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ABSTRACT 

Pavement Defect Classification and Localization Using Hybrid Weakly Supervised and 

Supervised Deep Learning and GIS 

Amir Jamali 

Automated detection of road defects has historically been challenging for the pavement 

management industry. As a result, new methods have been developed over the past few years to 

handle this issue. Most of these methods relied on supervised machine learning techniques, such 

as object detection and segmentation methods, which need a large, annotated image dataset to train 

their models. However, annotating pavement defects is difficult and time-consuming due to their 

ununiformed and complex shapes. To address this challenge, a hybrid pavement defect 

classification and localization framework using weakly supervised and supervised deep learning 

methods is proposed in this thesis. This framework has two steps: (1) A robust hierarchical two-

level classifier that classifies the defects in images, and (2) A method for defect localization 

combining weakly supervised and supervised techniques. In the localization method, first, defects 

are primarily localized using a weakly supervised method (i.e. Class Activation Mapping (CAM)). 

Next, based on the results of the first classifiers, the defects are segmented from the localized 

patches obtained in the previous step. The feature maps extracted from the CAM method are used 

to train a segmentation network once (i.e. U-Net or Mask R-CNN) to localize and segment the 

defects in the images. Thus, the proposed framework combines the advantages of weakly 

supervised and supervised methods. The supervised modules in the framework are trained once 

and can be used for any new data without the need to train. In other words, to use our framework 

on new dataset only the classifiers should be fine-tuned. Furthermore, the proposed framework 

introduced an innovative method designed to calculate the maximum crack width in pixels within 

linear segmented defect patches, derived from the localization module of the proposed framework. 

This method is particularly advantageous as it provides critical information that can be further 

employed in the calculation of the Pavement Condition Index (PCI).  

Additionally, the proposed method benefits from an asset management inspection system based on 

Geographic Information System (GIS) technology to prepare the dataset used in the training and 

testing. Thus, this advanced system serves a dual role within our framework. Firstly, it assists in 

the assembly and preparation of the dataset used in the model training process, providing a 

geographically organized collection of images and related data. Secondly, it plays a crucial role in 

the testing phase, offering a spatially accurate platform for evaluating the effectiveness of the 

model in real-world scenarios. 

A dataset from Georgia State in the USA was used in the case study. The proposed framework 

obtained high precision of 97%, 88%, 92% and 97% for localizing the alligator, block, longitudinal 

and transverse cracks, respectively. Considering all factors, such as annotation cost, and 

performance on the test dataset, the proposed localization method outperforms the supervised 

localization methods, such as instance segmentation and object detection for localizing road 

pavement defects. 
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Chapter 1: Introduction 

1.1 Background and Problem Statement 

Pavement Asset Management System (PAMS) is a software that assists transportation authorities 

and decision-maker agencies in efficiently managing their pavement assets. PAMS assesses the 

condition of the pavement, calculates its remaining useful life, and chooses the most economical 

maintenance and rehabilitation options using data and analytical tools. By using PAMS, agencies 

can optimize their budget allocation and prioritize maintenance and rehabilitation activities based 

on the condition of their pavement assets. Overall, a PAMS is a valuable tool for transportation 

experts seeking to maximize the lifespan of their pavement assets and improve safety for road users 

by minimum costs [1].  

In any robust PAMS, the current and historical state of roads are crucial indicators for preparing 

optimized long-term maintenance and rehabilitation plans. In other words, a model generated by 

the current pavement situation can be adopted, not just for maintenance strategy, but also to achieve 

an appropriate design as well. 

The following data is required for making maintenance decisions in PAMS [1]: 

1. Pavement inventory data: Inventory data includes information about the pavement's 

construction, such as its thickness and materials type. This data is vital for understanding 

the pavement’s structural capacity and determining its design life.  

2. Pavement condition data: Condition data refers to the current physical state of the pavement 

degradation, such as defect types, roughness, etc. Collecting condition data regularly allows 

engineers to track the progression of pavement distress over time and make appropriate 

decisions about maintenance and rehabilitation strategies. 

3. Design data: Design data refers to the information such as pavement and mix design details, 

material characteristics, and specifications of pavement layers, etc. 

4. Maintenance history data: Timing and methods adopted to execute previous maintenance 

activities. 

5. Auxiliary data: Auxiliary data comprises information such as traffic volume, climate, and 

pavement age. This data is important for understanding how external factors may contribute 

to pavement deterioration and predict future pavement condition. 

Database and data collection methods for PAMS is shown in Figure 1-1. Regarding the 

aforementioned data illustrated in Figure 1-1, inventory, condition and auxiliary data are crucial to 

evaluate the pavements and should be collected and monitored periodically [1]. 

A key element for planning is predicting future road conditions using deterioration rates or models 

from condition data. Deterioration modeling are best achieved when asset conditions are monitored 

over time and further projected into the future. Therefore, accurate and reliable road condition 

assessment is critical, and automation in this step plays a central role in making the overall PAMP 

more reliable. Data analysis and collection, including data from distress surveys, is one of the major 

challenges to evaluating pavement conditions and prioritizing maintenance and rehabilitation 

activities [1]. Artificial intelligence tools handle this issue to a great extent by automating and 

expediting both data collecting and processing processes. For instance, automatic defect type and 

severity recognition can be done by analyzing the images with image processing and computer 
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vision tools. Next, machine learning algorithms can predict the future pavement condition based 

on the information extracted by the previous stage about the defects [1]. 

 

Figure 1-1 Database and data collection methods for PAMS [1] 

The more distress the pavement has, the more maintenance it needs to keep it in service structurally. 

Pavement defects are the visible part of the deficiency of roads and are symptomatic of broader 

pavement degradation issues. Thus, regularly evaluating pavement defects would be an urgent 

aspect of pavement management, as it allows engineers and managers to recognize and address 

deficiencies in a timely manner before they get worse and become costly to repair. By recognizing 

the patterns and trends of pavement defects, engineers can develop effective maintenance and 

rehabilitation strategies that are tailored to the specific needs of the pavement. Moreover, 

monitoring pavement defects can optimize pavement maintenance costs. For instance, if pavement 

defects are recognized and repaired promptly, minor preservation measures such as crack sealing 

or pothole patching may be urgent to prevent further degradation and extend the pavement’s 

lifespan [2]–[5]. On the other hand, if pavement distresses are not repaired promptly, it costs 

experts and managers a lot. That is because, in this case, the pavement may require more extensive 

and costly maintenance activities such as resurfacing or reconstruction. In summary, regular 

observation of distresses has a vital role in the handling of pavement degradation in a timely and 

cost-effective manner, which helps to optimize pavement performance and leads to extending its 

lifespan. Recently, thanks to drastic developments in computer vision and artificial intelligence 

approaches, road defect detection is not only automated but also the performance of the overall 

process is also highly enhanced [2]–[5]. These methods analyze different aspects of defects to 

determine the cause of deterioration. They analyze huge data emanating from defects. The more 

adequate data provided about the age, traffic, and other pavement variables the system has, the 

more reliable prediction it forms. Therefore, analyzing these defects with respect to their patterns, 

shapes, topology, severity, and quantity makes it possible to find their root causes. Since the defect 

localization has urgent role in pavement condition assessment, a vast number of techniques have 

been developed to detect and localize the defects in recent years [2]. After detecting, classifying 
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and quantifying the distresses, The pavement condition index (PCI)[6] is used for pavement 

assessment. PCI is a numerical metric that quantizes visual inspection of the pavement surface in 

the range from 0 to 100. The higher value the PCI has, the better the condition of the pavement is. 

The PCI methodology comprises a visual inspection of the pavement surface by a skillful inspector 

who evaluates the number of distresses, such as cracking, potholes, and rutting and their severities 

concerning their length and extension. The severity ratings are then combined to calculate an 

overall PCI for the pavement. The PCI is an effective tool for prioritizing maintenance and 

rehabilitation efforts on roads and parking lots. It allows agencies to identify pavement sections 

that require immediate attention and those that can wait until a later time. The PCI can also be used 

to evaluate the effectiveness of different maintenance strategies over time. Figure 1-2 shows the 

standard PCI rating scales. 

 

Figure 1-2 Standard PCI rating scales and suggested colors for their representation [6] 

The suggested colors may vary depending on the agency or organization using the PCI system [6]. 

They allow agencies to identify areas that require maintenance or repair promptly on the maps. A 

PCI data sheet should provide the following information: date, location, branch, section, sample 

unit size, slab number and size, distress types, severity levels, quantities, and names of surveyors 

[6]. This information is then used to calculate the PCI and to develop maintenance and repair plans. 

A flexible example of PCI data sheet is shown in Figure 1-3.  
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Figure 1-3 A flexible PCI data sheet [6] 

Once the types and severity of distresses have been evaluated, a pavement condition rating is 

assigned based on a standardized rating rule. The mentioned rating system first assigns a score to 

each type of defect. Next, the scores are weighted regarding the extent of each defect. The final 

PCI value is then calculated as a weighted average of the individual distress scores. The PCI 

calculation can be performed manually or using specialized software designed for this purpose. 

PCI calculation’s performance is affected by two factors: (1) The inspector’s expertise and 

experience, and (2) the quality and consistency of the rating system being employed. Hence, to 

achieve an accurate PCI result, both the aforementioned factors should meet high standards.  

As a result, automating the PCI calculation can tremendously reduce the time, cost and subjectivity 

associated with manual pavement surveys done by a human. It also improves the accuracy and 

consistency of the PCI calculation. The automation of PCI calculation can be accomplished as 

follows [1]: 

1. Pavement data collection: The first step is to collect pavement data in the form of images 

or videos from the pavement surface using specialized pavement surveying equipment, 

such as a pavement condition assessment vehicle.  

2. Machine learning and image processing process: The pavement images or videos are then 

processed using computer vision and machine learning techniques to classify, detect and 

segment the pavement distresses. 



  

5 

 

3. Feature extraction: Once the distresses have been segmented, relevant features such as size, 

shape, and texture are extracted from the distresses. 

4. PCI calculation: Finally, the PCI is calculated using the machine learning output, which 

assigns a severity score to each type of distress. The severity scores are then weighted based 

on the extent of each distress, and the final PCI value is calculated as a weighted average 

of the individual distress scores. 

However, it is significant to note that automated methods could not detect all defects of any shape 

and structure. Thus, human inspection is still required to ensure accuracy. 

1.2 Research Objectives 

This thesis aims to develop a hybrid pavement defect type and severity classification, and defect 

localization framework using weakly supervised and supervised deep learning methods based on 

images captured via passive Charge-Coupled Device (CCD) cameras to automate the pavement 

condition evaluation. The specific objectives are: (1) Developing a supervised method for 

classifying the types and severity of defects; and (2) Developing a hybrid approach integrating 

weakly supervised and supervised methods for defect localization; and (3) Estimating the width of 

the linear cracks, which can be used for calculating the PCI of the pavement. The proposed 

framework also integrates a Geographic Information System (GIS)-based inspection asset 

management system called RUBIX [117], which provides comprehensive monitoring and 

evaluating of the pavement’s condition. The method proposed in this study combines the 

advantages of both supervised and weakly supervised approaches and demonstrates superior 

performance compared to previous methods. 

1.3 Thesis Organization 

The structure of this thesis is as follows: 

Chapter 2 - Literature Review: In this chapter, a comprehensive review of the literature on the 

previous methods for common defect recognition, detection, and segmentation is presented. The 

main focus is on techniques that have been used across a variety of domains, like computer vision, 

image processing, 3D computer vision, and methods based on deep learning. 

Chapter 3 – Proposed method: This chapter introduces the hybrid proposed methodology for 

detecting and recognizing pavement cracks, utilizing a weakly supervised and supervised learning 

approaches. Detailed explanations are provided for each submodule within this innovative 

framework. By integrating weakly supervised and supervised methods, this hybrid approach reaps 

the benefits of both techniques, thereby enhancing the efficiency and effectiveness of pavement 

crack classification and localization. The proposed method further provides a mechanism for 

precisely estimating the width of the linear cracks in pixel measurements using patches derived 

from the localization module. This information will be used later in PCI calculation. 

Chapter 4 – Case Study: This chapter shows the empirical outcomes derived from the proposed 

framework. Additionally, a comparative study between the proposed hybrid localization approach 

and established supervised learning techniques, including instance segmentation and object 
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detection methods, is conducted. It reveals that, upon considering all factors, the proposed 

framework significantly surpasses the performance of supervised methods.  

