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Abstract

Assessing the Efficacy of Test Selection, Prioritization, and Batching Strategies in the
Presence of Flaky Tests and Parallel Execution at Scale

Emad Fallahzadeh, Ph.D.

Concordia University, 2023

Effective software testing is essential for successful software releases, and numerous test op-

timization techniques have been proposed to enhance this process. However, existing research pri-

marily concentrates on small datasets, resulting in impractical solutions for large-scale projects.

Flaky tests, which significantly affect test optimization results, are often overlooked, and unrealistic

approaches are employed to identify them. Furthermore, there is limited research on the impact

of parallelization on test optimization techniques, particularly batching, and a lack of comprehen-

sive comparisons among different techniques, including batching, which is an effective but often

neglected approach.

To address research gaps, we analyzed the Chrome release process and collected a dataset of 276

million test results. In addition to evaluating established test optimization algorithms, we introduced

two new algorithms. We also examined the impact of parallelism by varying the number of machines

used. Our assessment covered various metrics, including feedback time, failing test detection speed,

test execution time, and machine utilization.

Our investigation reveals that a significant portion of failures in testing is attributed to flaky tests,

resulting in an inflated performance of test prioritization algorithms. Additionally, we observed that

test parallelization has a non-linear impact on feedback time, as delays accumulate throughout the

entire test queue. When it comes to optimizing feedback time, batching algorithms with adaptive

batch sizes prove to be more effective compared to those with constant batch sizes, achieving exe-

cution reductions of up to 91%. Furthermore, our findings indicate that the batching technique is on

par with the test selection algorithm in terms of effectiveness, while maintaining the advantage of

iii



not missing any failures.

Practitioners are encouraged to adopt adaptive batching techniques to minimize the number of

machines required for testing and reduce feedback time, while effectively managing flaky tests.

Analyzing historical data is crucial for determining the threshold at which adding more machines

has minimal impact on feedback time, enabling optimization of testing efficiency and resource

utilization.
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Chapter 1

Introduction

Software systems constantly evolve through continuous changes aimed at integrating new fea-

tures and resolving bugs. To ensure the integrity of these systems, regression tests are executed.

However, the adoption of Continuous Integration (CI) release processes has led to a substantial

increase in the number of test executions over time. Consequently, the feedback time for devel-

opers has also increased. This situation presents significant challenges and costs for companies,

even those with substantial resources like Google, which conducts millions of tests on a daily basis.

Despite their best efforts, it remains impractical to execute tests for every single change [1, 2].

To address the challenges of increasing test volumes and feedback time, several test optimization

techniques have been proposed. One such technique is test selection, which focuses on running tests

that are more likely to uncover failures. This approach improves feedback time and saves on test

execution time. However, some companies are hesitant to rely solely on test selection as it may

allow bugs to slip through without running all tests.

Test prioritization, on the other hand, ensures that all tests are executed while giving higher

priority to tests that are more likely to expose failures. By prioritizing critical tests, feedback time

can be reduced without compromising overall test coverage.

Test parallelization is another strategy aimed at minimizing feedback time. It involves distribut-

ing tests across multiple machines and running them in parallel. This approach harnesses the power

of parallel computing to speed up test execution and provide quicker feedback to developers.

Test batching has gained popularity as a test optimization technique especially when there are
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overlapping changes that must be tested. It involves merging multiple changes together and running

tests for all corresponding changes once. This approach reduces both feedback time and execution

time by grouping related changes and their associated tests.

1.1 Research Gap

The existing research on test optimization has primarily focused on small datasets, which leads

to impractical solutions for large-scale projects [2, 3]. This gap is particularly relevant because test

optimization techniques are more applicable and impactful in the context of large-scale projects.

Additionally, previous studies have overlooked important factors and limitations specific to large

projects.

The impact of flaky tests on test optimization techniques is often disregarded. While many

studies consider all test failures as blocking, meaning they prevent a build from being integrated,

our investigation of the Chrome release process reveals that flaky failures are non-blocking tests that

do not hinder integration. Moreover, the methods used to identify flaky tests differ from the reality

of many large projects. For instance, Alshamari et al. [4] ran tests up to 1000 times and identified

67% of them as flaky tests. In contrast, in our analysis of 276 million test results, failing tests were

only rerun between 2 to 10 times, with a mere 0.03% labeled as flaky.

Another significant issue is the reliance on expensive and impractical approaches in previous

studies, which are not feasible in large projects. Memon et al. [2] explicitly stated that costly tech-

niques like code coverage are impractical in Google due to high code churn. The reason behind

the usage of these expensive test optimization approaches in the literature is the reliance on small,

non-representative datasets. For example, Alshamari et al. [4] studied flaky tests using a dataset of

only 24 projects, totaling a mere 22,245 test results.

Furthermore, the impact of parallelization on different test optimization techniques has received

limited attention in research. While various test optimization techniques have been investigated,

there is a lack of comparative studies, particularly with respect to batching, an efficient yet often

overlooked technique. Another research limitation is the absence of standardized metrics for com-

paring different test optimization techniques. For example, it would be valuable to determine the
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speed at which test batching can detect failing tests and to understand the performance of different

techniques in diverse resource execution environments.

1.2 Research Aim

In this research, we aim to understand the efficiency of different test optimization techniques by

considering the impact of scale and flaky tests.

To achieve this goal, we first study the impact of flaky tests and scale on test optimization

algorithms in the large-scale Chrome project in chapter 2. This chapter answers the question of how

the presence of flaky tests and scale affects the performance of these algorithms. Additionally, we

analyze the distribution of different types of failures within the Chrome dataset to gain insights into

the overall testing landscape.

To evaluate the effectiveness of test batching techniques at scale and considering parallelization,

we simulate and assess various batching algorithms, including two novel approaches, on the Chrome

project in chapter 3. This chapter explores the influence of parallelism by varying the number of

machines used in the simulations. Furthermore, we compare the performance of batching algorithms

with test prioritization and selection techniques considering the parallel execution in chapter 4,

from various perspectives considering important factors such as feedback time, resource usage, test

execution time, and the ability to quickly detect failing tests.

1.3 Research Objectives and Overarching Research Questions

This research addresses three overarching research questions, each corresponding to a specific

chapter in the thesis:

Chapter 2 explores the impact of flaky tests and scale on test prioritization in Chrome. The over-

arching research question for this chapter is: What is the impact of flaky tests on test prioritization

in Chrome?

This investigation aims to understand how flaky tests and scale influence the prioritization of

tests in the context of Chrome testing.
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Chapter 3 focuses on evaluating the performance of batching algorithms when tests are executed

in scale and in parallel. The overarching research question for this chapter is: How do batching

algorithms perform when testing in parallel?

This research question aims to assess the effectiveness of different batching algorithms in terms

of their impact on build feedback time and test execution time.

Chapter 4 examines the effectiveness of various test optimization algorithms when executed in

parallel in Chrome. The overarching research question for this chapter is: How effective are different

test optimization algorithms when executed in parallel in Chrome?

This research question involves analyzing and comparing the performance of test selection,

prioritization, and batching techniques using diverse evaluation metrics.

To address the research questions, we analyze the Chrome release process and collect a com-

prehensive dataset comprising 276 million test results. We thoroughly examine and characterize the

dataset, exploring its features and classifying the test results accordingly.

To conduct our evaluations, we simulate well-known test optimization algorithms and introduce

two new algorithms of our own. Additionally, we assess the influence of parallelism by varying the

number of machines employed in the simulations. Our evaluation encompasses a range of metrics,

including feedback time, the speed at which failing tests are detected, test execution time, and the

utilization of machines.

We make the following contributions:

• Investigating the Chrome release process: This study explores the Chrome release process,

examining the steps involved from the initial change commitment to the final integration

into the main Chrome repository. We also explore the complex classification system used in

Chrome to categorize test results.

• Capturing the dataset: We collect a comprehensive dataset comprising 276 million test

results from the Chrome project. This dataset not only includes the immediate pass/fail out-

comes of each test, but also incorporates the final verdicts determined by the Chrome testing

infrastructure, such as flaky labels. The data and scripts utilized in this research are made

publicly available in our replication package [5].
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• Simulating test optimization algorithms: To assess the effectiveness of test optimization al-

gorithms, we replicate prominent existing algorithms and introduce two novel batching tech-

niques. These algorithms account for the presence of flaky failures.

• Evaluating parallelization effects: We evaluate the performance of the test optimization

algorithms by simulating their execution on different numbers of machines, enabling us to

analyze their efficacy under varying resource availability scenarios.

• Addressing flaky tests: A significant focus of our study is dedicated to understanding and

addressing the challenges posed by flaky tests. We incorporate realistic conditions associated

with flaky tests into our algorithm simulations.

• Comparing test optimization algorithms: We conduct a comparative analysis of various test

optimization algorithms to identify their strengths and weaknesses. This evaluation provides

valuable insights for practitioners seeking to determine the most effective techniques, taking

into account different resource availability situations.

• Evaluation metrics: To assess the performance of the test optimization algorithms, we uti-

lize metrics such as feedback time, failure detection speed, test execution time, and machine

utilization.

This thesis is structured as follows: Chapter 2 examines the impact of flaky tests on test pri-

oritization in Chrome, which is based on our published paper at ICSE-SEIP 2022 [6]. Chapter 3

investigates the performance of parallel batch testing in Chrome and corresponds to our manuscript

currently undergoing the second round of review at the FSE 2023 conference after major revisions.

Chapter 4 explores the effectiveness and comparison of different test optimization techniques when

executed in parallel in Chrome, representing the manuscript that is ready for submission to the

EMSE journal. Finally, Chapter 5 concludes the study and provides insights into potential future

research directions. In the appendices, Appendix A provides a guideline for practitioners on how

to use the results of this study. Appendix B showcases different samples of test results from the

Chrome website and Chrome logs, while Appendix C presents the infrastructure we developed to

retrieve Chrome data.
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Chapter 2

The Impact of Flaky Tests on Test

Prioritization

This chapter is a verbatim copy of the paper published in the 44th International Conference

on Software Engineering, Software Engineering in Practice Track (ICSE-SEIP 2022) [6],

preserving the original content without any modifications.

Abstract
Test prioritization algorithms prioritize probable failing tests to give faster feedback to develop-

ers in case a failure occurs. Test prioritization approaches that use historical failures to run tests that

have failed in the past may be susceptible to flaky tests as these tests often fail and then pass without

identifying a fault. Traditionally, flaky failures like other types of failures are considered blocking,

i.e. a test that needs to be investigated before the code can move to the next stage. However, on

Google Chrome, flaky failures are non-blocking and the code still moves to the next stage in the

CI pipeline. In this work, we explain the Chrome testing pipeline and classification. Then, we re-

implement two important history based test prioritization algorithms and evaluate them on over 276

million test runs from the Chrome project. We apply these algorithms in two scenarios. First, we

consider flaky failures as blocking and then, we use Chrome’s approach and consider flaky failures

as non-blocking.
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Our investigation reveals that 99.58% of all failures are flaky. These types of failures are much

more repetitive than non-flaky failures, and they are also well distributed over time. We conclude

that the prior performance of the prioritization algorithms have been inflated by flaky failures. We

release our data and scripts in our replication package [5].

2.1 Introduction

In large projects, developers make many code changes every minute [7]. To make sure that these

changes do not introduce a regression into the codebase, regression tests are run. In the early era of

regression testing, the number of regression tests was increasing in each individual build, delaying

feedback to developers. Kim and Porter [8] observed that tests that failed in the past tend to be more

likely to fail in the future, which was also confirmed in the more recent articles [9,10]. Their method

is much simpler and more cost-effective in comparison with more time-consuming approaches such

as code coverage techniques for test prioritization. Statistically, their approach will provide faster

feedback about failures to developers and help identify bugs in a release. With the advent of Contin-

uous Integration (CI) and monorepos, the number of changes increased dramatically. Elbaum et al.

adapted Kim and Porter’s approach to modern CI environments [1]. Instead of considering a single

build, Elbaum et al. considered Google’s test environment, where multiple builds are being tested

simultaneously by multiple machines. Consequently, they implemented the test prioritization based

on the historical test failure across builds.

In this paper, we address the issue of flaky tests in a large scale test environment. Flaky tests

fail and pass non-deterministically, and few prior studies explicitly deal with. For example, Elbaum

et al. [1] do not differentiate flaky vs real test failures, but mention that flaky failures should be

removed when using historical test case prioritization. Machalica et al. [11] filter out flaky test

failures by re-running tests that fail ten times. They found that test selection using historical and

other factors was less effective when flaky test failures were included. Peng et al. [12] reran 252

failing Travis CI jobs and found a total of 29 flaky failures. On this tiny dataset, they found that

historical test prioritization is negatively impacted by the existence of flaky tests. In our work, we

examine 276 million tests on CHROME to understand the impact of flaky tests on test prioritization
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at scale.

In this research, we study the release process of Chrome project as a representative of a large

scale testing system, and we describe the process from a change commit until it is landed on the

Chrome main repository. We explain the complex test status classification adopted in Chrome, and

the concept of test expectations and its usage in determining the final outcome of a test. We capture

the results of 276 million test runs from the Chrome project to conduct our study. This dataset not

only includes the immediate results of running tests, but also the final flags chosen by the Chrome

testing infrastructure, such as the flaky flags. We re-implement two of the prominent historical-

based test prioritization techniques as two applicable approaches in this scale to apply on our dataset

to conduct the study. We select Kim and Porter’s [8] approach as one of the most effective test

prioritization techniques within a single build, and we refer to it as the KIMPORTER algorithm.

We choose Elbaum’s et al. [1] approach as state-of-the-art for test prioritization using historical

failures across builds, and we refer to it as ELBAUMPRIORITIZATION algorithm. We reassess test

prioritization in the context of Non-Blocking Flaky Failures (NBFF) where flaky failures do not

block the builds, and we compare its results with the case of Blocking Flaky Failures (BFF). As

a result, we see that the performance of the prioritization algorithms is much lower in the NBFF

scenario in comparison with BFF case where the results are distorted with flaky failures. We then

investigate the CHROME dataset to see the difference between the rate and distribution of different

types of failures. The combination of the results and the statistical data about the flaky failures

convince us that the test prioritization algorithms mostly had been prioritizing flaky failures.

The major contributions of this paper are:

• Chrome release process: In this research, we study the release process and steps included

in Chrome from committing a change to finally, landing the change on the main Chrome

repository. We also investigate the complex classification system which is used to categorize

test results in Chrome.

• Dataset: We capture 276 million test results from the Chrome project to conduct this study.

In addition to the immediate results of a test such fail and pass, this dataset consists of the

final verdict which is concluded by the Chrome testing infrastructure, e.g. flaky labels. We
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release our data and scripts in our replication package [5].

• Simulation: We run two prominent history-based test prioritization algorithms on the enor-

mous Chrome dataset by considering flaky failures as blocking versus non-blocking.

• Outcome: We reach the following conclusions.

(1) Historical test prioritization algorithms are largely impacted by flaky tests.

(2) The ratio of flaky failures is much higher than non-flaky failures, and they are much

more repetitive than non-flaky failures.

(3) Flaky failures are well distributed over time.

(4) Previous test prioritization results are probably distorted with flaky tests.

The remainder of this paper is structured as follows. Section 2.2 describes the CHROME release

process, its test status classification, and the way we capture data. Section 2.3 explains the adopted

test prioritization approaches in this study. Section 2.4 determines how we set up the parameters to

run test prioritization algorithms and how the outcomes are evaluated and interpreted. Section 2.5

displays the results of running the algorithms on the CHROME dataset in two different scenarios.

Section 2.6 investigates the CHROME dataset to explain the reasons for the substantial differences in

the results of these scenarios. Section 2.8 discusses the related works to this study. Finally, Section

2.9 concludes the paper.

2.2 Background on Data

The CHROME browser is a popular open-source web browser that has 63.64% of market share

of all web browsers as of February 2021[13]. We choose this project in our experiment because

the software development data is publicly available, but the process is similar to that used inside

Google. The scale testing at Chrome is many order of magnitude larger than the Travis CI projects,

which have been the subject of recent test prioritization and flaky test papers [12, 14].

2.2.1 CHROME Release Process

The Chrome development team follows the following process that we outline in Figure 2.1.
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Figure 2.1: Chrome release process

(1) A developer uploads their code change, called a Change List (CL) at Google and CHROME,

to the Gerrit code review tool.

(2) Reviewers can comment and suggest changes, which may lead to one or more new versions

of the patch.

(3) Once the reviewers are satisfied with the change, it will be sent to the Commit Queue (CQ) to

be emulated and tested on different platforms, i.e. builders, by try bots that ensure the integrity

of the change through pre-submit testing.

(4) If the change is approved by all the try bots, the CQ will automatically commit the change to

the CHROME main repository.

(5) Once the change is committed, also landed, the CHROME Continuous Integration system

groups multiple changes made to trunk and does post-submit testing.

2.2.2 Test Status Classification in CHROME

Chrome is a large and complex project that does not have simple binary test outcomes. Instead,

the outcomes are specified based on a predetermined set of allowable “expected results” for each

test. These expected results are defined by CHROME developers on the basis of their expectations

of the test results on a particular platform and their interpretation of the prior results of that test.

The most common expected results for tests are described below:

• Pass: by default, tests are expected to pass.

• Skip: tests that are disabled because they are expected to fail, especially on a particular plat-

form. For example, a test that is specific to Windows will be skipped when run for a Linux

builder.
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• Fail: tests that are expected to fail.

• Timeout: tests that are expected to time out without producing any results.

• Crash: tests that are expected to crash while running.

Any expected result other than Pass or Skip is a failure expectation. Failure expectations are

usually used in two cases. First, when a test is developed for a particular platform like Windows,

and it is expected to fail on another platform such as Linux. In this scenario, Chrome developers

prevent a failure of this test on Linux to cause multiple test reruns and blocking the build. Second,

it is used for the case of flaky failures. For instance, if a test produces timeout flakiness, Chrome

developers might make timeout as an expected result. Consequently, if this test time out in the next

builds, it does not cause multiple test reruns and build breakage. Meanwhile, other types of failures

such as crash can result in multiple test reruns and build breakage.

Based on the expected results, the final test outcome is determined as follows.

• Expected: if the result of a test is the same as its expected result, it is categorized as an

expected result. Expected results do not block a build, even if they are a failure.

• Flaky: if a test fails non-deterministically, it is a flaky test. A flaky test has multiple different

outcomes as a result of running the test multiple times on the same build. It might also lead

to multiple expected results in the future.

• Unexpected: if a test fails multiple times unexpectedly, its result is considered an Unexpected

outcome. This type of result will usually break the build.

Table 2.1 displays a summary of the final test outcomes, and Figure 2.2 shows a decision tree

for how the decisions are made and how the final outcome is concluded based on the test results and

the expected results. An allowable set of expected results is created for a test based on developer’s

expectations and may include: Pass, Skip, Fail, Timeout, Crash. If the outcome exists inside the list,

it is considered Expected; otherwise, it is an unexpected outcome. Unexpected pass is automatically

categorized as Flaky, but unexpected failure is automatically retried n times. If the result is still an

unexpected failure after n retries, the test is categorized as Unexpected. If any of the retries results

in an expected result, e.g., a Pass, then the test failure is considered flaky and is non-blocking.
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Table 2.1: Final test outcomes for CHROME

Category Actual Result
Expected Expected failure / Pass
Flaky Multiple different results / Unexpected pass
Unexpected Unexpected failure

Figure 2.2: A decision tree for how chrome testing infrastructure decides and determines the test
outcomes.
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Figure 2.3: Data processing pipeline

2.2.3 Data Processing Pipeline

Figure 2.3 shows the processing pipeline that we developed to gather data. It has the following

steps:

(1) We called the Chrome Gerrit code review [15] APIs with a date range from 2021-01-01 to

2021-01-31 for the CHROME pre-submit testing infrastructure.

(2) We captured and stored the JSON raw data of change lists, builds, and tests.

(3) Since we are more interested in the testing results, we then filtered out the data to capture

testing data for a particular builder, and it includes 276,550,812 test run verdicts for the entire

period.

(4) This filtered data consists of test id, test name, test suite, build id, build start time, build end

time, result id, status, final result, and test duration. We release this data in a replication

package [5].

2.2.4 Descriptive Statistics

For the captured change lists and builds we have the following information:

• There are 9524 change lists, and an average of 307 change lists per day.

• There are 19,045 builds, and an average of 614 builds per day.
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• On average, it takes about 4.06 days for a change list on the Gerrit review to be submitted to

the main repository.

• There are 49,932 test suites

• There are 276,550,812 test cases for the entire period and an average of 8,920,993 per day.

2.3 Background on Test Prioritization Algorithms

Many projects deal with a large number of tests on a daily basis. To optimize the testing pro-

cess, studies have proposed various test prioritization techniques. These approaches aim to increase

testing performance and reduce feedback time to developers. One of the most cost-effective test

prioritization methods has been the usage of historical test data. In the following, we review two

historical based test prioritization techniques which are used in our experiment.

2.3.1 RA 1. Individual test failures within a single build

At the early stage of software development and release, the build frequency was low, but the

number of tests within each build was increasing which lead to late feedback delivery to developers.

As a result, some studies proposed test prioritization with the goal of prioritizing tests within each

build to detect failing tests sooner [16, 17]. With this goal, some test prioritization approaches

were suggested based on code coverage and the dependency of tests to the changing code [18,

19]. Meanwhile, Kim and Porter were pioneers in proposing the usage of historical test failure

information to prioritize tests [8].

Since their approach does not rely on the source code dependencies, it performs more efficient

than the other techniques depending on source code. The priority in the Kim and Porter algorithm

is given to tests with the most recent failures.

To determine the prioritization score they adopted the exponential moving average formula from

statistical quality control as in the formula 7.
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P0 = 0

Pk = α ∗ hk + (1− α) ∗ Pk−1, 0 ≤ α ≤ 1, k ≥ 1

(1)

Where Pk is the probability of a test to fail at the kth observation based on its prior failures,

and α is the smoothing constant adopted to weight each individual historical observation. A larger

α makes recent observations more influential in the probability score. hk shows whether the test

has been failed at the kth observation, and it is assigned 1 if it failed and 0 if it passed. For

the value of P0, we followed the correction that was made by Mattis et al. [14] as there is no

observation at P0. We re-implement the Kim and Porter algorithm as one of the most effective

test prioritization techniques, and we refer it as KIMPORTER algorithm in our study. We show the

pseudocode implementation of KIMPORTER in Algorithm 3, and release our code in the replication

package [5].

Algorithm 1: KIMPORTER

Result: KIMPORTER takes tests from 1 build into the dispatchQueue ordering tests inside
the build based on their previous failures.

1 while There are more builds do
2 fill dispatchQueue with tests from 1 build;
3 calculate pk for each test inside the queue;
4 prioritizeTests(dispatchQueue);
5 while dispatchQueue is not empty do
6 test = dispatchQueue.getNextTest();
7 result = run(test);
8 if result == failure then
9 update hk for the test

10 end
11 end
12 end

The Kim and Porter approach relies on the idea that tests that fail frequently in the past will fail

in the future. Furthermore, usually only a few tests fail, which makes this prioritization approach

even more effective. If we run this small set of frequently failing tests first, finding the first failure

of a build should be more efficient.
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2.3.2 RA 2. Individual test failures across the CI builds

Continuous integration has become a dominant release engineering practice, and the increased

number of change requests has increased the number of builds and test runs. In a sample GOOGLE

dataset, the number of test requests reaches up to 2,461 per minute [10]. As a result, they have

adopted multi-machine and multi-release environment to run their enormous number of tests simul-

taneously [1]. This in turn has brought the concept of running and prioritizing tests across builds

into practice.

