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Abstract

Design and Implementation of Machine Learning Models and Algorithms for

Flood, Drought and Frazil Prediction

Bhargav Yagnik

Natural calamities like floods and droughts pose a significant threat to humanity, impacting mil-

lions of people each year and incurring substantial economic losses to society. In response to this

challenge, this thesis focuses on developing advanced machine learning techniques to improve

water height prediction accuracy that can aid municipalities in effective flood mitigation.

The primary objective of this study is to evaluate an innovative architecture that leverages

Long Short Term Networks - neural networks to predict water height accurately in three different

environmental scenarios, i.e., frazil, droughts and floods due to snow spring melt. A distinguishing

feature of our approach is the incorporation of meteorological forecast as an input parameter into

the prediction model. By modeling the intricate relationships between water level data, historical

meteorological data and meteorological forecasts, we seek to evaluate the impact of meteorological

forecasts and if any inaccuracies could impact water-level prediction. We compare the outcomes

obtained by incorporating next-hour, next-day and next-week meteorological data into our novel

LSTM model. Our results indicate a comprehensive comparison of the usage of various parameters

as input and our findings suggest that accurate weather forecasts are crucial in achieving reliable

water height predictions.

Additionally, this study focuses on the utilization of IoT sensor data in combination with ML

models to enhance the effectiveness of flood prediction and management. We present an online

machine learning approach that performs online training of the model using real-time data from

IoT sensors. The integration of live sensor data provides a dynamic and adaptive system that

demonstrates superior predictive capabilities compared to traditional static models. By adopting
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these advanced techniques, we can mitigate the adverse impacts of natural catastrophes and work

towards building more resilient and disaster-resistant communities.

Keywords: LSTM, Time-series forecasting, online machine learning, flood prediction.
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Chapter 1

Introduction

1.1 General Background and Motivation

Natural catastrophes, like floods and droughts, have long been a significant concern for human

societies worldwide. These events result in widespread devastation, causing loss of life, displace-

ment of populations and substantial economic losses. Floods, in particular, are among the most

devastating natural disasters, affecting millions each year and causing billions of dollars in dam-

ages. In Canada, flood losses totaled $405 million between 1983 and 2008 and cost $1.8 billion

between 2009 and 2017 [27]. Flood prediction is critical to mitigating floods’ impact, minimizing

human casualties, preventing infrastructure loss, and preserving ecosystem imbalance. As climate

change intensifies, the frequency and severity of such disasters are expected to increase, making it

crucial to develop effective strategies for prediction, prevention, and management.

Historically, water height prediction models have relied on traditional physics based models

or statistical approaches and simplistic forecasting techniques. Flood prediction techniques used

by various forecasting agencies involve the usage of physically based deterministic hydrological

models like HYDROTEL [16] at the Direction de l’Expertise Hydrique et de l’Atmosphere (in

English; Center for Water and Atmosphere Expertise)(DEHA) of Quebec (Canada); Distributed

Hydrological Soil Vegetation Model [59] at the Advances Hydrologic Prediction Services, asso-

ciated with the National Oceanographic and Atmospheric Administration in the USA. Pagano et
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al. [50] highlights that these models utilize high computational resources and have difficulty accu-

rately modeling fine spatial resolutions. This limitation was further resolved by data-driven flood

prediction models, which used machine learning techniques [15, 35] that can capture complex re-

lationships between the hydrological parameters and accurately predict water height. ML models,

particularly those based on neural networks like Long Short Term Memory (LSTM), have shown

promising capabilities in capturing intricate patterns and dependencies in time series data. How-

ever, incorporating meteorological forecast data into the prediction process has been an area of

relatively less exploration.

The motivation for this research lies in the potential benefits of fusing meteorological forecast

data with water level data to improve prediction accuracy. Meteorological forecast provide valuable

information on precipitation, temperature, and other meteorological factors that directly influence

water levels in rivers, lakes, and other water bodies. By integrating this dynamic weather data

into ML-based prediction models, we can enhance the model’s ability to anticipate water height

fluctuations and respond to evolving weather patterns.

Moreover, the rise of the Internet of Things (IoT) has opened up new possibilities for collecting

real-time data from a network of interconnected sensors. These IoT sensors can provide a wealth

of information about environmental conditions, water levels, and other relevant parameters, con-

tributing to a more comprehensive and up-to-date dataset. Leveraging this IoT data in combination

with ML models allows for continuous and adaptive model training, enabling the system to adapt

to changing environmental conditions and provide more accurate predictions.

In Quebec, there are multiple initiatives are underway to observe water-levels in rivers and

monitor flood events. The first initiative is with Hydro Meteo and Geosapeins and the E-nundation

product [17] which relies on water-sensors only and these sensors are powered by electric cables

and necessitate the installation of dedicated electric poles to function effectively. Their prediction

model only relies on historical water-levels. The second initiative is with CMM - Communauté

Métropolitaine de Montréal and the Grand Crues project [13]. Their plan is to install 29 mea-

surement stations in various locations across the metropolitan area. These stations will gather

information about water levels. The objective is to observe the patterns of water bodies and predict

2



future trends for a three-day period. These stations are operated using electrical connections and

rely solely on past water level data to make projections about water levels. Thus, there lies a dras-

tic need for more advance tools to predict water-level which could utilize multiple parameters and

further data collection of multiple parameters from IoT sensors could be utilized for more accurate

prediction.

The potential impact of accurate water height predictions and effective flood management is

far-reaching. Timely and precise forecasts can facilitate better preparedness and response mea-

sures, allowing authorities to issue timely warnings and evacuate vulnerable areas. Additionally,

improved predictions can aid in optimizing water resource management, preventing water short-

ages during droughts and minimizing the damage caused by floods.

In summary, the general background and motivation for this research stem from the urgent

need to enhance water height prediction models to better address the challenges posed by natural

catastrophes like floods and droughts. By combining ML techniques, LSTM models, weather

forecast data, and IoT sensor information, this study aims to develop an innovative and effective

approach for predicting water height which could help reduce the impacts of devastating floods,

ultimately contributing to increased resilience and safety for communities at risk.

1.2 Key references

The first key contribution is a publication. We review below the key references, and readers can find

a more detailed literature review in the paper, embedded in Chapter 2. In the domain of water-level

prediction, several studies have contributed to establish a comprehensive understanding of flood

prediction with different techniques. While an in-depth analysis of these references can be found

in the paper, this brief literature highlights their significance and relevance. Initial works [16, 32]

leveraged physical and statistical models that relied on data from various hydrological and meteo-

rological parameters fed into mathematical and physical models. Later, with the advent of machine

learning, experiments were carried out to evaluate the performance of ML models for flood predic-

tion. Chau et al.[9] compared the performance of artificial neural networks with adaptive network
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based fuzzy inference systems (ANFIS) and observed ANFIS performed well compared to genetic

algorithm based ANN. Gude et al.[19] explored the river gauge height prediction using statistical

and machine learning models like Auto Regressive Integrated Moving Average (ARIMA) , Long

Short Term Memory (LSTM) networks and showed that machine learning models are more accu-

rate than the physical and statistical models. Several studies have proposed the usage of LSTM

based models for water-level prediction like Borwarnginn et al.[5] who proposed a combination

of LSTM-SVR (Support Vector Regressor) for river-water height prediction for 6h and 12h inter-

vals and used rainfall, cumulative rainfall for his works but did not explore various meteorological

parameters that could influence water-level prediction. Further, works involving meteorological

forecasts, like Kurian et al.[34] where he combined rainfall forecasts from physical models with

ANNs for streamflow prediction and showed the benefit of combining forecasts with ML mod-

els. These key references have significantly shaped the trajectory of our research and building

on the foundations laid by these works, our paper addresses existing gaps and we propose novel

way to predict water-level leveraging various meteorological parameters as well as meteorological

forecasts.

The second contribution is described in Chapter 3 and include a section dedicated to the litera-

ture review with respect to the contribution of that last chapter.