 

Chapter 5 – Summary, Contributions and Future Work: In this chapter, a summary of the thesis is 

presented, encompassing its noteworthy contributions and advancements in the field. Moreover, 

any challenges faced during the research are also discussed. Furthermore, to direct further 

exploration in this domain, recommendations for future research avenues are put forth. 
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Chapter 2: Literature Review 

2.1 Introduction 

This chapter endeavors to present a thorough and inclusive examination of the various techniques 

previously utilized for the purpose of crack identification and localization. The methodologies 

encompass a broad spectrum, encompassing both machine learning and computer vision methods. 

First, classical image processing and computer vision techniques are examined for their 

applicability in pavement crack detection. They mostly involve several steps such as thresholding, 

edge detection and morphological operations. Next, 3D computer vision methods that leverage the 

3D point clouds and 3D imaging by capturing detailed spatial information and integrating state-of-

the-art imaging technologies are considered. Finally, a comprehensive investigation is carried out 

on deep learning-based methods, including both supervised and weakly supervised approaches, 

owing to their exceptional performance. This chapter also considers the effectiveness and 

drawbacks of the mentioned methods to highlight the areas where further improvements can be 

made. 

2.2 Classic Machine Learning and Computer Vision Methods 

Some approaches developed image processing and computer vision techniques to detect defects in 

pavement images obtained from the CCD cameras. CCD camera sensors convert light into an 

electrical charge in pixels. In general, these methods comprise the major steps as follows [1]:  

1. Pre-processing: Different climate conditions may challenge the data collection process by 

affecting the image contrast and illumination, which may affect crack detection in the next 

steps. Thus, In pre-processing, some image processing techniques such as contrast 

stretching, histogram equalization and filtering are performed to recover the image from 

the environmental artifact noise to some extent [7].  

2. Segmentation is the process in which the pixels belonging to specific objects in the image, 

such as the defects, are specified as the region of interest. After segmentation, the extent 

and severity of the defects can be calculated by some other techniques from the extracted 

regions from the segmentation process. There are various techniques and methods for image 

segmentation including: (1) Edge-based segmentation: This method involves detecting 

edges or boundaries between regions in an image based on changes in intensity or color. 

Since this method is noise-sensitive, it is advantageous to smooth the image to some extent 

before using the approach. (2) Region-based segmentation: In this method, pixels with the 

same features, such as color, texture, etc. are considered as one group. This method is 

helpful to a great extent for images in which the edges are not well-defined due to noise. 

(3) Threshold-based segmentation: This method categorizes the pixels into the foreground 

and background groups by comparing their intensity values with a specific threshold. This 

method is simple and fast, but may not work well for images with varying lighting or 

contrast. (4) Fuzzy-based segmentation: This method uses fuzzy logic to assign degrees of 

membership to pixels based on their similarity to different regions or objects. It can handle 

variations in texture and color but may require more computational resources. (5) Partial 

differential equation-based segmentation: This method involves solving partial differential 

equations to identify boundaries or regions in the image. It can be computationally intensive 

but can produce accurate results.  
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When compared to employing only one method, hybrid segmentation techniques, which 

incorporate several segmentation techniques, frequently produce better results. Since a 

combination of multiple segmentation techniques outperforms a single method in 

overcoming the drawbacks or limits of certain segmentation approaches, it may be better 

suited to various types of images or regions of interest [8]. To handle variations in lighting 

or contrast within the image, for instance, a hybrid approach might combine threshold-

based segmentation with fuzzy-based segmentation. Alternatively, it might combine edge-

based segmentation with region-based segmentation to better capture the edges and texture 

of an object of interest. However, combining the procedures without calibration does not 

yield better results. Therefore, the parameters and weighting of each technique must be 

carefully considered and optimized while designing a hybrid segmentation method. The 

computational cost of a hybrid technique may also be higher than employing a single 

method; hence, the methods should be selected regarding the particular application and 

available resources. 

3. Feature extraction and selection: Feature extraction techniques can eliminate noises such 

as shadow regions and extract the region of interest, including the defects. Various feature 

extraction techniques, such as curvelet, Haar, Fourier, Wavelet, were used to extract defects 

from the images [9], [10]. In order to construct a representation of the crack in a skeleton 

shape, that is also useful for estimating the crack’s width and other properties, the skeleton 

approach was employed [11]. Next, extracted features were classified to recognize defect 

types and estimate their lengths. A Canny edge detector has been applied to locate cracks 

[12]. Comparing Fast Haar Transform (FHT), Fast Fourier Transform (FFT), Sobel, and 

Canny edge detection algorithms, FHT  demonstrated greater performance compared to the 

other edge detection methods [13]. An Active Contour Model (ACM) has been also used 

to obtain crack location and geometry [14]. An ACM is a type of deformable model that 

seeks to minimize an energy functional defined over the contour of the object being 

segmented. The Markov Random Fields (MRF) model has also been used to segment cracks 

[15]. However, both ACM and MRF are computationally expensive. Furthermore, ACM is 

sensitive to initialization and parameter settings. MRF performance also depends on the 

quality of the image and the choice of model parameters. Hence, it cannot be generalized 

for detecting defects with complex shapes. 

4. Detection and classification: Extracted features from the previous stage are used in this 

stage to detect and classify the defect types and their severities. For example in [16] the 

images were segmented by 1D and 2D thresholding to segment the defects. Next, the 

segmented defects are categorized into the classes such as cracking, rutting, and potholes 

with different severities. The fused features from the local binary pattern (LBP) and 

principal component analysis (PCA) were classified by SVM to detect the cracks [17]. PCA 

is a statistical technique used for dimensionality reduction and feature extraction. LBP 

(Local Binary Pattern) is a texture descriptor used for texture classification. A novel crack 

segmentation method based on the Random Structured Forest was proposed [18]. A tile-

based crack assessment technique has been developed to detect cracks from the 2D and 3D 

images [19]. However, the types of the defects cannot be detected by this method [20]. 

Hybridization of some computer vision and machine learning methods such as least squares 

support vector classification (LSSVC) and forensic-based investigation (FBI) were applied 

to recognize pavement rutting [21]. LSSVC is a supervised learning classification algorithm 

that finds the hyperplane that maximally separates the data points of different classes. 

Forensic-based Investigation (FBI) is a process that involves a detailed analysis of 
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pavement distresses to identify the root causes. The goal of the FBI is to determine the 

factors that have contributed to pavement distress and develop appropriate maintenance or 

rehabilitation strategies.  

However, classical image processing and computer vision methods have certain limitations. They 

tend to rely heavily on handcrafted features, requiring expert knowledge and domain-specific 

expertise to design effective algorithms. This process can be time-consuming and may not 

generalize well to diverse datasets or complex scenarios [1]. Additionally, in contrast to deep 

learning methods, using shallow learning techniques make their performance susceptible in 

tackling the problems of illumination and background changes. Thus, their results are inferior to 

the deep-learning methods [22].  

2.3 3D Methods 

Since some pavement distresses, such as potholes and ruttings, are inherently three-dimensional, 

3D defect detection algorithms, which capture the complete pavement geometry, are extremely 

helpful for identifying and quantifying such distresses [5]. 3D defect detection methods use 3D 

data generated by 3D photogrammetry, such as 3D laser-based imaging [5]. 3D data generated by 

structured light imaging was used to detect cracks [23]. Structured light technique projects a pattern 

of beams onto a scene and extract the 3D model of the scene by measuring the distortion in the 

projected pattern. 3D data can be used as 3D point cloud or 3D image. A 3D image is just like a 

regular image with the scene’s depth information included. Each 3D pixel (i.e. a voxel), comprises 

information about the 3D space with color and other properties of the scene. 3D point clouds 

contain three-dimensional spatial information as well as others like color. In contrast to the 3D 

image, the 3D point clouds provide a sparse representation of the scene.  

Light Detection and Ranging (LiDAR) scanner data has also been used to detect pavement defects 

[3], [25], [29]–[34]. Although 3D supervised-based algorithms showed superior performance, they 

rely on a large amount of 3D point cloud that takes a lot of time and effort. Hence, to address this 

issue a 3D semi-supervised point -level method was proposed by Feng et al [29]. Ravi et al. [33] 

proposed an automated method to detect pavement defects such as potholes and foreign object 

debris (FOD) using LiDAR. Understanding how the installation of a LiDAR sensor affects its 

performance is critical for effective point cloud analysis. For instance, the placement and 

orientation of the sensor can significantly impact the quality and accuracy of the resulting point 

cloud data, which are used later in 3D computer vision tasks such as object detection, classification, 

and segmentation. The field of view of LiDAR, called FOV, is the space area covered during the 

scanning process for collecting 3D point clouds by the LiDAR sensor. The LiDAR should be 

installed in the way that its FOV covers the area of interest for the application. Another important 

consideration is the mounting angle of the sensor. The mounting angle refers to the angle between 

the sensor and the ground surface, and it can affect the distribution and density of the point cloud 

data. A mounting angle that is too high or too low can result in missing or sparse data in certain 

areas, which can affect the accuracy of object detection and segmentation. The best-optimized 

installation parameters, such as height and the rotation angle, are presented by Lin et al. [34] using 

low-channel LiDAR for crack detection in highway and urban areas. Low-altitude unmanned aerial 

vehicle light detection and ranging (UAV LiDAR) and random forest classification (RFC) were 

used for defect classification [35]. Low-altitude unmanned aerial vehicle light detection and 

ranging is an unmanned vehicle equipped with a LiDAR sensor operating at low altitudes for 

collecting 3D data. Random Forest Classification (RFC) is a machine-learning algorithm which 
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combines multiple decision trees to make predictions. The final classification decision is made 

based on the majority vote of the individual decision trees. High-quality 3D point cloud datasets 

collected with LiDAR scanners are used to train neural networks such as PointNet for defect 

classification [30]. 

Moving Least Squares (MLS) point clouds  acquired with Mobile Laser Scanning systems have 

been clusters to detect cracks [24]. MLS point clouds are a smoothed representation of the original 

3D point cloud data. As a result, owing to noise removal from the point clouds, MLS point clouds 

provide a more accurate representation of the underlying surface. However, one common challenge 

with MLS data is the lack of topology, which refers to the absence of information about the 

relationships between points in the point cloud. In traditional point cloud analysis, topology is often 

defined by the connectivity between points. This topology provides a geometric representation of 

the object or scene being scanned. Thus, to handle this issue, a two-dimensional index is assigned 

for each 3D point by Zhong et al. [25].  

The Microsoft Kinect camera generates a combination of depth map of the scene using an infrared 

sensor and RGB color image that can be used to detect defects [2], [26]. Depth images collected 

by Kinect camera were used for pothole imaging [27]. The Kinect camera’s main drawback is that 

ambient light sources can interfere with its depth sensor. Other approaches used the stereo image 

technique to reconstruct 3D point clouds from corresponding 2D points extracted from two images 

captured by two cameras with a sole translation to each other in one axis. Then, the reconstructed 

point clouds were used to detect cracks [5]. A 3D crack segmentation algorithm has been used to 

segment the cracks from the 3D point clouds [28]. 

Since the 3D point cloud annotations should be done by humans, these methods’ annotations are 

intensively time-consuming and need some software skills to do; additionally, capturing high-

quality 3D data can be challenging and resource-intensive [41].   

2.4 Deep Learning Methods 

Most of the recent studies on defect applications applied methods based on deep learning models 

because of their superior performance and lower computational costs compared to the other 

techniques [1], [20], [42], [43].  

2.4.1 Supervised Methods 

2.4.1.1 Object Detection 

Some proposed supervised methods localize the defects in terms of object detection with bounding 

box shapes that can be categorized into two groups: one-stage and two-stage object detection 

approaches.  

(a) One-stage detectors: 

One-stage detectors, as exemplified by YOLO (You Only Look Once) and SSD (Single Shot 

Detector), are a single-step process where the model directly predicts the object class and the 

bounding box coordinates in a single feed-forward pass over the image without generating region 

proposal. The network divides the image into a grid and predicts the class probabilities and 

bounding boxes for each cell in the grid. YOLO deep learning framework developed by Redmon, 

et al. [55] has been used for defect detection [44]–[54]. YOLO is a deep learning model for object 

detection. Although it can detect objects in real-time, it has more missing small detected objects 
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compared to other detection methods owing to the lack of complex pipeline. As illustrated in Figure 

2-1, in the first step, it divides the image into some grid cells in which a class object is localized, 

and its class is predicted. In the next step, a bounding box regression is used to find the best-

enclosed rectangle around the objects with the highest score. As mentioned previously, YOLO is 

unable to detect small objects. Thus, the crack detection performance of the original YOLO model 

was improved by adding attention modules, particularly to detect small cracks [45]. Zhang et al. 