Elbaum et al. introduce this challenge, and they propose a test prioritization approach which

uses the same idea as Kim and Porter, but they adapt it across the builds in Google’s continuous

integration environment [1].

They used three time windows for implementing their algorithm. wp as a time window for tests

to be prioritized, wf as a time window for counting the number of previous failures, and we as

a previous execution time window to prevent low-priority tests from starvation. We re-implement

their approach in Listing 2.

Algorithm 2: ELBAUMPRIORITIZATION

Result: ELBAUMPRIORITIZATION algorithm takes tests from b builds into the
dispatchQueue and prioritizes them across the builds based on three conditions:
1. The test has recent failures 2. it is new 3. it has not been run for a long time.

1 while There are more builds do
2 fill dispatchQueue with tests from the next b builds;
3 foreach ti ∈ dispatchQueue do
4 if ti ∈ wf or ti /∈ we or ti is new then
5 ti.priority = 1
6 else
7 ti.priority = 0
8 end
9 end

10 prioritizeTests(dispatchQueue);
11 while dispatchQueue is not empty do
12 test = dispatchQueue.getNextTest();
13 run(test);
14 end
15 end

Elbaum et al.’s approach has the same reliance on historical test failures as the KIMPORTER
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algorithm, but it assumes multiple machines are testing builds simultaneously. The ELBAUMPRI-

ORITIZATION algorithm can perform more effectively in the continuous integration environment by

prioritizing failing tests across builds and running them upfront.

2.4 Evaluation Setup

To find the difference in the performance of the prioritization algorithms under study, we require

metrics that can show how successful these prioritization algorithms are in finding failing tests faster

in comparison to their competitor algorithms.

In this work, we are interested in evaluating the overall change in test run time at a global level

where the same test may be run multiple times. Despite the dominant APFD metric [20], Elbaum

et al. as one of the proponents of this metric for test prioritization [18] find it inappropriate to use

in the CI and large scale environment [1] because it does not consider tests across builds. To deal

with this issue, Elbaum et al. introduced the gain in hours for approach, A, relative to TESTALL as

defined as:

GAINEDHOURS (A) = FailTime(TESTALL)− FailTime(A) (2)

We calculate the differences between the run time of each individual failing test detected by

the KIMPORTER, and ELBAUMPRIORITIZATION algorithms in comparison with TESTALL which

is the FIFO time order of test for each build request. This will lead us to achieve the time gained

for each failing test by each algorithm. To have a better insight about the distribution of the time

gained by each prioritization algorithm, we use violin plots. The plot displays the median gain, first

and third quartiles, outliers as well as the density distribution of data.

2.4.1 Evaluation Parameters

In this study, we configure our algorithms to run with the following parameters.

For the KIMPORTER algorithm, we consider the α = 0.8 as in [14] to give 80% of the priority

to the most recent failures. For the ELBAUMPRIORITIZATION algorithm, we adopt prioritization

windows based on time or the number of tests [1]. We determine the prioritization windows to be a
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set of builds. Therefore, we set wp to include 2 builds, wf to consist of 48 builds, and we to have

96 builds. We determine these numbers relative to the time windows chosen in the original Elbaum

et al. paper [1].

2.5 Results and analysis

In this section, we aim to answer the following research questions:

RQ1: What is the impact of flaky tests on history-based test prioritization algorithms?

RQ2: What is the rate of flaky failures and how repetitive are they relative to non-flaky failures?

RQ3: How are flaky and non-flaky failures distributed over time in Chrome?

2.5.1 RQ1: Impact of Flaky Tests on Test Prioritization

We apply the presented prioritization algorithms to the CHROME dataset in two scenarios.

First, we run the test prioritization algorithms on the 276 million test cases given the condition

that flaky failures are blocking like other types of failures, and we refer it as Blocking Flaky Failures

(BFF) scenario. Then, we run the same test prioritization algorithms on the same dataset consider-

ing the flaky failures as non-blocking and we refer it as Non-Blocking Flaky Failures (NBFF) case.

The latter, non-blocking flaky failures, is how Chrome developers actually treat flaky failures (see

Section 2.2.2).

Figure 2.4 is the violin plot showing the distribution of the GAINEDHOURS of all failing tests

as a result of running the KIMPORTER and ELBAUMPRIORITIZATION test prioritization algorithms

against the TESTALL algorithm in the BFF scenario. This plot shows the overall performance of

these prioritization algorithms. The solid vertical line in the density plot shows the median, and the

dashed vertical lines display the quartiles in the distributions.

As can be seen in this plot, the first quartile is at 0.37 hours for the KIMPORTER algorithm,

which means that 75% of failing tests are detected at least 22.2 minutes faster. The median is at 3.07

hours, and the third quartile is at 6.85 hours. In the ELBAUMPRIORITIZATION approach, the first

quartile is less than KIMPORTER algorithm, near zero. However, the median and the third quartile

are higher than KIMPORTER algorithm at 5.66 hours and 10 hours respectively. In KIMPORTER
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Figure 2.4: Violin plot showing the GAINEDHOURS of failing tests in KIMPORTER, and EL-
BAUMPRIORITIZATION algorithms against TESTALL in the BFF scenario. The solid vertical line
in the density plot shows the median, and the dashed vertical lines display the quartiles in the distri-
bution.

and ELBAUMPRIORITIZATION algorithms there are about 18%, and 25% of failing tests that are

delayed in comparison to TESTALL respectively. However, the median, quartiles, and most of the

body of the violin plots for both KIMPORTER and ELBAUMPRIORITIZATION algorithms are on the

positive sides of the distributions. This means that for most of the tests, these algorithms were able

to detect the failures faster in comparison to TESTALL algorithm in the BFF scenario.

Figure 2.5 shows the violin plot distribution of the GAINEDHOURS by all failures in the NBFF

scenario from running the KIMPORTER and ELBAUMPRIORITIZATION test prioritization algo-

rithms against TESTALL approach. In the KIMPORTER approach, the first quartile is near zero

which means that 25% of failures are detected by delay in comparison to TESTALL. The median is

at 0.53 of an hour, and the third quartile is at 3.72 hours. For the ELBAUMPRIORITIZATION algo-

rithm, the first quartile and the median are near zero, which means that the algorithm delayed half

of the failures, and runs the other half faster. The third quartile is at 3.8 hours in GAINEDHOURS.
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Figure 2.5: Violin plot showing the GAINEDHOURS of failing tests in KIMPORTER, and EL-
BAUMPRIORITIZATION algorithms against TESTALL in the NBFF scenario. The solid vertical
line in the density plot shows the median, and the dashed vertical lines display the quartiles in the
distribution.

It is obvious in the violin plots of both KIMPORTER and ELBAUMPRIORITIZATION algorithms

in the NBFF scenario that the median, quartiles, and the body of these violin plots shifted toward

zero in comparison to Figure 2.4. This means that the performance of these prioritization algorithms

deteriorated significantly when the flaky failures are considered as non-blocking failures.

Tables 2.2, and 2.3 display a summary of the GAINEDHOURS and the percentage of failures

that are delayed by the KIMPORTER and ELBAUMPRIORITIZATION test prioritization algorithms

against TESTALL approach in both BFF and NBFF scenarios.

RQ1: History-based test prioritization algorithms are ineffective when flaky tests are present.

In the following, we investigate the distribution of different types of failures in the Chrome

dataset to better understand this phenomenon.
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Table 2.2: The GAINEDHOURS and the percentage of delayed failures for the KIMPORTER al-
gorithm in comparison with TESTALL in the BFF and NBFF scenarios in 25th, 50th, and 75th
percentiles.

25th 50th 75th % Delayed
BFF 0.37 3.07 6.86 18
NBFF 0.00 0.54 3.72 25

Table 2.3: The GAINEDHOURS and the percentage of delayed failures for the ELBAUMPRIORITI-
ZATION algorithm in comparison with TESTALL in the BFF and NBFF scenarios in 25th, 50th,
and 75th percentiles.

25th 50th 75th % Delayed
BFF 0.00 5.66 10 25
NBFF 0.00 0.00 3.8 50

2.5.2 RQ2: Rate and repetitiveness of Failures

One of the important statistics we have to consider is the rate of each type of failures. For the

entire period we have 276,550,812 test cases. Out of all these test cases there are 100,456 failures,

and among all failures we have 416 non-flaky failures and 100,037 flaky failures. This means that

the rate of non-flaky failures among failures is 0.41%, whereas the rate of flaky failures among all

failures is 99.58%. It is obvious that the majority of failures are flaky failures in CHROME, i.e. on

failure, a build passes on one of its reruns.

Another important factor we have to consider is how repetitive flaky failures are in comparison to

non-flaky failures. History-based test prioritization algorithms perform rely on repetitive past failure

predicting future failures. To measure the concentration of test failures, we use the Lorenz plot and

Gini coefficient, which were designed to measure the concentration of wealth in a population.

Figure 2.6 shows the Lorenz plot for the distribution of the non-flaky failures over tests con-

taining non-flaky failures versus the Lorenz plot for the distribution of the flaky failures over tests

consisting of flaky failures and also perfect equality. The non-flaky Lorenz curve displays the cu-

mulative growth in the number of non-flaky failures regarding the cumulative growth in the number

of tests having non-flaky failures, and the flaky Lorenz curve shows the cumulative growth in the

number of flaky failures considering the cumulative growth in the number of tests containing flaky

failures. The straight line shows the perfect equality line, where each test passes and fails the same
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Figure 2.6: Lorenz plot showing the cumulative growth in the number of non-flaky failures regard-
ing the cumulative growth in the number of tests containing non-flaky failures versus Lorenz plot
displaying the cumulative growth in the number flaky failures considering the cumulative growth in
the number of tests consisting of flaky failures and perfect equality on CHROME dataset.

number of times. A larger area between a curve and the equality line results in a larger Gini coeffi-

cient value, which indicates that the distribution is more skewed. The Gini coefficient value for the

non-flaky Lorenz plot is 0.57, while the Gini coefficient for the flaky Lorenz plot is 0.86.

As we can see, the Gini coefficient regarding the distribution of the flaky failures over the tests

containing flaky failures is about 30% more than the Lorenz plot showing the distribution of non-

flaky failures over the tests consisting of non-flaky failures. This reveals that flaky failures are

much more unevenly distributed, with a smaller set of tests failing frequently. In Figure 2.6 we

can see that about 80% of flaky failures are concentrated on only 3% of the tests containing flaky

failures; whereas 80% of non-flaky failures are distributed among about 50% of tests consisting of

non-flaky failures. This significant concentration of flaky failures over a minority of tests increases

the repetition of these flaky failures which in turn improves the distorts the effectiveness of test

prioritization algorithms that consider flaky failures.
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The rate of repetition in different types of failures also confirms this phenomenon. Out of 165

tests containing non-flaky failures there are only 40 tests consisting of repetitive non-flaky failures,

which stands for 24%. This low percentage of repetitive non-flaky failures can be one of the reasons

for the poor performance of test prioritization algorithms in the NBFF scenario. On the other hand,

from 9119 tests consisting of flaky failures about 57% are repetitive, which supports the strong

performance of the prioritization algorithms in the BFF case.

RQ2: The rate of flaky failures is much higher than non-flaky failures, and they are much

more repetitive than non-flaky failures.

2.5.3 RQ3: Failure Distribution Over Time

One of the other aspects which matters for the performance of test prioritization algorithms is

the repetitive occurrence of the failing tests over time. Since they rely on the historical failures, the

more repetitive the failures are over time, there is a higher chance that the failures be detected faster.

Figure 2.7 displays the number of repetitive non-flaky failures for the whole month of January

of 2021 on a daily basis. We can see in this chart that the number of repetitive non-flaky failures

is very limited ranging from 0 to 26 daily. What is also important in this figure is that 10 days in

the whole month which stands for 32% of days in the month lack repetitive non-flaky failures. The

existence of very few non-flaky failures over time can dramatically impact the performance of the

test prioritization algorithms.

Figure 2.8 shows the number of repetitive flaky failures for the whole month of January of 2021

on a daily basis. The number of repetitive flaky failures in this period ranges from 164 to 8047

per day, and there is no day without repetitive flaky failure. As we can see, in contrast to repetitive

non-flaky failures, repetitive flaky failures are numerous for the whole period. This can significantly

improve the performance of the history-based test prioritization algorithms.

RQ3: Flaky failures occur repetitively over time, while there are few repetitive non-flaky

failures.
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Figure 2.7: Time series showing the repetitive occurrence of non-flaky failures over time for the
January of 2021 on a daily basis on the CHROME dataset.

Figure 2.8: Time series showing the repetitive occurrence of flaky failures over time for the January
of 2021 on a daily basis on the CHROME dataset.
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2.6 Discussion

In the previous section, we saw that once the flaky failures are acknowledged as non-blocking

as Chrome does, there are few non-flaky test failures, and the history based test prioritization al-

gorithms are ineffective. We see that the ELBAUMPRIORITIZATION algorithm becomes ineffective

with the median GAINEDHOURS of 0, and the KIMPORTER approach is much less effective.

One other question to answer is that whether there are any benefits in prioritizing flaky failures.

Although there might not be a clear answer to this question in the literature and there is a need for

further study on this matter, according to the testing pipeline in Chrome, we can say that the moment

a test is detected as a flaky failure it is ignored and, it will not block the build. There are long-term

procedures that CHROME testing infrastructure follows to find the cause of the flakiness and to fix

it. However, there is not an immediate treatment for the flaky tests, and the goal of fast feedback

might not be the case for flaky failures as they do not have any influence on the destiny of a build.

We can conclude our findings as follows. We saw that the test prioritization algorithms can

become completely ineffective when flaky failures are admitted as non-blocking. We also showed

that the rate of flaky failures are much higher than the non-flaky failures, and they are 99.58% of

failures in Chrome. Moreover, flaky failures are much more repetitive than non-flaky failures as

their failure distribution is more towards a minority of tests. Failure time series also display flaky

failures as being well distributed over time, while non-flaky failures are not. All of these convince

us that the test prioritization algorithms under the study had mostly prioritized flaky failures in the

first place. This is due to the fact that most of the failures are flaky failures, and they have a much

more repetitive nature than non-flaky failures.

The implications of this finding questions the efficacy of prior studies, that did not separate flaky

failures from other types of failures, e.g., Elbaum et al. [1] on the Google dataset.

Historical test prioritization algorithms prioritize flaky failures as they fail repetitively.
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2.7 Threats to Validity

2.7.1 External Validity

The focus of this study is on the CHROME testing data which we scraped from the CHROME

website. As far as we know, there is no other publically available dataset consisting of the large

number of tests as this dataset, and more importantly, having flaky labels. As a result, this dataset

has been the only one we were able to work on, and we release it in our replication package for

other researchers [5]. We hope developers will evaluate the impact of flaky tests failures on test case

prioritization on other industrial projects.

This study concentrates on the performance of test prioritization algorithms using the historical

test failures. Many other test prioritization techniques such as code coverage based techniques are

not suitable and practical for the large datasets like CHROME [2]. It is also impractical to rerun tests

without the massive infrastructure available to Google Chrome. We hope that future work will the

impact of flaky tests on other types of test case prioritization.

2.7.2 Construct Validity

The metrics we use in this study are the time differences between the actual test runs in TESTALL

order and the order suggested by our KIMPORTER and ELBAUMPRIORITIZATION algorithms. We

simply plot the violin plot for each test and show the distribution. We believe that these measures

are effective enough for the purpose of displaying the performance of prioritization algorithms on

the CHROME dataset. We also investigated the APFD metric [20] as one of the dominant test pri-

oritization measures; however, as Elbaum et al. [1] mentioned in their study, this metric does not

work properly in the continuous integration environment where the focus is on the performance of

detecting failures across builds.

2.7.3 Internal Validity

This work shows that the test prioritization algorithms gain their performance advantage from

the existence of flaky tests. Test prioritization algorithms rely on the repetitive failures over time,

and this aligns well with the nature of flaky tests being repetitive. Consequently, as the results also
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confirm, test prioritization algorithms mostly prioritize flaky tests. We hope future work will look

at other factors relevant to large-scale CI systems.

2.8 Related Works

Many test prioritization techniques have been proposed to optimize the regression testing pro-

cess and deliver faster feedback to developers [21–24]. At the early stage of regression test priori-

tization, the literature offers test prioritization within a single build along with the software release

environment of the time. Kim and Porter [8] are the first to consider historical test failures in test pri-

oritization. They take advantage of the exponential moving average formula to increase the weight

assigned to recent test failures in their test prioritization approach. In a more recent work, Marijan

et al. [25] explain the need for having a short feedback loop in the continuous integration develop-

ment cycle. They propose a system that prioritizes tests considering the time limitation to expose

the most failures.

On the other hand, big companies like Google are facing a more complex problem. They re-

ceive multiple change requests simultaneously, which requires a more advanced test prioritization.

Elbaum et al. [1] acknowledge this problem and devise an algorithm to prioritize tests across con-

tinuous integration’s builds on a sample Google dataset. They propose a waiting queue in which

tests from various builds are lined up for prioritization. They adopt some time windows to con-

trol prioritization, and starvation. Most studies assume that tests are independent. However, Zhu

et al. [10] use the previous co-failure test results to prioritize them and also re-prioritize tests once

a failure occurs. They use multiple queues to control starvation and compare their algorithm with

the Elbaum et al.’s approach by using GOOGLE and CHROME datasets. This work is based on the

idea that test failures might occur together. Najafi et al. [26] factors in the time to run a test, longer

running tests get lower priority. They design their prioritization algorithm based on the historical

test failure frequency, test failure association, and the cost of the testing process. They apply their

algorithm to the multi-request test environment in Ericsson. None of these prior works considered

whether the failure was a flake or a true failure.

Various datasets are used for the purpose of test prioritization. Elbaum et al. [1] provided a
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sample from Google test results, which contains 3.5 million test verdicts for a period of 30 days.

There are also some studies which adopted datasets taken from Travis CI to conduct their research

about testing [14, 27, 28]. Recently, Matiss et al. [14] provided a dataset containing test results

belonging to 20 Travis CI Java projects. They published their dataset to be used for test prioritization

studies. Our observation shows that many studies use small projects for test optimization and flaky

tests. However, the problem of test optimization and flaky tests are more relevant to the massive

projects such as CHROME that have resource constraints. Another important issue is that because

most of the previous studies are working on small projects they adopt approaches such as code

coverage techniques that are not pragmatic in the large projects [2]. In this research, we captured

and evaluated about 276 million test results from the Chrome project which presents the real testing

environment in a massive project.

Flaky tests has been the subject of many studies recently [27, 29, 30]. However, there are few

studies that worked on the impact of flaky tests on the release pipeline. Rahman et al. [31] inves-

tigate the impact of failures including flaky failures on the number of crash reports associate with

Firefox builds, and they find that builds with more failures end up having higher number of crash

reports. Martinez et al. [32] study the automatic repair system on the Defects4j project, and they

reported flaky tests as one of the challenges that might mislead the automatic repair systems. Peng

et al. [12] try to improve the IR-based test-case prioritization approaches on Travis CI projects, and

they find that flaky tests can impact the test prioritization approaches. However, they do not investi-

gate the reasons behind this impact, and the statistics and distribution of flaky tests. Moreover, most

of the previous studies recognize flaky tests by re-runs. Nevertheless, they might fail to simulate

the real testing environment and be subjective and unrealistic in number of re-runs and determining

flaky tests. For example, Chrome usually re-runs tests twice, while FlakeFlagger baseline [4] reruns

tests 1000 times. In this work, however, we are using the real flaky labels discovered by the Chrome

testing infrastructure.
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2.9 Conclusion

Regression testing is costly in the large continuous integration environments. To ensure appro-

priate scale, we captured more than 276 million test case data from the Google Chrome project,

and we applied the KIMPORTER and ELBAUMPRIORITIZATION historical-based test prioritization

algorithms to the dataset by first considering flaky tests as blocking, following prior work [1,8], and

then non-blocking, following Chrome’s process. These algorithms rely on repetitive past failures

to predict future failures. Unfortunately, flaky failures are much more common and repetitive than

non-flaky failures, making these algorithms prioritize flaky tests ahead of non-flaky tests.
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Chapter 3

Parallel Batch Testing

This chapter is a verbatim copy of the paper that is accepted for publication in Proceedings

of the 31st ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE ’23) [33], preserving the original content

without any modifications. The presentation of the batching algorithms, the idea for the

TestCaseBatching, and the calculation of the results for Ericsson are credited to Bavand and

are included here for context. I reworked the paper for submission and performed major

revisions, including adding Chrome to make the results more generalizable.

Abstract
Continuous integration at scale is costly but essential to modern software development. Dif-

ferent test optimization techniques including test selection and prioritization have been proposed to

reduce the cost. Test batching is an effective alternative, but often overlooked test optimization tech-

nique. In this study, we evaluate the impact of parallelization by varying the number of machines

on test batching and propose two new test batching approaches.

We use the default TestAll approach as a baseline to examine the impact of parallelism and

machine count on feedback time, which is the time taken for test verdicts to be available for each

change. Additionally, we re-evaluate the ConstantBatching technique and introduce the BatchAll

algorithm, which adjusts batch size based on the remaining changes in the queue. We also propose
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TestCaseBatching, which allows new builds to be added to a batch before all tests are executed,

accelerating continuous integration. The evaluations are conducted using test results from Ericsson,

a proprietary application, and 276 million test outcomes from the open-source Chrome project. Our

assessments focus on feedback time and execution reduction, and we provide access to our scripts

and data for the Chrome project.

The results reveal a non-linear impact of test parallelization on feedback time, as each test delay

compounds across the entire test queue. ConstantBatching, with a batch size of 4, utilizes up to

72% fewer machines to maintain the actual average feedback time and provides a constant execu-

tion reduction of up to 75%. Similarly, BatchAll maintains the actual average feedback time with up

to 91% fewer machines and exhibits variable execution reduction of up to 99%. TestCaseBatching

holds the line of the actual average feedback time with up to 81% fewer machines and demonstrates

variable execution reduction of up to 67%. We recommend practitioners use BatchAll and TestCase-

Batching as both can reduce the number of machines needed for testing. It is crucial to first examine

historical data and determine the threshold at which increasing the number of machines minimally

affects feedback time to ensure efficient testing and resource utilization.

3.1 Introduction

Testing is both time-consuming and resource intensive. To reduce both resource consumption

and provide earlier feedback, test selection has been widely adopted in the industry and extensively

studied [34–36]. Test selection’s inherent trade-off is that not all tests are run, and some test failures

may be missed. On the other hand, test prioritization guarantees that all tests will be run, but those

that are more likely to reveal faults will be run first, reducing feedback time on test failures, but not

reducing the resource usage in testing [37–39]. In contrast, batch testing which groups builds for

testing and bisects on failure is conceptually better than both test selection and prioritization because

all the tests are run with less resource consumption and much faster overall feedback times [40,41].

Most changes require similar test sets, and the saving in batch testing is achieved because batching

groups changes and tests to reduce the number of redundant test runs among builds. For example,

if we are testing four builds in a batch that request the same tests, and the batch passes, we will

31



save three build test executions. However, when a batch fails, a bisection algorithm must be run to

identify the culprit build that is causing the failure. Bisection can slow down individual builds, but

provided that less than 40% of builds fail, batching and bisection are effective at reducing overall

feedback time [41].

