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Abstract

Arithmetic and computational aspects of modular forms over global �elds

David Ayotte, Ph.D.

Concordia University, 2023

This thesis consists of two parts. In the �rst part, we present a positive characteristic

analogue of Shimura's theorem on the special values of modular forms at CM points. More

precisely, we show using Hayes' theory of Drinfeld modules that the special value at a CM

point of an arithmetic Drinfeld modular form of arbitrary rank lies in the Hilbert class �eld

of the CM �eld up to a period, independent of the chosen modular form.This is achieved

via Pink's realization of Drinfeld modular forms as sections of a sheaf over the compacti�ed

Drinfeld modular curve.

In the second part of the thesis, we present various computational and algorithmic as-

pects both for the classical theory (over C) and function �eld theory. First, we implement

the rings of quasimodular forms in SageMath and give some applications such as the sym-

bolic calculation of the derivative of a classical modular form. Second, we explain how to

compute objects associated with a Drinfeld modules such as the exponential, the logarithm,

and Potemine's set of basic J-invariants. Lastly, we present a SageMath package for com-

puting with Drinfeld modular forms and their expansion at in�nity using the nonstandard

A-expansion theory of López and Petrov.
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Introduction

The theory of classical modular forms has been widely used for various arithmetic applic-

ations. A famous example is the instrumental role they played in the proof of Fermat's

last theorem. The statement that classical modular form are a convenient tool for study-

ing arithmetic is justi�ed in part from two facts. First, one may use Katz-interpretation

of modular forms in order to connect algebro-geometric objects with analytic objects. For

instance, a theorem by Shimura states that their special values at CM points are linked with

the �nite abelian extensions of quadratic imaginary �eld [Shi75]. Second, classical modular

forms bene�ts from numerous algorithmic properties. This allows explicit experimentation

and, more generally, their implementation in computer algebra softwares such as SageMath

[S+23].

These two general concepts have been widely studied in the classical setting, that is for

modular forms over C. In this thesis, we are interested in expanding both of these concepts

in the global function �eld of positive characteristic setting. Therefore, we have made the

choice of separating this thesis in two main parts. The �rst part being more theoretically

focused aims to prove a function �eld analogue of Shimura's theorem on special values of

modular forms at CM points. The second part aims to develop computational tools for

computing in both the classical setting and the function �eld settings.

I. Special values of Drinfeld modular forms

In the �rst part of this thesis, we use the theory of CM Drinfeld modules and Katz-like inter-

pretation of Drinfeld modular forms in order to prove a function �eld analogue of Shimura's

theorem on the special values of modular forms at CM points. The key of our proof is to

formulate in a proper algebro-geometric language the usual notions of Drinfeld modules and

Drinfeld modular forms. These notions are (more or less explicitly) already present in liter-

ature but in this thesis we present them in a more uniform way, comparing all the di�erent
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de�nitions. We note that an analogue of Shimura's result is already known in a speci�c case

by the work of Chang in rank two [Cha12] and by the work of Chen and Gezmi³ in arbitrary

ranks [CG23].

Classical setting. Recall that a classical (or elliptic) modular form of weight k ∈ Z for

a congruence subgroup Γ ≤ SL2(Z) is a holomorphic function f : H → C, where H is

the complex upper half plane, satisfying two additional properties. The �rst property is a

modularity invariance under the action of the group Γ:

f

(︃
aw + b

cw + d

)︃
= (cw + d)−kf(w)

for all w ∈ H and all matrices
(︁
a b
c d

)︁
in Γ. The second property is a growth condition at the

cusps of H, known as the holomorphicity at in�nity. In particular, if Γ = Γ0(N) or Γ1(N)

for N ≥ 1, this last property requires f to have a Fourier expansion of the form

f =
∑︂
n≥0

an(f)q
n, q = e2πiw.

If the �rst nonzero Fourier coe�cient of f is equal to 1, we say that f is normalized. A

crucial fact about the space of all modular forms of �xed weight is that it forms a C-vector

space of �nite dimension. Moreover, there are linear operators acting on this �nite space

called the Hecke operators. Any modular form which is a simultaneous eigenfunction for all

Hecke operators is called an eigenform. By the theory of Hecke operators, one may show

that the coe�cients of any normalized eigenform f generates a number �eld Kf/Q.

Then, a result attributed to Shimura states that if f is any weight k normalized eigenform

and w is a CM point, i.e. a point in H ∩ Q(
√
d) for some d < 0, then

f(w)

Ωk
w

∈ KfHQ(
√
d)

where HQ(
√
d) is the maximal abelian unrami�ed extension of Q(

√
d) and Ωw ∈ C× does

not depends on f [Shi71, �6.8], [Shi75]. This proof was generalized by Urban for nearly

holomorphic modular forms [Urb14, �2.6]. One goal of this thesis is to prove a function �eld

analogue of this result in the setting of Drinfeld modular forms, inspired by the proofs in

loc. cit.

Drinfeld setting. We �rst describe the context in which we will be working. Let X be a

smooth projective geometrically connected curve over a �nite �eld Fq of q elements and let
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∞ be a closed point on X. We let K be the function �eld of X and de�ne A to be the ring of

function of X which are regular everywhere outside ∞. We let K∞ be the completion of K

at ∞ and let C∞ be the completion of an algebraic closure of K∞. Throughout this thesis,

this context will often be refered to as the Drinfeld setting. To put things in perpective, one

can think of the explicit example X = P1
Fq
. In this case, A is identi�ed with the univariate

polynomial ring Fq[T ] and K∞ = Fq((1/T )) is the completion of K = Fq(T ) at the place

1/T .

The notion of Drinfeld modular forms were �rst introduced by Goss in 1980 [Gos80a].

As in the classical case, Drinfeld modular forms are functions de�ned over a certain rigid

analytic space, the Drinfeld periods domain, satisfying a modular invariance property under

arithmetic subgroups of GLr(K) where r ≥ 2 is an integer known as the rank. The Drinfeld

periods domain of rank r is de�ned by

Ωr(C∞) := Pr−1(C∞) \ {K∞-rational hyperplanes}.

This set admits a structure of rigid analytic space and is the analogue of the complex upper

half plane H. In the case where X = P1
Fq
, we have the identi�cation

Ωr(C∞)←→ {Homothety classes of rank r projective A-module inside C∞} ,

which is to be seen as the analogue of the correspondence

H ←→ {Homothety classes of rank 2 free Z-modules in C} .

Via linear fractional transformations, we may de�ne an action of the group GLr(K∞) on

Ωr(C∞) denoted γ(·) : w ↦→ γ(w) for all γ ∈ GLr(K∞). A weak Drinfeld modular form f

of rank r for GLr(A) is a rigid analytic function f : Ωr(C∞) → C∞ satisfying f(γ(w)) =

j(γ, w)kf(w) for some automorphy factor j(γ, w) ∈ C×
∞. A Drinfeld modular form, is a

weak modular form which is holomorphic at in�nity, meaning that it satisfy a Fourier-like

expansion of the form

f =
∑︂
n≥0

an(f)u
n

for some analytic parameter u : Ωr(C∞) → C∞ which is translation invariant, called the

parameter at in�nity.

An important aspect of Drinfeld modular forms is that they also possess an algebraic

interpretation à la Katz which behaves well under base change. This interpretation in-

volves the crucial notion of Drinfeld modules. Emerged from the work of Drinfeld [Dri74],
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this function �eld concept is often observed as the analogue of elliptic curves. In short, a

Drinfeld A-module of rank r over C∞ is a morphism ϕ : A → C∞{τ} where C∞{τ} is the
endomorphism ring of polynomial in τ , the q-Frobenius, such that

ϕ : a ↦→ ϕa = ι(a) + g1,a(ϕ)τ + · · ·+ gr−1,a(ϕ)τ
r−1 + gr,a(ϕ)τ

deg(a)r

where ι is the inclusion A ↪→ C∞, the coe�cients gi,a(ϕ) lies in C∞, gr,a(ϕ) ̸= 0 and deg(a) :=

|A/(a)|. One can show that the set of Drinfeld A-modules over C∞ of rank r corresponds

bijectively to the set of projective A-submodules Λ ⊂ C∞ of projective rank r. Any such

submodule is called a A-lattice. This bijection, which is more precisely a correspondence of

categories, is known as the Drinfeld uniformization, to be seen as the analogous notion in

the elliptic curves case.

One can then de�ne Drinfeld modular forms algebraically as sections of the k-th tensor

of a sheaf ω on the Drinfeld modular variety M r
N over K of level N ⊴ A. This variety is

essentially the isomorphism classes of pairs of Drinfeld A-modules together with an added

structure, namely a level-N structure. The modular variety M r
N admits various interesting

properties. First, as shown by Drinfeld, it is a smooth a�ne variety over K of dimension

r − 1 [Dri74]. Next, after base change over C∞, it possess a decomposition in connected

components

M r
N ×K C∞ ∼=

⨆︂
s∈S(N)

M r
s (1)

for some �nite set S(N) depending on N . Via Drinfeld uniformization, one may show that

the C∞-valued points of each connected components corresponds to M r
s (C∞) ∼= Γs \Ωr(C∞)

as rigid-analytic spaces for some arithmetic subgroup Γs of GLr(K). Lastly, in 2013, Pink

constructed a Satake compacti�cation ofM r
N which is unique up to isomorphism [Pin13]. He

showed moreover that the sheaf ω extends to this compacti�cation. Therefore, this allowed

him to de�ne the set of algebraic Drinfeld modular forms which are holomorphic at in�nity

and he showed how we may identify them with a direct sum of their analytic counterparts.

In section 3.4.3, following mainly Goss' ideas [Gos80a] we will reformulate Pink's algeb-

raic de�nition of Drinfeld modular forms as a rule on triples f : (ϕ, αN , ω) ↦→ f(E,αN , ω) ∈ R
where ϕ is a Drinfeld module over a A-�eld R, αN a level-N structure and ω is a nonzero

section of the sheaf ω. For such rule to be called an algebraic Drinfeld modular form, we

require three conditions: namely that f depends only on the isomorphism classes of the

triple, that f behave well under base changes, and that scaling the section ω by a unit in R

results in simply scaling the value at the triple by that unit to a power of negative k. We
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prove that this de�nition agrees with Pink's de�nition (see theorem 3.4.11). Our de�nition

of algebraic Drinfeld modular forms will be interpreted in this thesis as a direct analogue

of Katz' version of classical modular forms. We note that the base change property of our

de�nition together with the complex multiplication theory of Drinfeld module will be crucial

for proving an analogue of Shimura's result.

Next, the theory of complex multiplication of Drinfeld modules will be of crucial import-

ance for us. Indeed, in 1979 Hayes showed that any such Drinfeld A-module is de�ned over

a Hilbert class �eld of the CM �eld [Hay79]. More precisely, a Drinfeld A-module over C∞ is

said to be CM if the �eld Kϕ := End(ϕ)⊗K has degree exactly r over K and if the place∞
is inert in it. This theory of complex multiplication must also be translated to the points of

the Drinfeld period domain. A point w = [w1 : . . . : wr−1 : 1] in the period domain Ωr(C∞)

is said to have CM if the �eld

Kw := K(w1, . . . , wr−1)

is of degree r over K and ∞ is inert in it. When A is Fq[T ], Hamahata showed that the

A-lattice Λw := ⊕r
i=1Awi give rise to a CM Drinfeld module ϕw [Ham03]. In this thesis, we

generalize this fact for arbitrary A (not necessarily for A = Fq[T ]). In this situation, the

Drinfeld modular variety of level N may have some distinct connected components, indexed

by S(N). Thus, we will show in section 4.5 that for any CM point w and any representative

s ∈ S(N), the associated Drinfeld A-module ϕs
w has CM by the �eld Kw. One has to be

careful in this case as the ring A may not be a principal ideal domain in general.

Recall that the main goal of the present thesis is to prove a function �eld analogue of

Shimura's result for Drinfeld modular forms. This goal is achieved in section 4.6 which

constitutes the main contribution of this thesis. In this section, we will prove the following

theorem:

Theorem. Let s ∈ S(N) and let f : Ωr(C∞) → C∞ be a Drinfeld modular form of weight

k and rank r for Γs which is arithmetic over a �nite extension Kf/K. Let w = (w1 : . . . :

wr) ∈ Ωr(C∞) be a CM point and let Kw be the �eld K(w1, . . . , wr). Then, there exists a

period Ωw ∈ C×
∞ such that

f(w)

Ωk
w

∈ Hw(N)Kf

were Hw(N) := Hw(ϕ
s
w[N ]) and ϕs

w[N ] denote the group of N-torsion points of ϕs
w, that is

the set of roots in K of the polynomials ϕs
w,a for all a ∈ N .

5



Via a Galois arguement, we specialize this theorem to the level 1 case and obtain an

analogue of Shimura's result:

Theorem. Let f : Ωr(C∞)→ C∞ be a Drinfeld modular form of weight k for GLr(A) which

is arithmetic over K. Let w ∈ Ωr(C∞) be a CM point. Then, there exists a period Ωw ∈ C∞

such that f(w)/Ωk
w ∈ Hw.

The above theorems will be proved in section 4.6. The key ingredients of the proof

is to �rst use the fact that Drinfeld A-modules having complex multiplication by Kw are

de�ned over the Hilbert class �eld Hw. Next, we may write the form f algebraically and by

evaluating it at a CM Drinfeld A-module we �nd that its value must lie in Hw. Finally, by

base changing to C∞ and using the transformation property of a modular forms, we obtain

the period Ωw which is independent of the form f .

As mentioned in the beginning, this last theorem is already known by Chen and Gezmi³

in the case when A is Fq[T ] [CG23]. Their proof involves analytic methods and is dependent

on the fact that A is generated by T as a Fq-algebra. We note also that they make use of

a more general notion of CM points as they don't require the place ∞ to be inert. Then,

instead of lying in a Hilbert class �eld, the special value is an arbitrary algebraic element in

K, up to a speci�c period.

II. Computations: classical case and function �eld case

Depending on the nature of an unsolved problem, a researcher in mathematics will often

resort to experimentation to better understand said problem. For example, the L-functions

and Modular Forms Database, abreviated LMFDB, contains large data set on the nontrivial

zeros of the famous Riemann ζ function [LMF23]. This is where computer algebra softwares

such as SageMath becomes useful. SageMath is a mathematical software built on top of

many already existing libraries such as NumPy and SimPy. Moreover, it is free and open-

source, meaning that anybody can install the software, access its source code and examine

the algorithms. In number theory, SageMath o�ers a wide variety of functionality such as

computing with number �elds, with elliptic curves, and with modular forms.

In the second part of this thesis, we enhanced and expanded the functionalities of

SageMath. In particular, we implemented the graded ring of quasimodular forms, we con-

tributed to the implementation of Drinfeld module and we developed a SageMath external

package for computing with Drinfeld modular forms and their expansion at in�nity.
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(Quasi)modular forms. First introduced by Kaneko and Zagier in [KZ95], quasimodular

forms are holomorphic function on the complex upper half plane which are close of being

modular forms, but fail to satisfy the modular invariance property. The weight 2 Eisenstein

series E2 is a well known example:

(cw + d)−2E2(γw) = E2(w)−
6

πi

(︃
c

cw + d

)︃
for any γ =

(︁
a b
c d

)︁
in SL2(Z). Other examples arise when computing the derivative of a

modular form. More generally, a quasimodular form of weight k and depth p for SL2(Z) is

an holomorphic function f : H → C such that

(cw + d)−kf(γw) =

p∑︂
i=0

fi(w)

(︃
c

cw + d

)︃i

for any γ =
(︁
a b
c d

)︁
where fi : H → C are holomorphic. Then, one can prove that the ring of

all quasimodular forms for SL2(Z) is simply

M̃ell

• := C[E2, E4, E6].

where Ek is the normalized k-th Eisenstein series. More generally, if Γ is any congruence

subgroup, we have

M̃ell

• (Γ) =Mell
• (Γ)[E2]

where Mell
• (Γ) := ⊕k∈ZMk(Γ) is the graded ring of all modular forms, which is �nitely

generated [DR73, p. 303].

We implemented the ring M̃ell

• (Γ) in SageMath when Γ is Γ0(N) or Γ1(N) and the

functionalities are now included as of version 9.5 of the software. We explain in this thesis

two main functionalities of this implementation, but we invite the interested reader to try

the implementation themself and read the documentation in SageMath's reference manual.

The �rst main functionality concerns an algorithm for converting any (quasi)modular

forms as an homogeneous polynomial in the generators of the ring. More precisely, suppose

that Mell
• (Γ) is generated by a �nite set {g1, . . . , gn}, then we give a systematic procedure

that, for any (quasi)modular form f , computes a multivariate polynomial Pf (Y,X1, . . . Xn)

such that

f = Pf (E2, g1, . . . , gn).

We note that the exact ring structure ofMell
• (Γ) is unknown in general, but algorithms for

computing a generating set in some speci�c cases are known [Rus14].
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The second property is the computation of the derivative D : f ↦→ 1
2πi

d

dw
f . In general,

the derivative of a modular form is not a modular form, but a quasimodular form. The

calculation essentially relies on computing the Serre derivative

θk(f) := D(f) +
k

12
E2f

and then isolating back the derivative.

Drinfeld Fq[T ]-modules. It is well-known that j-invariants of elliptic curves over C having

complex multiplication by a quadratic imaginary L �eld generates the Hilbert class �eld of L

[Sil94, Chap. II]. A similar fact holds for Drinfeld Fq[T ]-modules of arbitrary rank [Gek83],

[Ham03]. In rank two, the j-invariant of a Drinfeld module

ϕ : T ↦→ γ(T ) + g1τ + g2τ
2

is de�ned by formula j(ϕ) := gq+1
1 /g2. It is well de�ned since g2 is nonvanishing. The

j-invariant is constructed so that if ψ is another Drinfeld module isomorphic to ϕ, then

j(ϕ) = j(ψ). Higher ranks j-invariants are also de�ned due to the work of Potemine [Pot98].

In this case, instead of a single j-invariant, Potemine de�ned a �nite family named the basic

J-invariants and showed that two Drinfeld Fq[T ]-modules are isomorphic over an algebraic

closure of the base �eld if and only if all the basic J-invariants agree. We will explain how

to compute all such J-invariants. The core idea consists in the fact that basic J-invariants

are parametrised by integral points of a convex subset of Rr.

On another note, recall that the category of Drinfeld A-module of rank r is equivalent to

the category of rank r discrete projective A-submodule of C∞. This bijection is essentially

induced by a unique function eϕ : C∞ → C∞ which is Fq-linear, surjective and nonconstant.

Moreover, it admits an expansion of the form

eϕ(z) = z +
∑︂
i≥1

αiz
qi ∈ C∞[[z]].

The function eϕ is named the exponential of ϕ. We will explain a procedure that, given any

Drinfeld module ϕ, returns a power series approximation of eϕ. An interesting applications of

such procedure is to compute the Goss polynomial associated with a Drinfeld module. Goss

polynomial are a special class of polynomials introduced by Goss which are useful when

computing the expansion at in�nity of a Drinfeld modular form.
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Drinfeld modular forms. Lastly, we present in this thesis a SageMath external package

for computing with Drinfeld modular forms forGLr(Fq[T ]), namely drinfeld-modular-forms.

The main goal of this package is to manipulate Drinfeld modular forms as formal objects

and to compute their expansion at in�nity when the rank is two.

This goal is achieved by representing a Drinfeld modular form as an homogeneous poly-

nomial in a set of generators for the graded ring of all Drinfeld modular forms. More precisely,

by [BBP18c, Theorem 17.5 (a)], we know that the graded ring of Drinfeld modular forms for

GLr(Fq[T ]) of type 0, denotedMr
•(GLr(Fq[T ])), is generated by r forms:

Mr
•(GLr(Fq[T ])) ∼= C∞[g1, . . . , gr].

These forms gi : Ωr(C∞)→ C∞ are of weight qi− 1 and may be de�ned as the coe�cients of

a certain universal Drinfeld Fq[T ]-module over Ωr(C∞). When 1 ≤ i ≤ r − 1, the modular

forms gi may be seen (after normalization) as the Drinfeld Eisenstein series of weight qi − 1

and gr is the Drinfeld discriminant function, usually denoted ∆.

In the speci�c case where the rank is equal to two, we are able to compute expansion

at in�nity through the work of López. Contextually, López proved in [Ló10] a nonstandard

expansion for the Drinfeld discriminant function:

− π̃1−q2∆(w) =
∑︂

a monic

aq(q−1)uq−1
a , (2)

where ua : w ↦→ u(aw) and u is the parameter at in�nity. It is nonstandard in the sense

that the sum ranges over monic elements of Fq[T ] instead of positive integers. This allows

the computation of its expansion at in�nity. Moreover, a similar nonstandard expansion is

known for the Drinfeld Eisenstein series [Gek88, �6]. Hence, our package provides methods

for computing these expansions. The computations are done lazily, meaning that we don't

need to input any precision parameter and the coe�cients are computed only on demand.

Based on the work of López, Petrov formalized the concept of nonstandard expansion

and introduced the A-expansion [Pet13]. In short, a Drinfeld modular form is said to admit

an A-expansion if it can be written as a sum over the monic elements of A = Fq[T ], similar

to equation (2). He moreover showed that there exists an in�nite family of modular forms

(more precisely eigenform) which satis�es an A-expansion. We will show in section 7.3 an

algorithm for computing the i-th coe�cient of any forms which admits an A-expansion.

Using Sturm-type bounds for Drinfeld modular forms, we may now convert the forms in the

Petrov family as an homogeneous polynomial in g1 and ∆.
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Organization of this thesis

This thesis is seperated in two parts. The �rst part is divided in 4 chapters and consists

in proving the analogue of Shimura's theorem. The �rst chapter is a review of the classical

theory, meant to prove Shimura's theorem using Katz theory of modular forms over C.

The second chapter de�nes Drinfeld modules, their complex uniformization and the Drinfeld

modular varieties. The third chapter covers both the analytic and algebraic theory of Drinfeld

modular forms. Then, the last chapter of part one de�nes complex multiplication theory for

Drinfeld modules, culminating in a proof of the analogue of Shimura's theorem.

The second part of this thesis concerns software implementations and their applications.

In the �rst chapter, we explain and present an implementation of quasimodular forms in

SageMath. The second chapter aims to explain some algorithms implemented for computing

with Drinfeld modules. Finally, the goal of the last chapter is to showcase a SageMath

package developed by the author for computing with Drinfeld modular forms over GLr(A)

and their exansion at in�nity. We note that the two last chapters of the second part depend

on the �rst part.

10



Part I

Special Values of Drinfeld Modular

Forms
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We hope that the study of these forms

will add not only to our knowledge of

function �elds but also to our

understanding of modular forms in

general.

David Goss, [Gos80b]
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Chapter 1

Review of the Classical Theory

1.1 Elliptic modular forms

1.1.1 Analytic theory

In this section, we recall without proofs the notion of elliptic modular forms and their

properties, i.e. modular forms over the �eld of complex numbers C. Some standard references

about this topic includes [Ser77] and [DS05].

Let H := {w ∈ C : Im(w) > 0} be the complex upper half plane and consider the

modular group SL2(Z) consisting of 2× 2 matrices with integer coe�cients and determinant

1. We de�ne an action of SL2(Z) on H via fractional linear transformations

γ(w) :=
aw + b

cw + d
,

for any γ =
(︁
a b
c d

)︁
in SL2(Z) and w ∈ H. A subgroup Γ of SL2(Z) is said to be a congruence

subgroup if Γ contains the principal congruence subgroup

Γ(N) :=

{︄(︄
a b

c d

)︄
∈ SL2(Z) :

(︄
a b

c d

)︄
≡

(︄
1 0

0 1

)︄
mod N

}︄
.

Let k be an integer and let Γ be a congruence subgroup. For any γ =
(︁
a b
c d

)︁
in Γ and

holomorphic function f : H → C, we de�ne the |k-operator :

(f |kγ)(w) := (j(γ, w))−kf(γ(w))

where j(γ, w) := cw + d.

13



De�nition 1.1.1. A holomorphic function f : H → C is said to be a weak (elliptic) modular

form of weight k for Γ if f |kγ = f for any γ in Γ.

From now on, we will assume for simplicity that the subgroup Γ contains the translation

matrix
(︁
1 1
0 1

)︁
. For example, this is the case for the modular group and the following two

groups:

Γ0(N) :=

{︄(︄
a b

c d

)︄
∈ SL2(Z) : c ≡ 0 mod N

}︄
;

Γ1(N) :=

{︄(︄
a b

c d

)︄
∈ SL2(Z) : a ≡ d ≡ 1 and c ≡ 0 mod N

}︄
.