[49] proposed an improved model of YOLO3 by adding a convolutional block attention module 

(CBAM) to detect cracks. CBAM is an attention module aiming to improve the feature 

representation of convolutional neural networks (CNNs) by selectively attending to the most 

informative features. It achieves this by incorporating two types of attention mechanisms, namely 

Channel Attention and Spatial Attention, into the feature extraction process. In [112] circular 

smooth label (CSL) method is used to detect the arbitrarily oriented objects.  

[113] implemented and combined the CSL method with YOLO5 [114] and presented an oriented 

bounding box object detection called YOLO5 (OBB). In [113], each object is defined with six 

parameters: (cx, cy)(center of the rectangle), width (rectangle width), height (rectangle height), 

angle (rectangle rotation angle), and object class. An improved version of YOLO was has been 

also proposed for defect detection by using BFPN (Bidirectional Feature Pyramid Network) [46]. 

BIFPN is a modification of the Feature Pyramid Network (FPN) architecture, which is designed to 

address the problem of scale variation in object detection by generating a multi-scale feature 

pyramid. The feature pyramid consists of a set of feature maps at different scales. The resolutions 

of the feature maps are increased from the top to the bottom of the pyramid. BIFPN extends FPN 

by introducing a bidirectional pathway that connects adjacent levels of the pyramid.  

 

Figure 2-1 YOLO object detection [55] 
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(b) Two-stage detectors: 

On the other hand, two-stage detectors, such as Faster R-CNN (Region-based Convolutional 

Neural Network), is are two-step process where the model first generates a set of regions of interest 

(region proposals) using reference boxes (anchors) and then predicts the object class and bounding 

box coordinates for each region proposal. The network uses a separate Region Proposal Network 

(RPN) to generate the region proposals, which are then refined by a separate detection network. 

Thus, the two-stage object detection has one more stage called region proposal generation 

compared to the one-stage object detection. One-stage object detection methods are ideal for 

situations where speed is critical since they are simple, effective, and real-time. On the contrary, 

two-stage objects detection methods tend to be more accurate, especially for small objects and 

cluttered scenes, due to their more complex architecture and extra region proposal generator 

compared to the one-stage object detection approaches. Additionally, they are not as real-time as 

one-stage methods due to their higher computational costs. In other words, the application’s 

specific needs, such as accuracy, speed, computational costs and complexity, indicates whether to 

select one-stage or two-stage object detection methods.  

Some other methods used two-stage object detection methods, such as Faster R-CNN, to detect 

cracks [57]–[63]. Faster R-CNN is a popular deep learning-based object detection model that was 

introduced by Ren et al. [64]. Faster R-CNN builds upon the Region-based Convolutional Neural 

Network (R-CNN) and Fast R-CNN models, which were previously developed for object detection. 

Faster R-CNN is designed to improve the speed and accuracy of these models by introducing a 

Region Proposal Network (RPN) that shares convolutional features with the object detection 

network. As illustrated in Figure 2-2, the RPN generates region proposals by sliding a small 

network over the convolutional feature maps of the input image. The network is designed to output 

a set of bounding box proposals, each of which is associated with a score that reflects the likelihood 

of the proposal containing an object. The top-scoring proposals are then fed into the object 

detection network for classification and refinement. The object detection network in Faster R-CNN 

is typically a Fast R-CNN model that uses the same convolutional features as the RPN. The network 

takes the region proposals generated by the RPN and uses them to crop and warp feature maps 

from the convolutional feature maps. The cropped feature maps are then fed into a sequence of 

fully connected layers for object classification and bounding box regression. 

Li et al. [58] proposed a UAV-based crack detection using Faster R-CNN. Gou et al. [61] have 

developed a neural network based on the Faster-RCNN with improved feature extraction and 

region proposal. Faster R-CNN has also been used to automate pavement defect detection using 

images from the satellite imagery web-mapping service (Google Maps) [62]. To achieve a high-

efficiency pavement crack detection, Zhai et al. [63] improve Faster-RCNN in two ways: (1) by 

introducing residual connections in the convolutional layers of the backbone, classification and 

regression network, which enable the learning of more complex features; and (2) by designing a 

feature ensemble structure for Faster R-CNN, which combines the shallow and deep feature maps 

of the backbone. This approach involves selecting a subset of feature maps from each layer of the 

backbone network and concatenating them to form a new feature map. The resulting feature map 

is then used as input to the object detection network, improving the overall accuracy of the model. 
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Figure 2-2 Region proposal network (RPN) in the Faster R-CNN [64] 

2.4.1.2 Segmentation Methods 

Some proposed supervised methods localize the defects in terms of pixel-wise segmentations 

shapes using deep learning segmentation models, such as the Mask R-CNN, U-Net and SegNet 

[65]–[78].  

 

(a) Mask R-CNN 

Mask R-CNN is a neural network architecture that builds upon the Faster R-CNN object detection 

model to also perform instance segmentation. Instance segmentation is a computer vision task that 

involves detecting objects in an image and identifying their precise boundaries at the pixel level. 

Mask R-CNN extends Faster R-CNN by adding a third branch to the network that outputs a binary 

mask for each detected object. As illustrated in Figure 2-3, the mask branch takes as input the region 

of interest (RoI) proposals generated by the RPN and generates a binary mask that specifies which 

pixels in the RoI belong to the object and which do not. The mask branch consists of a set of 

convolutional layers followed by a fully connected layer that outputs a binary mask of the same 

size as the RoI. The output mask is then resized to the original size of the input image and combined 

with the object classification and bounding box regression results to produce the final instance 

segmentation output. Compared to Faster R-CNN, Mask R-CNN adds additional computational 

overhead to the model due to the mask branch. However, it also provides more detailed information 

about the objects in an image by allowing for precise pixel-level segmentation. This additional 

information can be beneficial in applications where it is important to identify the exact boundaries 

of objects in an image, such as cracks. 

An improved Mask R-CNN with optimized RPN was proposed to segment asphalt road cracks by 

replacing Soft Non-Maximum Suppression (Soft-NMS) by None-Maximum Suppression (NMS)  

[68]. NMS is a traditional post-processing algorithm used in object detection to eliminate redundant 
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bounding boxes generated by a model. It works by selecting the bounding box with the highest 

confidence score and suppressing all other overlapping boxes with a certain threshold. The 

overlapping boxes are suppressed by setting their confidence score to zero, which removes them 

from consideration for the final output. On the other hand, Soft-NMS is a variation of NMS that 

retains some of the suppressed bounding boxes by reducing their confidence score instead of setting 

it to zero. This is achieved by using a Gaussian function to gradually reduce the confidence score 

of the suppressed bounding boxes based on their degree of overlap with the selected box. Hence, 

Soft-NMS can help retain important object details that may be lost with traditional NMS, especially 

in cases where small overlapping boxes may contain additional information. This can lead to more 

accurate object detection results with fewer missed detections.   

 

Figure 2-3 Mask R-CNN framework for instance segmentation [79]  

Li et al. Xiao [72] proposed a new convolutional neural network based on the Mask R-CNN called 

C-Mask Region-based convolutional neural network (R-CNN) to identify pavement defects, such 

as transverse, longitudinal and alligator cracks, by adjusting the anchor ratio and using cascaded 

detectors with multiple intersections over union (IOU) thresholds. Joint training process for Mask 

R-CNN and Faster R-CNN has also been proposed to improve the defect detection [57].  

(b) U-Net 

Other methods used encoder-decoder-based segmentation networks such as U-Net and SegNet to 

segment the cracks. U-Net was specifically designed for biomedical image segmentation [80], and 

later it has also been used for other segmentation tasks, such as crack detection in civil engineering 

[73]–[76], [81]–[83]. 

As illustrated in Figure 2-4, U-Net architecture consists of two main parts: the contracting path and 

expanding path. The contracting path is similar to the encoder part of an encoder-decoder network. 

It comprises several layers of convolutional and max-pooling operations used to extract high-level 

features from the input image while reducing its spatial resolution. The expanding path is similar 

to the decoder part of an encoder-decoder network. It consists of several layers of up-convolutional 

and concatenation operations, which are used to increase the spatial resolution of the feature maps 

and perform pixel-wise segmentation. The up-convolutional layers are used to up-sample the 

feature maps and produce a segmentation map of the same size as the input image. U-Net also 

includes skip connections that connect corresponding layers of the contracting and expanding 
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paths. These skip connections help to preserve spatial information and enable the network to learn 

both global and local features. Specifically, the output feature maps of each layer in the contracting 

path are concatenated with the input feature maps of the corresponding layer in the expanding path, 

before being passed through the up-convolutional layer. 

 

Figure 2-4 U-Net architecture [80] 

Liu et al. [81] changed the depth and type of the encoder in the U-Net and considered its effect on 

not only the accuracy metric but also on computational costs and the model complexity for crack 

detection. Considering all factors, UNet-VGG19, UNet-InceptionResNetv2, and UNet-

EfficientNetb3 have been ranked as the top three encoders. Wang et al. [82] proposed an improved 

U-Net called I-UNet for crack segmentation, in which dilated convolution instead of regular 

convolution was used to avoid losing information during the upsampling stage. Yu et al. [83] used 

residual blocks from the Resnet in the encoder part to improve the model generalization. They also 

applied an attention mechanism called Spatial-Channel Squeeze and Excitation (scSE) to improve 

the crack segmentation performance. This mechanism was designed to enhance the important 

features in an image while suppressing the less important ones. The scSE attention module works 

by reducing the spatial and channel dimensions of the input feature map through global average 

pooling and two fully connected layers, respectively. This allows the module to compute a global 

descriptor that summarizes the most important features in the input.  

The issue of imbalance in the number of crack and background pixels has been a significant 

challenge for road crack image analysis. That is because, owing to the larger number of background 

pixels, the network tends to predict more background labels compared to the crack labels, which 

results in detection outputs that are completely black. Thus, an imbalanced number of labels leads 

to more missing detected pixels for thin cracks. To address this problem a U-Net and residual 

attention module-based network called RAO-UNet was proposed [76]. A novel pixel segmentation 

was proposed by modifying the original version of U-Net called CrackW-Net for crack 

segmentation by using a skip-level sampling method [84].   
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(c) SegNet 

Similar to U-Net, SegNet is an encoder-decoder-based architecture for semantic segmentation. 

They differ in the way they transfer information between the encoder and decoder. SegNet only 

transfers max-pooling indices from the encoder to the decoder, while U-Net transfers entire feature 

maps, which requires more memory. This makes SegNet more memory-efficient than U-Net, but 

U-Net’s approach helps to preserve spatial information and combine high-level and low-level 

features for more accurate segmentation.  A segmentation network based on SegNet has been 

proposed to segment pavement and bridge cracks [77]. In this network, VGG16 without the top 

layer was used as encoder, which allows the model to be converged faster with lower computational 

power for pavement crack detection.   

A two-step crack detection and segmentation has also been developed by Li et al [78]. First, a crack 

classification algorithm based on Interleaved Low-rank Group Convolution Hybrid Deep Network 

(ILGCHDN) was used to classify the images into two groups: (1) image with cracks and (2) image 

without cracks. ILGCHDN is a type of neural network architecture that combines multiple 

techniques to improve the efficiency and accuracy of deep learning models. By using low-rank 

approximation and group convolution, ILGCHDN reduces the computational cost of the 

convolutional layers. Interleaved execution then allows the network to process multiple layers in 

parallel, reducing the memory footprint and improving the overall efficiency of the network. Next, 

a fused network which combined SegNet and dense conditional random field (DCRF) was used to 

segment the cracks.  DCRF is a probabilistic graphical model used for image segmentation and 

labeling. DCRF can consider both local and global information to make pixel-wise predictions. It 

models the probability distribution of the labels for all pixels in an image, given the observed image 

data and any other relevant information, such as the spatial relationships between neighboring 

pixels. An encoder-decoder neural network has also been developed based on SegNet to segment 

cracks [77].  

