameters used in this experiment are the same as those used for CT-HGR-V1. The accuracy

results are presented in Table 4.9.

4.3.5 Evaluation of a Hybrid Model based on Raw HD-sEMG and Extracted MUAPs

As mentioned previously, sEMG signals measure the electrical activities of the underlying

motor units in limb muscles and are collected non-invasively from the electrodes placed on skin

surface [94]. In particular, High Density sEMG (HD-sEMG) signals are acquired through a two-

dimensional (2D) grid with a large number of closely-located electrodes [95], capturing both tempo-

ral and spatial information of muscle activities. HD-sEMG acquisition, therefore, provides superior

spatial resolution of the neuromuscular system in comparison to its sparse acquisition counterpart.

This has inspired targeted focus on development of DNN-based HGR methods based on HD-sEMG
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signals [1, 18, 58, 84]. Broadly speaking, HD-sEMG-based Biological Signal Processing (BSP)

approaches can be classified into the following two main categories:

(i) Raw HD-sEMG Processing for HGR: Algorithms belonging to this category directly use raw HD-

sEMG signals for the task of HGR. In this context, e.g., Reference [84] performed instantaneous

training of a Convolutional Neural Network (CNN) using a 2D image of a single time measure-

ment. In [18], Recurrent Neural Networks (RNNs) are combined with CNNs to create a hybrid

attention-based [37] CNN-RNN architecture, which has improved HGR performance due to joint

incorporation of spatial and temporal features of HD-sEMG signals. Sun et al. [58] introduced

a network of dilated Long Short-Term Memories (LSTMs) to classify hand gestures from the

transient phase of HD-sEMG signals.

(ii) HD-sEMG Decomposition: The focus, here, is on HD-sEMG decomposition to extract micro-

scopic neural drive information. HD-sEMG signals have encouraged emergence of sEMG de-

composition algorithms in the last decade [29] as they provide a significantly high-resolution 2D

image of Motor Unit (MU) activities in each time point. sEMG decomposition refers to a set

of Blind Source Separation (BSS) [30] methods that extract discharge timings of motor neuron

action potentials from raw HD-sEMG data. Single motor neuron action potentials are summed to

form Motor Unit Action Potentials (MUAPs) that convert neural drive information to hand move-

ments [31]. Motor unit discharge timings, also known as Motor Unit Spike Trains (MUSTs),

represent sparse estimations of the MU activation times with the same sampling frequency and

time interval as the raw HD-sEMG signals [32]. Extracted MUSTs are used in several domains

such as identification of motor neuron diseases [33], analysis of neuromuscular conditions [34],

and myoelectric pattern recognition [35].

A third category can be identified when the extracted MUSTs in Category (ii) are used for HGR

at microscopic level. HD-sEMG signals are modelled as a spatio-temporal convolution of MUSTs,

which provide an exact physiological description of how each hand movement is encoded at neu-

rospinal level [36]. Thus, MUSTs are of trustworthy and discernible information on the generation

details of different hand gestures, which leads to adoption of another group of HGR algorithms that

accept MUSTs [96] as their input. Nevertheless, due to complexities of the decomposition stage and
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added computational overhead, microscopic level HGR using MUST is less explored than models of

Category (i), which use HD-sEMG signals at a macroscopic level. There are, however, some promis-

ing works [35,97,98] in which MUSTs carrying microscopic neural drive information are exploited

for HGR instead of directly using raw sEMG signals. To discover a direct connection between dif-

ferent hand gestures and extracted MUSTs, these methods have suggested estimating MUAPs of the

identified sources and extracting a set of useful features from MUAPs that are unique for each hand

gesture. We should point out that the temporal profile of MUAPs obtained from MUSTs encode

information about MU recruitments and the temporal profile of the EMG recordings. Therefore,

using sliding windows for extraction of MUSTs informs us about the most current profile of the

active MUs, their recruitments, and how much they are involved in each stage of performing the

hand gestures. For instance, in [35], the peak-to-peak (p-to-p) values of MUAPs are calculated for

each MU and each electrode channel separately and a 2D image of MUAP p-to-p are constructed

for all the channels of a single MU. Afterwards, this 2D image is fed to a CNN architecture and

its performance is compared to that of traditional ML methods. In short, using HD-sEMG decom-

position results for HGR is still in its infancy, and in this section, we aim to further advance this

domain.

Here, we present the results of fusing CT-HGR-V1 with a third variant of the CT-HGR called

CT-HGR-V3 that works based on the extracted MUAPs from raw HD-sEMG signals. More specif-

ically, CT-HGR-V3 uses HD-sEMG decomposition to extract microscopic neural drive information

from HD-sEMG signals for hand gesture recognition. Multi-channel sEMG signals are generated

as a convolutive mixture of a set of impulse trains representing the discharge timings of multiple

MUs, i.e.,

xi(t) = ΣL−1
l=0 ΣN

j=1hij(l)sj(t− l) + νi(t), (8)

where xi(t) is the ith channel’s EMG data (from the entire M channels); hij(l) is the action po-

tential of the jth MU (from the entire N extracted MUs) measured at the ith channel; sj(t) is the

MUST at the jth MU, and; νi is the additive white noise at channel i. Additionally, t is the time in-

dex; D is the duration of sEMG recordings; and L is the duration of MUAPs. Eq. (8) is represented
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as

X(t) = ΣL−1
l=0 H(l)S(t− l) + ν(t), (9)

where X(t)= [x1(t),x2(t), . . . ,xM (t)]T and S(t)= [s1(t), s2(t), . . . , sN (t)]T are the recordings

of all the M electrode channels and the MUSTs of all the N extracted sources at time t, respectively.

Term H(l) is the (M×N ) matrix of action potentials, which is considered to be constant in duration

D. The convolutive equality of Eq. (9) is the basic BSS assumption.

The objective is to find the maximum number of independent matrices S(t) from Eq. (9) if

X(t) is the only known parameter. Eq. (9) can be written in an instantaneous form, where the

source vectors are extended with their L−1 delayed contributions. Additionally, to adapt the model

for BSS conversions, the observation vectors are extended with their T delayed versions, resulting

in the following final convolutive model

X̃(t) = H̃ S̃(t) + ν̃(t), (10)

where each of the X̃(t), H̃ , S̃(t), and ν̃(t) are the extended versions of the observation, MUAPS,

sources, and noise matrices, respectively. Among the existing BSS approaches [29] suggested for

HD-sEMG decomposition, gradient Convolution Kernel Compensation (gCKC) [99, 100] and fast

Independent Component Analysis (fastICA) [101] are of great prominence and frequently used

in the literature. To achieve better accuracy, the utilized BSS algorithm [29] is a combination of

gCKC [99, 100] and fastICA [101] algorithms. In the gCKC method, the MUSTs are estimated

using a linear Minimum Mean Squared Error (MMSE) estimator as follows

ŝj(t) = ĉTsjxC
−1
xx x(t), (11)

in which ŝj(t) is the estimate of the jth MUST at time t, ĉsjx ≈ E{x(t)sjT (t)} is approximation

of the unknown cross-correlation vector between the MUSTs and the observations, and Cxx =

E{x(t)xT (t)} is the correlation matrix of observations. Term E{·} indicates the mathematical

expectation. According to Eq. (11), as ĉsjx is unknown, a blind estimation of MUSTs is iteratively
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found with gradient descent [99]. On the other hand, in the fastICA, the goal is to estimate separation

vectors w such that

ŝj(t) = wT
j (k)Z(t), (12)

where ŝj is the jth MUST; wj is the jth separation vector; and Z is the whitened matrix of observa-

tions. The separation vectors are identified through the fixed-point optimization algorithm [29,101].

Note that term k in Eq. (12) denotes the separation vector identifying fixed-point iterations. In the

method utilized here, the number of extracted sources is dependent on the following two different

parameters that are determined before initiating the algorithm: (i) The number of iterations of gCKC

and fastICA algorithms in which a new MU is found, and; (ii) The silhouette threshold, which deter-

mines whether the extracted MU is of high quality to be accepted or ignored. As stated in [35, 97],

the activation level/area of MUs in limb muscles is highly variable across different hand gestures.