1.3 Contributions of the Thesis

The thesis makes several notable contributions to the field of water level forecasting and flood

mitigation:

• Our publication includes the comparision of various ML methods and a novel LSTM based

water-level forecasting approach using meteorological forecasts. The major contribution of

this paper includes :

– A novel LSTM Model, incorporating weather forecasts with historical weather data

and water-level.
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– Evaluation in Impact of model performance using various combinations of meteoro-

logical parameters.

• Explored the usage of Online Machine Learning approach for flood prediction using IoT

sensor data.

• Improved Flood Prediction with IoT Sensor Data and Online ML Training

• Conducted a comparative analysis of performance of water-level prediction models using

Online Vs Batch training to observe effectiveness of Online training.

1.4 Organization of the Thesis

The thesis is organized as follows. Chapter 2 is made out of a paper (to be shortly submitted)

on batch ML models Flood forecasting. It involves a novel LSTM model incorporating meteo-

rological forecasts and comparision with other ML models learned via batch training. Chapter

3 investigates the use of online machine learning and compares the results to traditional Batch

training approach. This latter chapter includes a brief overview of online machine learning, the

proposed online machine learning architecture, and then the comparative numerical results. It is

a joint work with another M.Comp.Sci. student, Meet Mehta, and common to both thesis. Meet

developed the IoT framework and carried out the data collection process, while Bhargav worked

on experimentation of various libraries and design of Online Machine Learning algorithm in the

use case of this system. The experiments on real-time data and comparisons to Batch-ML were

performed together. Input data of the online ML algorithm is collected using the IoT sensor plat-

form developed in the M.Comp.Sci. thesis of Meet Mehta [42] with data collected in the Rivière

Le Boulé at Lac Superieur. We present the results of these experiments in the end of Chapter 3.

Chapter 4 presents the conclusions of the thesis and future research directions.
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Chapter 2

ML Methods for Flood Prediction

2.1 Introduction

Natural disasters, like earthquakes, hurricanes, floods, and droughts, can result in significant losses

at national and regional levels. The occurrence of torrential rains and subsequent flooding in Que-

bec during the spring of 2017 and 2019 resulted in aggregate losses exceeding 576 million (CAD)

$ [27]. Events like floods have far-reaching consequences, including loss of life, displacement of

people, damage to homes, businesses, infrastructure, and disruption of essential services such as

transportation, power and water supplies.

Flood frequency analysis shows that there has been an increase in floods in rivers across Quebec

(Canada) region in recent decades [49, 58]. Roy et al. [54] studied the impact of climate change

and seasonal floods in Quebec and reported 250% increase in the water discharge and water levels

in some scenarios providing evidence for significant increase in typical flood level.

A variety of factors contribute to development of floods; in Quebec, the the main factors lead-

ing to favourable conditions for flood development are season dependent. In spring time, the runoff

associated with heavy rainfalls combined with the snow-melts are considered to be the main cul-

prits. In winter months, ice-jams, primarily related to frazil ice, are the most common phenomena

leading to floods (Zahmatkesh et al. [63]). A review of multiple climate models reported a positive

relationship between the observed increase of rainfall amounts in the period between January to
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April and September to December and higher volume of runoff in winter and spring months. In

the summer periods on the other hand, increased temperatures leading to increase in evaporation

rates combined with decrease in rainfall amounts contribute towards the occurrence of droughts,

see Mailhot et al. [40]. Recently in 2022, concerns for severe droughts were reported in parts of

southern Quebec (CBC News, 2022). Thus our study tries to predict water level during various

periods influenced by different phenomenons in Quebec.

Given the escalating flood risks, accurate and timely flood prediction near inhabited areas can

have a significant contribution towards disaster mitigation tools such as early warning systems, and

evacuation planning. However, achieving such accurate flood prediction remains challenging due

to the intricate and nonlinear nature of hydrological processes governing floods.

A variety of methodologies for flood predictions have been discussed in the literature. Tradi-

tional methods in flood prediction studies typically rely on mathematical models aiming to capture

the physics of underlying hydrological processes associated with floods. Such mathematical mod-

els have been proposed for for floods [12], storms [11], for rainfall associated runoff [7, 8], for

atmospheric circulation patterns [38] including coupled effects of ocean and floods [12]. Physi-

cal models like HYDROTEL [16], WATEFLOOD [32] are employed at various provincial River

Flood and Forecasting Centers (RFFC) [63]. Despite the impressive capabilities demonstrated by

this type of models in predicting diverse range of floods scenarios, they require high spatial reso-

lution data sets, while the mathematical computation involved in these complex physical models

necessitates intensive computational power [12, 63]. Kim et al. [29] states it is highly challeng-

ing to find expertise since these models need supervision for calibration and effectively carry out

modelling.

More recently, a variety of data-driven approaches, including but not limited to Machine Learn-

ing (ML) models, have been implemented in flood prediction literature. Generally, such ap-

proaches can mitigate the limitations of physical models due to their relative implementation sim-

plicity. These models have gained popularity because they can capture non-linearity using just

historical data without explicit understanding of underlying physical processes. Recent studies
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use machine learning (ML) models and algorithm that involve prediction of various flood vari-

ables such as water level [5, 19, 30], soil moisture, rainfall amounts [5, 5, 39], discharge rates

[10, 28, 30] , rainfall-runoffs [30] and many more. Several ML techniques like Artificial Neu-

ral Networkds (ANNs), Support Vector Regression (SVR), Recurrent Neural Networks (RNNs)

have been examined to predict these flood variables. Chau et al. [9] compared the performance

of of artificial neural networks with adaptive-network-based fuzzy inference system (ANFIS) in

the Yangtze River and observed that ANFIS performed well in simulations with RMSE of 0.214m

compared to 0.226m for Genetic Algorithm based ANN. Hipni et al. [22] compared SVR with

ANFIS and concluded that SVR performs better than ANFIS using parameters like rain and dam

water-level. Zhang et al. [64] suggested using 2 hour inputs for forecasting 4 hour ahead values

using ANN, ANFIS and SVM and mentioned that ANFIS was robust to capture information with

differnt lag inputs while SVM showed better performance in extreme typhoon events.

Although the conventional ML methods showed satisfactory results, the rise of time series-

based models such as RNN and LSTM networks has led to increased popularity in flood predic-

tion. Le et al.[35] leveraged LSTM for flow forecasting for one-day, two-day and three-day with

Nash–Sutcliffe efficiency (NSE) values greater than 86%. NSE is generally used to determine the

predictive skill of hydrometric model further explained in Section 2.2.5. Borwarnginn et al. [5]

proposed a combination of LSTM - SVR model which performed slightly worse than LSTM to pre-

dict river water height, but authors mention that the novel approach could detect rapid changes in

water that are higly prevalent in events of floods, typhoons, etc. Recent works on transformer based

models have also been leveraged for flood prediction, Castangia et al.[6] shows that transformers

work slightly better than LSTMs. For 3 days forecasting of water-level transformers achieve NSE

of 0.93 while LSTM have NSE 0.91. Despite achieving 4% better results on transformers the model

sizes increased by 1400% from 198k parameters in LSTM to 3M in transformers [6]. Thus lever-

aging these huge models can be computationaly expensive espesially on remote flood monitoring

sites having small IoT devices with memory and computational limitations.

In the recent years, several studies have incorporated the use of meteorological forecast data

for the coming days to predict upcoming events of floods. This approach has been the subject of
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several recent studies, which have demonstrated the potential of meteorological data to improve

the effectiveness of flood forecasting systems. [39] utilized radar rainfall prediction data from

National Meteorological Observatory of China to effectively show the improvement on real-time

river water-level changes. [18] utilized an ensemble of weather forecast models and a probabilistic

graphical model to estimate flood warning levels based on impact evaluation parameters. The

hybrid rainfall forecast proposed in [46] showed significant improvements of 39% in accuracy

and 63% and 25% in the Sejong Rainfall-runoff model (SURR). [34] combined physical models

with artificial neural networks to create a hybrid model involving rainfall forecast data. The NSE

increased from 0.91 to 0.95 and also illustrated that the proposed hybrid model could be used to

generate forecasted streamflow hydrograph corresponding to a full flood event well in advance.