2.4.1.3 Hybrid Methods 

Some methods applied other imaging techniques, such as Infrared thermal imaging (IRT), to detect 

cracks since the temperature is different between cracks and pavement surface [86]. An artificial 

neural network was proposed to calculate pavement condition index (PCI) from the defect types 

and severities [87]. Some methods classified the whole images [88], whereas others divided images 

into equal size patches and classified the patches to detect the defects by two concepts: (1) by 

dividing the image into sub patches, more data can be provided to train the deep learning model; 

and (2) image localization map can be generated by putting the defect patches altogether [22], [89]–

[92]. The Google Net convolutional neural network was used to classify the image patches for crack 

detection in a nuclear power plant [93]. The features extracted from the patches with the size of 

(256*256) by the Adaptive Salp Swarm Algorithm (ASSA) were used to classify the defects by 

ResNet50 [94].  

A novel hybrid method was proposed to measure the crack width [95]. A probability fusion-based 

model has been developed to detect and measure the length and width of the cracks [96]. A 

combination of CNN and LSTM was proposed for pavement maintenance data [97].  

2.4.1.4 3D Deep Learning Methods 

3D point clouds and 2D image fusion were proposed to detect cracks [38]. The proposed data fusion 

has decreased background noise and increased crack distinguishability. A car-mounted ARM-
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based platform was proposed by Asadi et al. [39] to detect cracks by using RGB-D (RGB color 

data combined with depth image map) sensor data. Faster R-CNN and YOLO were used to detect 

the cracks using 3D pavement images [40]. Feng et al. [31] proposed a Stratified Contrastive 

Learning dual-branched Graph Convolution Network (GCF) to boost the accuracy and efficiency 

of pavement crack detection. A 3D deep convolutional neural network called Pavement Crack 

Detection Net (PCDNet), which uses patch-level instead of pixel-level data, has also been proposed 

to apply to the 3D images for defect classification [36]. The CrackNet-V model was also proposed 

to detect cracks from the 3D pavement images [37]. Despite the fact CrackNet-V comprised a 

deeper architecture compared to the CrackNet network, it has a fewer number of parameters than 

CrackNet; as a result, it generated more promising results with fewer computational costs. 

2.4.2 Weakly Supervised Methods 

Most of the proposed deep learning-based methods are supervised techniques, which need a large 

dataset to attain a good results. Thus, the main drawback of supervised deep learning methods is 

that they would not show their superior performance when they are not trained with a sufficient 

number of annotated objects. Two major supervised deep-learning-based methods are object 

detection and object segmentation, both of them need annotation of a large dataset using bounding 

boxes and polygon shapes, respectively. The problem gets worse when it comes to defect detection. 

Defect annotation is more challenging task than other types of object annotation because of the 

following reasons: (1) Due to the various complex shapes of defects, we need a very large dataset 

to train the models; and (2) In some cases, some defects with different types overlap with each 

other, which makes it difficult to find a clear boundary to separate them, especially in highly 

damaged asphalt pavement roads. For instance, Figure 2-5 shows overlapping of longitudinal, 

transverse and alligator cracks, and potholes in complex forms. Moreover, in such images, there 

are always some defects that cannot be definitely categorized into one type. Consequently, due to 

these drawbacks, defect localization using weakly supervised methods is a more appropriate 

alternative compared to the supervised ones. 

 

 

Figure 2-5 A sample image of complex defects for highly damaged asphalt pavements 

In general, weakly supervised methods for pavement crack detection refers to a type of machine 

learning approaches that can localize cracks in pavement surfaces without relying on pixel-level or 

bounding box annotations of the images. In contrast to supervised methods, weakly supervised 
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learning methods can use easier forms of supervision, such as image-level labels or partial 

annotations, to train models for detecting cracks in pavement surfaces. 

A weakly supervised instance segmentation (WSIS) was developed for crack segmentation by 

Zhang et al. [98]. They generate pixel-wise pseudo labels from the bounding box-level annotation 

using the region growing algorithm with the GrabCut algorithm. Inoue et al. [99] developed a 

weakly-supervised approach to tackle the issue of crack annotation. They proposed a two-branch 

framework that can maintain a high level of accuracy in detecting cracks even when the annotations 

are of low quality. Two-branch fused the supervised model rough annotation at the first branch and 

annotation obtained from the darkness calculation in the second branch inspired by the human 

annotation. Tang et al. [100] proposed a weakly supervised learning U-Net (WSL U-Net) for 

pavement crack segmentation using a weakly labelled image in which only marginal pixels were 

labelled, which was beneficial in reducing the cost of the pixel-wise annotation.  

Some methods used class activation mapping (CAM) [101] to localize the pavement cracks [102]–

[104]. CAM is a technique used to visualize the spatial information within a neural network that 

contributes to its classification decision. It can provide the approximate location and shape of the 

object in terms of which the classifier is trained without the need to use bounding box or pixel-

wise annotations. In the CAM method, first, the last fully connected layer of the classifier is 

removed. Next, a weighted sum of the feature maps generated by the last convolutional layer of 

the network is calculated. Each feature map is multiplied by its corresponding weight in the final 

classification layer, and the resulting feature maps are summed up. As illustrated in Figure 2-6, this 

process results in a 2D heatmap that represents the importance of different regions of the input 

image for a particular class, which can be segmented for object localization.  

 

Figure 2-6 Class Activation Mapping [101] 

The pixel-level semantic requirement cannot be met adequately by solely utilizing the default 

image size passed into the classification network, as it fails to activate sufficient features that 

identify objects. Thus, multi-scale localization using CAM method with self-attention (SA) module 

was used to address this problem [104]. In the same way, a weakly supervised patch label inference 

network (WSPLIN) is proposed to tackle this issue by dividing the images with different scales 
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into patches with different collection strategies and classifying them [103]. A patch-based weakly 

supervised semantic segmentation network has also been developed for crack segmentation [102]. 

First, the images are divided into some patches. Next, the classifier is trained by their corresponding 

image labels and CAM method is used to extract the heatmaps of the cracks. Finally, Conditional 

Random Fields (CRF) are used to generate synthetic labels. CRF is used as a post-processing step 

to refine the output of a neural network. Neural networks often output pixel-wise or object-wise 

probabilities for a given task, such as image segmentation or object detection. However, these 

probabilities are often noisy and can result in fragmented or inaccurate segmentations or object 

boundaries. However, since they divide an image to small patches, the texture of the crack cannot 

be kept to classify the defect type. 

The smoothed CAM method [109] is an extension of the CAM method, which can also be used to 

localize the objects. Similar to the CAM method, the smoothed CAM method localizes the defects 

in the images. This method calculates the first principal component of feature maps multiplied by 

weights instead of using their average sum. It also augments the images and applies the CAM 

method multiple times to the combined augmented images. This method reduces the noise of 

localization and centralizes the detector result at the center of the object [109]. 

2.5 Crack Severity Estimation and Width Measurement 

Some methods are designed specifically for the purpose of estimating the width of pavement 

cracks. The results obtained from these methods can be used in calculating the Pavement Condition 

Index (PCI). Ong et al. [115] developed a hybrid method using merging the shortest and orthogonal 

projection methods to estimate the pavement crack width by identifying the points in close 

proximity to the skeleton, which are aligned to the orthogonal vector. Wang et al. [116] introduces 

a novel automatic technique for crack width measurement utilizing two algorithms including the 

crack blob extraction and crack boundary extraction by applying the Laplacian equation.  

Some other methods, in addition to localizing the detects, classify their severities as well. 

Majidifard et al. [44] gathered 2D crack images from Google Street View and trained the YOLO 

object detection model with this data to detect cracks in 2D images. However, since YOLO did not 

quantify the cracks’ density, they used the U-Net network for segmentation and quantifying defect 

density. A two-step crack detection and crack severity classification using Mask R-CNN has also 

been proposed [66]. In the first step, Mask R-CNN was used to localize and classify defect types 

for linear cracks, such as longitudinal and transverse cracks. In this step, Mask R-CNN was also 

used to classify the fatigue defect severity in three levels. In the second step, a combination of 

image processing techniques, such as connected component analysis, morphological operation 

(dilation and erosion), Gaussian filter technique, were applied to segment the linear defects more 

precisely and estimate their severities. However, the aforementioned image processing methods 

are beneficial for high-resolution pavement images. For images with lower resolution, such image 

processing techniques, especially erosion, deforms the crack’s structure. In addition to the defect 

type, defect severities were estimated by calculating the maximum crack width in linear cracks and 

the density of cracks in area cracks [85]. 

Automatic crack width estimation can be done by analyzing the images with image processing and 

computer vision tools such as Interactive Segmentation with Intelligent Scissors (IS)  method [110].  
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IS is an intuitive and user-friendly method that automatically detects object edges in an image. This 

method was introduced by Mortensen et al. [110] and was primarily designed to enable interactive 

boundary delineation of objects of interest in images.  

The algorithm makes use of the idea of "costs" or "weights" for each pixel, which are calculated 

based on various features such as pixel intensity, gradient, and direction. The IS behaves like a 

"live wire" that snaps onto the object boundary based on these cost values. Seed points are fed to 

the algorithm which then seeks the path of least cost between the points, effectively delineating the 

object. 

IS can handle small breaks in object boundaries. They are particularly useful for delineating objects 

with complex, irregular shapes. They are often used in applications like medical imaging, where 

accurate boundary delineation is crucial. Figure 2-7 shows a sample of delineating the intricate 

boundary of an object against a complex background using the IS method. 

 

Figure 2-7 Delineating the intricate boundary of an object against a complex background 

using the Intelligent Scissors method [110] 

2.6 Summary and Conclusions 

This chapter delved into the existing body of literature concerning crack detection, localization, 

and severity estimation techniques. Moreover, it identified the drawbacks associated with these 

methods. Although classical image processing and computer vision methods are often 

computationally efficient and can work well in scenarios with limited computational resources, 

they struggle with handling large-scale datasets, as they may lack the scalability and adaptability 

of modern deep learning approaches. Providing a more comprehensive understanding of the three-

dimensional world through 3D computer vision techniques leads to more accurate object 

localization and shape estimation. However, it relies on specialized equipment, such as depth 

sensors or stereo cameras, which may limit their applicability and increase the cost of 

implementation. Ultimately, a framework based on deep learning is taken into consideration. The 

examined methods encompassed consideration of various attributes, such as the classification of 

defect types, localization of defect through supervised or weakly supervised approaches, including 

defect detection and segmentation, as well as defect severity estimation.    
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Table 2-1 summarizes the pavement crack detection and recognition methods discussed in this 

chapter as well as the proposed method. As shown in the table, considering all factors, the proposed 

hybrid method aims to combine the benefits of the previous methods. By integrating both 

supervised and weakly supervised methods to localize defects and categorize their types and 

severities. 

Table 2-1 Summary of pavement crack detection and recognition papers based on deep 

learning 

Methods Defect type 

classification 

Defect localization 

(detection/segmentation/patch 

classification) 

Defect severity 

classification or 

estimation 

Supervised 

method 

Weakly supervised 

method 

[98], [99], 

[100], [102-

104] 

No No Yes No 

[22], [39], 

[49-54], 

[57], [61], 

[62], [65], 

[67]–[69], 

[70-71], 

[73]–[78], 

[81], [82], 

[84], [86], 

[89]–[93] 

No Yes No No 

[45]–[48], 

[58], [60], 

[63], [72], 

[94] 
 

Yes Yes No No 

[44], [66], 

[85] 

Yes Yes No Yes 

[115], [116] No No No Yes 

The 

proposed 

method 

Yes Yes Yes Yes 
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Chapter 3: Proposed Method 

3.1 Introduction 

The proposed framework consists of deep learning-based classification and localization modules 

integrated with a GIS-based inspection and asset management system called RUBIX [117]. The 

proposed hybrid deep learning modules benefit from the advantages of both supervised and weakly 

supervised methods. It is also shown that, in general, considering all factors, the proposed method 

outperforms the supervised methods in defect localization and classification.  

Figure 3-1 shows the block diagram of our proposed method. In the classification module, images 

and extracted patches from localization are classified in terms of defect type and severity, 

respectively. The defects’ localization module, first, feature maps are extracted from the defect 

type classifier. Then, these feature maps are used as weakly supervised features to localize the 

defects using Class Activation Mapping (CAM) (16). Finally, U-Net or Mask R-CNN are used to 

segment the defects from the CAM method heatmaps as supervised methods; and the segmented 

patches are sent to the second-level classifier to classify their severities. 