By de�nition, this implies that any weak modular forms of weight k for Γ is 1-periodic and

so admits a Fourier expansion of the form

f(w) =
∑︂
n∈Z

an(f)e
2πinw,

for some sequence of complex numbers (an(f))n∈Z. For any w ∈ H, we set qw := e2πiw.

De�nition 1.1.2. A weak modular form f of weight k for Γ is said to be a modular form

if an(f |kγ) = 0 for all negative integer n and all matrices γ in Γ. The C-vector space of all

modular forms is denoted byMell

k (Γ). The ring of modular forms for Γ is de�ned by

Mell

• (Γ) :=
⨁︂
k∈Z

Mell

k (Γ).

Proposition 1.1.3. Let Γ be a congruence subgroup of SL2(Z). Then, the space of weight k

modular forms for Γ is �nite dimensional over C.

This important but not trivial fact can be proved in at least two ways. First, one can

prove the valence formula of a modular form f which is a formula that roughly relates the

weight of f with the order of vanishing of f at the cusps of Γ. From this formula we then

deduce that f is determined by a �nite number of Fourier coe�cients and thus the whole

space must be �nite dimensional. The �nite dimensionality of weight k spaces may also

be proved using a more geometric approach using the Riemann�Roch theorem. This last

approach also gives formulas to compute the exact dimension of a given space, cf. [DS05,

Chapter 3].
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Example 1.1.4. Let k ≥ 4 be an even integer. The weight k Eisenstein series is de�ned by

Gk(w) :=
∑︂

(c,d)∈Z2\(0,0)

1

(cw + d)k
,

where w ∈ H. The sum de�ning Gk is uniformly and absolutely convergent on H. The

absolute convergence allows us to rearange the terms of of the series without changing its

value and thus proving the invariance under the |k-operator. Moreover, the function admits

the following expansion:

Gk(w) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∑︂
n≥1

σk−1(n)q
n
w.

where ζ is the Riemann ζ function and σk−1(n) =
∑︁

d|n d
k−1. One may normalize Gk so that

its �rst nonzero coe�cient is 1:

Ek(w) :=
1

2ζ(k)
Gk(w).

To end this section, we recall some facts which are speci�c to the case Γ = Γ1(N). First,

we have the following decomposition

Mell
k (Γ1(N)) =

⨁︂
χ

Mell
k (N,χ)

where the sum is taken over the characters χ : (Z/NZ)× → C and Mell
k (N,χ) is the space

of forms in Mell
k (Γ1(N)) such that f |kγ = χ(d)f for any γ =

(︁
a b
c d0

)︁
∈ Γ0(N) satisfying

d0 ≡ d (mod N). Next, the spaceMell
k (Γ1(N)) admits two sequences of linear maps Tn and

⟨n⟩, together forming the family of Hecke operators. A modular form which is a simultaneous

eigenvector for each Hecke operators is called an eigenform. Moreover, we say that it is

normalized if it �rst nonzero Fourier coe�cient is one.

Proposition 1.1.5. Let f be a normalized eigenform of weight k and level N , and let (an)n≥0

be the coe�cients of its expansion at in�nity. Then the �eld

Qf := Q((an)n≥0)

is a �nite extension of Q.

A proof of the above proposition may be found in [Hid93, Corollary 5.4.2]. We say that

Qf is the �eld of coe�cients of f .
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1.1.2 Katz's interpretation

In [Kat73], Katz gave an algebro-geometric interpretation of modular forms. One novelty

behind this interpretation is that it allows the de�nition of modular forms over arbitrary

rings. We give in this section a quick review of this algebro-geometric interpretation.

De�nition 1.1.6. Let S be a scheme. An elliptic curve over S is a proper smooth morphism

of scheme

p : E −→ S

whose �bers are geometrically connected curves of genus 1, together with a section e ∈ E(S).
We write ωE/S := p∗(Ω

1
E/S) where Ω

1
E/S is the invertible sheaf of invariant di�erential 1-forms

on S.

Fix E/S an elliptic curve and let N ≥ 1 be any integer which is invertible in H0(S,OS),

where OS is the structure sheaf of S. The group-scheme of N -torsion points of E is denoted

by E[N ]. A level N-structure is an isomorphism of group schemes

αN : E[N ]
∼−→ (Z/NZ)2,

where (Z/NZ)2 is the constant group scheme with �bers (Z/NZ)2.

De�nition 1.1.7. A weak modular form of weight k and level N over S is a rule F which

assigns to each pair (E/S, αN), where E is an elliptic curve over S and αN is a level-N

structure, a global section of ω⊗k
E/S:

F (E/S, αN) ∈ H0(S,ω⊗k
E/S)

such that

1. F depends only on the isomorphism class of (E/S, αN);

2. F commutes with arbitrary base change g : S ′ → S.

Remark 1.1.8. If N = 1, a weak modular form will be a rule F which to any elliptic curve

E/S assigns a section

F (E/S) ∈ H0(S,ω⊗k
E/S)

satisfying the two properties above.
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Let R be a commutative ring containing the multiplicative inverse of N . In what follows,

we want to specialize de�nition 1.1.7 to the case S = Spec(R). In this case, we have

H0(S,ω⊗k
E/S) = Rω⊗k

for some choice of nonzero section ω generating the global sections of the invertible sheaf

ωE/S. Therefore, for any weak modular form F over R we have:

F (E,αN) = f(E,αN , ω)ω
⊗k (1.1)

for some f(E,αN , ω) ∈ R. This gives us a rule on triple

(E,αN , ω) ↦→ f(E,αN , ω) ∈ R

which depends only on the isomorphism class of (E,αN , ω) and commutes with arbitrary

base change. Moreover, given any unit λ ∈ R×, we will have

F (E,αN) = f(E,αN , λω)(λω)
⊗k = λkf(E,αN , λω)ω

k.

Combining the above calculation with (1.1), we get

f(E,αN , λω) = λ−kf(E,αN , ω).

This allows a reformulation of de�nition 1.1.7:

De�nition 1.1.9. A weak modular form of weight k and level N over R is a rule which

assigns to each triple (E,αN , ω) where

� E is an elliptic curve over R;

� αN is a level-N structure;

� ω is a nonzero section of ωE/S;

an element f(E,αN , ω) ∈ R satisfying the following conditions:

1. f depends only on the isomorphism class of (E,αN , ω);

2. f commutes with arbitrary base change;

3. For any unit λ in R, we have f(E,αN , λω) = λ−kf(E,αN , ω).

Remarks 1.1.10. 1. As in remark 1.1.8, the level 1 case is essentially the same de�nition,

without the level-N structure.
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2. In [Kat73], Katz also de�ned the q-expansion of any weak modular forms over a ring

R using the Tate curve. This curve is an elliptic curve over Z((q)) ⊗Z R where q is a

formal parameter at the cusp, see �3 of chapter V of Silverman's book [Sil94] for more

details. Loosely speaking, a modular form over R is a weak modular form whose value

at the Tate curve lies in Z[[q]]⊗Z R.

1.1.3 Analytic vs Katz modular forms

Level 1 case. A well known result from the theory of elliptic curves is that for any elliptic

curves E over C there exists a Z-lattice, i.e. a free Z-submodule Λ ⊂ C of rank 2, such that

E(C) ∼= C/Λ as complex Lie groups. Moreover, this lattice Λ is unique up to homothety.

This fact is known as the uniformization theorem of elliptic curves. More precisely, given

a Z-lattice Λ, there exists a Λ-invariant meromorphic function ℘Λ : C → C, called the

Weierstrass ℘-function, such that the following map

z + Λ ↦−→ [℘Λ(z) : ℘
′
Λ(z) : 1]

induces a complex Lie group isomorphism C/Λ ∼= E(C) where E is an elliptic curve which is

given by the equation

Y 2 = 4X3 − g2(Λ)X − g3(Λ),

with g2(Λ), g3(Λ) ∈ C. The numbers g2(Λ) and g3(Λ) can be de�ned explicitely using Eis-

enstein series and depends on Λ. Conversely, given an elliptic curve E/C as above together

with a nonzero di�erential ω, one may recover the lattice by considering the periods of ω:

Λ(E,ω) :=

{︃∫︂
ν

ω : ν ∈ H1(E(C),Z)

}︃
.

Taking ω to be the di�erential dX/Y on E, one may observe that it pulls back to the

Λ-invariant holomorphic di�erential dz on C/Λ. One sees that replacing ω by λω for some

nonzero λ ∈ C× has the e�ect of rescaling the lattice Λ by a factor of λ. Next, note that by

choosing a Z-basis {ν1, ν2} of the homology group H1(E,Z) we have

Λ(E,ω) = Zw1 ⊕ Zw2

where wi :=
∫︁
νi
ω. We may moreover suppose without loss of generality that Im(w1/w2) > 0

(i.e. w1/w2 ∈ H) so that we have

w−1
2 Λ(E,ω) = Λw := Zw ⊕ Z
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where w := w1/w2 ∈ H. One may show that for any γ =
(︁
a b
c d

)︁
∈ SL2(Z), we will have

Λγ(w) = (cw + d)Λw.

From the above discussion, if we have a level 1 Katz modular form f : (E,ω) ↦→ f(E,ω)

over C, then we can de�ne an elliptic modular form f∞ : H → C by f∞(w) := f(Λw, dz).

Level N case. Let E/C be an elliptic curve uniformized by the lattice Λ = Zw1 ⊕ Zw2

and let N > 1 be an integer. Given a tuple (E/C, αN) where αN : E[N ]
∼−→ (Z/NZ)2 is

a level-N structure. The choice of such level-N structure is equivalent to the choice of an

ordered basis of E[N ]. Moreover, using that E is uniformized by Λ, we get the following

group isomorphism:

E[N ] ∼= ⟨w1/N + Λ⟩ × ⟨w2/N + Λ⟩.

From this isomorphism, we consider the Weyl pairing

eN : E[N ]× E[N ]→ µN

where µN is the group of N -th roots of unity. Recall that the Weyl pairing is de�ned by

eN(P,Q) := e2πi det(γ)/N ,

where γ is a 2× 2 matrix with coe�cients in Z/NZ such that(︄
P

Q

)︄
= γ

(︄
w1/N + Λ

w2/N + Λ

)︄
.

De�nition 1.1.11. We de�ne E(N)/C to be the set of isomorphism classes of pairs (E, (P,Q))

where E/C is an elliptic curve and P and Q are two N -torsion points of E such that

eN(P,Q) = e2πi/N .

Proposition 1.1.12. The following map is a bijection:

Γ(N) \ H −→ E(N)

[w] ↦−→ (C/Λw, (w/N + Λw, 1/N + Λw)).

By the above discussion, an algebraic weak modular form f over C as given by de�nition

1.1.9 can be seen as a function on triples

f : (E/C, (P,Q), ω) ↦→ f(E/C, (P,Q), ω) ∈ C,
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where ω is a nonzero di�erential on E. Via proposition 1.1.12, we de�ne a function f∞ :

H → C by

f∞(w) := f(C/Λw, (w/N + Λw, 1/N + Λw), dz).

For similar reasons as in the level 1 case, the function f∞ is an analytic weak modular form

for Γ(N).

1.2 CM elliptic curves

Let K/Q be an imaginary quadratic �eld with ring of integer OK and �x an embedding

K ↪→ C. An elliptic curve E/C is said to have complex multiplication (or CM) by OK if

End(E) ∼= OK . Letting Ell(OK) denote the isomorphism classes of elliptic curves over C

with complex multiplication by OK , one may show that the ideal class group Cl(OK) is in

one-to-one correspondence with Ell(OK). Indeed, given a fractional ideal a, we may view it

as a lattice in C and consider the elliptic curve C/a. In particular, we have that E/C has

CM by OK if and only if E(C) ∼= C/Λw where Λw = Z + wZ and w ∈ K. In this case, we

say that w is a CM point of H.

The theory of CM elliptic curve is important from an arithmetic viewpoint because of

the following result:

Theorem 1.2.1. Let E/C be an elliptic curve with complex multiplication by OK and j-

invariant j(E), then Q(j(E)) is the Hilbert class �eld of K.

This theorem may be viewed as a rank 2 (the Z-rank of the lattice attached to an elliptic

curve) version of the Kronecker-Weber theorem which states that any �nite abelian extension

of Q is contained within some cyclotomic �eld. A consequence of theorem 1.2.1 is that any

elliptic curve with CM by OK is isomorphic with one that is de�ned over the Hilbert class

�eld of K.

1.3 Special values at CM points

The goal of this section is to give a proof of the following theorem:

Theorem 1.3.1. Let w ∈ H be a CM point and let f : H → C be a normalized eigenform

of weight k, level N ≥ 1 de�ned over a number �eld Qf , then there exists a nonzero period
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Ωw ∈ C× such that
f(w)

Ωk
w

∈ QfHQ(w).

Proof. Since w ∈ H is a CM point, it corresponds to a elliptic curve Ew/C having CM by

Q(w). By theorem 1.2.1, we may suppose that Ew is de�ned over the Hilbert class �eld of

Q(w), denoted Hw.

Next, since f is de�ned over Qf , it will correspond to an algebraic modular form f0 as

in de�nition 1.1.9. Let g : Hw → C be an embedding, then the pullback of the sheaf ωEw/Hw

by g is g∗ωEw/Hw = Ωwdz for some nonzero period Ωw ∈ C×. Therefore, we have

g∗f0(Ew, αN , ω) = f0(g
∗Ew, g

∗αN ,Ωwdz) = Ω−k
w f(w) ∈ QfHQ(w).

This theorem was �rst proven by Shimura in [Shi75] using di�erent techniques. For

reference, the proof described above can be found in [Urb14, �2.6]. The above proof will

constitutes a base frame for our proof in the Drinfeld setting, which can be found in section

4.6.

To conclude this section, we note that this theorem is interesting from an arithmetic

point of view because it relates modular forms, a notion of analytic �avor, with the Hilbert

class �eld of a quadratic imaginary �eld. In arithmetic, the Hilbert class �eld is an interesting

tool since its Galois group over the base �eld is isomorphic to the ideal class group of the

base �eld.
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Chapter 2

Drinfeld Modules

The origin of Drinfeld modules �rst date back to the work of Carlitz in 1935 who introduced

a function �eld analogue of cyclotomic polynomials [Car35]. Later, Drinfeld formalized the

concept by introducing what he called elliptic modules [Dri74]. Drinfeld used them in order

to prove a special cases of the Langlands conectures for GL2 for a function �eld.

Throughout this chapter and the subsequent ones, we let X/Fq be a smooth projective

curve over a �eld of cardinailty q and let K be the function �eld of X.We also �x ∞ to be a

closed point on X and de�ne A to be the ring of functions which are regular outside in�nity.

We let K∞ to be the completion of K with respect to ∞ and let C∞ be the completion of

an algebraic closure of K∞.

2.1 The ring of Fq-linear polynomials

Let F be any �eld of characteristic p. We denote by τ : α ↦→ αq the Frobenius endomorphism.

We de�ne F{τ} to be the endomorphism ring of elements of the form

α0τ
0 + α1τ + · · ·+ αnτ

n,

for n ≥ 0 and αi ∈ F . Note that the multiplication in F{τ} is the composition of morphisms,

so this ring is not commutative in general:

τα = αqτ. (2.1)

An element of F{τ} will be called a τ -polynomial over F .
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Proposition 2.1.1. The set F{τ} is in bijection with the set of Fq-linear polynomials over

F , that is the set of univariate polynomials P over F such that P (α + cβ) = P (α) + cP (β)

for every α, β ∈ F and c ∈ Fq.

Proof. The bijection is given by the identity on the scalars and by sending τ i to Xqi where X

is the variable of a univariate polynomial ring over F . It is now clear that any τ -polynomial

under this map is sent to a Fq-linear polynomial. Moreover, one can prove that any Fq-linear

polynomial is of the form
∑︁n

i=0 αiX
qi , see for example Prop. 1.1.5 of [Gos96].

Remark 2.1.2. The elements of these two sets will sometimes be identi�ed. However, one

needs to be careful here as the ring structures are incompatible. In order to di�erentiate

them, if P (τ) is a τ -polynomial, we will write P (X) to denote its representation as a Fq-

linear polynomial. Moreover, if P (X) is a Fq-linear polynomial, we will write P (τ) to denote

its reprentation as a τ -polynomial. In particular, for two such polynomials P and Q, the

notation P (τ)Q(τ) will mean the multiplication with the twisted rule (2.1) and the notation

P (X)Q(X) will mean the usual polynomial multiplication.

De�nition 2.1.3. Let P be a τ -polynomial over F given by

P (τ) = α0τ
0 + α1τ + · · ·+ αnτ

n, αi ∈ F, αn ̸= 0.

We de�ne degτ (P (τ)) := n. Note that we have deg(P (X)) = qdegτ (P (τ)), where deg is the

usual degree of a univariate polynomial. We also de�ne the derivative DX : F{τ} → F by

DXP (τ) :=
d
dX

P (X).

Since F is of characteristic q, we have DXP (τ) = a0.

Proposition 2.1.4. We have F{τ}× = F×.

Proof. Let P (τ) be a unit in F{τ} and suppose that degτ (P ) > 0. Then there exists

Q(τ) such that (P · Q)(τ) = τ 0. Letting dP := degτ (P ) and dQ := degτ (Q), we see that

0 = degτ (P ·Q) = ddPQ , hence we must have dQ = 0 and Q(τ) = cτ 0 for some nonzero c ∈ F .
However, since τc = cqτ , this implies that degτ (P ·Q) = degτ (P ) > 0, a contradiction.

Proposition 2.1.5. Every left ideal of F{τ} is principal. Moreover, if F is perfect, that is

τ is an automorphism of F , then every right ideal of F{τ} is principal.
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Proof. This is corollaries 1.6.3 and 1.6.6 in [Gos96].

Remarks 2.1.6. 1. The ring F{τ} is in fact the endomorphism ring of the additive group

scheme Ga/F ;

2. The divisibility properties of this ring were �rst studied by Ore in [Ore33]. More

generally, given a ring R, Ore de�ned the ring R[X;σ, δ] as the ring of univariate

polynomial in X over R satisfying the following rule:

Xr = σ(r)X + δ(r), ∀r ∈ R,

where σ : R → R is an automorphism and δ : R → R is a σ-derivation, i.e. a map

satisfying the σ-twisted Leibniz rule:

δ(rr′) = σ(r)δ(r′) + δ(r)r′.

In our case, σ is the q-Frobenius and the σ-derivation δ is the zero map. In literature,

this ring is sometime called a skew polynomial ring or an Ore polynomial ring.

2.2 Analytic theory

De�nition 2.2.1. An A-lattice in C∞ is a �nitely generated A-submodule Λ ⊂ C∞ which

is discrete for the topology of C∞. We de�ne the rank of Λ, denoted rank(Λ) to be its rank

as a �nitely generated projective submodule of C∞.

De�nition 2.2.2. Let Λ1 and Λ2 be two A-lattices of the same rank. We de�ne a morphism

from Λ1 to Λ2 to be an element c ∈ C∞ such that cΛ1 ⊂ Λ2. If we have equality, that is

cΛ1 = Λ2, then we say that Λ1 and Λ2 are homothetic. The category of A-lattices of rank r

in C∞ with the given notion of morphism will be denoted by LATr,A(C∞).

Example 2.2.3. Assume that A has class number equal to 1. In particular, the ring A will

be a principal ideal domain and thus every A-lattice of rank r > 0 in C∞ will be of the form

Λ = w1A+ w2A+ · · ·+ wrA

for some K∞-linearly independent elements wi ∈ C∞, 1 ≤ i ≤ r.
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De�nition 2.2.4. Let Λ be an A-lattice. For every z ∈ C∞, We de�ne the exponential

attached to Λ by the product

eΛ(z) := z
∏︂
λ∈Λ
λ̸=0

(︂
1− z

λ

)︂
.

Proposition 2.2.5. 1. eΛ(z) converges for every z ∈ C∞;

2. eΛ : C∞ → C∞ is a nonconstant entire function. In particular, it is surjective;

3. eΛ is Fq-linear.

Proof. See propositions 4.2.4 and 4.2.5 of [Gos96].

Corollary 2.2.6. The function eΛ : C∞ → C∞ induces an isomorphism of abelian groups

C∞/Λ ∼= Ga(C∞). (2.2)

Proof. By de�nition, we have ker(eΛ) = Λ. The result follows from the �rst isomorphism

theorem.

Remark 2.2.7. Returning to the classical case, we recall that any complex elliptic curve

satis�es E(C) ∼= C/Λ for some rank 2 lattice Λ ⊂ C. Thus, we will see (2.2) as an analogue

of this isomorphism. However, we point out that there is a crucial di�erence here as C/Λ is

not the whole complex space but a torus.

De�nition 2.2.8. Let a ∈ A be any nonzero element and Λ ⊂ C∞ any A-lattice. We de�ne

the following quantity

ϕΛ
a (X) := aX

∏︂
λ∈a−1Λ/Λ

λ ̸=0

(︃
1− X

eΛ(λ)

)︃
.

Theorem 2.2.9. Let Λ ⊂ C∞ be a A-lattice and let a ∈ A be any nonzero element. Then

1. ϕΛ
a (X) is a Fq-linear polynomial;

2. For z ∈ C∞, we have the following functional equation

eΛ(az) = ϕΛ
a (eΛ(z)).

Proof. See theorem 4.3.1 in [Gos96].
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De�nition 2.2.10. The map ϕΛ : A → C∞{τ}, a ↦→ ϕΛ
a is called the Drinfeld module

associated to Λ.

Proposition 2.2.11. Let ϕΛ1 and ψΛ2 be two Drinfeld modules associated to the A-lattices

Λ1 and Λ2 respectively. Let c ∈ C∞ be such that cΛ1 ⊂ Λ2 (i.e. c is a morphism from Λ1 to

Λ2). Then, the element c corresponds to a τ -polynomial Pc(τ) with coe�cient in C∞ such

that

1. Pc(τ)ϕ
Λ1
a (τ) = ϕΛ2

a (τ)Pc(τ) for all a ∈ A;

2. DXPc(τ) = c.

Proof. See [Gos96, Proposition 4.3.5].

Example 2.2.12. In this example, we let A = Fq[T ] and K be its fraction �eld. In 1935,

before the development of the notion of Drinfeld modules, Carlitz proved that the in�nite

product

z
∏︂
λ∈A
λ ̸=0

(︂
1− z

λ

)︂
converges [Car35]. Moreover, one can show that there exists a (not necessarily unique)

normalization period π̃ ∈ C∞ such that the exponential eπ̃A possesses the following expansion:

eπ̃A(z) =
∞∑︂
i=0

zq
i

Di

,

where Di is the product of all monic polynomials of degree equal to i. The period π̃ is de�ned

up to a (q− 1)-root of the polynomial T q − T in K∞. Throughout the rest of this thesis, we

�x such period and call it the Carlitz period. The Drinfeld module attached to the lattice

π̃A will be called the Carlitz module and we have

ϕπ̃A
T (τ) = T + τ.

A detailed exposition for this explicit example can be found in [Gos96, Chapter 3].

2.3 Algebraic theory

In this section, we �x a morphism of schemes j : S → Spec(A) so that S is a A-scheme. We

will denote its structural sheaf by OS. For any a ∈ A, we de�ne deg(a) := |A/(a)|.
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De�nition 2.3.1. A Drinfeld module of rank r over S is a pair (L, ϕ) consisting of a line

bundle L over S and a ring homomorphism

ϕ : A −→ EndS(L,+)

a ↦−→ ϕa

subject to the following condition: there exists a trivialisation of L by open a�ne A-

subschemes Spec(B) of S such that

ϕa|Spec(B) =

r deg(a)∑︂
i=0

biτ
i

with bi ∈ B such that

1. b0 = i(a) where i : A→ B is the associated morphism of ring;

2. br deg(a) is a unit in B.

If S = Spec(B) is an a�ne scheme for an A-algebra B, we say that the pair (L, ϕ) is de�ned

over B.

De�nition 2.3.2. A �eld F with a A-algebra structure given by a morphism i : A→ F will

be called a A-�eld. The kernel of i is called the characteristic of F . If ker(i) = (0) (i.e. i is

injective), then we say that F has generic characteristic, otherwise, we say that F is �nite

and F has �nite characteristic.

Example 2.3.3 (Drinfeld modules over A-�elds). Let F be a A-�eld. Since any line bundle

over S = Spec(F ) is trivial, a Drinfeld module over F will only be determined by the

morphism ϕ : A→ F{τ}. Moreover, since the Fq-algebra A is �nitely generated, we simply

need to know the values of the morphism ϕ at a set of generators. For example, if A = Fq[T ],

then a Drinfeld module ϕ of rank r over F is uniquely determined by

ϕT = i(T )τ 0 + g1τ + g2τ
2 + · · ·+ grτ

r,

where each gi are elements of F .