Accordingly, if the p-to-p values of MUAPs for each MU and all the channels are calculated, a

set of 2D images can be acquired, which have a predictable pattern among different hand gestures.

Therefore, after extracting the MUSTs of HD-sEMG signals, the corresponding MUAPs are found

using Spike-Triggered Averaging (STA) method [97] with an averaging window of 20 samples. As

stated in [29], extension factor T in Eq. (10) multiplied by the number of sEMG channels should

be greater than the number of extracted sources multiplied by the length of MUAPs. Furthermore,

it is empirically shown that extension factors greater than 16 have almost the same impact on the

number and quality of extracted MUSTs. Therefore, we set extension factor to 20 to be greater than

N×L
M . Then, the p-to-p values of the MUAPs are calculated and a 2D image of shape Nch ×Ncv is

constructed for each MU.

Below, shows the list of operations done to implement the BSS algorithm in [29] and extract

MUSTs from raw HD-sEMG signals:

1. The mean is subtracted from the observations X̃(t).

2. X̃(t) is whitened and converted to Z(t).

3. Separation matrix B is defined as an empty matrix.

4. For i = 1, 2, . . . ,M repeat:
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• Separation vectors wi(0) and wi(1) are randomly initialized.

• While |wi(n)
Twi(n− 1)− 1| < Tol and n < max_iterations do:

a. Separation vector wi(n) is defined as: wi(n)= E{Zg[wi(n− 1)TZ]} − Ãwi(n− 1)

when Ã = E{g′
[wi(n− 1)TZ]}.

b. Separation vector wi(n) is orthogonalized as: wi(n) = wi(n)−BBTwi(n).

c. Separation vector wi(n) is normalized as: wi(n) =
wi(n)

||wi(n)|| .

d. n = n+ 1

• End while

• Covn and Covn−1 are randomly initialized.

• While Covn < Covn−1 and n < max_iterations do:

a. The i-th source is estimated as: ŝi(t) = wT
j (n)Z(t).

b. The STn is estimated using peak detection and K-means method.

c. Covn is updated by calculating covariance of STn.

d. Separation vector is updated as: wi(n + 1) = 1
JΣ

J
j=1Z(tj) where tj is when

STn is equal to 1.

e. n = n+ 1

• End while

• If Silhoeutte > 0.92 do:

a. The source estimate in the previous step is accepted.

b. Separation vector wi is added to matrix B.

5. End for

A summary of the adopted procedures from taking the raw HD-sEMG signals to calculating

the MUAP p-to-p images is shown in Fig. 4.9(a). Fig. 4.9(b-d) illustrate the extracted MUAPs for

a single MU of the first 512-sample window of gesture 1 (bending the little finger), 2D image of
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Figure 4.9: (a) Diagram of the adopted procedures for obtaining MUAP p-to-p images. (b) MUAPs for a single MU
of the first windowed signal corresponding to the first repetition of gesture 1 (bending the little finger). The MUAPs are
estimated/shown for each channel separately. (c) p-to-p values of MUAPs represented as a 2D image. (d) 3D representa-
tion of MUAP p-to-p values.

their p-to-p values, and a 3D representation of the p-to-p values, respectively. As can be seen, the

muscles under the electrodes of the extensor grid were more active in the course of bending the little

finger.

The fused variant of the CT-HGR is designed to simultaneously extract a set of temporal and

spatial features from HD-sEMG signals through its two independent ViT-based parallel paths. The

former is the CT-HGR-V1 that accepts raw HD-sEMG signals as input, while the latter is the

CT-HGR-V3 fed with the p-to-p values of the extracted MUAPs of each source. A fusion path,

structured in series to the parallel ones and consisting of FC layers, then combines extracted tem-

poral and spatial features for final classification. Fig. 4.8 illustrates the overall hybrid architecture

of the fused model. In particular, CT-HGR-V1 extracts both temporal and spatial features of HD-

sEMG signals as it is fed with time-series raw HD-sEMG signal that are variable both in terms of

time and space. However, the CT-HGR-V2 can extract another set of spatial features from p-to-p

values of MUAPs that are variable in space.

In our experiments, the number of iterations (Item (i)) is set to 7 and the silhouette measure (Item

(ii)) is set to 0.92, therefore, depending on the quality of the extracted MUSTs, a maximum of

7 sources are estimated for each windowed signal. Therefore, each windowed signal of shape
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Table 4.10: Comparison of classification accuracy and STD for each fold and their average for each of the 3 models.
The accuracy and STD for each fold is averaged over 19 participants.

Model Name Fold1 (%) Fold2 (%) Fold3 (%) Fold4 (%) Fold5 (%) Average (%)
CT-HGR-V1 79.92 (±3.39) 91.43 (±2.48) 93.84 (±2.05) 92.57 (±2.28) 88.96 (±2.83) 89.34 (±2.61)
CT-HGR-V3 81.53 (±3.45) 88.03 (±2.66) 89.63 (±2.39) 89.11 (±4.02) 84.92 (±2.97) 86.64 (±3.10)

Fused 89.38 (±2.88) 96.86 (±1.82) 96.82 (±1.75) 96.65 (±2.75) 94.61 (±1.90) 94.86 (±2.22)

W × Nch × Ncv is of maximum 7 MUs that retain various activation levels for each electrode

channel. These 2D images are considered as new input data to the CT-HGR-V3. Thus, according

to Fig. 4.8, for each windowed signal that is fed to CT-HGR-V1, a maximum of 7 p-to-p MUAPs

are created and fed to CT-HGR-V3. After training CT-HGR-V1 and V3 independently, the models’

weights are frozen, i.e., are kept constant (not being updated with gradient descent during training)

and the final classification linear layer is removed for both models. Then, the final class tokens of

CT-HGR-V1 and CT-HGR-V3 are joined together and fed to a FC layer for final classification. In

this way, the hybrid model decides based on raw HD-sEMG signals as well as p-to-p images of

MUAPs obtained for each MU independently. The CT-HGR-V3’s hyperparameters are set as fol-

lows: For both CT-HGR-V1 and V3, HD-sEMG data is divided into windows of shape (512,8,16)

with skip step of 256. Therefore, the image size and the number of input channels for 2D images

are set to (8 × 16), and 1, respectively. For each p-to-p image, we considered 2 patches by setting

patch size to (8 × 8). The model’s embedding dimension (d) and number of heads is the same as

the two previous models. The optimization algorithm is Adam with learning rate of 0.0003 and

weight decay of 0.001. Each batch has 64 data samples and the model is trained through 50 epochs.

Table 4.10 compares accuracy and STD for CT-HGR-V1, CT-HGR-V3 and their fused model for

each fold. The box plots showing accuracy and Interquartile Range (IQR) measured for 19 sub-

jects is represented in Fig. 4.10 for each model. It is worth mentioning that authors in [102] have

adopted a quite similar approach to ours by combining activations of individual DoFs (obtained

from decomposed MUSTs) with residual HD-sEMG signals for predicting wrist DoF angles using

a linear regression method. The main distinctions between the two methods are as follows: (i) The

method of [102] focuses on predicting DoF angles in wrist kinematics and not gesture recognition,

and (ii) Considered combining residual HD-sEMG signals with DoF activations, which is a different

concept from combining p-to-p MUAPs with original HD-sEMG signals.
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Figure 4.10: Boxplots and IQR of the 3 models over all the 19 subjects.

4.3.6 Comparison with Other Works on The Utilized Dataset

In this section, we compare our proposed CT-HGR model with 4 other works [71–74] that pro-

posed ML/DL methods for hand gesture recognition based on the same dataset utilized in this study.