 

First Level Classifiers Second Level Classifiers

Defect 
Segmentation

Defect Type and Severity Classification

Defect  Localization

Defect Heatmaps Generation

Extract Localized 
Defect Heatmaps 

with CAM 

Remove False 
Defect 

Localizations  

Image Subset 
Selection

RUBIX as interface for training, testing and visualization

LON Severity Classifier

TRN Severity Classifier

ALG Severity Classifier

BLK Severity Classifier

Linear Crack 
Width 

Estimation

 

Figure 3-1 Proposed method 
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Table 3-1 Brief explanation of the selected defects 

Defect type Explanation Abbreviation Example 

    

Transverse 

crack 

Transverse 

defects are 

predominantly 

located 

perpendicular to 

the pavement 

centerline. 

TRN 

 

 

    

Longitudinal 

crack 

Longitudinal 

cracks are 

predominantly 

parallel to the 

pavement 

centerline. 

LON 

 

Alligator 

crack 

Alligator cracks 

mostly occur in 

areas subjected 

to repeated 

traffic loadings 

(wheel paths). It 

is a series of 

interconnected 

cracks in the 

early stages of 

development. It 

develops into 

many-sided, 

sharp angled 

pieces. 

 

ALG 

 

 

 

 

 

 

 

 

 

 

Block crack 

 

 

 

 

 

Block crack is a 

pattern of cracks 

that divides the 

pavement into 

approximately 

rectangular 

pieces. 

 

 

BLK 
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Hence, this hybrid framework combines the advantages of weakly supervised and supervised 

methods. In this research, four types of defects (i.e. longitudinal (LON), transverse (TRN), alligator 

(ALG), and block (BLK) cracks) are localized in pavement images. Table 3-1 provides a brief 

explanation and illustration of the selected defects.  

3.2 Pre- and Post-Processing Module (RUBIX) 

RUBIX is a GIS driven asset inspection and management system that integrates field data 

collection tools, dashboard reporting and decision-making aiding for long-term maintenance and 

rehabilitation planning. RUBIX has tools to perform: (1) visual inspection from field captured 

images, (2) PCI calculation to report the current infrastructure status, and (3) model degradation to 

help infrastructure managers with maintenance and rehabilitation planning. For this study, it served 

as the primary tool for field data collection, and the analysis platform used to annotate defects, train 

models, and test the datasets for object classification and localization. All captured images with 

GPS locations were uploaded into RUBIX for condition processing, analysis, and visualization of 

the generated information. RUBIX is a fully customizable platform and can be easily configured 

to match the scope of this research. As part of the pre-processing, each image is assigned to a road 

section, defined by a centerline in the GIS source map dataset. A road section in the RUBIX map 

is selected to extract the images for annotation in terms of defect types and severities. Figure 3-2 

shows an example of image selection (Figure 3-2(a)) and annotation in the RUBIX GIS interface 

(Figure 3-2(b)).   

Following the user’s request, RUBIX generates the URL encoding query of the selected images 

and uses the hyperparameters specified by the user to start the training or testing processes. RUBIX 

executes a job for each process, puts the processes in a queue, and runs them based on their 

priorities. Thus, by creating a query for images in arbitrary locations and using the pre-trained 

models, the conditions of roads can be evaluated based on the types and severities of defects so 

that proper future pavement maintenance measures can be applied. 

  

(a) Image selection (b) Image annotation  

Figure 3-2 RUBIX image selection and annotation 

Image 

selection 
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3.3 Classification Module 

In the classification module, the images and their corresponding generated localized patches are 

passed through two-level consecutive hierarchical classifiers to classify the type and severity of 

defects using the Residual Neural Network (Resnet101) [105]. It uses a residual network that can 

be extended to a deeper scale with much more hidden layers without suffering from vanishing 

gradient and optimization problems. The first classifier indicates whether there is a specific type 

of defect in the image or not. If it classifies the image as an image with a specific defect type, the 

feature maps extracted from the first-level classifiers are used to localize and segment the defect 

patches, as will be explained in Section 3.4. Next, the patches extracted by the localization module 

are passed to the second-level classifier to identify the severities of the defects, which play a key 

role in pavement condition evaluation. In the first-level classifier for each defect, images are 

categorized into the two groups: the group that includes the images with a specific type of defect, 

and the group of images without that defect, but may contain other types of defects. In the first-

level classifier, each type of defects is classified by its assigned classifier separately. Thus, four 

classifiers are used to classify the four defect types. 

In the second-level classifier, three defect severity levels are defined (i.e. high, medium, and low 

severity) for each defect. Figure 3-3(a), (b) and (c) show sample high, medium, and low severity 

levels for each type. Hence, four classifiers specify the severity of the defects for each defect type.  

 

TRN 

 

   

LON 

   

 

ALG 

 
   

BLK 

   

 (a) High severity (b) Medium severity (c) Low severity 

Figure 3-3 Samples of transverse, longitudinal, alligator and block cracks for three severity 

levels 
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3.4 Localization Modules 

After identifying the defects and their types by the classifiers, feature maps extracted from the first 

classifiers are segmented to localize the classified defects using two steps. In the first step, the 

CAM method is used as a weakly supervised method to localize the defects in heatmaps from the 

feature maps. In the second step, U-Net or the Mask R-CNN are applied as supervised methods to 

generate the segmented defect images from the heatmaps.  

3.4.1 Generation of Defect Heatmap 

After classifying the defects, the feature maps from the first classifiers are used to localize the 

defects in the given images using the CAM method. Although the CAM method extracts 

discriminative features, which occur mostly within the object region, sometimes it highlights other 

regions outside of the region of interest (ROI), which is the road area. Thus, in order to handle this 

challenge, road segmentation is used to reduce the false localizations outside the ROI. Hierarchical 

Multi-Scale Attention for Semantic Segmentation method presented in [106] is used to segment the 

road in pavement images [107]. Figure 3-4 (a) shows a sample road pavement image. Figure 3-4 

(b) shows localizing the defects in the image. Figure 3-4 (c) shows the road segmented image. 

Figure 3-4 (d) shows the segmented localized image to reduce false localization. 

  
(a) Sample road pavement 

image 

(b) Localizing the defects 

in the image 

  
(c) Road segmented image (d) Segmented localized 

image 

Figure 3-4 Reducing false localized defects by using the road segmentation image 

To segment the defective area in the localized image, first HSV (Hue, Saturation, Value) color 

space filtering within the range of (0, 0, 100) to (255, 255, 150) is applied to extract the blue area. 

Then, the segmented mask is inverted to extract parts that include defects. Finally, road 

segmentation is used to remove falsely segmented parts outside of the road. Figure 3-5 shows the 

procedure of CAM result defect segmentation explained above for a sample image. As can be seen 

in the Figure 3-5 (a), another drawback of CAM method is that it does not detect the whole shapes 

of objects, especially when the objects are complex, such as pavement defects. This incomplete 

detection leads to discontinuity in segmented localized images (Figure 3-5 (d)). 
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(a) Localized defect 

image with CAM 

method 

(b) Segmented 

defect image by 

applying HSV 

filtering 

(c) Inverted 

segmented defect 

image 

(d) Removed false 

segmented parts by 

road segmentation 

Figure 3-5 A sample of CAM result segmentation 

This problem is less severe for linear defects, such as longitudinal and transverse cracks, but gets 

worse in the case of area defects, such as alligator and block cracks. As can be seen in Figure 3-6, 

the CAM method fails to extract all parts of defects. Figure 3-6(a), (b) and (c) show original images, 

their corresponding CAM localization results and segmented images for each defect type, 

respectively. 

 

TRN 

 

   

LON 

   

 

ALG 

 

   

BLK 

   

 
(a) Original image (b) Localized defect 

image 

(c) Segmented defect 

image 

Figure 3-6 Samples of CAM method localization and segmentation 
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As mentioned in Section 2.4.2, the smoothed CAM approach [109], which serves as an extension 

of the CAM technique, can also be utilized for object localization. It enhances the images and 

implements the CAM method on the assembled augmented images several times. This strategy 

diminishes the noise associated with localization and centers the detector's outcome at the core of 

the object.  

In order to segment the defective areas in the smoothed CAM result, the same range of HSV 

filtering as mentioned for the CAM method is employed, facilitating the extraction of the blue area. 

Figure 3-7 shows a sample of CAM, smoothed CAM localization and their corresponding 

segmented images for a transverse crack. As can be seen in Figure 3-7 (d), the smoothed CAM 

method has detected all parts of the defects, and its segmentation result (Figure 3-7 (e)) does not 

suffer from the discontinuity that was common in the results of the CAM method. However, it has 

two drawbacks: (1) the computation time of the smoothed CAM method is six times longer than 

the regular CAM method; and (2) its segmentation results include portions of the background and 

are not accurate. Hence, manual modification is necessary to cleaned them up at some parts. Table 

3-2 provides a comparative summary between the CAM and the smoothed CAM methods.  

As can be seen in the table, the CAM method is faster than smoothed CAM method and does not 

include portions of background as the smoothed CAM does. Thus, we decided to use CAM method 

to localize the defect primarily and solve its discontinuity by adding the supervised segmentation 

module explained in the next section. Additionally, although the smoothed CAM method 

comprises some portions of the background, since it does not suffer from discontinuity, by 

manually eliminating the overlapping results with the background, the smoothed CAM method can 

be effectively utilized to generate ground truth data for the proposed segmentation modules. 

  

Table 3-2 Comparison of CAM and smoothed CAM method 

Aspect CAM Smoothed CAM 

Speed Faster Six times slower 

Continuity Suffers from discontinuity Dos not have discontinuity 

problem 

Background object Does not include any part of 

background alongside the 

object 

Includes some portions of the 

background alongside of the 

object 
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(a) Original image 

  

(b) Localized image with CAM method (c) Segmented image from CAM result 

  

(d) Localized image with smoothed CAM 

method 

(e) Segmented image from smoothed CAM 

result 

Figure 3-7 A sample of CAM and smoothed CAM localization and their corresponding 

segmented images for transverse crack 
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3.4.2 Defect Segmentation 

In Section 3.4.1, it was illustrated that the CAM method cannot extract all parts of the defects. To 

address the aforementioned discontinuity problem in the CAM heatmap segmented images, the 

proposed framework uses U-Net or Mask R-CNN as supervised deep learning segmentation 

modules to segment the defect more precisely as unified segmented objects from the CAM 

heatmaps. U-Net or Mask R-CNN are supervised segmentation modules as explained in Section 

2.4.1.2.  

In supervised defect localization methods using segmentation, it is necessary to annotate defects at 

pixel boundaries on the RGB images. However, this does not allow for specific defect type 

identification. In the case of instance segmentation, both pixel boundaries and their labels must be 

annotated for a large number of images with a wide variety of defects on RGB images, which can 

be a laborious and time-intensive task. 

However, as can be seen in Figure 3-1, the proposed method uses a high-level feature images (CAM 

heatmaps segmented by road segmentation) instead of RGB images to train the segmentation 

module. As can be seen in Figure 3-7 (a) and Figure 3-7 (b) defects are more noticeable and 

distinguishable in CAM heatmap compared to the original image. Thus, the segmentation module 

can learn more efficiently from the pronounced features in the CAM heatmaps instead of RGB 

images that is used in previous research for the training of the supervised segmentation modules. 

The type of defect is classified in the classification module. Therefore, the supervised segmentation 

module in the proposed framework should be able to segment the defects regardless of their types. 

It is trained using some defect CAM heatmap results and their corresponding ground truth data. 

This trained module can then be applied to new datasets without the need for additional training 

because only the classification module needs to be trained on the new data. Next, feature maps 

extracted from the classifier, using the CAM method, are then used to segment the defect from the 

CAM method for new data. 

As explained in Section 3.4.1 the smoothed CAM could join the connected defects in the localized 

image. In other words, the parts of defects disregarded by the CAM method are detected by the 

smoothed CAM method. However, it has been observed that the segmentation process is somewhat 

flawed, as it includes parts of the background in conjunction with the actual defects. Consequently, 

to gather data for training the supervised modules, a semi-automated method is proposed. This 

method generates segmented results using smoothed CAM, which are subsequently manually 

adjusted and cleaned up to remove false segmentation parts. These modified results serve as ground 

truth data for training the segmentation modules as will be explained in Section 3.4.2.1. In the test 

stage the segmentation module segments the defects from the CAM results. 