De�nition 2.3.4. Let (L, ϕ) and (L′, ϕ′) be two Drinfeld module over S. A morphism from

(L, ϕ) to (L′, ϕ′) is an element P ∈ HomFq(L,L
′) such that Pϕ = ϕ′P . A nonzero morphism

is called an isogeny.
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In the a�ne case, where ϕ and ϕ′ are de�ned over a A-�eld F , then a morphism from ϕ

to ϕ′ is simply a τ -polynomial P in F{τ} such that P (τ)ϕa(τ) = ϕ′
a(τ)P (τ) for all a ∈ A.

Furthermore, if A = Fq[T ], then the commuting condition needs to be veri�ed only at the

generator a = T .

Proposition 2.3.5. Let ϕ : Fq[T ]→ F{τ} be a rank r Drinfeld Fq[T ]-module over a Fq[T ]-

�eld F given by

T ↦→ g0(ϕ) + g1(ϕ)τ + · · ·+ gr(ϕ)τ
r.

Then, for any c ∈ F× and any i ∈ {0, . . . , r}, we have gi(c−1ϕc) = cq
i−1gi(ϕ).

Proof. This is proven by a direct calculation. Indeed, let c ∈ F× and let i ∈ {1, . . . , r}, then
we have

c−1gi(ϕ)τ
ic = c−1gi(ϕ)c

qiτ i = cq
i−1gi(ϕ)τ

i,

which shows that c−1ϕc = g0(ϕ) + cq−1g1(ϕ)τ + · · ·+ cq
r−1gr(ϕ)τ

r.

De�nition 2.3.6. We de�ne DMr,A(S) to be the category where the objects are Drinfeld

A-modules of rank r over an A-scheme S and the arrows are the morphisms as given by

de�nition 2.3.4.

2.4 Uniformization of Drinfeld A-modules over C∞

2.4.1 Analytic uniformization

In this section, our Drinfeld modules will be over C∞. Recall that in section 2.2, for any

A-lattice Λ we de�ned the associated Drinfeld module, denoted ϕΛ. This construction gives

us a functor

U : LATr(C∞) −→ DMr,A(C∞)

Λ ↦−→ ϕΛ

(cΛ ⊂ Λ′) ↦−→ Pc(τ)

where Pc(τ) is the τ -polynomial given by proposition 2.2.11.

Theorem 2.4.1 (Analytic Uniformization). The functor U is an equivalence of categories.

Proof. We refer the reader to theorem 4.6.9 of [Gos96] for the proof of that theorem.
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Remark 2.4.2. One main aspect of the proof of theorem 2.4.1 involves constructing the

logarithm associated to ϕ. We will de�ne and construct the logarithm in this remark for the

special case A = Fq[T ]. Let ϕ : A→ C∞{τ} be a rank r Drinfeld module over C∞ given by

ϕ : T ↦→ T + g1τ + · · ·+ grτ
r.

Then, we know that the exponential of ϕ, if it exists, is a power series of the form

eϕ(z) = z +
∑︂
i≥1

αiz
qi .

Supposing that the exponential exists, then there exists a compositional inverse, called the

logarithm of ϕ:

logϕ(z) = z +
∑︂
i≥1

βiz
qi .

Fixing a nonzero element a in A, we apply logϕ on both sides of the functional equation

eϕ(az) = ϕa(eϕ(z))

and we obtain

a logϕ(z) = logϕ(ϕa(z)).

Comparing the coe�cients on both sides of the above equation yields a recursive procedure:

aβi =
∑︂

n+m=i

βng
qn

m .

In particular, this procedure allows the construction of the logarithm using only the know-

ledge of the coe�cients g1, . . . , gr (it does not depend on the exponential). We may then

de�ne the exponential of ϕ to be the compositional inverse of the logarithm constructed as

so and then de�ne Λϕ := ker(eϕ). This last object will be the lattice associated with ϕ,

showing the surjectivity of the map Λ ↦→ ϕΛ.

2.4.2 The Drinfeld period domain

An important use of analytic uniformization is to describe the isomorphism classes of Drinfeld

modules as a quotient of a Drinfeld period domain. To put things in perspective, we recall

that, in the classical theory, the set of isomorphism classes of elliptic curves over C is in

one-to-one correspondence with the quotient SL2(Z) \H. We will see in the coming sections

that a similar fact holds true for Drinfeld modules.
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De�nition 2.4.3. We de�ne the Drinfeld period domain of rank r over C∞ to be

Ωr(C∞) := Pr−1(C∞) \ {K∞-rational hyperplanes}.

Remarks 2.4.4. 1. The space Ωr(C∞) admits the structure of a rigid analytic space and

we may therefore perform analysis on it. In the next chapter, we will study Drinfeld

modular forms which will be rigid analytic function f : Ω(C∞) → C∞ satisfying a

transformations properties under a group action.

2. Any element w ∈ Ωr(C∞) is represented uniquely of the form w = [w1 : . . . : wr−1 : 1].

Hence, from now on, we will identify the elements of Ωr(C∞) with the set of column

vectors

w = (w1, . . . , wr−1, 1)
T

such that w1, . . . , wr−1, 1 are K∞-linearly independent. If r = 2, then we simply have

Ω2(C∞) = C∞ \K∞.

De�nition 2.4.5. For any γ ∈ GLr(K) and w ∈ Ωr(C∞), we de�ne

γ(w) := j(γ, w)−1γw

where γw is the usual matrix multiplication and j(γ, w) is the last entry of this multiplication.

We will see in the following chapter that the map (γ, w) ↦→ γ(w) de�nes an action of

GLr(K) on Ωr(C∞).

2.4.3 Isomophism classes of Drinfeld Fq[T ]-modules over C∞

Fix r ≥ 2 an integer and let A = Fq[T ]. In this speci�c case, we will describe the set of

isomorphism classes of rank r Drinfeld module over C∞ as a quotient of the Drinfeld period

domain.

We �rst observe that since A is a principal ideal domain, any A-lattice Λ will be free of

rank r over A, that is

Λ = Aw1 ⊕ · · · ⊕ Awr−1 ⊕ Awr
∼= Ar (2.3)

as A-modules for some wi ∈ C∞ which are A-linearly independent. Note that the discreteness

condition of Λ in C∞ implies that w1, . . . , wr are linearly independent over the completion

K∞. Moreover, any A-lattice Λ of the form (2.3) is homothetic to the lattice

Λ′ = Aw1

wr
⊕ · · · ⊕ Awr−1

wr
⊕ A.
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For any, w ∈ Ωr(C∞), we will denote by Λw the associated A-lattice.

Proposition 2.4.6. Let w and w′ be two point in Ωr(C∞). Then, Λw and Λw′ are isomorphic

if and only if there exists γ ∈ GLr(A) such that γ(w) = w′.

Proof. Suppose there exists c ∈ C∞ such that cΛw = Λw′ where w = (w1, . . . , wr−1, wr)
T

and w′ = (w′
1, . . . , w

′
r−1, w

′
r)

T where wr = w′
r = 1. Then, since the wi and w′

i are A-linearly

independent, this is equivalent to the existence of a matrix γ := (ai,j)1≤i,j≤r in GLr(A) such

that ⎧⎨⎩ cw′
i =

∑︁r
j=1 ai,jwj, for 0 ≤ i ≤ r − 1;

c =
∑︁r

j=1 ar,jwj

(2.4)

We may rewrite these equations in the form cw′ = γw and observe that c = j(γ, w). Therefore

we get w′ = γ(w). We also get the converse of the proposition.

Corollary 2.4.7. For any γ ∈ GLr(A) we have Λγ(w) = j(γ, w)−1Λw.

Proof. It is a direct consequence of equations (2.4).

De�nition 2.4.8. Let L be a A-�eld. We denote the set of isomorphism classes of Drinfeld

modules over L of rank r by M r
1 (L).

Corollary 2.4.9. We have a one-to-one bijection between the two sets:

M r
1 (C∞)←→ GLr(A) \ Ωr(C∞).

Proof. By uniformization, the isomorphism classes of Drinfeld module over C∞ corresponds

to the isomorphism classes of A-lattices which is given by proposition 2.4.6.

2.5 Drinfeld modular varieties

In light of the last section, we now de�ne the Drinfeld modular curve with level stucture.

To some extent, corollary 2.4.9 described the level-1 Drinfeld modular curve. In parallel

with the classical theory, we can add extra structure to the isomorphism classes in order to

obtain the level-N Drinfeld modular curve, where N is an ideal of A. This new object is

more precisely a �ne moduli space which can be understood via the notion of representable

functors.
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De�nition 2.5.1. Let SCH be the category of schemes and SETS be the category of sets.

A functor F : SCH→ SETS is said to be representable by a scheme X if F is isomorphic to

the functor HomSCH(−, X). In this case, we will have

F(S) = HomSCH(S,X).

for any scheme S.

Remark 2.5.2. The set HomSCH(S,X) is often denoted simply by X(S) and called the set of

S-valued points of X. If S = Spec(R) for a ring R, we use X(R) := X(S) and we say that

it is the set of R-valued points of X.

For the rest of this section, we �x N to be any nonzero proper ideal of A.

De�nition 2.5.3. Let S be a scheme over K and let E = (L, ϕ) be a Drinfeld module of

rank r over S. A level-N structure on E is a A-linear isomorphism of group schemes over S

αN : (N−1/A)r
∼−→ ϕ[N ] :=

⋂︂
a∈N

ker(ϕa)

where (N−1/A)r is the constant group scheme over S with �bers (N−1/A)r.

De�nition 2.5.4. For any r ≥ 1 and any nonzero proper ideal N of A, we de�ne the functor

F r
N : SCH→ SETS sending any scheme S over K to the set of isomorphism classes of pairs

(E,α) where E is a Drinfeld module of rank r over S and α is a level-N structure.

Theorem 2.5.5 (Drinfeld). Let r ≥ 1 and let N be a nonzero proper ideal of A. Then the

functor F r
N is representable by a scheme M r

N over K. Furthermore, M r
N is a smooth a�ne

variety of dimension r − 1 of �nite type over K.

Proof. This is proposition 5.3 of [Dri74].

De�nition 2.5.6. The K-scheme M r
N will be called the Drinfeld modular variety of rank r

of level N .

A consequence of the representability of the functor F r
N by a schemeM r

N is the existence

of a universal object, called the universal Drinfeld module over M r
N and denoted (E , αN,E),

where E = (L, φ) is a Drinfeld module over M r
N and αN,E : (N−1/A)r ∼= φ[N ] is a level-N

structure. In particular, this object yields the following useful property: for any A-�eld
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F and any morphism ι : Spec(F ) → M r
N , the pullback of (E , αN,E) by ι corresponds to a

Drinfeld module of rank r over R together with a level-N structure.

The above construction describe the Drinfeld modular variety of level N , but one may

also de�ne it in a more general context, which we will brie�y describe over the next few lines.

De�nition 2.5.7. We denote the pro�nite completion of A by Â :=
∏︁

pAp and the associated

ring of �nite adèles by Af
K := Â⊗AK. The principal congruence subgroup of level N is de�ned

to be

K(N) := ker(GLr(Â)→ GLr(A/N)),

where GLr(Â)→ GLr(A/N) is simply the reduction modulo N .

De�nition 2.5.8. A subgroup K ⊂ GLr(Â) is called �ne if there exists a prime ideal p such

that the image of K in GLr(A/p) is unipotent (i.e. for every element γ in the image, γ − 1

is nilpotent).

More generally, one can construct the Drinfeld modular variety for any �ne subgroup K
of GLr(Â). Denoted by M r

K, this variety over K is normal integral and a�ne, see [Pin13, �1]

for more details. It turns out that, via analytic uniformization of Drinfeld modules, the set

of C∞-valued points of this variety can be made explicit:

Proposition 2.5.9. Suppose that K is �ne, then, we have an isomorphism of rigid analytic

spaces

M r
N(C∞) ∼= GLr(K) \ (Ωr(C∞)×GLr(A

f
K)/K).

Proposition 2.5.10. Let S(K) be a set of double coset representatives of

GLr(K) \GLr(A
f
K)/K

and set Γs := GLr(K)∩ sKs−1 for any s ∈ S(K). Then we have the following decomposition

of connected components

M r
K ×Spec(K) Spec(C∞) =

⨆︂
s∈S(K)

Ms

where Ms(C∞) ∼= Γs \ Ωr(C∞) as rigid spaces.

The proofs of the two last propositions may be found in various references, such as [Dri74,

�6], [Gek86, Chapter II], [Hub13] or [Pin13, �1].
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For the rest of the section, we use theorem 2.5.5 together with propositions 2.5.10 and

2.5.9 in order to describe how the associated lattice of a Drinfeld module scales with respect

to the group action. We �rst observe that the isomorphism classes of pairs (ϕ, αN); ϕ is a

Drinfeld module over C∞ and αN a level-N structure; is parametrized by a disjoint union of

rigid spaces of the form Γs \ Ωr(C∞). More precisely, if (w, s) ∈ Ωr(C∞) × GLr(A
f
K), then

we may de�ne the A-lattice

Λs
w := w∗(Kr ∩ sÂ

r
)

where w∗ : Kr
∞ → C∞ is the K∞-linear map

(a1, . . . , ar−1, ar) ↦−→ a1w1 + · · ·+ ar−1wr−1 + ar.

This A-lattice Λs
w comes equipped with a level-N structure

αs
N : (N−1/A)r

∼−−→ N−1Λs
w/Λ

s
w.

In particular, if w,w′ lie in Ωr(C∞) and s is a certain representative ofGLr(K)\GLr(A
f
K)/K(N),

then Λs
w and Λs

w′ will be homothetic if and only if w′ = γ(w) for some γ ∈ Γs. Furthermore,

from a similar calculation as in proposition 2.4.6, we get the following:

Proposition 2.5.11. Let s be a representative of the double coset GLr(K)\GLr(A
f
K)/K(N)

and let w,w′ ∈ Ωr(C∞). Then,

1. Λs
w and Λs

w′ are homothetic if and only if w′ = γ(w) for some γ ∈ Γs;

2. For any γ ∈ Γs, we have Λs
γ(w) = j(γ, w)−1Λs

w.

Therefore, if we endow the quotient C∞/Λ
s
w with a Λs

w-invariant di�erential dz, then,

replacing w by γ(w) for some γ ∈ Γs will have the e�ect of replacing dz by j(γ, w)−1dz.

Remark 2.5.12. In the next chapter, we will de�ne Drinfeld modular forms both analytically

and algebraically. The above proposition will be useful for our purpose, more precisely in

section 3.4.3, in order to pass from one de�nition to the other.
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Chapter 3

Drinfeld Modular Forms

Drinfeld modular forms were �rst introduced by Goss in his seminal thesis [Gos80b]. He

studied both the analytic and algebraic versions of Drinfeld modular forms. He moreover

de�ned explicit rank 2 examples such as the Eisentein series and proved their holomorphi-

city at in�nity. A few years later, Gekeler studied the coe�cients expansions at in�nity of

some explicit rank two forms [Gek88]. Despite the fact that Goss de�ned them for arbit-

rary ranks (i.e. ranks > 2), it tooks nearly thirty years until the higher rank theory was

further developed. In particular, we cite the works of Basson, Breuer and Pink [Bas14],

[BBP18a], [BBP18b], [BBP18c] and the work of Gekeler [Gek17]. We note that a particular

breakthrough is attributed to Pink for the construction of a Satake compacti�cation of the

Drinfeld modular variety of rank r [Pin13]. Pink used this compacti�cation in order to de�ne

algebraic Drinfeld modular forms as global sections of a certain sheaf on this variety.

In this chapter, we cover both the analytic and algebraic (à la Pink) de�nition of Drinfeld

modular forms of arbitrary ranks. We will also give some classical examples in order to shed

a bit of light on this notion.

3.1 Rigid analysis on C∞

The goal of this section is to give some intuition about the theory of rigid analytic spaces

which was originally developed by Tate [Tat71]. Our main reference will be the notes of

Schneider [Sch98].

The idea behind rigid analysis is to solve the problem that the topology of a non-
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archimedean complete �eld (take for example Qp) is totally disconnected. This implies that

we have a large supply of functions which are locally constant. Roughly, Tate's idea was to

rigidify the topology in order to develop a good notion of analyticity. We will specialize the

de�nitions over C∞, but the theory also generalize for arbitrary nonarchimedean complete

�elds.

First, we de�ne the Tate algebra of n variables

C∞⟨X1, . . . , Xn⟩ := {
∑︂

i1,...,in≥0

αi1,...,inX
i1
1 · · ·X in

n : αi1,...,in → 0 as |i1 + · · ·+ in| → ∞}.

By nonarchemedean analysis, this ring describes the multivariate power series converging on

the n-dimensional polydisk

Bn := {(z1, . . . , zn) ∈ Cn
∞ : max{|zi| ≤ 1}}.

The Tate algebra enjoy many interesting properties. For instance, it is noetherian and a

unique factorisation domain, Also, the maximal ideals of C∞⟨X1, . . . , Xn⟩ are in bijection

with Bn. An a�noid algebra A is consists of the Tate algebra quotiented by a (�nitely

generated) ideal. For the rest of the section, we let X := MaxSpec(A) consisting in the set

of maximal ideals of an a�noid algebra A. Moreover, for f ∈ A and a maximal ideal x ∈ X ,
we de�ne f(x) := f +x ∈ A/x which we view as an element of C∞ after �xing an embedding

A/x ↪→ C∞.

De�nition 3.1.1. For any element g, f1 . . . , fm ∈ A, we de�ne

X (f·
g
) := {x ∈ X : max

i
{|fi(x)|} ≤ |g(x)|}.

Any subset of X de�ned as above is called a rational subdomain.

The rational subdomains play a important role in rigid analysis for de�ning the so-

called Grothendieck topology. This last concept is not an actual topology, but a category

equipped with a notion of open set called admissible open and a notion of open covering

called admissible covering. We refer the reader to Schneider's notes for de�nitions [Sch98].

One can de�ne a presheaf on the rational subdomains of X , denoted OX , such that

OX (X (
f·
g
)) := A(f·

g
)

where A(f·
g
) := A⟨Y1, . . . , Yn⟩/⟨gY1 − f1, . . . , gYn − fn⟩. We note that A⟨Y1, . . . , Yn⟩ is the

multivariate power series ring in the variables Y1, . . . , Yn with coe�cients in A tending to-

wards zero.
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An important result by Tate is that the presheaf OX extends formally to a sheaf on

X with respect to the Grothendieck topology. We illustrate this in the case when n = 1.

Suppose that X = MaxSpec(C∞⟨X1⟩), then the rational subdomain X ( 1
X1

) is sent to the

annulus:

OX (X (
1

X1

)) = C∞⟨X1, X
−1
1 ⟩

= {
∑︂
i∈Z

αiX
i
1 : |ai| → 0 as |i| → ∞}

and the global sections are whole Tate algebra OX (X ) = C∞⟨X1⟩.

De�nition 3.1.2. An a�noïd subdomain consists in the set X = MaxSpec(A) for some

a�noïd algebra A endowed with the Grothendieck topology together with the structural

sheaf OX .

In analogy with the notion of complex variety, these a�noïd subdomains can be seen

as the building blocks for a general rigid analytic space. More precisely, a set X is a rigid

analytic space over C∞ if it admits an admissible covering X = ∪iUi where (Ui,OX |Ui
) is

isomorphic to an a�noïd space. An example of a rigid analytic space is Pr−1(C∞) for r ≥ 2.

3.2 The Drinfeld period domain of rank r

We recall the Drinfeld period domain of rank r over C∞ de�ned by:

Ωr(C∞) := Pr−1(C∞) \ {K∞-rational hyperplanes}.

Let H be a K∞-rational hyperplane. Then, H is de�ned by a linear form ℓH : Kr
∞ → K∞,

w =

⎛⎜⎜⎜⎜⎜⎝
w1

...

wr−1

wr

⎞⎟⎟⎟⎟⎟⎠ ↦−→ h1w1 + · · ·+ hr−1wr−1 + hrwr.

We consider the following norm on C∞

|w| := max
1≤i≤r

{|wi|},

and for any w ∈ Cr−1
∞ we de�ne

h(w) :=
1

|w|
inf{|ℓH(w)| : H is a K∞-rational hyperplane}.
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Note that h is invariant under scalar multiplication: h(µw) = h(w) for any µ ∈ C∞, hence it

is well de�ned on Ωr(C∞). To some extent, the function h measure the distance of a period

w ∈ Ωr(C∞) to all K∞-hyperplanes.

De�nition 3.2.1. For any positive integer n, we de�ne

Ωr
n(C∞) := {w ∈ Ωr(C∞) : h(w) ≥ |π̃|n}.

Theorem 3.2.2. For any positive integer n, the set Ωr
n(C∞) is an a�noïd subdomain of

Pr−1(C∞). Moreover, the collection {Ωr
n(C∞) : n ≥ 1} is an admissible covering of Ωr(C∞).

Proof. See Proposition 1 of [SS91].

Remark 3.2.3. Observe that de�nition 3.2.1 is equivalent to

Ωr
n(C∞) = Pr−1(C∞) \

⋃︂
H

H(|π̃|n)

where the union ranges over the set of K∞-hyperplanes and

H(|π̃|n) = {w ∈ Ωr(C∞) : |ℓH(w)| ≤ |π̃|n}.

Given two hyperplanes H1 and H2 de�ned by ℓH1 and ℓH2 , one can show that ℓH1 ≡
ℓH2 (mod π̃n) (coe�cientwise) if and only if H1(|π̃|n) = H2(|π̃|n) [SS91, Lemma 2]. In

particular, one may obtain that Ωr
n(C∞) is de�ned only by a �nite number of hyperplanes,

which is a key point in proving that it is an a�noïd domain.

An important consequence of theorem 3.2.2 is that Ωr
n is a rigid analytic space over K∞.

Therefore, if U ⊂ Ωr(C∞) is an admissible open, then a function is holomorphic on U if it is

a section of the structure sheaf at U of Ωr(C∞).

3.3 Analytic Drinfeld modular forms

3.3.1 Weak modular forms

Fixing a nonzero constant ξ ∈ C∞, we observe that any element of Ωr(C∞) is uniquely rep-

resented by a column vector w = (w1, . . . , wr−1, ξ)
t in Cr

∞ where w1, . . . , wr−1, ξ are all K∞-

linearly independent. Via the usual matrix multiplication, we have an action of GLr(K∞)

on Cr
∞. For any γ ∈ GLr(K∞), we denote the automorphy factor by

j(γ, w) := ξ−1(last entry of γw).
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Since ξ is nonzero, the last entry of γw is also nonzero, hence j(γ, w) ∈ C×
∞. Thus, we de�ne

an action of GLr(K∞) on Ωr(C∞) by

γ(w) := j(γ, w)−1γw.

Lemma 3.3.1. For any γ1, γ2 ∈ GLr(K∞), we have

j(γ1γ2, w) = j(γ1, γ2(w)) · j(γ2, w).

Proof. We will denote the last entry of a vector v in Cr
∞ by Projr(v). We have directly

j(γ1, γ2(w)) · j(γ2, w) = ξ−1Projr
(︁
γ1j(γ2, w)

−1γ2w
)︁
· j(γ2, w)

= ξ−1Projr(γ1γ2w) · j(γ2, w)−1j(γ2, w)

= j(γ1γ2, w).

A direct application of this lemma implies that:

Proposition 3.3.2. The map

GLr(K∞)× Ωr(C∞) −→ Ωr(C∞)

(γ, w) ↦−→ γ(w)

de�nes an action of GLr(K∞) on Ωr(C∞).

De�nition 3.3.3. A subgroup Γ of GLr(K∞) is said to be arithmetic if Γ is commensurable

with GLr(A), that is Γ ∩GLr(A) has �nite index in both Γ and GLr(A).

De�nition 3.3.4. Let Γ be an arithmetic subgroup of GLr(K∞) and let k and m be two

integers. We say that an holomorphic function f : Ωr(C∞) → C∞ is a weak modular form

of rank r, weight k and type m for Γ if for every γ in Γ, we have the following invariance

condition:

f(γ(w)) = det(γ)−mj(γ, w)−kf(w).

The space of weak modular forms of weight rank r, weight k and typem for Γ will be denoted

by Wan,r
k,m (Γ). If m = 0, we will simply denote it by Wan,r

k (Γ).
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Proposition 3.3.5. Let Γ be an arithmetic subgroup of GLr(K∞) and let k and m be two

integers.

1. If m ≡ m′ modulo | det(Γ)|, then Wan,r
k,m (Γ) =Wan,r

k,m′(Γ);

2. If k ̸≡ rm modulo |Γ ∩ F×
q |, then W

an,r
k,m (Γ) = 0.

where we see the elements of F×
q in GLr(K∞) as constant multiples of the identity matrix.