Sun, et al. [73] proposed three different CNN-based models for hand gesture recognition with 1D,

2D and 3D convolutional layers that are applied on both transient and steady phases of HD-sEMG

data. In our study and differently from [73], we jointly considered the transient and steady phases

of the sEMG signals when providing the input to the model, therefore, data distribution should be

different. We, however, compared our results with their steady phase as there is more similarity

between these two types in comparison to the transient phase. Using a window size of 200 ms, all

the 128 electrode channels, and the same 5-fold cross validation technique as we implemented, the

maximum median accuracy obtained by the model of [73] is 84.6% whereas the proposed frame-

work obtained 91.98% accuracy for 250 ms window and 128 electrode channels. In [71], a similar

study to ours is conducted by changing the window size and the number of channels to evaluate

their effect on the performance of the model. In this paper, 5 time-domain features of the signal

along with sixth-order autoregressive coefficients are extracted and given to an LDA model. Aver-

age accuracy of 81.39% is obtained for the window size of 32 ms when 32 channels were used. The

accuracy increases to 91.5% for the same window size with 128 channels. It finally reaches 96.14%
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Table 4.11: Comparison of classification accuracy and STD obtained by the other works on our utilized dataset with
CT-HGR-V1 and CT-HGR-V2.

Reference Window size (ms) # Channels Accuracy (%) Train/Test Split
Ref [73] 200 128 84.6 (NA) 5-fold Cross Validation

CT-HGR-V1 250 128 91.98 (±2.22) 5-fold Cross Validation
CT-HGR-V2 250 128 92.88 (±2.10) 5-fold Cross Validation

Ref [71] 32 32 81.39 (±10.77) NA
CT-HGR-V1 31.25 32 86.23 (±2.94) 5-fold Cross Validation

Ref [71] 256 128 96.14 (±4.67) NA
CT-HGR-V1 250 128 91.98 (±2.22) 5-fold Cross Validation
CT-HGR-V2 250 128 92.88 (±2.10) 5-fold Cross Validation

Ref [72] 31.7 128 91.25 (±4.92) NA
CT-HGR-V1 31.25 128 90.53 (±2.43) 5-fold Cross Validation
CT-HGR-V2 31.25 128 91.51 (±2.35) 5-fold Cross Validation

Ref [74] 32 128 94 (NA) NA
CT-HGR-V1 31.25 128 90.53 (±2.43) 5-fold Cross Validation
CT-HGR-V2 31.25 128 91.51 (±2.35) 5-fold Cross Validation

Ref [74] 256 128 97.2 (NA) NA
CT-HGR-V1 250 128 91.98 (±2.22) 5-fold Cross Validation
CT-HGR-V2 250 128 92.88 (±2.10) 5-fold Cross Validation

for the 256 ms window and 128 channels with minimum STD of 3.82%. We should note that autore-

gressive coefficient extraction could be a time-consuming process for HD-sEMG data potentially

slowing the learning process. Along a similar path, Reference [74] introduced a new feature extrac-

tion approach using Wavelet Scattering Transform, applied an SVM model on the extracted features

and compared their results with that of [71]. The results show an increase in the accuracy for dif-

ferent window sizes and 128 electrode channels which is ≈ 94% and 97.2% for 32 ms and 256 ms

window sizes, respectively. We should note that in these works, the utilized method for splitting

the train/test data is not explicitly specified. A Graph Neural Network approach is adopted in [72]

with window sizes of 65 samples using 128 channels resulting in the average accuracy of 91.25%

with STD of 4.92%. Using the same setting, we acquired accuracy of 90.53% and STD of 2.43%

with CT-HGR-V1 and 91.51% and STD of 2.35% with CT-HGR-V2. When it comes to train/test

datasets, it is mentioned in [72] that data for each subject was shuffled and then randomly divided

into train/test sets. Table 4.11 represents the average accuracies obtained by the above-mentioned

papers and the settings they utilized to assess their performance. If the STD and train/test split is

not mentioned in the paper, “NA" (Not Applicable) is shown.
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4.4 Discussion

Based on the results shown in Table 4.2 and Table 4.3, the accuracy for each fold and the average

accuracy increases by increasing both the window size and the number of channels. Doubling the

number of electrode channels from 32 to 64 results in 2 − 3%, and from 64 to 128 in 1 − 2%

increase in all the reported accuracies. Intuitively speaking, on the one hand, increasing the window

size feeds more data to the model at each epoch, which can enhance its performance as the difference

among various gestures is more detectable through larger window sizes. On the other hand, instead

of increasing the skip step while increasing the window size, we kept the skip step constant at 32

to feed more data to the model. In this scenario, the model has access to much more different

samples of the training data as such possibly better learns the underlying representations of the

data compared to the scenario where the skip step is larger but the model is fed with fewer data

samples. Therefore, the model could be more generalizable while avoiding overfitting over to the

train samples. Generalization refers to the ability of the model to make correct predictions for

previously unseen data samples. More specifically, although the model is tested with completely

unseen data samples, it has seen more samples during the training phase as such should be able

to more effectively detect the underlying patterns among different gestures as such perform better

on the unseen test data. The small skip step (32) chosen here means that the predictions are made

every 15.3ms, causing a very small latency for real-time implementation of the proposed network

in prosthetic devices. As it is evident from Table 4.2, starting from 86.23%, the average accuracy

increases by 0.3− 0.8% each time the window size is increased reaching 91.98% when the window

size and the number of channels are at the maximum. Therefore, the number of utilized channels,

in general, has a greater impact on the accuracy in comparison to the window size. Moreover, the

smallest accuracy is for Fold1 while the highest is for Fold3/Fold4, which could be due to the fact

that in the first repetition, the subject was not completely aware of the procedure and how to exactly

perform the required gesture. Intuitively speaking, the subject was being trained to perform the

requested task. We hypothesize that, in the 3rd and 4th repetitions, the subject might have completely

learned about the gesture and performed it more consistently, however, in the 5th repetition, fatigue

might be a factor resulting in lower performance and relatively large drop in the accuracy.
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Figure 4.11: Cosine similarities of repetition 3, subject 20 of CT-HGR-V1 for (a) W = 64 (b) W = 128 (c) W = 256
and (d) W = 512

As can be seen from Fig. 4.2, choosing the first repetition as the test set considerably differs

from choosing the third or fourth repetition as the former yields much lower accuracy on average.

STD for each fold and their average follows the same pattern as that of the accuracy, however, in

an opposite direction, meaning that the best accuracy is usually associated with the least STD. This

issue justifies the difference between the acquired accuracy in our proposed CT-HGR-V1 model

with that of References [71, 72, 74] using the same HD-sEMG dataset [2]. As mentioned before,

two ML/DL models could be fairly comparable only if their train/test datasets are similar.

As can be seen in Table 4.3, Model CT-HGR-V2 is generally a better model compared to its

CT-HGR-V1 variant as the accuracy for each fold and the overall average are higher. This is because

CT-HGR-V2 is a bigger model with larger embedding dimension than CT-HGR-V1 in which the

variations among different patches are more effectively embedded helping it to better discriminate

between different hand gestures. Nevertheless, while the best improvement in accuracy occurs for

Fold1 with ≈ 1.5% increase compared to CT-HGR-V1, not much improvement (less than 1% in
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Figure 4.12: Cosine similarities of repetition 3, subject 20 of CT-HGR-V2 for (a) W = 64 (b) W = 128 (c) W = 256
and (d) W = 512

most cases) is observed in the other folds and the final average. As indicated in Table 4.4, CT-HGR-

V2’s number of learnable parameters is roughly 3 times the number of learnable parameters of

CT-HGR-V1, however, there is a marginal progress in its performance in comparison to the former

model. This shows that the hyperparameters used in CT-HGR-V1, producing no more than 100, 000

learnable parameters for the model, are sufficient for learning the 66 hand movements with high

accuracy and there is no need to use more complex models for hand gesture classification using the

proposed CT-HGR framework on this specific HD-sEMG dataset. Clearly, deploying more complex

models takes more memory and training time, which in turn reduces the overall efficiency of the

model. According to the box plots shown in Fig. 4.3, all the comparisons between different window

sizes are statistically significant. According to our results and those of [71], in the case of HD-

sEMG data, changing the window size has a great impact on the model’s accuracy in contrast to

sparse sEMG signals. In HD-sEMG signals, thanks to using large number of electrode channels,

there exists valuable information about differentiable patterns among hand gestures even in small

window sizes. We should also mention that there exists a direct link between the window size
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and responsiveness in prosthetics [103]. For CT-HGR-V2, we have p ≤ 0.001 for the W = 64

/ W = 128 and W = 256 / W = 512 pairs, which is less statistically significant than the other

pairs with p ≤ 0.0001. For CT-HGR-V2, the results for the W = 64 / W = 128 pair are with

p ≤ 0.05 which is less statistically significant than that for the other pairs. In our experiments, we

aimed to verify that our proposed model can extract the underlying patterns in a single sample or

very small portion of HD-sEMG data while these patterns are not easily discernible in sparse sEMG

data. Although this may not be widely used in today’s real-time HMI devices, it can be a potential

field of research and development of the current devices for window sizes of 2 ms and below to

evaluate user’s experience.