Despite its effectiveness, only few studies examine batch testing. Najafi et al. [40] studied

batching and bisection techniques at Ericsson and found that constant batch sizes can reduce the

resource usage, i.e. execution time, necessary to run all the required tests by up to 42%. Beheshtian

et al. [41] evaluated open-source Travis torrent projects and proposed BatchStop4, which can reduce

build test executions on average by 50%. Bavand et al. [42] used a dynamic batch size approach

using the historical failure rate of the projects and reduced the execution time by about 47% against

their baseline. Previous batch testing works make three assumptions that are unrealistic on large

software systems. First, they do not run tests in parallel and implicitly use a single machine. Second,

after the failure of a batch, they rerun all tests. This is inefficient because we know which tests failed

on a batch, and we do not need to bisect and re-run the passing tests. Third, previous researchers

only focus on reducing resource consumption and do not investigate the feedback time outcomes

for different batching algorithms.

In this study, we address the limitations of prior work, and study systems with a much larger

scale of CI builds and tests: Ericsson and Chrome. To understand the impact of parallelization

on testing, we replicate the TestAll algorithm which simply runs all tests without applying any

batching technique, but unlike prior work, we vary the number of machines available for testing

and run tests in parallel. Our outcome measures are the feedback time, i.e. wall time per test,

and total test execution time reduction for all the tests. We replicate ConstantBatching from the

Beheshtian et al.’s study [41] which uses a constant batch size for batching, and we introduce two

novel BatchAll and TestCaseBatching techniques. BatchAll algorithm adapts the batch size to the

number of remaining changes inside the queue to batch them all at each time. TestCaseBatching

approach works the same as BatchAll except that it also accepts new changes while running the

batch. We adopt different numbers of machines on these batching algorithms and evaluate their

performance by using feedback time and execution reduction.

We provide results for the following research questions:
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RQ1: How does parallelization affect the feedback time performance of TestAll with varying

numbers of machines?

RQ2: How effective is ConstantBatching in terms of feedback time and execution reduction

when executed in parallel with varying numbers of machines?

RQ3: How effective is BatchAll in terms of feedback time and execution reduction when executed

in parallel with varying numbers of machines?

RQ4: How effective is TestCaseBatching in terms of feedback time and execution reduction

when executed in parallel with varying numbers of machines?

Our major contributions to this study are as follows.

• Parallelism in batching: we study the impact of parallelization on testing in general and

batching.

• Datasets: we use two large-scale Ericsson and Chrome datasets which run millions of tests

per day and are suitable to run our batching algorithms and apply parallelism.

• Simulation: we replicate TestAll and ConstantBatching algorithms and introduce two novel

BatchAll and TestCaseBatching approaches.

• Outcome measure: we use feedback time and execution reduction measures to evaluate the

performance of batching algorithms.

• Results: we reach the following conclusions.

(1) The impact of parallelism on the performance testing algorithms exhibits a non-linear

relationship.

(2) ConstantBatching with a batch size of 4, utilizes up to 72% fewer machines to main-

tain the actual average feedback time and provides up to 75% in execution reduction,

regardless of the number of machines utilized.

(3) BatchAll maintains the actual average feedback time with up to 91% fewer machines and

exhibits variable execution reduction of up to 99% depending on machine utilization and

the dataset.
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(4) TestCaseBatching holds the line of the actual average feedback time with up to 81%

fewer machines and demonstrates variable execution reduction of up to 67% depending

on machine utilization and the dataset.

3.2 Background and Methodology

We study a proprietary project at Ericsson and the Google-led open source project Chrome.

The project we examine at Ericsson tests the software that runs on cellular base stations. In this

context, the machines used for testing are extremely expensive and limited in number. Ericsson

spends millions on testing infrastructure and still needs to batch tests in order to test all the changes.

Test resources are scarce, and managers discuss the tradeoff of buying new test machine resources

for having slower feedback or removing more tests through selection and risking failures slipping

through.

Testing at Ericsson involves a multistage process, including various testing levels from unit tests

to integration tests, before changes are integrated into the released product. Our study focuses on

confidence levels 2 and 3, primarily consisting of integration tests, which significantly contribute to

the overall testing costs at Ericsson compared to other levels like unit testing. Thus, we capture the

test results, execution time, and change timestamps for each test case during integration testing to

gain insights and optimize this critical stage.

To generate our sample dataset, we evaluate the integration testing of a project at Ericsson. We

capture the test results for the period of six weeks from January to February 2021. For this duration,

we observe over 11,000 changes. For confidentiality reasons, we do not disclose other data or

aspects of the testing process and use the data to simulate batching scenarios where machines are

very expensive and highly utilized leading to strong resource constraints.

Chrome is one of the most popular browsers in the world, and it is representative of a large-

scale project. There are millions of tests run each day, and there are a massive number of builds and

tests running in parallel. The testing process used by Chrome was described in detail by Fallahzadeh

et al. [6], we summarize briefly below. A change list, i.e. pull request, is committed to the Gerrit

code review tool for revision. Reviewers may suggest changes to the change list to improve the

code or when they find issues. If the change is satisfactory to the reviewers, it will be sent for
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testing on the try bot builders. After being approved by the builders, the change is merged into the

main Chrome repository.

For the Google Chrome case, we use the Chrome test results published by Fallahzadeh et al. [6].

This publicly available dataset is captured by calling the Gerrit code review APIs from Chrome. This

dataset consists of 276 million test cases for the month of January 2021 for Chrome. These test runs

are for 9,524 changes across 49,932 distinct test suites for an average of 8.9 million test case runs

per day. The rate of failures for the builds in this project is about 8.5%. We describe how this data

is used in our simulation below.

For both Ericsson and Chrome, the data of interest are the test id, test name, build id, build start

time, build end time, status, final result, and test duration. We use these attributes to implement

our various batching algorithms which will be discussed in the following. This methodology can be

applied to any project that collects this basic data. We release our scripts and data for Chrome in the

supplemental material in an anonymized replication package.

3.2.1 Simulation Method and Outcome Measures

In this study, we use the record of real historical test runs and only vary the number of machines

to evaluate different batching algorithms. We do not re-run any tests. Instead, the process involves

determining tests for a batch based on the historical test results of the included builds, selecting the

maximum execution time among the corresponding builds for each test to capture the worst-case

execution time. The simulated batch is then dispatched across available machines, optimizing test

allocation for parallelism and resource utilization, considering the varying number of machines in

different scenarios. During the simulation, we assume that a test will fail in the simulated batch if

it failed in any of the builds included in the batch, and a test is considered to pass in the simulated

batch only if it passed in all the builds. This approach ensures an accurate reflection of test behavior

and outcomes in the simulation. We preserve the order of test runs and discuss the limitations of

simulation in Section 3.6.

The data necessary to conduct the simulation is not company specific and the simulations can be

applied to the test results of the other projects as well. The data includes the code change under test,

the time the change was available for testing, the requested tests for the change, and the duration that
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each test took to run. The changes are then queued based on their arrival time and simulated using

the batching algorithm, i.e. how efficiently would we have been able to process the same changes

and requested tests?

Feedback time: One of the most important factors in designing a continuous integration testing

infrastructure is giving fast feedback on test outcomes for each change. The time between commit-

ting a change and receiving all test verdicts is defined as feedback time.

FeedbackTime = TimeTestVerdicts − TimeCommit (3)

For example, if a developer commits a change at 9 am and receives the feedback that the tests

passed successfully on that change at 10 am, the feedback time will be 1 hour for that change. In

contrast, if the change was queued for 1 hour, then the feedback time would be 2 hours, a doubling

in feedback time. In the examples, we use a unit T to represent time, but in the study, we use the

actual time each test takes to run. The time a test will be queued depends on the available resources

and batching algorithm.

To contrast batching algorithms, we use the AvgFeedback as the sum of the feedback times for

each change in the project divided by the total number of changes for the project. The equation

below shows the AvgFeedback for batching algorithm A across C changes with m machines.

AvgFeedbackm(A) =

∑C
c=1 Feedbacktimec(A,m)

C
(4)

To contrast batching algorithms, we calculate the FeedbackReduction as the percentage decrease

in AvgFeedback of batching algorithm, A1, compared to the AvgFeedback of the algorithm, A2, with

m machines.

FeedbackReductionm(A1, A2) = (1− AvgFeedbackm(A1)

AvgFeedbackm(A2)
) ∗ 100 (5)

Execution Reduction: The EXECUTIONREDUCTION metric quantifies the performance of dif-

ferent batching algorithms in terms of saving execution time with varying numbers of machines. It

is calculated using Equation 10.
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EXECUTIONREDUCTIONm(A) = 1−
∑K

t=1 Test Execution Time (A, m)∑N
t=1 Test Execution Time (TestAll)

(6)

This formula calculates the execution reduction in test executions achieved by a batching algo-

rithm (A) with m machines compared to running all tests in their original order (TestAll). Here, K

represents the number of tests executed by the batching algorithm (A) with m machines, and N is

the total number of tests executed by TestAll. The formula calculates the percentage of time required

for running the tests using approach A with m machines relative to TestAll. Subtracting this percent-

age from 1 provides the percentage of execution time that was reduced. For example, if approach A

with m machines takes 40% less time to run tests than TestAll, the EXECUTIONREDUCTION by A

with m machines is calculated as 60%, indicating that approach A with m machines saves 60% of

the time in test execution compared to TestAll.

By using this formula as a metric, we can compare the performance of different batching algo-

rithms and determine their efficiency in saving time during test execution.

Simulation Setup and Plateau Thresholds. To evaluate the batching algorithms’ performance

in terms of feedback time, we compare them to the actual average feedback time as the baseline.

Due to the complexity and unavailability of the exact number of machines required to achieve the

actual average feedback time in both Ericsson and Chrome, we use the baseline number of machines

needed to maintain the actual average feedback time for TestAll. Our simulations vary the available

resources (machines) from 1 to 9 for Ericsson and from 1 to 375 for Chrome, where the average

feedback time for all algorithms reaches a plateau.

Determining a plateau often involves the expertise of domain experts who suggest appropri-

ate thresholds. For Ericsson, we establish a threshold of 6 percent improvement from the actual

feedback baseline, indicating that beyond this point, the improvement in feedback time becomes

insignificant with a unit increase of 1 machine. In the case of Chrome, the threshold is set at 2 per-

cent improvement from the baseline, considering a unit increase of 25 machines. These thresholds

are carefully determined to account for the specific requirements and trade-offs in each domain. Er-

icsson, with its high-cost machines, necessitates a more stringent plateau criterion, while Chrome,

benefiting from machine farms, adopts a lower threshold to optimize performance.
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3.3 Batching Algorithms

Although parallel testing can help to reduce the feedback time, even at large companies using

farms of servers to run tests in parallel, they still need batch changes to further reduce resources [43].

In the following, we describe the definitions and formulations for each batching algorithm.

3.3.1 TestAll

Ideally, each change would be tested immediately and in isolation, running all the requested tests

independently of other changes. This approach works well on small projects that are not resource

constrained. The feedback time for each change varies and depends on the time that a change waits

in the queue.

Figure 3.1 describes the testing process for TestAll algorithm with 1 and 2 machines scenarios.

There are two changes that arrive at T = 0 and T = 1 times respectively. When there is only one

machine available, all tests are running on a single machine and subsequent changes have to wait in

a queue. At the time T = 2, the tests belonging to the first change are executed with a feedback time

equal to 2 units of time. Test execution for change 2 is finished at T = 4 resulting in the feedback

time of 3 units of time. In the 2 machines scenario, the tests belonging to the changes are distributed

between the two machines. At the time T = 1 both tests A and B for change 1 are executed by the

machines M1 and M2, leading to 1 unit of feedback time. At the time T = 2, tests are run for all

changes, making the average feedback time of 1 in comparison with the previous average feedback

time of 2.5 units of time.

3.3.2 Batch Testing and BatchStop4

TestAll is expensive and sometimes infeasible at large companies, e.g., Ericsson [40] or Google [43].

Instead of testing every change individually, we can combine multiple changes and run the union

of their requested tests in a batch. If a batch passes, we save resources and provide feedback more

quickly. However, if a test fails, we need to find the culprit change(s) that are responsible for the

failure. If the intersection of the requested tests for the batched changes is large, and most tests pass,

the saving could be substantial. In an extreme example, if we batch 50 changes, and each change
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Figure 3.1: A sample of TestAll algorithm. In this example, there are two subsequent changes and
their requested tests A, B, and C. The sequence of events is displayed by T, and the machines are
shown by M.

requests the same tests when the batch passes we save 49 build test executions.

However, when the batch fails, we need to find the culprit change(s) responsible for the fail-

ure. Out of different culprit-finding approaches like Dorfman and bisection [40, 44], we use the

BatchStop4 which has been shown both mathematically and empirically to be the top performing

approach [41]. Figure 3.2 displays the batching process of 8 changes consisting of different tests

with the same execution time. To create the batch, a union of the tests across all the changes is used,

which gives 6 distinct tests of A, B, C, D, E, and F to run. Executing the batch fails, leading to the

culprit-finding process that requires additional 6 test executions. Since we know that test A failed,

we only run this test in the subsequent builds. This ends up running 12 test runs, which is 50% less

than the TestAll approach that requires 24 test executions.

3.3.3 ConstantBatching

Prior works have selected a constant batch size for testing [40, 41]. In the ConstantBatching

technique, we group n changes together and test them in a batch. For example, with n = 8, we batch
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Figure 3.2: A sample of batch testing using the BatchStop4 culprit approach. In this example, there
are eight subsequent changes and their requested tests A, B, C, D, E, and F. The failing test A is
determined by a gray colour.

every 8 changes together for testing. Figure 3.3 shows an example of Batch2 using a single machine

as well as having two parallel machines. There are in total 4 changes. The time of committing

the changes is equal to T=0, T=2, T=4, and T=6 respectively. For simplicity, we assume each test

execution takes 1 unit of time. In a single machine configuration, the feedback time for each build

would be 5, 4, 4, and 2 units of time respectively. By using two machines, the feedback time would

be 4, 2, 3, and 1 unit of time respectively. We can see when using two parallel machines, there is

a time when machines are free and no test has been assigned to them for execution as they have to

wait for 2 changes to be available. This affects the feedback time for Change 3.

3.3.4 BatchAll

The assumption of a constant batch size introduces problems. First, the rate of committed

changes varies over time. For example, during the peak of the workday, there may be 1000’s more

commits than at night. We need to vary the batch size based on the change queue. In BatchAll, when

there are resources available, all the waiting changes, are grouped and the union of required tests is

run for the batch. When the testing process of the batch finishes and the corresponding resources are
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Figure 3.3: A sample of ConstantBatching algorithm i.e. Batch2. In this example, there are four
subsequent changes and their requested tests A, and B. The sequence of events is displayed by T,
and the machines are shown by M.

free, another batch is created using all the current waiting changes and the resources are allocated

to the new batch.

Figure 3.4 shows an example of BatchAll with a single machine. We assume that there is no

failure and all the changes pass the tests. Using BatchAll, after committing the first change, the

resources are immediately allocated to it for testing. Change 1 arrives first, and only after it finishes

testing Change 1, it batches all the changes that are now waiting, i.e. changes 2, 3, and 4. After

testing the second batch of size 3, it runs the tests for Change 5 in a batch of size 1 because no

other changes are waiting for testing. The feedback time for each change will be 3, 5, 4, 3, and 5

respectively.

3.3.5 TestCaseBatching

BatchAll can decrease the feedback time by reducing the idle time of resources. However, when

all resources are utilized for testing, new changes must be queued until all the tests for the current

batch are complete. With TestCaseBatching new changes are added to the batch when any test

finishes rather than having to wait for all the tests to finish. This approach requires the requested
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Figure 3.4: A sample of BatchAll algorithm. In this example, there are five subsequent changes and
their requested tests A, B, and C. The sequence of events is displayed by T, and the machines are
shown by M.

tests to be queued. To manage the test queue, the requested test cases for each change are added to

the queue, i.e. the ChangeID, and TestID. When a test finishes, any new changes are added to the

batch and the next test in the queue is run. Once a change has had all its tests run, the results are

reported.

In Figure 3.5 we provide an example of TestCaseBatching. After each test finishes, TestCase-

Batching includes any waiting builds and runs the next requested test in the test queue. TestCase-

Batching has to run Test A three times because it has finished for Change 1 before Changes 2, 3, and

4 and the algorithm has to run it independently for Change 5. In contrast, TestCaseBatching must

only run B and C twice as they overlap when more changes are available. We see that the average

feedback time is reduced to 3 compared to the 4 needed for BatchAll, meaning that we get feedback

to developers 25% sooner.
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Figure 3.5: A sample of TestCaseBatching algorithm. In this example, there are five subsequent
changes and their requested tests A, B, and C. The sequence of events is displayed by T, and the
machines are shown by M.

3.4 Results

This section presents the results of our evaluation, comparing the performance of different batch-

ing algorithms in terms of feedback time, the number of machines utilized, and the extent of exe-

cution reduction achieved. We conduct these evaluations using the Ericsson and Chrome datasets,

considering various numbers of machines.

3.4.1 RQ1: Parallelization with TestAll

In the TestAll approach, we simulate testing each change individually to understand the impact

of parallelization on the testing process. The curves in Figure 3.6 and 3.7 show that increasing the

number of machines has a nonlinear impact on feedback time. We see that TestAll needs 7 machines

to achieve the actual average feedback time of 8.33 hours for Ericsson. For Chrome, we see TestAll

needs 217 available machines to achieve the 36.48 minutes average feedback time that is actually

observed on Chrome.
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Substantial improvement is seen by adding additional parallel machines, but the return on invest-

ment diminishes at some point. For instance, in Ericsson, when we increase from 6 to 7 machines

there is a speedup of 2.65 times in TestAll algorithm, but the increase from 7 to 8 machines only adds

1.5 times of improvement in feedback time. In Chrome, TestAll algorithm runs 49 times faster when

we use 200 machines instead of 100 machines, while when we increase it from 200 to 300 machines

it only gets 8.11 times faster. We see that TestAll with 9 machines has plateaued for Ericsson, and

we see TestAll with 350 machines has plateaued for Chrome.

Figure 3.7 displays the 95% confidence intervals for the average feedback time values of all the

algorithms analyzed in Chrome.1For the TestAll algorithm, the confidence interval range becomes

narrower, decreasing from 4% to less than 1% of the actual average feedback time, as the number

of machines increases from 200 to 275 and beyond. This reduction in the width of the confidence

interval indicates a decrease in the range of the feedback time distribution.

To compare the feedback time distributions of different batching algorithms for Chrome, we

utilize the Wilcoxon Rank-Sum test, which is suitable for comparing two independent samples

without relying on distribution assumptions. To address the issue of multiple comparisons, we

apply the Bonferroni correction by dividing the desired overall p-value of 0.05 by the number of

comparisons. This adjustment results in a p-value cutoff of 0.0003 for each comparison, ensuring a

stringent threshold for statistical significance.

The obtained p-values are all significantly lower than the cutoff value, indicating significant

differences in the feedback time distributions between most algorithm comparisons. However, the

comparison between TestAll and Batch2 at 300 machines yields a p-value of 0.06, suggesting a lack

of significant difference in only this case.

We also calculate Cliff’s delta effect size to measure the magnitude and direction of differences

between feedback time distributions. In Table 3.4, we present the effect sizes between various algo-

rithms at different machine counts. This data further supports the observed trend and the significance

of the differences depicted in the average feedback time plot shown in Figure 3.7.
1We are unable to add confidence intervals or compute statistical tests because we no longer have access to the

Ericsson data.
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Figure 3.6: Average feedback time and percentage change relative to actual average feedback time
for each approach with varying numbers of machines at Ericsson.

3.4.2 RQ2: ConstantBatching

Batching reduces the number of test executions when the changes request the same tests. Prior

works [40,41] used a constant batch size, and we replicate the state-of-the-art approach on a project

at Ericsson. We report the results for batch sizes 2 and 4 in this paper.

When large batches pass, common tests requested by changes are only run one time, dramati-

cally reducing the amount of testing. As noted by prior work [41], the reduction is limited by the

number of failing tests because a failure requires additional executions to find the culprit changes.

However, on most large projects there are relatively few test failures, making batching highly effec-

tive [6].

Prior works have focused on resource savings and largely ignored or simplified feedback time [40,

41]. If we strictly follow a constant batch size, then we see that commits can wait for extended peri-

ods of time. Figure 3.6 and 3.7 clearly reveal that constant batching algorithms, Batch2 and Batch4,

outperform TestAll in the majority of cases, except in highly resource-available environments where
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Figure 3.7: Average feedback time with colorful 95% confidence intervals and percentage change
relative to actual average feedback time for each approach with varying numbers of machines in
Chrome.

the number of machines significantly exceeds the baseline. As the number of resources increase,

they plateau with a relatively high feedback time and TestAll outperforms them. However, they are

simpler to implement than other batching algorithms.

Table 3.1 shows that Batch2 effectively maintains the actual average feedback baseline of 8.33

hours for Ericsson using 6 machines, resulting in a 14.29% reduction in machine usage compared to

the baseline. However, Batch4 achieves the same average feedback time using 8 machines, resulting

in a negative reduction (-14.29%) in machine usage compared to the baseline. For Chrome, Batch2

can maintain the actual average feedback baseline of 36.48 minutes using 113 machines, resulting

in a 47.93% reduction in machine usage compared to the baseline. Similarly, Batch4 achieves the

same average feedback time using 61 machines, resulting in a 71.89% reduction in machine usage

compared to the baseline.

Table 3.2 shows that Batch2 and Batch4 plateau for Ericsson at 4.52 and 7.86 hours by using
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8 machines respectively. This means that Batch2 and Batch4 reach a plateau with 70% and 195%

longer average feedback time compared to the baseline, respectively. Consequently, increasing the

number of machines for both algorithms provides a limited scope for improvement compared to

the baseline. For Chrome, Table 4.4 displays that Batch2 and Batch4 plateau at 5.88 and 12.6

minutes using 225 and 150 machines. This results in 31% and 255.93% longer plateaued feedback

time compared to the baseline, respectively, indicating limited room for improvement relative to the

baseline.

The confidence interval values displayed in Figure 3.7 for the Batch2 algorithm and Chrome

reveal that the average feedback time has a range of around 5% when utilizing 100 machines. No-

tably, as the number of machines increases to 150, this range significantly decreases to less than

1%. Conversely, for the Batch4 algorithm, the confidence interval values indicate a range of about

5% when using 50 machines. While increasing the number of machines reduces the range, this

reduction is constrained, and even with 375 machines, the range remains at 2%.

Figures 3.8 and 3.9 illustrate the percentage of EXECUTIONREDUCTION achieved by various

batching algorithms on Ericsson and Chrome, respectively. It is worth noting that the EXECU-

TIONREDUCTION for the constant batching algorithms remains constant irrespective of the number

of machines used. For Ericsson, Batch2 achieves an EXECUTIONREDUCTION of 23%, while for

Chrome, it achieves an EXECUTIONREDUCTION of 50%. Similarly, Batch4 achieves a EXECU-

TIONREDUCTION of 37% for Ericsson and 75% for Chrome.

Table 3.1: The number of machines required to maintain the actual average feedback time of 8.33
hours in Ericsson and 36.48 minutes in Chrome, along with the percentage reduction in machine
usage compared to the baseline number of 7 machines in Ericsson and 217 machines in Chrome.

Algorithm TestAll Batch2 Batch4 BatchAll TestCase
Batching

Ericsson 7 (0%) 6 (14.29%) 8 (-14.29%) 5 (28.57%) 5 (28.57%)
Chrome 217 (0%) 113 (47.93%) 61 (71.89%) 20 (90.78%) 42 (80.65%)

3.4.3 RQ3: BatchAll

ConstantBatching excels in conserving resources and reducing feedback time in highly resource-

constrained environments characterized by limited machine availability compared to the baseline
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Table 3.2: The number of machines and the average feedback time in hours where each batching
algorithm plateaus for Ericsson.