Proof. The �rst statement follows from the assumption that the group Γ is arithmetic and

thus its determinant, det(Γ) := {det(γ) : γ ∈ Γ}, is a subgroup of F×
q . This implies that

the order of det(Γ) divides q − 1 and thus the type depends only on the class of m modulo

| det(Γ)|.

For the second statement, we notice that if γ = c ∈ F×
q , then j(γ, w) = c and γ(w) = w.

Hence, we have on one hand f(γ(w)) = f(w) and on the other hand

f(γ(w)) = c−rm+kf(w).

Therefore, f ≡ 0 unless k ≡ rm modulo |Γ ∩ F×
q |.

3.3.2 Expansion at in�nity

In this subsection, we will de�ne what it means to be holomorphic at in�nity, which is the

main condition to add in order to de�ne modular forms. Let r ≥ 2 and consider the algebraic

subgroup U of GLr over K consisting of matrices of the form⎛⎜⎜⎜⎜⎜⎝
1 ∗ · · · ∗
0
... Idr−1

0

⎞⎟⎟⎟⎟⎟⎠ .

We note that, seeing the elements of Kr−1 as row vectors, we have an isomorphism of K-

vector spaces

i : Kr−1 −→ U(K)

v ↦−→

(︄
1 v

0 Idr−1

)︄
.

The matrices in U(K) may be seen as translations matrices. Thus, just like the classical the-

ory, it would be natural for Drinfeld modular forms to be translation-invariant. Fortunately,
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for any arithmetic subgroups Γ ≤ GLr(K), if we de�ne ΓU := Γ ∩ U(K), then we have the

following:

Proposition 3.3.6. Every weak modular form f for Γ is ΓU -invariant.

Proof. This result follows from the fact that for every γ ∈ ΓU and w ∈ Ωr(C∞), we have

det(γ) = 1 and j(γ, w) = 1.

Next, consider the pre-image:

Λ′ := i−1(ΓU) ⊆ Kr−1.

We see that Λ′ is a A-lattice since it is commensurable with Ar−1 (as Γ is commensurable with

GLr(A)). For any w ∈ Ωr(C∞) we denote by w1 and w′ the elements of C∞ and Ωr−1(C∞)

respectively such that w = ( w1

w′ ).

De�nition 3.3.7. Let w ∈ Ω(C∞). Under the same notation as above, we de�ne the

parameter at in�nity to be the function:

uw := uw′(w1) := eπ̃w′Λ′(w1)
−1.

Recall that π̃ is the Carlitz period. Its presence is for normalization purpose. Note that this

parameter depends on both w1 and w′ (hence it is a function of w). It plays a similar role

to the function q = e2πiw in the theory of elliptic modular forms.

Proposition 3.3.8. For any ΓU -invariant holomorphic function f : Ωr(C∞) → C∞, there

exists a unique sequence of holomorphic functions fn : Ωr−1(C∞)→ C∞ such that∑︂
n∈Z

fn(w
′)uw′(w1)

n (3.1)

converges to f(w1, w
′) on some neighborhood of in�nity and uniformly on every a�noïd

subset.

Proof. See Proposition 5.4 in [BBP18b].

The expansion (3.1) is called the u-expansion of a ΓU -invariant holomorphic function f .

If fn = 0 for every negative integers n, then we say that f is holomorphic at in�nity.
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3.3.3 De�nition of an analytic modular form

Let Γ be an arithmetic subgroup of GLr(K) and γ be any element of Γ. For any integers k

and m and any holomorphic function f : Ωr(C∞)→ C∞ we de�ne

f |k,mγ(w) := det(γ)mj(γ, w)kf(γ(w)).

By lemma 3.3.1, this de�nes an action of Γ on the set of holomorphic functions on Ωr(C∞).

De�nition 3.3.9. Let Γ be an arithmetic subgroup of GLr(K). A modular form of weight

k, type m for Γ is a weak modular form such that f |k,mγ is holomorphic at in�nity for any

element γ of Γ. The C∞-vector space of all such forms is denoted Man,r
k,m (Γ). If m = 0, we

simply writeMan,r
k (Γ).

Example 3.3.10. Suppose that r = 2 and A = Fq[T ]. Let k be any integer which is a

multiple of q − 1. Then, we de�ne the weight k Drinfeld Eisenstein series of rank 2 by

Ek(w) :=
∑︂

c,d∈Fq [T ]
(c,d)̸=(0,0)

1

(cw + d)k
.

One may show that Ek is a Drinfeld modular form of rank 2 for GL2(Fq[T ]), see for example

[Gos80a, �1.7] or [Gek88, (5.9)].

Example 3.3.11. Let r ≥ 2 and assume that A = Fq[T ]. Let w ∈ Ωr(C∞) written uniquely

of the form w = (w1, . . . , wr−1, 1)
T and consider

Λw := Aw1 ⊕ · · · ⊕ Awr−1 ⊕ A

the associated A-lattice. By uniformization, we de�ne

ϕw : A −→ C∞{τ}

T ↦−→ T + g1(w)τ + · · ·+ gr(w)τ
r

the corresponding Drinfeld module of rank r. For any γ ∈ GLr(Fq[T ]), corollary 2.4.7 tells us

that Λγ(w) = j(γ, w)−1Λw and, from proposition 2.2.11, the element j(γ, w)−1 ∈ C×
∞ de�nes

an isomorphism between ϕw and ϕγ(w):

j(γ, w)−1ϕwj(γ, w) = ϕγ(w).

By equating the coe�cients on both side, we observe that gi(γ(w)) = j(γ, w)q
i−1gi(w) for all

i between 1 and r.

42



Remark 3.3.12. The forms {gi}1≤i≤r are sometime called the coe�cients forms. More gen-

erally, for any a ∈ Fq[T ] and any i ∈ {1, . . . , r}, we de�ne the function ga,i : Ωr(C∞) → C∞

to be the i-th coe�cient of the τ -polynomial ϕw
a (τ):

ϕw
a (τ) = a+ ga,1(w)τ + · · ·+ ga,r(w)τ

r.

3.4 Algebraic modular forms

3.4.1 Invariant di�erentials and the Lie algebra

Let ϕ : A → C∞{τ} be a Drinfeld module over C∞. Recall that ϕ induces a A-module

action on Ga, the additive group scheme over C∞, given by (a, z) ↦→ ϕa(z) for any a ∈ A and

z ∈ C∞. By de�nition of the additive group scheme, Ga = Spec(C∞[z]) for some variable

z and therefore we may consider the module of ϕ-invariant di�erential Ωinv
ϕ/C∞

which will be

generated over C∞ by a di�erential dz such that d(ϕa(z)) = adz for any a ∈ A. Next, we

may also interpret this di�erential dz as an invariant di�erential on the quotient of C∞/Λ

where Λ is the lattice associated with ϕ. Indeed, recall that we have a commutative diagram

C∞/Λ C∞/Λ

C∞ C∞.

a

eϕ eϕ

ϕa

where the top arrow is the multiplication by a map and eϕ is the exponential de�ned by ϕ.

Then, by pulling back the di�erential dz to C∞/Λ, we get a di�erential dz on C∞/Λ such

that adz = d(az) and d(z + λ) = dz for any λ ∈ Λ.

Next, to de�ne the notion of modular forms in the manner of Pink, we will need the

dual notion of the module of di�erentials, which is the Lie algebra associated with a Drinfeld

module. For any Drinfeld module E = (L, ϕ) over a scheme S, there exists an invertible

sheaf Lie(E) de�ned as the Lie algebra of the line bundle L seen as a group scheme. The

general construction of this sheaf can be found in [Dem63]. In the a�ne case, if F is a A-�eld

and ϕ is a Drinfeld module over F , then the Lie algebra over F is

Lie(ϕ) = ker(Ga(F [ε])→ Ga(F ))

where ε is such that F [z]/(z2) = F [ε] and the map Ga(F [ε]) → Ga(F ) is the projection

x+ εy ↦→ x. One may show that Lie(ϕ) is isomorphic to the dual of the module of invariant

di�erential forms. A good reference about this topic is chapter 3 of [Mil13].
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3.4.2 Pink's de�nition

Let N be a nonzero ideal of A and consider M r
N , the Drinfeld modular variety of rank r for

the principal congruence subgroup of level N . Recall that we have an object (E , αN,E) where

E := (L, φ) is the universal Drinfeld module of rank r over M r
N whose �ber at each point

is the Drinfeld module that corresponds to that point and αN,E is a level-N structure. We

de�ne ωN to be the dual of the Lie algebra of E , in other words:

ω := HomOS-mod(Lie(E),OS).

We also recall that the adelic principal congruence subgroup is

K(N) = ker(GLr(Â)→ GLr(A/N)).

De�nition 3.4.1 (version 1). Let k be any integer and N be a nonzero ideal of A. The

space of (algebraic) weak modular forms of weight k for K is de�ned to be the global sections

of the k-th tensor of the sheaf ω:

Walg,r
k (N) := H0(M r

N ,ω
⊗k).

Remark 3.4.2. Pink also de�nes Drinfeld modular forms for arbitrary open compact sub-

groups of GLr(A
f
K). Let K be such subgroup. If K is �ne (its image in GLr(A/p) for some

prime ideal p is idempotent), then we have

Walg,r
k (K) := H0(M r

K,ω
⊗k).

When K is not �ne, then, we may choose a su�ciently divisible ideal N of A such that

K(N) ⊂ K and then Pink shows that the quotient K/K(N) acts on the space Walg,r
k (N), so

that he de�nes

Walg,r
k (K) :=Walg,r

k (N)K.

Pink moreover shows that this de�nitions is independent of the choice of N . For more details,

we refer the reader to de�nition 5.4 in [Pin13].

Using the decomposition of M r
N ×K C∞ into connected components given by proposition

2.5.10, one has:

Proposition 3.4.3. Let S(N) be a set of double coset representatives of

GLr(K) \GLr(A
f
K)/K(N).
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Then we have the following decomposition:

Walg,r
k (N)⊗K C∞ ∼= H0(M r

N ×Spec(K) Spec(C∞),ω⊗k) ∼=
⨁︂
s∈S

H0(Ms,ω
⊗k),

where each Ms is a connected component of M r
N ×Spec(K) Spec(C∞).

We denote by πs the projection of M r
N ×Spec(K) Spec(C∞) onto the connected component

Ms. We denote by ωan the invertible sheaf on the rigid analytic space M r
N(C∞) which comes

from ω.

Proposition 3.4.4. The pullback by πs induces an isomorphism

H0(Ms(C∞),ω⊗k
an )
∼=Wan,r

k (Γs).

Proof. See section 10 of [BBP18b].

In analogy to the classical case, there exists a Satake compacti�cation of the Drinfeld

modular variety, that we shall denoteM
r

N . In [Pin13], Pink gave an abstract charaterization

of this compacti�cation and proved that it is unique up to isomorphism. Moreover, the

universal Drinfeld module E extends to a generalized Drinfeld module, denoted E , which is

an extended notion of a Drinfeld module allowing variation of the rank. This allows us to

consider the sheaf ω to be the dual of of the Lie algebra of E and de�ne algebraic modular

forms.

De�nition 3.4.5. Let k be any integer. The space of (algebraic) modular forms of weight

k, rank r and level N is

Malg,r
k (N) := H0(M

r

N ,ω
⊗k).

For any s in S, we de�ne the space of algebraic modular forms of weight k and rank r for

Γs by

Malg,r
k (Γs) := H0(M s,ω

⊗k)

where M s is a connected component of M
r

N .

Proposition 3.4.6. We have an isomorphism of C∞-modulesMalg,r
k (Γs) ∼=Man,r

k (Γs).

Proof. This is lemma 10.7 of [BBP18b].
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Theorem 3.4.7. We have an isomorphism of C∞-modules:

Malg,r
k (N)⊗K C∞ ∼=

⨁︂
s∈S

Man,r
k (Γs).

Proof. See theorem 10.9 of [BBP18b].

3.4.3 Modular forms over A-algebras

As explained in the beginning of this chapter, Goss also introduced an algebraic theory of

Drinfeld modular forms [Gos80a, De�nition 1.4.1]. In essence, his de�nition is modeled after

Katz's version of classical modular forms. In this section, we consider a reformulation of

de�niton 3.4.1 inspired by Goss' de�niton. This de�nition will be useful for studying the

special values of Drinfeld modular forms at CM points.

Let R be a A-algebra and consider the a�ne A-scheme S = Spec(R). For any pairs

(E,αN) where E = (L, ϕ) is a Drinfeld A-module over R and αN a level-N structure, there

exists a unique morphism

ι : Spec(R)→M r
N

such that ι∗(E , αN,E) = (E,αN). Let ω be a basis of ι∗ω, so that under this choice of basis

we have

H0(Spec(R),ω⊗k) ∼= Rω⊗k.

Thus, if F is a weak modular form of weight k and level N in the sense of de�nition 3.4.1,

then there exists f(E,αN , ω) ∈ R such that

ι∗F (E , αN,E) = f(E,αN , ω)ω
⊗k.

Proposition 3.4.8. For any triple (E,αN , ω) and f as above, the rule

f : (E,αN , ω) ↦→ f(E,αN , ω) ∈ R

satis�es the following three properties:

1. The value f(E,αN , ω) ∈ R depends only on the isomorphism class of (E,αN , ω);

2. For any morphism g : Spec(R′)→ Spec(R), R′ an A-algebra, we have

f(g∗(E,αN , ω)) = g∗f(E,αN , ω);
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3. For all µ ∈ R×, we have

f(E,αN , µω) = µ−kf(E,αN , ω).

Proof. Let F be an algebraic weak modular form of weight k and level N and consider the

rule f de�ned as above. The �rst and second properties are clear from the de�nitions. Next,

to prove the third property, we take a unit µ in R and consider the basis µω of the global

sections of ω. On one hand, we have

ι∗F = f(E,αN , ω)ω
⊗k,

and on the other hand we have

ι∗F = f(E,αN , µω)(µω)
⊗k = µkf(E,αN , µω)ω

⊗k.

Therefore, the combination of these two expressions yields

f(E,αN , ω) = µkf(E,αN , µω).

De�nition 3.4.9 (Version 2). Let k be any integer and N a nonzero ideal of A. A (algebraic)

weak modular forms of weight k, rank r and level N over an A-algebra R is a rule f which

to each triple (E,αN , ω) where

(a) E = (L, ϕ) is a Drinfeld A-module over R;

(b) αN is a level-N structure;

(c) ω is a nonzero section of ω;

assigns an element f(E,αN , ω) ∈ R satisfying the conditions 1, 2 and 3 of proposition 3.4.8.

We will denote the set of such modular forms by Grk(N,R).

Remark 3.4.10. We de�ne a level 1 weak modular form over R as rule which to each pair

(E,ω), where E = (L, ϕ) is a Drinfeld A-module over R and ω is a nonzero section of ω,

assigns an element f(E,ω) ∈ R satisfying the aforementioned conditions.

Theorem 3.4.11. If R/K is an extension of A-�elds, then we have

Grk(N,R) ∼=W
alg,r
k (N)⊗K R

as R-modules.
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Proof. If F ∈ Walg,r
k (N)⊗K R, then one may obtain an element of Grk(N,R) via the method

described above proposition 3.4.8. Conversely, let f be a rule in Gr
k(N,R) and �x a scheme

morphism ι : Spec(R) → M r
N . The pullback of (E , αN,E) by ι is a pair (E,αN) where E is

a Drinfeld module over R and αN is a level-N structure. Then, we obtain an element of

Walg,r
k (N)⊗K R by setting

F (E,αN) := f(E,αN , ω)ω
⊗k.

We note that F is indeed independent of ω.

Recall that S(N) is de�ned to be a set of double coset representative of

GLr(K) \GLr(A
f
K)/K(N).

Corollary 3.4.12. We have the isomorphism of C∞-modules:

Grk(N,C∞) ∼=
⨁︂

s∈S(N)

Wan,r
k (Γs).

Proof. This follows from taking R = C∞ in theorem 3.4.11 and applying theorem 3.4.7.

We note that for any s ∈ S(N), we may seeMan,r
k (Γs) as a C∞-submodule of Grk(N,C∞).

Thus, letting ps : Grk(N,C∞)→Man,r
k (Γs) denote the projection map, we make the following

de�nition:

De�nition 3.4.13. Let f : Ωr(C∞) → C∞ be an analytic Drinfeld modular form of weight

k, rank r for Γs. We say that f is arithmetic if there exists a �nite extension Kf/K such

that

p−1
s (f) ∈ Grk(N,Kf ).

We also say that f is arithmetic over Kf .

For the rest of this section, we will explain how we may pass from the algebraic version

to the analytic version of a modular form. Let f ∈ Grk(N,C∞). Recall from section 2.5 that

for any s ∈ S(N) and w ∈ Ωr(C∞) there is a Drinfeld module ϕs
w over C∞ whose associated

A-lattice is

Λs
w = w∗(Kr ∩ sÂ

r
).

Moreover, this lattice comes with a level-N structure αs
N : (N−1/A)r

∼−→ N−1Λs
w/Λ

s
w. Then,

we de�ne a function f s
∞ : Ωr(C∞)→ C∞ by setting

f s
∞(w) := f(ϕs

w, α
s
N , dz)
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where dz is the invariant di�erential of ϕs
w. We recall that replacing w by γ(w) for any

γ ∈ Γs have the e�ect of replacing dz by j(γ, w)−1dz. A straightforward computation gives

f s
∞(γ(w)) = f(ϕs

γ(w), α
s
N , j(γ, w)

−1dz)

= j(γ, w)kf(ϕs
w, α

s
N , dz)

= j(γ, w)kf s
∞(w).

Therefore, we have proved:

Proposition 3.4.14. For any weak algebraic modular form f of weight k, rank r and level

N over C∞ and for any choice of representative s ∈ S(N), the associated function f s
∞ :

Ωr(C∞)→ C∞ is a weak analytic modular form of weight k and rank r for Γs.

Remark 3.4.15. Unlike the classical theory, there is no analogue of the Tate curve for Drinfeld

modular forms. As a consequence, we use Pink's compacti�cation of the Drinfeld modular

variety in order to de�ne algebraic modular forms which are holomorphic at in�nity.
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Chapter 4

Complex Multiplication

4.1 Drinfeld O-modules and the Picard group action

De�nition 4.1.1. An order O in K is a subring of A such that Frac(O) = K. If O = A,

then we say that O is the maximal order. A fractional O-ideal is a nonzero noetherian

O-submodule of K. The set of all nonzero fractional O-ideal is denoted by I(O). For any

fractional O-ideal a, we set
a∗ := {x ∈ K : xa ⊂ O}.

If aa∗ = O, we say that a is invertible and we de�ne I∗(O) to be the group of all invertible

fractional ideals. Note that if O is a Dedekind domain, then I∗(O) = I(O). We let P (O) be
the group of fractional O-ideals which are principal and we de�ne the Picard group of O to

be the quotient Pic(O) := I∗(O)/P (O).

In chapter 2, we considered Drinfeld modules over a A-�eld F as a morphism ϕ : A →
F{τ} as they were initially de�ned by Drinfeld in [Dri74]. In [Hay79], Hayes consider slightly

more general objects by replacing the ring A by any order O in K.

De�nition 4.1.2. A Drinfeld O-module of rank r over a O-�eld F (a �eld equipped with a

morphism i : O → F ) is a morphism ϕ : O → F{τ} such that for every a ∈ O we have

ϕa = i(a)τ + ga,1(ϕ)τ + · · ·+ ga,r(ϕ)τ
r,

where ga,i(ϕ) ∈ F and ga,r(ϕ) is nonzero. A morphism between two Drinfeld O-modules ϕ

and ψ over F of the same rank is an element P ∈ F{τ} such that Pϕa = ψaP for every

a ∈ O.
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Hayes also developed the analytic theory by proving a uniformization theorem between

Drinfeld O-modules and O-lattices which are discrete projective O-submodules of C∞. We

will omit the details as the theory is very similar to the one covered in sections 2.2 and 2.4.1.

For any O-lattice Λ we denote by eΛ and ϕΛ the attached exponential and the Drinfeld

O-module respectively.

Let a be any invertible fractional ideal. For anyO-lattice Λ of rank r, we let a∗Λ := a−1Λ.

If a = xO is principal, then we observe that a ∗ Λ = x−1Λ ∼= Λ. Therefore, the map

I∗(O)× (a,Λ) ↦→ a ∗ Λ (4.1)

induces an action of Pic(O) on the isomorphism classes of O-lattice of rank r.

Our next goal is to de�ne an action of the Picard group of O on the set of isomorphism

classes of Drinfeld O-modules of rank r and show that it is compatible with the action given

by (4.1).

Let O be an order of K and F be a O-�eld of generic characteristic which is a �nite

extension of K. Let ϕ : O → F{τ} be a Drinfeld O-module of rank r and let a be a nonzero

fractional ideal of O. We de�ne Iϕ,a to be the left ideal generated by the set {ϕa : a ∈ a}.
By proposition 2.1.5, left ideals are principal, hence Iϕ,a is generated by a unique monic

τ -polynomial denoted ϕa. We observe that the ideal Iϕ,a is �xed by multiplication on the

right by elements of the form ϕb for any b ∈ O. Indeed, since a is an ideal of O we have

ab ⊂ a for any b ∈ O and thus the commutativity of O implies ϕaϕb = ϕbϕa for any a ∈ a.

Therefore, for any a ∈ O, there exists ψa ∈ F{τ} such that ϕaϕa = ψaϕa. The association

a ↦→ ψa for all a ∈ O de�nes a Drinfeld O-module ψ. Note that its rank is also r since the

τ -polynomial ϕa de�nes a isogeny between ϕ and ψ. We de�ne

a ∗ ϕ := ψ.

Lemma 4.1.3. Let a and b be two fractional ideals of O and ϕ be a Drinfeld O-module of

rank r. We have:

1. if a = aO is principal, then a ∗ ϕ ∼= ϕ;

2. a ∗ (b ∗ ϕ) = (ab) ∗ ϕ.

Proposition 4.1.4. Let Λ be a O-lattice and ϕΛ be the associated Drinfeld O-module. For

an invertible fractional ideal a of O, we have

ϕa∗Λ = a ∗ ϕΛ.
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4.2 Field of de�nition of Drinfeld modules

In this section, we suppose that ϕ : O → C∞{τ} is a Drinfeld O-module of rank r of generic

characteristic.

De�nition 4.2.1. We say that a sub�eld F ⊂ C∞ is a �eld of de�nition of ϕ if there exists

a Drinfeld O-module ϕ′ isomorphic to ϕ such that ϕ′ has coe�cients in F . If F ⊂ F ′ for any

�eld of de�nition F ′, we say that F is minimal.

In what follows, we will give an explicit description of a minimal �eld of de�nition for ϕ.

We consider the ring K [{Xi}i≥1] and its fraction �eld K ({Xi}i≥1). We have a graduation

on K({Xi}i≥1) de�ned by

grad(Xi) := qi − 1, i ≥ 0.

De�nition 4.2.2. The �eld of formal invariants, denoted K ({Xi}i≥1)0, consists of the

homogeneous elements of degree zero. More precisely, we have

K ({Xi}i≥1)0 :=

{︃
f

g
∈ K ({Xi}i≥1) : grad(f) = grad(g)

}︃
.

For any a ∈ O we consider the τ -polynomial:

ϕa(τ) = a+ ga,1(ϕ)τ + ga,2(ϕ)τ
2 + · · ·+ ga,r deg(a)(ϕ)τ

r deg(a).

Setting ga,i(ϕ) := 0 if i > r deg(a), we have a substitution morphism

Sa,ϕ : K [{Xi}i≥1] −→ C∞

Xi ↦−→ ga,i(ϕ).

De�nition 4.2.3. We de�ne

Va,ϕ :=

{︃
f

g
∈ K [{Xi}i≥1] : Sa,ϕ(g) ̸= 0

}︃
.

This allows us to extend the domain of the morphism Sa,ϕ to Va,ϕ.

De�nition 4.2.4. For any a ∈ O, the �eld of invariants of ϕ at a is de�ned by

Ia(ϕ) := Sa,ϕ(Va,ϕ).

Proposition 4.2.5. Let a be any element of O. Then, the �eld Ia(ϕ) satis�es the following

properties:
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1. Ia(ϕ) depends only on the isomorphism class of ϕ.

2. For any �eld of de�nition F of ϕ, we have Ia(ϕ) ⊂ F , i.e. Ia(ϕ) is minimal.

3. If deg(a) > 0, then Ia(ϕ) is a �eld of de�nition of ϕ.

Proof. This is proposition 6.4 and theorem 6.5 of [Hay79].