As mentioned previously, the positional embedding used in the CT-HGR framework is a 1D

trainable embedding vector that is added to each of the embedded patches. By increasing the win-

dow size in our experiments, the patch size remains constant and the number of patches increases.

This causes the positional embedding, which is the principal factor in determination of the input

samples’ succession, to learn the positions more precisely. Fig. 4.11 illustrates the cosine similarity

matrices of the positional embedding in Model CT-HGR-V1. Cosine similarities are sketched for

different window sizes, 128 electrode channels and the trained model on subject 20 when repetition

3 is considered as the test set. In this case, models with window sizes of 64, 128, 256, and 512

have (8, 16) patch sizes. Therefore, each contain 8, 16, 32 and 64 patches in total. The x and y

coordinates show the patch indices for each case and each row shows the similarities between each

patch and the other patches. The diagonal values in each matrix are the largest values because their

positional embedding vector is the same and its cosine is maximum. Similarity in the learned po-

sitional embedding vector of patches declines as the patches become farther. For W = 512, the

model learns the positions better and cosine similarities change more smoothly. Fig. 4.12 demon-

strates the cosine similarity matrices of the positional embedding in Model CT-HGR-V2. Evidently,

Model CT-HGR-V2 has learned the position embeddings more effectively as there is less similar-

ity between the distant patches for all the window sizes. The more the window size increases,

the more the model discriminates between the distant patches and the more the adjacent patches

are considered similar to each other. As illustrated in Fig. 4.11 and Fig. 4.12, for W = 512, Model

CT-HGR-V2 behaves in a more orderly fashion than Model CT-HGR-V1 and consequently, extracts
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the positional information better.

Regarding instantaneous training, authors in [84] implemented a CNN to conduct instantaneous

classification of 8 gestures in the CapgMyo DB-a dataset. They applied various pre-processing

and hyperparameter tuning steps and achieved the best performance of 89.3 for 18 subjects and

8 different gestures when all the 128 channels of the electrode grid were utilized. However, we

achieved average accuracy of 89.13% for 19 subjects and 66 hand gestures with 64 channels. It is

worth mentioning that 89.13 for 19 subjects and 66 gestures is achieved with the lightest version of

our framework. Based on the results shown in Table 4.9, no significant discrepancy between the

results for instantaneous training and larger window sizes is found. The results, in this case, are very

similar to that of CT-HGR-V1, when W=128 and number of channels is equal to 64. This suggests

that instantaneous training can sometimes work even better than training on very large window

sizes with our proposed framework. More specifically, the model is able to achieve high accuracy

in learning 66 hand movements with a single-point input which can be considered as an important

breakthrough in the field of hand gesture recognition. This proves that HD-sEMG datasets provide

highly valuable information of the muscles’ activity in each time point which are sufficient for the

model to learn various hand gestures with no need for larger window sizes. Furthermore, training

with single-point windows of data provides a great number of input samples to the CT-HGR which

helps the model generalize better and avoid overfitting. Based on the results shown in Table 4.8, the

average accuracy and STD with shuffling is ≈ 9% higher and ≈ 1.4% lower than the results of the

5-fold cross-validation, respectively. This, however, can cause major issues in practice when dealing

with hand prosthetic devices since the test data is entirely unseen and the pre-trained model could

not perform reliably while testing with new datasets. In other words, the results reported without

shuffling should be used as the bases for practical utilization.

Based on the results shown in Table 4.6 and Fig. 4.7, contrary to CT-HGR, increasing the win-

dow size leads to significant improvements in the average accuracy of the conventional ML models.

In general, the achieved accuracy for the best performing ML models, i.e., SVM-V1 and LDA-

V1 (trained with a newly proposed set of features), is 3 − 6% lower and 0.5 − 0.8% higher than

CT-HGR-V1 with W = 64 and W = 256, respectively. Furthermore, as indicated in Table 4.6 and

Table 4.4, our proposed CT-HGR-V1 framework surpasses the 3D CNN model by ≈ 3% average
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accuracy while employing less than 1/4 of the learnable parameters used in the 3D CNN model.

According to Table 4.6 and Fig. 4.7, the accuracy of both the deep networks (CT-HGR-V1 and

3D CNN) increases by less than 1% with doubling the window size. As shown in Fig. 4.7, there

is statistically significant difference among the six models with window size of 64 (p ≤ 0.0001),

implying that the proposed CT-HGR-V1 gives its best performance at smaller window sizes. For

W = 128, the difference between CT-HGR-V1 and SVM-V1 and LDA-V2 is not significant al-

though these models achieve twice the STD of CT-HGR-V1. The proposed CT-HGR-V1 model

seems to perform similarly to SVM-V1, LDA-V1 and SVM-V2 models when the window size is set

to 256 as the Fig. 4.7 shown no significant discrepancy in the average accuracy of these models. In

this case, there is still significant difference between CT-HGR-V1 and 3D CNN architectures with

p ≤ 0.0001.

According to Table 4.7, the train and test times for the two LDA models are less than that of

CT-HGR-V1 while the maximum allocated memory for ML models with the second set of fea-

tures that resulted in better accuracy is much higher than the maximum memory requirement of the

CT-HGR-V1. This can be attributed to fact that the process of extracting five features from each

channel of the HD-sEMG signals requires a great amount of system memory. On the contrary, DL-

based models do not need a separate feature extraction step and the input windowed signals are the

only item that needs system’s memory allocation. It is worth nothing that when it comes to the train

time, CT-HGR-V1 needs 20 epochs to secure the minimum loss and the best convergence of the

model. However, if the CT-HGR-V1 model is run with even 10 epochs, the accuracy drops around

0.8%, but the train time halves, i.e., 189 seconds. As stated previously, the train and test times are

calculated in seconds for training the whole signal of one complete repetition for one subject. The

batch size used for the testing stage of the CT-HGR-V1 is set equal to that of the training phase,

i.e., 128. This impacts the test time of the CT-HGR-V1 (with larger batch sizes, the test time should

reduce) compared to the ML models where the whole test data is provided at once. As can be seen

in Table 4.7, the test time for the 3D CNN model is the least, but it has much larger training time,

larger number of trainable parameters and less accuracy in comparison to CT-HGR-V1.