While the literature has focused on specific type of flood events, our work tried to predict water-

level year-round including events of floods and droughts at a specific location for different time

durations of 1hour, 1 day and 1 week. In this paper, the authors present water level prediction using

river-water height data paired with various meteorological parameters at few sites in Terrebonne

(Greater Montreal Area, Quebec, Canada) for three periods: Droughts, spring Ice Melt, and Frazil.

The categorization of periods is based on the occurrence of natural events during specific seasons

of the year. The authors propose and compare a novel approach to utilize the temporal information

of meteorological forecasts and combine them with historical data to predict water-level.

The paper is organized as follows. Section 2.2 presents the background and problem statement,

including an overview of the LSTM architecture. In Section 2.3, we describe various improved

LSTM models for flood forecasting. Section 2.4 showcases the results obtained from implementing

the proposed LSTM architecture. In Section 2.5, we draw conclusions of our study.

2.2 Background and Problem Statement

This study is the result of a collaboration with the municipality of Terrebonne, which was inter-

ested in predicting three environmental events: frazil (usually in January), flooding due to snow
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melt during the spring, and drought during the summer. Water level of the river bordering Ter-

rebonne was collected by Hydrometeo [25] and is described in next section. Since prediction of

environmental events corresponds to prediction using time series, we next recall the key features

of LSTM [23], before describing the improved LSTM model used in our study.

2.2.1 Problem Statement: Meteorological Event Predictions

In the sequel, we are interested in the prediction of three meteorological events: drought during

the summer, frazil during the winter, and flood due to ice-melt periods. We therefore partitioned

the dataset into three distinct seasonal periods, each associated with the prediction of one of these

events, see Table 1.

Figure 1: Location of the 6 hydrometric stations managed by Hydro Meteo nearby Terrebonne.

The drought period corresponds to the summer months characterized by high temperatures

and limited rainfall, leading to potential drought conditions. In the scope of the current study,

this period was defined to span from May 15 to November 1st. While some areas of Quebec

receive moderate rainfall during this period, others experience significantly lower precipitation,

intensifying the drought-like conditions.

The frazil period refers to the time when frazil Ice forms on water bodies, influencing the

behavior of rivers. Data collected between November 1st and February 15th falls within this period.

On the other hand, the ice-melt period encompasses data captured from February 15 to May 15.
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During this period, the melting of frozen water from ice caps and frazil Ice causes river levels to

rise. Multiple meteorological and horological factors contribute to the observed variability during

this period.

It is important to highlight that the categorization of data into periods, such as drought pe-

riod, frazil period, and flood due to ice-melt period, is based on patterns observed in Quebec and

may vary in different geographical locations. It encompasses the time periods needed to correctly

predict their occurrence, based on past weather conditions conducive to their occurrence.

Periods Dates between

Drought May 15 - November 1

Frazil November 1 - February 15

Flood February 15 - May 15

Table 1: Seasonal Distribution and Corresponding Dates of Phases

By dividing the dataset into these distinct seasonal phases, the model can focus on the specific

parameters associated with each meteorological event, enhancing their prediction and the associ-

ated water-level fluctuations.

2.2.2 Water Data

We used the water-level data sets collected by Hydro Meteo [25] at 6 of their hydrometric stations,

each located at a potential flooding location on the Rivière des Mille Îles, a channel of the Ottawa

River in southwestern Quebec, Canada, that runs into the Rivière des Prairies. It flows eastwards

from the Lake of Two Mountains and is 40 km long, containing small islands that are part of the

Hochelaga Archipelago. The locations of the six hydrometric stations (Bergeron, Louis, Raim,

Joubert, Moody, St. Pierre) are indicated in Figure 1. When archived, data were kept only for

30-minute intervals, while initially collected at 5-minute intervals.
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Location Start Timestep End Timestep

Bergeron 2018-10-31 2:35:00 PM 2022-06-30 4:00:00 PM

Louis 2008-12-11 8:35:00 PM 2018-11-30 5:45:00 PM

Raim 2008-12-01 3:45:00 PM 2018-11-20 12:55:00 PM

Joubert 2011-01-13 2:30:00 PM 2021-01-01 11:40:00 AM

Moody 2014-06-11 1:15:00 PM 2022-07-04 3:15:00 PM

St Pierre 2010-02-18 5:00:00 PM 2020-02-07 2:10:00 PM

Table 2: Start and end time stamps of the six hydrometric stations for the water-level data collec-

tion.

Data ranges vary for each hydrometric station location, as compiled in Table 2. To ensure

consistency across all data, the collected data was extrapolated using the nearest neighbor from

previous or subsequent hour values to reflect 5-minute intervals at each location for all time peri-

ods. This resulted in 12 observations per hour and 288 observations per day for each hydrometric

station. The dataset had a significant number of missing values, likely due to outages caused by

connectivity issues, faulty hardware, or unforeseen circumstances. To address this issue, we used

spline interpolation [31] to fill in the gaps in the data. It is known to effectively capture the under-

lying patterns of datasets, providing a reliable and accurate estimation of the missing values. We

also experimented with other interpolation techniques like polynomial, k-nearest neighbors, but

spline interpolation proved to be the most successful.

2.2.3 Meteorological Data

Meteorological data was obtained from Open-Meteo [48], which has historical weather data from

reanalysis models like ERA5 [21] for the parameters mentioned in Table 3. Reanalysis is a sys-

tematic approach of producing comprehensive and consistent datasets for climate monitoring and

research. It involves assimilation of past short-range forecasts with observations for a variety of

observations of the atmosphere, land surface, and ocean [20]. Various different weather datasets
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are combined into one regularly spaced grid to compensate for inconsistency incurred by biases in

measurement taken by different instruments at different points in history

The closest Open-Meteo weather station (45.6999° N, -73.6° W) to Terrebonne (45.6930° N,

73.6331° W), i.e., about 18km away, was used for the data collection of this meteorological data.

Historical data for meteorological forecasts is only kept for the past month and thus we could not

use the website of Open-Meteo to access forecast data associated with the water data in the time

period mentioned in Table 2. However, based on estimated errors of forecast vs. real values, we

generate forecast values as described in the next paragraph.

Meteorological forecast data was collected for the duration of one month from 5th Febru-

ary 2023 till 6th March 2023. Each file of meteorological forecast contains prediction of various

meteorological parameters for 7 days(1 week) from various agencies GEM(Canadian Weather Ser-

vice),IFS(European Centre for Medium-Range Weather Forecasts), GFS(Global Forecast System),

JMA (Japan Meteorological Agency), ICON(Deutscher Wetterdienst) and Arpege (MeteoFrance)

[48]. From data of all these various forecast agencies, best suitable models observed for Terre-

bonne site are combined by Open-Meteo and considered as ’best-match’ which are then compared

to real meteorological data. As mentioned in Equation (1), We compute residual error by com-

paring the forecast value of next 7 days with real values obtained for the same 7 days. Further,

mean and standard deviation of the residual error ε is calculated for all the forecast data from 5th

February 2023 till 6th March 2023. Determining the exact distribution of this error between fore-

cast values and real values, over the course of a year is challenging and therefore for the purpose

of this experiment we making an assumption that it follows normal distribution. Equation (3) out-

lines the method we use to make estimation in forecasts for time periods mentioned in Table 2.

We randomly sample the error as mentioned in Equation (2) and subtract it from the real values

yobs of meteorological parameters to obtain estimated forecast yestimated f orecast . The process men-

tioned above is performed for all the meteorological parameters mentioned in Table 3 to obtain an

estimation of meteorological forecasts.
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error(ε) = yobs − y f orecast (1)

e = X ∼ N (µε ,σε) (2)

yestimated f orecast = yobs − e (3)

Parameter Unit Description

Temperature (2m) °C Air temperature at 2 meters above ground

Relative humidity (2m) % Relative humidity at 2 meters above ground

Dewpoint (2m) (°C) Dew point temperature at 2 meters above ground

Rain mm Only liquid precipitation of the preceding hour

including local showers and rain from large scale

systems.