Algorithm TestCase
Batching BatchAll TestAll Batch2 Batch4

Feedback time 2.53 2.75 2.66 4.52 7.86
Machines 8 8 9 8 8

Table 3.3: The number of machines and the average feedback time in minutes where each batching
algorithm plateaus for Chrome.

Algorithm TestCase
Batching BatchAll TestAll Batch2 Batch4

Feedback time 3.96 3.78 3.54 5.88 12.6
Machines 125 150 350 225 150

and a significant backlog of commits. However, the queue size varies over time, with peak changes

happening during working hours. To better utilize the available resources, we suggest BatchAll

which batches all available changes in the queue.

Figure 3.6 and Figure 3.7 show that BatchAll approach always outperforms TestAll and Con-

stantBatching algorithms in both Ericsson and Chrome cases. This algorithm performs promisingly

both in high resource-constrained and high resource-available conditions compared to the baseline

number of machines.

Table 3.1 illustrates that BatchAll is capable of maintaining the feedback baseline at 8.33 hours

for Ericsson by utilizing 5 machines, leading to a 28.57% reduction in machine usage. Similarly,

for Chrome, BatchAll achieves the feedback baseline at 36.48 minutes with 20 machines, resulting

in an impressive 90.78% reduction in machine utilization.

Table 3.2 shows that BatchAll approach plateaus for Ericsson at 2.75 hours by using 8 machines.

This represents a 12.5% resource reduction relative to the plateaued feedback baseline. For Chrome,

Table 4.4 displays that BatchAll plateaus for Chrome at 3.78 minutes using 150 machines. This is a

54.14% reduction in resources to reach the plateaued feedback baseline.

The confidence interval for the average feedback time values depicted in Figure 3.7 for the

BatchAll algorithm and Chrome indicates a range of approximately 1% compared to the actual

average feedback time when using 16 machines. As the number of machines increases to 25, this

range narrows significantly, approaching zero, which suggests a more concentrated distribution of
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Table 3.4: The Cliff’s delta effect size values for pairwise comparisons of different batching algo-
rithms for Chrome at different numbers of machines.

Machines TA* vs B2 TA vs B4 TA vs BA TA vs TCB B2 vs B4 B2 vs BA B2 vs TCB B4 vs BA B4 vs TCB BA vs TCB
8 0.53 0.79 1.00 -0.05 0.57 0.99 -0.30 0.98 -0.51 -0.92
16 0.57 0.84 0.99 -0.04 0.68 0.98 -0.30 0.97 -0.53 -0.87
25 0.63 0.90 0.98 0.08 0.83 0.97 -0.17 0.94 -0.48 -0.67
50 0.83 0.94 0.96 0.97 0.84 0.93 0.95 0.65 0.80 0.51
75 0.90 0.94 0.95 0.96 0.62 0.78 0.85 0.52 0.73 0.43
100 0.83 0.87 0.91 0.92 0.33 0.63 0.75 0.50 0.70 0.35
125 0.65 0.69 0.80 0.84 0.12 0.55 0.67 0.54 0.70 0.29
150 0.60 0.58 0.74 0.78 -0.08 0.49 0.62 0.58 0.70 0.24
175 0.48 0.40 0.66 0.71 -0.19 0.46 0.59 0.61 0.71 0.20
200 0.34 0.20 0.59 0.64 -0.25 0.45 0.56 0.63 0.71 0.16
225 0.24 0.06 0.52 0.58 -0.28 0.45 0.55 0.65 0.72 0.14
250 0.16 -0.06 0.47 0.53 -0.30 0.45 0.54 0.67 0.73 0.12
275 0.06 -0.20 0.42 0.49 -0.32 0.46 0.53 0.68 0.73 0.11
300 -0.02 -0.31 0.39 0.45 -0.33 0.46 0.53 0.69 0.73 0.10
325 -0.09 -0.39 0.35 0.42 -0.34 0.46 0.52 0.70 0.74 0.09
350 -0.14 -0.45 0.33 0.39 -0.34 0.47 0.52 0.70 0.74 0.08
375 -0.18 -0.49 0.30 0.36 -0.35 0.47 0.52 0.71 0.74 0.08

*Please refer to the following abbreviations used in this table: TA: TestAll, B2: Batch2, B4: Batch4, BA:
BatchAll, TCB: TestCaseBatching.

the feedback time values.

Figure 3.8 and 3.9 demonstrate that the BatchAll algorithm’s EXECUTIONREDUCTION varies

with the number of machines used, decreasing as the number of machines increases. For Ericsson,

the EXECUTIONREDUCTION ranges from 49% to 3% when utilizing 1 to 9 machines. Similarly, for

Chrome, the EXECUTIONREDUCTION ranges from 99% to 9% when employing 1 to 375 machines.

Figure 3.10 depicts the average batch sizes utilized by the BatchAll and TestCaseBatching al-

gorithms in Chrome, with varying numbers of machines. The figure is displayed on a logarithmic

scale to accommodate the substantial difference in batch sizes between a few machines and larger

numbers of machines. The average batch sizes for the BatchAll algorithm range from approximately

85 batches to nearly 1 batch as the number of machines increases from 1 to 375. Notably, a signifi-

cant reduction in average batch sizes is observed when the number of machines increases from 1 to

8, resulting in a drop from 85 to 10 batches for BatchAll.
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Figure 3.8: The percentage of EXECUTIONREDUCTION achieved by different batching algorithms,
relative to the TestAll, was calculated for different peak numbers of machines for Ericsson.

3.4.4 RQ4: TestCaseBatching

BatchAll processes all available changes. However, any change that arrives has to wait until all

the tests for a batch have been completed. In background Section 3.3.5, we introduced TestCase-

Batching that queues the requested tests across all changes and includes any new change after each

test completes (rather than waiting for all tests to complete).

Except when there is an extreme resource constraint, the TestCaseBatching approach performs

more effectively than other algorithms in terms of feedback time as shown in for Ericsson in Figure

3.6 and Chrome in Figure 3.7. The reasons for the algorithm’s poor performance under high resource

constraints, as depicted by the parallel line in Figure 3.7 at 42 machines, will be discussed in detail

in the discussion section.

Table 3.1 presents that TestCaseBatching achieves the feedback baseline at 8.33 hours for Er-

icsson by utilizing 5 machines, resulting in a 28.57% reduction in machine usage. Similarly, for

Chrome, TestCaseBatching achieves the feedback baseline at 36.48 minutes using 42 machines,
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Figure 3.9: The percentage of EXECUTIONREDUCTION achieved by different batching algorithms,
relative to the TestAll, was calculated for different peak numbers of machines for Chrome.

leading to a remarkable 80.65% reduction in machine utilization.

Table 3.2 shows that the TestCaseBatching approach plateaus for Ericsson at 2.53 hours by using

8 machines. This presents a 12.5% resource reduction to reach the plateaued feedback baseline. For

Chrome, Table 4.4 displays that the TestCaseBatching plateaus for Chrome at 3.96 minutes using

125 machines. This is a 61.28% reduction in resources to reach the plateaued feedback baseline.

The confidence interval ranges depicted in Figure 3.7 for the TestCaseBatching algorithm and

Chrome tend to stabilize at approximately 1% of the actual average feedback time as the number of

machines increases to 50. Beyond this threshold, the range of confidence intervals decreases signif-

icantly, approaching nearly zero. This narrowing range suggests a more concentrated distribution

of feedback time values.

Figures 3.8 and 3.9 illustrate the varying percentages of EXECUTIONREDUCTION achieved by

the TestCaseBatching algorithm using different numbers of machines. In the context of Ericsson,

TestCaseBatching achieves an EXECUTIONREDUCTION ranging from 51% to 6% when employing
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Figure 3.10: The average batch size used by the BatchAll and TestCaseBatching algorithms was
calculated for different peak numbers of machines in Chrome, represented on a logarithmic scale.

1 to 9 machines. On the other hand, in the case of Chrome, TestCaseBatching initially exhibits neg-

ative performance in EXECUTIONREDUCTION with fewer than 42 machines, as further discussed

in the subsequent section. However, with 42 to 375 machines, TestCaseBatching achieves an EXE-

CUTIONREDUCTION ranging from 67% to 20%, outperforming the results of BatchAll.

Figure 3.10 illustrates the batch size utilization of the TestCaseBatching algorithm on Chrome,

covering a range of 1 to 375 machines. The average batch sizes vary from approximately 95 to 1.5.

In the range of 1 to 41 machines, the average batch size remains relatively high, ranging from 98 to

56. However, at 42 machines, a significant drop occurs, resulting in an average batch size of around

6. Beyond this point, the number of average batch sizes continues to decrease gradually, reaching

1.5 at 375 machines.
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3.5 Discussion

Regarding the impact of parallelization on testing with resource constraints, we can interpret

from the results that increasing the number of machines can improve the feedback time non-linearly.

This is because without sufficient resources the delay is compounded by all subsequent changes,

leading to large delays. For example, with only one machine, the queue grows dramatically, and

the wait time becomes much longer than the processing time. Once the queue size is reduced, we

see smaller improvements because the actual time to run tests becomes the most important factor.

However, at some point, the feedback time plateaus in which increasing the number of machines

only makes a negligible improvement on the feedback time since the queue size is kept small.

The results for the ConstantBatching algorithms of Batch2 and Batch4 reveal that running these

algorithms in a highly resource-constrained environment can boost their feedback time in compar-

ison with the TestAll approach. Moreover, the more resource-constrained the environment is, the

more effective larger batch sizes would be. However, in a highly resource-available situation, using

a larger constant batch size will deteriorate the feedback time. This is because of the fewer changes

remaining in the queue as a result of the faster processing time of the changes. Consequently, Con-

stantBatching with large batch sizes becomes a disadvantage since it increases the wait time for

processing the changes. This is also the reason why ConstantBatching algorithms reach a plateau at

higher feedback time values, leaving little room for improvement with the utilization of additional

machines.

BatchAll on the other hand uses the fast unloading advantage of a bigger batch size in a high

resource-constrained environment and the low wait time benefit of a smaller batch size in a high

resource-available environment. When we simulate a high resource-constrained environment with

few machines, it makes large batches that can rapidly reduce the queue, leading to a higher EX-

ECUTIONREDUCTION. Conversely, being in a high resource-available condition with enormous

machines, it may reduce the batch size to 1, eliminating build waiting time but resulting in a lower

EXECUTIONREDUCTION. This makes BatchAll highly effective in terms of feedback time in both

of these scenarios.

TestCaseBatching algorithm has the highest performance in terms of feedback time, except in
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an extremely high resource-constrained environment with few machines, specifically in the Chrome

case with fewer than 42 machines. This is because the BatchAll algorithm puts some changes in

the queue while it is running the current batch, and then it runs all its tests as a batch. Still, the

TestCaseBatching method always accepts new changes and does not adopt a queue. Since it runs

the tests of a change in the absence of potential subsequent changes, when the next changes become

available, it has to run some of these tests again as a penalty. When there are enormous overlapping

builds, these penalties add up and deteriorate the feedback time and the EXECUTIONREDUCTION

of the TestCaseBatching algorithm in comparison with the BatchAll method. This specifically is the

case in Chrome test results, as there are more overlapping builds in the dataset.

The implications of these results for practitioners would be as follows. We recommend using

BatchAll and TestCaseBatching as the best batching algorithms among all the approaches under

the study. In a very high resource-constrained environment, BatchAll produces a better feedback

time and EXECUTIONREDUCTION, otherwise, TestCaseBatching performs the best. Despite the

testing approach being used, there is a threshold in which increasing the number of machines does

not improve the feedback significantly. Hence, it makes sense to recognize this plateau point by

exercising the batching approach being used on the corresponding project. This way they can reduce

feedback time while saving the number of machines being used.

3.6 Threats to validity

External Validity. The outcomes from this study are from applying various batching techniques

on the test results of two real large-scale Ericsson and Chrome projects, and we may not be able

to generalize them to all other applications. The performance of these batching algorithms might

differ by applying them to various other projects and using different numbers of machines. This

is because they probably have different numbers of changes, builds, and test cases. However, the

algorithms adopted in this study are not tied to a specific project, and the non-linear relationship

between the number of machines and the feedback time in other projects would likely be the same.

Another issue that may threaten the external validity of this work is the failure rate. The failure

rate can be different among various applications, and the higher the failure rate is, the higher the cost
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of culprit finding would become which in turn, can make the batching algorithms ineffective. How-

ever, Beheshtian et al. [41] show that the batching algorithms can produce savings on the projects

with a build failure ratio of below 40%, and among 9 Travis CI projects under their study, 85.5%

of them could take advantage of batching techniques. The build failure rate in Chrome dataset

is 8.5%, which is well below the 40% threshold, making batching an effective approach for this

project. Meanwhile, the focus of this study is more on the impact of parallelism on various batching

algorithms and on two very large-scale Ericsson and Chrome projects. At the time of this study, we

could not recognize any other available testing datasets for the experiment which are comparable in

testing scale with these datasets.

Internal Validity. One of the aspects of test optimization which can compromise the process

is test dependencies. Reordering or running tests in parallel when they were not designed to be

run in this manner can introduce dependency flaky failures [45]. Therefore, we only batch tests

that Ericsson guarantees are independent. In the case of Chrome, we only run tests in parallel and

independently if Chrome developers were already running these in parallel on multiple shards.

The historical simulation simplified parts of the Ericsson’s and Chrome’s testing processes. For

example, developers can stop testing a build or manually batch-select changes for testing. Since we

cannot model these manual interventions, we exclude them from our simulation.

In our experiment, we assumed that all changes can be batched and none lead to merge conflict.

Since each must be ultimately merged into the main branch, we do not introduce any new conflicts

because any conflict would have been dealt with when the developer ensures that the code can be

merged. However, the batching process may bring this conflict to the developer’s attention earlier

as we batch different combinations of changes.

Construct Validity. To simplify the measurement of the feedback time we ignored the compile

times of the changes. This is because we could not have any assumptions for the compile time of

the batches. In the case that the batch contains no failing change, this can save on compile time.

Otherwise, it might cause some extra compile time for the failing changes. Considering the failure

rates in our study, we can suggest that calculating the compile time can even save more on the

feedback time of the batching techniques. We leave this simulation parameter to future work.

Using the average value to compare the feedback time of the different batching algorithms can
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be a threat to the construct validity of this study. Although the feedback time distribution of each

test batching experiment is a more accurate way of showing the results, for each batching algorithm

and for each number of machines, we need a single value to compare the performance. This along

with having an approximately normal distribution, lead us to determine the average feedback time

to compare the outcomes.

3.7 Related Work

Continuous integration and delivery is an essential aspect of modern software development [46].

Using a CI infrastructure, developers can automatically build and test their changes to make sure

it does not break software functionality [47–50]. In a CI pipeline, we need to test each commit

before merging it to the main branch. In large software systems, testing every change individually

is impossible [51]. Even Google with huge server farms is not able to test every single commit

independently [52]. In the following, we explore various approaches employed to accelerate CI.

Test Selection and Prioritization. To reduce both resource consumption and provide earlier

feedback, test selection has been widely adopted in the industry and extensively studied [11, 34–

36, 53–57]. However, test selection’s inherent trade-off is that not all tests are run, and some test

failures may be missed. In contrast, test prioritization guarantees that all tests will be run, but those

that are more likely to reveal faults will be run first, reducing feedback time on test failures, but not

reducing the resource consumption in testing [37–39, 58–64]. Unfortunately, as Elbaum et al. [65]

point out, even the largest open-source projects on Travis, such as rails, do not have a sufficient

arrival rate of commits to justify the use of selection or prioritization because there are no changes

waiting in the queue. Furthermore, the entire test suites run on the order of a few minutes, providing

no justification for parallelization or batching (see Table 1 in Beller et al. [66]).

To provide a reasonable industrial comparison, we contrast our results with those found at Mi-

crosoft. Herzig et al. [51] report an improvement of 40.31%, 40.10%, and 47.45% in testing feed-

back time for Windows, Office, and Dynamics using association rule mining for selection. However,

they note a slip-through rate of 71% and 91% at the first branch level, 21% and 3% at the second,

and 8 and 0% at the three branch level. At Ericsson, the same approach saw a 42.78% reduction,
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but with 34.65% slipthroughs [67]. In contrast, BatchAll and TestCaseBatching reduce testing time

by 64.43% and 69.37% respectively in Ericsson without allowing any slip-throughs. A direct com-

parison of selection with batching will be interesting for future work.

Test parallelization. Tests are distributed across machines using this technique to reduce feed-

back time. Previous works widely studied the impact of test parallelization on software testing and

introduced algorithms to run tests in parallel [68–71]. For example, Arabnejad et al. [72] investi-

gated using GPUs for running tests in parallel. The most popular algorithms for parallelizing tests

are scheduling tests across the machines based on their IDs and their historical execution time [73].

Candido et al. [74] investigated the impact of test parallelization on open-source projects. By

analyzing more than 450 Java projects, they found that less than 20% of major projects use test

parallelization due to concerns with concurrency issues. They provide recommendations to practi-

tioners to facilitate their parallel testing, such as refactoring tests for load balancing and grouping

tests based on their dependencies, and running tests with dependencies on the same machine. Bell

et al. [75] studied the impact of test dependency on test parallelization. They introduced the Elec-

tricTest approach to detect dependencies before scheduling them across the machines. Ding et al.

[76] proposed a software behavior-oriented test parallelization to reduce conflicting behaviors. Nagy

et al. [77] devised a parallel architecture for test case dispatching to reduce idle nodes and improve

execution time. At the Ericsson and Chrome, we only batch tests at the level that is already designed

to be run in parallel. We note that none of the prior works studied the effect of test parallelization

in the context of batch testing.

Build Prediction and Skip. Another line of work aimed at expediting Continuous Integration

(CI) processes includes build prediction and build skip techniques. Build prediction techniques

leverage machine learning methods to predict the result of a build, with a particular focus on reduc-

ing the cost of builds that are likely to pass [78–87]. For example, Chen et al. [86] developed a build

prediction model based on build logs and changed files, and Saidani et al. [87] proposed a Multi-

Objective Genetic Programming approach to address the imbalanced distribution of pass and fail

builds. These techniques rely on the fact that the majority of builds pass, providing an opportunity

to reduce their cost [86].

On the other hand, build skip techniques aim to identify builds that do not require execution,
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typically due to the absence of source code changes. There are different approaches for build skip,

including manual configuration [88, 89] and rule-based or learning-based methods [90–96]. Jin

et al. [92] proposed a build skip approach, leveraging the assumptions that passing builds are the

majority and failing builds tend to occur consecutively. Abdalkareem et al. [90, 91] adopted rule-

based and machine learning techniques to automate the process of recognizing changes suitable for

CI skipping. Gallaba et al. [95] proposed a language-agnostic approach that infers data without

relying on build specifications to skip unaffected build steps.

While build prediction and build skip techniques offer potential benefits for accelerating CI pro-

cesses, they have limitations. Build prediction techniques struggle with accurately predicting failing

builds, leading to costly misidentifications, and their practical use cases are often ill-defined [86].

On the other hand, build skip techniques risk skipping builds that may contain relevant changes or

introduce failures. In contrast, batching combines multiple changes into a single build, eliminating

the risk of skipping builds entirely. It enables efficient debugging and failure resolution within the

batch, providing a reliable approach for managing complex software changes in continuous integra-

tion, as employed by major companies like Google.

Batch Testing. This technique is used to decrease the feedback time in resource-constrained

environments [97, 98]. Instead of testing every single change in isolation, we batch them and run

them all at once. If the batch fails, we have to find the culprit change(s) responsible for the failure.

GitBisection [99] is the most well-known culprit-finding technique. It performs a binary search on

the changes to find the culprit. GitBisection can find the culprit with log(n) executions. However,

in the condition that there is more than one culprit, GitBisection only finds the first one. To solve

this problem, Najafi et al. [40] introduced a bisection that uses a divide-and-conquer algorithm to

find all the culprits. It divides the failing batch into two sub-batches and tests both of them to find

if they include a culprit change. As it performs a complete search, the total number of executions is

between 2log(n) and 2n + 1 when all the changes in the batch are culprits. Beheshtian et al. [41]

showed that for batches with a size of 4 or fewer, bisection only increases the number of executions.

They propose BatchStop4 which tests every change individually in the batches with sizes 4 or fewer.

They mathematically show that using BatchStop4 always outperforms batch bisection. They also

study the impact of failure rate on different batching algorithms.
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Bavand et al. [42] implemented a complex dynamic batch size approach based on historical fail-

ure rates, resulting in a modest 5.17% reduction in test execution time compared to Batch4 with a

single machine. In the Ericsson context, BatchAll and TestCaseBatching achieved more significant

EXECUTIONREDUCTION, with 11.87% and 13.92% reductions respectively compared to Batch4.

For Chrome, BatchAll showed a substantial 23.88% improvement over Batch4 with a single ma-

chine, while TestCaseBatching had negative results with less than 42 machines. Overall, BatchAll

and TestCaseBatching consistently outperformed ConstantBatching in feedback time across differ-

ent machine configurations.These previous works focused on batch testing at the change level and

with a single machine, without exploring the effects of parallel testing. In our study, we investigate

the combined impact of batching and parallel testing for the first time, examining how varying the

number of parallel machines affects two extensive projects: Ericsson and Chrome.

3.8 Conclusions and Future Work

In this study, we aimed to investigate the impact of parallelization on different batching tech-

niques, considering the limitations of previous studies that focused on single machine environments.

Our evaluation yielded the following findings. The TestAll approach experienced compounded de-

lays in subsequent builds, and the effect of changing the number of machines on feedback time

was non-linear. ConstantBatching algorithms performed better in feedback time in high resource-

constrained environments and reached a longer feedback time plateau. They provided a consistent

EXECUTIONREDUCTION across different machine counts. The BatchAll approach is effective in

feedback time in both high resource-constrained and highly available resource environments, being

able to maintain actual average feedback time and attain plateaued feedback baseline with 90.78%

and 54.14% fewer machines than the baseline respectively. The TestCaseBatching algorithm per-

formed poorly in extreme resource constraint conditions but effectively in high resource available

environments, utilizing 80.65% of baseline machines to maintain the actual average feedback time

and 64.28% to reach the plateaued feedback baseline. Both BatchAll and TestCaseBatching algo-

rithms exhibited variable EXECUTIONREDUCTION based on the number of machines used.

It should be noted that this study utilized simulated parallel test execution based on historical test
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results, and further validation with actual software builds is necessary to address real-world com-

plexities such as resource contention and synchronization. Future research should aim to confirm

and extend these findings through experiments conducted in practical settings.
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Chapter 4

Assessing the Efficacy of Test Selection,

Prioritization, and Batching Algorithms

This chapter is a verbatim copy of the manuscript that is submitted for review to the Empiri-

cal Software Engineer (EMSE) journal, preserving the original content without any modifi-

cations.

Abstract
The effectiveness of software testing is vital for successful software releases, and various test

optimization techniques aim to enhance this process. However, few studies compare these algo-

rithms using the same evaluation criteria. This study addresses this gap.

To evaluate different test optimization approaches, we analyze 276 million test results from the

Chrome project. We assess Kim and Porter’s, Elbaum et al.’s history-based test prioritization and

selection techniques, and our BatchAll test batching algorithm.

Findings reveal that Elbaum et al.’s test selection reduces Chrome’s baseline median feedback

time by 96.12% from 33.55 to 1.28 minutes with the same machines but misses 31.25% of fail-

ures. In contrast, BatchAll achieves a 91.84% feedback time reduction to 2.69 minutes without

missing failures. Elbaum et al.’s test selection cuts machine usage by 58.10% to 75 machines,

while BatchAll achieves 88.27% reduction using only 21 machines. For failure detection, Elbaum
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et al.’s test selection is 62 minutes faster than the baseline, and the BatchAll algorithm achieves a

59.4 minutes median improvement without missing failures. Regarding test execution time, Elbaum

et al.’s test selection saves 66.31%, whereas BatchAll’s saving varies from 2% to 98.5% based on

machines used. The studied test prioritization algorithms significantly underperform Elbaum et al.’s

test selection and BatchAll algorithms.