Corollary 4.2.6. For any a ∈ A, the �eld Ia(ϕ) is independent of a.

Proof. Let a and b be two nonconstant polynomials. By point 2 of proposition 4.2.5, we

have simultaneously Ia(ϕ) ⊂ Ib(ϕ) and Ib(ϕ) ⊂ Ia(ϕ), therefore they must be equal.

Proposition 4.2.7. The Galois group Gal(C∞/K) acts on the isomorphism classes of rank

r Drinfeld O-modules over C∞ and the Galois action commutes with the action of Pic(O).

Proof. See proposition 8.1 in [Hay79]. The action of an automorphism σ on a Drinfeld

module ϕ is given coe�cient-wise:

σ(ϕa) = σ(a) + σ(g1)τ + · · ·+ σ(gr−1)τ
r−1 + σ(gr)τ

r.

De�nition 4.2.8. A �nite Galois extension HO/K such that ∞ splits completely and

Gal(HO/K) ∼= Pic(O)

is said to be a Hilbert class �eld of O.

Remark 4.2.9. Any Hilbert class �eld of O is unique up to isomorphism.

Theorem 4.2.10. Let ϕ : O → C∞{τ} be a rank 1 Drinfeld module. Then, the �eld of

invariants of ϕ is a Hilbert class �eld of O.

Proof. See proposition 8.4 of [Hay79].

4.3 The ring of endomorphism

Let ϕ be a rank r Drinfeld A-module over an A-�eld F . In this section, we present some

properties of the endomorphism ring of ϕ, de�ned by

EndF (ϕ) := {P ∈ F{τ} : Pϕa = ϕaP for all a ∈ A} .
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Proposition 4.3.1. Suppose that F has generic characteristic, then EndF (ϕ) is a commut-

ative ring.

Proof. Since F is of generic characteristic, we may embed it in C∞. Hence, without loss of

generality we suppose that F = C∞. By uniformization, we let Λ be the associated lattice

of ϕ. Then, the ring End(Λ) ⊂ C∞ is obviously commutative, from which we deduce the

commutativity of End(ϕ) as we have End(Λ) ∼= EndC∞(ϕ).

Proposition 4.3.2. EndF (ϕ) is a projective A-module.

Proof. The A-module structure comes from the fact that for any a in A, the τ -polynomial ϕa

is an endomorphism of ϕ. Indeed, for all b in A, the fact that ϕ : A→ F{τ} is a Fq-algebra

morphism together with the fact that A is commutative gives us:

ϕaϕb = ϕab = ϕba = ϕbϕa,

thus ϕa ∈ EndF (ϕ). We therefore have an action of A on End(ϕ) simply by the multiplication

of τ -polynomials (a, P ) ↦→ ϕa(τ)P (τ). Next, F{τ} is torsion free, hence the same property

holds for EndF (ϕ). Since A is a Dedekind domain, this is equivalent to saying that EndF (ϕ)

is projective.

Theorem 4.3.3. Let ϕ be a rank r Drinfeld module over F . Then the rank of EndF (ϕ) is

at most r2.

Proof. We give a sketch of the proof, following theorem 4.7.8 in [Gos96]. First, we will need

the following lemma whose proof may be found in Goss' book [Gos96, Proposition 4.6.2]:

Lemma 4.3.4. Let V be a �nite dimensional K-vector space of dimension d. Then, any

discrete A-submodule of V is �nitely generated over A and have an A-rank at most d.

Next, we �rst show that EndF (ϕ) is �nitely generated. Suppose that it is not, so we may

�x an in�nite sequence {ei}i≥1 of K-linearly independent elements. Then, setting

Vi := Ke1 ⊕ · · · ⊕Kei,

we obtain a strictly increasing sequence of K-vector spaces of dimension i. By lemma 4.3.4,

we have that Ei := Vi ∩EndF (ϕ) is �nitely generated of rank i over A. However, we observe

that, for any a ∈ A \ {0}, there exists an injection a−1Ei/Ei ↪→ a−1EndF (ϕ)/EndF (ϕ)

(indeed, if e ∈ a−1Ei and e ∈ EndF (ϕ), then e ∈ Ei), resulting in a contradiction.
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To prove that the rank of EndF (ϕ) is bounded by r2, one needs to prove that, for a prime

to the characteristic of F , the natural map

EndF (ϕ)⊗A A/(a)→ EndA(ϕ[a]) (4.2)

is injective, where ϕ[a] := {a ∈ A : ϕa = 0} is the set of a-torsion points of ϕ. A crucial

fact about this set of torsion points is that we have ϕ[a] ∼= (A/(a))r as A-module [Gos96,

Remarks 4.5.5]. Therefore, we will have rankA/(a)(End(ϕ[a])) = r2.

Recall that an isogeny between two Drinfeld modules ϕ and ψ is a nonzero morphism

P : ϕ→ ψ. The next result does not only concern endomorphisms of a Drinfeld module.

Proposition 4.3.5. Let P : ϕ → ψ be an isogeny between two Drinfeld modules ϕ and ψ.

Then there exists an isogeny P̂ : ψ → ϕ such that P̂P = ϕa and PP̂ = ψa for some nonzero

a in A.

Proof. This is proposition 4.7.13 of [Gos96].

If ϕ is de�ned over an A-�eld F of generic characteristic, then the above result together

with the fact that EndF (ϕ) is commutative implies that EndF (ϕ)⊗A K is a �nite extension

of K of degree at most r2. In fact, there exists a better bound on its degree:

Proposition 4.3.6. If F has generic characteristic, then EndF (ϕ) has rank at most r.

Proof. See corollary 3.20 of [Fli13].

4.4 Complex multiplication of Drinfeld modules

De�nition 4.4.1. A Drinfeld A-module ϕ over C∞ is said to be singular if EndC∞(ϕ) strictly

contains A. Furthermore, if the �eld

Kϕ := EndC∞(ϕ)⊗A K

is of degree r as an extension of K and if ∞ is inert in Kϕ, then we say that ϕ has complex

multiplication (or CM) by Kϕ.

Remark 4.4.2. The ring EndC∞(ϕ) is an order of Kϕ.
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Theorem 4.4.3. Let ϕ be a rank r CM Drinfeld A-module over C∞. Then, the minimal

�eld of de�nition of ϕ is the Hilbert class �eld of EndC∞(ϕ).

Proof. Let ϕ : A→ C∞{τ} be a rank r CM Drinfeld A-module. Observe that for any a ∈ A,
we have ϕa ∈ EndC∞(ϕ). Moreover, since the map de�ning any Drinfeld module is injective,

we can extend ϕ to a Drinfeld EndC∞(ϕ)-module

ψ : EndC∞(ϕ) −→ C∞{τ}

such that ψa = ϕa for any a ∈ A. Next, we claim that ψ has rank 1. Indeed, let v∞

be the valuation of K associated to ∞ and consider v′∞ its extension to Kϕ. Then, since

[Kϕ : K] = r and ∞ is inert in Kϕ, we have v∞ = v′∞/r. In particular, we compute

degτ (ψa(τ)) = rd∞v∞(a) = d∞v
′
∞(a),

where d∞ is the degree of ∞, proving the claim. By theorem 4.2.10, the minimal �eld of

de�nition of ψ is the Hilbert class �eld of EndC∞(ϕ).

Remark 4.4.4. We remark that in the de�nition of complex multiplication we assume that

∞ is inert in Kϕ, i.e. ∞ is still a prime in Kϕ. From the proof of the above theorem, we see

that this condition is important so that we can, in some way, reduce the rank of ϕ to one.

Then, via Hayes's theory of rank one Drinfeld modules, this rank reduction trick implies

that the minimal �eld of de�nition is the Hilbert class �eld of the CM �eld.

4.5 CM points of Ωr(C∞)

The goal of this section is to de�ne the notion of CM points in the Drinfeld period domain

of rank r and relate them to CM Drinfeld module by generalizing ideas of Hamahata. More

precisely, when A is Fq[T ], Hamahata proves that given w = (w1, . . . , wr−1, 1) in Ωr(C∞)

such that Kw = K(w1, . . . , wr−1) has degree exactly r over K and such that ∞ is inert in

Kw, then the Drinfeld A-module associated with the A-lattice

Λw = Aw1 ⊕ · · · ⊕ Awr−1 ⊕ A

has CM by Kw [Ham03, Theorem 3.6].

De�nition 4.5.1. Let w ∈ Ωr(C∞) and let Kw := K(w1, . . . , wr). Then w is a CM point if

and only if Kw/K has degree r and ∞ is inert in Kw. The �eld Kw is called the CM �eld.
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In our situation, the ring A is arbitrary and, in order to relate points of the period

domain to Drinfeld modules, we use the rigid analytic description of the Drinfeld modular

variety:

M r
N(C∞) ∼=

⨆︂
s∈S(N)

Γs \ Ωr(C∞)

where S(N) is a set of double coset representative of GLr(K) \ GLr(A
f
K)/K(N). Recall

from section 2.5 that for any pairs (w, s) ∈ Ωr(C∞) × S(N) there exists a Drinfeld module

ϕs
w whose associated A-lattice is Λs

w = w∗(Kr ∩ sÂ
r
). If we write w uniquely as a column

vector w = (w1, . . . , wr−1, 1)
T for some wi ∈ C∞ which are K∞-linearly independent, then

the lattice Λs
w satis�es

Λs
w ⊗A K = Kw1 ⊕ · · · ⊕Kwℓ−1 ⊕K.

In this case, we de�ne the following �eld

Kw := K(w1, w2, . . . , wr−1).

Proposition 4.5.2. If r = ℓ is a prime number and ϕs
w is singular, then the extension

Kw/K has degree ℓ.

Proof. Suppose that ϕs
w is singular and r = ℓ a prime number. Let Λs

w be the associated

lattice which satis�es

Λs
w ⊗A K = Kw1 ⊕ · · · ⊕Kwℓ−1 ⊕K.

Since ϕs
w is singular, there exists µ ∈ C∞ \A such that µΛs

w ⊂ Λs
w. Hence, we have a system

of ℓ linear equations: ⎧⎨⎩ µwi =
∑︁ℓ

j=1 ai,jwj, for 0 ≤ i ≤ ℓ− 1;

µ =
∑︁ℓ

j=1 ar,jwj

(4.3)

for ai,j ∈ K, 1 ≤ i, j ≤ r, where we set wℓ := 1. We may deduce two results from these

equations. First, we see that µ is a linear combination of the wi, and thus we get the following

inclusion

EndC∞(Λs
w)⊗K ⊂ Kw1 ⊕ · · · ⊕Kwℓ−1 ⊕K. (4.4)

Second, we claim that we must have [K(µ) : K] = ℓ. Indeed, the equations (4.3) are

equivalent to saying that µ is an eigenvalue of the matrix γ := (ai,j)1≤i,j≤ℓ with eigenvector

w. This implies that [K(µ) : K] divides ℓ, as µ is a root of the characteristic polynomial of

γ. Since µ ̸∈ K and ℓ is prime, this proves the claim.
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Now, by (4.4) and the de�nition of the element µ, we have the following inclusions of

K-vector spaces:

K(µ) ⊂ EndC∞(Λs
w)⊗K ⊂ Kw1 ⊕ · · · ⊕Kwℓ−1 ⊕K.

We may deduce that they all must be equal, as K(µ) and ⊕ℓ
iKwi are of dimension ℓ over K.

Since wi ∈ K(µ) for all i, we have K(µ) = Kw and therefore Kw/K is of degree ℓ.

Proposition 4.5.3. Let w ∈ Ωr(C∞) such that Kw/K is a �nite extension of degree r and

∞ is inert in Kw, then for any choice of s ∈ S(N), the Drinfeld module ϕs
w has CM by Kw.

Proof. Suppose that Kw/K is of degree r and choose µ ∈ Kw \K. Then, because the wi are

K-linearly independent, we have

Kw = Kw1 ⊕ · · · ⊕Kwr−1 ⊕K

= Λs
w ⊗A K,

and so µ(Λs
w ⊗A K) ⊂ Λs

w ⊗A K. As a A-module, the lattice Λs
w will be generated by

w1, . . . , wr−1, wr, . . . , wr+t for some t ≥ 0 and wr+j in C∞, j ∈ {0, . . . , t}. Therefore, for each
i between 1 and r + t we get

µwi =
r+t∑︂
j=1

ai,jwj.

for ai,j ∈ K. Since K is the fraction �eld of A, we can choose c ∈ A with enough factors

such that the product cai,j lies in A for every i and j. Thus cµ is in End(Λs
w) ⊗K and so

End(Λs
w) is an order of Kw with rank r.

Remark 4.5.4. Propositions 4.5.2 and 4.5.3 may be viewed as a generalisation for arbitrary

ring A (not necessarily A = Fq[T ]) of Hamahata's result [Ham03, Theorem 3.6].

4.6 Special values of Drinfeld modular forms

We are now ready to pesent the main contribution of this thesis, mainly an analogue of

Shimura's result on the special values of modular forms at CM points. The strategy of our

proof is to follow the lines of the classical result, that we described in section 1.3.

Let N be a nonzero ideal of A and consider the subgroups Γs such that

M r
N(C∞) ∼=

⨆︂
s∈S(N)

Γs \ Ωr(C∞).
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We �x a representative s ∈ S(N). For any Drinfeld module ϕ over an extension F/K, we

recall that ϕ[N ] denotes its group of N -torsion points, i.e. the set of roots in K of ϕa for all

a ∈ N .

Theorem 4.6.1. Let f : Ωr(C∞) → C∞ be a Drinfeld modular form of weight k rank r for

Γs which is arithmetic over a �nite extension Kf/K. Let w ∈ Ωr(C∞) be a CM point. Then

there exists a period Ωw ∈ C×
∞ such that

f(w)

Ωk
w

∈ Hw(N)Kf

were Hw(N) := Hw(ϕ
s
w[N ]) and Hw is the Hilbert class �eld of the CM �eld Kw.

Proof. Let w ∈ Ωr(C∞) be a CM point. Let ϕs
w be the associated Drinfeld module together

with its associated level-N structure αs
N : (N−1/A)r

∼−→ ϕs
w[N ]. By proposition 4.5.3, the

Drinfeld module ϕs
w has CM by Kw and thus, by theorem 4.4.3, its minimal �eld of de�nition

is the Hilbert class �eld of EndC∞(ϕ), denoted Hw. We may therefore assume that it is

de�ned over Hw, otherwise we replace it by an isomorphic Drinfeld module de�ned over Hw.

In particular, the pair (ϕs
w, α

s
N) will be de�ned over Hw(N).

Next, since f is arithmetic over Kf , it corresponds to an algebraic modular form F ∈
Gk(N,Kf ) such that ps(F ) = f where ps : Grk(N,Kf ) ↠Man,r

k (Γs) is the projection. Fixing

an embedding Kf ↪→ Hw(N)Kf , we see F as an element of Gk(N,Hw(N)Kf ) and so we may

evaluate it at the triple (ϕs
w, αN , ω) for any nonzero section ω of ω:

F (ϕs
w, αN , ω) ∈ Hw(N)Kf .

Let Hw(N)Kf ↪→ C∞ be an embedding and consider the induced scheme morphism

g : Spec(C∞)→ Spec(Hw(N)Kf ).

The pullback of ω by g is a nonzero section of the invertible sheaf g∗ω = C∞dz where dz is

the invariant di�erential of ϕs
w. Therefore, we have g

∗ω = Ωwdz for some nonzero constant

Ωw of C∞. By the weight k property of an algebraic modular form, we have the following

relation:

F (ϕs
w, αN , ω) =

F (ϕs
w, αN , dz)
Ωk

w

.

Since ps(F ) = f and f(w) = F (ϕs
w, αN , dz), we conclude that f(w)/Ωk

w ∈ Hw(N)Kf .
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Remark 4.6.2. 1. It is still unknown whether the set of CM points is dense in Ωr(C∞).

This fact would imply a converse of the above theorem.

2. This result states only the existence of the period Ωw. It could be interesting to

construct it explicitely. We will see in the next section that for A = Fq[T ], one can

obtain an explicit value for the period.

3. One can relax the notion of complex multiplication of a Drinfeld module by simply

assuming that the �eld End(ϕ)⊗K is of degree r over K, without requiring that ∞ is

inert in it. In this case, the same proof implies that f(w)/Ωk
w ∈ FwKf where Fw is an

extension of Kw = End(ϕs
w)⊗K.

As a consequence of theorem 4.6.1, we are now able to prove the analogue of Shimura's

result:

Corollary 4.6.3. Let f : Ωr(C∞)→ C∞ be a Drinfeld modular form of weight k for GLr(A)

which is arithmetic over K. Let w ∈ Ωr(C∞) be a CM point. Then, there exists a period

Ωw ∈ C∞ such that f(w)/Ωk
w ∈ Hw.

Proof. Since f is of level 1, there exists an ideal N ⊂ A such that K(N) is �ne and f is of

level N (see remark 3.4.2). We will view f as an element of G(N,K). Let w ∈ Ωr(C∞) be a

CM point, then for any representative s ∈ S(N) and any level-N structure αN : (N−1/A)
∼−→

ϕs
w[N ] we have f(ϕs

w, αN , ω) ∈ Hw(N) where ω is a nonzero section of ω. Then, by the base

change property of algebraic modular forms, for any automorphism σ ∈ Gal(Hw(N)/Hw) we

have

σ(f(ϕs
w, αN , ω)) = f(ϕs

w, σ ◦ αN , ω).

We note that ϕs
w has CM by Kw, so it is de�ned over Hw and therefore it is �xed by σ. The

same fact applies to the section ω. We also observe that since f is of level 1, its value at a

triple (ϕs
w, αN , ω) does not depends on the choice of the level structure. Therefore we have

σ(f(ϕs
w, αN , ω)) = f(ϕs

w, αN , ω) for all σ ∈ Gal(Hw(N)/Hw) which implies

f(ϕs
w, αN , ω) ∈ Hw.

Finally, we obtain the desired result by pulling back to C∞.
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4.7 The case A = Fq[T ]

In this section, we �x A = Fq[T ] and we consider modular forms over the full group GLr(A).

Results in the direction of theorem 4.6.1 for this speci�c case have already been known in

rank two by Chang [Cha12, �2.2] and in arbitrary ranks by Chen and Gezmi³ [CG23, �6.2].

We will present the result of Chen and Gezmi³ in this section. Beforehand, we need some

preliminary de�nitions and results.

First, let w = [w1 : . . . : wr−1 : 1] be a point in Ωr(C∞) and let Λw be the associated

lattice. We denote the associated Drinfeld module by

ϕw : T ↦→ T + g1(w)τ + · · ·+ gr−1(w)τ
r−1 + gr(w)τ

r.

where gi : Ωr(C∞)→ C∞ are Drinfeld modular forms of weight qi−1 and type 0 for GLr(A).

For any 1 ≤ i ≤ r − 1, we set gnewi := π̃1−qigi. In the rank two case, this normalization has

the e�ect of removing the transcendental parts in the coe�cient of expansion at in�nity of

the form g1.

Second, through the work of Gekeler [Gek17, Theorem 3.8], there exists a Drinfeld mod-

ular form of weight (qr − 1)/(q − 1) and type 1 for GLr(A), denoted hr which satis�es the

relation:

hq−1
r (w) =

(−1)r

T
gnewr (w).

The importance of the coe�cient forms gi and the function hr comes from the following

result:

Proposition 4.7.1. Let Mr
• be the graded ring of Drinfeld modular forms of rank r for

GLr(A) and arbitrary type. Then

Mr
•
∼= C∞[g1, . . . , gr−1, hr]

as C∞-algebra. Moreover, the subringMr,0
• ⊂Mr

• of forms of type 0 is

Mr,0
•
∼= C∞[g1, . . . , gr−1, gr].

The proof of the above result may be found in [BBP18c, Theorem 17.5]. Using this result,

we say that a Drinfeld modular form f of rank r is arithmetic if f lies in K[gnew1 , . . . , gnewr−1, hr].

Next, Chen and Gezmi³ consider a relaxed notion of CM Drinfeld modules in the sense

that they don't require the place ∞ to be inert in the CM �eld. More precisely, a Drinfeld
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module ϕ over C∞ is said to be CM if End(ϕ) ⊗A K has degree r over K. The e�ect of

considering this de�nition is that the minimal base �eld of a CM Drinfeld module will not

be the Hilbert class �eld of the CM �eld in general. Assuming this relaxed notion of CM

Drinfeld modules, we de�ne the notion of CM points in Ωr(C∞) accordingly.

From now on, we �x a CM point w in Ωr(C∞) and let ϕw be the associated CM Drinfeld

module. We moreover choose an element λw ∈ C×
∞ so that gr(w)λ1−qr

w = 1. Then, Chen and

Gezmi³ proves the following theorem [CG23, Theorem 6.5]:

Theorem 4.7.2. Let f be an arithmetic Drinfeld modular form of weight k and type m for

GLr(A). Then we have
f(w)

Ωk
w

∈ K,

where Ωw := λw/π̃.

In particular, this theorem states that the special value of a Drinfeld modular form at

a CM point is transcendental over K. Moreover, Chen and Gezmi³ make use of the above

theorem in order to prove the transcendence of some special functions at CM points [CG23,

Theorem 6.11]. Our result, theorem 4.6.1, indicate that their result might be generalizable

for arbitrary ring of function A and therefore obtain a more precise description of the period

Ωw.
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Part II

Computations: Classical Case and

Function Field case
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The idea behind digital computers may

be explained by saying that these

machines are intended to carry out any

operations which could be done by a

human computer.

Alan Turing, [Tur50]
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Chapter 5

Graded Rings of (Quasi)modular Forms

In this chapter, we give a brief review of quasimodular forms in SageMath and then explain

some related algorithmic aspects. In particular we showcase a SageMath implementation

of the graded ring of modular and quasimodular forms in the software. More precisely, we

enhanced signi�cantly the implementation rings of classical modular forms and completely

added the support of quasimodular forms.

5.1 Background material

5.1.1 Quasimodular forms

Let k ≥ 4 be an integer. We recall that the (normalized) weight k Eisenstein series for

SL2(Z) is de�ned by

Ek(z) :=
1

2ζ(k)

∑︂
(c,d)∈Z2\(0,0)

1

(cz + d)k
. (5.1)

The sum de�ning Ek is uniformly and absolutely convergent for every z ∈ H and k ≥ 4.

Moreover, it admits the following expansion at in�nity:

Ek(z) = 1− 2k

Bk

∑︂
n≥1

σk−1(n)q
n,

where Bk is the k-th Bernoulli number de�ned by the expansion

xex

ex − 1
=
∑︂
k≥0

Bk

k!
xk.
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One may generalize (5.1) to the case k = 2. However, in this case the de�ning sum is not

absolutely convergent anymore, and so the value of the summation depends of its ordering.

Therefore, we choose the following ordering:

G2(z) :=
∑︂

d∈Z\{0}

1

d2
+

∑︂
c∈Z\{0}

∑︂
d∈Z

1

(cz + d)2

which brings us to the de�nition:

De�nition 5.1.1. For z ∈ H, the (normalized) weight 2 Eisenstein series is de�ned by

E2(z) :=
1

2ζ(2)
G2(z) = 1 +

1

2ζ(2)

∑︂
c∈Z\{0}

∑︂
d∈Z

1

(cz + d)2
.

Remark 5.1.2. In what follows, we will loose the adjective "normalized" and simply use the

terminology "weight k Eisenstein series" in order to denote the series Ek for any even k ≥ 2.

Proposition 5.1.3. Let z be in the complex upper half plane. Then, we have:

1. the series E2(z) admits the expansion: E2(z) = 1− 24
∑︁

n≥1 σ1(n)q
n;

2. for any γ =
(︁
a b
c d

)︁
in SL2(Z), we have (E2|2γ)(z) = E2(z)− 6

πi

(︁
c

cz+d

)︁
.

We see from the above propostion that the weight 2 Eisenstein series is very close to

being a modular form. For that reason, it is called a quasimodular form. The following

de�nition is taken from [Zag08, section 5.3]:

De�nition 5.1.4. Let Γ ≤ SL2(Z) be a congruence subgroup. Let k and p ≥ 0 be two

integers. An holomorphic function f : H → C is said to be a quasimodular form of weight k

and depth at most p for Γ if there exists holomorphic functions fi : H → C, i ∈ {0, . . . , p},
such that

(f |kγ)(z) =
p∑︂

i=0

fi(z)

(︃
c

cz + d

)︃i

(5.2)

for any γ =
(︁
a b
c d

)︁
in Γ and any z in H. The depth of f is the largest i for which fi is not

identically zero. The set of all quasimodular form of weight k and depth at most p for Γ is

denoted ˜︂M≤p
k (Γ). We will also use the following notation

˜︂Mk(Γ) :=
∞∑︂
p=0

˜︂M≤p
k (Γ)
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in order to denote the set of quasimodular form of �xed weight and arbitrary depth. The

graded ring of quasimodular forms is denoted

˜︂M•(Γ) :=
⨁︂
k≥0

˜︂Mk(Γ).