Figure 3-8 shows samples of generating defect segmentation images from the results of CAM 

heatmaps for each defect type in the proposed method. Comparing Figure 3-6 and Figure 3-8 

demonstrates that in contrast to the CAM method segmentation results, the proposed method does 

not suffer from the discontinuity problem in defect segmentation. 
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TRN 

 

   

LON 

   

 

ALG 

 

   

BLK 

   

 
(a) CAM method feature 

maps 

(b) U-Net segmentation 

results 

(c) Mask R-CNN 

segmentation results 

Figure 3-8 Samples of generating defect segmentation images from the results of CAM 

heatmaps in the proposed method 

3.4.2.1 Training for Defect Segmentation  

Contrary to the process used for training the classification modules, where images are classified 

into specific defect types and other defect types; Here, first, images are categorized into two groups: 

images with defects, and images without any defect. Next, the classifiers are trained with these two 

classes. After that, feature maps from the trained classifier are used with the smoothed CAM 

method to localize the defects. To generate the segmented ground truth images required for the 

training of segmentation modules, first, 2,000 best smoothed CAM results were selected. Next, 

HSV filtering was applied to the smoothed CAM method heatmap results. Segmented ground truth 

images were generated from the smoothed CAM heatmap results by selecting the pixels with values 

in the same HSV range explained in Section 3.4.1. Thus, Since the segmented images from the 

smoothed CAM method include some parts of background, finally, the segmented images were 

manually adjusted to remove false segmented pixels. Figure 3-9(d) shows the results of manually 

modification of the segmented images in Figure 3-9(c). These ground truth images and their 

corresponding CAM heatmap results were used to train U-Net and Mask R-CNN modules.  Some 
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samples from the generated ground truth in Figure 3-9 and their corresponding CAM heatmaps are 

shown in Figure 3-10. 

    

    

    

(a) Original image (b) Localized image 

with smoothed CAM 

(c) Segmented image 

by applying HSV 

filtering 

(d) Manually 

modified segmented 

image 

Figure 3-9 Generating ground truth from smoothed CAM heatmap results 

  

  

  

(a) CAM method 

heatmaps 

(b) Corresponding 

ground truths 

Figure 3-10 CAM heatmap sample images and their corresponding generated ground 

truths to train segmentation modules 
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3.5 Linear Crack Width Estimation 

As previously explained and as illustrated in Figure 3-10, the ground truth generated from the 

smoothed CAM method includes sections of the background along with the defect location. 

Consequently, the segmented results from the proposed method also encounter the same issue 

specifically for linear cracks, such as longitudinal and transverse cracks.  

Figure 3-11 shows two segmented defect patches by the proposed method for transverse and 

longitudinal crack, respectively. As can be seen in this figure, some portions of the background are 

segmented around the defects. Given that the estimation of linear crack width is crucial for 

calculating the PCI score, an innovative method is proposed for determining the crack width from 

the extracted patches in the next section.  

 

 

 

 

TRN 

  

 

 

 

 

LON 

  

 
(a) Original image (b) Segmented patch 

Figure 3-11Two segmented defect patches by the proposed method 

Given the proven prowess of the IS method in delineating the boundaries of objects with complex 

and irregular shapes locally, in this section, a novel method is proposed to identify the maximum 

crack width in pixels for linear segmented defect patches extracted as explained in Section 3.4 

based on IS method [110]. Figure 3-12 shows the block diagram of the proposed method to estimate 

crack width for linear defects such as longitudinal and transverse cracks.  
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Linear Crack Width Estimation

Extract the Crack Center 
Line 

Measure the Maximum 
Crack width 

Change the Orientation of 
the Segmented Patches 

to Landscape

Extract the Primary Crack 
Contour Using Scissor 
Segmentation Method

 

Figure 3-12 Proposed method to estimate linear crack widths 

Figure 3-13 shows a sample of crack width estimation. First, the orientation of all extracted 

segmented patches from Section 3.4 is changed to landscape. Next, primary crack contours are 

generated from the segmented patches using the IS method. Center points from the beginning and 

end of the segmented patch is selected as seed points for the IS method. 

As can be seen in the Figure 3-13 (c), although the IS method is expected to find the contour of the 

cracks, in many cases, only one of the edges of the cracks are detached. Therefore, in the third step, 

the patch is scanned using vertical columns of pixels searching for the darkest pixel near the pixel 

on the edge. This pixel is considered to be on the centerline of the crack. Figure 3-13 (d) shows the 

new generated contour which is positioned at the center of the crack. 

In the fourth step, for each point, the number of pixels, for which the absolute value of the 

difference between their intensity and the point’s intensity is smaller than a specific threshold, is 

considered as the crack width value for each point within the same column. Finally, the maximum 

value derived from these crack width calculations is considered as the estimation of the width of 

the crack.  Figure 3-13 (e) shows the crack width calculation for each point. As can be seen Figure 

3-13 (f), maximum crack width value is considered as crack width estimation.   

  
(a) Original patch (b) Zoomed original paatch 

 

(c) Generated contour by IS method 

  

(d) Modified and centralized contour with the proposed method 

 
(e) Selecting connected crack pixels with the proposed method to estimate crack width 

for each point 

 

(f) Selecting the maximum crack width value as crack width estimation 

Figure 3-13 Sample crack width estimation 
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By knowing the camera calibration intrinsic parameters, it is possible to convert the crack width 

in pixel scale to a real-world metric using pinhole camera calculation as shown in Equation (3-1) 

[118]. 

The intrinsic parameters include: 

1. Focal length (fx, fy): Focal length is the distance from the camera lens center to the image 

plane or camera sensor. The focal lengths along the X and Y axes can be different, especially 

if the pixels are not square. For most modern cameras, the pixels are square. Thus, the focal 

lengths fx and fy are the same in most cameras. 

2. Principal point (cx, cy): The principal point is the position where the camera's optical axis 

intersects the image plane or camera sensor. The optical center is usually near the center of 

the image, but not always precisely at the center. 

In Equation (3-1), Z represents the average distance from the camera to the objects in real-world 

metric scale. The coordinates (x, y) correspond to the object’s position in pixel scale, while (X, 

Y) denote its position in real-world metric measurements.   

𝑌 =
𝑦 − 𝑐𝑦

𝑓𝑦
∗ 𝑍  

 (3-1) 

𝑋 =
𝑥 − 𝑐𝑥

𝑓𝑥
∗ 𝑍  

 

Assuming y2 and y1 represent the vertical positions of the thickest section of the crack in pixel 

scale extracted by the proposed method, by inserting them into Equation (3-1), and taking the 

difference, we arrive at Equation (3-2), which calculates the crack width. 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑟𝑎𝑐𝑘 𝑤𝑖𝑑𝑡ℎ = 𝑌2 − 𝑌1 =  
𝑦2 − 𝑦1

𝑓𝑦
∗ 𝑍 =

𝑃𝑖𝑥𝑒𝑙 𝑐𝑟𝑎𝑐𝑘 𝑤𝑖𝑑𝑡ℎ

𝑓𝑦
∗ 𝑍  (3-2) 

 

3.6 Summary 

In this chapter, we have delved into the intricacies of the proposed framework. We have provided 

comprehensive explanation of both the classification and localization modules, shedding light on 

their corresponding submodules in detail. Furthermore, we have also illuminated how the hybrid 

proposed method integrates both weakly-supervised and supervised techniques. Additionally, we 

proposed an innovative method to estimate the linear crack width estimation, which, can be used 

for calculating PCI. Looking ahead, the following chapter will be dedicated to meticulously 

evaluating the proposed framework. 
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Chapter 4: Case Study 

4.1 Introduction 

This chapter delineates the outcomes obtained from experiments performed using the proposed 

framework. It also offers a comparative analysis, putting the results of the proposed method up 

against those from the supervised methods, showcasing both sets of results for an informed 

evaluation. 

4.2 Implementation 

In this chapter, the proposed framework is evaluated. Images used in the case study were collected 

from Forsyth County in Georgia, USA, for suburban and country roads. Images were captured with 

smartphones mounted on the vehicle hood.  

Total number of 34,714 images and 32,738 images were annotated for defect type and severity type 

classification, respectively. 700 images including four defect types, were also annotated with 

polygon shapes using RUBIX for defect localization. To ensure robust model training and unbiased 

performance assessment, the dataset was randomly partitioned, with approximately 80% allocated 

for training purposes and the remaining 20% designated for testing. This division ensures that the 

models are thoroughly trained while also maintaining an separate set for validation, thereby 

enabling an accurate measure of their performance. Notably, all training procedures were carried 

out in parallel using multiple Graphics Processing Units (GPUs), thereby accelerating the 

computation speed significantly. 

The Resnet with 101 deep layers (Resnet101) is used as a classifier in the two-level classifier 

module as explained in the Section 3.3. Binary cross entropy and SoftMax cross entropy are used 

for the first-level and the second-classifier as loss functions, respectively. Stochastic Gradient 

Descent (SGD) is used as an optimizer. Resnet 101 Feature Pyramid Network (FPN) backbone was 

used as a feature extractor in the Mask R-CNN .The Pytorch implementation of U-Net model for 

high definition images was used [111].  

4.3 The Proposed Method Experimental Results 

4.3.1 Results of Classification 

The high accuracy results of the first-level classifier, second-level classifier as well as the total 

number of images and patches for each defect type are shown Table 4-1, and Table 4-2 respectively. 

Figure 4-1and Figure 4-2 also show the confusion matrices of the first-level and the second-level 

classifiers on the validation set. Although all accuracies are high, considering first and the second-

level classifier, linear cracks, such as transverse and longitudinal cracks showed more promising 

results compared to the area defects, such as block and alligator cracks in the second classifier. 
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Table 4-1 Results of first-level classifiers 

Defect  With Defect Without Defect Overall 

TRN 
Accuracy 0.98 0.99 0.99 

Number of images 4,168 5,986 10,154 

LON 
Accuracy 0.97 0.98 0.98 

Number of images 4,115 6,020 10,135 

ALG 
Accuracy 0.99 0.99 0.99 

Number of images 3,336 3,877 7,213 

BLK 
Accuracy 0.99 0.99 0.99 

Number of images 3,331 3,881 7,212 

 

 

(a) TRN  Without 

Defect 

With 

Defect 

  Without 

Defect 

1,185 12 

  With 

Defect 

13 821 

 

 

(b) LON  Without 

Defect 

With 

Defect 

  Without 

Defect 

1,182 22 

  With 

Defect 

24 799 

 

 

 

(c) ALG  Without 

Defect 

With 

Defect 

  Without 

Defect 

771 5 

  With 

Defect 

3 664 

 

 

(d) BLK  Without 

Defect 

With 

Defect 

  Without 

Defect 

773 3 

  With 

Defect 

3 664 

 

Figure 4-1 Confusion matrix of first-level classifiers 

Table 4-2 Results of second-level classifiers 

Defect  High Medium Low Overall 

TRN 
Accuracy 0.98 0.98 0.98 0.98 

Number of patches 2,815 2,845 2,840 8500 

LON 
Accuracy 0.98 0.98 0.97 0.98 

Number of patches 2,812 2,816 2,800 8,428 

ALG 
Accuracy 0.97 0.90 0.92 0.93 

Number of patches 2,710 2,775 2,810 8,295 

BLK 
Accuracy 0.96 0.96 0.94 0.96 

Number of patches 2,805 2,010 2,700 7,515 
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(a) TRN  High Medium Low 

  High 556 5 2 

  Medium  3 558 8 

  Low 1 6 561 

      
 

 

(b) LON  High Medium Low 

  High 555 2 6 

  Medium  2 547 9 

  Low 8 6 539 

      

 

 

 

(c) ALG  High Medium Low 

  High 529 8 5 

  Medium  12 507 36 

  Low 9 26 527 

      

 

 

 

(d) BLK  High Medium Low 

  High 547 7 7 

  Medium  5 388 9 

  Low 10 15 515 

      

 

 

Figure 4-2 Confusion matrix of second-level classifiers 

4.3.2 Results of Localization 

To assess the segmentation results from the smoothed CAM method, we annotated 100 images 

including defects and calculated the Intersection Over Union (IOU) between the images segmented 

by the smoothed CAM method and those from the ground truth. The evaluation yielded an average 

IOU of 0.81, indicating a strong correlation and demonstrating a commendable performance of the 

method. Figure 4-3 shows some validation results of the smoothed CAM method and their IOU 

results. 

As mentioned earlier, 700 images were annotated for defect localization; 200 images from which 

were randomly selected to evaluate the proposed method. The rest will be used to train the 

supervised methods to compare their results with the proposed method. Some annotated samples 

are shown in Figure 4-4.  