In conclusion, this study provides practical recommendations for selecting appropriate test op-

timization algorithms based on the testing environment and failure loss tolerance.

4.1 Introduction

Software testing is an essential aspect of modern software development processes. With the

growth of software systems and the adoption of Continuous Integration practices, it has become

necessary to test each change individually, leading to a significant increase in the number of test

runs, especially for large-scale systems. This presents a challenge for software development teams,

as even companies like Google, with extensive resources, are unable to test every change individu-

ally [1, 2].

To address the issue of ever-growing test runs, various test optimization techniques have been

proposed. Test selection involves running only those test cases that are more likely to reveal failures.

Test prioritization, on the other hand, prioritizes the order in which tests are executed so that failures

are detected earlier. Test parallelization distributes tests across multiple execution units to reduce

feedback time for changes. Finally, test batching groups multiple changes together and runs tests

for the entire batch, saving time on both change feedback and test execution.

Previous research has investigated various test optimization techniques, but there is limited re-

search on comparing these techniques, especially with batching, which is an efficient but often over-

looked technique. Another limitation in the research literature is the lack of comparison between

different test optimization techniques using standardized metrics. For instance, it would be inter-

esting to determine how quickly test batching can detect failing tests, as well as to understand the

performance of different test optimization techniques in various resource execution environments.
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Prior studies on test optimization have mainly focused on small datasets, resulting in impracti-

cal solutions for projects at scale [2, 3], even though the problem of test optimization is much more

relevant to large-scale projects. Additionally, the impact of flaky tests on test optimization tech-

niques is often ignored, despite studies showing their significant impact [6, 12]. Some studies that

did consider flaky tests relied on subjective re-running thousands of times [4], which is unrealistic

[6]. Moreover, although parallelization has been studied in testing, limited research has investigated

the impact of parallelization on different test optimization techniques.

To address the research gap, this study compares various test optimization techniques and eval-

uates their performance using the same metrics. Specifically, we evaluate the effectiveness of test

selection, prioritization, and batching techniques with different numbers of machines under varying

resource availability environments. Our evaluation criteria include the feedback time of changes,

resource usage, test execution time, and the speed of detecting failing tests.

We conduct our experiments using the Chrome dataset that we provided in our previous work

[6]. This dataset is associated with a large-scale Chrome project and provides us with a more

realistic understanding of the testing scale and problem. It contains 276 million test results for the

month of January 2021. One of the significant advantages of this dataset is that it includes labels for

flaky tests identified by the Chrome testing infrastructure, enabling us to account for more realistic

flaky results. In addition, we have taken into account the presence of flaky tests for different test

optimization algorithms, which have been previously overlooked.

We provide answers to the following research questions in this study.

RQ1: How effective are different test optimization approaches in reducing feedback time when

executed in parallel with varying numbers of machines?

RQ2: How effective are different test optimization approaches in reducing the number of ma-

chines in use when executed in parallel with varying numbers of machines?

RQ3: How quickly do different test optimization techniques detect failing tests when executed

in parallel with varying numbers of machines?

RQ4: How effective are different test optimization techniques in saving test execution time when

executed in parallel with varying numbers of machines?

To answer our research questions, we conduct comparative simulations using 276 million test
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results from the Chrome dataset [6]. We begin by exploring and describing the data to gain a better

understanding of the test runs and changes in the Chrome project. Next, we simulate two history-

based test prioritization algorithms, Kim and Porter’s [8], and Elbaum et al.’s [1], using various

numbers of machines. We also simulate Elbaum et al.’s test selection as a delegate for the history-

based test selection algorithm with different numbers of machines.

Additionally, we simulate the BatchAll algorithm as one of the effective batching algorithms

that uses adaptive batch sizes based on the number of changes in the queue and adopts an improved

culprit-finding technique that we introduced and evaluated in our recent work [33]. We evaluate

these test optimization algorithms using four metrics: feedback time, number of machines used,

GAINEDTIME, and test execution time. These metrics allow us to evaluate the performance of the

algorithms from different perspectives and under different resource availability scenarios, and have

been used in multiple studies [42, 100].

This study makes the following contributions.

• Comparison of test optimization algorithms: We compare the efficiency of different test

optimization algorithms to understand their strengths and weaknesses and provide insights

for practitioners on the most effective techniques, considering varying resource availability.

• Dataset: We evaluate the algorithms using a dataset of 276 million test results from Chrome,

which represents a large-scale software system. We also provide details and explore the data

distributions of this dataset.

• Parallelization: We run the different test optimization algorithms using various numbers of

machines to evaluate their performance under different resource availabilities.

• Flaky tests: We address flaky tests to simulate the algorithms under realistic conditions.

• Approaches: We simulate the BatchAll test batching algorithm that we presented in our

recent study [33]. Additionally, we simulate test prioritization algorithms proposed by Kim

and Porter [8] and Elbaum et al. [1]. We also revise the window sizes for Elbaum et al.’s

algorithms following the resolution of flaky tests.
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• Outcome measures: We evaluate various test optimization algorithms using the same metrics

to assess their relative performance. These metrics include feedback time, the number of

machines used, gained time to identify failing tests, and the level of test execution reduction.

• Results summary: We find the following outcomes.

RQ1: Elbaum’s test selection reduces the maximum in feedback at the cost of losing some

failures, while batching achieves a comparable performance without losing any failures.

RQ2: Batching achieves the best reduction in resources to achieve the same feedback time as

the baseline.

RQ3: Elbaum’s test selection is the fastest to detect failures, but it misses some failures while

batching achieves a similar performance without losing any failures.

RQ4: The savings in test execution time are constant for Elbaum’s test selection algorithm,

while they vary for the batching algorithm based on the number of machines in use.

This remainder of this work is structured as follows. In Section 4.2, we review the background

and related work. Section 4.3 presents the design and methodology adopted to conduct this study.

In Section 4.4, we provide explanations for each test optimization approach. Section 4.5 elaborates

on the different evaluation criteria and metrics used in the simulation experiments. In Section 4.7,

we discuss the threats to the validity of this research. In Section 4.6, we present the results regarding

our research questions and simulations. Section 4.8 discusses the interpretations of the results and

implications from this study for practitioners. Finally, in Section 4.9, we present the conclusion and

potential future work.

4.2 Background and Related Works

This section presents an overview of test optimization techniques relevant to the approaches

studied in this research, and also the datasets adopted for test optimization. As software systems

become more complex and Continuous Integration (CI) is increasingly adopted in modern software

release processes, the number of tests required to verify these systems has significantly increased.

With CI, every change made by developers must undergo a time-consuming process of separate
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building and testing [47–50]. However, testing each change individually becomes nearly impossible

for large companies due to the sheer volume of tests involved [101]. Even Google, with its vast

resources, struggles to keep up with the high code churn in their code base [1]. To address this

challenge, researchers have proposed various test optimization techniques, such as test selection,

prioritization, and batching, with the goal of reducing the time and cost of testing while maintaining

the quality of the software product.

4.2.1 History-based test selection and prioritization

Test selection and prioritization approaches have been the primary solution to the problem of

ever-increasing test runs. Different test selection and prioritization techniques have been proposed

by researchers to improve feedback time [21–24, 26, 53, 58, 59, 102–107]. In the past, researchers

have primarily concentrated on selecting and prioritizing tests within the same build. The work of

Kim and Porter [8] was one of the initial studies in this field, which utilized the previous test records

to prioritize tests. They established a metric that assigned a higher value and priority to the tests

that had previously failed.

Marijan et al. [25] emphasized the importance of providing quick feedback in a continuous

integration setup. They proposed a prioritization scheme for tests based on the time elapsed since

the last failure, the test’s execution time, and domain-specific knowledge.

Anderson et al. [108] proposed two models to predict future test failures in the Dynamics AX

2012 R2 project. The first model was based on the most frequent failures, while the second model

utilized more expensive data such as code coverage through Associate Rule Mining (ARM) tech-

niques. Interestingly, they found that the simpler model based on most frequent failures was just as

effective as the ARM model.

Herzig et al. [104] aimed to reduce the cost of test execution on Microsoft products by im-

plementing test selection at different test execution levels. They created a cost model based on

historical test data, including test results and execution context. Their model was defined based on

the failure probability of a test, and they were able to achieve significant reductions in test execution

costs for Microsoft Office, Windows, and Dynamics.

Memon et al. [2] reduced feedback time in Google by using domain expertise and statistical
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analysis. Their model was built by taking into account failing tests, the relationship between tests

and developers, the codebase, changes to the code, and the frequency of test execution. To conduct

their experiment, they analyzed 5.5 million unique tests affected by 500k change lists for one month

in 2016.

Elbaum et al. [1] focused on optimizing test selection and prioritization for Google’s multi-

machine and parallel testing environment. Their algorithms were designed to apply to both pre- and

post-submit test data. To determine which tests should be selected and prioritized, they utilized a

test failing history and three different windows: failure, execution, and prioritization. The results of

running their algorithms on a sample of 3.5 million tests showed a significant improvement in test

performance.

Liang et al. [106] found that traditional methods such as code analysis and coverage are not

sufficient in the Continuous Integration (CI) environment. They also mentioned that some com-

panies are hesitant to use test selection techniques because they could miss certain failures. As a

solution, they proposed a commit-based prioritization approach, which they applied to both Google

Shared dataset and Rails dataset from TravisCI. The results indicated that Google dataset had a 12%

improvement in APFDc, whereas there were almost no noticeable improvements in Rails.

Zhu et al. [10] suggested that co-failures can provide useful information for prioritizing tests, as

they are likely to fail together in the future. They proposed a method that uses multiple queues to

prevent test starvation and improve test prioritization. The authors evaluated their approach on the

Google and Chrome datasets and compared the results with the study conducted by Elbaum et al.

[1].

Najafi et al. [26] recognized that the duration of tests could be a significant factor in test pri-

oritization. They proposed an approach that considers the historical frequency of test failures, the

relationship between failures, and the cost of executing a test. Their method involves assigning

lower priority to more time-consuming tests.

On the other hand, the increasing prevalence of flaky tests has led researchers to investigate

their impact on test selection and prioritization algorithms. For instance, Peng et al. [12] identified

the effect of flaky tests on the performance of IR-based test prioritization algorithms on Travis CI

projects. Similarly, Fallahzadeh and Rigby [6] analyzed 276 million Chrome test results and found
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that flaky tests significantly affect history-based test prioritization algorithms.

With a few exceptions, most prior research has ignored the impact of flaky tests on test optimiza-

tion algorithms. In our study, we take into account the presence of flaky tests in all test optimization

algorithms experimented, while still considering flaky tests as non-blocking, as we assumed in our

previous study [6].

4.2.2 Batch Testing

In Continuous Integration (CI), each change must be tested individually. However, for large

software systems such as those found in Google products, even with extensive computational re-

sources, this is often unattainable [1, 101]. Consequently, test batching has been proposed as a

solution to this problem. By grouping multiple changes together and testing them simultaneously,

computational resources and feedback time can be reduced in resource-constrained environments

[109, 110]. However, the trade-off is that when a batch fails, there is a penalty to find the culprit

change responsible for the breakage.

There have been several studies conducted by researchers on various methods for performing

culprit-finding procedures. GitBisection [111] is a popular algorithm that employs binary search and

requires log(n) executions to detect a culprit change. However, this approach has a limitation: it can

only identify the first culprit when multiple culprits are present. To address this limitation, Najafi

et al. [112] proposed a divide-and-conquer bisection algorithm. This algorithm recursively divides

each failing batch into two sub-batches to detect all culprits. The divide-and-conquer bisection

algorithm requires between 2log(n) and 2n+ 1 batch tests to execute.

Beheshtian et al. [100] found that the effectiveness of batching decreases for batches of size

four or smaller. To address this issue, they developed BatchStop4, which performs batching un-

til the batch size reaches four, at which point it tests each change individually. Their approach

outperformed batch bisection in terms of feedback time.

The prior research focused on batching at the build level, whereas in this study, we investigate

batching at the test level and introduce advancements in this domain. Additionally, our research

examines the impact of parallelism and multiple machines on the Chrome project’s large-scale test-

ing, while prior works only use a single machine for their experiments. Furthermore, we evaluate
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the effectiveness of batching in comparison to other test optimization methods such as test selection

and prioritization.

4.2.3 Test Parallelization

The technique of test parallelization involves spreading out the testing process across multiple

machines, with the aim of reducing the time it takes to obtain feedback on the tests. Various studies

have explored the impact of test parallelization on software testing, and have put forward algorithms

that allow for the efficient execution of tests in parallel [68–71]. One of these studies was carried

out by Arabnejad et al. [72], who investigated the potential benefits of using GPUs to run tests in

parallel. The most commonly used algorithms for parallelizing tests include those that schedule

tests across machines based on their IDs and historical execution times [73].

Candido et al. [74] explored how test parallelization affects open-source software projects. They

analyzed more than 450 Java projects and discovered that less than 20% of major projects employ

test parallelization due to concerns about concurrency problems. To help practitioners with paral-

lel testing, the authors provide various suggestions, such as reorganizing tests for load balancing,

grouping tests based on dependencies, and executing tests with dependencies on the same machine.

Bell et al. [75] conducted research on the effect of test dependencies on parallelization. They

presented the ElectricTest method to identify dependencies prior to scheduling tests on multiple

machines. In a separate study, Ding and colleagues [76] suggested a software behavior-oriented

approach to parallelize testing, which aims to minimize conflicting behaviors.

Our study applies parallel testing at a scale where parallel execution is essential. This differs

from prior research as none have specifically examined how parallelization impacts test optimiza-

tion. Furthermore, we aim to explore the correlation between the number of machines utilized and

the time required to obtain build and failing test results, and the reduction in test execution time.

4.2.4 Datasets

Different datasets have been evaluated for test optimization. Elbaum et al. [1] studied test selec-

tion and prioritization on a sample of Google test results. This publicly available dataset includes

3.5 million tests over a period of 30 days.
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Several studies have used test results from Travis CI, a continuous integration service that hosts

many open-source projects, to conduct their evaluations [9, 14, 27, 28, 113].

Matiss et al. [14] collected test results from 20 open-source Java projects from Travis CI, and

their dataset is publicly available for test optimization. However, the largest project in their dataset,

spanning 9 years, contains only about 17 million test results, or approximately 158,000 tests per

month. This pales in comparison to the vast number of test results present in the Chrome dataset.

Given that test optimization is primarily relevant to large-scale projects, the limited size of most

existing datasets can hinder research efforts and lead to impractical and expensive approaches [2,3].

Furthermore, according to Liang et al. [106], the arrival rate of commits in the largest open-source

projects on Travis, like rails, is not high enough to warrant the use of selection or prioritization

algorithms, as there are usually no changes waiting in the queue. Additionally, the duration of the

entire test suites is typically only a few minutes, which does not justify parallelization or batching

techniques, as mentioned in Beller et al.’s work [66].

In contrast, we analyze 276 million test results from Google Chrome in our study [6]. This

allows us to better understand the complex challenges involved in optimizing tests for large projects.

Moreover, the availability of massive overlapping builds in the Chrome dataset makes the use of

various test optimization techniques and parallelism feasible and even necessary.

Previous studies usually relied on subjective and impractical techniques to detect flaky tests,

often labeling them as such by repeatedly executing them and identifying inconsistent results. For

example, FlakeFlagger baseline [4] re-ran tests 1000 times, leading to an exaggerated rate of flaky

tests. However, our study uses genuine flaky labels obtained from the Google Chrome testing in-

frastructure, which are usually the result of fewer than 10 re-runs of failing tests. This approach

results in more precise and practical outcomes.

4.3 Research Design and Methodology

4.3.1 Study Context and Objectives

Software testing is a crucial part of software development, and various test optimization tech-

niques have been used to improve the efficiency and effectiveness of the testing process. However,
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these techniques have not been compared to each other from different perspectives, especially un-

der resource constraints. For instance, we do not know how the batching algorithms perform in

comparison to Elbaum et al.’s test selection in terms of feedback time by using different numbers

of machines. In this study, we aim to compare different test optimization approaches from different

angels and under resource constraints.

The main objective of this study is to compare the effectiveness of different test optimization

approaches in terms of reducing feedback time, decreasing the number of machines in use, ac-

celerating the detection failing tests, and saving test execution time with resource constraints. To

achieve this objective, we will evaluate four different test optimization approaches, including Kim

and Porter’s test prioritization, Elbaum et al.’s test prioritization and selection, BatchAll, and TestAll

algorithm as the baseline.

The study will use a real-world, large-scale Chrome testing dataset to conduct the empirical

study. The test selection and prioritization approaches used in this study are historical-based black

box techniques. The effectiveness of the test optimization approaches will be measured based on

four key metrics.

The findings of this study will contribute to the software engineering field by providing a com-

parative analysis of different test optimization approaches under resource constraints. The study

will also help practitioners make informed decisions when selecting a test optimization approach

for their projects, considering the specific resource constraints they face.

4.3.2 Dataset

Study Site

This empirical study analyzes 276 million Google Chrome test results, as published by Fal-

lahzadeh and Rigby in their recent paper [6]. The project under examination represents a large-

scale system that runs millions of tests per day, highlighting the importance of optimizing testing

for efficient release processes. The system includes multiple overlapping builds, which provide an

opportunity to adopt batching techniques to further optimize the testing process.

One of the notable features of this dataset is that it includes the final outcomes for tests, including
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flaky flags. This is a significant advantage over other studies that may only identify flaky tests

through re-running tests thousands of times, as demonstrated in Alshammari et al.’s research [4].

Their approach differs from industrial methods for detecting flaky tests, where tests are re-run only

a few times, and only after a failure occurs [6].

Testing Process and Data Types

Fallahzadeh and Rigby [6] provide a comprehensive overview of the Chrome release process and

test result classification, including the following steps: developers upload their code changes (known

as Change Lists or CLs) to the Gerrit code review tool, where reviewers can suggest modifications.

If the reviewers are satisfied with the changes, they go to the Commit Queue (CQ) to be tested by

try bots. Once all the try bots approve the changes, they are automatically committed to the Chrome

main repository, followed by post-submit testing by the Chrome Continuous Integration (CI) system

to ensure the overall stability and quality of the software.

A test result in Google Chrome is not a simple binary outcome, and it is determined in three

phases.

Expected Results: Before running a test, Google Chrome’s testing infrastructure and develop-

ers determine the expectations for the test. The primary expected results are pass, fail, crash, and

timeout, which are determined based on the previous test results and the platform on which they

are running. By default, all tests are expected to pass unless otherwise specified. A test may be

expected to fail on a particular platform, such as Linux, because it is designed for another platform,

like Windows.

Immediate Test Results: After a test run, there is an immediate outcome, and the primary

immediate test results are pass, fail, crash, and timeout. However, we cannot make any complete

interpretations based solely on the immediate results of a test because a test may be flaky.

Final Outcomes: Based on the expected results of a test and its immediate result, the final

outcome is determined by the testing infrastructure as follows.

• Expected: If the immediate test result is included in the expected results for a test, it is

categorized as an expected result. If the immediate test result is not included in the expected
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results for the test, the test will be re-run several times, typically 2 to 10 times.

• Flaky: If after multiple re-runs of a test the immediate test result changes to the expected

result, the test is categorized as flaky, and the test rather than the change is flagged for later

investigation.

• Unexpected: If the immediate test result of a test is still unexpected after multiple re-runs, it

is classified as an unexpected outcome.

Both the immediate test results and the final outcomes are collected in the Chrome dataset.

Data Description and Exploration

The Chrome dataset used in this study comprises the change, build, and test results for Chrome

from January 1, 2021, to January 31, 2021. During this period, it includes the results for 9,524

change lists, 19,045 builds, 49,932 test suites, and 276,550,812 test cases. To gain a better under-

standing of the actual performance in Chrome, we present the distribution of various measures in

the Chrome dataset below.

Distribution of Feedback Time. Figure 4.1 illustrates the distribution of actual feedback time

in Chrome. The feedback time is calculated as the time elapsed between a change being committed

and all the tests for that change being run, and is measured for all builds during the entire period

under study. The distribution ranges from a minimum of 10.1 minutes to a maximum of about

240.51 minutes, with a median feedback time of 32.95 minutes indicated by a solid line in the figure.

The first and second quartiles of the feedback distribution are 28 and 41.06 minutes, respectively, as

shown by the dashed lines. Notably, the distribution exhibits a long tail in the fourth quartile, which

suggests the presence of a significant number of outliers in this quartile.

Distribution of the number of overlapping builds. Figure 4.2 displays the distribution of the

number of overlapping builds in Chrome, which is obtained by comparing the start and end times

of each build with those of other builds. In the actual Chrome build execution, each build overlaps

with up to 47 other builds, with a median of 12 overlapping builds and the first and third quartiles

at 6 and 19 overlapping builds, respectively. This presents an excellent opportunity to implement
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Figure 4.1: Violin plot displaying the distribution of actual feedback times, measured in minutes,
for the builds in the Chrome dataset. The median feedback time is indicated by a solid vertical line,
while the dashed vertical lines represent the first and third quartiles of the distribution.

batching algorithms as they require the existence of overlapping builds to group and operate on them

together.

4.4 Test Optimization Approaches

In this section, we describe different test optimization approaches that are used in this study.

4.4.1 TestAll

As a general baseline for comparison, we use the TestAll algorithm, which does not involve any

test selection, prioritization, or batching. In this approach, the test cases related to each change are

processed separately based on their arrival time. By increasing the number of machines in this case,

we can execute more test cases simultaneously, which leads to faster execution time.
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Figure 4.2: Violin plot showing the distribution of the actual number of overlapping builds in
Chrome. The median feedback time is indicated by a solid vertical line, while the dashed verti-
cal lines represent the first and third quartiles of the distribution.

4.4.2 KimPorter

One of the test optimization techniques widely used to improve failing test detection is test

prioritization. In this study, we compare Kim and Porter’s test prioritization algorithm [8] with

other test optimization approaches to see its effectiveness. Unlike many other techniques that use

information such as code coverage for prioritization, Kim and Porter’s algorithm relies only on

recent past failures to predict future ones. This approach is practical for large projects such as

Chrome, which has high code churn and using source code for prioritization is impractical [2].

This algorithm assigns a score to each test, indicating the probability of that test failing, which

is defined in formula 7.
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P0 = 0

Pk = α ∗ hk + (1− α) ∗ Pk−1, 0 ≤ α ≤ 1, k ≥ 1

(7)

In this formula, Pk calculates the probability of a test failing at the kth observation based on

past failures. The smoothing constant α weights historical observations, with larger α values giving

more weight to recent observations. hk indicates pass or fail, with 1 for failure and 0 for pass.

For P0, the correction made by Mattis et al. [14] was used as there is no observation at this phase.

Kim and Porter’s algorithm uses the prioritization score at each build to prioritize tests, aiming to

detect failures faster. The advantage of using test prioritization techniques such as Kim and Porter’s

algorithm is that no failure is missed, which is an important feature in many software systems.

In this study, we implement Kim and Porter’s approach based on the pseudo-code 3 and refer to

it as KimPorter in this paper. In our simulation of the KimPorter algorithm, we set α to 0.8, giving

80% weight to recent failures.