Based on Fig. 4.6, CT-HGR-V1 architecture performs poorly for gestures 57 and 59 as it

achieves low precision, recall and F1 score for these two gestures. Gesture 36, also, in this model
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has a low recall measure implying that of all the samples that were labelled as class 36, not a great

number of them were labelled correctly by CT-HGR-V1. SVM-V1 model was also incapable of

effectively classifying gestures 57 and 59, but acted more precisely than CT-HGR-V1 for these ges-

tures. This model, however, performs worse than CT-HGR-V1 on gesture 64 in terms of precision

and F1 score. According to Table 4.10 in which the studies are reported for the 250 ms window

size, CT-HGR-V1’s accuracy is higher than that of the CT-HGR-V3 by ≈ 3 − 4 %, except Fold1

for which the p-to-p values of MUAPs provide more accurate information of the performed hand

gesture than the HD-sEMG signals. However, a great improvement in average performance of the

fused model in comparison to both stand-alone models is witnessed which is 8.22 and 5.52 % in-

crease compared to CT-HGR-V1 and V3, respectively. Additionally, according to Fig. 4.10, Micro

Model has the least IQR and the CT-HGR stands significantly higher than the stand-alone models in

terms of its accuracy among 19 subjects. As a side note on current challenges in EMG-based con-

trol of prosthetic hands, according to Reference [104], one of the future perspectives to achieve the

real-time usability of prosthetic, is to improve the feature extraction component of the EMG-based

solutions. Deep learning is envisioned as one fruitful approach to address the feature extraction

problem, which is the focus of this study. When it comes to real-time continuous classification,

beside achieving high accuracies, one requires rapid response. The proposed framework provides

high accuracies over small window sizes, therefore, can generate fast and dense decision flows. In

summary, we hypothesized that by introducing a compact DL-based model that has the capacity to

classify a large number of hand gestures with a small amount of memory and training time, we can

put a step forward towards development of more dextrous control interfaces.

As a final remark, here we focus on clarifying specific questions related to the overall design of

the proposed framework. The first question that comes to the mind is how to extract the MUAP in

real-time. The decomposition method utilizing STA (from extracting MUSTs to obtaining MUAPs)

is performed offline, which is considered as a limitation of the method as stated in the Section 4.5.

Real-time extraction of MUAPs is a fruitful direction for future research and our suggested intuition

is to design a DL-based model for extraction of MUSTs in real-time. Another question is on the

rational of the statement that the MUAP in the sliding window contains information on MU re-

cruitment. MUSTs show temporal activities of each MU in the course of performing different hand
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gestures. Duration of signals for each hand gesture in our dataset is about 4.5 seconds, therefore,

during the entire process of performing a hand movement, different MUs with different levels of

activities (forces) are involved. Consequently, extracting MUAPs based on small segments of the

whole signal can provide us with more accurate information on MU recruitment at each stage of

performing a specific hand gesture. Authors in References [105, 106] have also adopted a simi-

lar measure to perform STA by using sliding windows of various sizes based on their application.

In [106], it is explained that since the force level changes during performing a hand gesture, sliding

STA is used to obtain detailed information of the MU recruitments within small time intervals. An-

other key question is the rational behind integration of MUAP with raw EMG signals. Intuitively

speaking, each of these signals provide different information about how a specific hand gesture was

performed. HD-sEMG signals reflect the macroscopic view of the neural drive information when

performing a hand gesture. These signals provide useful information about amplitude variation, sig-

nal envelope, and onset/offset times of muscle contraction which are all extracted from the signals

on the skin surface. However, MUAPs represent a microscopic view of the neural drive which is

very similar to the behavior of human’s brain and individual motor neurons when a hand move-

ment is being performed. This includes information about MU recruitments, MU firing rates, MU

size/shape and MUAP amplitudes which are not readily provided by raw HD-sEMG signals. As the

two signals are relevant to different parts of body and provide distinct views of macroscopic and

microscopic neural drive information, we combined them to achieve more accurate classification

accuracy for the gesture recognition task.

4.5 Conclusion

In this study, we proposed a ViT-based architecture, referred to as the CT-HGR framework, for

hand gesture recognition from HD-sEMG signals. Efficacy of the proposed CT-HGR framework

is validated through extensive set of experiments with various numbers of electrode channels and

window sizes. Moreover, the proposed model is evaluated on instantaneous data samples of the

input data, achieving, more or less, a similar accuracy to scenarios with larger window sizes. This
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provides the context for real-time learning from HD-sEMG signals. Although increasing the num-

ber of learnable parameters of the CT-HGR network leads to higher accuracy, the network works

reasonably well on 66 hand gestures with less than 65k number of learnable parameters. This is

exceptional as its conventional DL-based counterparts have, at times, millions of parameters. Be-

sides, a hybrid model that is trained on raw HD-sEMG signals and their decomposed MUAPs is

introduced, which substantially enhances the accuracy of the single CT-HGR model trained solely

on raw HD-sEMG data.

Although the utilized HD-sEMG dataset in this study is a comprehensive dataset acquired for a large

number of hand gestures and from various subjects, it is obtained only from able-bodied individuals.

This can be considered as a limitation of our developments. One direction for future works is to

incorporate neurophysiological characteristics of hand amputees by acquiring a more generalized

dataset that includes signals from this population. Moreover, the HD-sEMG decomposition phase

in this study is conducted offline, preventing the proposed hybrid model to be employed in real-time

HMI devices. This can be considered another limitation of our developments and a second fruitful

direction for the future work to design a DL-based architecture for extracting MUSTs in real-time

for development of online HMI systems. Another fruitful and important direction for future re-

search is to focus on explainable AI to represent the extracted feature space through the proposed

network and compare it with that of the conventional ML models. Finally, it would be interesting

and intuitively pleasing to research potentials of Spiking Neural Networks (SNN) in this domain.
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Chapter 5

Spiking Neural Networks for

sEMG-based Hand Gesture Recognition

Hand gesture recognition is, nowadays, considered as a vital part of myoelectric control in

Human-Machine Interaction (HMI) systems. In particular, to improve the effectiveness of HMI

systems for upper-limb amputees, learning-based hand gesture recognition is deployed as a replace-

ment for interactive devices such as keyboards or joysticks [107]. Generally speaking, hand gesture

recognition has been investigated in the literature through the following two main directions: (i) The

Vision-based approach in which RGB or depth cameras are used to track and recognize different

hand gestures by analyzing the visual appearance of hands, and; (ii) The Sensor-based approach in

which the signals related to position, orientation and movement of the hands are recorded through

a set of touchless (e.g., infrared or ultrasonic) or touch-based (e.g., Electromyography (EMG) elec-

trodes) sensors [3]. According to [4–6], the vision-based methods, compared to their sensor-based

counterparts, often suffer from the following drawbacks: (a) Requiring excessive preprocessing and

segmentation steps; (b) Being sensitive to the environment where the signals are being recorded,

and; (c) Having higher latency and response time due to indirect estimation of the physical proper-

ties of various hand movements. In this chapter, therefore, we focus on sensor-based hand gesture

recognition, in particular using surface EMG (sEMG) signals.

Owing to the recent advancements in the field of Artificial Intelligence (AI), assorted Machine
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Learning/Deep Learning (ML/DL) models are proposed for the task of automatic sEMG-based hand

gesture recognition [10]. These learning-based models span from conventional ML algorithms such

as Support Vector Machines (SVMs) and Linear Discriminant Analysis (LDA) [11] to a wide range

of simple or advanced Deep Neural Networks (DNNs) such as Convolutional [13, 14] and Recur-

rent [15] Neural Networks (CNNs and RNNs), Transformers [16,17] and hybrid architectures [18].

The aforementioned models have been the focus of interest in the last few years as they have proven

to work efficiently in detecting the underlying hand gesture patterns in sEMG signals. However,

despite their general demonstrated effectiveness, such models suffer from major drawbacks such as

not fully exploiting the temporal, spatial and neurophysiological characteristics of sEMG signals or

being computationally complex and expensive. In particular, stand-alone CNN and RNN structures,

typically, fail to jointly capture the time-series and spatial features of sEMG data, transformers re-

quire huge amount of training data and powerful computational resources, and hybrid architectures

are difficult to optimize due to their large number of trainable parameters [21, 42, 108, 109].