Remark 5.1.5. The terminology "quasimodular forms" was �rst introduced by Kaneko and

Zagier in [KZ95]. Their original de�nition was crafted via the theory of nearly holomorphic

modular forms. More precisely, a nearly (or almost) holomorphic modular form of weight k

and depth at most p is a function F : H → C which is invariant under the |k-operator and
can be written as a polynomial in Y := (−4πIm(z))−1 with holomorphic coe�cients:

F (z) = f0(z) + f1(z)Y + · · ·+ fp(z)Y
p.

Kaneko and Zagier then de�ne a quasimodular form to be the constant term f0(z) of this

polynomial. The map sending a nearly holomorphic modular form to its constant term de�nes

a bijection between the two sets. One advantage of working with nearly holomorphic modular

forms is that we keep the |k-invariance property at the cost of loosing the holomorphic

properties. On the quasimodular side, we keep the holomorphic properties while loosing the

|k-invariance.

Proposition 5.1.6. Let f be a quasimodular form of weight k and depth at most p for Γ

and let fi, i ∈ {0, . . . , p}, be the holomorphic functions de�ned by (5.2). Then each fi is a

quasimodular form of weight k − 2i for Γ of depth at most p− i.

Proof. See proposition 3.3 of [Roy12].

Corollary 5.1.7. Under the notations of proposition 5.1.6, if f has depth exactly p then the

function fp is a modular form of weight k − 2p.

Proof. This follows simply by the fact that any quasimodular form of depth 0 is a modular

form.

Theorem 5.1.8. Let Γ be a congruence subgroup and k and p ≥ 0 be two integers, then we

have ˜︂M≤p
k (Γ) ∼=

p⨁︂
j=0

Mell
k−2j(Γ)E

j
2.
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Proof. We proceed by induction on the depth. First, we observe that, by de�ntion, any

weight k quasimodular form of depth 0 is in fact a modular form. Next, let f be a quasimod-

ular form of weight k and depth p for Γ and let fi, i ∈ {0, . . . , p}, be the holomorphic function

satisfying (5.2). Then, we claim that the function

h(z) := f(z) + (−1)p−1

(︃
iπ

6

)︃p

fp(z)E2(z)
p

has depth at most p− 1. Indeed, a simple calculation yields

(h|kγ)(z) = (f |kγ)(z) + (−1)p−1(cz + d)−k

(︃
iπ

6

)︃p

fp(γz)E2(γz)
p

= (f |kγ)(z) + (−1)p−1(cz + d)−k+2pfp(γz)

(︃
iπ

6
E2|2γ(z)

)︃p

=

p∑︂
j=0

fj(z)

(︃
c

cz + d

)︃j

+ (−1)p−1fp(z)

(︃
iπ

6
E2(z)−

c

cz + d

)︃p

,

where on the last equality we have used the fact that fp is a modular form of weight k− 2p.

Expanding the last term using the binomial theorem, we see that h have depth at most p−1

and, by the induction hypothesis, it must lie in ⊕p−1
j=0Mell

k−2j(Γ)E
j
2. This gives us

f(z) = h(z) + (−1)p
(︃
iπ

6

)︃p

fp(z)E2(z)
p ∈

p⨁︂
j=0

Mell
k−2j(Γ)E

j
2,

as desired.

Corollary 5.1.9. Every weight k quasimodular form for Γ have depth at most ⌈k
2
⌉.

Proof. For any j ≥ ⌈k
2
⌉, we have k − 2j ≤ 0. Thus Mell

k−2j(Γ) = 0 and the result follows

from theorem 5.1.8.

Corollary 5.1.10. ˜︂M•(Γ) =Mell
• (Γ)[E2].

De�nition 5.1.11. For any holomorphic function f : z ↦→ f(z), we de�ne the derivative

Df :=
1

2πi

df
dz
.

If f is a weight k modular form for Γ which admits a q-expansion of the form
∑︁

n an(f)q
n,

then we have Df = q df
dq
.
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De�nition 5.1.12. For any modular form f of weight k for Γ, we de�ne the weight k Serre

derivative by

θkf := Df − k

12
E2f.

Proposition 5.1.13. θk sends any weight k modular form to a weight k + 2 modular form.

Proof. One need to simply verify that θkf is |k-invariant for every γ in Γ, which is a straight-

forward computation.

Via theorem 5.1.8 and the de�nition of the operator θk, one can prove:

Proposition 5.1.14. Let Γ be a congruence subgroup of SL2(Z). For any k and p ≥ 0, we

have

D(˜︂M≤p
k (Γ)) ⊂ ˜︂M≤p+1

k (Γ).

5.1.2 Graded rings of (quasi)modular forms

We recall the ring of modular forms:

Mell
• (Γ) :=

⨁︂
k∈Z

Mell
k (Γ).

This ring is in fact a graded Z-algebra where the graduation is given by the weight of a

modular form f .

Proposition 5.1.15. Mell
• (Γ) is of �nite type.

Proof. This is théorème 3.4 of [DR73, p. 303].

In the case of the full modular group, we recall that Mell
• (SL2(Z)) is generated by E4

and E6 and these two Eisenstein series are algebraically independent, meaning that

Mell
• (SL2(Z)) ∼= C[E4, E6].

For a general congruence subgroup Γ, this is not necessarily the case as there can be some

relations between the generators of the ring. In other words, we will have

Mell
• (Γ) ∼= C[g1,k1 , g2,k2 , . . . , gn,kn ]/IΓ

where for each i ∈ {1, . . . , n}, gi,ki is a modular form in Mki(Γ) and IΓ is some ideal

in C[g1,k1 , g2,k2 , . . . , gn,kn ]. Even thought the exact structure of these modular forms rings
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remains to be discovered, some advancement have been made in that direction during the

past years. For example, in

Example 5.1.16. We considerMell
• (Γ0(3)). Then in section 5.5 we will see thatMell

• (Γ0(3))

is generated by three modular forms g1,2, g2,4 and g3,6. One may also verify using computa-

tional method that we have the following example:

−g41,2 + 6g21,2g2,4 − 8g1,2g3,6 + 3g22,4 = 0.

5.1.3 Sturm bounds

We end the section on background material by stating an essential tool when computing

with modular forms. This tool is the Sturm bound and it allows to determine whether any

form in Mell
k (Γ1(N)) is identically zero or not simply by computing a �nite number of its

Fourier coe�cients.

Theorem 5.1.17 (Sturm bound). Let Γ be a congruence subgroup containing
(︁
1 1
0 1

)︁
and let

f be a form inMell
k (Γ) which admits the q-expansion f =

∑︁
n≥n0

an(f)q
n for some n0 ∈ Z≥0.

If we have

n0 >

⌊︃
k[SL2(Z) : Γ]

12

⌋︃
then f ≡ 0.

Proof. This result can be proven by studying the valence formula of a modular form. A

proof can be found in the original paper of Sturm [Stu87, Theorem 1].

In the speci�c case where Γ = Γ1(N) for some integer N , then one may get a better

bound for modular forms with �xed character:

Proposition 5.1.18. Let χ be a Dirichlet character modulo N and let f be a form in

Mell
k (N,χ) with q-expansion f =

∑︁
n≥n0

an(f)q
n for some n0 ∈ Z≥0. If we have

n0 >

⎢⎢⎢⎣kN
12

∏︂
p|N

(1 + 1/p)

⎥⎥⎥⎦
then f ≡ 0.

Proof. See corrolary 9.20 of [Ste07]. We note that [SL2(Z) : Γ0(N)] = N
∏︁

p|N(1 + 1/p), see

for example [DS05, �1.2].
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De�nition 5.1.19. Given a congruence subgroup Γ, the quantity

Bk(Γ) :=

⌊︃
k[SL2(Z) : Γ]

12

⌋︃
is called the Sturm bound of weight k for Γ.

5.2 Classical modular forms in SageMath

5.2.1 Spaces of modular forms

In this section, we give a brief overview of modular forms in SageMath and their imple-

mentation. A recurring challenge when implementing a general mathematical object into a

computer program is �nding the right data to use in order to represent the object with most

of its properties in the most e�cient way. For example, to represent a univariate polynomial

a0 + a1X + · · ·+ aiX
i + · · ·+ adX

d, ai ∈ Q

one could think of at least two ways of doing it. First, by storing the coe�cients in an

ordered list

[a0, a1, . . . , ai, . . . , ad]

where the coe�cient ai is at position i in the list. Second, one could store a list of tuples

[(an0 , n0), . . . , (ani
, ni), . . . , (and

, nd)]

where ani
is the i-th nonzero coe�cient of the polynomial and ni is the degree of its corres-

ponding monomial. These two approach equally represent the same polynomial. However,

we observe here that the �rst approach can become problematic for high degree polynomials

having a lot of zero coe�cients (e.g. 1 + X105) as it would require to store a lot of zero

coe�cients. Thus, in this case, it is much more e�cient in terms of data storage to use the

second approach.

In light of the above example, we may wonder what would be an acceptable implement-

ation of a modular form in a software. If Γ is either SL2(Z),Γ0(N) or Γ1(N), then using

the Sturm bound, one could simply represent a modular form as a �nite number of Fourier

coe�cients. However, similarly to polynomials, this is not ideal as the sturm bound can be

relatively large. For example, the sturm bound of the spaceMell
12(Γ1(17)) is 2891. Another

1Computed using SageMath with the command Gamma1(17).sturm_bound(12).
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approach is to use the fact that the spaces of modular forms for Γ are �nite dimensional

Q-vector spaces. Hence, by �xing a basis of Mell
k (Γ), one has the isomorphism of Q-vector

spaces:

Mell
k (Γ) ∼= Qd

for some integer d. Fortunately, one can compute explicit basis for the spaces Mell
k (Γ)

when Γ = SL2(Z),Γ0(N) or Γ1(N) (and even for Mell
k (N,χ) for some Dirichlet character

χ). Therefore, it makes sense to say that the datum needed to represent a modular form

is a triple (k,N, v), where k and N are two integers representing the weight and the level

respectively and v is vector of dimension d with coe�cients in Q. This approach is the main

idea behind current implemention in SageMath.

SageMath session 5.2.1.

In the following session, we create the space Mell
5 (Γ1(3)) which is of dimension 2 and then

consider the two basis elements of this space so thatMell
5 (Γ1(3)) ∼= Q2.

1sage: M = ModularForms(Gamma1 (3), 5)

2sage: M.basis ()

3[

41 - 90*q^2 - 240*q^3 - 3744*q^5 + O(q^6),

5q + 15*q^2 + 81*q^3 + 241*q^4 + 624*q^5 + O(q^6)

6]

7sage: f = M.0 # first basis element

8sage: g = M.1 # second basis element

One may use the method element on any modular forms to get its representation in Q2:

9sage: f.element ()

10(1, 0)

11sage: g.element ()

12(0, 1)

13sage: ((1/2)*f + (7/11)*g).element ()

14(1/2, 7/11)

It is also possible to construct any combination of f and g:

15sage: M([1, 1])

161 + q - 75*q^2 - 159*q^3 + 241*q^4 - 3120*q^5 + O(q^6)
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17sage: M([1, 1]) == f + g

18True

The above session shows that it is possible to create spaces of modular forms in SageMath

and manipulate then as formal symbolic objects. Moreover, the implementation does not

depends on the q-expansion and is computed simply "on demand". Finally, we end this

section by mentioning that algorithms for computing basis of modular forms spaces are well

known and implemented in a variety of computer algebra system such as SageMath and

PARI/GP. Most of these algorithms uses modular symbols methods in order to compute the

cuspidal subspace. We refer the reader to [Ste07, �2.3 & �5.3] and [BBB+21, �4 & �5] for

more about the subject.

5.2.2 Rings of modular forms

Rings of modular forms are also implemented in SageMath. However, the elements of these

rings were simply stored as mere q-expansion. Thus, as of version 9.5 of SageMath, we

implemented formal ring objects for modular forms ring. More precisely, if Γ is either

SL2(Z),Γ0(N) or Γ1(N), then an element F ofMell
• (Γ) is now represented in SageMath as

a sequence F = (F [k])k∈Z where F [k] is a form in Mell
k (Γ) for �nitely many k ∈ Z and

zero otherwise. The form F [ki] will be called a homogeneous component of F of weight ki.

Observe that in general F is not modular form as it may have mixed weight components.

Moreover, note that, as for the implementation of a polynomial, we do not store unecessarily

zero elements.

SageMath session 5.2.2.

In the following session, we create the ring of modular forms for SL2(Z) and consider its

generators E4 and E6.

19sage: M = ModularFormsRing (1)

20sage: E4 = M.0

21sage: E6 = M.1

22sage: D = (E4^3 - E6^2) /1728

23sage: F = E4 + E6 + D

24sage: F[4]

251 + 240*q + 2160*q^2 + 6720*q^3 + 17520*q^4 + 30240*q^5 + O(q

^6)
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26sage: F[6]

271 - 504*q - 16632*q^2 - 122976*q^3 - 532728*q^4 - 1575504*q^5

+ O(q^6)

28sage: F[12]

29q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6)

30sage: F[8]

310

This new representation required the implementation of the Parent/Element framework

for the ring of modular forms. This SageMath's speci�c development framework allows the

implementation of mathematical objects that contains elements and de�nes the algebraic

operations. A simple example of a Parent/Element structure is the ring of integers: the ring

as a whole together with its ring operation maps is a parent and the integers are the elements.

In other words, one goal of this framework is to model a general algebraic structure.

SageMath session 5.2.3.

In this session, we �rst create the spaceMell
• (Γ1(5)), which is a parent:

32sage: M = ModularFormsRing(Gamma1 (5))

33sage: M

34Ring of Modular Forms for Congruence Subgroup Gamma1 (5) over

Rational Field

35sage: isinstance(M, Parent)

36True

Then, we create an element of this ring:

37sage: F = M.0

38sage: F

391 + 60*q^3 - 120*q^4 + 240*q^5 + O(q^6)

40sage: F in M # containement check

41True

In object-oriented computer programming terminology, we say that ModularFormsRing is

a class which inherits from the class Parent (inheritance means gaining the properties of

some other class). In the above session, M is an object, which is more precisely an instance

of the class ModularFormsRing (any object is an instance of some class).
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5.3 Quasimodular forms rings in SageMath

Now that the rings of modular forms follows the Parent/Element framework, it becomes

relatively easy to implement rings of quasimodular forms in SageMath. Indeed, recall that

for any congruence subgroup Γ, we have

˜︂M•(Γ) =Mell
• (Γ)[E2].

In other words, any elements F of the ring of quasimodular forms may be represented as a

univariate polynomial in E2 over the ring of modular forms:

F = F0 + F1E2 + · · ·+ FpE
p
2

where p ≥ 0 and Fi ∈Mell
• (Γ).

SageMath session 5.3.1.

In this session, we create the ring of quasimodular form for the full modular group:

M̃•(SL2(Z)) ∼= C[E2, E4, E6].

We �rst create the ring and access its generators:

42sage: QM = QuasiModularForms(SL2Z)

43sage: QM.ngens() # number of generators

443

45sage: E2 = QM.0

46sage: E4 = QM.1

47sage: E6 = QM.2

We may then perform any simple algebraic manipulations with these generators:

48sage: F = E6 + E4*E2 + E2^3

49sage: F

503 - 360*q - 18792*q^2 - 189216*q^3 - 950760*q^4 - 3171312*q^5

+ O(q^6)

We emphasise that a graded quasimodular forms is not necessarily homogeneous in the

weight:

51sage: G = E2 + E4 + E6
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52sage: G[2] # weight 2 component

531 - 24*q - 72*q^2 - 96*q^3 - 168*q^4 - 144*q^5 + O(q^6)

54sage: G[4] # weight 4 component

551 + 240*q + 2160*q^2 + 6720*q^3 + 17520*q^4 + 30240*q^5 + O(q

^6)

56sage: G[6] # weight 6 component

571 - 504*q - 16632*q^2 - 122976*q^3 - 532728*q^4 - 1575504*q^5

+ O(q^6)

The congruence subgroups Γ0(N) and Γ1(N) are also supported:

58sage: QM = QuasiModularForms(Gamma1 (7))

59sage: QM.ngens()

6013

61sage: QM.0 # the first generator is always E2

621 - 24*q - 72*q^2 - 96*q^3 - 168*q^4 - 144*q^5 + O(q^6)

63sage: QM.0*QM.1 + QM.3 + QM.6*QM.0^2

642 - 72*q + 361*q^2 + 3168*q^3 + 9288*q^4 + 21700*q^5 + O(q^6)

All the new features of this new implementation were not covered in the above session.

The interested reader may consult the SageMath reference manual2. In the subsequent

section, we will be interested in giving an application of the implementation of quasimodular

forms.

5.4 Computing derivatives

The �rst application of quasimodular forms in SageMath that we present consist of the

symbolic calculation of the derivative of any modular form. The derivation operator is

de�ned by:

Df :=
1

2πi

df
dz

= q
df
dq
.

In general this derivative sends a modular form to a quasimodular form since we have the

following relation

Df = θk(f) +
k

12
E2f,

2https://doc.sagemath.org/html/en/reference/modfrm/index.html#quasimodular-forms
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where θk is the Serre derivative of a modular form f of weight k de�ned by

θk : f ↦−→ Df − k

12
E2f.

Recall that θk sends any modular form of weight k to a modular form of weight k + 2.

Thus, most of the computation behind the derivative Df is hidden behind the computation

of θk(f). The computation of the Serre derivative is relatively straightforward and mostly

require the computation of the q-expansion of the given modular form up to a su�cient

precision (which is essentially the Sturm bound).

SageMath session 5.4.1.

In this session, we illustrate the algorithm for computing the Serre derivative.

65sage: M4 = ModularForms(SL2Z , 4) # weight 4 space

66sage: B = SL2Z.sturm_bound (6) + 1 # Sturm bound + 1

67sage: E2 = eisenstein_series_qexp (2, prec=B, normalization='

constant ') # weight 2 Eisenstein series

68sage: E4 = M4.0. q_expansion(prec=B)

69sage: q = E4.parent ().gen() # generator of the power series

ring

70sage: thetaE4 = q*E4.derivative () - (4/12)*E2*E4

71sage: thetaE4

72-1/3 + 168*q + O(q^2)

The variable thetaE4 above is simply stored as a q-expansion object and not an actual

modular form. To transform it into a modular form, one has to �rst create the space of

weight 6 and then coerce the form into the space:

73sage: M6 = ModularForms(SL2Z , 6) # weight 6 space

74sage: serre_E4 = M6(thetaE4) # this coerce the q-expansion

into a modular form object

75sage: serre_E4

76-1/3 + 168*q + 5544*q^2 + 40992*q^3 + 177576*q^4 + 525168*q^5

+ O(q^6)

The process that happens at line 74 is that SageMath consider the q-expansion up to the

Sturm bound for each basis element of the space and then create the vector space generated

by these q-expansion vector. Next, it simply �nds the right linear combination corresponding
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to the q-expansion thetaE4. In the speci�c case of this session, M6(SL2(Z)) is of dimension

1, thus generated by E6, and we have θ4(E4) = −E6/3. This last identity was well known

by Ramanujan amongst many others [Ram00].

The computation presented above can now be performed in a single command using the

method serre_derivative:

77sage: E4 = ModularForms(SL2Z , 4).0 # weight 4 Eisenstein

series

78sage: f = E4.serre_derivative ()

79sage: f

80-1/3 + 168*q + 5544*q^2 + 40992*q^3 + 177576*q^4 + 525168*q^5

+ O(q^6)

81sage: serre_E4 == E4.serre_derivative ()

82True

83sage: f in ModularForms(SL2Z , 6)

84True

In light of the implementation of the Serre derivative, we may now easily compute the

derivative of any modular form.

SageMath session 5.4.2.

As for the implementation of the Serre derivative, we illustrate here the idea behind the

implementation of the derivative of a modular form.

85sage: QM = QuasiModularForms(SL2Z) # Ring of quasimodular

forms

86sage: E4 = QM.1 # Weight 4 Eisenstein series

87sage: E2 = QM.weight_2_eisenstein_series ()

88sage: DE4 = E4.serre_derivative () + (E4.weight ()/12)*E2*E4

89sage: DE4

90240*q + 4320*q^2 + 20160*q^3 + 70080*q^4 + 151200*q^5 + O(q^6)

The above computations are simpli�ed by calling the method derivative:

91sage: QM = QuasiModularForms(SL2Z) # Ring of quasimodular

forms

92sage: E4 = QM.1 # Weight 4 Eisenstein series
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93sage: E4.derivative ()

94240*q + 4320*q^2 + 20160*q^3 + 70080*q^4 + 151200*q^5 + O(q^6)

95sage: DE4 == E4.derivative ()

96True

5.5 Algebraic relations between rings generators

Recall that Mell
• (Γ) is a �nitely generated ring and therefore, by �xing a generating set

{g0, . . . , gn} ⊂ Mell
• (Γ), there exists a surjective map

ΦΓ : C[X0, . . . , Xn] −→Mell
• (Γ)

Xi ↦−→ gi

for some n ≥ 1. For every 0 ≤ i ≤ n, we set deg(Xi) to be the weight of gi. Hence,

the pull back of any homogeneous spaces of weight k is contained inside the subring of

homogeneous polynomials of degree k. In the case of the full modular group, we have n = 2

and this map is a bijection. The kernel IΓ := ker(ΦΓ) is called the ideal of relations. For

our last application, we will see how we may compute an element in the �ber over any

element f ∈ Mell
• (Γ). In other words, given any f ∈ Mell

• (Γ), we will �nd a polynomial

P (X0, . . . , Xn) in Q[X0, . . . , Xn] such that

P (g0, . . . , gn) = f.

Example 5.5.1. In this example, we write the Eisenstein series of weight 12 for SL2(Z) in

terms of E4 and E6. We know that

Mell
• (SL2(Z)) ∼= C[E4, E6].

Thus, the map ΦSL2(Z) : C[X0, X1] → Mell
• (SL2(Z)) sending X0 ↦→ E4 and X1 ↦→ E6 is a

bijection and there exists a unique polynomial P (X0, X1) such that

P (E4, E6) = E12.

The polynomial P must be homogeneous of degree 12 so we deduce that, for some constants

c0 and c1,

P (X0, X1) = c0X
3
0 + c1X

2
1 , (5.3)
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as the only degree 12 monomials are X3
0 and X2

1 (recall that, by de�nition, X0 and X1 have

degree 4 and 6 respectively). Now, �nding the constants c0 and c1 is only a matter of linear

algebra. Indeed, recall that the Sturm bound of Mell
• (SL2(Z)) is B12(SL2(Z)) = ⌊k/12⌋ =

1 and thus by computing the �rst two coe�cients of E4, E6 and E12 and by substituing

everything in (5.3) we get the linear system:(︄
1

65520
691

)︄
=

(︄
1 1

720 −1008

)︄(︄
c0

c1

)︄
.

The unique solution to this linear system is given by c0 = 441/691 and c1 = 250/691 and

therefore we have

E12 =
441

691
E3

4 +
250

691
E2

6 .

The calculation carried out in example 5.5.1 can be generalized for any modular form

f and for any congruence subgroup Γ. A crucial di�erence is that the polynomial P is not

unique in the general case, but this does not a�ect the procedure.

Procedure 5.5.2. Let f be a modular form of weight k for a congruence subgroup Γ.

1. Compute the Sturm bound Bk = ⌊k[SL2(Z) : Γ]/12⌋;

2. Initialize the column vector

F := (a0(f), . . . , aBk+1(f))
T

where ai(f) is the i-th coe�cient of f ;

3. Compute G := {g0, . . . , gn} a generating set of the ringMell
• (Γ) and de�ne ki :=weight

of gi;

4. Compute {h0, . . . , hm} the set of all monomials of weight k given by multiplying ele-

ments of G.

5. For every i ∈ {0, . . . ,m} de�ne the column vector

Hi := (a0(hi), . . . , aBk+1(hi))
T;

6. Solve the linear system: (︁
H0, . . . ,Hm|F

)︁
; (5.4)
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7. For any vector (c0, . . . , cm)
T in the solutions set of the system 5.4, we have

f = c0h0 + · · ·+ cmhm.

SageMath session 5.5.3.

In the following session, we write the modular discriminant ∆ ∈ Mell
12(SL2(Z)) and the

Eisenstein series weight 16 in terms E4 and E6, the two generators ofMell
• (SL2(Z)).