The number of defects for each type in the 700 images is shown in Table 4-3. Since the transverse 

and the longitudinal cracks are more common compared to the alligator and block cracks, their 

numbers are greater than the others. 

After annotating the images, binary masks were generated from the polygon annotations as ground 

truth segmentation masks. Samples of annotated images are shown in Figure 4-5. 



  

 

39 

 

     

 

0.72 

     

 

0.79 

     

 

0.86 

 

 
 

  

 

0.86 

 

 
 

 

 

 

0.90 

   
 

 

 

 

0.84 

(a) Original 

image 

(b) Smoothed 

CAM result 

(c) CAM result (d) Smoothed 

CAM contour 

(e) Ground 

truth 

(f) IOU 

Figure 4-3 Validation of some segmented defect samples from the smoothed CAM method
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Figure 4-4 Samples of annotated images 

 

Table 4-3 Number of defects in annotated 700 images for each defect type. 

Defect Type Number of defects 

TRN 657 

LON 585 

ALG 240 

BLK 87 

Total 1569 

 

Next, the masks generated by U-Net and Mask R-CNN (Segmentation module) from the proposed 

framework were compared with their corresponding ground truth in terms of confidence. Finally, 

precision, recall and F1-score were calculated as follows: 

Precision =
TP

TP + FP
 

 

(4-1) 

Recall =
TP

TP + FN
 

 

(4-2) 

F1 Score =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP

2 ∗ TP + FP + FN
  

(4-3) 

 

TP (True Positive), FP (False Positive) and FN (False Negative) for instance segmentation are 

defined in Table 4-4. 

 

Table 4-4 TP, FP and FN explanation for the proposed method and instance segmentation 

TP Number of pixels predicted as object correctly 

FP Number of pixels predicted as object wrongly 

FN Number of pixels predicted as background wrongly 

 

Precision refers to the ability of the model to correctly identify true positive cracks from all the 

predicted positive crack segments. A high precision model will correctly identify most of the true 
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positive crack segments in the image, while also minimizing the number of false positive crack 

segments. In contrast, recall measures the completeness of true predictions. A model with high 

recall in pavement crack detection can accurately identify a large proportion of true positive crack 

segments present in the image, with minimal false negative crack segments. In other words, the 

higher the recall value the model has, the less missing detected defect it has. This implies that the 

model can efficiently identify almost all the cracks, regardless of their size and shape, which are 

present in the image. Thus, to achieve a trade-off between precision and recall, another metric is 

defined which is F1-score. F1-score is a metric that combines precision and recall. In other words, 

it can measure the ability of the model to balance between precision and recall. Specifically, it can 

be regarded as a metric to estimate overall accuracy of the model.  

  

(a) Defect annotation in polygon shape (b) Corresponding generated ground truth 

mask. 

Figure 4-5 Sample of defect annotation and its corresponding generated ground truth mask 

Table 4-5 The proposed method localization experimental results 

 

The experimental results of the proposed method for each defect type are shown in Table 4-5. As 

can be seen in this table, in terms of precision values, Mask R-CNN and U-Net have similar 

performance. However, regarding the recall and F1-score values, Mask R-CNN outperforms U-

Net, which means that U-Net has more missing detected defects compared to Mask R-CNN. In 

contrast, U-Net mean average precision (mAP) values are better than those of Mask R-CNN; that 

means regarding all confidences, U-Net shows better precision compared to Mask R-CNN. Figure 

4-6 shows precision-recall, and F1-score curves of the proposed method localization for each defect 

Defect Method 
Precision 

(0.5) 

Recall 

(0.5) 

F1  

(0.5) 
mAP 

 

TRN 
Mask R-CNN 0.95 0.84 0.89 0.81 

 U-Net 0.97 0.75 0.84 0.94 

 

LON 
Mask R-CNN 0.92 0.85 0.88 0.73 

 U-Net 0.92 0.70 0.80 0.88 

 

ALG 
Mask R-CNN 0.97 0.81 0.88 0.90 

 U-Net 0.95 0.83 0.88 0.93 

 

BLK 
Mask R-CNN 0.88 0.85 0.86 0.72 

 U-Net 0.88 0.79 0.83 0.83 
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type. As can be seen in this figure, in general, Mask R-CNN outperforms U-Net in localizing the 

defects. Additionally, according to the results, substantially, transverse crack showed superior 

localization results among the all defect types. The proposed experimental results for some samples 

are shown in Figure 4-7, Figure 4-8, Figure 4-9 and Figure 4-10 for transverse, longitudinal, 

alligator and block cracks, respectively. 

(a) TRN 

  

 

(b) LON 

 

  

 

 

 

 

(c) ALG 

 

 

 

   

 

 

 

 

(d) BLK 

 

 

 
  

 

Figure 4-6 Proposed method localization Precision-Recall and F1-score curves for each 

defect   
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Figure 4-7 The proposed method results for some transverse defect samples 

 

 

 

 

    

    

    

(a) CAM heatmaps (b) Proposed method  

(U-Net) 

(c) Proposed method  

(Mask R-CNN) 

(d) Ground truth 
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Figure 4-8 The proposed method results for some longitudinal defect samples 

 

 

 

 

    

    

    

(a) CAM heatmaps (b) Proposed method  

(U-Net) 

(c) Proposed method  

(Mask R-CNN) 

(d) Ground truth 
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(a) CAM heatmaps (b) Proposed method 

(U-Net) 

(c) Proposed method  

(Mask R-CNN) 

(d) Ground truth 

Figure 4-9 The proposed method results for some alligator defect samples 
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(a) CAM heatmaps 

 

(b) Proposed method  

(U-Net) 

(c) Proposed method  

(Mask R-CNN) 

(d) Ground truth 

Figure 4-10 The proposed method results for some block defect samples 
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4.3.3 Crack Width Estimation Calculation 

As explained in Section 3.5, an innovative method is proposed to estimate the linear crack width 

from the segmented patches extracted from the localization module that is essential to calculate 

PCI. First, the orientation of all segmented patches extracted from Section 3.4 is adjusted to 

landscape. Following this, the primary contour of crack is generated using the IS algorithm. 

Subsequently, the contour from the proposed method is centralized, aligning it with the crack’s 

center. Finally, the crack width in each part of the contour is calculated and the largest crack value 

is selected as crack patch width. Additionally, using the intrinsic parameters obtained from camera 

calibration, it is possible to transform the crack width from pixel dimensions to real-world metrics 

through the pinhole camera model using Equation (3-2). 

The experimental results of estimating the crack width for an example of crack are shown in Figure 

4-11. For this example, assuming fy = 525, z = 300 cm, and the crack width extracted by the 

proposed method measures 5 pixels, the actual crack width is 2.85 cm.   

  

(a) Crack width calculation (b) Crack width calculation 

(zoomed area) 

Figure 4-11 An example of crack width estimation 
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4.4 Comparison Between the Hybrid Method and Supervised Methods 

In this section, the supervised methods such as instance segmentation, axis-aligned object detection 

and the oriented bounding box object detection performance in defect localization are compared 

with the proposed method. The mentioned annotated images in the previous section were used to 

train the supervised modules, and the same 200 test images were used to evaluate their performance 

and compare them with the proposed method. Mask R-CNN, YOLO5 (AABB) (Axis-aligned 

Bounding Boxes), YOLO5 (OBB) (Oriented Bounding Boxes) were use as supervised methods as 

instance segmentation, axis-aligned object detection and oriented object detection.  YOLOv5x X-

Large architecture [114] was used to train for both axis-aligned and oriented object detection. Mask 

CNN architecture with the backbone of Resnet-50 was used as Instance Segmentation. To provide 

the dataset to train YOLO5 (AABB) and YOLO5 (OBB), annotated polygon shapes should be 

converted to axis-aligned and oriented bounding boxes. As illustrated in Figure 4-12, generated 

regular rectangle and minimum area-oriented rectangle that enclosed the polygon are selected as 

axis-aligned and oriented bounding boxes, respectively, to train YOLO5 (AABB) and YOLO5 

(OBB) object detection models. 

   

(a) Polygon (b) Generated axis-aligned 

bounding box 

(c) Generated oriented 

bounding box 

Figure 4-12 Generating axis-aligned and oriented bounding box from the polygon 

Figure 4-14 shows some samples of generated axis-aligned and oriented bounding boxes from 

annotated polygon shapes. To evaluate the instance segmentation model, the same method is used 

as described in Equations (4-1), (4-2), (4-3) and Table 4-4 in Section 3.6.2 for the proposed method. 

To evaluate object detection methods, intersection over union (IOU) metric is selected to calculate 

TP, FP and FN as shown in Figure 4-13 and Table 4-6. Figure 4-15 shows some defect localization 

results for the three supervised methods. As can be seen in this figure, instance segmentation 

localized more defects compared to the other two object detection methods. Similarly, Among the 

object detection methods, axis-aligned object detection method performs better in localizing the 

defects compared to the oriented object detection. For instance, as  Figure 4-15 (c) shows, YOLO5 

(OBB) was unable to detect the block defect sample.  
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IOU =  

 

Figure 4-13 IOU calculation 

 

   

   

   

   

(a) Polygons (b) Axis-aligned 

Bounding Boxes 

(c) Oriented Bounding 

Boxes 

Figure 4-14 Some annotated sample images in polygon shapes and their converted 

corresponding shapes to the axis-aligned and oriented bounding boxes shape 
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Table 4-6 TP, FP and FN explanation for object detection 

TP Correct detection with IOU > threshold 

FP Wrong detection with IOU < threshold 

FN Ground truth not detected 

 

 

The confusion matrices of two objection detection methods are shown in Table 4-7 and Table 4-8. 

 

Table 4-7 Axis-aligned object detection confusion matrix 

  TRN LON ALG BLK 

 TRN 0.64 0 0 0 

 LON 0 0.88 0.07 0.14 

Prediction ALG 0 0 0.79 0 

 BLK 0 0 0.07 0.43 

 Background 0.36 0.12 0.07 0.43 

 

Table 4-8 Oriented object detection confusion matrix. 

  TRN LON ALG BLK 

 TRN 0.26 0 0 0 

 LON 0 0.71 0 0 

Prediction ALG 0 0 0.07 0 

 BLK 0 0 0 0.25 

 Background 0.74 0.29 0.93 0.75 

As can be seen in Table 4-7 and Table 4-8, and as illustrated in Figure 4-16, although the oriented 

bounding boxes comprise less part of the background compared to the axis-aligned ones, it did not 

show as good results as axis-aligned object detection method because of two reasons: (1) oriented 

object detection model has one more parameter called rectangle angle compared to the axis-aligned 

object detection method. Hence, it needs more annotated data in various angles to be generalized 

for defect localization. (2) most of generated oriented bounding boxes exceed the image margins. 

As aforementioned, oriented bounding boxes are generated from annotated polygon shapes.  

However, as can be seen in Figure 4-17(b), some of them exceed the image margins and should be 

modified to be located inside the image margins. Figure 4-17(c) shows some samples of modified 

bounding boxes. Although, this modification solves the mentioned problem, it causes another issue. 

As illustrated in Figure 4-17(c), with the new generated oriented bounding boxes, some parts of 

defects are excluded from the bounding boxes and regarded as background that baffles the deep 

learning model to distinguish between the defects and the background. 
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LON 

 

 

 
   

 

 

ALG 

   

 

 

 

BLK 

 

 

 
   

 (a) Instance segmentation 

(Mask R-CNN) 

(b) Object detection 

YOLO5 (AABB) 

(c) Object detection 

YOLO5 (OBB) 

Figure 4-15 Supervised methods’ visualized defect localization result 

Figure 4-18 shows the spatial distributions of defects in the images. As illustrated in this figure, 

most of the defects are located at the lower part of images next to the image margin due to the 

camera’s perspective field of view and should be modified. Thus, that is another reason that 

oriented object detection did not show as good results as axis-aligned object detection model.  