In this chapter, we aim to develop an alternative and novel hand gesture recognition model based

on the less-explored topic of Spiking Neural Networks (SNN), which performs spatio-temporal

gesture recognition in an event-based fashion [20, 21]. An event-based processing approach, as

described previously, refers to a type of data processing in which the system is susceptible to the

occurrence of events rather than the static input [22]. As opposed to the classical DNN architec-

tures, SNNs are of the capacity to imitate human brain’s cognitive function by using biologically

inspired models of neurons and synapses [21]. In a classical DNN, a non-linear activation function

(e.g., Sigmoid or ReLU) is applied to the weighted sum of each neuron’s input producing a contin-

uous value in output. Contrarily, in SNNs, an specific activation function similar to the biological

neurons is implemented, which outputs discrete-valued spikes (0 or 1) in reaction to the input [110].

Elaborating on the function of spiking neurons in SNNs, these neurons are activated at a time step

if their membrane potential reaches a threshold. In this case, the neuron transmits a spike (1) to

its downstream neurons and returns to its resting state potential for the next time step [22, 110].

Accordingly, SNNs provide sparse tensors in output in which a majority of entries are zero in most

of the time steps. As a result, SNNs become more biologically explainable and computationally

efficient requiring remarkably less amount of memory and processing units for their even-triggered
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processing and low-precision computation [22, 23].

Although SNNs have been the topic of interest for many computer vision-related tasks such

as image classification [24], object tracking [25] and gesture recognition [21], there is a limited

number of works [26–28] on utilizing SNN for EMG-based hand gesture recognition. In Refer-

ence [24], a new technique for converting DNNs to SNNs was proposed and tested using VGG-

16 [111] and ResNet [112] architectures for image classification. Authors in [25] introduced a

spiking transformer-based model for event-based object tracking, which fused spatial and temporal

features of the data by dynamically altering the spiking threshold of the Leaky Integrate and Fire

(LIF) neurons. Vision-based hand gesture recognition was done in [21] where a spiking version

of CNNs and RNNs wee combined to generate a robust framework for hand gesture recognition

via Dynamic Vision Sensor (DVS) dataset. Regarding EMG-based hand gesture recognition, Ref-

erence [26] developed a Convolutional SNN (CSNN) for classification of 8 different gestures via

two different sets of HD-sEMG data. In the aforementioned paper [26], common energy-density

maps were obtained and fed to the CSNN model. In [27], spiking MLP and spiking CNN models

were tested for a combination of both DVS and EMG sensors. Finally, Reference [28] implemented

a three-layer Fully-Connected (FC) SNN paired with temporal coding and feature extraction on

sEMG data for 8 different gestures.

In this chapter, a light (compact) two-layer MLP model with LIF spiking neurons is utilized

to classify a set of 1 Degree of Freedom (DoF) gestures via High Density sEMG (HD-sEMG)

signals. In our work, after applying Min-Max normalization on raw HD-sEMG signals, they are

segmented into windowed signals of 128 samples with no overlap and fed to the spiking MLP

model. This is a more straight-forward approach in comparison with using energy-density maps,

spike coding and feature extraction as in [26,28] to provide inputs for SNN architectures. We show

that by considering each sample in the HD-sEMG dataset as a single time step, and inputting a

batch of normalized values of HD electrode channels to the network at each time, the SNN model

can differentiate between different hand gestures with maximum accuracy of around in a number

of subjects. In this way, the network can work well on a quite limited amount of data with no

need for data augmentation, preprocessing and spike coding. More specifically, we show that our

proposed model can efficiently differentiate 14 hand movements by considering each sample of
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the HD-sEMG data as a single time step for the SNN architecture. We evaluate our SNN model

using a 5-fold cross-validation scheme and categorize different participants based on the range of

classification accuracy we obtained for them. The following results are acquired by segmenting

HD-sEMG signals into windows of size 62.5ms with no overlap. The proposed method led to 6 out

of 19 subjects achieving average classification accuracy of ≥ 80% with maximum accuracy of 98%

associated with 3rd session of the sEMG dataset as the test set.

The remainder of the chapter is organized as follows: Section 5.1 provides an introduction to the

overall structure of SNNs. In Section 5.2, our proposed SNN model for hand gesture recognition

and the utilized learning method are presented. Section 5.3 describes our experiments and the

classification accuracies we obtained and finally, the chapter is brought to an end with Section 5.4.

5.1 Spiking Neural Networks

As mentioned previously, SNNs are a particular type of DNNs that encompass biologically

inspired spiking neurons that replicate human brain’s sensory system by being sensitive to changes

in events instead of updating their internal states continuously. The main building blocks of such

networks are the spiking neurons that have been biologically modeled in the literature through a

wide variety of methods like the LIF, Izhikevich and Hodgkin–Huxley (HH) [113]. These models

try to provide a biological explanation of how spiking neurons generate spikes in each time step.

In this chapter, we focus on the LIF neuron model which is the most computationally efficient and

commonly used model in this context [114].

The LIF neuron takes the weighted sum of its inputs in each time step and integrates it with

the input from other time steps in a leaky manner [22]. This behavior is similar to what happens

in a low-pass filter in a circuit with one Resistor (R) and a Capacitor (C). In case the membrane

potential of the LIF neuron which is the leaky integration of the potential over the current and

previous time steps surpasses a threshold θ, a single spike (discrete event) is emitted in that time

step and the potential returns to zero or any formerly-defined resting state potential. As a result,

the output spikes represent the timing and frequency characteristics of the input spikes to the LIF

neuron. Fig. 5.1 presents a single LIF neuron that, at each time step, integrates weighted sum of 3
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Figure 5.1: Simulation of LIF neuron’s response to input spikes.

input features, compares it to the threshold and emits a single spike if enough stimulated. Fig. 5.2

shows LIF neuron’s input and membrane potential in different time steps. As can be seen, depending

on the length and frequency of the input, membrane potential changes with leakage and resets to the

resting potential when the threshold is reached. In this work, a first-order LIF neuron is utilized in

each layer for which the membrane potential at time step t is calculated as follows

V (t) = βV (t− 1) + Iinput(t)− θS(t− 1), (13)

where V is the membrane potential, Iinput is the neuron’s input value (current in the context of RC

circuits), β is the decay rate of LIF neuron and θ is the membrane’s threshold. Here, S represents

the activation status of the neuron in the previous time step and takes binary values of 0 if the neuron

is not activated, or 1 if the neuron was activated. A detailed explanation of the differential equations

for the membrane potential derived from the low-pass RC circuit can be found in [22].

5.2 The Proposed SNN Architecture

In this section, we develop the proposed SNN architecture for sEMG-based gesture recognition.

In particular, we highlight the way sEMG signals are prepared to be fed to the proposed SNN archi-

tecture, and how it classifies distinct hand gestures differently from a classical DNN architecture.

69



Figure 5.2: LIF neuron’s input signal (Up) and membrane potential (Bottom) in different time steps. In this particular
case, we have 2 output spikes as the membrane potential surpasses the threshold twice.

Figure 5.3: Representation of the proposed SNN architecture with two FC layers. There is a total of 128 time steps
for each of which a vector of 128 features is fed to the network and the LCE,SNN (t) is calculated. Total loss is the
summation of loss across all time steps.

The proposed SNN architecture is a light/compact spiking MLP consisting of 2 linear layers fol-

lowed by spiking activation functions. Batch normalization is used after the linear layers to prevent

any changes in distribution of inputs to spiking activation functions and to improve the generaliza-

tion capacity of the model. To construct the proposed SNN model using only a small amount of

input data, HD-sEMG signals (described in Chapter 2.3) were divided into windows of 128 samples

(62.5 ms) with no overlap. In this way, the model is trained and tested with around 4, 100 and 1, 000

data samples, respectively, which significantly reduces the required time and computational power

for both the training and testing stages.