Algorithm 3: KimPorter
Input : Build queue Qb

Output: Prioritized test queue Qt

while Qb is not empty do
b← next build from Qb;
Qt ← tests from b;
for t ∈ Qt do

Calculate Pk(t), the failure probability of t;
end
Prioritize Qt based on Pk(t);
while Qt is not empty do

t← next test from Qt;
Dispatch t to available machine;
Execute t and record the results;
if t fails then

Update failure history for t;
end

end
end
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4.4.3 ElbaumPrioritization

Elbaum et al. [1] introduced the concept of using previous failures to predict and prioritize fu-

ture ones in a Continuous Integration (CI) environment. We choose Elbaum et al.’s prioritization

algorithm in this study as a representative of test prioritization algorithms designed for Continuous

Integration systems to compare its performance with other test optimization techniques. One im-

portant reason for this selection is that the algorithm relies only on test results history and does not

require expensive information such as source code data, which is impractical in large-scale projects

[2].

Elbaum et al.’s test prioritization algorithm uses three time windows: failure window (wf ),

execution window (we), and prioritization window (wp). The failure window determines the time

frame used to consider previous failures. The execution window is used to prevent low-priority

tests from waiting too long, i.e., starvation. The prioritization window is used as a time window for

prioritizing upcoming tests. Like the KimPorter algorithm, Elbaum et al.’s approach only considers

historical test failures, not source code information, but across builds. It also does not miss any

failures, like other test prioritization techniques.

We implement Elbaum et al.’s prioritization algorithm in this experiment as described in the

pseudo-code algorithm 4, and we refer to it as the ElbaumPrioritization in the rest of this study.

Windows used in the algorithm can be implemented based on time or the number of builds (El-

baum et al., 2014). In this study, we choose to implement windows based on the number of builds.

Specifically, we set wp to 2 builds, which is equivalent to the time window used in the main study.

However, to determine the appropriate sizes for wf and we as they significantly impact the results,

we conducted an experiment. The details of this experiment will be further explained in the discus-

sion section. Based on the results of the experiment, we adopt an unlimited window size for wf and

a window size of 2 for we for the remaining experiments in our study.

4.4.4 ElbaumSelection

Elbaum et al.’s test selection algorithm leverages past failures to select probable future ones in

a Continuous Integration (CI) environment. In this study, we use Elbaum et al.’s test selection as a
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Algorithm 4: ElbaumPrioritization
Input : Build queue Qb, Prioritization window wp, Failure window wf , and Execution

window we

Output: Test prioritization queue Qt

while Qb is not empty do
b← next builds from Qb based on wp; Qt ← tests from b;
for t ∈ Qt do

if t has recent failures (t ∈ wf ), is new, or has not been executed for a long time
(t /∈ we) then

Set the priority of t to 1;
end
else

Set the priority of t to 0;
end

end
Prioritize Qt based on priority;
while Qt is not empty do

t← next test from Qt;
Dispatch t to available machine;
Execute t and record the results;
if t fails then

Update failure history for t;
end

end
end

representative of test selection algorithms to compare its performance with other test optimization

techniques. The reason for selecting this algorithm is that it only relies on a test’s failure history to

predict future failures and does not require any additional information such as source code, which

is impractical in large-scale projects as mentioned by Memon et al. [2].

Elbaum et al.’s test selection algorithm utilizes two failure and execution windows. The failure

window, wf , determines a time window to look back at the previous failures. The execution window,

we, defines an aging window that prevents a test from not being executed for longer than this time

window. The important difference of this algorithm as a test selection approach is that we might

lose some of the failures in contrast to other techniques that do not miss failures.

Elbaum et al.’s test selection algorithm uses two windows, failure window (wf ) and execution

window (we). The failure window determines a time frame to look back at the previous failures

while the execution window sets a threshold for test execution. Tests that have not been executed
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for a period longer than the execution window are given higher priority. This algorithm may miss

some failures as any other test selection algorithm.

The pseudo-code implementation of this algorithm is as follows and we refer to it as ElbaumS-

election in the rest of this paper. In this study, we implement ElbaumSelection windows based on

the number of builds, and we experiment with different values for wf and we to find the appropriate

values for Chrome.

Algorithm 5: ElbaumSelection
Input : Build queue Qb, Failure window wf , and Execution window we

Output: Test selection queue Qt

while Qb is not empty do
b← next build from Qb;
Qt ← tests from b;
for t ∈ Qt do

if t has recent failures (t ∈ wf ), is new, or has not been executed for a long time
(t /∈ we) then

Set the priority of t to 1;
end
else

Set the priority of t to 0;
end

end
Select tests in Qt with a score of 1;
while Qt is not empty do

t← next test from Qt;
Dispatch t to available machine;
Execute t and record the results;
if t fails then

Update failure history for t;
end

end
end

4.4.5 BatchAll

Batching is an effective yet often overlooked test optimization technique that has gained promi-

nence as the number of overlapping changes and builds has increased. Therefore, it is important to

compare the advantages and disadvantages of this approach in comparison to other test optimiza-

tion techniques. In batching algorithms, multiple changes are batched together, and the union of all
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their tests is run. When the batch successfully runs all tests, there is a significant save in test runs.

However, when the batch fails, there is a penalty to find the culprit change that is responsible for the

failure. There are various batching algorithms and culprit-finding techniques [41].

In this study, we utilize the BatchAll algorithm, which demonstrated promising results in our

recent work [33] comparing various batching techniques. Unlike waiting to receive a specific num-

ber of changes (builds) [41], BatchAll batches all the available changes waiting for the build. This

approach avoids waiting for a specific number of changes when there are only a few available and

increases the batch size when there are numerous changes. In case of a batch failure, the algorithm

carries out the culprit-finding phase. We further improved this part by considering only the tests that

have failed in the batch, rather than all the tests.

Assumptions for batching: Since the test results of batches are not available in the Chrome

dataset, we make the following assumptions in our simulations:

(1) We assume that a test that shows an unexpected result in one of the builds included in the

batch, also produces an unexpected outcome in the batch with the same number of re-runs.

We consider these types of outcomes as a breakage for the batch that requires the culprit-

finding process.

(2) We suppose that a test that displays a flaky result in one of the builds included in the batch pro-

duces a flaky result in the batch as well, and it is re-run the same number of times. However,

flaky tests do not lead to a breakage for the batch and result the integration of the batch.

(3) Other types of tests in the batch are supposed to display expected results, which is considered

as pass resulting the integration of the batch.

Figure 4.3 shows the summary of the decision tree for each type of test results in the builds

included in the batch. We define the pseudo-code for the batching algorithm as the pseudo-code 6.

4.5 Evaluation Criteria

This section defines the different metrics used to evaluate test optimization algorithms.
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Figure 4.3: Decision tree for each type of test results in the builds included in the batch.

4.5.1 Feedback Time

One of the primary objectives of test optimization algorithms is to minimize feedback time, es-

pecially in Continuous Integration (CI) systems, to ensure prompt delivery of test results. Feedback

time refers to the duration between the time a change is committed and the time all test results are

received. It is a critical parameter that determines the effectiveness of testing.

We calculate feedback time using the following formula:

FeedbackTime = Time(TestResults)− Time(ChangeCommit) (8)

Let’s consider an example. Suppose a software developer commits a code change at 1 PM and

wants to receive the test verdicts as soon as possible. If the feedback time is 1 hour and there is no

waiting time before the tests can be executed, the developer will receive the test verdicts at 2 PM.

However, if there is a waiting time of 1 hour before the tests can be executed, the feedback time will

be 2 hours, and the developer will not receive the test verdicts until 3 PM.

To evaluate different test optimization algorithms, we use the median feedback time for each

algorithm and a specific number of machines. This approach enables us to compare the performance

of each algorithm under various machine configurations and identify the most efficient algorithm
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Algorithm 6: BatchAll
Input : Build queue Qb

Output: Batched test execution
while Qb is not empty do

batch← make a batch from available and arrived builds in Qb;
testSet← set of all unique tests across batch;
Qt ← fill test queue with tests from testSet;
while Qt is not empty do

t← next test from Qt;
Dispatch t to an available machine;
Execute t and record the results;
if t fails then

Record the failing test in batch;
end

end
if batch failed then

for each failed test tf in batch do
for each build b in batch do

Execute tf in b and record the result;
if tf fails then

Update failure history for tf ;
end

end
end

end
end

for a given set of resources.

4.5.2 Number of Machines in Use

One of the metrics that we use to measure resource usage in this study is the number of ma-

chines in use. We measure the feedback time of different algorithms by using different numbers of

machines. Then, we determine the number of machines required for different algorithms to reach

the actual feedback time.

Baseline. To establish a baseline for comparison, we utilize the TestAll algorithm, which serves

as a general reference without employing any optimization techniques. However, since we lack

information about the precise number of machines used by Chrome to achieve the actual median

feedback time of 32.95 minutes, we employ a specific configuration of TestAll with 179 machines
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as a baseline. This choice allows us to assess the performance of other test optimization algorithms

in relation to the actual performance achieved. With this configuration, the feedback time amounts

to 33.55 minutes, which is the closest approximation to the actual median feedback time of 32.95

minutes within our dataset. Consequently, this particular baseline serves as a reference point for

evaluating the performance of other test optimization algorithms in this study.

4.5.3 GAINEDTIME

Another crucial metric for evaluating test optimization algorithms is their ability to quickly

detect failing tests. This research aims to evaluate the change in test run time across multiple builds.

Although the APFD metric is commonly used for this purpose, Elbaum et al. [1] discovered that it

is not appropriate for use in large-scale continuous integration environments because it fails to take

into account tests across builds. To address this challenge, Elbaum et al. [1] and our previous works

[6, 33] introduced a different metric, GAINEDTIME, to measure the time saved by each approach A

compared to TestAll. It is defined as:

GAINEDTIME (A) = FailTime(TestAll)− FailTime(A) (9)

We determine the time saved by each test optimization algorithm for every individual failed test

by comparing their run times against TestAll, which runs tests in the order they arrive. By doing so,

we can calculate the amount of time saved by each algorithm for every failed test. We then use the

median GAINEDTIME to compare the performance of each algorithm that uses a specific number of

machines with other algorithms.

4.5.4 Execution Reduction

To assess the efficiency of various algorithms in terms of saving execution time by utilizing

different numbers of machines, we employ the EXECUTIONREDUCTION metric. This metric is

calculated using Equation 10.

EXECUTIONREDUCTIONm(A) = 1−
∑T

t=1 Test Execution Time (A, m)∑N
t=1 Test Execution Time (TestAll)

(10)
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This equation quantifies the time saved in test execution by a test optimization algorithm (A)

with m machines relative to executing all tests in their original order (TestAll). Here, T represents

the number of tests executed by the test optimization algorithm (A) with m machines, and N is the

total number of tests executed by TestAll.

The time saved is determined by dividing the sum of the test execution time of approach A

running with m machines by the sum of the test execution time of the TestAll algorithm. This ratio

represents the percentage of time required to run the tests using approach A compared to TestAll.

Subtracting this percentage from 1 yields the percentage of time saved.

For instance, if approach A completes tests in 70% of the time taken by TestAll, the percentage

of time saved by A is obtained by subtracting this percentage from 1, resulting in 30% of EXECU-

TIONREDUCTION. This implies that approach A achieves a 30% reduction in test execution time.

By utilizing this formula as a metric, we can compare the performance of different test optimiza-

tion algorithms and determine which ones are more effective in terms of saving time during test

execution.

4.5.5 Experimental Setup

Simulated Hardware Environment

In this study, we simulate a range of different numbers of machines to evaluate parallelism

on various test optimization algorithms. We divide the test executions algorithmically among the

number of machines to ensure accurate results. Our range of machines in use ranges from 1 to

400, with a standard step size of 25. However, we use more precise steps to thoroughly examine

the changes when we observe significant differences in results, such as between 1 to 25 machines.

This provides a detailed analysis of the performance of various test optimization algorithms under

a variety of machine configurations.

Dealing with Test Results

To conduct our simulation, we determine a set of assumptions about the way to treat different

types of test results as follows.
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• Expected: These types of results in Chrome are treated as passing tests, which do not block

the build. So, we consider these types of tests as passing tests that do not require any addi-

tional runs.

• Flaky: These outcomes in Chrome do not stop a build from being integrated into the main

repository. As such, we also consider these types of test results as passing outcomes in our

simulation. However, they cause re-runs of the tests that we take into account in the experi-

ment.

• Unexpected: These types of results in Chrome are the main sources of blocking the builders.

Because of this, we consider these types of tests as failing tests in our simulation. They

usually require re-runs so that the testing infrastructure assures that the failure is consistent.

Hence, we consider the re-runs from unexpected results in our simulation.

4.6 Results

This section presents the answer to each research question and displays the comparative results

of running simulations.

4.6.1 RQ1: How effective are different test optimization approaches in reducing

feedback time when executed in parallel with varying numbers of machines?

In this research question, we aim to understand the impact of using different test optimization

approaches on feedback time in a in parallel environment with varying numbers of machines. This

is important as the primary goal of most test optimization algorithms is to reduce the feedback time

in getting the results from the builds.

To answer this research question, we execute TestAll as our baseline, ElbaumSelection, Kim-

Porter, ElbaumPrioritization, and BatchAll algorithms on the Chrome test results. We use different

numbers of machines to execute these algorithms and obtain the median feedback time results for

each algorithm and each number of machines.

We present the results of the median feedback time for the executions in Figure 4.4 and 4.5. The
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results are shown as a continuous line by connecting the dots to enable better visualization of the

outcomes. Figure 4.4 shows the median feedback time for each available number of machines and

each test optimization algorithm. Since the difference between the results is significant, we use a

logarithmic scale to show the results.

The results illustrated in Figure 4.4 indicate that both KimPorter and ElbaumPrioritization al-

gorithms have a performance close to that of the TestAll algorithm. In resource-constrained environ-

ments with much fewer machines than the baseline, BatchAll algorithm shows a significantly better

performance compared to the other algorithms. However, the ElbaumSelection algorithm shows

better improvement in performance with an increase in the number of machines until it outper-

forms BatchAll when 75 machines are used. In resource-abundant environments, ElbaumSelection

performs better than the other algorithms.

Figure 4.5 displays the median feedback time in minutes and the improvements achieved by

each test optimization algorithm relative to the actual median feedback time of 32.95 minutes when

using the baseline 179 number of machines. This figure allows us to compare the performance of

different algorithms with the actual performance and shows the results when changing the median

feedback time up to 100% away from the actual median feedback time.

Figure 4.5 also presents the 95% confidence intervals for the median feedback time values of

all the algorithms analyzed in Chrome. The confidence interval range varies depending on the

algorithm and the number of machines used.

For the TestAll, KimPorter, and ElbaumPrioritization algorithms, the confidence interval range

narrows down as the number of machines increases from 175 to 250 and beyond. The reduction

in the width of the confidence interval indicates a decrease in the range of the feedback time dis-

tribution. Specifically, the range decreases from about 16% to less than 1% of the actual median

feedback time.

In the case of the ElbaumSelection algorithm, the confidence interval range is less than 1% when

the number of machines is 75 and decreases to about 0% as the number of machines increases to 375

and beyond. Similarly, for the BatchAll algorithm, the confidence interval range becomes less than

1% when the number of machines is 25 and beyond. It approaches 0% as the number of machines

reaches 150 and beyond.
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To evaluate and compare the feedback time distributions of various test optimization algorithms

for Chrome, we employ the Wilcoxon Rank-Sum test. This statistical test is specifically designed for

comparing two independent samples without making assumptions about their underlying distribu-

tions. To account for the challenge of conducting multiple comparisons, we employ the Bonferroni

correction method. This correction involves dividing the desired overall p-value of 0.05 by the

number of comparisons being made. As a result, each individual comparison is subject to a strict

significance threshold, with a p-value cutoff of 0.00028. This adjustment ensures that any observed

differences between the algorithms are statistically significant.

Table 4.1 presents the calculated p-values for comparing the feedback time distribution between

different test optimization algorithms. The findings reveal that there are no statistically significant

differences in the distribution between TestAll and KimPorter, TestAll and ElbaumPrioritization

when the number of machines is below 175, as well as between KimPorter and ElbaumPrioritization

within the same machine range. However, for the remaining comparisons, the p-values indicate

statistically significant differences, meeting the predetermined cutoff of 0.00028. These results

align closely with the observed overlaps in the median feedback time depicted in Figure 4.4.

To quantify the magnitude and direction of differences between feedback time distributions, we

employ Cliff’s delta effect size measure. The resulting effect sizes between different algorithms

at varying machine counts are presented in Table 4.2. This additional data reinforces the observed

patterns and highlights the significance of the differences depicted in the median feedback time plot

illustrated in Figures 4.4 and 4.5.

Table 4.3 presents the median feedback time achieved by each algorithm with 179 machines as

the baseline and the corresponding improvements compared to the actual median feedback time.

KimPorter achieves the same feedback time as the baseline with no improvements. ElbaumPri-

oritization achieves a median feedback time of 31.20 minutes with 5.31% improvement, while

the BatchAll algorithm achieves a significantly better median feedback time of 2.69 minutes with

91.84% improvement. The ElbaumSelection approach outperforms all other algorithms with a me-

dian feedback time of 1.28 minutes and 96.12% improvement. However, using the ElbaumSelection

algorithm comes with a tradeoff of missing some failing tests, i.e. 31.25% of failures in this experi-

ment.
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Another important aspect of Figure 4.5 is identifying where each test optimization algorithm

reaches a plateau, as some algorithms may perform well initially but plateau too soon with no fur-

ther room for improvement. We consider a plateau to occur when adding 25 machines does not lead

to more than a 1% improvement in feedback time. Table 4.4 shows that the ElbaumSelection and

BatchAll algorithms both plateau with 200 machines, but the former achieves a median feedback

time of 0.96 minutes while the latter achieves a median feedback time of 2.4 minutes. The El-

baumPrioritization algorithm reaches a plateau with 250 machines and a median feedback time of

1.95 minutes, while the TestAll and KimPorter algorithms plateau with 325 machines and a median

feedback time of 1.56 minutes.

Figure 4.4: Median feedback time for TestAll, ElbaumSelection, KimPorter, ElbaumPrioritization,
BatchAll algorithms displayed in logarithmic scale and in hours by considering the different peak
numbers of machines.
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Figure 4.5: Median feedback time in minutes with 95% confidence intervals and the improvement
against the actual median feedback time of 32.95 minutes for TestAll, ElbaumSelection, KimPorter,
ElbaumPrioritization, BatchAll approaches by considering different peak numbers of machines.

RQ1: Kim and Porter’s test prioritization algorithm shows almost no improvement in feed-

back time, while Elbaum’s test prioritization approach reduces feedback time by 5.31% to

31.20 minutes using the same number of machines as baseline. Elbaum’s test selection ap-

proach achieves a 96.12% reduction in feedback time to 1.28 minutes with the same number

of machines as the baseline, but misses 31.25% of failures. The Batching algorithm tech-

nique achieves a 91.84% reduction in feedback time to 2.69 minutes using the same number

of machines as the baseline, while being lossless in failure detection.
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Table 4.1: P-values for pairwise comparison of the feedback time distribution of different test opti-
mization algorithms for Chrome at different numbers of machines.

Machines TA vs KP TA vs EP TA vs ES TA vs BA KP vs EP KP vs ES KP vs BA EP vs ES EP vs BA ES vs BA
8 1 0.992355 0 0 0.992355 0 0 0 0 0
16 1 0.97506 0 0 0.97506 0 0 0 0 0
25 1 0.935696 0 0 0.935696 0 0 0 0 0
50 1 0.994567 0 0 0.994567 0 0 0 0 0
75 1 0.911593 0 0 0.911593 0 0 0 0 1E-20
100 1 0.842338 0 0 0.842338 0 0 0 0 0
125 1 0.323962 0 0 0.323962 0 0 0 0 0
150 1 0.064336 0 0 0.064336 0 0 0 0 0
175 1 0.00027 0 0 0.00027 0 0 0 0 0
200 1 5.69E-10 0 0 5.69E-10 0 0 0 0 0
225 1 6E-15 0 0 6E-15 0 0 0 0 0
250 1 1E-20 0 0 1E-20 0 0 0 0 0
275 1 0 0 0 0 0 0 0 0 0
300 1 0 0 0 0 0 0 0 0 0
325 1 0 0 0 0 0 0 0 0 0
350 1 0 0 0 0 0 0 0 0 0
375 1 0 0 0 0 0 0 0 0 0
400 1 0 0 0 0 0 0 0 1.88E-16 0

*Abbreviations: TA: TestAll, KP: KimPorter, EP: ElbaumPrioritization, ES: ElbaumSelection, BA: BatchAll.

4.6.2 RQ2: How effective are different test optimization approaches in reducing the

number of machines in use when executed in parallel with varying numbers of

machines?

In this research question, we investigate how different test optimization algorithms can help

reduce the number of machines required for running tests. This is important as large companies

may have to invest millions of dollars in machines, making it a critical cost factor [108].

To answer this research question, we use our baseline median feedback time of 33.55 minutes

as the approximate actual median feedback and target time. We then find the number of machines

each algorithm requires to achieve this target.

The results of our experiment are summarized in Table 4.5. Among the algorithms studied,

ElbaumSelection requires the fewest machines to meet the target, using only 75 machines, which is

a 58.10% reduction in machine usage compared to the baseline. However, the algorithm may miss

some failing tests, which account for 31.25% of the failures in this experiment.

While KimPorter and ElbaumPrioritization algorithms can maintain the baseline feedback time,

they do not significantly reduce machine usage, with the latter achieving only a negligible 0.56%
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Table 4.2: Cliff’s Delta effect size for pairwise comparison of the feedback time distribution of
different test optimization algorithms for Chrome at different numbers of machines.

Machines TA vs KP TA vs EP TA vs ES TA vs BA KP vs EP KP vs ES KP vs BA EP vs ES EP vs BA ES vs BA
8 0 -9.2E-05 0.706822 0.99888 -9.2E-05 0.706822 0.99888 0.706818 0.998581 0.962966
16 0 0.000299 0.751347 0.989009 0.000299 0.751347 0.989009 0.75105 0.982282 0.943112
25 0 0.000771 0.816132 0.978437 0.000771 0.816132 0.978437 0.815469 0.968266 0.93275
50 0 6.51E-05 0.932567 0.962712 6.51E-05 0.932567 0.962712 0.931987 0.955843 0.498557
75 0 0.001061 0.962656 0.954267 0.001061 0.962656 0.954267 0.960958 0.945542 -0.0897
100 0 0.0019 0.95304 0.907298 0.0019 0.95304 0.907298 0.947478 0.88364 -0.46881
125 0 0.009422 0.934917 0.801704 0.009422 0.934917 0.801704 0.921641 0.741214 -0.68418
150 0 0.01767 0.936875 0.739204 0.01767 0.936875 0.739204 0.922936 0.665974 -0.76838
175 0 0.034798 0.928554 0.664818 0.034798 0.928554 0.664818 0.910099 0.555705 -0.79714
200 0 0.059211 0.921712 0.585619 0.059211 0.921712 0.585619 0.898798 0.438666 -0.81809
225 0 0.074544 0.917737 0.52128 0.074544 0.917737 0.52128 0.893508 0.360126 -0.83418
250 0 0.088959 0.915567 0.473919 0.088959 0.915567 0.473919 0.892155 0.303032 -0.84622
275 0 0.111049 0.911448 0.425083 0.111049 0.911448 0.425083 0.887479 0.240758 -0.85304
300 0 0.131509 0.908903 0.386175 0.131509 0.908903 0.386175 0.884227 0.190122 -0.85798
325 0 0.147072 0.906212 0.351274 0.147072 0.906212 0.351274 0.880944 0.146515 -0.86138
350 0 0.165802 0.905009 0.327571 0.165802 0.905009 0.327571 0.878711 0.111331 -0.86423
375 0 0.16668 0.903142 0.301935 0.16668 0.903142 0.301935 0.87832 0.092184 -0.86692
400 0 0.168428 0.902245 0.284956 0.168428 0.902245 0.284956 0.878464 0.078608 -0.86885

*Abbreviations: TA: TestAll, KP: KimPorter, EP: ElbaumPrioritization, ES: ElbaumSelection, BA: BatchAll.