Snowfall cm Snowfall amount of the preceding hour in cen-

timeters.

Mean sea-level pressure hPa Atmospheric air pressure reduced to mean sea

level (msl)

Surface pressure hPa Pressure at surface

Cloudcover % Total cloud cover as an area fraction

Windspeed (10m) km/h Wind speed at 10m above ground

Soil temperature (0 to 7cm) °C Average temperature of different soil levels be-

low ground between 0 and 7 cm.

Soil temperature (7 to 28cm) °C Average temperature of different soil levels be-

low ground between 7 and 28 cm.

Soil moisture (0 to 7cm) m³/m³ Average soil water content as volumetric mixing

ratio at 0-7 cm depth

Soil moisture (7 to 28cm) m³/m³ Average soil water content as volumetric mixing

ratio at 7-28 cm depth

Direct radiation W/m² Direct solar radiation as average of the preceding

hour on the horizontal plane and the normal plane

(perpendicular to the sun)

Table 3: Meteorological parameters used and their description.
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2.2.4 LSTM Machine Learning Models

Long Short-Term Memory (LSTM) Models have been widely used in time-series predictions and

several studies mentioned in Section 2.1 have proven their effectiveness. While more recent and

sophisticated models like transformers have gained prominence, LSTMs have demonstrated re-

markable performance in capturing temporal dependencies and patterns within sequential data.

Our goal of this study was focused on experimenting inclusion of meteorological forecast and

further use similar models on microcontrollers; thus the maturity and availabitlity of resources

in LSTMs played a role in our choice. Although transformers offer advanced capabilities, the

complexity of their implementation and excessively large model sizes [6] could lead to difficulties

to export them onto microcontrollers and thus these drawbacks outweighed their benefits for our

research goals.

In this section, we describe the key ideas of LSTM network, before describing the additions

we made for our particular prediction problem.

LSTM was designed by Hochreiter and Schmidhuber [23] and is a type of recurrent neural

networks capable of capturing long-term dependencies LSTM contains three gates - an input gate,

an output gate and forget gate -, inside a unit called memory cell. These gates regulate the flow of

information in LSTM to solve the vanishing gradient problem observed in RNN. The input vectors

are defined as X = [x1,x2, . . . ,xn] and output vector Y = [y1,y2, . . . ,yn].

The state at each time t, is represented by ct , while ht represents state of the hidden layers at t.

The forget gate, see Equation (4)), which is controlled by ft ,

ft = σ(Wf [ht−1,xt ]+b f ) (4)

is essential in determining whether data is removed from the memory block or used by the output

gate to produce outputs for the current time steps or propagate that to the next time steps.

The input gate, denoted by it , regulates what new information from the current time step t

should be added to memory. A new memory vector Ĉ is also generated using information from
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both - input data from current time step xt and context from the previous hidden states- ht −1.

it = σ(Wi[ht−1,xt ]+bi) (5)

Ĉt = tanh(Wc[ht −1,xt ]+bc). (6)

The memory cell Ct at time step t is updated by combining important information from the previous

cell state Ct−1, and adding new information from the new candidate cell state Ĉ. The information

which is necessary from previous cell state, is regulated by the forget gate output ft which is

multiplied to Ct−1. The new candidate cell state is multiplied with the input gate it which triggers

what new memory is to be added to the cell state.

Ct = ft ⊙Ct−1 + it ⊙Ĉt . (7)

The output ot for the current memory cell is generated through the past memory as well output

vector generated from xt :

ot = σ(Wo[ht−1,xt ]+bo).. (8)

Updating of ht at time step t, which is a combination of output gate along with memory cell state

with tanh activation which controls the magnitude and range of the information propagated in the

hidden state. The value of ht also denotes the forecast value (output) of current cell which is

symbolically represented by yt

yt = ht = ot ⊗ tanh(ct). (9)

Figure 2 represents the data flow in LSTM, which is calculated iteratively at all time steps.
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Figure 2: Long Short-Term Memory (LSTM) cell architecture

2.2.5 Performance Evaluation Criteria

The performance of the models was quantitatively compared on 2 quantitative indices, Nash–Sutcliffe

efficiency (NSE) and Root Mean Square Error(RMSE). Nash–Sutcliffe efficiency (NSE) is a metric

mainly used in hydrological and water-quality models to compare simulated(here forecasted) val-

ues with observed values to quantify the model ability to capture variability compared to observed

data. Root Mean Square Error(RMSE) is another widely used performance indicator in machine

learning algorithms where the average difference between predicted values and actual values is

evaluated.

The mathematical expressions of the above mentioned metrics are as follows:

NSE = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − ȳ)2

, RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2. (10)

where n is the number of samples, yi and ŷi are the actual and predicted values of water level at

time interval i. ȳ is average of the actual water-level. NSE is widely used in evaluation of hydro-

logical models [41] and the value of NSE lies in the range of [-1,1] where 1 is the best value for
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a model. RMSE is commonly used metric in machine learning whose value ranges between [0,∞)

and the best value for RMSE is 0. By employing both types of indices, a comprehensive and nu-

anced assessment was achieved, providing a more sophisticated understanding of the performance

exhibited by the various models described in Section 2.3.

2.3 Proposed ML Models

In this section, we mention the three different machine learning LSTM models used for water level

forecasting in the context of weather conditions, for each of the environmental events mentioned

earlier. Each model has different data inputs and is capable of forecasting the water-level values

for the same number of time steps.

Water-level-LSTM (WaLSTM), discussed in Section 2.3.1, utilizes only water level data for

forecasting. In Section 2.3.2, we present LSTM model incorporating historical Meteorological pa-

rameters (MetLSTM) which is a refinement of the basic LSTM model mentioned in Section 2.3.1.

In Section 2.3.3, we propose the model (FMLSTM), which integrates meteorological forecast data

as mentioned in Section 2.2.3, into the deep learning framework and thus highlight transfer of

temporal information from meteorological data in upcoming timesteps. By comparison of per-

formances of FMLSTM with WaLSTM and MetLSTM we could evaluate the impact of using

meteorological forecast as an input parameter to the model. Furthermore, the potential influence

of inaccuracies in meteorological forecasts on the precision of water-level predictions could be

investigated.

2.3.1 Water-level (WaLSTM) Model

We now describe the initial LSTM model that exclusively employs water level data for prediction

of water-level for upcoming timesteps and acts a baseline for comparison. This model utilizes a

sequential approach, where a series of i timesteps of water level data is provided as input. The

architecture of this model is motivated from similar LSTM model used by Borwarnginn et al.[5]

for water-level predictions, 6h and 12h ahead. Our model has one more LSTM layer to capture
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more complex information for predictions 1 week ahead. Along with that, the number of units of

LSTM is variable for different periods and prediction lengths to optimize it with respect to site.

The first LSTM layer consists of m units, while the second layer incorporates double the num-

ber of units 2m. The final LSTM layer comprises m units. Subsequently, the output of the last

LSTM layer is passed through a dense layer, which enables the prediction of water levels for n

future timesteps. The number of LSTM units m in each layer is optimized while training the model

using Optuna [1]. Figure 3 shows a diagram representation of the proposed model.

Figure 3: Model Architecture for Water-level LSTM(WaLSTM)

2.3.2 Water-level with Meteorological Data (MetLSTM) Model

MetLSTM, is an extension of framework presented in Section 2.3.1. This model takes into account

the historical meteorological data in conjunction with water level measurements, thereby encom-

passing the influence of diverse weather parameters like temperature, pressure, rainfall, snowfall,

and more. By incorporating these features, the input for each timestep of the model expands to

encompass p weather parameters alongside the water level parameters, resulting in a total of p+1

input parameters. This expanded input is then processed using the LSTM architecture, following

the methodology similar to Section 3.2.1 as outlined in Figure 4.
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Figure 4: Model Architecture for LSTM-Model using Water-level with Meteorological Data

(MetLSTM)

The model outputs the prediction of water levels for n future timesteps. Through the integration

of weather parameters with water level data, this model can get a comprehensive understanding of

the meteorological impact on the fluctuations and variations observed in water levels. This enriched

comprehension provides valuable insights into the intricate interplay between weather conditions

and the dynamics of water levels and thus could assist in prediction of water-level.