In the context of vision-based object/gesture recognition approaches using SNNs, event-based
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video streams of shape (time_resolution, height, width) are collected, sampled at an arbitrary

sampling frequency and windowed to form the model’s input data with shape (window_size,

height, width) [21]. Each of such windowed frames, therefore, are assumed to happen in one time

step and are given to the network in order of occurrence. For instance, if the time resolution of the

video stream is 2 sec. and the sampling time and the window size are set to 1 and 20 ms, 100 input

frames of size (20, height, width) are generated and fed to the SNN that has 100 time steps. How-

ever, in order to increase the time resolution and decrease the memory usage of our proposed net-

work, we considered the sampling frequency as the HD-sEMG dataset’s original frequency, 2, 048

Hz, which yields a time resolution of 1
2048 sec. Then, the input electrode channels were flattened to

be of 1 dimension and windowed signals of shape (window_size,No_of_channels) ((128, 128)

in our study) were generated. Different from other computer vision methods using event-based

data [20, 21, 115], in this study, each sample of the input window was assumed to be a single time

step in the proposed SNN, meaning that in each time step, a 1-dimensional vector of 128 features

pertinent to the signals of electrode channels is fed to the network and converted to a 1-dimensional

vector of 14 classes in output.

In multi-class classification tasks using typical DNNs, the Categorical Cross-Entropy (CCE)

loss function, in which the output neuron with the maximum activation value is accepted as the

predicted class, is utilized. For pure SNNs, however, several loss functions have been suggested

within the relevant literature that adopt a different measure for deciphering the behavior of output

spikes that leads to giving more importance to the correct class among others [21, 22, 116]. In this

work, we used one of the most common SNN loss functions called the Cross-Entropy (CE) rate

loss, which is a combination of CE with spike count rate. Through this method, the output spikes

at each time step are passed to a CE function and a single loss is calculated for the time step. Then,

the losses for all the time steps are accumulated and introduced as the final loss, which favors the

neuron with highest number of spikes as the predicted class. Thus, instead of calculating cross-

entropy for neuron continuous-value activations, it is applied to discrete spikes by first using the

Softmax function as

pi(t) =
esi(t)∑C
k=1 e

sk(t)
, (14)
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for (1 ≤ i ≤ C), where pi(t) is the probability of neuron i representing the correct class at time step

t, si is the activation status of neuron i, which can take values of 0 or 1, and C is the total number

of classes. Afterwards, the final CE loss function is calculated as

LCE,SNN =
T∑
t=1

LCE,snn(t), (15)

in which LCE,snn(t) is defined by

LCE,SNN (t) = −
C∑
i=1

yi log (pi(t)), (16)

where yi is the one-hot target vector and T is the total number of time steps.

Fig. 5.3 shows the overall structure of the proposed SNN network from accepting the input

in distinct time steps to computing the CE rate loss function. As presented in the figure, input

vectors of 128 features go through a network of two consecutive FC layers, between which Batch

Normalization and LIF neurons are positioned. At the end, CE rate loss is calculated for 14 output

neurons and target vectors.

5.3 Experiments and Results

In this section, we evaluate the performance of our proposed SNN architecture by comparing

the classification accuracy over different subjects and different sessions via a 5-fold cross-validation

technique. A common way to measure accuracy in SNNs is to employ a metric referred to as spike

count accuracy in which the neuron with the highest number of spikes in all time steps is chosen as

the predicted class and compared to the target class.

Our proposed SNN model is developed using the snnTorch framework, which is specifically

designed for implementing gradient-based DL architectures with SNNs [22]. Each LIF neuron in

our SNN model requires a differentiable gradient function for backpropagation. As spikes (often

represented by the Heaviside function) are not intrinsically differentiable, we used the surrogate fast

sigmoid gradient function, which acts as a Heaviside in the forward pass and replaces the gradient of

fast sigmoid in the backward pass to make everything differentiable [117]. The hyperparameters of
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Table 5.1: Hyperparameters of the proposed SNN framework

Hyperparameter Value
Batch size 128
Optimizer Adam

Learning rate 0.0005-0.00025
No of epochs 20

LIF threshold (θ) 1 (trainable)
LIF decay rate (β) 0.9 (trainable)

the SNN model can be found in Table 5.1. To prevent the model from overfitting, L2 regularization

and learning rate annealing is used.

Fig. 5.4 demonstrates the boxplots and Interquartile Range (IQR) for accuracy and standard

deviation (STD) of each fold for all the 19 subjects. According to Fig. 5.4 and the Wilcoxon signed-

rank test’s annotations, the discrepancy of the accuracy results for folds 2− 5 is not statistically sig-

nificant. Nevertheless, since the distribution of the first session’s HD-sEMG signals was markedly

different from the average distribution of folds 2 − 5, average accuracy when session 1 was held

as the test set is substantially lower than the other 4 conditions. This can be observed from the

Wilcoxon test’s results (p-value ≤ 0.05) on the accuracy obtained for fold 1 with that of the other 4

folds. Fig. 5.5 shows a specific case of Fig. 5.4 when sessions 1 and 3 were considered as the test

set. As can be seen, the accuracy varies significantly among subjects, ranging from 29% to 93% in

Session 1 and from 47% to 98% in session 3.

The LIF neuron’s threshold (θ) and decay rate (β) were set to 1 and 0.9, respectively, for the

whole experiments. We hypothesized that although these parameters were expected to update con-

tinually in each epoch, they did not change significantly during the training stage with the small

0.0005 learning rate used. Therefore, fixing these parameters for all the participants results in the

network not accurately simulating some participant’s brain activity when performing different hand

movements. More specifically, inappropriate threshold and decay rate in SNNs can cause inaccurate

generation of spikes, which has a direct effect on the classification accuracy. Having taken this fact

into account and according to Table 5.2, Subjects 1,10, 11, 13, 16, and 19 had the best performance

among others with more than 80% average accuracy over 5 folds, implying that the θ and β pa-

rameters were chosen properly for their brain function. Fig. 5.6 shows raster plots of two different

samples of the test set for Subject 16 and fold 3. Each of these plots indicate output spikes of 14
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Table 5.2: Categorization of 19 subjects based on 5 accuracy ranges.

Accuracy range (%) Subjects
80-100 1,10,11,13,16,19

70-80 2,8,12,18

60-70 4,5,6,7,9,17

50-60 14

40-50 3,15

Figure 5.4: Boxplots and IQR of classification accuracy for 5 folds (sessions) of the dataset over 19 participants.

neurons in all time steps. The actual hand gesture in these samples were the 11th and 3rd (shown in

green), respectively, which had the largest spike counts through all time steps and were predicted

rightly by the proposed SNN model. It is worth noting that comparison with other sEMG-based

SNN models for hand gesture recognition [26–28] was not feasible as they used different dataset

and pre-processing methods for feeding data into the SNN model.

5.4 Summary and Conclusion

In this chapter, we presented a compact (light) SNN model for hand gesture recognition from

HD-sEMG data. Compared to classical DNN architectures, SNNs can more accurately mimic neu-

rophysiological characteristics of the human brain by utilizing specific neurons that interact with

each other via emitting discrete-value (0 or 1) signals instead of producing continuous values all the
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Figure 5.5: Comparison of classification accuracy of folds (sessions) 1 and 3, representing the worst and best folds, for
all the 19 subjects.

Figure 5.6: Raster plots of output spiking neurons for subject 16 when session 3 is considered as the test set. The
classes with the highest spike counts are shown in green which were predicted correctly by the SNN model.

time. Using 5-fold cross-validation, we evaluated the performance of our proposed SNN model on

each subject separately. We showed that depending on data collection session used as the test set,

classification accuracy could vary significantly among different participants and the model could

yield a huge range of classification accuracies, from 29% to 98% for 14 hand gestures. Wilcoxon

signed-rank statistical analysis demonstrated that the discrepancy between the accuracies acquired
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from folds 2−5 was not significant. But, fold 1’s performance was significantly different from other

folds’ on account of its distinctive distribution of sEMG data. A prospect for future work could be

to improve performance and generalizability of the SNN framework on all subjects by employing

transfer learning approaches.
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Chapter 6

Summary and Future Research

Directions

This chapter concludes the thesis with a list of main contributions made in this dissertation and

some proposed directions for future works.