Table 4.3: The median feedback time in minutes and the corresponding improvements achieved by
different algorithms by using 179 baseline number of machines.

Algorithm TestAll ElbaumSelection KimPorter ElbaumPrioritization Batching
Median Feedback time 33.55 (-1.81%) 1.28 (96.12%) 33.55 (-1.81%) 31.20 (5.31%) 2.69 (91.84%)

reduction. This is because test prioritization algorithms primarily focus on prioritizing tests and not

on reducing machine usage.

In contrast, the BatchAll algorithm achieves a remarkable 88.27% reduction in machine usage

compared to the baseline, requiring only 21 machines to hold the target feedback time.

RQ2: Kim and Porter’s test prioritization approach shows no improvement in machine us-

age, while Elbaum’s test prioritization approach reduces machine usage slightly by 0.56%

with 178 machines to achieve the same feedback time. Elbaum’s test selection approach re-

duces machine usage by 58.10% with 75 machines while maintaining the baseline feedback

time of 33.55 minutes, but it loses 31.25% of failures. The Batching algorithm approach

achieves an 88.27% reduction in machine usage by using only 21 machines while maintain-

ing the baseline feedback time and not missing any failures.
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Table 4.4: The number of machines and the median feedback time in minutes where each algorithm
plateaus for Chrome. (improvement to the next 25 is less than 1%)

Algorithm ElbaumSelection KimPorter ElbaumPrioritization Batching TestAll
Median feedback time 0.96 1.56 1.95 2.40 1.56
Number of machines 200 325 250 200 325

Table 4.5: The necessary quantity of machines for each algorithm to maintain the actual median
feedback time of 32.95 minutes for Chrome, and the corresponding percentage of reduction in
machine usage compared to the baseline number of machines.

Algorithm TestAll ElbaumSelection KimPorter ElbaumPrioritization Batching
Number of
machines 179 (0% baseline) 75 (58.10%) 179 (0%) 178 (0.56%) 21 (88.27%)

4.6.3 RQ3: How quickly do different test optimization techniques detect failing tests

when executed in parallel with varying numbers of machines?

Aside from reducing the number of machines needed for running tests, another important aspect

of test optimization is how quickly the algorithms can detect failing tests. While this measure is

typically used for test prioritization algorithms, this study aims to investigate the impact of other

test optimization approaches on this measure, providing a broader view of the implications of these

algorithms.

To achieve this goal, we use the GAINEDTIME measure, which is similar to measures used in

previous studies by Elbaum et al. [52] and Fallahzadeh and Rigby [6]. This measure represents the

difference in time it takes to detect each individual failing test. We use the median GAINEDTIME

obtained by each algorithm to compare them. To provide a fair comparison between algorithms, we

focus on the failing tests detected by ElbaumSelection, which represents approximately 68.75% of

all failing tests, as ElbaumSelection misses some failing tests.

The resulting median GAINEDTIME for different test optimization algorithms in this study using

varying numbers of machines is presented in Figure 4.6. Each line in the figure represents the results

by connecting the non-continuous result points for each approach. To better illustrate the differences

between the median GAINEDTIME for each algorithm, we show the results in logarithmic scale and

add 1 GAINEDTIME unit to the results.

As shown in Figure 4.6, the median GAINEDTIME achieved by all test optimization algorithms
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in this study is much better in highly resource-constrained environments. As the number of ma-

chines increases, the performance of these algorithms diminishes significantly. The KimPorter

algorithm shows some improvement, while ElbaumPrioritization displays better results. Elbaum-

Selection and BatchAll algorithms achieve much better GAINEDTIME results than the prioritiza-

tion algorithms, particularly in highly resource-constrained environments. The BatchAll algorithm

achieves better results than ElbaumSelection in highly resource-constrained environments, while

ElbaumSelection performs slightly better in highly resource-available environments. However, we

should keep in mind that ElbaumSelection misses some failing tests, which represent 31.25% of all

failures in this experiment.

Figure 4.6: Median GAINEDTIME + 1 in hours for ElbaumSelection, KimPorter, ElbaumPriori-
tization, and BatchAll algorithms displayed in logarithmic scale and in hours by considering the
different peak number of machines.
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To assess and compare the distributions of GAINEDTIME across different test optimization al-

gorithms for Chrome, we utilize statistical techniques such as the Wilcoxon Rank-Sum test and

Cliff’s delta effect size measure. To account for multiple comparisons, we apply the Bonferroni

correction, dividing the desired overall p-value of 0.05 by the number of comparisons conducted.

Consequently, each individual comparison is subject to a stringent significance threshold, with a

p-value cutoff of 0.00046.

Table 4.6 presents the computed p-values and effect sizes for comparing the GAINEDTIME

distributions between the various test optimization algorithms. The results indicate that most of the

comparisons yield statistically significant differences, except for a few cases. Specifically, no signif-

icant differences are observed between KimPorter and BatchAll when using 250 and 275 machines.

Similarly, there are no significant differences between ElbaumPrioritization and ElbaumSelection

when the number of machines is 275 or higher. Moreover, no significant differences are found

between ElbaumPrioritization and BatchAll when employing 225 and 250 machines, as well as be-

tween ElbaumSelection and BatchAll when utilizing 50 to 225 machines. These findings closely

align with the observed overlaps in the median GAINEDTIME, as depicted in Figure 4.6.

Additionally, Table 4.6 includes the effect sizes between different algorithms at various ma-

chine counts. This supplementary information reinforces the observed patterns and emphasizes the

significance of the differences illustrated in the GAINEDTIME plot shown in Figure 4.6.

To provide a more accurate and realistic comparison between the different test optimization

algorithms based on GAINEDTIME, we analyzed the results at the baseline number of machines,

which is 179 machines, and is closer to the actual number of machines used. The findings are

presented in Table 4.7.

The table reveals that with the same number of machines as the baseline, KimPorter algorithm

detects failing tests 1.2 minutes faster than TestAll. The ElbaumPrioritization approach achieves

even better results by reducing the median time to detect failing tests by 3.9 minutes. Remarkably,

the BatchAll algorithm outperforms all other algorithms by detecting failing tests earlier by a median

of 59.4 minutes. Despite missing 31.25% of the failures in this experiment, the ElbaumSelection

algorithm still achieves the best GAINEDTIME of 62.1 minutes.
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Table 4.6: P-values and Cliff’s Delta effect sizes for pairwise comparison of the GAINEDTIME

distribution of different test optimization algorithms for Chrome at different numbers of machines.

P-value Effect Size
Machines KP* vs EP KP vs ES KP vs BA EP vs ES EP vs BA ES vs BA KP vs EP KP vs ES KP vs BA EP vs ES EP vs BA ES vs BA
8 0 0 0 0 0 5.93E-09 -0.54259 -1 -1 -1 -1 -0.27554
16 0 0 0 0 0 1.47E-06 -0.98953 -1 -1 -0.99929 -0.99616 -0.22593
25 0 0 0 0 0 0.000439 -0.99403 -1 -0.99068 -0.98868 -0.98601 -0.16079
50 0 0 0 0 0 0.278022 -0.54259 -0.99152 -0.98601 -0.9868 -0.98376 -0.02846
75 0 0 0 0 0 0.463815 -0.79001 -0.99073 -0.9745 -0.97269 -0.96711 -0.0044
100 0 0 0 0 0 0.464619 -0.69656 -0.96425 -0.93899 -0.93679 -0.92533 -0.0043
125 0 0 0 0 0 0.357905 -0.5659 -0.91359 -0.78723 -0.81407 -0.75556 -0.0176
150 0 0 0 0 0 0.291761 -0.67676 -0.87424 -0.72776 -0.73092 -0.66952 -0.0265
175 0 0 0 0 0 0.139835 -0.68641 -0.84944 -0.61543 -0.6247 -0.52125 -0.05225
200 0 0 1.98E-17 0 7.95E-11 0.013678 -0.57934 -0.76237 -0.4066 -0.49655 -0.30911 -0.10663
225 0 0 7.14E-07 2.46E-16 0.001809 0.000307 -0.53998 -0.6871 -0.23297 -0.39207 -0.14062 -0.16553
250 0 0 0.012783 4.38E-12 0.385449 2.24E-06 -0.48594 -0.6397 -0.1079 -0.32984 -0.01408 -0.22172
275 0 0 0.037218 0.00059 8.4E-07 3.13E-12 -0.54196 -0.57385 -0.08621 -0.15676 -0.2314 -0.33217
300 0 0 1.98E-05 0.003117 8.25E-12 9.82E-17 -0.4665 -0.53154 -0.19862 -0.13218 -0.32542 -0.39743
325 0 0 1.48E-09 0.097034 1.04E-18 0 -0.45958 -0.49505 -0.28676 -0.06277 -0.42298 -0.45411
350 1E-20 2E-20 1.25E-15 0.447366 0 0 -0.44719 -0.44475 -0.38239 -0.00641 -0.51408 -0.51888
375 1.25E-18 8.55E-18 0 0.427828 0 0 -0.42195 -0.41132 -0.46193 -0.0088 -0.56868 -0.56646
400 1.03E-16 3.89E-15 0 0.269933 0 0 -0.39713 -0.37552 -0.49836 -0.02963 -0.60208 -0.587

*Abbreviations: KP: KimPorter, EP: ElbaumPrioritization, ES: ElbaumSelection, BA: BatchAll.

Table 4.7: The median GAINEDTIME in minutes achieved by different algorithms by using 179
machines as in the TestAll baseline for 68.75% of failures by ElbaumSelection.

Algorithm ElbaumSelection KimPorter ElbaumPrioritization Batching
Median GAINEDTIME 62.1 1.2 3.9 59.4

RQ3: Kim and Porter’s test prioritization detects failing tests faster by a median of 1.2 min-

utes, and Elbaum’s test prioritization detects failing tests faster by a median of 3.9 minutes.

Elbaum’s test selection detects failing tests faster by a median of 62 minutes in comparison

to the baseline with 179 machines while missing 31.25% of failures. The Batching algorithm

detects failing tests faster by a median of 59.4 minutes against the baseline without missing

any failures.

4.6.4 RQ4: How effective are different test optimization techniques in saving test

execution time when executed in parallel with varying numbers of machines?

Another important aspect of test optimization is the amount of time different algorithms can save

in test executions (EXECUTIONREDUCTION). The more time they can save, the more resources and

feedback time we can conserve.
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To calculate the amount of time saved in test executions by different algorithms with varying

numbers of machines, we utilize the EXECUTIONREDUCTION formula. For each algorithm with

m machines, we divide the execution time of that algorithm by the execution time of the TestAll

algorithm and subtract the result from 1.

For TestAll, KimPorter, and ElbaumPrioritization algorithms, there is no EXECUTIONREDUC-

TION as they run all tests, although they may reorder them. The results for the ElbaumSelection and

BatchAll algorithms are shown in Figure 4.7. The figure demonstrates that ElbaumSelection always

saves 66.31% of the time spent on test executions regardless of the number of machines used. On

the other hand, the amount of time saved in test executions by BatchAll varies significantly depend-

ing on the number of machines used. With a single machine, BatchAll can save up to 98.69% in test

execution time, whereas with 400 machines, it saves only 8.29%.

Figure 4.7: The percentage of time saved in test executions by ElbaumSelection and BatchAll al-
gorithms, relative to the total execution time for all test cases, was calculated for different peak
numbers of machines.

To assess the potential time savings achievable by different test optimization algorithms using
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Table 4.8: The save in test execution time achieved by different algorithms using the baseline num-
ber of 179 machines.

Algorithm KimPorter ElbaumPrioritization ElbaumSelection Batching
Save in execution time 0% 0% 66.31% 21.45%

the baseline number of machines, which is more representative of the actual number of machines

used in practice, we present the results of EXECUTIONREDUCTION for 179 machines in Table 4.8.

As expected, the table confirms that KimPorter and ElbaumPrioritization algorithms do not

result in any time savings for tests execution. However, it shows that ElbaumSelection can achieve

a considerable 66.31% reduction in test execution time. On the other hand, the BatchAll algorithm

can save up to 21.45% in test execution time, although this figure depends on the specific number

of machines used. Notably, the ElbaumSelection approach misses 31.25% of failing tests in this

particular case.

RQ4: Elbaum’s test selection saves 66.31% in test execution time, but the trade-off for this

algorithm is losing failing tests, 31% in the given case. Kim and Porter and Elbaum’s test

prioritization approaches do not produce any savings in test executions. The saving in test

executions for Batching algorithm varies between 2% and 98.5% depending on the number

of machines in use.

4.7 Threats to Validity

This section discusses the threats to the validity of this research.

4.7.1 External Validity

In this study, our focus is solely on the test results obtained from Google Chrome. While this

dataset provides valuable insights into large-scale testing infrastructures, it may not fully represent

all other testing systems. However, it is worth noting that this dataset is the only publicly available

dataset at such a scale, comprising 276 million tests and up to 47 overlapping builds. Other available

datasets are not comparable in terms of scale, and they do not differentiate between flaky failures

and true failures. Even the dataset provided by Elbaum et al. [1] on Google consists of 3.5 million
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test suites collected over a one-month period, without distinguishing flaky failures from true fail-

ures. Since the problem of test optimization is primarily relevant to large-scale projects, we believe

that using the Chrome dataset allows us to better understand and address the challenges faced by

practitioners in the field.

This study adopts history-based test selection and prioritization techniques, which may not rep-

resent every test selection and prioritization technique. However, when dealing with large-scale

datasets like Chrome, the approaches that can be used for test optimization are limited. Due to high

code churn in these projects, coverage-based techniques are not effective [2]. Additionally, previous

studies have shown that these black box techniques are as effective as other complex and expensive

test optimization techniques [21].

4.7.2 Construct Validity

To calculate the feedback time of a build, only the test execution time is considered, and other

processing times such as compilation time are not taken into account. This data is not included

in the dataset, and even if we had access to it, we cannot assume the compilation time of a batch.

This could be particularly important for the batching algorithm. When a batch succeeds, it saves on

compilation time, and when it fails, it has to compile included changes to find the culprit change.

Given the 8.5% build failure rate in Chrome, batching is likely to be advantageous even when

compile time is factored in.

4.7.3 Internal Validity

To carry out the test optimization techniques in this study, we had to change the order of tests,

ignore some tests, or batch tests belonging to multiple changes. All of these assumptions require

tests to be independent of each other. Otherwise, if there are any dependencies among tests, these

manipulations could cause dependency flaky failures [45]. In this study, we only simulated test

executions concurrently and autonomously if the Chrome developers had already been performing

the same tests in parallel on multiple shards.

We also made a set of assumptions for the batching results. For instance, if a test shows an

unexpected result in one of the builds included in the batch, it is assumed to be an unexpected result
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when combined with other builds in a batch as well. While this might be true in most cases, there

could be instances where the unexpected outcome is resolved after applying the following changes

in the batch, and the test subsequently gives an expected result. Similarly, we assume that if a test

flakes in one of the builds included in the batch, it also flakes in the batch. While this scenario is

highly probable given the repeated behavior of flaky tests [6], there could be instances where the test

shows an unexpected or expected outcome in the batch. In the former case, an extra culprit-finding

process would be necessary, while in the latter case, there would be no need for re-runs.

4.8 Discussion

This section discusses the implications of our findings for practitioners and key parameters that

impact the study.

Implications of feedback time comparison in software testing. Based on the results of our study

in RQ1, we recommend using test batching or test selection approaches to significantly improve

feedback time for build results. The batching algorithm offers the best feedback time when resources

are limited and practitioners want an efficient test optimization approach to reduce feedback time.

On the other hand, if more resources are available and developers can overlook some missed failures,

then test selection might be the best option for highly efficient test optimization. Interestingly,

feedback time results for the test selection approach plateau faster than the others due to fewer

tests to execute. If practitioners prioritize both accuracy and efficiency and cannot overlook losing

failures, then the batching algorithm is the best option.

Implications of resource usage comparison in software testing. Based on the results of RQ2,

we recommend the following suggestions to reduce resource usage in testing. Test selection and

batching approaches are both effective in significantly reducing the number of machines and re-

sources required for testing. While test selection may miss some failures, batching reduces resource

consumption without losing any failures and saves more than the test selection algorithm. Addi-

tionally, the results show that the advantage of using the batching algorithm in terms of feedback

time and resource reduction compared to other test optimization algorithms is more significant when

resources are limited than in a resource-rich environment.
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Implications of test optimization for failure detection speed. Our study in RQ3 highlights

important recommendations for practitioners. Firstly, all of the test optimization algorithms im-

prove the speed of failure detection compared to not using any test optimization techniques. Both

test selection and batching approaches significantly boost the speed of failure detection. In highly

resource-constrained environments, we recommend using the batching approach to detect failures

faster. In highly resource-available environments, test selection may detect failures slightly faster,

but at the cost of potentially missing some failures. Practitioners can choose between test selec-

tion and batching based on their tolerance for failure loss and required failure detection efficiency.

Nevertheless, we recommend using the batching approach overall, even in highly resource-available

environments.

Implications of the test execution time comparison Based on the results in RQ4, we offer

the following recommendations for practitioners. Both test selection and batching can be highly

effective in saving test execution time. However, the interesting finding from this research question

is that the savings in test execution is always static for the test selection algorithm, while it varies

significantly for the batching approach. This is because as the number of resources increases, the

queue size for batching decreases, which forces batching to run more test executions, but in test

selection, the test executions do not change by changing the number of machines. In a highly

resource-constrained environment, we recommend using batching to reduce test execution time. In

a highly resource-available environment, we recommend using test selection to reduce test execution

time if missing some failures is acceptable. Otherwise, practitioners can use the batching algorithm,

which saves test execution time depending on the number of machines in use and does not miss any

failures.

Impact of window size on ElbaumSelection algorithm.

To determine the appropriate window sizes for the ElbaumSelection and ElbaumPrioritization

algorithms in this study, we conduct an experiment similar to Elbaum et al.’s work [52]. In this

experiment, we use the ElbaumSelection algorithm with 179 machines, which is the same number

of machines used in our baseline.

For the purpose of this experiment, we use the percentages of selected tests, execution time, and

detected failures in comparison to the baseline, as described in Elbaum et al.’s paper, to measure the
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performance of the algorithm.

In the first experiment, we choose a relatively small execution window size of we = 4 and

vary wf , displaying the results in Figure 4.8. As shown in Figure 4.8, increasing wf improves the

detection of failing tests. However, contrary to Elbaum et al.’s results [52], changing wf does not

significantly affect the percentage of executed tests or the percentage of test execution time.

Figure 4.8: The Percentages of Executed Tests, Executed Time, and Detected Failing Tests for
ElbaumSelection with we = 4 and varying wf .

To validate this observation with a larger execution window, we increased we to 96 and varied

wf . The results, as shown in Figure 4.9, further confirm that changing wf does not have a significant

impact on the percentage of executed tests or the percentage of test execution time. This discrepancy

can be attributed to the prevalence of flaky failures in Chrome, as highlighted by Fallahzadeh and

Rigby (2022) [6], which is specifically addressed in this study.

However, both experiments show that increasing the size of wf significantly improves the de-

tection of failing tests without significantly impacting the time taken for test execution. Therefore,

in this study, we adopt an unlimited size for wf .
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Figure 4.9: The Percentages of Executed Tests, Executed Time, and Detected Failing Tests for
ElbaumSelection algorithm with we = 96 and varying wf .

On the other hand, changing we significantly impacts the percentage of executed tests, the per-

centage of test execution time, and the number of detected failing tests, as shown in Figure 4.8,

Figure 4.9, and Figure 4.10. To further investigate the effect of changing we, we conduct another

experiment with an unlimited wf size and vary we. The results are shown in Figure 4.10.

Figure 4.10 reveals that increasing we decreases the number and time for executing tests, but

also decreases the number of detected failing tests. We choose the we size of 2 in our experiment

because it decreases the number and time for test execution by 64.49% and 66.31%, respectively,

while still maintaining a high failure detection rate of 68.75%. This high failure detection rate is

necessary as we compare this algorithm with other test optimization algorithms that do not miss

failures.

Impacts of failure rate on batching algorithm. The performance of the batching algorithm

is significantly affected by the failure rate and the presence of flaky failures. A higher number

of failures in test results can lead to an increase in the number of penalties for culprit finding in
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Figure 4.10: The Percentages of Executed Tests, Executed Time, and Detected Failing Tests for
ElbaumSelection algorithm with the unlimited wf and varying we.

batching. However, research by Beheshtian et al. [41] suggests that 85.5% of the Travis CI projects

they studied could benefit from batching, as long as their failure ratio is below 40%. In this study,

the build failure rate in Chrome is 8.5%, which is well below this threshold, making batching an

effective approach for improving test execution time. Additionally, applying culprit finding at the

test level can significantly reduce the cost of batching in this study.

Measuring failure detection. In this study, we aim to measure how quickly each algorithm

detects failures on the Chrome dataset. To achieve this, we compare the time differences between

the actual test runs in the TestAll order and the order recommended by other algorithms. While the

APFD metric [20] is a popular measure in test prioritization, we found that it is not effective in

a continuous integration environment where the focus is on detecting failures across builds. This

observation is consistent with previous studies by Elbaum et al. [52] and Fallahzadeh and Rigby

[6]. Therefore, we use a custom measure that better reflects the requirements of detecting failures

in a continuous integration environment.
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4.9 Conclusion and Future Works

This study aimed to compare and evaluate different test optimization algorithms for reducing

feedback time, improving failure detection, and saving test execution time using varying numbers

of execution resources. Our results show that the batching algorithm performs best in a highly

resource-constrained environment, achieving significant reductions in feedback time, resource us-

age, and test execution time while also improving failure detection without missing any failures.

Test selection performs slightly better in highly resource-available environments but at the cost of

missing some failures. Test prioritization algorithms underperformed both batching and test selec-

tion. Practitioners can choose the appropriate test optimization algorithm based on the computa-

tional resource availability and the tolerance for missing failures. In resource-constrained environ-

ments, the batching algorithm would be the optimal choice, whereas in resource-rich environments,

test selection could achieve slightly better results. The underperformance of test prioritization al-

gorithms suggests that they should not be the first choice for test optimization. This study has

limitations in terms of the type of software used (Chrome), the test optimization algorithms studied,

and the specific metrics evaluated. Future research could investigate other software types, addi-

tional test optimization algorithms, and different evaluation metrics. Further research could focus

on exploring the impact of combining different test optimization algorithms, investigating the ef-

fectiveness of other test optimization algorithms, and evaluating the impact of test optimization on

software quality.
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Chapter 5

Discussion and Conclusion

This thesis presents a comprehensive analysis of the efficiency of different test optimization

algorithms in large continuous integration environments, taking into account the influence of flaky

tests and parallel test execution.

In this study, we conducted an analysis of over 276 million test cases from the Google Chrome

project and simulated various test optimization algorithms. The key findings and implications from

the main three chapters of this thesis are outlined below.

Chapter 2: The impact of flaky tests on test prioritization at scale. Flaky failures constitute the

majority of failures within the Chrome dataset, and they demonstrate a notably higher degree of re-

currence when compared to non-flaky failures. Although the Chrome testing infrastructure employs

analysis tools like Findit [114] to proactively identify and address the sources of flakiness in the

long term, they permit changes containing flaky failures to be integrated into the main repository.