97sage: M = ModularFormsRing(SL2Z)

98sage: D = ModularForms(SL2Z , 12).0 # modular discriminant

99sage: M(D).to_polynomial("E4,E6") # E4 and E6 are the names

of the variables

1001/1728* E4^3 - 1/1728* E6^2

101sage: E16 = EisensteinForms(SL2Z , 16).0 # Eisenstein series

of weight 16

102sage: M(E16).to_polynomial("E4 ,E6")

1031617/3617* E4^4 + 2000/3617* E4*E6^2

We also implemented the inverse operation: given a multivariate polynomial P (X0, . . . , Xn),

the method from_polynomial replaces the variables Xi by the generator gi and returns a

graded modular form.

104sage: E2 , E4 = polygens(QQ, 2, "E2 ,E4")

105sage: M.from_polynomial(E2)

1061 + 240*q + 2160*q^2 + 6720*q^3 + 17520*q^4 + 30240*q^5 + O(q

^6)

107sage: M.from_polynomial(E4)

1081 - 504*q - 16632*q^2 - 122976*q^3 - 532728*q^4 - 1575504*q^5

+ O(q^6)

109sage: M.from_polynomial ((E2^3 - E4^2) /1728) == D

110True

SageMath session 5.5.4.

In general, the linear system 5.4 does not possesses a unique solution. More precisely, for

congruence subgroups of SL2(Z), there might be algebraic relations between the generators

of the ring. We illustrate this assertion in the following session.
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111sage: M = ModularFormsRing(Gamma0 (7))

112sage: M.ngens ()

1135

114sage: g0 = M.0

115sage: (g0^4).to_polynomial ()

1169481/260* x0^2*x2 + x0*x3 - 698/13* x0*x4 + 7599/260* x1*x2 +

3578/65* x2^2

117sage: x0 , x1, x2, x3, x4 = polygens(QQ , 5, "x")

118sage: M.from_polynomial(x0^4) == g0^4

119True

In the above computation, we have found that the �ve generators ofMell
• (Γ0(7)) satisfy the

relation

g40 =
9481

260
g20g2 + g0g3 −

698

13
g0g4 +

7599

260
g1g2 +

3578

65
g22.

SageMath session 5.5.5.

In this session, we compute three generators for the ringMell
• (Γ0(3)), denoted g0, g1 and g2

and compute that

g40 = 6g20g1 − 8g0g2 + 3g21.

120sage: M = ModularFormsRing(Gamma0 (3))

121sage: M.ngens () # number of generators

1223

123sage: g0 , g1, g2 = M.0, M.1, M.2

124sage: (g0^4).to_polynomial ()

1256*x0^2*x1 - 8*x0*x2 + 3*x1^2
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Chapter 6

Computing with Drinfeld Fq[T ]-Modules

The goal of this chapter is to explore some algorithmic aspects of Drinfeld modules. First,

we explain how to compute power series approximation of the exponential and the logarithm

of any Drinfeld Fq[T ]-module over an extension of Fq(T ). Next, we will cover the basic J-

invariants theory introduced by Potemine [Pot98] and explain how one may compute them

systematically. Lastly, we present a SageMath implementation of those procedures which

will be merged in an upcoming version of SageMath.

From now on, we will specialize ourself to the explicit case A = Fq[T ] and K = Fq(T ).

Most of the derived properties of this special case comes from two facts. First, A is of

class number one, which implies that every A-lattices are freely generated. Next, as a Fq-

algebra, A is generated by a single element, namely T ∈ A, which gives us that any Drinfeld

Fq[T ]-module ϕ is determined by the image ϕT

ϕ : T ↦→ γ(T ) + g1(ϕ)τ + · · ·+ gr−1(ϕ)τ
r−1 + gr(ϕ)τ

r

where the coe�cients gi(ϕ) lives in an A-�eld F given by γ : A→ F .

A note on Drinfeld modules in SageMath In May 2023, version 10.0 of SageMath

was released and now includes Drinfeld Fq[T ]-modules. The development started in 2022 by

Leudière 1. The author of this thesis provided comments and reviewed the code so that it

could be merged in the software. Subsequently, this new implementation was enhanced by

the addition of new features. In particular, sections 6.1 and 6.2 describes the algorithms

1See the GitHub discussion: https://github.com/sagemath/sage/issues/33713 and the Pull Request:

https://github.com/sagemath/sage/pull/35026.
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which will be merged in version 10.1 of the software. An in depth presentation and tutorial

of theses features can be found as parts of [ACLM23]2.

6.1 Exponentials and logarithms

In this section, we suppose that F contains K and γ : A→ F is injective. We recall that for

any A-lattice Λ, the associated exponential function is de�ned by

eΛ(x) := x
∏︂
λ∈Λ
λ ̸=0

(︂
1− x

λ

)︂
. (6.1)

This function is Fq-linear, nonconstant and surjective. Moreover, it admits a series expansion

of the form

eΛ(x) = x+ α1(Λ)x
q + α2(Λ)x

q2 + · · ·+ αi(Λ)x
qi + · · · .

where αi(Λ) ∈ F . We will see this series as a power series in F [[x]]. Given the associated

Drinfeld module ϕΛ, we have the important functional equation:

eΛ(ax) = ϕΛ
a (eΛ(x)). (6.2)

By Drinfeld uniformization, we will also say that eΛ is the exponential of ϕΛ. If Λ is not

speci�ed, we will denote it by eϕ.

De�nition 6.1.1. The logarithm of the lattice Λ is the compositional inverse of the expo-

nential, denoted logΛ. We will denote the qi-th coe�cient of the logarithm by βi(Λ)

Remark 6.1.2. The compositional inverse of the exponential exists since its x-valuation is

exactly 1.

Next, following [Gek88, (2.6)] we explain a recursive procedure that compute, for any

Drinfeld module

ϕ : a ↦→ γ(a) + g1(a)τ + · · ·+ gr−1(a)τ
r−1 + gr(a)τ

r,

the logarithm of Λϕ. Taking logΛϕ on both sides of the functional equation (6.2), we get

a logΛϕ(x) = logΛϕ(ϕa(x)).

2Joint work with Caruso, Leudière and Musleh

84



Expanding the logarithm as a power series, we compare the coe�cients on both sides, from

which we derive the following recursive sequence:

aβk =
∑︂
i+j=k

βigj(a)
qi .

We may rewrite it as

βk =
1

a− aqk
k−1∑︂
i=0

βigk−i(a)
qi

where β0 = 0, β1 = 1 and g0(a) = γ(a). The resulting sequence (βk)k≥0 de�nes the power

series for the logarithm.

Conversly, one may compute the power series of the exponential by computing the com-

positional inverse of the logarithm. Comparing the coe�cients on both side of the equation

e ◦ log(x) = x,

we �nd the recurrence:

αk = −
k−1∑︂
i=0

αiβ
qi

k−i

where α0 = 0.

6.2 The set of basic J-invariants

In this section, we continue to specialize the theory to the case A = Fq[T ] and K = Frac(A).

For any element w in Ωr(C∞) represented by w = [w1 : . . . : wr−1 : 1], we set Λw :=

Aw1 + · · ·+ Awr−1 + A. As explained in section 2.4.3, we have the following proposition:

Proposition 6.2.1. Let w,w′ ∈ Ωr(C∞). Then, Λw
∼= Λ′

w if and only if there exists γ ∈
GLr(A) such that w′ = γw.

Now, let (F, i : Fq[T ] → F ) be a Fq[T ]-�eld. For any rank r Drinfeld Fq[T ]-module ϕ

over F and any integer 1 ≤ k ≤ r, we de�ne gk(ϕ) ∈ F , to be the k-th coe�cient of the

τ -polynomial ϕT (τ). Note that by de�nition we always have gr(ϕ) ̸= 0.

De�nition 6.2.2. Let ϕ be a rank 2 Drinfeld Fq[T ]-module. The j-invariant of ϕ is de�ned

by

j(ϕ) := g1(ϕ)
q+1/g2(ϕ).
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Lemma 6.2.3. Let ϕ and ψ be two Drinfeld Fq[T ]-modules of same ranks and let P ∈ F{τ}
be a nonzero morphism from ϕ to ψ. Then P is an isomorphism if and only if P = cτ 0 for

c ∈ F×.

Proof. If P ̸= 0 is an isomorphism, then it is equivalent to saying that there exists Q ∈ F{τ}
such that P ·Q = τ 0 which is equivalent to degτ (P ) = 0.

Proposition 6.2.4. Let ϕ and ψ be two Drinfeld Fq[T ]-modules of rank 2 over F . Then ϕ

and ψ are isomorphic over F if and only if j(ϕ) = j(ψ).

Proof. By lemma 6.2.3, we may suppose that ϕ is isomorphic to ψ via P = cτ 0 for a nonzero

c ∈ F . Then we have cϕT = ψT c. By comparing the coe�cients on both sides, we then

obtain that ϕ and ψ are isomorphic if and only if g1(ϕ) = g1(ψ)c
q−1 and g2(ϕ) = g2(ψ)c

q2−1.

Next, the invariance under isomorphisms for the j-invariant comes from the following direct

calculation:

j(ϕ) =
g1(ϕ)

q+1

g2(ϕ)
=
g1(ψ)

q+1c(q−1)(q+1)

g2(ψ)cq
2−1

=
g1(ψ)

q+1

g2(ψ)
= j(ψ).

Conversely, suppose that j(ϕ) = j(ψ). Then, one may choose ξ ∈ F such that

ξq
2−1 = g2(ψ)

−1g2(ϕ).

We claim that ξ de�nes an isomorphism between ϕ and ψ. To see this, �rst we notice that

g1(ψ) = 0 is equivalent to g1(ϕ) = 0 (otherwise their j-invariant di�er) and thus we suppose

that g1(ψ) ̸= 0. Then, by de�nition of u and the assumption that j(ϕ) = j(ψ), we have

ξq
2−1 =

g2(ϕ)

g2(ψ)
=
g1(ϕ)

q+1

g1(ψ)q+1
.

Therefore, we obtain ξq−1g1(ψ) = g1(ϕ) and ϕ ∼= ψ via ξ.

Remark 6.2.5. Along the lines of the above proof, we showed the rank two version of a more

general fact: let ϕ be any rank r Drinfeld Fq[T ]-module over F , then for any c ∈ F× and any

intger 1 ≤ k ≤ r, we have gk(c−1ϕc) = cq
k−1gk(ϕ) so that gk are modular of weight qk − 1.

Moreover, we have showed that if j(ϕ) = j(ψ), then any solution in F of the equation

Xq2−1 = g2(ψ)
−1g2(ϕ)

de�nes an isomorphism over F between ϕ and ψ.
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The above result is already well-known by Gekeler [Gek83] and its generalization to

higher ranks is due to Potemine in [Pot98]. Instead of considering a single j-invariant,

Potemine de�ned a �nite family of j-invariants, called the set of basic J-invariants.

De�nition 6.2.6. For any integer 1 ≤ l ≤ r − 1, we consider a tuple (k1, k2, . . . , kl) with

1 ≤ k1 < · · · < kl ≤ r − 1 which admits nonnegative integers δ1, . . . , δl, δr such that

δ1(q
k1 − 1) + δ2(q

k2 − 1) + · · ·+ δl(q
kl − 1) = δr(q

r − 1).

Then, the Jδ1,...,δr
k1,...,kl

-invariant of ϕ is de�ned by

Jδ1,...,δr
k1,...,kl

(ϕ) :=
gk1(ϕ)

δ1 · gk1(ϕ)δ2 · . . . · gkl(ϕ)δl
gkr(ϕ)

δr
.

Furthermore, if we have the following conditions:

1. 0 ≤ δi ≤ (qr − 1)/(qgcd(i,r) − 1) for all 1 ≤ i ≤ l;

2. gcd(δ1, δ2, . . . , δl, δr) = 1.

then Jδ1,...,δr
k1,...,kl

is said to be basic. For any 1 ≤ k ≤ r − 1, we de�ne the jk-invariant of ϕ:

jk(ϕ) := Jδk
k (ϕ) =

gk(ϕ)
(qr−1)/(qgcd(k,r)−1)

gr(ϕ)(q
k−1)/(qgcd(k,r)−1)

.

The j-invariant of ϕ is j(ϕ) := (j1(ϕ), j2(ϕ), . . . , jr−1(ϕ)) and we denote by J(ϕ) ⊂ F to be

the multiset of all basic J-invariants of ϕ. For any two Drinfeld modules ϕ and ψ, we write

J(ϕ) = J(ψ) if and only if Jδ1,...,δr
k1,...,kl

(ϕ) = Jδ1,...,δr
k1,...,kl

(ψ) for any integers ki and δj as above.

Remark 6.2.7. We recall that a multiset means a set which allows repetitions. Even if their

value might be equal, we distinguish two basic J-invariants by their parameters (k1, . . . , kl)

and (δk1 , . . . , δkl , δr).

Proposition 6.2.8. The multiset of all basic J-invariants is �nite.

Proof. We �rst note that we have a bijection between J(ϕ) and the set of points in Rr with

coprime integer coordinates that satis�es the equation:

δ1(q − 1) + δ2(q
2 − 1) + · · ·+ δr−1(q

r−1 − 1) = δr(q
r − 1) (6.3)

together with the inequalities

0 ≤ δi ≤ (qr − 1)/(qgcd(i,r) − 1), 1 ≤ i ≤ r. (6.4)
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This bijection is given by sending Jδ1,...,δr
k1,...,kl

(ϕ) to the point:

(δ1, δ2, . . . , δr−1, δr) ∈ Zr

where δki is at position ki and δj = 0 if j ̸= ki for all i. Next, we observe that the equation

(6.3) together with the inequalities (6.4) de�nes a convex polyhedron in Rr. Therefore, this

identi�es the multiset of basic J-invariants with a subset of the �nite set of points with

integer coordinates inside this polyhedron.

Example 6.2.9. If r = 2, then, for arbitrary value of q, the unique basic J-invariant of ϕ is

j1(ϕ) = g1(ϕ)
q+1/g2(ϕ).

If r = 3 and q = 2, then

J(ϕ) =
{︁
j1 = J7

1 , j2 = J7
2 , J

1,2
1,2 , J

4,1
1,2 , J

5,3
1,2 , J

6,5
1,2 , J

7,7
1,2

}︁
.

Remark 6.2.10. By the proof of proposition 6.2.8, the problem of computing all the basic

J-invariants is reduced to the the problem of �nding lattices points inside a polyhedron. This

can be achieved by many approaches, for example by using Barvinok's algorithm [Bar94]. Al-

gorithms for computing lattices points inside a polyhedron are already included in SageMath.

Theorem 6.2.11. Let ϕ and ψ be two rank r Drinfeld Fq[T ]-modules over F . Then, ϕ and

ψ are isomorphic if and only if J(ϕ) = J(ψ).

Proof. This is theorem 2.2 of [Pot98].

Remark 6.2.12. Potemine also showed that if F is separably closed, then the tuple j(ϕ)

determines a �nite number of the isomorphism classes of Drinfeld Fq[T ]-modules. More

precisely, if ϕ and ψ are two Drinfeld Fq[T ]-modules of rank r having the same j-invariant

j(ϕ) = j(ψ), then there exists a Drinfeld Fq[T ]-module ϕ′ isomorphic to ϕ such that

gk(ψ) = ξkgk(ϕ
′),

where ξk is such that ξ(q
r−1)/(qgcd(k,r)−1)

k = 1 for any 1 ≤ k ≤ r − 1 [Pot98, Theorem 2.2].

6.3 SageMath implementation

As mentioned in the beginning of this chapter, Drinfeld Fq[T ]-modules are now included

in SageMath as of version 10.0. The implementation is thorouhgly documented, hence the
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reader is refered to the SageMath reference manual for a complete description of the features.

We �rst present a simple example explaining how to create a Drinfeld module in SageMath.

SageMath session 6.3.1.

In this session, we create the Carlitz F5[T ]-module and compute its image at some elements

in F5[T ].

126sage: A = GF(5)['T']

127sage: K.<T> = Frac(A)

128sage: phi = DrinfeldModule(A, [T, 1])

129sage: phi

130Drinfeld module defined by T |--> t + T

131sage: phi(T)

132t + T

133sage: phi(T^2)

134t^2 + (T^5 + T)*t + T^2

In the following two sessions, we showcase the implementation of the methods described

in section 6.1 and 6.2. We note however that these are not yet merged in the o�cial release

of SageMath, but will be available in an upcoming release3.

SageMath session 6.3.2.

In this session, we compute the exponential and the logarithm of a Drinfeld module.

135sage: A = GF(2)['T']

136sage: K.<T> = Frac(A)

137sage: phi = DrinfeldModule(A, [T, 1, T, T+1])

138sage: log = phi.logarithm ()

139sage: log

140z + ((1/(T^2+T))*z^2) + (((T^3+T^2+1)/(T^6+T^5+T^3+T^2))*z^4)

+ O(z^8)

141sage: exp = phi.exponential ()

142sage: exp

143z + ((1/(T^2+T))*z^2) + (((T^5+T^3+1)/(T^8+T^6+T^5+T^3))*z^4)

+ O(z^8)

3See the GitHub Pull Requests: https://github.com/sagemath/sage/pull/35260 and

https://github.com/sagemath/sage/pull/35057.
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The logarithm and the exponential are lazy power series. This means that their coe�cients

are computed only on demand and it is not required to input any precision parameter. One

can indeed verify that one is the compositional inverse of the other:

144sage: log.compose(exp)

145z + O(z^8)

146sage: exp.compose(log)

147z + O(z^8)

SageMath session 6.3.3.

In this session, we compute all the possible basic J-invariants of the rank two Drinfeld

F7[T ]-module T ↦→ T + τ + (T + 1)τ 2.

148sage: A = GF(7)['T']

149sage: K.<T> = Frac(A)

150sage: phi = DrinfeldModule(A, [T, 1, T+1])

151sage: phi.basic_j_invariant_parameters ()

152[((1,), (8, 1))]

The output of the method basic_j_invariants_parameters is a list of pairs of lists

[((1, 2, . . . , r − 1), (δ1, δ2, . . . , δr−1, δr))]

corresponding to all the possible parameters for the basic J-invariants. We present a example

in rank three.

153sage: A = GF(3)['T']

154sage: K.<T> = Frac(A)

155sage: phi = DrinfeldModule(A, [T, T, T^2 + 1, T + 2])

156sage: phi.basic_j_invariant_parameters ()

157[((1,), (13, 1)), ((1, 2), (1, 3, 1)), ((1, 2), (5, 2, 1)),

((1, 2), (6, 5, 2)), ((1, 2), (7, 8, 3)), ((1, 2), (8, 11,

4)), ((1, 2), (9, 1, 1)), ((1, 2), (11, 7, 3)), ((1, 2),

(13, 13, 5)), ((2,), (13, 4))]

To obtain the value of the basic J-invariant for any parameter, one simply needs to use the

method j_invariant and pass the parameter as argument:
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158sage: phi.j_invariant ([(1, 2), (1, 3, 1)])

159(T^7 + T)/(T + 2)

160sage: phi.j_invariant ([(1, 2), (5, 2, 1)])

161(T^9 + 2*T^7 + T^5)/(T + 2)
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Chapter 7

Computing with Drinfeld Modular

Forms for GLr(Fq[T ])

In contrast with the classical theory, very little is known for the computational aspects of

Drinfeld modular forms. In this chapter, we explore some algorithmic aspects of Drinfeld

modular forms via the López-Petrov A-expansion theory. More precisely, we explain how to

compute the expansion at in�nity of a special rank 2 family of eigenform called the Petrov

family.

We also present a SageMath external package o�ering an implementation the graded

ring of Drinfeld modular forms for GLr(Fq[T ]). This implemenation allows symbolic cal-

culation with Drinfeld modular forms and is partly modeled after the quasimodular forms

implementation explained in chapter 5.

7.1 Goss polynomials

An important tool for studying expansion at in�nity of Drinfeld modular forms is the se-

quence of Goss polynomials. Introduced by Goss, these polynomials shows up in the com-

putation of the expansion of the Drinfeld eisenstein series.

Let Λ ⊂ C∞ be a A-lattice of rank r. We recall the associated exponential function

eΛ(w) := w
∏︂
λ

(1− z/λ) =
∞∑︂
i=0

αi(Λ)w
qi
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where w ∈ C∞ and αi(Λ) ∈ C∞. Moreover, we let

uΛ(w) := eΛ(w)
−1 =

∑︂
λ∈Λ

1

w − λ

and

Sk,Λ(w) :=
∑︂
λ∈Λ

1

(w + λ)k
.

We note that S1,Λ = uΛ.

Proposition 7.1.1. There exists a polynomial Gk = Gk,Λ such that

Sk,Λ = Gk,Λ(uΛ).

Proof. This proof is due to Goss in [Gos80a, �1.7]. First, we recall the Girard�Newton

formula. Let

P (X) = Xn + a1X
n−1 + · · ·+ an−1X + an

be any polynomial over an arbitrary �eld F and let {α1, . . . , αn} be the set of its roots (non
necessarily distincts) in an algebraic closure of F . If we de�ne Sk to be the sum of the k-th

power of the roots of P :

Sk := Sk(P ) :=
n∑︂

i=1

αk
i ,

then, the well-known Girard�Newton identity states that

Sk =

⎧⎨⎩−(a1Sk−1 + · · ·+ ak−1S1 + kak), if k ≤ n;

−(a1Sk−1 + · · ·+ an−1Sk−n+1 + anSk−n), if k > n.
(7.1)

Next, we �rst assume that Λ is a �nite of dimension m over Fq. Then, for any w ∈ C∞, we

consider the polynomial

P (x) := −eΛ(w)−1eΛ(X − w) = eΛ(w)
−1eΛ(X) + 1.

Note that P is of degree qm and its the roots are exactly {z + λ : λ ∈ Λ}. Thus, by setting

P̃ (X) := P (X−1)Xqm , we obtain a new polynomial with roots {1/(w + λ) : λ ∈ Λ}. The

coe�cients of P̃ are given by

P̃ (X) = Xqm −
m∑︂
i=0

uΛαiX
qm−qi .
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Since it is monic, we may apply the Girard-Newton formula to get

Sk,Λ = uΛ

⎛⎝Sk−1 +

logq(k)∑︂
i=1

αiSk−qi

⎞⎠ . (7.2)

This proves, by recursion, that Sk,Λ is a polynomial in tΛ.

Lastly, if Λ ⊂ C∞ is in�nite then we de�ne Sk,Λ by the same formula. It will be a

meromorphic function on C∞ with poles at most at Λ. Also, we express Λ as an in�nite

union Λ = ∪iΛi where each Λi are �nite over Fq. Then the function Sk,Λ will be the limit of

the Sk,Λi
.

Corollary 7.1.2. The polynomial Gk,Λ satis�es the following properties:

1. Gk(X) = X
(︂
Gk−1(X) +

∑︁⌊logq(k)⌋
i=1 αiGk−qi(X)

)︂
;

2. Gk is monic of degree k;

3. If k ≤ q then Gk(X) = Xk;

4. If p = char(Fq), then Gpk = (Gk)
p;

5. X2G′
k(X) = kGk+1(X).

Proof. Properties 1, 2 and 3 follows from equation 7.2. Property 4 is obtained by using the

properties of a �nite characteristic ring:

Gpk(uΛ(w)) =
∑︂
λ∈Λ

1

(w − λ)pk
=

(︄∑︂
λ∈Λ

1

(w − λ)k

)︄p

= (Gk(uΛ))
p.

Finally, we obtain the last property by direct calculations. We have on one hand

d
dz
Sk,Λ(z) = −kSk+1,Λ(z) = −kGk+1,Λ(u(z));

and on the other hand

d
dz
u(z) =

d
dz
e(z)−1 = −e(z)−2 = −u(z)2.

De�nition 7.1.3. The polynomial Gk,Λ is called the k-th Goss polynomial of the lattice Λ.
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Remark 7.1.4. The goal of this remark is to do a classical calculation in order to showcase

the idea behind Goss polynomials. Classically, the function w ↦→ sin(πw) is zero whenever

w ∈ Z. By computing its logarithmic derivative we get

π
cos(πw)

sin(πw)
=

1

w
+

∞∑︂
λ=1

(︃
1

w + λ
+

1

w − λ

)︃
. (7.3)

One may roughly imagine this sum as being equal to
∑︁

λ∈Z
1

w+λ
= S1,Z, although this last

sum does not make sense since we don't have absolute convergence. Setting qw := e2πiw and

writing the left hand side of equation (7.3) in terms of qw, we obtain the Fourier series:

1

w
+

∞∑︂
λ=1

(︃
1

w + λ
+

1

w − λ

)︃
= iπ − 2iπ

∞∑︂
n=0

qnw

and di�erentiating k − 1 times (k an even integer), we get∑︂
λ∈Z

1

(w + λ)k
=

(2πi)k

(k − 1)!