6.1 Summary of Thesis Contributions

The research works presented in this thesis are motivated by recent advances in the design

and implementation of AI and DL-based models for signal processing, aiming to develop efficient

Human Machine Interface (HMI) systems with a wide variety of applications in prosthetics, neu-

rorobotics and mixed AR/VR settings. Considering recent progress in development of innovative

DL-based architectures, particularly Transformers, Vision Transformers (ViTs), and Spiking Neural

Networks (SNNs), this thesis aimed to tackle the limitations and drawbacks of the existing ML/DL-

based models, focusing on two different approaches, i.e., gesture recognition from macroscopic and

microscopic neural drive information. In this regard, the thesis made a number of contributions, as

briefly outlined below:
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(1) The ViT-HGR Framework: A ViT-based framework is proposed for hand gesture recog-

nition from HD-sEMG signals. Thanks to the input parallelization and attention mecha-

nism it incorporates, many of the problems associated with the other DL/ML-based mod-

els [9–12, 14, 45–49] proposed in the literature have been solved. These problems generally

include large training times, huge memory usage and limited generalizability due to depend-

ing on handcrafted features [57]. The proposed ViT-HGR framework is able to address the

failure of CNN [14] and RNN-based [58] frameworks in only attending to either the spatial

or the temporal information in HD-sEMG signals. It can also be a suitable alternative to hy-

brid CNN-RNN [18, 59] structures due to their complexity and inevitably sequential nature

necessitating the network to process data in order. By eliminating the complexity of simul-

taneously exploiting CNNs/RNNs or merging them with transformers, we aim to construct a

compact and stand-alone framework with reduced computational overhead. Also, owing to

a specific signal processing approach we utilize before feeding raw HD-sEMg signals to the

model, we observe that the ViT-HGR framework achieves high accuracy when trained from

scratch with no data augmentation. The efficiency of the proposed ViT-HGR framework is

evaluated using a recently-released HD-sEMG dataset consisting of 65 isometric hand ges-

tures. Our experiments with 64-sample (31.25 ms) window size yield average test accuracy

of 84.62 ± 3.07%, where only 78,210 learnable parameters are utilized in the model. The

compact structure of the proposed ViT-based ViT-HGR framework (i.e., having significantly

reduced number of trainable parameters) shows great potentials for its practical application

for prosthetic control.

(2) The CT-HGR Framework: In this section, on the one hand, an extension of the ViT-

HGR framework is tailored and evaluated using different settings of the input HD-sEMG

data. A comprehensive evaluation of the proposed CT-HGR architecture is carried out with

variable window sizes, number of electrode channels, and complexity of the network. Addi-

tionally, the train/test times, memory consumption, and classification accuracy was reported

and compared for different settings. We also indicate that the CT-HGR framework is able to

work with instantaneous data samples which are single frames of HD-sEMG signals in one
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time point. This suggests that there are reproducible patterns among instantaneous samples of

a specific hand gesture which could also be a physiological representation of muscle activities.

Therefore, the network can achieve acceptable accuracy when receiving, as an input, a single

frame of the HD-sEMG image. Furthermore, a detailed comparison of the proposedCT-HGR

model with two ML algorithms (i.e. LDA and SVM) and a 3D CNN model is drawn. Two

various sets of handcrafted features are computed for each ML method [10,85,86,88] and all

of the 6 models are compared in terms of their accuracy, precision, recall, F1-score, train/test

times, and memory usage. A Wilcoxon’s signed-rank test is also applied on the accuracies

of models over different subjects to observe discrepancies between the proposed framework

and the other models and to show the effect of changing feature sets in ML algorithms on

their performance. The proposed CT-HGR framework is applied to 31.25, 62.5, 125, 250

ms window sizes of the HD-sEMG dataset utilizing 32, 64, and 128 electrode channels. Our

results are obtained via 5-fold cross-validation by first applying the proposed framework on

the dataset of each subject separately and then, averaging the accuracies among all the sub-

jects. The average accuracy over all the participants using 32 electrodes and a window size of

31.25 ms is 86.23%, which gradually increases till reaching 91.98% for 128 electrodes and a

window size of 250 ms. The CT-HGR achieves accuracy of 89.13% for instantaneous recog-

nition. On the other hand, a hybrid ViT-based model is introduced that combines HD-sEMG

signals (macroscopic neural drive information) with MUAPs (microscopic neural drive infor-

mation) to perform more accurate prediction of the entire 66 gestures in our utilized dataset.

HD-sEMG signals are modelled as a spatio-temporal convolution of MUSTs, which provide

an exact physiological description of how each hand movement is encoded at neurospinal

level [36]. Thus, this method is proposed to advance other promising works in the litera-

ture [35, 97, 98] only exploiting MUSTs for gesture recognition and to show that the com-

bination of HD-sEMG signals with MUSTs achieves higher accuracy than using either of

these signals distinctly. The fused CT-HGR model includes two stand-alone CT-HGR models

(called CT-HGR-V1 and CT-HGR-V3) that accept either raw HD-sEMG signals or the peak-

to-peak values of MUAPs which are then concatenated using two FC layers. According to
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our experiments, a great improvement in average performance of the fused model in compar-

ison to both stand-alone models is witnessed which is 8.22 and 5.52 % increase compared to

CT-HGR-V1 and V3, respectively.

(3) The SNN-based Framework: Here, our goal is to create a unique and innovative hand ges-

ture recognition model by utilizing the less-explored concept of Spiking Neural Networks

(SNN). This model focuses on recognizing gestures in a spatio-temporal manner using event-

based processing. There are a limited number of works on SNN-based gesture recognition

models using sEMG signals. Our proposed network is suggested to reduce the complexity of

other similar works [26–28] coupling SNNs with CNNs, energy-density maps and temporal

coding to perform EMG-based gesture recognition. We design a compact MLP model with

LIF spiking neurons to classify a set of 1 Degree of Freedom (DoF) gestures via HD-sEMG

signals. In our study, following the application of Min-Max normalization to HD-sEMG

signals, we divide them into windowed signals containing 128 samples each, without any

overlap. These segmented signals are then inputted to the spiking MLP model. We indicate

that considering each sample in the HD-sEMG dataset as a single time step results in the net-

work performing well on a quite limited amount of data with no need for data augmentation,

preprocessing and spike coding. Particularly, we show that our proposed model can effi-

ciently differentiate 14 hand movements by considering each sample of the HD-sEMG data

as a single time step for the SNN architecture. We evaluate our SNN model using a 5-fold

cross-validation scheme and categorize different participants based on the range of classi-

fication accuracy we obtained for them. The following results are acquired by segmenting

HD-sEMG signals into windows of size 62.5ms with no overlap. The proposed method led

to 6 out of 19 subjects achieving average classification accuracy of ≥ 80% with maximum

accuracy of 98% associated with 3rd session of the sEMG dataset as the test set.
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6.2 Future Research

(1) Although the utilized HD-sEMG dataset in this study is a comprehensive dataset acquired

for a large number of hand gestures and from various subjects, it is obtained only from able-

bodied individuals. This can be considered as a limitation of our developments. One direction

for future works is to incorporate neurophysiological characteristics of hand amputees by

acquiring a more generalized dataset that includes signals from this population.

(2) The HD-sEMG decomposition phase in this study (Chapter 4.3.5) is conducted offline, pre-

venting the proposed hybrid model to be employed in real-time HMI devices. This can be

considered another limitation of our developments and a second fruitful direction for the

future work to design a DL-based architecture for extracting MUSTs in real-time for devel-

opment of online HMI systems.

(3) Another fruitful and important direction for future research is to focus on explainable AI to

represent the extracted feature space through the proposed network in chapter 4 and compare

it with that of the conventional ML models.

(4) A prospect for future work on SNNs could be to improve performance and generalizability of

the SNN framework on all subjects by employing transfer learning approaches.

(5) Also, our compact SNN model can be integrated with CNNs and RNNs to better leverage

the spatial and temporal information found in HD-sEMG signals. This can be simultaneously

done with utilizing different kinds of spiking neurons rather than LIF to assess their ability to

imitate human brain’s physiological nature.
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