2.3.3 Water-level with Meteorological Data and Meteorological Forecast (FML-

STM) Model

We investigate the inclusion of meteorological forecasts in addition to historical water level data

and corresponding meteorological data in an LSTM model, while previous studies considered

historical meteorological data only. The model input consists of the water level data and meteoro-

logical data from time steps t − i to t, comprising p+ 1 parameters as mentioned in the previous

section 2.3.2. Additionally, the meteorological data for forecast horizon with q parameters includes

information on the weather for the time steps t +1 to t +n taken into consideration by the model.

This input can also be replaced with meteorological forecasts for same period to help model gain

temporal information of these parameters in forecast horizon. Here, time step t +1, t +2, ..., t +n

represent the specific time intervals for which water level predictions are made.
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Figure 5: Model Architecture for LSTM model comprising Water-level, historical meteorological

data and Meteorological Forecast data (FMLSTM)

As shown is Fig. 5, q features of meteorological forecast data are integrated using a single

LSTM layer that processes their temporal information. The resulting array is then concatenated

with the array generated by passing the water level and meteorological data through a single layer

of LSTM. Subsequently, this concatenated array is passed to another LSTM layer, followed by a

dense layer, which predicts the water level output for the n timesteps.

One approach could be using meteorological forecasts along with the input to the MetLSTM

model. But FMLSTM first encodes the meteorological forecast using a different LSTM layer

which enables us to use different sized arrays of input for (historical water-level , meteorological

data) and (meteorological forecast). For example, we take the training window size as past 2

weeks to predict for the next 1 week. In this case, i = 4096 and n = 2048 and the shape of both

inputs would be different where (historical water-level, meteorological data) would contain 4096

timesteps while (meteorological forecast) would contain only 2048 timesteps. Thus FMLSTM

model has an advantage of using different window size of meteorological data and meteorological

forecast data, compared to traditional model where all three inputs were combined.
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By comparing these models, we aim to determine the effectiveness of incorporating meteoro-

logical forecasts in water level forecasting using FMLSTM and evaluate the impact of different

input combinations on the predictive performance.

Predicted timesteps (n) Timesteps used per training sample (i)

1 hour (12 timesteps) 1 week (2,048 timesteps)

1 day (288 timesteps) 1 week (2,048 timesteps)

1 week (2,048 timesteps) 2 weeks (4,096 timesteps)

Table 4: Number of timesteps predicted by the model corresponding to the number of training

timesteps.

2.4 Results

In this section, we present the results of experiments conducted on the data from various sites

of the city of Terrebonne, see the map in Figure 1 of Section 2.2. We evaluate the performance

of the WaLSTM,MetLSTM and FMLSTM models, summarize the results in this section. Two

experimental approaches that were used to run the FMLSTMModel where different datasets were

used as input.

For comparision of model performance with statistical models like Auto Regressive Integrated

Moving Average (ARIMA), we evaluated the ARIMA model with (p,d,q) values (2,1,1) but this

experiment made us realize the limitation of statistical models that for each 1 week period (train-

ing window), there could be different values of (p,d,q) obtained by selecting lowest AIC(Akaike

Information Criteria) and BIC(Bayesian Information Criteria) and thus leading to different opti-

mization for each training sample. (p,d,q) are the various parameters in ARIMA which are used to

define the orders of the autoregressive (AR), differencing (I), and moving average (MA) compo-

nents, respectively. A more longer period could be considered in this case to reduce the number of

optimizations required, but since there are also different periods like droughts, frazil and ice-melt,

such bifurcation would thus lead to non-continuous data, further leading to difficulties in creating
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such models. For example, we evaluated the performance of model keeping (p,d,q) = (2,1,1) and

observed that for drought period, water-level prediction for one week, one training window ob-

served ’nan’(error or invalid number) prediction while NSE values was observed 0.348 on average

for others. On comparison to the NSE value of 0.8512 for FMLSTM and 0.8186 of WaLSTM, we

see that these statistical models not only have limitation on parameters selection and their com-

plex optimization but also lag performance for better forecasting. We further compare the ARIMA

model but for shorter durations, more ’nan’ values were increasingly observed thus making the

comparison ineffective. We further continue discussion about results on comparison of various

models.

The first experimental approach(A1) considered true meteorological data for the duration we

are predicting water-level is considered as one of the inputs to FMLSTM model. It consists the

ground truth values of meteorological parameters for timesteps t +1, t +2...t +n. This approach is

mentioned in Figure 6.

Figure 6: Approach 1 - Using True Meteorological data for prediction duration

The second approach (A2) involved using the meteorological forecasts calculated by estimation

as input as mentioned in Figure 7,
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Figure 7: Approach 2 - Using Estimated Meteorological Forecast for prediction duration

We examined the impact of using all the meteorological parameters (as mentioned in Table 3)

compared to using only a subset of these meteorological parameters (temperature, relative humid-

ity, rainfall, pressure, and snowfall). Based on the number of meteorological parameters considered

for input, this section is further divided into 2 subsections. Both experiments are carried out on 3

time periods, each associated with a particular weather condition (drought, frazil and flood due to

snow melt) to observe the performance of our approach in all three weather events.

2.4.1 Comparison of Model Performance using All Meteorological Parame-

ters

We evaluate the models on data from Bergeron (Table 5) and Louis site (Table 7). We Predict for

1 hour, 1 day and 1 week for Bergeron site using Approach 1 and results are mentioned in Table

5. This improvement is attributed to the incorporation of meteorological data for the duration of

the prediction. For example, rainfall and temperature in the FMLSTM model could demonstrate

their influence on river water-level possible due to gradual snowmelt in winter caused by high

temperatures in the forthcoming days, or increased rainfall leading to runoff from surrounding

areas, thereby introducing the potential for abrupt water-level changes.
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Table 5: Results at Bergeron site with all meteorological parameters using true meteorological data

(approach 1)

One Hour One Day One Week

WaLSTM MetLSTM FMLSTM WaLSTM MetLSTM FMLSTM WaLSTM MetLSTM FMLSTM

Drought

RMSE 0.0039 0.0056 0.0081 0.0135 0.0175 0.0193 0.0649 0.1663 0.0588

NSE 0.9995 0.9990 0.9980 0.9946 0.9910 0.9892 0.8186 -0.1905 0.8512

Frazil

RMSE 0.0030 0.0056 0.0039 0.0248 0.0257 0.0302 0.1090 0.2171 0.1155

NSE 0.9986 0.9951 0.9975 0.9072 0.9002 0.8617 -0.0499 -0.1520 -0.1788

Ice-Melt

RMSE 0.0038 0.0068 0.0046 0.0223 0.021 0.0199 0.1253 0.2262 0.1172

NSE 0.9999 0.9966 0.9984 0.9645 0.9686 0.9717 -0.1608 -0.0468 -0.0161

We also predict for 1 day and 1 week using Approach 2, comprising of estimated meteoro-

logical forecast and compare the results to other models. The results are summarized in Table 6.