∞∑︂
n=1

nk−1qnw. (7.4)

The above expansion can then be utilized in order to �nd the Fourier expansion of the classical

weight k Eisenstein series. We will see in the coming sections that the Goss polynomials

will play a similar role for the Drinfeld Eisenstein series. In fact, one may think of these

polynomials as a function �eld analogue of the right hand side of equation (7.4).

Proposition 7.1.5. Let Λ be any A-lattice with exponential function eΛ(x) =
∑︁∞

i=0 αix
qi for

x ∈ C∞ and αi ∈ C∞. Then, for any k ≥ 1, we have

Gk+1,Λ(X) =
∑︂
j≤k

∑︂
i

(︃
j

i

)︃
αiXj+1

where
∑︁

i runs over the set of multi indices i = (i0, . . . , is) (of arbitrary length) satisfying

1. i0 + · · ·+ is = j

2. i0 + i1q + · · ·+ isq
s = k

and (︃
j

i

)︃
:=

j!

i0! · · · is!
, αi := αi0

0 · · ·αis
s .

Proof. This is obtained via the study of the generating function:

GΛ(U,X) :=
∑︂
k≥0

Gk,Λ(X)Uk.

See section 3 of [Gek88] for the details.
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The above proposition is not very useful in practice. In order to compute any Goss

polynomial Gk,Λ, one can �rst compute the �rst ⌊logq(k)⌋ coe�cients of the exponential eϕΛ

as explained in section 6.1 and then use the recurrence relation

Gk(X) = X

⎛⎝Gk−1(X) +

⌊logq(k)⌋∑︂
i=1

αiGk−qi(X)

⎞⎠ .

7.2 A-expansion theory of López�Petrov

Let f be a Drinfeld modular form of rank r for an arithmetic subgroup Γ. We recall that

from proposition 3.3.8, the form f possesses a u-expansion of the form

f(w) =
∑︂

n∈Z≥0

fn(w
′)u(w)n

where w = ( w1

w′ ) ∈ Ωr(C∞) and u(w) = eπ̃w′Λ′(w1)
−1. Unfortunately, the computation of

u-expansion of a Drinfeld modular form is less understood compared to the classical theory,

even in rank 2. In [Gek88], Gekeler computed the coe�cients of multiple rank 2 Drinfeld

modular forms such as the Drinfeld discrimant and the Eisenstein series. In [Ló10], López

built upon the work of Gekeler to prove what he called a nonstandard expansion for the

Drinfeld discriminant. In [Pet13], Petrov expanded the work of López by proving that an

in�nite family of Drinfeld modular forms admits a nonstandard expansion. Thus, the goal

of this section is to give a brief overview of this expansion theory of López�Petrov.

For the rest of this section, we suppose the rank to be equal to two. In this speci�c case,

the parameter at in�nity is given by

u(w) =
1

eπ̃Fq [T ]

=
1

π̃

∑︂
d∈Fq [T ]

1

w + d
.

where π̃Fq[T ] is the lattice associated with the Carlitz module ρ : T ↦→ T + τ . For any

nonzero a ∈ Fq[T ], we de�ne ua : w ↦→ u(aw).

Lemma 7.2.1. For any nonzero a in Fq[T ], we have ua = u|a|+O(u|a|+1) where |a| = qdeg a.

Proof. Fix a ∈ Fq[T ] nonzero. We de�ne the a-inverse cyclotomic polynomial by

fa(X) := ρa(X
−1)X |a|

= 1 + (higher terms in X).

96



Then, using the fact that ρa(eπ̃Fq [T ](π̃w)) = eπ̃Fq [T ](π̃aw), we have

ua =
u|a|

fa(u)
=

u|a|

1 + (higher terms in u)
= u|a|(1 +O(u)).

Next, recall that the Drinfeld Eisenstein series of weight k ∈ (q − 1)Z and rank 2 is

de�ned by

E2
k(w) :=

∑︂
a,b∈Fq [T ]
(a,b) ̸=(0,0)

1

(aw + b)k
.

Using the theory of Goss polynomials, we are now able to prove their holomorphicity at

in�nity:

Proposition 7.2.2. Let k an integer in (q − 1)Z. Then, the weight k Drinfeld Eisenstein

series of rank 2 is holomorphic at in�nity.

Proof. Let A+ be the set of monic polynomials in Fq[T ]. We �rst compute:

E2
k(w) =

∑︂
a,b∈Fq [T ]
(a,b)̸=(0,0)

1

(cw + d)k

=
∑︂

c∈A\{0}

1

ck
−
∑︂
a∈A+

∑︂
b∈A

1

(aw + b)k

=
∑︂

c∈A\{0}

1

ck
− π̃k

∑︂
a∈A+

Gk,π̃Fq [T ](ua(w))

= π̃kE1
k(π̃Fq[T ])− π̃k

∑︂
a∈A+

Gk,π̃Fq [T ](ua(w))

where the last equality is given by proposition 7.1.1 and E1
k(π̃Fq[T ]) is the Eisenstein series

of the Carlitz module

E1
k(π̃Fq[T ]) =

∑︂
λ∈π̃Fq [T ]

1

λk
.

Then, the desired result follows from lemma 7.2.1 and the fact that Gk,π̃Fq [T ] is a polynomial.

De�nition 7.2.3. For any k ≡ 0 mod (q − 1), we de�ne by δk to be the �rst coe�cient of

E2
k . Then, the normalized Drinfeld Eisenstein series of weight k is

gk := (δk)
−1E2

k .
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In [Ló10], López asked whether there exist Drinfeld modular forms which admit an

expansion of the form
∑︁

a∈A+ Gk,π̃Fq [T ](cauaw). This nonstandard expansion theory was later

formalized by Petrov in [Pet13].

De�nition 7.2.4. A Drinfeld modular form f : Ω2(C∞)→ C∞ of rank 2 is said to have an

A-expansion of exponent n ≥ 1 if there exists elements c0(f), ca(f) ∈ C∞ such that

f = c0(f) +
∑︂
a∈A+

ca(f)Gn,π̃Fq [T ](ua)

Proposition 7.2.5. Let (ca)a∈A+ be a sequence of elements in C∞ having polynomial growth

in |a| for all but �nitely many a. Then, the series∑︂
a∈A+

caGn,π̃Fq [T ](ua)

converges to a well-de�ned function on {w ∈ Ω2(C∞) : |wi| > i}.

Proof. See section 1 of [Pet13].

Proposition 7.2.6. Let n ≥ 1 be a �xed integer and let f be a Drinfeld modular form which

admits an A-expansion of exponent n. Then the A-expansion is unique.

Proof. See theorem 3.1 of [Ló11].

Remark 7.2.7. The above theorem states the unicity of the A-expansion once the exponent

is �xed. This means that there could be two A-expansions of di�erent exponents which

converges to the same Drinfeld modular forms. However, it is conjectured by Petrov that

the exponent is unique [Pet13, Remark 1.2].

We now look at some concrete examples of Drinfeld modular forms which admits an

A-expansion, other than the Eisenstein series.

De�nition 7.2.8. The Drinfeld discriminant function is the function ∆ : Ω2(C∞) → C∞

de�ned by the leading coe�cient of

ϕw : T ↦→ T + g1(w)τ +∆(w)τ 2

were w ∈ Ω2(C∞) and ϕw is the Drinfeld module associated to the lattice Λw = A+ Aw.
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Remark 7.2.9. The analytic de�nition of a Drinfeld module gives us that

ϕw
T (X) = TX

∏︂
λ∈T−1Λw/Λw

λ ̸=0

(︃
1− X

eΛw(λ)

)︃
.

Therefore, since ∆(w) is de�ned to be the leading coe�cient of the above polynomial, we

derive the product formula

∆(w) = T
∏︂

u,v∈T−1A/A
(u,v) ̸=(0,0)

e−1
Λw

(uw + v). (7.5)

Proposition 7.2.10 (López). For any w ∈ Ω2(C∞), the Drinfeld discrimant function sat-

is�es

−π̃1−q2∆(w) =
∑︂
a∈A+

aq(q−1)uq−1
a .

Proof. See section 5 of [Ló10]. The idea of the proof is to �rst de�ne the following function:

D(w) :=
∑︂

(u,v)∈T−1A/A
̸=(0,0)

⎛⎜⎜⎝ uq(q−1)

(uw + v)q−1
+
∑︂

(a,b)∈A
̸=(0,0)

(av − bu)q(q−1)

(az + b)q(q−1)((a− u)z + (b− v))q−1

⎞⎟⎟⎠
and then show that it satis�es D(1/w) = wq2−1D(w) and

D(w) =
−π̃q−1

T (q−1)2

∑︂
a∈A+

aq(q−1)uq−1
a .

Therefore, by knowning that the space of cusps forms (modular forms whose constant term is

zero) of weight q2−1 is of dimension 1, it must be a multiple of the Drinfeld discrimant.

Remark 7.2.11. The de�nition of the function D(w) may look totally out of the blue, but it

is in fact a direct modi�cation of the logarithmic derivative of the discrimant:

∆′(w)

∆(w)
=

∑︂
(u,v)∈T−1A/A

̸=(0,0)

⎛⎜⎜⎝ −u
uw + v

+
∑︂

(a,b)∈A
̸=(0,0)

av − bu
(az + b)((a− u)z + (b− v))

⎞⎟⎟⎠ .

The above equation is obtained by elementary calculations via the product formula (7.5).

After some manipulations, one can then obtain the expansion

π̃−1∆
′(w)

∆(w)
=
∑︂
a∈A+

au(aw). (7.6)
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See [Ló10] for the details. We note that expansion (7.6) is also known by Gekeler [Gek88,

(8.2)].

Proposition 7.2.12 (Petrov). Let k and n be two positive integers such that k − 2n is a

positive multiple of q − 1 and n ≤ pvp(k−n). Then

fk,n :=
∑︂
a∈A+

ak−nGn,π̃Fq [T ](ua)

is a Drinfeld modular form of weight k and type m ≡ n (mod q − 1) for GL2(A).

Proof. This is theorem 1.3 of [Pet13]. It is obtained by generalizing López' ideas.

Corollary 7.2.13. Setting ∆0 := −π̃1−q2∆, we have:

∆0 = fq2−1,q−1 and g1 = 1− δq−1fq−1,q−1.

Proof. Corollary 7.1.2 gives us that Gq−1,π̃Fq [T ](ua) = uq−1
a , from which we obtain the result.

De�nition 7.2.14. The family of all the forms fk,n satisfying the above proposition will be

called the Petrov family.

Remark 7.2.15. The Petrov family is particularly interesting when stuying Hecke operator

action on Drinfeld modular forms. More precisely, if p is a nonzero prime ideal of A generated

by a unique monic polynomial ℘ and f ∈ Man,2
k,m (GL2(A)) then the p-th Hecke operator is

de�ned by

Tpf(w) := ℘kf(℘w) +
∑︂
β∈Sp

f

(︃
w + β

℘

)︃
.

It is well-known in the classical case that a Hecke eigenform is determined up to a constant

by its eigensystem [DS05, Theorem 5.8.2]. However, this fact is not true in the Drinfeld

case. Indeed, Goss showed that g1, g
q
1∆ and ∆ all have the same eigensystem: {λp = ℘q−1}

[Gos80a, Corollaries 2.2.4, 2.2.5]. In light of this fact, Petrov showed that any form in the

Petrov family is an eigenform with eigensystem λp = ℘n. He moreover showed that any

eigenform f of weight k which admits an A-expansion of exponent n is of the form:

f =
∑︂
a∈A+

ak−nGn,π̃Fq [T ](ua).

In particular, this proves that an eigenform having an A-expansion with �xed exponent is

determined by its eigensystem and its weight [Pet13, Theorem 2.6].
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7.3 Expansion at in�nity

Let f be a Drinfeld modular forms which admits an A-expansion of the form

f = c0(f) +
∑︂
a∈A+

ca(f)Gn(ua).

The goal of this section is to compute the i-th coe�cient of its expansion at in�nity:

f :=
∑︂
i≥0

ci(f)u
i.

For simplicity, we assume that c0(f) = 0. By corollary 7.1.2, we de�ne the integer mn such

that Xmn is the largest power that divides Gn and we denote by G(mn) the coe�cient of

Xmn . Thus, by lemma 7.2.1, there exists di(a, n) in K such that

Gn(ua) = G(mn)umnqdeg(a) +
∑︂

i>mnqdeg(a)

di(a, n)u
i. (7.7)

In the following calculations, we substitute expansion (7.7) in the A-expansion of the form

f and manipulate its terms in order to obtain an explicit formula for the coe�cients ci(f):

f =
∑︂
a∈A+

ca(f)Gn(ua)

=
∑︂
d≥1

∑︂
a∈A+

deg(a)=d

ca(f)Gn(ua)

=
∑︂
d≥1

∑︂
a∈A+

deg(a)=d

ca(f)
(︂
G(mn)umnqd +

∑︂
i>mnqd

di(a, n)u
i
)︂

=
∑︂
d≥1

(︄ ∑︂
a∈A+

deg(a)=d

ca(f)

)︄
G(mn)umnqd +

∑︂
d≥1

∑︂
i>mnqd

(︄ ∑︂
a∈A+

deg(a)=d

ca(f)di(a, n)

)︄
ui. (7.8)

The �rst part of the above equality may be written as

∑︂
d≥1

(︄ ∑︂
a∈A+

deg(a)=d

ca(f)

)︄
G(mn)umnqd =

∑︂
i≥1

1In(i)

(︄ ∑︂
a∈A+

deg(a)=logq(i/mn)

ca(f)

)︄
G(mn)ui (7.9)

where In := {mnq
d : d ≥ 1} and 1I is the indicator function:

1I(i) :=

⎧⎨⎩1, if i ∈ I;

0, otherwise.
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for some set of indices I. Similarly, the second part of equality (7.8) may be written as

∑︂
d≥1

∑︂
i>mnqd

(︄ ∑︂
a∈A+

deg(a)=d

ca(f)di(a, n)

)︄
ui =

∑︂
i≥1

B(i,n)∑︂
d=1

1(mnqd,∞)(i)

(︄ ∑︂
a∈A+

deg(a)=d

ca(f)di(a, n)

)︄
ui,

(7.10)

where B(i, n) := max{logq⌊i/mn⌋, 1} and (mnq
d,∞) is simply the open interval {i : i >

mnq
d}. Combining equations (7.9) and (7.10), we obtain the following theorem:

Theorem 7.3.1. Under the above notations, the i-th coe�cient of the modular form f =∑︁
a∈A+ ca(f)Gn(ua) is

ci(f) = 1In(i)

(︄ ∑︂
a∈A+

deg(a)=logq(i/mn)

ca(f)

)︄
G(mn) +

B(i,n)∑︂
d=1

1(mnqd,∞)(i)

(︄ ∑︂
a∈A+

deg(a)=d

ca(f)di(a, n)

)︄
.

The above formula describe an algorithm for computing the expansion at in�nity of any

Drinfeld modular forms which admits an A-expansion. In particular, we may now compute

the expansion of any Eisenstein series and any forms in the Petrov family. This includes the

modular discriminant function and Gekeler's h function.

Let us mention that computing the expansion at in�nity of a Drinfeld modular form is

particularly interesting since it allows us to determine whether two forms are equal or not.

Indeed, as well as in the classical case, the spaces of Drinfeld modular forms of �xed weight

admits Sturm-type bounds:

Proposition 7.3.2. Let f ∈Man,2
k,m which admits the expansion f =

∑︁∞
i≥0 ci(f)u

i. If ci(f) =

0 for 0 ≤ i ≤ ⌈k/(q + 1)⌉+ 1, then f is identically zero.

Proof. See [Gek88, (5.17)] for the details.

The key ingredient of the proof is to use a valence formula for Drinfeld modular form.

A good reference for Sturm-type bounds in the Drinfeld case is [AW22].

7.4 drinfeld-modular-forms SageMath package

We present in this section an external SageMath package for computing with Drinfeld mod-

ular forms and their expansion at in�nity. It is external in the sense that it does not comes
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automatically with SageMath and must be installed by the user in order to use its function-

alities. For this reason, we have tried to make it as easy as possible to install:

sage: pip install drinfeld-modular-forms

The above command should be run inside SageMath. We note that this package has been

tested on SageMath version 9.8 and above. It is not guaranteed to work on previous versions.

After the execution of the above command, the package should be installed and can be

imported using:

sage: from drinfeld-modular-form import *

We will present the main algorithms provided by this package, but there are plenty more

functionalities and we refer the reader to the documentation which is hosted here:

https://davidayotte.github.io/drinfeld_modular_forms

SageMath session 7.4.1.

In this session, we create the graded ring of Drinfeld modular forms of type 0 for GL2(A):

162sage: from drinfeld_modular_forms import *

163sage: A = GF(3)['T'] # Fq[T]

164sage: K.<T> = Frac(A)

165sage: M = DrinfeldModularFormsRing(K, 2) # rank 2

166sage: M.gens() # generators

167[g1 , g2]

The above generator g1(w) and g2(w) corresponds to the coe�cients forms de�ned by the

Drinfeld Fq[T ]-module over Ωr(C∞):

ϕw : T ↦→ T + g1(w)τ + g2(w)τ
2.

We note that g2 is the Drinfeld discriminant function ∆.

It is possible to compute a basis of the K-vector space of Drinfeld modular forms of any

weight using the method basis_of_weight:

168sage: M.basis_of_weight (3^2 - 1)

169[g2 , g1^4]

170sage: M.basis_of_weight (2*11)

171[g1^3*g2^2, g1^7*g2 , g1^11]
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Using the method inject_variables it is possible to quickly assign variables to the gener-

ators in your session:

172sage: M.inject_variables (); # Define the variables g1 and g2

173sage: g1.weight ()

1742

175sage: g2.weight ()

1768

177sage: g1 == M.coefficient_form (1)

178True

179sage: g2 == M.coefficient_form (2)

180True

Next, one main feature of this package consist in the possibility of computing the expan-

sion at in�nity of the coe�cient forms and any algebraic relations between them:

181sage: g1.expansion('u')

1821 + ((2*T^3+T)*u^2) + O(u^7)

183sage: g2.expansion('u')

184u^2 + 2*u^6 + O(u^8)

185sage: F = T*g1*g2 + g2^2 + T*g1

186sage: F.expansion('u')

187T + ((2*T^4+T^2+T)*u^2) + ((2*T^4+T^2+1)*u^4) + 2*T*u^6 + O(u

^7)

It is important to note that, as for the case of exponential and logarithm of Drinfeld modules,

the returned expansions above are lazy power series. Recall that such series is an object in

SageMath which aims to represents a power series exactly. In other words, the returned

expansion stores the procedure for computing the coe�cients and computes them only if it

needs to (and thus the name "lazy"). In our case, the procedure for computing the coe�cients

is given by theorem 7.3.1. Therefore, depending on the power of a computing machine, it is

possible to query any coe�cients at any precision:

188sage: g1[3^4 - 1] # 80-th coefficient

189T^30 + 2*T^28 + T^12 + 2*T^10 + T^4 + 2*T^2

Conversely, if an expansion at in�nity is known up to a su�cient precision, one can
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convert it into a Drinfeld modular form:

190sage: M.from_expansion ([1, 0, 2*T^3 + T], 3 - 1)

191g1

192sage: M.from_expansion ([0, 0, K.one()], 3^2 - 1)

193g2

This is achieved via a similar algorithm as procedure 5.5.2, which writes any classical modular

form in terms of polynomial relations of ring generators. As one see, it is important to input

the weight of the expected Drinfeld modular form. This is explained by the fact that the

algorithm uses the Sturm bound of the space of Drinfeld modular forms of �xed weight and

then perform linear algebra to �nd the right algebraic relation.

SageMath session 7.4.2.

In this second session, we present how to compute the forms in the Petrov family. Recall

that the Petrov family consist of the forms de�ned by

fk,n =
∑︂
a∈A+

ak−nGn(ua).

Under some conditions on k and n, Petrov showed that the above A-expansion de�nes a

Drinfeld modular form of weight k and type m ≡ n (mod q−1). In our package, we compute

the expansion at in�nity of this form via the function compute_petrov_expansion(k, n,

A).

194sage: from drinfeld_modular_forms import *

195sage: q = 3

196sage: A = GF(q)['T']

197sage: f8=compute_petrov_expansion(q^2 - 1, q - 1, A, 'u')

198sage: f8

199u^2 + 2*u^6 + O(u^8)

200sage: f26=compute_petrov_expansion(q^3 - 1, q - 1, A, 'u')

201sage: f26

202u^2 + ((2*T^18+2*T^12+2*T^6+2)*u^6) + O(u^8)

Since we know the weight of the form fk,n and the Sturm bound of the spaceMan
k (GL2(A)),

we can convert these expansions as an algebraic expression of g1 and g2 using the method

from_expansion:
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203sage: M.from_expansion(f8, 8) # weight = 8

204g2

205sage: M.from_expansion(f26 , 26) # weight = 26

206g1^9*g2 + (-T^18 - T^12 - T^6)*g1*g2^3

We compile here some results of computations with q = 3 for the sequence (fqn−1,q−1)n≥2:

fq2−1,q−1 = g2

fq3−1,q−1 = g91g2 +
(︁
2T 18 + 2T 12 + 2T 6

)︁
g1g

3
2

fq4−1,q−1 = g361 g2 + c
(4)
28,3 · g281 g32 + c

(4)
4,9 · g41g92 + c

(4)
0,10 · g102

fq5−1,q−1 = g1171 g2 + c
(5)
109,3 · g1091 g32 + c

(5)
85,9 · g851 g92 + c

(5)
81,10 · g811 g102 + c

(5)
13,27 · g131 g272

+ c
(5)
9,28 · g91g282 + c

(5)
1,30 · g1g302 .

The coe�cients c(n)i,j are polynomials in F3[T ] of relatively large degree. In the case n = 4,

we have explicitely:

c
(4)
28,3 = 2T 72 + 2T 66 + 2T 60 + 2T 54 + 2T 48 + 2T 42 + 2T 36 + 2T 30 + 2T 24 + 2T 18 + 2T 12 + 2T 6

c
(4)
4,9 = T 126 + T 120 + T 114 + T 108 + 2T 102 + 2T 96 + 2T 90 + 2T 84 + 2T 72 + 2T 66 + 2T 60

+ 2T 54 + T 48 + T 42 + T 36 + T 30

c
(4)
0,10 = T 129 + 2T 127 + T 123 + 2T 121 + T 117 + 2T 115 + T 111 + 2T 109 + 2T 105 + T 103 + 2T 99

+ T 97 + 2T 93 + T 91 + 2T 87 + T 85 + 2T 81 + 2T 75 + T 73 + 2T 69 + T 67 + 2T 63 + T 61

+ 2T 57 + T 55 + T 51 + 2T 49 + T 45 + 2T 43 + T 39 + 2T 37 + T 33 + 2T 31 + T 27.

We haven't been able to determine a pattern here, but we hope that these functions will

help in better understanding the forms in the Petrov family.

SageMath session 7.4.3.

For the last session, we create the ring of Drinfeld modular forms of arbitrary type for

GL2(A). This ring is generated by g1, the �rst coe�cient form and by Gekeler's h function,

which is a (q − 1)-th root of the modular discriminant.

207sage: from drinfeld_modular_forms import *

208sage: q = 4

209sage: A = GF(q)['T']

210sage: K.<T> = Frac(A)

211sage: M = DrinfeldModularFormsRing(K, 2, has_type=True)
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212sage: M.gens()

213[g1 , h]

Through the work of López, we know that h = fq+1,1 and thus we may compute its expansion

using theorem 7.3.1.

214sage: M.inject_variables (); # Define the variables g1 and h

215sage: h_exp = h.expansion('u')

216sage: h_exp

217u + O(u^8)

218sage: h_exp [0:24] # all coefficients in the range 0 <= i < 24

219[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, T^4 + T, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0]

We check that the form h is a (q − 1)-th root of the coe�cient form g2:

220sage: M.coefficient_form (2).expansion('u')

221u^3 + O(u^10)

222sage: (h^(q - 1)).expansion('u')

223u^3 + O(u^10)

224sage: h^(q - 1) == M.coefficient_form (2)

225True

We point out that all the computations performed above were done in the rank 2 case.

To this day, expansion at in�nity of higher rank Drinfeld modular forms are still quite

mysterious. We cite the work of Basson who has obtained A-expansions type expansion for

the higher rank Drinfeld Eisenstein series [Bas14, Proposition 3.5.3] and computed the �rst

coe�cient of the coe�cients forms [Bas14, �5.3.5].
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