Consequently, the presence of these flaky failures significantly influences the effectiveness of test

prioritization algorithms, as they are accorded higher priority over non-flaky failures. These find-

ings underscore the critical importance of factoring in the impact of flaky tests when devising test

prioritization strategies and warrant a reevaluation of prior studies that may have overlooked this

significant factor.

Chapter 3: The impact of parallel test execution on batch testing at scale. Our observa-

tions reveal that the impact of parallelism on test optimization algorithms is non-linear, leading to

compounded delays in subsequent builds. Constant batching algorithms exhibit superior feedback
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time performance in resource-constrained environments but eventually reach a plateau in feedback

time reduction as the number of machines increases. In contrast, batching algorithms with adap-

tive batch sizes consistently outperform other algorithms in terms of feedback time. These adaptive

approaches offer the advantage of providing variable test execution reduction depending on avail-

able resources, making them suitable for both high and low resource-constrained environments. In

particular, the BatchAll algorithm showcases promising performance across all resource availability

environments, despite its simple and cost-effective approach. Therefore, we recommend practition-

ers to consider adopting adaptive batching techniques, as they have the potential to significantly

enhance feedback time and test execution reduction while adapting to varying resource availability

and test execution queues.

Chapter 4: Comparative assessment on test selection, prioritization, and batching algorithms

at scale. Our findings indicate that the batching algorithm with adaptive batch size outperforms

other test optimization algorithms in feedback time, particularly in highly resource-constrained

environments, while maintaining a comparable performance to test selection algorithms in other

scenarios without missing any failures. It also outperforms other algorithms in reducing the num-

ber of machines required to achieve the median feedback time and detecting failing tests faster. The

performance of test batching algorithms varies based on the number of machines used, while test se-

lection algorithms provide a consistent test execution reduction. Practitioners are advised to choose

between test batching and test selection based on the number of available machines, tolerance for

missing failures, and performance expectations. However, test batching algorithms generally out-

perform other algorithms or demonstrate comparable performance, with the added advantage of not

missing any failures. Table 5.1 displays a summary of the results from the main chapters of this

study.

In Table 5.2, we present a summary table detailing the data parameters from testing environ-

ments and their impact on the performance results of various test optimization algorithms. While

most of these parameters remained unchanged due to the constraints of our Chrome testing envi-

ronment, we offer our estimations based on a comprehensive survey of test optimization studies and

the outcomes of our simulations.

In Table 5.3, we present a summary of the findings obtained for each outcome measure studied
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Table 5.1: A summary of the results from main chapters.

Chapter Results
Chapter 2: The impact
of flaky tests on test pri-
oritization at scale

Previous studies have been affected by a significant problem: they have
treated flaky failures as genuine failures when evaluating history-based test
prioritization algorithms. However, when we follow Chrome’s approach
and classify flaky failures as non-blocking, we observe a noticeable and
detrimental drop in the performance of these algorithms. An in-depth ex-
amination of the dataset statistics further underscores this issue. It reveals
that a substantial majority of failures in Chrome fall into the flaky cate-
gory. Interestingly, flaky failures occur more frequently than their non-
flaky counterparts. This fact clarifies why history-based test prioritization
algorithms underperform when operating under the assumption that flaky
failures are non-blocking.

Chapter 3: The impact
of parallel test execution
on batch testing at scale

Parallel test execution has a profound influence on batch testing at scale.
Notably, the relationship between the increase in the number of machines
and the feedback time performance of testing algorithms is non-linear. In
resource-constrained environments where only a limited number of ma-
chines are available, employing larger batch sizes within constant batching
algorithms yields improvements in feedback time, resource usage reduc-
tion. Among these algorithms, BatchAll stands out as the top performer, de-
livering the best feedback time and resource usage outcomes. Conversely,
in highly resource-abundant environments, the feedback time performance
of constant batching algorithms reaches a plateau. Here, the TestCase-
Batching algorithm outperforms others. Remarkably, the BatchAll algo-
rithm consistently delivers stable results across all environments, despite
its simplicity.

Chapter 4: Compara-
tive assessment on test
selection, prioritization,
and batching algorithms
at scale

In a highly resource-constrained environment, both the BatchAll and El-
baumSelection algorithms exhibit superior performance in terms of feed-
back time, resource reduction, failure detection GainedTime, and execu-
tion reduction. However, it’s important to note that the ElbaumSelection
approaches miss approximately 30% of the failures. As we transition to
a highly resource-available environment with an increased number of ma-
chines, the ElbaumSelection algorithm demonstrates exceptional feedback
time and execution reduction performance, surpassing the BatchAll algo-
rithm. Nevertheless, this enhanced performance comes at the expense of
missing some failures. Overall, BatchAll delivers promising results across
various metrics, including feedback time, resource usage, failure detection
GainedTime, and execution reduction, all while ensuring that no failures
are overlooked. In stark contrast, test prioritization algorithms fail to de-
liver significant improvements across these measures.
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Table 5.2: A summary of the impact of each data parameter on the performance of different test
optimization algorithms.

Parameter Impact
Number of machines In a resource-constrained environment with a limited number of available

machines, batching algorithms, especially BatchAll, and test selection al-
gorithms can considerably reduce feedback time, resource usage, time re-
quired for detecting failures, and test execution duration. Even in a highly
resource-rich environment, these algorithms continue to provide perfor-
mance enhancements, although the extent of improvement may be slightly
diminished. Test selection achieves these improvements by potentially
omitting some failures, whereas batching algorithms ensure that no fail-
ures are missed.

Failure rate In an environment characterized by a low failure rate, batching algorithms
can be highly effective, delivering improvements even when the failure
rate reaches up to 40%. However, in a high-failure-rate environment, the
performance of batching algorithms tends to diminish, and test selection
algorithms tend to outperform them.

Flaky rate In a low flake rate environment, the occurrence of test reruns due to false
failures decreases, resulting in a reduction in overall test execution time. In
a high flake rate environment, both batching and test selection algorithms
excel in terms of test execution, as they effectively reduce the frequency of
reruns needed for flaky tests. These observations hold true when flaky tests
can be reliably distinguished from genuine failures.

Queue size In scenarios where an extensive number of changes are queued up for pro-
cessing, batching algorithms excel over other test optimization methods by
significantly enhancing feedback time, resource utilization, expediting fail-
ure detection, and reducing test execution times. However, in cases where
the queue contains only a limited number of changes, batching algorithms
with adaptive batch sizes may adapt, but their advantages become less evi-
dent or non-existent.

Build time In instances where longer build times are the norm, batching algorithms
may outperform their counterparts, particularly in scenarios with a low
failure rate. However, it’s worth noting that in a high failure rate envi-
ronment, this advantage might be offset by an increase in the time needed
for the culprit-finding procedure. Conversely, when build times are shorter,
the benefits provided by batching algorithms, stemming from the reduction
in the number of builds, also diminish. Simultaneously, the time required
for the culprit-finding process decreases.

Execution time When the test execution time is extended, and multiple changes are simul-
taneously queued for processing, the benefits derived from the batching
algorithm become notably more pronounced. However, when dealing with
tests that have shorter execution times, the advantages stemming from re-
duced test execution time diminish to a lesser degree.
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Table 5.3: A summary of the findings from different outcome measures.

Outcome Measure Findings
Feedback Time Batching algorithms can substantially enhance build feedback time when

machine resources are scarce. However, as the number of available ma-
chines increases, test selection algorithms can surpass batching in perfor-
mance, albeit with the trade-off of potentially missing some failures. In
contrast, test prioritization algorithms typically do not yield significant im-
provements in build feedback time.

Resource Reduction Resource reduction achieved by batching algorithms to attain the actual
feedback time can be substantial, reaching approximately 88% and 58%
for the test selection algorithm. Conversely, test prioritization algorithms
do not result in any notable resource reductions.

GainedTime In resource-constrained scenarios, the performance of both batching and
test selection algorithms, as measured by failure detection GainedTime,
is remarkably close and impressive, albeit with the trade-off of poten-
tially missing some failures in test selection. Test prioritization algorithms
also offer some improvements in such environments. However, in highly
resource-abundant settings, the performance of all test optimization algo-
rithms experiences a significant decline, approaching levels similar to the
baseline.

Execution Reduction The test selection algorithm consistently achieves a fixed test execution
reduction of approximately 66%. In the case of test batching algorithms,
the execution reduction is contingent on the batch size. Constant batch-
ing algorithms deliver a consistent execution reduction, whereas adaptive
batching algorithms like BatchAll yield variable execution reductions. This
variability can range from nearly 100% when machine resources are scarce
to less than 10% in a highly resource-abundant environment.

in this thesis.

It is important to acknowledge the limitations of this study, which include its focus on the

Chrome software, specific test optimization algorithms, and particular evaluation metrics. To further

advance the field, future research should explore other software types, additional test optimization

algorithms, and different evaluation metrics.

Future research endeavors can involve investigating the combination of different test optimiza-

tion algorithms, exploring alternative algorithms, and evaluating the impact of test optimization on

software quality. These avenues of research hold the potential to contribute to further advancements

in test optimization strategies.
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Appendix A

Practitioners Guideline

In this appendix, we provide a guideline for practitioners on how to use the results of this study.

A.1 Flaky Tests

Identifying and addressing flaky tests holds paramount importance in various testing environ-

ments. This significance is underscored by our findings in Chrome, where flaky tests comprise the

majority of failures, and as demonstrated in Chapter 2, the treatment of flaky tests can substantially

impact the results of test optimization techniques.

Following the approach adopted in Chrome, we offer recommendations on how to identify and

manage flaky tests effectively. Firstly, unlike many studies that rerun tests thousands of times, flaky

tests should be identified through only a few reruns following a failure. If these reruns consistently

produce flaky results, the test can be classified as flaky.

Once flaky tests are identified, it is essential to handle them appropriately. Flaky failures are not

indicative of genuine defects and should thus be considered as non-failures. This does not imply

that practitioners should disregard these tests entirely. Instead, builds containing such tests should

be allowed to integrate. In the long term, efforts should be directed toward resolving the underlying

causes of this flakiness, a process akin to Chrome’s FindIt infrastructure [114].
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A.2 Test Prioritization

In our comprehensive evaluations of history-based test prioritization algorithms, specifically

Kim and Porter’s and Elbaum et al.’s algorithms, conducted from various perspectives and utilizing

different evaluation metrics, we offer the following recommendations to practitioners.

Regrettably, these algorithms do not yield promising results, especially when flaky failures are

appropriately treated as non-blocking. Evaluations encompassing feedback time, resource reduc-

tion, GainedTime failure detection, and execution reduction do not yield practical outcomes. Even

concerning their primary objective, GainedTime failure detection, these algorithms do not perform

admirably. In light of these findings, we strongly advise practitioners to consider the use of test

selection and batching algorithms instead.

A.3 Test Selection

Within our study, we conducted an evaluation of Elbaum et al.’s test selection algorithm, which

is regarded as one of the effective history-based test selection algorithms. Our assessments have

revealed that this test selection algorithm exhibits exceptional efficacy, particularly in high resource-

constrained environments. Based on these findings, we recommend the utilization of this test se-

lection algorithm by practitioners, particularly in cases where the omission of bugs and failing tests

does not pose critical consequences for the system.

In such scenarios, the adoption of the test selection algorithm can yield promising outcomes

across various evaluation metrics, including feedback time, resource reduction, failure detection

GainedTime, as well as delivering consistent and notable reductions in test execution time. How-

ever, if the system’s integrity relies heavily on the detection of failing tests and bugs, we suggest

prioritizing the use of batching algorithms instead.

111



A.4 Batching

This study conducted evaluations of several constant batching algorithms that had been previ-

ously examined in research. Additionally, we introduced two adaptive batching techniques. Draw-

ing from our comprehensive assessments, we offer the following recommendations for practitioners.

In resource-constrained environments, batching algorithms demonstrate optimal performance.

Specifically, utilizing larger batch sizes in these settings yields superior results, with the adaptive

BatchAll techniques emerging as top performers across various metrics, including feedback time,

GainedTime failure detection, execution reduction, and resource reduction. Notably, the BatchAll

algorithm excels in achieving the most substantial resource reduction when compared to other algo-

rithms.

Conversely, in resource-abundant environments, constant batching algorithms tend to reach a

plateau, yielding less promising results. However, the BatchAll algorithm continues to exhibit

promise, albeit with potentially diminished execution reduction when smaller batch sizes are em-

ployed. Nevertheless, its performance remains competitive with the test selection algorithm from

various perspectives, offering the significant advantage of not missing any failures.

An important consideration in the utilization of batching techniques is the failure ratio. Higher

failure rates can negatively impact the performance of these algorithms, as they may require exten-

sive culprit finding efforts, resulting in a penalty. However, it’s worth noting that the failure ratio

for most systems typically falls below the 40% threshold recommended by Beheshtian et al. [100].

By employing effective culprit finding techniques, we believe that the culprit finding penalty can be

significantly improved.

Furthermore, as the number of overlapping changes and builds increases, we strongly recom-

mend the adoption of batching algorithms, especially the adaptive batching techniques. These tech-

niques represent a promising yet often overlooked approach to optimize test execution and resource

utilization.
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A.5 Cost Savings

The cost savings, based on the results we achieved in Chapter 4 and information from the Google

Cloud Pricing Calculator [115] updated as of September 6th, 2023, at the time of writing this report,

are as follows:

In terms of resource reduction, we can achieve the same feedback time as the actual median

feedback time using BatchAll with 21 machines, which costs USD 1,027.29 per month per particu-

lar builder. This is in contrast to using 179 baseline machines, which cost USD 8,756.38 per month

per particular builder, resulting in a savings of USD 7,729.09 (88.27%) per month. For the Elbaum-

Selection algorithm, we will need 75 machines, which costs USD 3,668.88 per month per particular

builder, translating to USD 5,087.50 (58.10%) savings per month.

Based on the Google Cloud Pricing Calculator [115], the cost of each machine per hour is

USD 0.067. Regarding execution reduction, the total test execution time for the examined Chrome

dataset is about 57,570.13 hours. By using the BatchAll algorithm, we can save up to 98.69% in

test execution, which amounts to USD 3,807.26 instead of USD 3,857.80 for the entire executions

without test optimizations, per one month of test executions and per a particular builder. For the

ElbaumSelection algorithm, this saving is 66.31%, which is USD 2,558.11, per one month of test

executions and per a particular builder.

Finally, it’s crucial to emphasize that these test optimization techniques may not be beneficial in

scenarios where there are no overlapping changes, a small number of tests, or an environment with

no resource constraints. This holds especially true when resources are abundant and inexpensive,

although such a situation remains a distant reality.
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Appendix B

Chrome Trybot Scraper Framework

In this appendix, we provide an overview of the framework developed for capturing data from

Chrome. The implementation of this framework can be accessed from https://github.com/

CESEL/ChromiumTrybotScraper. To develop this framework, we utilized scraping tech-

niques and API calls.

Initially, we captured the list of changes from the Chromium Gerrit code review website. Figure

B.1 illustrates the website used to retrieve the change lists. By applying filters such as ”after:2023-

01-01,” we specified the range of change lists to be displayed.

The code snippet provided in Listing B.1 demonstrates the implementation of the API call to

retrieve the change lists.

1 def get_changelists_api_result(

2 page, page_size, start_date='', end_date=''):

3 params = (

4 ('O', '81'),

5 ('S', str(page)),

6 ('n', str(page_size))

7 )

8

9 q = ('after:' + start_date if start_date else '') + \

10 (' before:' + end_date if end_date else'')

11 if q:

12 params += (('q', q),)
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13

14 response = requests.get(

15 'https://chromium-review.googlesource.com/changes/', params=params)

16 if response.status_code == 500:

17 return Status.internal_server_error

18 return response.content

Listing B.1: Get change list method

Figure B.2 illustrates a sample of change details extracted from the Chrome website.

The code in Listing B.2 demonstrates the method used to capture a change detail using the

Chrome API.

1 def get_change_details_api_result(change_num):

2 params = (

3 ('O', '916314'),

Figure B.1: A sample of change lists from Chrome Gerrit code review.
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4 )

5 response = requests.get('https://chromium-review.googlesource.com/changes/'

+ str(change_num) + '/detail',

6 params=params)

7 return response.content

Listing B.2: Get change details method

Then, for each individual change list, we retrieve the corresponding builds. Figure B.4 show-

cases the builds associated with a change list on the Chrome website.

Figure B.2: A sample of change details from Chrome Gerrit code review.
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Figure B.3: A sample of builds for a change from Chrome Gerrit code review.

The code snippet B.3 demonstrates the method used to capture the builds data for each change

list.

1 def get_tryjob_builds_api_result(change_num, patch_num):

2 url = "https://cr-buildbucket.appspot.com/prpc/buildbucket.v2.Builds/Batch"

3 headers = {

4 'authority': 'cr-buildbucket.appspot.com',

5 'sec-ch-ua': '"Chromium";v="86", "\\"Not\\\\A;Brand";v="99", "Google

Chrome";v="86"',

6 'accept': 'application/json',
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7 # 'authorization': 'Bearer ya29.a0AfH6SMBqFDnz98YJB3n2DbB6I-

oDKPxJgktdn3HeGAT7wgHvntGIw33oWwTLR8l3TgQ0b5xKpZtcEMf5nDenR5mHcG_S2oqrdJUEkusTT_6

-7JL9GvmlcaDv7ZGikJWTwCzOtT9xtCtYA-gxa0_QE72dM5Kw-2THYk-

NXu9_LZxXtKaVaqHSE6HZbgQ5rAF5DB84NoQRHElEUhTyRSO7ect_bHBvbmqAJbF8nVWLf0V8EtPEpHYf

',

8 'sec-ch-ua-mobile': '?0',

9 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36',

10 'content-type': 'application/json',

11 'origin': 'https://chromium-review.googlesource.com',

12 'sec-fetch-site': 'cross-site',

13 'sec-fetch-mode': 'cors',

14 'sec-fetch-dest': 'empty',

15 'accept-language': 'en-US,en;q=0.9,fa-IR;q=0.8,fa;q=0.7',

16 }

17 data = '{"requests":[{"searchBuilds":{"pageSize":500,"predicate":{"

gerritChanges":[{"host":"chromium-review.googlesource.com","project":"

chromium/src","change":' + str(

18 change_num) + ',"patchset":' + str(

19 patch_num) + '}]},"fields":"builds.*.id,builds.*.builder,builds.*.tags,

builds.*.status,builds.*.critical"}}]}'

20 response = requests.post(url=url, headers=headers, data=data)

21 return response.content

Listing B.3: Get change builds method

Figure B.4 presents a sample of build details obtained from the Chrome website.

The code in Listing B.4 demonstrates how we capture the details of a build.

1 def get_build_details_api_result(build_id):

2 headers = {

3 'authority': 'cr-buildbucket.appspot.com',

4 'sec-ch-ua': '"Google Chrome";v="87", " Not;A Brand";v="99", "Chromium";

v="87"',

5 'accept': 'application/json',

6 'sec-ch-ua-mobile': '?0',
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7 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36',

8 'content-type': 'application/json',

9 'origin': 'https://ci.chromium.org',

10 'sec-fetch-site': 'cross-site',

11 'sec-fetch-mode': 'cors',

12 'sec-fetch-dest': 'empty',

13 'referer': 'https://ci.chromium.org/',

14 'accept-language': 'en-US,en;q=0.9,fa-IR;q=0.8,fa;q=0.7',

15 }

16

17 #data = '{"builder":{"project":"chromium","bucket":"try","builder":"

fuchsia_x64"},"buildNumber":713505,"fields":"*"}'

18 data = '{"id":"' + str(build_id) + '","fields":"*"}'

19

20 response = requests.post('https://cr-buildbucket.appspot.com/prpc/

buildbucket.v2.Builds/GetBuild', headers=headers,

21 data=data)

22 return response.content

Listing B.4: Get change builds method

Figure B.5 illustrates a sample of test results for a build in Chrome.

The code snippet B.5 demonstrates the process of retrieving the tests associated with a build by

making an API call to Chrome.

1 def get_test_variants_api_result(build_id, nextPageToken=''):

2 headers = {

3 'authority': 'results.api.cr.dev',

4 'sec-ch-ua': '"Chromium";v="86", "\\"Not\\\\A;Brand";v="99", "Google

Chrome";v="86"',

5 'accept': 'application/json',

6 'sec-ch-ua-mobile': '?0',

7 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36',

8 'content-type': 'application/json',

9 'origin': 'https://ci.chromium.org',
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10 'sec-fetch-site': 'cross-site',

11 'sec-fetch-mode': 'cors',

12 'sec-fetch-dest': 'empty',

13 'referer': 'https://ci.chromium.org/',

14 'accept-language': 'en-US,en;q=0.9,fa-IR;q=0.8,fa;q=0.7',

15 }

16

17 data = '{"invocations":["invocations/build-' + build_id + '"],"pageToken":"'

+ nextPageToken +'"}'

18

19 response = requests.post('https://results.api.cr.dev/prpc/luci.resultdb.

internal.ui.UI/QueryTestVariants',

20 headers=headers, data=data)

21 if response.status_code == 404:

22 return Status.not_found

23 elif response.status_code == 500:

24 return Status.internal_server_error

25 return response.content

Listing B.5: Get change builds method

Using the previously mentioned APIs, we successfully captured the Chrome change lists, builds,

and test results. The relevant data of interest for testing was then stored in three tables: Table B.1

for change lists, Table B.2 for builds and Table B.3 for test results.

Table B.1: Changes table

Fields Types
change id text
change num int
subject text
status text
creat t timestamp
updated t timestamp
submitted t timestamp
has review started boolean
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Table B.2: Builds table

Fields Types
build id text
builder text
change num integer
patch num integer
build start t timestamp
build end t timestamp
status text

Figure B.4: A sample of build details from Chrome Gerrit code review.

121



Figure B.5: A sample of build test results from Chrome Gerrit code review.
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Table B.3: Test results

Fields Types
test id text
test name text
test suite text
change num int
patch num int
build id text
build start t timestamp
build end t timestamp
builder text
result id text
final status text
status text
duration interval
step name text
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Appendix C

Samples of Different Test Results

In this appendix, we provide samples showcasing different types of test results. Figure C.1

illustrates examples of expected, unexpected, and flaky tests.

Figure C.1: A sample of different types of test results

Figure C.2 illustrates a sample of an expected result, where both the expected and actual results

are ”pass”.

Figure C.2: A sample of expected pass result in Chrome logs

Figure C.3 displays a sample of an expected crash result. The expected list for the test includes

”fail”, ”crash”, and ”pass”, while the actual result is ”crash”.
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Figure C.3: A sample of expected crash result in Chrome logs

Figure C.4 depicts a sample of an expected failure result. The list of expected results includes

”fail”, ”timeout”, and ”pass”, while the actual result is ”fail”.

In Figure C.5, we can observe a sample of an unexpected crash test result. The list of expected

results includes ”fail”, ”timeout”, and ”pass”. However, the test crashes, and since the result is

unexpected, it is rerun three times with the same outcome. Therefore, the test is categorized as an

unexpected failure. Figure C.6 provides further details on the reruns for this unexpected result.

Figure C.7 showcases a sample of a flaky test result. The test is expected to pass but produces

a fail result. In the subsequent rerun, the result remains the same. However, in the third run, a pass

result is generated. Consequently, this test is categorized as a flaky test result. Figure C.8 provides

detailed information about the reruns for this flaky test.
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Figure C.4: A sample of expected failure result in Chrome logs

Figure C.5: A sample of unexpected crash result in Chrome logs
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Figure C.6: A sample of unexpected crash reruns in Chrome logs

Figure C.7: A sample of flaky result in Chrome logs
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Figure C.8: A sample of flaky result reruns in Chrome logs
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