By observing Tables 5 and 6, we also observe that the performance of FMLSTM model deteri-

orates with estimated forecasted values compared to using true meteorological data for duration

of prediction. This was expected as there persists an error in meteorological forecasts caused by

inaccurate forecast by weather stations, which is then amplified to predict water level.
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Table 6: Results at Bergeron site with all meteorological parameters using estimation of meteoro-

logical forecast (approach 2)

One day One week

WaLSTM MetLSTM FMLSTM WaLSTM MetLSTM FMLSTM

Drought

RMSE 0.0135 0.0175 0.0188 0.0649 0.1663 0.0620

NSE 0.9946 0.9910 0.9897 0.8186 -0.1905 0.8343

Frazil

RMSE 0.0248 0.0257 0.0501 0.1090 0.2171 0.2011

NSE 0.9072 0.9002 0.8949 -0.0499 -0.1520 -0.1205

Ice-Melt

RMSE 0.0223 0.021 0.0404 0.1253 0.2262 0.2266

NSE 0.9645 0.9686 0.9678 -0.1608 -0.0468 -0.0517

Further to verify this, we predict water-level for 1 day and 1 week at Louis site using approach

1, whose results are mentioned in Table 7. At Louis, We observe for both one day and one week

using meteorological ground truth values in (FMLSTM) showed compelling performance. Specif-

ically, when evaluating the RMSE values and NSE values for the Frazil(0.0268,0.9388) and Ice

Melt (0.0208,0.9862) period within a one-day timeframe, the FMLSTM model exhibited equal or

superior performance compared to WaLSTM and MetLSTM. On the other hand, for a one-week

timeframe, FMLSTM outperformed the WaLSTM and MetLSTM models with comparatively large

margins. Results from Table 5, Table 6 and Table 7 show that when using all meteorological param-

eters, as the time horizon is extended FMLSTM model outperforms other models and the additional

information provided by meteorological data for the upcoming days offers valuable insights into

the trend that might persist in the future.
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Table 7: Results at Louis site with all meteorological parameters using true meteorological data

(approach 1)

One day One week

WaLSTM MetLSTM FMLSTM WaLSTM MetLSTM FMLSTM

Drought

RMSE 0.0299 0.0168 0.1634 0.098 0.0643 0.0427

NSE 0.9936 0.9909 0.9914 0.9216 0.8484 0.933

Frazil

RMSE 0.0564 0.0317 0.0268 0.2364 0.1237 0.1049

NSE 0.9396 0.9143 0.9388 0.1107 -0.0952 0.2135

Ice-Melt

RMSE 0.0506 0.024 0.0208 0.0346 0.1706 0.1394

NSE 0.9819 0.9816 0.9862 0.1526 0.0768 0.3833

2.4.2 Comparison of Model Performance using selective meteorological pa-

rameters

We verify the performance on a subset of meteorological parameters previously used. We use

Temperature, Humidity, Rain, Pressure for all periods and include snow data exclusively for frazil

and ice-melt periods. The experiment is performed on water-level data from Bergeron site , 1

day and 1 week timesteps are predicted using the 3 models. The results of this experiment using

True meteorological data(approach 1) are mentioned in Table 8 while the results for estimated

(approach 2) are mentioned in Table 9. We observe that the results for One Week of Drought

and Ice-Melt period, the FMLSTM model outperforms other models while performance in Frazil

period is comparatively same.
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Table 8: Results at Bergeron site with Temperature, Pressure, Humidity, Rain and Snow* using

true meteorological data (approach 1)

One day One week

WaLSTM MetLSTM FMLSTM WaLSTM MetLSTM FMLSTM

Drought

RMSE 0.01354 0.0158 0.0173 0.0649 0.0819 0.053

NSE 0.9946 0.9937 0.9913 0.8186 0.7115 0.8761

Frazil

RMSE 0.0248 0.0256 0.0265 0.1090 0.1098 0.1095

NSE 0.9072 0.9004 0.8937 -0.0499 -0.0639 -0.0586

Ice-Melt

RMSE 0.0223 0.0215 0.0208 0.1253 0.1207 0.0871

NSE 0.9645 0.9671 0.9691 -0.1608 -0.0775 0.4388
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Table 9: Results at Bergeron site with Temperature, Pressure, Humidity, Rain and Snow*. using

estimation of meteorological forecast (approach 2)

One day One week

WaLSTM MetLSTM FMLSTM WaLSTM MetLSTM FMLSTM

Drought

RMSE 0.01354 0.0158 0.0171 0.0649 0.0819 0.0508

NSE 0.9946 0.9937 0.9915 0.8186 0.7115 0.8886

Frazil

RMSE 0.0248 0.0256 0.0507 0.1090 0.1098 0.2125

NSE 0.9072 0.9004 0.8926 -0.0499 -0.0639 -0.1045

Ice-Melt

RMSE 0.0223 0.0215 0.0394 0.1253 0.1207 0.1855

NSE 0.9645 0.9671 0.9693 -0.1608 -0.0775 0.2952

2.5 Conclusion

We studied new machine learning models, as well as the impact of using weather forecasts instead

of precise weather conditions (as in literature articles) to predict the water level of rivers in the

context of designing tools for predicting events related to floods.

Although the experiments were conducted using either actual meteorological data or estimated

meteorological forecasts due to the unavailability of meteorological forecasts dataset, experiments

show that inaccuracy in meteorological forecasts (in case of estimated forecasts) impacts the qual-

ity of water-level prediction. With more accurate meteorological forecasts, better water-level pre-

diction tools could be devised using models similar to FMLSTM.

By including meteorological data for timesteps for which we are predicting water-level, we

aid the model with the information on various weather patterns or phenomenons likely to happen
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that could lead to water-level fluctuations and thus better understand the relation of meteorological

elements and dynamics of water level.

Moreover, this experiment was carried out using meteorological data from a weather station

away from the river banks. Thus, there may be marginal deviations in observed values of temper-

ature, wind and other meteorological parameters at the site where water-level data was collected.

Thanks to the weather station in the IoT platform, it will be possible to collect on-site meteoro-

logical data thus aiding more reliable results. Even using meteorological data with high spatial

resolution could help in this problem.

This work currently employs a historical water-data dataset provided by Hyro-Meteo thus,

errors in the accuracy of the water-level sensor could propagate in the prediction results. Also

because an external source of data-provider, real-time meteorological forecast could not be ex-

perimented with the limitation of real-time water-level data. In future, we believe our approach

can be easily implemented for real-time water-level predictions using data from IoT sensors and

this could help signal water-level alerts to prevent floods or other natural calamities due to water-

level changes. Currently there is no open-source data store for weather forecasts for a specific

region beyond the past month thus experimentation was limited to assuming the meteorological

data for prediction intervals as meteorological forecast data or estimation of meteorological fore-

casts. Experiments could be carried out to test various meteorological forecast models and use their

forecasts as input to our models along with historical hydrological and meteorological data. These

meteorological forecast models contain inaccuracies termed as model error in [3]. M.R. Allen et

al. mentions that sometimes modellers may be accustomed to expecting an increase in model

resolution or improved parameterisations would improve the behaviour of their forecast mode but

sometimes, it could be attributed to the model error of underlying tools. Thus, it is important to

note that error of the prediction system can be directly influenced with error propagated by the

meteorological forecast models thus it is important to test out this before deploying such models

at flood critical mission centers.
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Chapter 3

Online Machine Learning for Flood

Prediction

3.1 Introduction

Machine learning has been widely used in the modern world with abundant data and applications

in artificial intelligence and data analytics. Conventional machine learning paradigms have often

worked through batch or offline learning capabilities where a model is trained by some learning

algorithm from the entire training dataset at once (over multiple epochs) and then deployed for

inference without (or seldom) performing any update afterward. In contrast, online learning is an

area of research under machine learning where the model learns incrementally from data sequen-

tially.

Implementing batch training in such flood forecasting models requires substantial datasets

comprising historical records of multiple hydrological variables. However, for remote Internet

of Things (IoT) based flood forecasting systems, constraints in storage capacity and uncertainty in

connectivity pose significant challenges in accessing such extensive datasets. Consequently, on-

line machine learning methodologies are deemed more suitable for remote IoT flood prediction,

enabling real-time processing of newly acquired data without depending on local storage.

Numerous studies [2, 4, 44, 57] from different geographical locations across the globe have
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documented the fact that the frequency, severity, and duration of flood disasters are experiencing

an increasing trend due to climate change, land use dynamics, and increasing human activities.