In contrast, the aforementioned issues for object detection methods are not the case for the instance 

segmentation. That is because it uses annotated polygon shapes, which possess minimum common 

area parts with background. Thus, it is expected that instance segmentation outperforms bounding 

box defect localization methods. Experimental results of all methods and their precision-recall and 

F1-score curves are shown in Table 4-9  and Figure 4-19. Considering the transverse, longitudinal 

and alligator cracks results, instance segmentation generates the highest precision, and mean 

average precision compared to the object detection methods.  
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Figure 4-16 Comparing axis-aligned and oriented bounding boxes. Oriented bounding box 

comprises less part of background than axis-aligned bounding box 

   

   

   

(a) Annotated polygon 

shapes by RUBIX 

(b) Generated oriented 

bounding boxes from the 

polygons by RUBIX 

(c) Modified oriented 

bounding boxes by 

RUBIX 

Figure 4-17 Samples of oriented bounding box generation and modification 
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(a) Generated oriented bounding boxes 

spatial distribution for all defects 

(b) Modified oriented bounding boxes 

distribution for all defects 

Figure 4-18 Oriented bounding box distribution before and after modification for all 

defects 

However, when it comes to the recall values, its values are equal to or less than the axis-aligned 

objection detection method, especially for longitudinal cracks, which means it has more missing 

defects compared to the other one. Thus, axis-aligned object detection method outperforms instance 

segmentation method, especially in linear crack localization, such as longitudinal and transverse 

cracks. This can be explained because the bounding boxes comprise more areas around the objects 

than the polygon shapes due to their coherent characteristic. Additionally, axis-aligned object 

detection offers superior performance to oriented one for longitudinal, transverse and alligator 

crack.  

The aforementioned conclusions for the three mentioned defects cannot be generalized to the block 

crack owing to some reasons. First, as can be seen in Table 4-3, there are a much smaller number 

of block cracks in the annotated dataset compared to other defect types, which makes it hard for 

the model to be generalized. Additionally, due to block non-uniform features, they have a wide 

variety of complex shapes that makes it difficult to distinguish them from the background. For 

instance, Figure 4-20 shows some samples of each defect type. As illustrated in this figure, linear 

defects such as longitudinal and transverse cracks are located mostly at roughly straight-line shapes 

in a vertical and horizontal directions, respectively. Alligator cracks have also roughly the same 

pattern in all images. However, block cracks, due to their non-uniform structure, comprise more 

various shapes compared to the other type of defects. Thus, the model needs a greater number of 

defects in more comprehensive various defect shapes to learn how to distinguish them from the 

background.  

Additionally, as observed in Table 4-3, the relatively small number of defects present in the training 

images results in a low recall value for the supervised modules. This indicates that these modules 

may not be adequately generalized to handle unseen data.  

Comparing the proposed method alongside other supervised methods, the proposed method 

outperforms supervised methods, considering all values.  Except for longitudinal cracks, the 

proposed method’s precision and mean average precision are approximately equal to or more than 

the instance segmentation corresponding values. Even for longitudinal cracks, the difference is 

small between the proposed method precision value (0.92) and instance segmentation precision 

value (1.00). With respect to recall results, even for longitudinal crack, the recall value is a little 

bit smaller than axis-aligned object detection, regarding other recall and F1-score values, the 

proposed method offers superior performance to other methods. Some visualized defect 
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localizations from all methods for transverse, longitudinal, alligator and block cracks are shown in 

Figure 4-21,  Figure 4-22, Figure 4-23 and Figure 4-24, respectively. 

 

Table 4-9 Comparing the proposed method with supervised methods 

 

 

 

Defect Method Type Precision Recall F1 mAP 

 Instance segmentation Mask R-CNN 0.99 0.56 0.71 0.95 

 Object detection YOLO5 (AABB) 0.33 0.64 0.44 0.34 

TRN Object detection YOLO5 (OBB) 0.15 0.39 0.22 0.20 

 Proposed Method  Mask R-CNN 0.95 0.84 0.89 0.81 

 Proposed Method  U-Net 0.97 0.75 0.84 0.94 

       

 Instance segmentation Mask R-CNN 1.00 0.36 0.52 0.98 

 Object detection YOLO5 (AABB) 0.69 0.91 0.78 0.85 

LON Object detection YOLO5 (OBB) 0.48 0.90 0.63 0.75 

 Proposed Method  Mask R-CNN 0.92 0.85 0.88 0.73 

 Proposed Method  U-Net 0.92 0.70 0.80 0.88 

       

 Instance segmentation Mask R-CNN 0.95 0.81 0.87 0.90 

 Object detection YOLO5 (AABB) 0.61 0.79 0.69 0.82 

ALG Object detection YOLO5 (OBB) 0.45 0.31 0.37 0.24 

 Proposed Method  Mask R-CNN 0.97 0.81 0.88 0.90 

 Proposed Method  U-Net 0.95 0.83 0.88 0.93 

       

 Instance segmentation Mask R-CNN 0.64 0.78 0.70 0.61 

 Object detection YOLO5 (AABB) 0.64 0.50 0.56 0.58 

BLK Object detection YOLO5 (OBB) 0.74 0.63 0.68 0.74 

 Proposed Method  Mask R-CNN 0.88 0.85 0.86 0.72 

 Proposed Method  U-Net 0.88 0.79 0.83 0.83 
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(a) Instance 

Segmentation 

(Mask R-CNN) 

  

(b) YOLO5 

(AABB) 

  

(c) YOLO5 

(OBB) 

  

 

 

Figure 4-19 Supervised methods localization Precision-Recall and F1-score curves  
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(a) TRN 

 

   

(b) LON 

   

 

(c) ALG 

 

   

(d) BLK 

   

Figure 4-20 Samples of various shapes of defects for each type 

In  Figure 4-21,  Figure 4-22, Figure 4-23 and Figure 4-24, since area cracks cannot be visualized 

by contours their masks are visualized instead of contours. Additionally, in these figures, there are 

instances where a defect is not detected, predominantly when using YOLO5 (OBB). 
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(a) YOLO5(AABB) (b) YOLO5(OBB) (c) Proposed method 

(U-Net) 

(d) Proposed method 

(Mask R-CNN) 

(e) Instance 

segmentation 

Figure 4-21 Transverse crack sample results from all methods 
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(a) YOLO5(AABB) (b) YOLO5(OBB) (c) Proposed 

method (U-Net) 

(d) Proposed 

method (Mask R-

CNN) 

(e) Instance 

segmentation 

 

Figure 4-22 Longitudinal crack sample results from all methods 
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(a) YOLO5(AABB) (b) YOLO5(OBB) (c) Proposed 

method (U-Net) 

(d) Proposed 

method (Mask R-

CNN) 

(e) Instance 

Segmentation 

Figure 4-23 Alligator crack sample results from all methods 

 

 

 

 

 

 

 



  

60 

 

 

 

 

 

 

 

 

 

     

     

     

(a) YOLO5(AABB) (b) YOLO5(OBB) (c) Proposed 

method (U-Net) 

(d) Proposed method 

(Mask R-CNN) 

(e) Instance 

segmentation 

Figure 4-24 Block crack sample results for all method
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4.5 Summary and Conclusions 

In this chapter, we conducted a comprehensive analysis of the proposed hybrid framework, 

detailing each individual module. The uniqueness of the method lies in its ability to not only 

localize and categorize pavement defects, but also to evaluate the extent of their severity utilizing 

both supervised and weakly supervised techniques. Moreover, the performance of the proposed 

method was assessed in comparison with supervised methods, such as the widely used instance 

segmentation and axis-aligned and oriented bounding box object detection techniques. The 

comparative analysis revealed that the performance of the proposed method surpasses these 

established techniques in the most cases. 
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Chapter 5: Summary, Contributions and Future work 

5.1 Summary of Research 

The primary objective of this research is to create a sophisticated framework for the classification 

of pavement defect types and severity levels, as well as the localization of defects, using mainly 

weakly supervised deep learning-based approaches. This framework leverages images obtained 

from passive Charge-Coupled Device (CCD) cameras and analyzes the defects as the basis for 

automating the evaluation of pavement conditions. The proposed framework integrates with a 

Geographic Information System (GIS)-based inspection and asset management system, named 

RUBIX. This integration allows for comprehensive monitoring and evaluation of the pavement’s 

condition. It enables tracking of pavement conditions and provides insights necessary for effective 

asset management and maintenance planning. 

Chapter 2 undertook a comprehensive examination of existing literature focused on pavement crack 

detection, localization, and severity estimation techniques. It critically evaluated the constraints of 

traditional image processing and computer vision methods, namely their struggle with large-scale 

datasets and inferior adaptability compared to deep learning approaches. Consequently, a deep 

learning-based method was chosen, considering defect type classification, and localization through 

integrating weakly supervised and supervised techniques.  

Chapter 3 delved into the details of the proposed hybrid method. The proposed framework presents 

an innovative combination of deep learning-based classification and localization modules to detect, 

classify defects and estimate their severities, all seamlessly integrated with a GIS-based inspection 

and asset management system called RUBIX. Leveraging the strengths of both supervised and 

weakly supervised methods, this hybrid approach significantly improves defect localization. To 

streamline the data provisioning process for training the segmentation module in the localization 

section, a semi-automated method has also been proposed. In addition, an innovative approach 

based on IS method was proposed to estimate the linear crack width from the patches extracted by 

the localization section.  

Chapter 4 conducted a comprehensive analysis of the proposed hybrid framework. Furthermore, it 

evaluated the effectiveness of the proposed framework against established supervised techniques 

like instance segmentation, axis-aligned, and oriented bounding box object detection. The 

outcomes of these comparative assessments affirmed the superior performance of the proposed 

framework compared to the other methods. 

 

5.2 Research Contributions 

The following are the main contributions of this study: 

1. A GIS-based framework, integrated with deep learning modules, is designed to automate the 

evaluation of road pavement conditions by detecting pavement defects. 

2. Resnet is applied to classify the types and severity of defects. The severity estimation is based 

on the patches extracted from the results of the segmentation part of the localization module.  

3. Image labels are used, not only to classify the defect types and their severities, but also to 

localize them primarily using weakly supervised method (i.e. CAM).  

4. The discontinuity in defects segmented by the weakly supervised method is addressed by 

using the supervised segmentation modules. The supervised component of the proposed 

method requires training only once. There is no need to retrain this supervised part for new 
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data - a process that is typically time-consuming and complex task in instance segmentation 

methods. Consequently, the framework can be readily generalized to new data by simply fine-

tuning the classifier modules, thereby enhancing its efficiency and versatility. Therefore, the 

innovative method put forward in this study synthesizes the strengths of both supervised and 

weakly supervised techniques. In doing so, it forms a hybrid approach that brings together the 

precision of supervised learning with the flexibility of weakly supervised learning. 

5. Given that producing ground truth for training the supervised modules can be a time-

consuming and labor-intensive process, a semi-automated solution using smoothed CAM was 

suggested to simplify this task. 

6. An innovative technique was proposed to estimate linear crack widths, leveraging segmented 

patches obtained from the localization module. This method provides valuable data that can 

be later employed in the computation of the Pavement Condition Index (PCI). 

7. It was demonstrated that the proposed framework outperforms the supervised localization 

methods (i.e. instance segmentation and object detection), in most of the cases. While the 

precision values of the proposed method are either equivalent to or slightly lower than those 

of the instance segmentation method, the recall values for the proposed method (0.85) surpass 

those of supervised methods in all cases, except for longitudinal cracks, which means the 

proposed framework has lower number of missing defect defection compared to the other 

methods. Similarly, the F1-score of the proposed method (0.88) exceeds those of all the 

considered three supervised methods. The proposed method generates higher recall (0.85) 

compared to the supervised methods. Although the precisions for linear cracks are slightly 

smaller than the instance segmentation method, its precisions for area cracks are higher. 

 

5.3 Limitation and Future Work 

While this work has made significant strides, there remain some areas of improvement to be 

considered for future endeavors. Each challenge is followed by a proposed solution and potential 

avenues for future research. 

1. A primary objective for future work is to expand the range of defect types recognized in the 

classification module. By broadening the spectrum of identified anomalies, it will enable a 

more comprehensive and nuanced analysis of road pavement conditions. 

2. Furthermore, enhancing the precision of the dataset utilized for training the segmentation 

component represents another key direction for future work. In the proposed semi-automated 

process previously implemented, we utilized smoothed CAM results which, while effective, 

still incorporate some background components alongside the defects. To rectify this, future 

efforts will focus on generating and providing more precise annotations to further refine the 

accuracy of the segmentation training process. The expectation is that this will significantly 

improve the localization results, rendering the model more adept at distinguishing defect 

regions from the background.  

3. Another avenue for future work involves leveraging the detailed defect data generated by the 

framework to compute the PCI. Integrating PCI calculations with our framework could 

potentially add another layer of usefulness to our analysis. By translating the specific defect 

information (e.g. width, length, etc.) into a holistic, numerical condition score, the system 

would provide an actionable snapshot of the pavement’s health.  
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