The costs related to flooding have quadrupled in the past 40 years [27], and with the temperature

rise by 2-6°C expected in Canada, the hydrological cycle is anticipated to be impacted [15]. With

the increasing frequency and intensity of extreme weather events in recent years, the importance

of flood prediction models to evolve with these changes becomes extremely important. Traditional

batch learning methods become expensive when re-training the model on new data and may not

adapt well to changing patterns or evolving data distributions. However, online machine learning

overcomes the drawbacks of batch learning since the model is updated regularly with new incom-

ing data. In the case of flood prediction, when data from IoT weather sensors is continuously

streamed, an online learning model can adapt to the changing weather patterns and provide up-to-

date predictions without the need for costly re-training processes. This enables more accurate and

timely predictions in dynamic environments where the data distribution evolves over time.

In this chapter, we propose an online learning approach for flood forecasting to continuously

learn the changing water-level patterns utilizing the real-time data collected from IoT sensors.

We evaluate the performance of Online Machine learning approach for next timestep and next

1 hour predictions. We also compare the results to traditional batch machine learning paradigm

for next timestep prediction and observe that online machine learning improves flood forecasting

capabilities with continuous training.

3.2 Literature Review

Online learning is closely related to other areas like adaptive learning, continual learning, incre-

mental learning, sequential learning, and these terminologies may often be confused with one

another.

The learner in adaptive learning attempts to adapt the learning model for dynamically changing

environments and models can utilize online learning in such environments but it is not limited

to online learning and heuristic adaptation or modifications of batch learning algorithms can be
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utilized which evolve to respective environment changes [24]. Continual learning is often termed

as ’lifelong learning’ and inspired from humans ability to continuously learn new tasks while

being good at other tasks through our lifetime. While continuous learning is closely related to

online learning, existing studies follow paradigm of batch training to learn on existing tasks or new

tasks. Incremental learning refers to learning from stream of data samples in constrained spaces

to address efficiency and scalability. Incremental learning can be viewed as a branch of online

learning and extension for adapting traditional offline learning techniques in data-stream settings

[52]. Sequential learning revolves around the learning from sequential training data in which the

order of data is very important [14]. Sequential learning can be solved using either batch or online

learning algorithms.

Several Neural networks-based learning approaches [36, 60] followed this branch of online

learning, and the Perceptron could be viewed as the simplest form of online learning. One exten-

sively studied approach in online/stochastic gradient descent utilizes the efficient back-propagation

algorithm for online learning [36]. With advancements in machine learning, several attempts have

been made to make deep learning compatible with online learning [37, 66]. Sahoo et al. [55]

proposed Hedge backpropagation to learn deep neural networks in an online setting and address

slow convergence of deep networks through dynamic depth adaptation. Hoi et al.[24] provides a

comprehensive overview of online learning techniques, covering various algorithms and method-

ologies with a main focus on approaches in online supervised learning and online learning with

partial feedback.

In this section, we highlight the developments mainly focused on online machine learning, and

their applications in IoT-based environments.

3.2.1 Online learning in time series

Online learning is used for time-series problems where data arrives sequentially and needs to be

processed and predicted in an ongoing manner, such as IoT sensor data [26, 33], stock prices [56],

and network traffic [45], among others. Kraemer et al.[33] simulated online machine learning train-

ing to predict 1-day photovoltaic energy. Improvement of 56% is observed on the online machine
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learning model using Random Forest Regressor(RFG), compared to persistent predictor (termed

LAG). Singh et al. [56] compared incremental learning using linear regression with online-offline

learning approach utilizing a wide range of deep learning models like LSTM, Stacked LSTM,

Bi-LSTM, CNN, and CNN-LSTM. Results showed that BiLSTM performed the best compared

to other Incremental learning approaches. The online-offline model used by Singh et al.[56] was

trained at the end of every trading session. Melgar et al.[43] devised a novel forecasting algorithm

for streaming time series called StreamWNN. StreamWNN utilizes K-Nearest neighbors and starts

with an offline stage in which a forecasting model is created based on historical data, and further,

the model is incrementally updated in the online stage with buffer data. One-day updates on model-

trained electrical energy consumption performed better than no updates or updating the model

monthly or quarterly. Multiple studies have demonstrated improvements in training time-series

data using online machine-learning approaches, motivating further experimentation to evaluate the

performance of online machine-learning on our specific dataset.

3.2.2 Flood forecasting systems using online learning

Yu et al.[62] used an ensemble method comprising dynamic evolving neural-fuzzy inference sys-

tem or DENFIS. DENFIS utilizes Evolving Clustering Method (ECM) where clusters get regularly

modified during online learning. This approach fails when the observed water-level values have

never occurred in the training or update phase, and time-order not being maintained in cluster

organization. Thus prediction would be inaccurate compared to other supervised models. [61]

compared the performance of Support Vector Machines (SVM) and Gated Recurrent Unit(GRU)

model on the historical dataset (1981-1986) with online learning (termed as incremental updates)

and showed that improvement was observed in the rainfall-runoff prediction.

35



3.2.3 Online learning with microcontrollers

Internet of Things (IoT) based machine learning systems integrate connected devices and sen-

sors with machine learning algorithms to enable data collection, analysis, and real-time decision-

making. Online Machine Learning has been tested on microcontrollers integrated into the IoT

in diverse domains, including agriculture [47], mobile and wearable devices [26], energy sensors

[33], and other areas. Due to Microcontrollers’ limited storage capacity and low energy con-

sumption, online machine learning is a suitable option for these devices. Tiny Online Machine

Learning(TinyOL) [53] libraries are developed for incremental training on-device for streaming

data. Such libraries aim to run training of ML models on low compute hardware of 64MHz CPU

with 256 KB RAM along with battery consumption of 0.1W.

Despite the progress in algorithms and libraries for IoT-based online machine learning systems,

there is a limited amount of research in the literature that integrates real-time online machine

learning methods using water-level data from IoT sensors for flood forecasting. Our aim is to

address this gap with our work.

3.3 Online Machine Learning

Online learning represents a distinct paradigm in machine learning, differing from the traditional

batch learning approach. In the batch learning method, the learning process relies on having the en-

tire training data available beforehand, and the training occurs offline due to its resource-intensive

nature [24]. However, this approach has inherent drawbacks, such as inefficiency in terms of time

and space costs and limited scalability for large-scale applications, as the model needs to be re-

trained entirely when new data arrives.

In contrast, online learning is a dynamic and sequential method that handles data in a streaming

fashion. As new data instances arrive individually, the learner continuously updates its predictive

model to adapt to the latest information. This real-time adaptation makes online learning highly

efficient and scalable, particularly for big data applications with high data velocity. By instantly

updating the model with each new data instance, online learning overcomes the limitations of
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batch learning, providing a more agile and adaptive approach to machine learning tasks. This

makes online learning a valuable choice for real-world data analytics applications where data arrive

continuously and in large volumes.

Figure 8: Batch vs. Online Machine Learning inspired from figure in [65]

3.3.1 Data Collection

This section summarizes the data collection process carried out from the IoT modules via the HY-

DROSIGHT system developed by Meet[42]. It involves retrieving real-time sensor data from the

Water Level Sensor (MX2001-01-SS-S) of the HYDROSIGHT system deployed at various phys-

ical locations. The Water Level Sensor communicates through the Water Level Sensor Module

(RXMOD-W1) via a 4G network, enabling seamless data transmission. Water-level data is trans-

mitted in regular intervals of 5 minutes via the 4G network to the Data Logger Station (RX3004)
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which plays a crucial role in this process. The data logger station accumulates the water level data

daily and exports it to the backend server for further processing and analysis. A scheduled cron

job is executed on the server to collect and pre-process the water level data. The pre-processing

process involves quality checks like checking null and negative values, verifying the correctness

of data based on parameters like sensors installation height, and defining minimum and maximum

values for each measurement. The pre-processed data is then stored in a time-series database to

enable efficient retrieval and management of the sensor readings.

The time-series database stores the water level data separated by 5-minute intervals, captur-

ing detailed and frequent measurements. This data is utilized for training and testing the online

machine-learning model. The model continuously updates and adapts its predictions based on the

real-time data from the Water Level Sensor, allowing for accurate and timely forecasting of water

level heights.

Figure 9: Data Collection for Online Machine Learning Model
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3.3.2 Proposed Online Machine Learning Model

In this section we mention the Online machine learning model used to achieve accurate water-level

forecasting using time series data collected from the HYDROSIGHT system. The data is gathered

at five-minute intervals and stored in a dedicated database on a server. The methodology involves

training a machine learning model to forecast the water level for the next time step based on the

information from the last ten time steps in the database.

Before inputting the data into the model, several pre-processing techniques are applied to en-

sure data quality. These techniques include verifying values and correcting any missing entries.

The data is also scaled using MinMaxScaler [51]. to improve the model’s performance.

Algorithm 1: Online Machine Learning Algorithm

1 Initialize: w1 = 0 ; // Initialization of model weight w1

2 for t = 1, 2, .., T do

3 Learner receives incoming sensor data xt ;

4 Learner predicts next value: ŷt = f (xt ;wt) ;

Output: ŷt

5 True value yt received from sensor ;

6 Learner calculates the loss: l = MSE(yt , ŷt) ;

7 if loss(ε)> 0 then

8 Update the learner;

9 wt+1 = wt +δ (wt ,(xt ,yt)) ;

Once the data is processed and scaled, the model utilizes its prior training to predict the water

level for the next step. At the beginning of the training process, the model’s weights are random,

but as it progresses, it continuously learns and refines its predictions through online learning. The

forecasted value, denoted as ŷt , is then compared to the actual water-level value, yt , to calculate the

prediction error. However, due to the 5-minute sensor reading delay, the error calculations occur

after this duration.

Following error calculation, the online training of the model begins. The model is trained on a
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single training sample of the last ten time steps, allowing it to continuously improve and enhance

its forecasting capabilities for the next step. After training, the model is stored in a model registry,

which efficiently manages and versions the models.

For subsequent water-level forecasting tasks, instead of deploying the model directly, the latest

version of the model is retrieved from the model registry. This ensures that the most up-to-date and

refined model is always used for making predictions. Due to resource constraints, only one model

is stored in this system. However, if storage for multiple models is available, the model registry

allows for tracing back to a model with better accuracy in case of very high error in the current

model.

This cyclic online training, evaluation, and deployment process enables the proposed approach

to adapt continuously to dynamically changing river water-level data, ensuring accurate forecasts

over time. As a result, this approach provides an efficient and practical solution for real-time

water-level forecasting, which is crucial for various water resource management applications.
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Figure 10: Online Machine Learning Architecture for Water Level Forecasting

3.4 Results

Our approach was evaluated using time series data, collected at Lac-Supérieur, one of the test sites

where the HYDROSIGHT system was deployed for testing. Unfortunately, the system deployed

at Terrebonne and Ericsson facility while fully operational today, was not fully functional at the

time of our experiments, and could not utilized for the testing of the on-line algorithm. To assess

the performance of the online machine learning model, we divided the experiment into two phases,

Phase-1 and Phase-2. Training was performed in 2 subsequent phases to evaluate the enhancement

in model performance through continuous online training. In Phase-1, water level measurements

from 5th June 2023 to 25th June 2023 were used as training datasets. For Phase-2, the model was
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further trained with data up to 30th June 2023 to incorporate more varied water level measurements.

The online machine learning model’s performance was evaluated for two forecasting durations: 5

minutes and 1 hour, using a testing dataset spanning from 30th June 2023 to 4th July 2023.

Figure 11 illustrates the dataset distribution with end-dates for end of training of phase I and II

as well as the testing phase. It was crucial to account for the rapidly changing environment and the

continuous evolution of data distributions in our evaluation. The time gap of more than five days

between the evaluation data and the testing phase significantly impacted the Mean Squared Error

(MSE) results. This highlighted the necessity of regularly updating the model to accommodate the

transient changes in river water levels.

Figure 11: Visualization of water-level collected from Lac Superior and corresponding training

phase dates

The results presented in Table 10 show a notable difference between the MSE of the testing

phase. However, with Phase-2, where the model was continuously updated with incoming data

until 30th June 2023, we observed a significant enhancement in the test error. The MSE decreased

from 0.047 to 0.012, representing an impressive 74% decrease compared to the scenario where the

model was not continuously updated. The same trend was observed in the results for forecasting

water levels with a 1-hour duration. The continuous updating of the model resulted in improved

accuracy and performance.

42



Forecasting Duration Training Testing Mean Squared Error(MSE)

Next timestep (5 minutes)
Phase-1 0.04796

Phase-2 0.01235

1 hour
Phase-1 0.05049

Phase-2 0.01331

Table 10: Results of water level forecasting using online learning approach

To gain initial insights into the applicability of Online ML for water level forecasting in contrast

to Traditional Batch learning, we conducted an experiment focusing on forecasting water level

heights for a 5-minute duration. We compared the results obtained from the Online ML approach

with those derived from the Traditional Batch learning approach.

As shown in Table 11, the experiment’s outcomes clearly demonstrate the benefit of the online

ML paradigm, particularly in Phase-2. The online ML model exhibited more effective forecasting

capabilities than the traditional batch learning model. This improvement can be attributed to the

online ML model’s ability to adapt and continuously update with incoming data, thus making it

better suited to handle the rapidly changing environment and evolving data distributions in water

level measurements.

These preliminary findings indicate the promising potential of online ML in the context of wa-

ter level forecasting and underscore the advantages it holds over the more conventional traditional

batch learning approach.

Machine Learning Approach Training Testing Mean Squared Error(MSE)

Batch ML
Phase-1 0.043801

Phase-2 0.028732

Online ML
Phase-1 0.047962

Phase-2 0.012355

Table 11: Comparison of batch and online ML approach for water level forecasting
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Chapter 4

Conclusions and Future Work

In conclusion, this thesis has successfully addressed the challenges of water height prediction

by proposing an innovative LSTM-based model in Chapter 2 that incorporates meteorological

data from forecast horizon. Through a comprehensive evaluation, we demonstrated the significant

improvement in prediction results using FMLSTM on the accuracy of water height predictions,

particularly for longer forecasting horizons, like one week.

The chapter on Online Learning 3 showcases an online learning approach for flood forecasting,

leveraging IoT for real-time water level predictions. Preliminary tests demonstrate a significant

improvement in flood forecasting capabilities compared to traditional batch learning. The adap-

tive nature of online learning allows continuous model updates based on changing environmental

conditions. The promising results from our preliminary tests open up new possibilities for future

research and developments in the field, ultimately aiming to mitigate the devastating impacts of

floods and protect vulnerable communities.

4.1 Future Work

The work presented in this thesis can serve as motivation for further developments in online

learning-based applications leveraging water-level and other hydrological sensors for flood pre-

diction. While the current focus is on a single sensor, future work can involve training models
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with data from multiple sensors, such as rain, snow, and pressure. This expanded approach will

enhance the accuracy and reliability of flood prediction systems, leading to more effective preven-

tive measures. Further combination of this work could lead to an ensemble method for water-level

forecasting comprised of meteorological forecasts and also with online training (Figure 12. This

integrated system would leverage real-time updates through online learning to adapt and improve

continuously.

Figure 12: Proposed system for online training for Water-prediction with meteorological forecast

While this thesis has made significant progress in enhancing water height prediction and flood

mitigation, there are several avenues for future research and improvement:

• Currently, the weather forecasts Chapter 3 utilize weather data from open-source meteoro-

logical sites and we also estimate forecast using errors computed from the same data. The

model could be further optimized with stored meteorological forecast data or forecast data

coming in from local meteorological provided by the municipalities or IoT sensors could be
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leveraged to collect this information making it completely self reliant.

• Explore the application of transfer learning techniques to leverage knowledge gained from

one region’s data for predicting water heights in a different geographical location. This

approach could enhance the model’s generalization capabilities and make it adaptable to

various regions.

• Optimize the placement of IoT sensors in the monitoring network to maximize the accuracy

and coverage of data collection. A well-designed sensor network can improve the quality of

real-time data and enhance the model’s performance.
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